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ABSTRACT

Background. Monitoring the external ground reaction forces (GRF) acting on the
human body during running could help to understand how external loads influence
tissue adaptation over time. Although mass-spring-damper (MSD) models have the
potential to simulate the complex multi-segmental mechanics of the human body and
predict GRF, these models currently require input from measured GRF limiting their
application in field settings. Based on the hypothesis that the acceleration of the MSD-
model’s upper mass primarily represents the acceleration of the trunk segment, this
paper explored the feasibility of using measured trunk accelerometry to estimate the
MSD-model parameters required to predict resultant GRF during running.

Methods. Twenty male athletes ran at approach speeds between 2-5 m s~!. Resultant
trunk accelerometry was used as a surrogate of the MSD-model upper mass acceleration
to estimate the MSD-model parameters (ACCpqram) required to predict resultant GRF.
A purpose-built gradient descent optimisation routine was used where the MSD-
model’s upper mass acceleration was fitted to the measured trunk accelerometer signal.
Root mean squared errors (RMSE) were calculated to evaluate the accuracy of the trunk
accelerometry fitting and GRF predictions. In addition, MSD-model parameters were
estimated from fitting measured resultant GRF (GRFparam), to explore the difference
between ACCparam and GRFparam-

Results. Despite a good match between the measured trunk accelerometry and the
MSD-model’s upper mass acceleration (median RMSE between 0.16 and 0.22 g), poor
GRF predictions (median RMSE between 6.68 and 12.77 N kg™!) were observed.
In contrast, the MSD-model was able to replicate the measured GRF with high
accuracy (median RMSE between 0.45 and 0.59 N kg™!) across running speeds from
GRFparam- The ACCparam from measured trunk accelerometry under- or overestimated
the GRF}4ram obtained from measured GRF, and generally demonstrated larger within
parameter variations.

Discussion. Despite the potential of obtaining a close fit between the MSD-model’s
upper mass acceleration and the measured trunk accelerometry, the ACCparam estimated
from this process were inadequate to predict resultant GRF waveforms during slow to
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moderate speed running. We therefore conclude that trunk-mounted accelerometry
alone is inappropriate as input for the MSD-model to predict meaningful GRF
waveforms. Further investigations are needed to continue to explore the feasibility of
using body-worn micro sensor technology to drive simple human body models that
would allow practitioners and researchers to estimate and monitor GRF waveforms in
field settings.

Subjects Bioengineering, Anatomy and Physiology, Kinesiology

Keywords Biomechanical loading, Training load monitoring, Tissue adaptations, Body-worn
accelerometer, Mass-spring model, Optimisation

INTRODUCTION

Humans generate considerable forces against the ground during running to maintain
an upright posture. This comes at the cost of equal and opposite ground reaction forces
(GRF) acting on the body during every foot-ground contact (Cavanagh ¢ Lafortune,
1980). These GRF put the body’s soft tissues (e.g., bones, cartilage, muscles, tendons and
ligaments) under biomechanical stresses which over time are expected to lead to beneficial
structural adaptations (Kibler, Chandler ¢» Stracener, 1992; Dye, 2005). Inadequate recovery
or repetitive GRF with excessive magnitudes can instead lead to negative adaptions and
tissue damage (Kibler, Chandler ¢ Stracener, 1992; Dye, 2005). The ability to monitor an
athlete’s GRF during running can therefore help to better understand the relationship
between the external forces experienced and soft-tissue adaptations (Vanrenterghem et al.,
2017) ultimately helping to prevent musculoskeletal injury.

Accurate monitoring of GRF waveforms during running is currently restricted to
laboratory environments where GRF waveforms are measured with force platforms built
into the ground, or derived from whole-body kinematics (Bobbert, Schamhardt ¢ Nigg,
19915 Winter, 2005). With recent developments of low-cost sensor based micro technology
(Camomilla et al., 2018), accelerometry has become a popular tool to evaluate running
mechanics outside laboratory environments in long and middle distance running (7ao
et al., 2012) and professional team sports (Akenhead ¢ Nassis, 2016). Accelerometry also
offers opportunities to estimate loading related GRF characteristics (e.g., Lafortune, 1991;
Wundersitz et al., 2013; Neugerbauer, Collins & Hawkins, 2014; Raper et al., 2018), and
tibia-mounted accelerometry has for example been used as surrogate measure of peak GRF
since the early 90s (Lafortune, 1991; Lafortune, Lake ¢ Hennig, 1995). However, recent
studies found weak to moderate linear relationships between peak accelerations measured
from body-worn accelerometry (trunk- and tibia-mounted accelerometers) and peak
whole-body accelerations measured from force platforms during running (Wundersitz
et al., 2013; Nedergaard et al., 2017a; Raper et al., 2018). Since body-worn accelerometers
only measure segmental acceleration, the use of a single accelerometer has to date been
inadequate to incorporate the complex multi-segmental accelerations that result in task-
specific GRF patterns (Nedergaard et al., 2017a). Recent studies have indicated that from
the combination of three or more body-worn inertial sensors and machine learning one can
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estimate GRF and knee joint moments with reasonable accuracy during running related
locomotion (Johnson et al., 2018; Wouda et al., 2018), but the broader application of such
approaches is constrained by the requirement of multiple sensors, machine learning tools,
and large data sets. Therefore, if it were possible to estimate accurate GRF waveforms from
a single body-worn sensor, it would provide practitioners and researchers with a useful
tool to monitor the biomechanical load in field settings.

Since the overall motion of the human body has a spring-like behaviour during running,
simple mass—spring models, consisting of a single mass and spring, have been widely
used to estimate the vertical GRF in field settings (e.g., Alexander, 1984; Blickhan, 1989;
McMahon & Cheng, 1990). Moreover, such models have been used in combination with
trunk-mounted accelerometry to estimate the required model parameters (Gaudino et
al., 2013; Buchheit, Gray ¢ Morin, 2015). Unfortunately, the initial high-frequency impact
peak typically observed in the GRF waveform during running, which is speculated to
be linked with negative tissue adaptations and risk of injury (Nigg, Cole ¢» Bruggemann,
1995; Hreljac, Marshall &~ Hume, 20005 Milner et al., 2006), cannot be estimated with this
oversimplified model (Alexander, Bennett ¢ Ker, 1986; Bullimore & Burn, 2007). A more
complex mass—spring-damper model (MSD-model) better replicates the GRF waveforms
for running at moderate speeds (3.83 m s~! & 5%), including both impact and active peaks
(Derrick, Caldwell ¢ Hamill, 2000). This model consists of a lower mass connected to a
spring in parallel with a damper, representing the support leg during foot-ground contact,
and an upper mass and spring representing the dynamics of the rest of the body. However,
the ability to use trunk-mounted accelerometry to estimate the required model parameters
for this model is yet unknown.

The aim of this study was to examine if the acceleration of the MSD-model’s
upper mass represents the acceleration of the trunk segment measured with trunk-
mounted accelerometry during running. This hypothesis seems feasible, since the trunk
segment represents half of the body mass (Dempster, 1955). If this provides a reasonable
approximation, it might be feasible to estimate the required MSD-model parameters
from trunk accelerometry to subsequently predict GRF from the MSD-model behaviour.
Specifically, we therefore explored (1) the feasibility to estimate the MSD-model’s eight
natural model parameters from measured trunk accelerometry, and (2) whether these
model parameters in fact predict reasonably accurate GRF waveforms during running at
slow to moderate running speeds.

MATERIALS & METHODS

Subjects and protocol

Twenty healthy male athletes (age 22 &+ 4 years, height 178 £ 8 cm, mass 76 + 11 kg) who
engaged in running related sports activities on a weekly basis volunteered to participate in
this study. The institutional ethics committee at Liverpool John Moores University granted
ethical approval for this study (ethics approval number: 09/SPS/010) in accordance with
the Declaration of Helsinki, and written consent was obtained from all participants. After
a 15 min warm-up (including light jogging, dynamic stretching and individual dynamic
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tasks) and an individual number of familiarisation trials, the participants were asked to
run over a force platform at different running speeds of 2, 3, 4 and 5 m s7! (£5%) in a
randomised condition order. Running speeds were measured with photocell timing gates
(Brower Timing System, Utah, USA) placed 2 m apart, with the last gate positioned 2 m
before the centre of the force platform as described in Vanrenterghem et al. (2012). The
participants completed four trials of each running speed, landing on the force platform
with their dominant leg (defined as the self-reported preferred kicking leg (Van Melick
et al., 2017)). Trials with unsuccessful foot contacts on the force platform (double foot
contact or when the foot was not placed within the force platform) and/or when the desired
approach speed was not achieved were repeated until a valid trial was recorded.

Experimental measurements

Resultant ground reaction forces were measured (GRF) with a sampling frequency of
3,000 Hz from a 0.9 x 0.6 m? Kistler force platform (9287C, Kistler Instruments Ltd.,
Winterthur, Switzerland). Resultant trunk accelerations (TrunkAcc) were simultaneously
collected at 100 Hz using a tri-axial accelerometer (KXP94, Kionex, Inc., Ithaca, NY, USA)
with an output range of 13 g embedded within a commercial GPS device (MinimaxX
S4, Catapult Innovations, Scoresby, Australia) with a total weight of 67 grams and

88 x 50 x 19 mm in dimension. The GPS device was positioned on the dorsal part of
the upper trunk between the scapulae within a small pocket of a tight fitted elastic vest
according to the manufacturer’s recommendations (Boyd, Ball & Aughey, 2011). Different
vest sizes were used to ensure the tightest fit for the individual participants. TrunkAcc data
(measured in the units g) was pre-processed with the manufacturer’s proprietary filter
algorithms (50 Hz low-pass filter, personal communication with the manufacturer), and
downloaded as ‘raw accelerometer data’ from the manufacturer’s software (Catapult Sprint,
version 5.1.7, Melbourne, Australia) after each test session. Each session also included a
static measurement at the beginning and end of the session to detect any calibration
drift over time, and none was detected. TrunkAcc and GRF were synchronised using a
combination of time and event synchronisation as described in Nedergaard et al. (2017a)
and exported to Matlab (version R2016a, The MathWorks, Inc., Natick, MA, USA) where
a 4th order recursive Butterworth low-pass filter with a cut-off frequency of 20 Hz was
applied to GRF and TrunkAcc. GRF data was collected from a single stance phase per
trial, where touch down and take off were defined when the vertical GRF crossed a 20 N
threshold.

Mass-spring-damper model
The complex multi-segmental dynamics of the human body during stance phase were
modelled as a passive MSD-model (Alexander, Bennett ¢ Ker, 1986; Derrick, Caldwell &
Hamill, 2000). This model consists of two masses (Fig. 1); a lower point mass () on top
of a linear spring (k;) in parallel with a damper (c) representing the support leg; an upper
point mass (#1;) representing the dynamics of the rest of the body and another linear spring
(k1) connecting the two masses.

The one-dimensional motion of the MSD-model was described by the acceleration of
the two masses Eqs. (5) and (6):
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Figure 1 An illustration of the human body represented as a MSD-model. The MSD-model consists of
a lower mass spring damper element (1,, k;, ¢) representing the support leg of the human body and an
upper mass spring element (1, k;) representing the rest of the human body.

Full-size &l DOI: 10.7717/peerj.6105/fig-1
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where p1, p, v1, v2, a1, and a; are the initial positions, velocities and, accelerations of the
two masses (m; and m,), respectively; A is the mass ratio of the lower mass relative to the
total body mass (Eq. 1); ;> and w,? are the natural frequencies of the springs (Eqs. (2)
and (3)) based on the linear spring constants (k; and k;) and the mass of the two masses
(m; and m,); ¢ is the damping ratio of the damper (Eq. 4); and g is the acceleration from
gravitational acceleration (—9.81 m s™!). The resultant GRF acting on the MSD-model is
calculated as in Eq. (7), where M is the sum of the two masses (i.e., total body mass):
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Model parameter estimation

To estimate the eight MSD-model parameters (p;, p2 v1, V2, w1? w22, ¢, A), we used
gravity corrected TrunkAcc from the stance phase as a surrogate of the MSD-model’s
upper mass acceleration (Fig. 2A). For each trial, model parameters (ACCparam) were
optimised by fitting the MSD-model’s upper mass acceleration (a;) to the TrunkAcc
signal. A purpose-built gradient descent optimisation routine in Matlab was used, where
the two second-order differential equations of the MSD-model’s motion Egs. (5) and
(6) were transformed to four first-order differential equations and solved numerically
with a Runge Kutta 4th order method. Root mean squared error (RMSE) between the
TrunkAcc and a; waveforms were calculated for every iteration to determine the optimal
model ACCparam combination that best fitted TrunkAcc for the individual trials. The
ACCparam estimated from the TrunkAcc fitting were then used to predict the resultant GRF
from Eq. (7). Furthermore, to help understand differences in estimated model parameters
and the predicted versus measured resultant GRF, we also estimated the eight model
parameters (GRFparam) by fitting the MSD-model to the measured GRF (Fig. 2B), similar
to the approach previously described by Derrick, Caldwell ¢ Hamill (2000).

Statistical analysis

Measured and modelled GRF were normalised to the participants’ mass. RMSE between
the TrunkAcc and a;, waveforms, and between the measured GRF and predicted GRF
waveforms, were calculated to evaluate the accuracy of the TrunkAcc fitting and the
predicted GRF, respectively. RMSE median and interquartile range (25th to 75th percentile)
were calculated to determine the variation in the model’s accuracy within and across
running speeds. Similarly, the median and interquartile range (25th to 75th percentile)
of the ACCparam and GRFp,ram were calculated to explore the variation within and across
running speeds. The median data presented and discussed in the following is the median
of all trials within the individual running speeds (N = 80 trials) and the overall median
across all running speeds (N = 320 trials).

RESULTS

The first step was to estimate the required ACCpyram that fit the MSD-model’s upper
mass acceleration to the measured TrunkAcc signal. The MSD-model was able to fit the
measured TrunkAcc with good accuracy across running speeds, though a; systematically
underestimated the magnitude of the first peak observed in the accelerometry signal
(Fig. 3A). The median RMSE (interquartile range 25th to 75th percentile) of the TrunkAcc
fitting increased from 0.16 (0.12; 0.22) g at the slowest running speed to between 0.21 (0.16;
0.26) g and 0.22 (0.16; 0.30) g for three faster running speeds. Though similar median
RMSE values were observed across the three fastest running speeds, the interquartile range
increased with increased running speeds (Fig. 3C). Despite the good match between a; and
TrunkAcc, poor GRF predictions were observed across running speeds (Fig. 3B) and the
median RMSE of the predicted GRF systematically increased with running speeds, from
6.68 (3.81;15.30) Nkg ' at 2m s~ ! to 12.77 (7.78; 27.22) N kg~ at 5m s,
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Figure 2 Estimating MSD-model parameters by fitting the MSD-model to measured trunk accelerom-
etry and measured GRF. (A) illustrates the trunk driven MSD-model where measured trunk accelerom-
etry (TrunkAcc) for the stance phase, is used to estimate the eight ACCparam, based on the hypothesis that
the MSD-model’s upper mass acceleration (a;) primarily represents TrunkAcc, before GRF is calculated
from the ACCaram that best fitted TrunkAcc. (B) displays the traditional MSD- model approach, where
the eight GRF,ram are estimated by fitting the model’s GRF to the measured GRF.

Full-size & DOI: 10.7717/peerj.6105/fig-2

Since the ACCpqram resulted in poor GRF predictions, we next estimated the GRFparam
by fitting the MSD-model to the measured GRF waveforms (Fig. 2B) to determine if there
was any difference between the two sets of model parameters (Table 1) and to compare the
upper mass acceleration to the measured TrunkAcc. The MSD-model was able to replicate
the measured GRF with high accuracy when GRFp4ram Were estimated to directly fit the
measured GRF (Fig. 4B). This was reflected in the low RMSE median and interquartile
ranges observed across all running speeds (2 m s71:0.45 (0.36; 0.60); 3 m s~ ': 0.47 (0.37;
0.61); 4 m s~1: 0.53 (0.39; 0.66); 5 m s~ ': 0.59 (0.46; 0.73); All Speeds: 0.51 (0.39; 0.64)
N kg~!). However, the MSD-model’s upper mass acceleration profiles then deviated
considerably from the acceleration profiles measured with trunk accelerometry (Fig. 4A).
The GRFparam also differed considerably from the ACCparam (Figs. 4C and 4D). Namely,
the GRFparam demonstrated smaller within parameter variation, which was especially
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Figure 3 Representative examples of the trunk accelerometry fitting and GRF prediction, and the me-
dian RMSE across running speeds. Representative examples of a single stride from multiple subjects. (A)
display the fitting of the upper mass acceleration to the trunk accelerometry signal across running speeds,
and (B) display the measured and predicted GRF for the same trials. The RMSE for the trunk accelerom-
etry fitting and GRF predictions are displayed in brackets for the individual examples. (C and D) display
the average RMSE median, and 25th and 75th interquartile range for the trunk accelerometry fitting and
GREF prediction respectively within and across the individual running speeds. A total of 17 extreme out-
liers(3ms™':3;4ms™':7;5ms! : 7 outliers) were removed through visual inspection from the box-
plots in (D) to improve the visual interpretation.

Full-size Gal DOI: 10.7717/peerj.6105/fig-3

evident for p, and v;. Also, lower v; (median difference 0.47 m s~!) and higher v, (median
difference —1.73 m s~!) values were observed across running speeds.

DISCUSSION

This study illustrates that the MSD-model’s upper mass acceleration could be fitted to the
measured trunk accelerometry with high accuracy, but the ACCpram estimated from this
process did not lead to accurate predictions of resultant GRF waveforms across a range
of slow to moderate running speeds. Further analysis of the MSD-model behaviour when
fitting to the measured resultant GRF revealed a considerable discrepancy in GRFparam
compared to the ACCpqram when fitting the MSD-model to measured trunk accelerometry
signals. These results demonstrate that our initial hypothesis that the MSD-model’s upper
mass acceleration primarily represents the acceleration of the trunk was false.

Model parameter estimation

The eight model parameters are fundamental to calculating the resultant GRF acting on
the MSD-model, and though fitting TrunkAcc was successful, the ACCparam estimated
from this approach resulted in poor GRF predictions. Based on the equation of the upper
mass acceleration (Eq. 5) and the ACCpgram estimated from TrunkAcc, it seems that the
MSD-model was able to fit the TrunkAcc by keeping the initial position of the upper mass
(p1) and lower mass (p,) low, and by keeping the spring stiffness of the upper spring (w;?)
low. Whereas p; has minor influence on the predicted GRF, the velocity of the upper mass
at initial contact (v;) is indirectly influenced by changes in the initial upper mass position
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Table 1 Average median, 25th and 75th interquartile range for the ACCpyram and GRFram Within and across the individual running speeds.

Model 2(ms™!) 3 (ms™!) 4(ms™) 5(ms™!) All
Parameters

Median Median Median Median Median

(25th; 75th) (25th; 75th) (25th; 75th ) (25th; 75th) (25th; 75th)
p1 (m)
ACCparam —0.02 (—0.04; —0.01) —0.01 (—0.04; 0.00) —0.02 (—0.05; 0.00) —0.03 (—0.06; —0.01) —0.02 (—0.05; —0.01)
GRFparam 0.00 (—0.01; 0.00) 0.00 (—0.01; 0.00) 0.00 (—0.02; 0.00) —0.01 (—0.02; —0.01) —0.01 (—0.02; 0.00)
p2 (m)
ACCparam —0.01 (—0.02; 0.00) 0.00 (—0.02; 0.01) —0.01 (—0.03; 0.00) —0.01 (—0.04; 0.00) —0.01 (—0.03; 0.00)
GRFparam 0.00 (0.00; 0.01) 0.00 (0.00; 0.01) 0.00 (0.00; 0.00) 0.00 (0.00; 0.00) 0.00 (0.00; 0.00)
vi (ms™)
ACCparam —0.58 (—0.65; —0.50) —0.67 (—0.82; —0.60) —0.71 (—0.82; —0.60) —0.60 (—0.69; —0.41) —0.64 (—0.75; —0.54)
GRFparam —0.91 (—1.12; —0.72) —1.04 (—1.26; —0.92) —1.24 (—1.34; —1.11) —1.13 (—1.27; —0.98) —1.11 (—1.28; —0.92)
v, (ms™!)
ACCparam —1.98 (—2.71; —1.37) —1.59 (—2.91; —0.93) —1.78 (—3.13; —1.20) —1.55 (—2.39; —0.60) —1.75 (—2.76; —1.08)
GRFparam —0.02 (—0.40; 0.00) —0.05 (—0.28; 0.00) —0.01 (—0.24; 0.00) 0.00 (—0.10; 0.00) —0.02 (—0.25; 0.00)
o} (Nm~'kg™)
ACCparam 334 (233;622) 508 (233; 966) 477 (3155 1,193) 512 (331; 977) 469 (2675 958)
GRFparam 528 (370; 721) 577 (357; 935) 621 (385; 959) 687 (495; 1,025) 604 (411; 899)
w2 (Nm~kg™)
ACCparam 2,537 (1,167; 3,895) 2,584 (1,152; 4,174) 2,967 (1,628; 4,688) 3,460 (1,517; 5,094) 2,795 (1,320; 4,362)
GRFparam 2,421 (1,516; 3,420) 2,966 (2,265; 4,593) 3574 (2,305; 5,094) 4,006 (3,111; 6,550) 3,253 (2,207; 4,894)
A (au)
ACCparam 2.86 (1.72; 4.60) 2.61 (1.46; 4.30) 3.11 (1.06; 4.27) 2.25(0.97; 3.28) 2.62 (1.28;4.13)
GRFparam 4.02 (2.14; 6.62) 5.19 (2.82; 6.51) 2.84 (1.86; 5.90) 2.74 (1.82; 3.40) 3.32(2.04; 5.84)
¢ (au)
ACCparam 0.23 (0.18;0.33) 0.21 (0.15; 0.32) 0.20 (0.15; 0.30) 0.16 (0.07; 0.32) 0.20 (0.15; 0.32)
GRFparam 0.38 (0.29; 0.58) 0.39 (0.28; 0.51) 0.37 (0.28; 0.45) 0.31 (0.25; 0.40) 0.36 (0.27; 0.45)

(v =p1). Derrick, Caldwell & Hamill (2000) found that decreased v; has a large impact on
the duration of the stance phase and therefore could have contributed to the overestimation
of foot-ground contact (Fig. 3B). Similarly, the MSD-model decreased the spring stiffness
of the upper spring (w;?) to better fit the two acceleration peaks typically observed in the
TrunkAcc data, which has previously been shown to increase the duration of the stance

phase (Derrick, Caldwell &~ Hamill, 2000). Furthermore, the MSD-model lowered the initial
position of the lower mass (p,), which previously has been shown to both increase the GRF
at touch down and decrease the magnitude of the impact peak (Derrick, Caldwell & Hamill,
2000). We therefore believe that the high GRF values observed in our GRF predictions at
touch down (Fig. 3B) were primarily related to the lower initial position of the lower mass
(p2) required to fit the upper mass acceleration to the TrunkAcc. Finally, the MSD-model
also kept the damping ratio (¢) low to better fit the magnitude of the two acceleration

peaks in the TrunkAcc. Decreasing the damping ratio, has however previously been shown
to increase the oscillation in the model’s GRF (Alexander, Bennett ¢~ Ker, 1986; Derrick,
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Figure 4 Representative examples of the upper mass acceleration, GRF and median ACCp;ram and

GRFparam- Representative examples of a single stride from multiple subjects. (A) display the measured
trunk accelerometry and the MSD-model’s upper mass acceleration, and (B) display the measured, pre-
dicted and replicated GRF. The RMSE for the trunk accelerometry fitting and GRF predictions are dis-
played in the brackets for the individual examples. The inserted polar plots display the estimated model
parameters (in unscaled values) from the two approached for the representative examples. (C and D) dis-

play the average median, 25th and 75th interquartile range for the ACCparam and GRFpram within and

across the individual running speeds. A total of 33 extreme outliers were removed from the ACCparam (p1:
75 P2t 8; v1: 25 vp: 135 wi: 15 A: two outliers) and 15 extreme outliers were removed from the GRFparam (v1: 63
vy: 15 w?: 35 A: 5, ¢: nine outliers) through visual inspection from the boxplots in (C and D) to improve the

visual interpretation.

Full-size Gl DOI: 10.7717/peerj.6105/fig-4

Caldwell & Hamill, 2000), and may therefore explain why our GRF predictions to a large
extent include oscillating characteristics (Fig. 3B).
The comparison between the ACCparam estimated from the TrunkAcc and the GRFparam
estimated from measured GRF, clearly demonstrates that the model is unsuitable for
predicting GRF from TrunkAcc. A closer look at the GRFparam, showed that the median
position and velocity of the lower mass (p, and v,) was constant across running speeds and
only varied marginally within running speeds (Fig. 4C). In addition, only small differences
in median damping ratios ({) were observed between running speeds in this study (¢
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between 0.31 and 0.39 au). It was in fact kept constant ({ = 0.35 au) in the study by
Derrick, Caldwell ¢&» Hamill (2000). Based on these observations we explored the effect of
keeping p;, v2, and { ACCparam constant for all trials (using the median GRFparam across
running speeds), and for the remaining five MSD-model parameters use the trial specific
ACCparam to re-calculate the predicted GRF (Fig. S1). Whilst this decreased the variability
of the GRF prediction (RMSE interquartile range) both within and across running speeds,
only minor improvements were observed in the GRF prediction. This indicated that
keeping selected ACCparam constant would not substantially improve the GRF prediction
in future studies. Furthermore, when selected ACCp4ram Were kept constant, their original
interaction was broken.

MSD-model hypothesis

If the trunk accelerometry data accurately represents the model’s upper mass acceleration
one would at least expect that the ACCpgram related to the motion and stiffness of the
upper mass and spring (p1, v1, ;%) would be close to the GRFpqram estimated when fitting
measured GRF. This was however not the case, and therefore naturally raises the questions
as to whether the upper mass acceleration is equivalent to the acceleration measured
from trunk accelerometry during running. The trunk accelerometry driven MSD-model
approach introduced in this study is based on the hypothesis that the model’s upper mass
primarily represents the mass and motion of the trunk segment (Alexander, Bennett ¢
Ker, 19865 Derrick, Caldwell ¢ Hamill, 2000). Our results suggest however that this is not
the case, and that independent accelerations of other body segments (e.g., the swing leg
and arms) significantly contribute to the MSD-model’s upper mass accelerations. We
therefore conclude that the primary model hypothesis for this study was false, and that
trunk-mounted accelerometry alone is inappropriate as input for the MSD-model to
predict meaningful GRF waveforms.

A high initial peak related to the attenuation of the shock impact from the foot’s
collision with the ground (Hamill, Derrick ¢ Holt, 1995; Derrick, 2004) dominated the
TrunkAcc signals across running speeds. In contrast, a higher second peak related to the
COM displacement during the stance phase dominated the upper mass acceleration when
the MSD-model was fitted to measured GRF. This raised the technical question as to
whether the poor GRF predictions observed from the measured accelerometer signal were
partly a consequence of an artificially high frequency of that initial peak and whether the
application of lower filter cut-off frequencies (cut-off frequencies of 20 Hz in the present
study) would improve GRF predictions. To explore this, trunk accelerometry data of 10
representative participants was low-pass filtered with cut-off frequencies of 15, 10 and
5 Hz (Fig. S2). Whilst low cut-off frequencies (especially 10 and 5 Hz) to a large extent
successfully removed the initial high-frequency peak in the accelerometry signal, and the
RMSE between TrunkAcc and upper mass acceleration decreased, it only had a minor
influence on the RMSE of the predicted GRF across running speeds (Fig. S2). Therefore,
accelerometry post-processing did not improve the GRF predictions from TrunkAcc. This
suggests that the trunk accelerometry signal in itself was not the main reason for the poor
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GREF predictions, but rather an incorrect hypothesis that the MSD-model’s upper mass
acceleration primarily represents the acceleration of the trunk segment.

Replicating GRF from measured GRF

Although TrunkAcc was unsuccessful in predicting GRF during running with a simple
MSD-model, the MSD-model could successfully replicate measured GRF during slow to
moderate running speeds. In fact, the inclusion of all eight GRF4ram in our optimisation
routine, compared to only optimising the spring constants of the upper and lower springs
(k1 and k;) and the position of the lower mass (p,) (Derrick, Caldwell ¢» Hamill, 2000)
allowed us to replicate the measured GRF with higher accuracy. These findings illustrate
that despite the MSD-model’s simplicity it has the ability to replicate and potentially predict
GREF for a range of running speeds. Since the MSD-model parameters associated with the
lower mass and spring are crucial to predict GRF (Eq. 7), this may open opportunities to use
segmental kinematics and/or accelerometry from lower extremities to estimate MSD-model
parameters. This does however require that the lower limb accelerations measured from
e.g., a tibia-mounted accelerometer are similar to the MSD-model’s lower mass acceleration
required to accurately predict GRF, something which is not a given. Recent studies have
for example shown promising results in predicting GRF during sprinting, in high level
sprinters, when contact and flight time, in combination with kinematics from the ankle
were used as input for a two-mass model (Udofa, Ryan & Weyand, 2016; Clark, Ryan &
Weyand, 2017). Future studies are however still need to explore the use of body-worn
micro sensor technology to drive simple human body models and predict GRF waveforms
for a range of running speeds.

Model limitations

A limitation with the MSD-model and the associated model parameters is that multiple
parameter combinations exist when fitting the MSD-model to measured TrunkAcc or GRF
waveforms. Whilst it could be of interest to further explore the physical meaning of the
individual model parameters (ACCparam 0r GRFparam) and their interactions, or within
and between subject parameters variations, this was not possible due to the existence of
multiple model parameter solutions. Trunk-mounted accelerometry has a major benefit
that it is already in use in many field contexts, but a limitation is that it may not very well
represent the acceleration of the trunk segment. We have in previous work (Nedergaard et
al., 2017b) shown that vertical trunk accelerations, measured from a high-end lab-based
motion capture system, improved the upper mass acceleration fitting (median RMSE: 0.03
g across all running speeds) and lowered the average median RMSE of the GRF predictions
to 5.18 N kg~! (vertical GRF) across all running speeds, compared to 8.99 N kg~! in
the current study. Importantly, the accuracy and reliability of the GRF predictions are
considered poor in both cases, suggesting that our hypothesis that the MSD-model’s upper
mass acceleration primarily represents the trunk acceleration is most likely the weakest
link. Secondly, the MSD-model is a one-dimensional model, and therefore only allows the
magnitude of the resultant GRF to be estimated. We decided to predict the magnitude of
the resultant GRF in our study, considering that we wanted to estimate the overall external
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biomechanical loading on the body, however we accept that others may prefer to predict
the magnitude of the vertical GRF only. Ultimately, we believe that it is important to
recognise that the MSD-model approach omits any direction specific load variations across
running speeds, and that these may well be relevant in how the musculoskeletal tissues are
exposed to stresses. Finally, the MSD-model is a passive elastic model and therefore does
not account for additional energy generated by the body’s “active” structures (muscles).
Whilst a more complex model could account for this (Zadpoor ¢ Nikooyan, 2010; Nikooyan
& Zadpoor, 2011), it is questionable if this would allow for better GRF predictions from
TrunkAcc. The complexity of such model would probably also defeat the overall purpose
of using a simple model that is still applicable in field settings.

CONCLUSIONS

In this study, we demonstrated that the upper mass acceleration of a simple MSD-model
can be fitted to measured trunk accelerometry signals with high accuracy during running
at various speeds, but that the ensuing ACCparam do not deliver accurate predictions of
GRF waveforms. Despite the convenient hypothesis that the MSD-model’s upper mass
acceleration primarily represents the acceleration of the trunk, our results showed that this
hypothesis is violated too much to still predict meaningful GRF waveforms. Nevertheless,
further studies should continue to explore the use of data from wearable micro sensor
technology to drive simple human body models that could allow us to estimate GRF
waveforms in field settings. This would allow researchers and practitioners to better
monitor the external biomechanical loads to which the human body is exposed during
running locomotion, ultimately supporting a general quest towards field-based monitoring
of tissue load-adaptation processes.
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