Prentice, SJ, Ashall, C, James, PA, Short, L, Mazzali, PA, Bersier, D, Crowther, PA, Barbarino, C, Chen, T-W, Copperwheat, CM, Darnley, MJ, Denneau, L, Elias-Rosa, N, Fraser, M, Galbany, L, Gal-Yam, A, Harmanen, J, Howell, DA, Hosseinzadeh, G, Inserra, C et al (2018) Investigating the properties of stripped-envelope supernovae, what are the implications for their progenitors? Monthly Notices of the Royal Astronomical Society, 485 (2). pp. 1559-1578. ISSN 0035-8711
Preview |
Text
Investigating the properties of stripped-envelope supernovae, what are the implications for their progenitors.pdf - Published Version Download (17MB) | Preview |
Abstract
We present observations and analysis of 18 stripped-envelope supernovae observed during 2013 -- 2018. This sample consists of 5 H/He-rich SNe, 6 H-poor/He-rich SNe, 3 narrow lined SNe Ic and 4 broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56Ni and ejecta masses (MNi and Mej). Additionally, the temperature evolution and spectral line velocity-curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses $<20$ Msun. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting dataset gives the Mej distribution for 80 SE-SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median Mej, followed by narrow lined SNe Ic, H/He-rich SNe, broad lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of Mej, ranging from $\sim 1.2 - 11$ Msun, considerably greater than any other subtype. For all SE-SNe $<$Mej$>=2.8\pm{1.5}$ Msun which further strengthens the evidence that SE-SNe arise from low mass progenitors which are typically $<5$ Msun at the time of explosion, again suggesting Mzams $<25$ Msun. The low $<$Mej$>$ and lack of clear bimodality in the distribution implies $<30$ Msun progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.
Item Type: | Article |
---|---|
Additional Information: | This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. |
Uncontrolled Keywords: | astro-ph.HE; astro-ph.HE |
Subjects: | Q Science > QB Astronomy Q Science > QC Physics |
Divisions: | Astrophysics Research Institute |
Publisher: | Oxford University Press |
Related URLs: | |
Date of acceptance: | 10 December 2018 |
Date of first compliant Open Access: | 18 December 2018 |
Date Deposited: | 18 Dec 2018 09:55 |
Last Modified: | 04 Sep 2021 09:51 |
DOI or ID number: | 10.1093/mnras/sty3399 |
URI: | https://ljmu-9.eprints-hosting.org/id/eprint/9833 |
![]() |
View Item |