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Graphical abstract 

 

 

Abstract 

The effects of malondialdehyde (MDA),  a product of oxidative stress, on normal lung fibroblast cells 

(MRC5) and transformed c ells (MRC5 SV2) showed differing responses between the two cell lines. 

MRC5 cells showed lower viability at low MDA concentrations (<250 µM) but had better viability at 

higher concentrations than the transformed cells. Both cell lines showed an increase in the number 

of micronuclei, nuclear size and a relocation of p53 to the nucleus with increasing MDA. The 

expression of p53 was higher in the MRC5 cells at 24 h; 2-8 fold induction vs 1-2.5 fold in the MRC5 

SV2 cells, but reduced to almost zero at 48 h in the MRC5 cells. Mutation sequencing of the PCR 

products of a 689 bp region (residues 4640-5328) of the TP53 gene revealed MRC5 had more 
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mutations than MRC5 SV2 cells (n =  21 and 11 respectively) and that they were predominantly 

insertions (MRC5 81%, MRC5 SV2 100%). A common mutation was observed in both cell lines; a G 

insertion at residue 4724 (n = 7) which could prove to be a mutational hotspot. These results 

indicate that the transformed cells are slower to respond to oxidative stress and/or mutagenic 

compounds. The mutation spectrum of predominantly frameshift mutations (insertions) suggests 

that oxidative stress plays a minimal role in smoking related lung cancer, but could be of greater 

importance to other lung diseases and cancer caused by exposures such as passive smokers, passive 

vapers and atmospheric pollutants.  

 

Keywords: malondialdehyde, malondialdehyde-deoxyguanosine adducts, M1dG adducts, oxidative 

stress, TP53, mutations 

 

1. Introduction 
Oxidative stress has been associated with the pathogenesis of a number of different diseases (Reuter 

et al., 2010), including cancer that results from mutations in DNA. In particular, malondialdehyde 

(MDA) is an endogenous source of oxidative stress (Del Rio et al., 2005) that is known to be 

mutagenic in human cells (Niedernhofer et al., 2003) and can enhance the effects of other chemicals 

(Feng et al., 2006). –MDA levels in human plasma are very variable with reported concentrations 

varying dependent upon the analytical technique, interindividual variation and the health status of 

an individual. A review of MDA levels in smokers (Lykkesfeldt, 2007) reported MDA ranges of 0-40 

µM, whereas up to 5 mM  MDA was reported in the plasma of anemic H pylori infected patients 

(Vijayan et al., 2007). Moreover, MDA reacts with guanosine in genomic DNA to form 

malondialdehyde-deoxyguanosine (M1dG) adducts which have been shown to induce frameshift 

mutations and base pair substitutions as well as interstrand cross-links in DNA (Chaudhary et al., 

1994). Lifestyle and environmental exposure can cause an increase in both MDA (Atasayar et al., 

2004; Del Rio et al., 2005) and M1dG adducts, with the latter found in many tissues including 

bronchial mucosa of smokers (Munnia et al., 2006), blood of pathology workers (Bono et al., 2010) 

and nasal epithelium of schoolchildren (Peluso et al., 2013). Thus, DNA adduct detection is an 

appropriate means of measuring exposure but needs to be linked to an effect e.g. mutations that 

ultimately lead to cancer as DNA damage may be repaired and be of little consequence to the cells.  

Almost every type of human cancer exhibits DNA damage in one specific gene, the tumour 

suppressor TP53, with mutation rates varying from 10-100% for different cancer types (Rivlin et al., 

2011; Hecht, 2008). Modification of the TP53 gene, and subsequently its associated p53 protein, is a 

frequent genetic event leading to malignancy. Specific mutations of TP53 have been reported for 

skin tumours due to UV exposure (Ziegler et al., 1993), liver tumours from exposure to dietary 

aflatoxin B1 that showed a mutational hotspot at codon 249 (Montesano et al., 1997) and for lung 

cancer in smokers (Hernandez-Boussard and Hainaut, 1998). However, the spectrum of TP53 

mutations is different for non-smokers, who account for 10-25% of lung cancer cases, and there is a 

need to study the mechanisms involved (Couraud et al., 2012). The main TP53 transcript is 2586 
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bases in length and includes a 5’ UTR which covers exon 1, a large intron between exons 1 and 2, and 

the coding sequence from exons 2 to 11 (Xu-monette et al., 2012). Exon 1 was deleted in human 

ovarian cancer cells (Lane et al., 1995) so is worthy of further study. However, a bias has been 

observed in the mutation screening of the human TP53 gene, with the majority of studies focusing 

on the main coding regions (exons 2-11) and overlooking the 5’UTR exon 1 (Liu and Bodmer, 2006).  

The aim of this study was to examine the effects of MDA on lung fibroblast cells that had an intact 

TP53 gene (MRC5 cells) and those with a transformed TP53 gene (MRC5 SV2 cells) where normal p53 

expression has been altered due to transformation with simian virus 40 (SV40) (Huschtscha and 

Holliday, 1983). Transformation with SV40 causes a raft of effects on the cells including T antigen 

binding to p53 and Rb proteins and the subsequent effect on the cell cycle (Pipas, 2009), and SV40 is 

known to be oncogenic in humans (Shah 2007). Fibroblast cells are an appropriate model for lung 

diseases due to their ability to differentiate and migrate in response to damage within the 

surrounding tissues. A range of parameters were investigated following treatment of the two cell 

lines with MDA including examination of p53 levels and the mutations spectrum of a 689 bp 

sequence that includes exon 1 of the TP53 gene and the 5′ untranslated region (5’UTR). The latter is 

non-functional and considered as ‘junk’ DNA and, hence as discussed above, not studied extensively 

but may be involved in translational processes.  

2. Materials and methods 

2.1 Materials 

Hyperladder II (including DNA loading buffer) was purchased from Bioline, London (UK); TP53 

primers, p53 complementary DNA (cDNA) primers and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) primers were purchased from Eurofins MWG Operon (Ebersberg, Germany); molecular-

grade water and a PureLink messenger ribonucleic acid (mRNA) mini kit were from Life Technologies 

(Paisley, UK); RNasin Plus RNase inhibitor, GoScript reverse transcriptase and GoTaq 2-step RT-qPCR 

system were purchased from Promega (Southampton, UK); random hexamers were from Qiagen 

(Manchester, UK); ethylenediaminetetraacetic acid (EDTA) 500 mM solution, 

tris(hydroxymethyl)aminomethane (tris) were from Severn Biotech (Kidderminster, UK); glacial 

acetic acid, ethidium bromide, boric acid, deoxynucleotide (dNTP) mix and hydrogen peroxide (30% 

v/v) were purchased from ThermoFisher (Loughborough, UK). 

Dimethyl sulphoxide (DMSO), Minimum Essential Medium (MEM), L-glutamine (200 mM), penicillin-

streptomycin (10,000 units/ml and 10 mg/ml), non-essential amino acids (NEAA), phosphate 

buffered saline (PBS), trypan blue solution (0.4% w/v), trypsin/EDTA Solution (0.25%), thiazolyl blue 

tetrazolium bromide (MTT), 1,1,3,3-tetramethoxypropane (TMP), concentrated hydrochloric acid 

(HCl), potassium hydroxide (KOH), potassium chloride (KCl), 4’,6-diamidino-2-phenylindole (DAPI - 

10 mg/ml), methanol, ethanol, cytochalasin B, Reddymix PCR mastermix, GenElute mammalian 

genomic DNA mini prep kit, Annexin V-CY3 apoptosis detection kit, agarose,  were purchased from 

Sigma-Aldrich (Gillingham, UK). MRC-5 pd30 (ECACC 05090501) and MRC-5 SV2 (ECACC 84100401) 

cell lines were obtained from Public Health England (Salisbury, UK). 
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2.2 Preparation of Malondialdehyde  

A 100 mM stock solution of MDA was prepared with 0.1664 mL TMP in 4.69 mL HCl (0.1 M), 

incubated at room temperature (RT) for 40 min, neutralised with 4.69 mL KOH (0.1 M) and made up 

to 10 mL with water (Leuratti et al., 1999).  

2.3 Cell Culture and Treatment with Malondialdehyde 

Cells were cultured in T75 flasks in MEM supplemented with; 2 mM L-glutamine, 100units/mL 

penicillin/streptomycin and 1% NEAA, at 37 °C, in a 5% CO2/95% air humidified atmosphere. To 

prepare cells for MDA treatment cells were removed from the flasks using trypsin-EDTA, pelleted 

(1,000 rpm for 5 min) and resuspended in 10ml MEM and seeded at 1 x 104 cells/cm2 and left to 

attach for 24 h prior to subsequent treatments with MDA. The MDA solution was diluted in media 

for cell treatments (0-1000 µM) of 24 and 48 h. The concentration range used was similar to another 

study where up to 1 mM MDA was used (Li et al., 2006). Where possible, MDA treatments were the 

same for all analyses except where high levels were considered inappropriate due to cell viability or 

for comparison with typical biological levels (. A positive control was used in all treatments (H2O2; 50 

or 100 µM). MDA treated cells were then subjected to the following methods of analysis. 

2.4 Cell viability 

Following treatment of cells with MDA (in 96-well plates), the cells were incubated with MTT reagent 

(5 mg/ml) for 3 h at 37 °C, in a 5% CO2/95% air humidified atmosphere. Next, DMSO (100 µL) was 

added and the cells left to incubate for 30 min on a shaker plate, before the absorbance was read 

using a Spectramax 190 ROM microplate reader (540 nm).   

2.5 Micronuclei and Nuclei Area 

Enlarged nuclei have been observed frequently as an early carcinogen-induced change in cultured 

cells and in vivo. Therefore the effect of MDA on nuclear morphology/size was determined. Cells 

were cultured as described above and then seeded onto sterile glass coverslips (1 x 104 cells/cm2) 

and left to attach for 24 hr (37 °C, in a 5% CO2/95% air humidified atmosphere) and then treated 

with MDA. To preserve the nuclear morphology, MDA treated cells were incubated with cytochalasin 

B solution (1 mg/ml in DMSO diluted 1.5:100 in complete media) for 24 h. Next, the media was 

discarded and the cells washed in PBS (×3) and fixed: the microscope slides were placed in hypotonic 

solution (0.4% Na-citrate + 0.4% KCl in distilled water) containing 4% formaldehyde and incubated at 

4 °C for 8 min, and then placed in hypotonic solution only. An equal volume of fixative (4:1 

methanol:glacial acetic acid) was added slowly to the hypotonic solution whilst gently shaking. Next, 

50% of the hypotonic/fixative mixture was removed and an equal volume of fixative added slowly. 

The hypotonic/fixative mixture was removed and 100% fixative was added for >1 min. The fixative 

was removed and the slides were air dried then incubated in DAPI (50 µg/ml in distilled water) for 15 

min at RT and then washed (x5) in PBS. The slides were viewed using a Zeiss 510 META laser 

scanning confocal microscope (excitation 350 nm, emission 470 nm) and micronuclei identified. The 

area of 10 nuclei from each slide (repeated in triplicate for all MDA/H2O2 concentrations) were 

measured using ImageJ software (Rasband, 2016).  
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2.6 Apoptosis Detection 

MDA treated cells were cultured for 24 h on glass coverslips (15 mm) placed in 12 well plates 

containing complete media. After 24 h the media was removed and the cells washed (x2) with PBS. 

Staining was carried out using the Annexin V-CY3 apoptosis detection kit according to the 

manufacturers’ instructions (Sigma, UK). The cells were imaged using a Zeiss 510 META laser 

scanning confocal microscope. 

2.7 TP53 Expression using Reverse Transcription Quantitative Polymerase Chain Reaction 

MDA treated cells were recovered from the media, mRNA was extracted and purified using a 

PureLink RNA mini kit.  The concentration of RNA was quantified using a NanoDrop 

spectrophotometer (260 nm), the samples diluted with RNase-free water and the RNA (0.463 µg) 

combined with random hexamers (final concentration 0.025 µg/µL random hexamers in 10 µL). Two 

negative controls were used: no RNA template and no reverse transcriptase with randomly chosen 

RNA samples. The tubes were incubated at 70 °C for 5 min, cooled to 4 °C for 5 min, centrifuged 

briefly and held on ice. A reverse transcription master mix was prepared on ice: 1.5 µL RNase-free 

water, 4 µL GoScript reaction buffer, 2 µL MgCl2, 1 µL dNTP’s, 0.5 µL RNase inhibitor, 1 µL reverse 

transcriptase per reaction mixture, and mixed thoroughly. 10 µL of the reverse transcription reaction 

mix was added to each RNA sample. cDNA was synthesized in a thermal cycler: annealed at 25 °C for 

5 min, extended at 42 °C for 1 h, inactivated at 70 °C for 15 min, chilled at 4 °C then held ∞  or 

stored at -20 °C for later use.  

A 1 µM stock solution of each primer were prepared using RNase-free water and held on ice. The 

TP53 cDNA primers were: forward 5’AGATGAAGCTCCCAGAATGC3’ and reverse 

5’TCTTGCGGAGATTCTCTTCC3’. GAPDH (reference gene) primers were: forward 

5’GGTGAAGGTCGGAGTCAACGG3’ and reverse 5’GGTCATGAGTCCTTCCACGAT3’. Primers were 

designed using Entrez Gene (Maglott et al., 2011), Primer3 (Untergasser et al., 2012) and primer 

BLAST bioinformatics (Ye et al., 2012). 

A RT-qPCR reaction mix was prepared on ice, containing 10 µL GoTaq RT-qPCR Master Mix 2X, 4 µL 

RNase-free water and 1 µL each of either TP53 forward and reverse cDNA primers or GAPDH forward 

and reverse cDNA primers. Each RNA sample was prepared in triplicate, with 2 reactions per sample, 

one for TP53 and one for GAPDH, plus 2 reactions for the template-free control (TP53 and GAPDH) 

and 2 reactions for the reverse transcriptase-free control (TP53 and GADPH). RNA samples/control 

(4 µL) mixed with RT-qPCR reaction mix (16 µL) were centrifuged at low speed for 1 min. The RT-

qPCR thermal cycler was programmed: activation at 95 °C for 2 min, 40 cycles of denaturation and 

annealing/extension for 95 °C for 15 s and 60 °C for 1 min, dissociation at 60-95 °C. SYBR was the 

detection dye and CXR was the reference dye. Expression of TP53 (target gene) relative to GAPDH 

expression was calculated using the 2-ΔΔCt Comparative Cycle Threshold (Ct) method (Livak and 

Schmittgen, 2001). Samples were normalised to a RNA–free negative control and referenced against 

GADPH. 

The RT-qPCR products were analysed on agarose gels (1%) prepared in Tris/Borate/EDTA (TBE) 

buffer (1.08 g tris base, 0.55 g boric acid and 0.4 mL 0.5 M EDTA (pH 8) in 100 mL H2O) with 3 µL 

ethidium bromide. A marker (HyperLadder II, 500 – 2000bp) and samples (9 µL) were loaded into the 
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wells with DNA loading buffer (1 µL). The electrophoresis was carried out at 95 V for 45 min to 1 h. 

The gels were viewed with a gel imager and BioRad Quantity One software. 

2.8 Mutation sequencing of Polymerase Chain Reaction Products  

Cells were treated with MDA for 48 h, and the DNA was extracted from the cells and purified using a 

GenElute Mammalian Genomic DNA Miniprep Kit. The DNA solutions were stored at -20 °C until 

required for PCR. Primers were designed using Ensembl (Flicek et al., 2011), Primer3 (Untergasser et 

al., 2012) and BLAST bioinformatics (Ye et al., 2012). The forward primer 

5’TCTGGGAGAAAACGTTAGGG3’ and reverse primer 5’ATCCCTCTAGCCAAGCTTCC3’ flank residues 

4640-5328 of the human TP53 gene (GenBank Accession Number NG_017013). A reaction master 

mix was prepared (25 µL ReddyMix PCR Mastermix, 0.5 µL each of forward and reverse primers, 19 

µL molecular grade water per sample). DNA samples (5 µL) or negative control (H2O) and reaction 

master mix (45 µL) were mixed and the PCR cycle performed: activation at 95 °C for 3 min, 40 cycles 

of denaturation, annealing and extension at 95 °C for 30 s, 57 °C for 1 min, 72 °C for 40 s, final 

extension at 72 °C for 5 min, then held at 4 °C. The products were checked by agarose gels (1%) 

prepared, and analysed, as described above with electrophoresis at 100 V for 30 min. 

Sanger DNA sequencing was carried out on the unpurified PCR products (using the same primers as 

above) by Beckman Coulter Genomics (UK) by double stranded primer walking with an ABI Prism 

3730XL DNA sequencer. The DNA sequences were analysed and processed using CLC Main 

Workbench 6 software (CLCBio, 2014). A consensus sequence combining both the forward and 

reverse sequences from each sample was created and aligned to the TP53 reference sequence and 

any unknown nucleotides were assigned. Conflicts between the TP53 reference sequence and the 

sample consensus sequence were identified and duplicate sample sequences were merged to 

include all possible mutations for that sample. A multiple alignment for each cell line was carried 

out, referenced to the TP53 reference sequence. 

2.9 Statistics 

All statistical analysis was carried out using Microsoft Excel 2007 software and results were 

significantly different if P < 0.05, unless otherwise stated. 

3. Results 

3.1 MTT Cell viability following MDA treatment 

Initial concentrations of MDA were chosen across a large concentration range (0-1000 µM) in order 

to assess the effects of MDA on the relative viability of both cell lines. This range is similar to other 

studies (Li et al., 2006) but higher than typical biological levels of MDA in smokers (Lykkesfeldt, 

2007) and was chosen to examine the effects across a broad range of concentrations as biological 

levels can be very variable (e.g. 5 mM in Vijayan et al., 2007). Figure 1 shows that both cell lines had 

an initial increase in viability after 24 h of treatment at low concentrations of MDA. Viability 

decreased to below 100% at 50 µM and 200 µM for the MRC5 and MRC5 SV2 cells respectively with 

viability dropping more noticeably in the MRC5 cells. However, for MRC5 the viability appears to 

stabilise at concentrations >300 µM whereas it continues to drop for MRC5 SV2 cells to lower than 

that of the MRC5 cells. A similar trend at low concentrations was observed at 48 h although the 
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MRC5 cells had <100% viability at all MDA concentrations. At concentrations above 450 µM, the cell 

viability was very low in both cell lines (data not shown). The positive control (H2O2) showed a similar 

dose dependent decrease in cell viability (data not shown), but to a greater extent than MDA 

treatment. The percentage viability of MRC5 and MRC5 SV2 cells were compared with one another 

for each MDA concentration (0-450 µM) at 24 and 48 h. The viability of the two cell lines were found 

to be significantly different for MDA concentrations of ≥ 25 µM at 24 h (p = <0.0028). After 48 h, 

there was a significant difference in the viability of the two cell lines for the middle range of MDA 

concentrations (50-200 µM, p = <0.004). The low and high concentrations did not show a highly 

significant difference at 48 h (1-25 µM, p = 0.01, 250-450 µM, p = 0.002-0.016).  

<Figure 1> 

3.2 Formation of micronuclei 

A modification of the micronucleus assay was utilised to examine nuclear morphology. DAPI-

fluorescent images of cells treated with MDA are shown in Figure 2. As the concentration of MDA 

increases, the nuclei of both cell lines became more irregular in shape and what appear to be small 

fragments (possibly micronuclei) were observed in cells treated with 100 and 200 µM MDA. Little 

effect was observed on the nuclear morphology of cells treated with lower concentrations (10 and 

50 µM; data not shown). The number of possible micronuclei observed appeared to increase with 

increasing MDA concentration, although very small fragments of DNA can also be seen in the 

negative controls, albeit to a lesser extent than treated cells.  

<Figure 2> 

3.3 Changes in nuclear area 

To determine if there was any change in area of the nuclei following MDA treatment the mean areas 

of the nuclei were measured using ImageJ (Rasband, 2016). Figure 3 shows that the mean nuclear 

area of untreated MRC5 cells remained similar at 24 and 48 h. A general trend was seen in both cell 

lines with nuclear area increasing with an increase in MDA concentration, and also at 48 h compared 

with the same treatment at 24 h. Treatment with the positive control (50 µM H2O2; data not shown) 

for both cell lines showed a similar increase in nuclear area which was found to be significantly 

different when comparing MDA treatments at each time point. Single factor ANOVA analysis was 

performed on each cell line across all concentrations at a given time point. This revealed that the 

increases in nuclear size showed greater significance for the MRC5 SV2 cells than the MRC5 cells (p = 

0.001 and 0.027 at 24 h and 48 h for MRC5, p = 2 x 10-6 and 3 x 10-4 at 24 h and 48 h for MRC5 SV2 

respectively). 

<Figure 3> 

3.4 Apoptosis 

To determine if MDA exposure triggers apoptosis in MRC5 and MRC5 SV2 cells a fluorescence 

apoptosis assay was carried out. This assay detects changes in membrane asymmetry which occur 

during the early stages of apoptosis. In this assay healthy cells fluoresce green, necrotic cells red and 

those in the early stages of apoptosis both red and green. Figure 4 shows selected MDA treatments 

whereby, after 24 h, the untreated cells (both MRC5 and MRC5 SV2) appeared to display 
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predominantly green fluorescence indicating largely healthy cells. There is however some faint red 

fluorescence for the MRC5 SV2 cells which may indicate the background level of apoptosis in this 

population. The 10 µM treatment was very similar to the control in both cases, whereas the 200 µM 

treatment showed a much greater level of apoptosis (data not shown). Results for 48 h exposure to 

MDA and exposure with a positive control (100 µM H2O2) gave similar results to those shown in 

Figure 4 (data not shown).  

<Figure 4> 

3.5 p53 expression 

In order to determine if MDA induces an increase in p53 protein expression a fluorescence based 

assay was used. Overall, expression appeared to gradually increase in response to increasing MDA 

concentrations and treatment time with a slightly more intense fluorescence in the MRC5 SV2 cells 

than the MRC5 cells (Supplementary Figure 1). However, changes in colour intensity could not be 

reliably quantified so quantitative analysis of p53 protein expression levels was carried out to 

determine the relative levels in the two cell lines. Low concentrations of MDA (0 -100 µM), 

representative of normal biological ranges, were used in order to have sufficiently viable cells (see 

Figure 1). Ct values were measured for both p53 mRNA and GAPDH mRNA. The latter is a house-

keeping gene, for which expression is assumed to remain constant (Barber et al., 2005), and was 

used as the reference gene to normalize the expression data to give the relative expression of p53 

mRNA to GAPDH mRNA. This allows for any discrepancies in cell number and RNA extraction. The 

untreated (negative) control was used as a calibrator to which the treated samples were compared. 

The fold induction of p53 mRNA is shown in Figure 5. After 24 h treatment with MDA, p53 mRNA 

production was induced in both cell lines. Induction was greater at 10 µM MDA for MRC5 cells than 

MRC5 SV2 cells and gradually decreased up to 100 µM MDA, whereas for MRC5 SV2 cells, induction 

increased at 50 µM MDA and decreased again at 100 µM MDA. After 48 h treatment, p53 mRNA 

induction was greatly reduced for MRC5 cells, as expected based on viability data (Figure 1), and 

only slightly reduced for MRC5 SV2 cells compared to 24 h treatment. In order to eliminate 

background noise due to amplification errors between samples, a cut-off point for fold induction 

should be applied. It has been suggested that the minimum fold change for significance is > 2, with 

some studies suggesting up to 4 fold change as the cut-off point (Dalman et al., 2012). Application of 

the minimum cut-off point of a 2 fold induction to Figure 5 for the 24 h data would result in all data 

being statistically significant. Whereas, no results obtained after 48 h would be statistically 

significant, apart from MRC5 SV2 cells treated with 50 μM. Statistical comparison, using Student’s t-

test, of fold induction between the cell lines for each treatment showed no significant differences at 

24 h (p >0.05). Whereas, at 48 h all treatments showed a significant difference between the two cell 

lines (p <0.006). 

<Figure 5> 

3.6 Mutation sequencing of Polymerase Chain Reaction Products 

DNA from MDA treated cells was extracted and a 689 bp section of the human TP53 gene was 

amplified by PCR and the resulting DNA sequence analysed. This included residues 4640-5328 of the 

32,772 bp TP53 gene, located on chromosome 17 (GenBank accession NG_017013.2) (Clinvar 
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RCV000079205.2, 2013). The sizes of the PCR products were checked by agarose gel electrophoresis 

and all had single bands at approximately 700 bp in size, corresponding to the PCR product length of 

689 bp. The negative control, containing no DNA, had no band, whilst the positive control (H2O2) 

produced a single band corresponding to 689 bp (data not shown). PCR amplifies a DNA sequence 

and any damage to the DNA results in PCR products with an incorrect base compared to the original 

sequence. These incorrect bases are recorded as mutation to the original DNA sequence. Thus, the 

mutation sites and the type of mutations detected in the two MDA treated cell lines were compared 

to the same sequence from the TP53 gene (Table 1). In general, more mutations were observed in 

MRC5 DNA (n=21 MDA, n=20 H2O2) than for MRC5 SV2 DNA (n=11 MDA, n=12 H2O2). No mutations 

occurred in the negative control DNA (untreated), nor in DNA where cells had been treated with 

10 µM MDA. This may be due to very low levels of DNA damage and DNA repair mechanisms 

reversing any damage that may have formed, or that no DNA damage occurred in this relatively 

short section of DNA sequence under the conditions used. The number of mutations in the PCR 

products appears to peak at 100 µM MDA treatment for normal cells but there is no consistent 

pattern in the transformed cells. The data reveals some common mutations, notably a G insertion at 

residue 4724 (n = 7) whereas other common mutations showed a maximum of three occurrences. 

The mutation spectrum produced by H2O2 is very different to that by MDA with a higher number of 

transitions and tranversions in both cell lines, and very few common mutations showing the 

different effects of MDA and oxidative stress per se.  

<Table 1 > 

The type and percentage of mutations are summarised in Figure 6. In MRC5 cells treated with MDA, 

the majority of mutations were insertions, of which were mainly G, T and C (81% in total) but no A 

insertions. The remainder were transitions (A to G and C to T), and transversions (C to A). All of the 

mutations that occurred in the MRC5 SV2 cells were insertions (100%), of which the majority were G, 

but there were insertions of all bases including A which did not occur in the MRC5 cells. The positive 

control showed a greater variety of mutations than MDA treatments and a higher proportion of 

insertions in the MRC5 SV2 cells than their normal counterpart (68% vs 40%) as seen in the MDA 

treatments. 

<Figure 6> 

4. Discussion 

Comparison of the effect of MDA on the two cell lines was carried out with a focus on the impact on 

the TP53 gene and the p53 protein. Initial experiments on the effects of MDA showed the viability of 

the MRC5 cells decreasing more than that of the MRC5 SV2 cells at all concentrations (Figure 1), 

which is consistent with the MRC5 SV2 cells being transformed and hence lacking normal cell cycle 

control in response to toxic compounds (Huschtscha and Holliday, 1983).  In general, the viability 

initially increased at low concentrations and then decreased after 24 h and with increasing MDA 

concentrations, and decreased further after 48 h for both cell lines, but to a greater extent with 

MRC5 cells. Similar trends have been observed in cell lines treated with other chemicals e.g. LL24 

human fibroblast cells treated with benzene (Giuliano et al., 2009), and MRC5 cells and A549 human 

adenocarcinoma cells treated with cigarette smoke products (Liu et al., 2015), whereby low doses 
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caused increased cell proliferation and higher doses were inhibitory. It was suggested that low doses 

cause defects in cell cycle control allowing increased proliferation as seen here. 

Changes in the nuclei were observed in the form of both the appearance of micronuclei as MDA 

concentration increased (Figure 2) and the increase in the nuclear area (Figure 3). This was observed 

in both cell lines and indicates some reorganisation of the cytoskeleton, which may cause the cells to 

spread out and flatten. This would make the nucleus appear to be larger, or there may have actually 

been an increase in the volume of the nucleus. A similar observation was made in human primary 

diploid fibroblasts that had senesced, whereas apoptotic cells contracted and detached (Bladier et 

al., 1997). As the significance of treatment with MDA on nuclear area was lower at 48 h than 24 h, 

this may indicate that cells were starting to become apoptotic and beginning to contract. 3-D 

imaging and measurement of the nuclear volume would be required to confirm changes to nuclear 

size as opposed to flattening of the cells.   

Apoptosis was seen to increase with MDA concentrations in both cell lines, albeit to a lesser degree 

in the MRC5 SV2 cells (Figure 4). Some cells were observed to be in the early stages of apoptosis, but 

still viable, and hence may have undergone reorganisation of the cytoskeleton which correlates with 

the changes seen in nuclear morphology. Thus it appears that transformation by SV40 reduced the 

level of apoptosis in this cell line which may be due to reduced activation of p53 dependent 

apoptotic factors or other factors such as pRb as mentioned earlier. The influence on p53 is 

consistent with a study of RKO (human colorectal carcinoma, wild type p53) and H1299 (human lung 

adenocarcinoma, p53-null) cells where MDA caused an increase in the apoptotic response with 

irreversible cell cycle arrest at G1/S and G2/M and elevation of p53 protein levels, and an increase in 

M1dG adducts (Ji et al., 1998). Another study of human bone marrow mesenchymal stem cells found 

that increasing concentrations of MDA (up to 1 mM) decreased the cell count, increased the 

population doubling time, decreased cell viability and triggered apoptosis (Li et al., 2006), as 

observed here.  

Increasing MDA gave an increase in p53 expression but also a change in the location of the protein 

(Supplementary Figure 1). p53 is synthesised in the cytoplasm and, when subject to cellular stress, 

p53 re-locates from the cytoplasm of the cell to the nucleus, where it is required to inhibit the 

growth of malignant cells (O’Brate and Giannakakou, 2003) At a low concentration, p53 was mainly 

in the cytoplasm where it is kept at low levels by interacting with Mdm-2 in unstressed cells, 

preventing transport to the nucleus. Increased levels of p53 protein were observed in the nuclei of 

cells treated with higher concentrations of MDA. This is consistent with cleavage of p53-Mdm-2 in 

response to stress, for example DNA damage, which activates p53 and is transported from the 

cytoplasm to the nucleus.  There appears to be a greater effect for MRC5 SV2 cells than for MRC5 

cells at 48 h which may be due to the sequestration of p53 in MRC5 SV2 cells causing a different 

response to their normal counterpart (Huschtscha and Holliday, 1983). Furthermore, quantitation of 

induction showed that p53 mRNA was increased to a greater extent at low concentrations compared 

to treatment with higher concentrations of MDA, and to a greater extent at 24 h than 48 h (Figure 5) 

which correlates with the qualitative observations. MRC5 SV2 cells continued to have induction of 

p53 mRNA after 48 h, albeit to a lesser extent than after 24 h, unlike the MRC5 cells. The difference 

in expression of p53 is clearly seen between the two cell lines with sequestration of p53 in MRC5 
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SV2 cells inducing the cells to express a greater amount of p53 to compensate for the bound p53. 

Studies of p53 expression in non-small cell lung carcinoma found high levels in 90% of tumours 

(Cherneva et al., 2009), and increased p53 expression in human colon cancer cells treated with 

inositol hexaphosphate (Weglarz et al., 2006) although a decline in p53 mRNA expression was 

observed in human bronchial epithelial cells in response to treatment with aflatoxin B1 (Van Vleet et 

al., 2006). Thus, there are differing cellular responses with regards to p53 expression dependant on 

the cause and site of the damage. 

Mutation sequencing of the PCR products of DNA extracted from MDA treated cells showed almost 

double the number of mutations for MRC5 cells than the MRC5 SV2 cells (Table 1). In particular, the 

low concentrations (up to 100 µM) which are more representative of biological levels of MDA, 

showed more mutations in the normal cells than the transformed cells. The number of mutations in 

normal cells appears to increase up to 100 µM whereas the transformed cells do not show a dose-

response relationship at any point. This may be due to the differing viabilities of the cells which 

showed that the transformed cells had much higher viability at low concentrations of MDA than 

normal cells, or that the cells respond in a number of different ways due to being transformed. 

Moreover, the type of mutations differed to those generated by hydroxyl radicals demonstrating the 

specific role of MDA. MRC5 showed predominantly insertions and some transitions and 

transversions whereas MRC5 SV2 cells exhibited only insertions (Figure 6). The predominant 

mutation was the G insertion at residue 4724, indicating a potential mutation hotspot in this DNA 

sequence. Exon 1 is located between residues 4953 and 5176 of the TP53 gene sequence, within the 

689 bp region sequenced here. However, this region had only two mutations in the MRC5 cells and 

none in the MRC5 SV2 cells for MDA treatments, whereas the positive control did induce a few 

mutations in exon 1 of both cell lines. The 689 bp sequence examined aligns to residues 1841 to 

1153 of the 17432 bp Wrap53 gene sequence (Clinvar RCV000079205.2, 2013) in the antisense 

direction. Other studies have shown that MDA induces frameshift mutations and base pair 

substitutions (Benamira et al, 1995; Del Rio et al, 2005; Niedernhofer et al., 2003) as well as 

formation of M1dG adducts. M1dG is also mutagenic in mammalian cells, with the majority of 

mutations occurring as base substitutions and some frameshift mutations (insertions or deletions) 

(Stafford et al, 2009). Thus, there are several studies with similar mutations to those presented here. 

However, the presence of mutations detected by PCR and sequencing does not confirm that M1dG 

adducts formed as the methodology used here involves PCR amplification of cellular DNA and 

therefore detects all mutations arising from damage to the DNA sequence rather than specific 

adduct formation. In the TP53 gene of lung cancer cells, the majority of mutations were 

transversions, of which there was a strong link between these types of mutation and cigarette 

smoking (Soussi et al., 2000), whereas there was an increase in transitions in TP53 lung cancer 

mutation spectra in non-smokers (Kim et al., 2012).   However, an increase in frameshift mutations 

was observed in former or non-smokers who were exposed to passive smoking (Vähäkangas 2001) 

which correlates with the mutations found herein indicating that oxidative stress may play an 

important role in lung cancer associated with passive smokers. All of the aforementioned studies 

examined the main coding regions of TP53 (exons 2-11), whereas the region studied here has not 

been extensively studied previously (Liu and Bodmer, 2006). Hence, comparison of the type of 

mutations in lung fibroblast cells to other studies reveals that MDA mutations result in mainly 
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frameshift mutations as seen in passive smokers (Vähäkangas 2001) rather than the mutation 

spectrum seen in smokers. Furthermore, the mutation spectrum  is modified by the status of the 

TP53 gene in the lung fibroblast cells used in this study. 

5. Conclusion 
The effect of MDA on the two lung fibroblast cell lines differed and the focus of the current study 

was on the effects on the TP53 gene and p53 protein. However, it is acknowledged that SV40 cell 

transformation induces a raft of other changes that may also affect the differing response of the cell 

lines  It was found that MDA had a greater impact on the viability and p53 expression of normal cells 

as would be expected in response to a carcinogen, whereas transformed cells were slower to 

respond. Furthermore, the mutation spectra of the PCR products differed both in number and type. 

This indicates that transformed cells fail to respond appropriately to MDA exposure, or potentially 

other mutagens, which may result in higher levels of cancer and that this may be due to the altered 

response of the TP53 gene or other factors affected by SV40 transformation of the cells. The 

mutation spectrum differs from that seen in lung cancer cases suggesting that MDA, and hence 

oxidative stress, is not a major factor for lung cancer. However, an important finding of our study 

was that the predominant MDA-induced mutations in both cell lines were similar to those found in 

non-smokers and passive smokers (Vähäkangas 2001). MDA has long been associated with oxidative 

stress and, hence, the mutation spectrum observed herein has implications for future inhalation 

exposure studies such as in passive smokers or (passive) vapers, and other sources of inhalation such 

as environmental or occupational exposures.  
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Tables 

 

Table 1. Mutation type and position of mutations in DNA from MRC5 and MRC5 SV2 cells treated 

with MDA (10-1000 µM) and H2O2 (50-100 µM) for 48 h. Ins = insertion. 

MDA  
(µM) 

MRC5 MRC5 SV2 H2O2 
(µM) 

MRC5 MRC5 SV2 

Residue  Mutation Residue  Mutation Residue  Mutation Residue  Mutation 

0 - - - - - - - - - 
10 - - - - - - - - - 
50 4821a C → T  4724f G ins 50 4714i A → G  5215 G ins 

 
5149 G ins - -  4724f G ins - - 

 
5152 G ins - -  5253j T ins - - 

     
 5263h C ins - - 

100 4738b A → G  5253j T ins      

 
4823 T ins - - 100 4738b A → G  4738b A → G  

 
4832 C → A  - -  4819 A → G  4788 T ins 

 
5188 T ins - -  4828 T → A  4791 G ins 

 
5216c G ins - -  4830 A ins 4819 A → G  

 
5238 T ins - -  5150 G → C  4820 G → T  

 
5245 G ins - -  5209 A ins 4821a C → T  

 
5254d C ins - -  5214 G ins 4831 C → A  

 
5255e T ins - -  5219 G → C  5046 A ins 

     
 5224 A ins 5154 G ins 

200 4724f G ins 4724f G ins  5226 G → A  5171 G ins 

 
5216c G ins 5216c G ins  5242 G → T  5287 G → A  

 
5256g T ins 5256g T ins  5260 G → T  - - 

 
5263h C ins 5263h C ins  5266 G → T  - - 

     
 5281 G → T  - - 

500 4714i A → G  5222 A ins  5287 G → A  - - 

 
4724f G ins - -  5311 G → T  - - 

 
5255e T ins - -      

     
     

1000 4724f G ins 4724f G ins      

 
5254d C ins 4725 A ins      

 
- - 5155 G ins      

 
- - 5253j A ins      

(a-j)Indicates a repeat mutation 
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Figure Legends 

 

Figure 1 Viability of  MRC5 and MRC5 SV2 cells treated with MDA (0-450 µM) over A) 24 h and B) 

48 h, normalised to the negative control, error bars indicate ± 1SD from the mean (n = 4). Viability at 

>450 µM was very low (data not shown).  

Figure 2 DAPI stain images of the nuclei of: A-D) MRC5 treated with MDA (left to right: 0, 50, 100 and 

200 µM); and E-H) the corresponding images for MRC5 SV2 cells. A 10 µM treatment was also 

performed and was similar to the negative control (data not shown). The green arrows indicate 

possible micronuclei.  Images are representative of sample replicates (n = 12). Scale bars = 20 µm.  

Figure 3 Area of nuclei of MRC5 and MRC5 SV2 cells treated with MDA (0-200 µM) over A) 24 h and 

B) 48 h, error bars indicate ± 1SD from the mean (n=10). The mean area was compared for all 

concentrations at both time points by ANOVA: MRC5 24 h, p = 0.001, 48 h p = 0.027; MRC5 SV2 24 h, 

p = 2 x 10-6, 48 h p = 3 x 10-4. 

Figure 4 Apoptosis detection of selected MDA concentrations: A-C) MRC5 cells treated for 24 h with 

MDA (top to bottom: 0, 50, 100 µM); and D-F) the corresponding images for MRC5 SV2 cells.  

Imaging at x20 magnification using confocal microscopy. Red indicates cells stained for apoptosis 

and green for viable cells. Images are representative of each sample (n =6). The 10 and 200 µM data 

is not shown. 

Figure 5 Induction of p53 mRNA expression relative to the negative control and reference gene 

GADPH, in cells treated with MDA (0 – 100 μM) for A) 24 h and B) 48 h, error bars indicate ± 1SD (n = 

6). Values are indicated where induction was close to zero. Values of > 2 fold induction are 

significant. Note the different scales on A and B. 

Figure 6 Type of mutations (%) in DNA from MRC5 cells treated for 48 h with A) MDA and B) H2O2 

and MRC5 SV2 cells treated for 48 h with C) MDA and D) H2O2. MDA = 10-1000 μM and H2O2 = 50-

100 μM. 
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Figure 3 
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Figure 5 
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