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Whole-body biomechanical load in running-based sports: the validity of 24 

estimating ground reaction forces from segmental accelerations 25 

 26 

Abstract  27 

Objective: Unlike physiological loads, the biomechanical loads of training in running-based sports are 28 

still largely unexplored. This study, therefore, aimed to assess the validity of estimating ground 29 

reaction forces (GRF), as a measure of external whole-body biomechanical loading, from segmental 30 

accelerations. 31 

Methods: Fifteen team-sport athletes performed accelerations, decelerations, 90° cuts and straight 32 

running at different speeds including sprinting. Full-body kinematics and GRF were recorded with a 33 

three-dimensional motion capture system and a single force platform respectively. GRF profiles were 34 

estimated as the sum of the product of all fifteen segmental masses and accelerations, or a reduced 35 

number of segments. 36 

Results: Errors for GRF profiles estimated from fifteen segmental accelerations were low (1-2 N·kg-1) 37 

for low-speed running, moderate (2-3 N·kg-1) for accelerations, 90° cuts and moderate-speed running, 38 

but very high (>4 N·kg-1) for decelerations and high-speed running. Similarly, impulse (2.3-11.1%), 39 

impact peak (9.2-28.5%) and loading rate (20.1-42.8%) errors varied across tasks. Moreover, mean 40 

errors increased from 3.26±1.72 N·kg-1 to 6.76±3.62 N·kg-1 across tasks when the number of segments 41 

was reduced. 42 

Conclusions: Accuracy of estimated GRF profiles and loading characteristics was dependent on task, 43 

and errors substantially increased when the number of segments was reduced. Using a direct 44 

mechanical approach to estimate GRF from segmental accelerations is thus unlikely to be a valid 45 

method to assess whole-body biomechanical loading across different dynamic and high-intensity 46 

activities. Researchers and practitioners should, therefore, be very cautious when interpreting 47 

accelerations from one or several segments, as these are unlikely to accurately represent external 48 

whole-body biomechanical loads. 49 
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Introduction 53 

Training loads are monitored in sports as part of a process which aims to enhance performance, whilst 54 

simultaneously reducing the risk of injury. Although physiological loads have been investigated 55 

extensively, biomechanical load measures are still limited and, therefore, largely unexplored 1. Based 56 

on the assumption that accelerations of the trunk are a good representation of whole-body centre of 57 

mass (CoM) accelerations, trunk accelerometry derived load measures (e.g. New Body Load, Dynamic 58 

Stress Load, PlayerLoad, Force Load) have been used to quantify and evaluate whole-body 59 

biomechanical loads 2–6. However, evidence relating accelerations of the trunk to established measures 60 

of biomechanical loading is yet lacking. In fact, it has been shown that accelerations of individual 61 

segments (including the trunk) cannot accurately represent whole-body biomechanical loads 7–11.  62 

Ground reaction forces (GRFs) are a well-established measure of whole-body biomechanical loading. 63 

GRFs have been used to optimise sprint performance 12,13, improve running economy 14 and identify or 64 

reduce potential injury risk factors 15,16, and might thus be used to further understand the role of 65 

external biomechanical forces in performance enhancement and injury prevention. Moreover, GRF 66 

drives internal force production and contributes to internal stresses on e.g. muscles, tendons and bones 67 

17,18, which are currently difficult to measure in the field 1. Since these structure- or tissue-specific 68 

loads are the primary cause of e.g. overuse injuries 19, monitoring GRF in the field would be a first 69 

step towards investigating internal biomechanical loads in more detail. However, valid methods for 70 

accurately estimating GRF outside laboratory settings are currently unavailable. 71 

Body-worn sensors, such as accelerometers, are commonly used in sports to measure and monitor 72 

numerous training load related metrics 20,21. Given their widespread application to measure 73 

accelerations of various body segments 22,23, accelerometers might be used to estimate GRF, which can 74 

be defined as the sum of the product of segmental mass and CoM accelerations of all body segments. 75 

This alternative expression of Newton’s second law provides a way by which the contribution of 76 

multiple segmental accelerations to the GRF can be systematically examined, especially since 77 

accelerations of the trunk or other individual segments have been shown to not be sufficient to 78 

estimate GRF for several straight running and cutting activities 7–9,11,24. Other studies have indeed 79 



5 
 

shown that for constant speed running, GRF can be estimated from seven 25 or eleven 26 segmental 80 

accelerations measured with a laboratory based motion capture system. However, it is unknown 81 

whether GRF for dynamic and high-intensity activities frequently undertaken in running-based sports 82 

(e.g. rapidly accelerating, decelerating, cutting, sprinting) can be accurately estimated from segmental 83 

accelerations and/or what the minimal required number of segments is.  84 

If simultaneously measured segmental accelerations can be used to estimate GRF, this might 85 

eventually allow GRF to be estimated in field settings and provide a meaningful measure of external 86 

whole-body biomechanical loading. The aim of this study was, therefore, 1) to investigate whether 87 

segmental accelerations measured in a laboratory setting can be used to estimate GRF for a variety of 88 

dynamic and high-intensity tasks typically performed during running-based (team-) sports, and 2) to 89 

determine the minimal number of segments required. 90 

Methods 91 

Participants. Fifteen team-sports athletes participated in this study (12 males and 3 females, 92 

age 23±4 yrs, height 178±9 cm, body mass 73±10 kg). All participants were healthy and physically 93 

active for at least three hours per week (sports participation 7±5 hrs per wk). This study was approved 94 

by the Liverpool John Moores University ethics committee and participants provided informed 95 

consent according to the ethics regulations. 96 

Protocol. After a standardised warm-up, participants performed a range of dynamic and high-97 

intensity running tasks including accelerations, decelerations, cutting, and steady running at constant 98 

speeds ranging from 2 m·s-1 to maximal sprinting (~7 m·s-1, individual specific). Participants were 99 

instructed to land with one whole foot on a single force platform embedded in the ground and 100 

performed a minimum of five trials for each leg per task. For acceleration trials, participants were 101 

instructed to accelerate from stand-still to their maximal sprinting speed (achieved in ~20 m), while 102 

landing on the force platform for their second or third step of accelerating. For decelerations, 103 

participants were instructed to decelerate as quickly as possible from maximal sprinting to immediate 104 

stand-still, while landing on the force platform for their first or second step of decelerating. Cutting 105 

trials were performed as a sharp change of direction on the force platform at a 90° angle from the 106 
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straight running direction. Steady (straight) running trials were performed at a constant low (2-3 m·s-107 

1), moderate (4-5 m·s-1) or high running speed (>6 m·s-1), including maximal sprinting. Running 108 

speeds were measured with photocell timing gates (Brower Timing Systems, Draper, UT, USA) and 109 

controlled by giving verbal feedback to speed up or slow down after each trial. Only trials within a ± 110 

5% range of the target speed were included.   111 

Kinematic and kinetic data collection. During the trials, full-body kinematic data were 112 

collected using a seventy-six retro-reflective marker set attached to anatomical landmarks of the body 113 

(appendix A). Three-dimensional kinematic and kinetic data were synchronously recorded with ten 114 

infrared cameras (Qqus 300+, Qualisys Inc., Gothenburg, Sweden) sampling at 250 Hz, in 115 

combination with a single force platform (9287B, 90x60 cm, Kistler Holding AG, Winterthur, 116 

Switzerland) embedded in the ground, sampling at 3000 Hz. Marker positions and ground reaction 117 

forces (GRF) were recorded, synchronised and tracked using Qualisys Track Manager Software (QTM 118 

version 2.16, Qualisys Inc., Gothenberg, Sweden). A static calibration was recorded at the start of each 119 

session to determine the local coordinate systems, joint centres and segment dimensions for each 120 

participant. From the marker data, a fifteen segment (head, trunk, pelvis, upper arms, forearms, hands, 121 

thighs, shanks and feet) six-degree-of-freedom model was built, with segment mass and inertial 122 

properties based on Dempster’s regression equations 27 and represented as geometric volumes 28. 123 

Kinematic and kinetic data were exported to Visual3D (C-motion, Germantown, MD, USA) and 124 

Matlab (version R2017b, The MathWorks, Inc., Natick, MA, USA) for further processing and 125 

analysis.  126 

Data processing and analysis. Marker trajectories and force platform data were filtered with a 127 

2nd order Butterworth low-pass filter with 20 Hz and 50 Hz cut-off frequencies respectively. Trunk 128 

defining marker trajectories were, however, filtered at 10 Hz based on a sensitivity analysis for 129 

optimal GRF prediction (appendix B). For each trial, touch-down and take-off from the force platform 130 

were identified by a 20 N threshold of the vertical GRF and resultant GRF was calculated from the 131 

three individual force components (Fx, Fy, Fz). The centre of mass (CoM) position for each segment 132 

was used to define segmental movements from which accelerations were calculated as the double 133 
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differentiation (using three-point derivatives) of CoM motion along the three axes of the lab (x-y-z). 134 

Resultant GRF curves were then estimated as the sum of the product of each segmental mass and CoM 135 

acceleration in the three directions, according to equation 1. 136 

GRFres,estimated = �� � �an,x ∙ mn�
1,2,3,…15

n=1

�

2

+ � � �an,y ∙ mn�
1,2,3,…15

n=1

�

2

+ � � �an,z ∙ mn�
1,2,3,…15

n=1

�

2

 Eq. 1 

In which a is the segmental acceleration, m the segmental mass and n the number of segments 137 

included. To determine the number of segments required to accurately estimate resultant GRF, all 138 

different segment combinations to estimate GRF from were examined. A total of 32,676 unique 139 

combinations were analysed with a minimum of one and a maximum of fifteen segments. To ensure a 140 

constant total body mass, masses of the segments not included in a specific combination were equally 141 

divided and added to the segmental masses that were part of that combination. 142 

Measured and estimated GRF curves were normalised to each participant’s body mass. Accuracy of 143 

estimated GRF profiles was evaluated by the absolute and relative curve root mean square errors 144 

(RMSE). In addition, the accuracy of estimated GRF loading characteristics impulse (area under the 145 

GRF curve), impact peak (force peak during the first 30% of stance) and loading rate (average GRF 146 

gradient from touch-down to impact peak) was calculated and assessed. RMSE was rated as very low 147 

(<1 N·kg-1), low (1-2 N·kg-1), moderate (2-3 N·kg-1), high (3-4 N·kg-1) or very high (>4 N·kg-1). 148 

RMSE values were analysed for all possible combinations of segments per task, as well as all trials 149 

combined, to determine the best combination (i.e. lowest mean RMSE across trials) for each number 150 

of segments. Estimated GRF loading characteristics errors were rated as very low (<5%), low (5-151 

10%), moderate (10-15%), high (15-20%) or very high (>20%), which was based on meaningful 152 

performance or injury related differences in GRF 12,13,15. Moreover, linear regression analyses were 153 

performed between GRF loading characteristics (impulse, impact peak, loading rate) derived from the 154 

estimated and measured GRF profiles. Regressions were performed per task, as well as for all trials 155 

combined to examine the generalisability of GRF estimations across tasks, and rated as very weak 156 

(R2<0.1), weak (R2=0.1-0.3), moderate (R2=0.3-0.5), strong (R2=0.5-0.7), very strong (R2=0.7-0.9) or 157 

extremely strong (R2=0.9-1) 29. Furthermore, Bland-Altman analyses 30 were performed across tasks to 158 
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explore mean differences and 95% limits of agreement between the estimated and measured GRF 159 

loading characteristics.  160 

Results 161 

Full body segmental accelerations. Accuracy of estimated GRF profiles from fifteen 162 

segmental accelerations (full-body) varied across tasks (figure 1; table 1). Overall curve errors 163 

(RMSE) were low for running at low speeds (2-3 m·s-1) and moderate for accelerations, 90° cuts and 164 

moderate-speed (4-5 m·s-1) running. However, mean RMSE was very high for decelerations and high-165 

speed running (>6 m·s-1).   166 

The accuracy of estimated GRF loading characteristics varied between metrics and was dependent on 167 

task (table 1). Impulses were accurately estimated with very low errors for 90° cuts and running at 168 

constant low and moderate speeds, low errors for accelerations, and moderate errors for decelerations 169 

and high-speed running. Similarly, impact peaks were estimated with low to moderate (9.2-15%) 170 

errors for all tasks, except accelerations, which had very high (28.5%) impact peak errors. Loading 171 

rate errors however, were very high (20.1-42.8%) across all tasks.  172 

Correlations and agreement between measured and estimated GRF loading characteristics across all 173 

tasks varied. Impulses had extremely strong correlations, with a small bias and 95% confidence 174 

interval of the limits of agreement (-0.04 to 0.45 N·s·kg-1) (figure C.1 A and D; table 1). Despite the 175 

very strong correlation and small bias for impact peaks however, there was a large variation of the 176 

differences with limits of agreement ranging from -12.6 to 8.4 N·kg-1 (figure C.1 B and E). 177 

Furthermore, measured and estimated loading rates had a strong correlation (R2 = 0.68), but a large 178 

bias and limits of agreement (-985 to 397 N·kg-1·s-1) (figure C.1 C and F). 179 

Segment reductions. The best combinations of segments across all tasks for each given 180 

number of segments are shown in table C.1. GRF estimated from a single segment was the best across 181 

tasks from trunk accelerations, despite mean RMSE being very high. Furthermore, the trunk was part 182 

of all combinations of segments, and thus the main contributor to GRF, followed by the thighs, head, 183 

shanks, arms, pelvis and feet (in descending order of importance). 184 
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Reducing the number of segmental accelerations to estimate GRF substantially increased errors for all 185 

tasks (figure 2). To achieve estimated GRF errors that were moderate or better (<3 N·kg-1) for at least 186 

50% of the combinations and trials, a minimum of two and three segments was required for low- and 187 

moderate-speed running respectively, but eight (90° cuts) and eleven (accelerations) for more dynamic 188 

tasks. Moreover, for the high-intensity tasks (decelerations and high-speed running) the majority of 189 

trials and combinations resulted in very high errors, regardless of the number of segment used (figure 190 

2). 191 

Discussion 192 

Estimating GRF from full-body segmental accelerations. The main aim of this study was to 193 

assess the validity of estimating ground reaction forces (GRF) from segmental accelerations for a 194 

range of dynamic and high-intensity running tasks typically performed during running-based sports. 195 

From all fifteen body segments, overall GRF profiles as well as specific loading characteristics were 196 

estimated with varying accuracy. Overall loading errors (RMSE and impulse) for example, were 197 

considerably lower for running at low and moderate speeds (~2-5%) compared to the higher intensity 198 

tasks (e.g. decelerations, high-speed running) (~6-12%). Similarly, impact peak and loading rate errors 199 

ranged from ~9% for the lower intensity tasks to >40% for higher intensity tasks (figure C.1 E and F). 200 

Meaningful performance or injury related differences in loading characteristics can, however, be as 201 

small as ~3-10% 12,13,15. Errors of the magnitude observed in this study could thus already rule out 202 

certain applications of monitoring GRF estimated from full-body segmental accelerations. Using a 203 

direct mechanical approach to estimate GRF from full-body segmental accelerations might, therefore, 204 

not be a valid method to assess whole-body biomechanical loading for dynamic and high-intensity 205 

activities. Consequently, future research should investigate if segmental accelerations might be used to 206 

assess more specific measures of biomechanical loading (e.g. internal structural loads).   207 

Estimated GRF results in this study are comparable to other laboratory-based studies aiming to predict 208 

GRF from marker trajectory data using a mechanical approach. The impulse errors for low-speed 209 

running (2.3%), impact peak errors for moderate-speed running (9.2%) and correlations between 210 

estimated and measured impact peaks for low- to high-speed running (R2=0.77-0.96) found in the 211 
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current study are similar to results reported in previous studies that aimed to predict GRF from marker 212 

trajectory data for comparable constant speed running tasks 25,26,31. However, this study extends 213 

beyond other studies in that similar results were also achieved for a range of high-intensity and 214 

dynamic running tasks frequently undertaken in running-based sports. Moreover, previous studies 215 

failed to include the mediolateral and anteroposterior components of acceleration and GRF 25,31, 216 

utilised small sample sizes 25,26,31 and/or investigated running on a treadmill rather than overground 217 

26,31, all of which limit their ability to translate their findings from the lab to an applied sport setting. 218 

In most running-based sports, the dynamic and high-intensity movements examined in this study are 219 

regularly performed 32–34. The musculoskeletal demands of these tasks are high 35–37 and thus comprise 220 

a large amount of the total biomechanical loads experienced during training and competition. 221 

Therefore, highly accurate estimates of GRF loading characteristics across different tasks (including 222 

decelerations and running at high speeds) are essential to explore and understand the biomechanical 223 

demands of training in greater detail. As discussed above however, the loading characteristics errors 224 

observed in this study might already rule out several performance and injury related applications of 225 

monitoring GRF. Future work could, therefore, investigate if the strong to extremely strong 226 

correlations between estimated and measured GRF characteristics found in this study (figure C1; table 227 

1) can be used to recalculate and improve the estimated loading characteristics, to quantify the 228 

biomechanical stresses of training more accurately. 229 

Segment reductions. Full-body wireless accelerometry suits have been shown to be a reliable 230 

and valid method for simultaneously measuring accelerations of all body segments (e.g. Xsens MVN 231 

38) and have been used to estimate GRF and moments during walking 39. It is, however, likely to be 232 

unpractical to use these systems for load monitoring during training and competition on a day-to-day 233 

basis. Therefore, we examined the effects of reducing the number of segments and the minimal 234 

number of segments required for acceptable GRF estimates. Although the lower intensity tasks (low- 235 

and moderate-speed running) were relatively robust against segment reductions, estimated GRF 236 

profiles for the more sport-specific dynamic and high-intensity tasks substantially deteriorated (figure 237 

2). When the number of segmental accelerations was reduced to six segments for instance (i.e. 238 
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excluding the head, arms and feet), errors substantially increased to very high for all tasks (figure 2; 239 

table C.1). Previous studies have reported similar findings of considerably decreased accuracy in 240 

whole-body CoM estimates (and thus GRF) for constant speed running 7, side cutting 11, and jumping, 241 

kicking and throwing 40, when the number of segments was only slightly reduced. Furthermore, the 242 

very high errors observed in this study for GRF estimated from one segment (i.e. the trunk) are in line 243 

with other studies which reported that individual segmental accelerations cannot be used to accurately 244 

estimate GRF for steady running at constant speeds 7,9 and side cutting 8,11. These findings, together 245 

with the present results suggest that estimating GRF from one or several segmental accelerations using 246 

a mechanical approach is not a valid method to accurately predict GRF for dynamic and high-intensity 247 

running tasks. 248 

A crucial requirement for GRF to be used as a meaningful measure of biomechanical loading in the 249 

field, is that GRF estimates are highly accurate across different tasks. Since errors of the magnitude 250 

observed in this study might already rule out certain applications as discussed above, the increased 251 

GRF errors for a reduced number of segments probably further eliminate several aspects that make 252 

GRF a meaningful load measure. Consequently, the usefulness of less accurate GRF estimates from a 253 

reduced number of segments (and individual segmental accelerations from e.g. the trunk especially) as 254 

a measure of biomechanical loading, is questionable. Researchers and practitioners should, therefore, 255 

be very cautious when interpreting one or several segmental accelerations (or derived load measures), 256 

as these are unlikely to be a valid and meaningful measure of whole-body biomechanical loading. 257 

Alternative methods to assess whole-body biomechanical loading in the field. Segmental 258 

accelerations used to estimate GRF in this study were derived from marker trajectory data recorded 259 

with a three-dimensional motion capture system. Similar to force platforms, such systems are not 260 

typically available in the field and if they are, data collection is laborious and impractical for 261 

immediate analysis on a daily basis. In contrast to force platform and marker-based motion capture 262 

technologies however, body-worn accelerometers are commonly used in the field and thus relatively 263 

easily accessible 20,21. Moreover, the use of in-field markerless motion capture systems are currently on 264 

the rise as a non-invasive way of quantifying movement in different sports 41–43. Future research 265 
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should, therefore, investigate if body-worn (or even implantable 44) accelerometers or markerless 266 

motion capture systems can provide accurate measures of full-body segmental CoM accelerations, to 267 

eventually estimate GRF in field settings.  268 

This study aimed to estimate GRF from segmental accelerations using a direct mechanical approach. 269 

Alternative methods have, however, emerged that use machine learning methods to predict GRF 45–48. 270 

For example, neural network approaches have been used successfully to predict GRF from marker 271 

trajectory data 46,48 or body-worn accelerometers 45,47 for a variety of running tasks. Despite the 272 

promising results, there might be disadvantages of using these computational rather than mechanical 273 

approaches to estimate GRF for load monitoring purposes. Computational methods could prevent one 274 

from exploring the underlying physical mechanisms of the predicted variable (e.g. GRF, joint 275 

moments) which may limit its use for e.g. explaining injury mechanisms or defining performance 276 

enhancing criteria. Machine learning could thus offer a powerful alternative for our mechanistic 277 

approach, but future research should examine the explanatory ability of these methods for underlying 278 

physical mechanisms. 279 

Methodological limitations. A limitation of the mechanical approach described in this study is 280 

that estimated GRF errors are solely due to measurement and methodological inaccuracies. Segmental 281 

masses and inertial properties for example, were based on standardised values relative to the total body 282 

mass 27 and standardised geometric shapes 28 respectively. Future work could, therefore, investigate 283 

how the present results might be improved by using participant-specific properties measured from e.g. 284 

a DXA scanner 49,50. Other factors that could affect the estimated GRF accuracy are soft-tissue 285 

artefacts 51 and filter cut-off frequencies 52,53. For example, impact peak errors increased for higher 286 

magnitudes, especially for decelerations (figure 2; table 1). These increased errors are likely due to the 287 

considerably higher impacts, and consequent tissue vibrations, of landing for these higher-intensity 288 

tasks. A sensitivity analysis of different cut-off filters showed that applying a lower 10 Hz filter to the 289 

trunk marker (which typically were more affected due to their attachment to tight-fitting clothing 290 

rather than the skin) resulted in the lowest estimated GRF errors across the different tasks (appendix 291 

B). Future work should, however, consider the effects of soft-tissue artefact and filter cut-off 292 
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frequency, as well as the use of different filters for kinematic and kinetic data, when estimating GRF 293 

from segmental accelerations.  294 

Conclusions 295 

This study showed that accuracy of GRF profiles and loading characteristics estimated from full-body 296 

segmental accelerations is dependent on task. Moreover, errors substantially increased when the 297 

number of segments was reduced. It is, therefore, unlikely that one or several segmental accelerations 298 

can provide valid estimates of GRF for biomechanical load monitoring purposes, using a direct 299 

mechanical approach. Researchers and practitioners should, therefore, be very cautious when 300 

interpreting accelerations from one or several segments as these are unlikely to accurately represent 301 

external whole-body biomechanical loads. 302 

Practical applications 303 

• We suggest ground reaction forces (GRF) as a meaningful measure of overall whole-body 304 

biomechanical loading, and a first step towards investigating structure-specific internal loads, 305 

in running-based sports. 306 

• Accuracy of GRF profiles and loading characteristics estimated from fifteen segmental 307 

accelerations was dependent on task, with higher accuracy for lower intensity tasks (e.g. 308 

running at low speeds). Moreover, errors substantially increased when the number of segments 309 

was reduced. 310 

• A direct mechanical approach cannot provide valid estimates of GRF from segmental 311 

accelerations across dynamic and high-intensity running tasks that are frequently performed 312 

during running-based sports. 313 

• Acceleration signals and derived training load measures from one or several segments are 314 

unlikely to accurately represent whole-body biomechanical loads. 315 

• Researchers and practitioners should be very cautious when interpreting accelerations from 316 

one or several segments as a measure of external whole-body biomechanical loading.  317 
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Figure captions 471 

 472 

Figure 1 Root mean square errors (RMSE) for resultant GRF curves estimated from fifteen segmental 473 

accelerations. Inset: representative measured (black solid line) and estimated (red dashed line) GRF 474 

profiles are shown, together with RMSE values for all acceleration (n=166), deceleration (n=161), 90° 475 

cut (n=171), low- (n=157), moderate- (n=157) and high-speed running (n=141) trials. 476 

 477 

Figure 2 Root mean square errors (RMSE) for estimated resultant GRF curves for each task. Bars 478 

represent the percentage of trials (primary y-axis) within the very low (<1 N∙kg-1), low (1-2 N∙kg-1), 479 

moderate (2-3 N∙kg-1), high (3-4 N∙kg-1) or very high (>4 N∙kg-1) error boundaries, and black dots 480 

represent the mean errors (secondary y-axis), for each given number of segments. 481 
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Table 1 Estimated resultant ground reaction force curve and loading characteristics errors  

  RMSE Impulse error Impact peak error Loading rate error 

 N·kg-1 % N·s·kg-1 % R2 N·kg-1 % R2 N·kg-1·s-1 % R2 

Accelerations (n=166) 2.82 8.4 0.25 9.1 0.89 3.27 28.5 0.21 229 33.2 0.36 ±0.7 ±14 ±0.1 ±4 ±2.8 ±33 ±264 ±27 

Decelerations (n=161) 5.77 6.1 0.26 11.1 0.94 7.68 15 0.73 380 20.1 0.49 ±1.8 ±8.8 ±0.1 ±6 ±5.5 ±9 ±404 ±16 

90° cuts (n=171) 2.67 3.3 0.21 3.8 0.98 3.33 9.8 0.75 234 24.5 0.60 ±0.7 ±4.1 ±0.1 ±2 ±2.9 ±8 ±210 ±18 

Constant speed running            

     Low (2-3 m·s-1; n=157) 1.62 1.8 0.09 2.3 0.96 2.22 13.8 0.64 173 33 0.42 ±0.4 ±2 ±0.06 ±2 ±2.3 ±22 ±101 ±13 

     Moderate (4-5 m·s-1; n=157) 2.48 3.1 0.16 4.6 0.93 1.96 9.2 0.85 281 34 0.53 ±0.6 ±5.7 ±0.1 ±2 ±1.5 ±8 ±174 ±14 

     High (>6 m·s-1; n=141) 4.35 6.4 0.26 10.4 0.77 3.52 11.9 0.56 661 42.8 0.12 ±1.3 ±7.6 ±0.2 ±12 ±3.5 ±13 ±419 ±21 

All tasks (n=953) 3.26 4.8 0.20 6.8 0.99 4.00 13.1 0.88 323 29.3 0.68 ±1.7 ±8.3 ±0.1 ±7 ±4.1 ±15 ±326 ±19 

Root mean square error (RMSE), impulse, impact peak and loading rate errors of the resultant GRF estimated 
from fifteen segmental accelerations, for different tasks. Values are means ± standard deviations and either 
absolute or relative errors compared to the measured resultant GRF. Regressions (R2) were performed per task 
as well as for all trials combined. 
 486 
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Appendix A: Marker attachment locations 488 

Full-body kinematic data in this study were collected using a seventy-six retro-reflective marker set 489 

attached to anatomical landmarks of the body. The aim of this appendix is to clarify the attachment 490 

locations of segment defining and segment tracking markers (figure A.1). Markers for segment 491 

definition (of which some were also used for segment tracking; see figure A.1) were attached to the 492 

Calcaneus, lateral Calcaneus, first and fifth Metatarsus head, lateral/medial Malleolus, lateral/medial 493 

Epicondyle of the Femur, Femur greater Trochanter, anterior/posterior Superior Iliac Spine, Iliac 494 

Crest, Acromion, anterior/posterior head, shoulder, lateral/medial Epicondyle of the Humerus, Styloid 495 

process of the Radius and Ulna, lateral/medial Metacarpal head (all left and right), Cervical vertebrae 496 

7, Thoracic vertebrae 8, and the Jugular notch and Xiphoid process of the Sternum. In addition, marker 497 

clusters for segment tracking were attached to the lateral sides of the shanks and thighs (four markers 498 

per cluster), as well as the forearms and upper arms (three markers per cluster). 499 

Figure A.1 Attachment locations of segment tracking markers (blue), segment defining markers (red) and 500 

markers used for both (black). 501 

 502 
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Appendix B: Marker trajectory filter cut-off frequencies 504 

Objective 505 

Segmental accelerations used to estimate ground reaction forces (GRFs) in this study were derived 506 

from motion capture-based marker trajectories. Accuracy of estimated GRF profiles is thus dependent 507 

on marker trajectory processing before calculating the segmental centre of mass (CoM) accelerations. 508 

The aim of this appendix was, therefore, to investigate what filter cut-off frequency lead to the most 509 

accurate resultant GRF estimates. 510 

Methods 511 

Kinematic and kinetic data for ten subjects (7 males and 3 females, age 24±5 yrs, height 176±8 cm, 512 

mass 72±9 kg) was used (see the methods section of the main paper for more detail on the data 513 

collection and processing). Marker trajectories were filtered with a 2nd order Butterworth low-pass 514 

filter using four different cut-off frequencies (25 Hz, 20 Hz, 15 Hz and 10 Hz), while force data were 515 

filtered at 50 Hz. Visual screening of the data revealed relatively large trunk marker vibrations 516 

compared to the other markers, which was likely due to marker attachment to the shirt rather than the 517 

skin. Therefore, combinations of filter cut-off frequencies (20-15 Hz, 20-10 Hz and 15-10 Hz) were 518 

also examined, i.e. markers defining the trunk segment were filtered at a lower cut-off frequency than 519 

the other markers. Trunk defining markers that were filtered at a lower cut-off frequency were those 520 

attached to the left and right Iliac Crest and Acromion, Cervical vertebrae 7, Thoracic vertebrae 8, and 521 

the Jugular notch and Xiphoid process of the Sternum.      522 

Results 523 

Estimated GRF errors typically decreased for lower cut-off frequencies (table B.1). For higher 524 

frequencies (25 Hz, 20 Hz) the estimated GRF profiles included more oscillations compared to the 525 

lower cut-off frequencies (15 Hz, 10 Hz) (figure B.1). Consequently, RMSEs were lower across all 526 

tasks when marker data were filtered at 15 Hz, compared to 25 and 20 Hz. However, only for 527 

accelerations and constant speed running, errors were further reduced when a 10 Hz filter was applied, 528 

while over-smoothing of estimated GRF profiles resulted in the loss of important GRF characteristics 529 

(e.g. impact peak) for the other tasks (figure B.1 C, D, E). When a combination of two cut-off 530 
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frequencies (20-15, 20-10 and 15-10 Hz) was used, however, RMSE values were further reduced. For 531 

most tasks separately, as well as all trials combined, a combination where the trunk was filtered at 10 532 

Hz resulted in the most accurate GRF estimates (table B.1; figure B.1). 533 

Figure B.1 Representative examples of measured resultant ground reaction force (GRF; black solid line) profiles 534 

and resultant GRF estimated from marker trajectories filtered at 25 Hz (blue dotted line), 20-10 Hz (red dashed 535 

line) or 10 Hz (green dashed line), for each task. 536 

Table B.1 Marker trajectory filter cut-off frequency comparison 

  25 Hz 20 Hz 20-15 
Hz 

20-10 
Hz 15 Hz 15-10 

Hz 10 Hz 

Accelerations 3.7±1 3.4±0.9 3.1±0.8 2.8±0.7 3±0.8 2.6±0.6 2.4±0.6 

Decelerations 7.7±2.4 7.4±2.3 6.8±2 6±1.8 7.3±2.2 6.4±1.9 8±2.5 

90° Cuts 3.4±0.8 3.2±0.8 3±0.7 2.7±0.7 3.1±0.8 2.8±0.7 3.4±0.9 

Constant speed running        

          Low (2-3 m·s-1) 2.3±0.6 2.1±0.6 1.9±0.5 1.7±0.4 1.9±0.5 1.6±0.4 1.7±0.5 

          Moderate (4-5 m·s-1) 3.3±0.9 3.1±0.8 2.9±0.7 2.6±0.6 3±0.8 2.6±0.6 2.9±0.7 

          High (>6 m·s-1) 5.4±1.3 5.1±1.3 4.8±1.2 4.4±1 4.9±1.2 4.4±1 4.7±1.3 

All tasks 4.3±2.2 4.1±2.1 3.8±2 3.4±1.7 3.9±2.2 3.4±1.9 3.9±2.5 

Root mean square errors (RMSE) for each (combination of) filter cut-off frequencies. Values are 
means ± standard deviation per task, as well as all tasks combined. The best cut-off frequency per 
task is highlighted in green shading. 
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Conclusions 537 

Estimated resultant GRF profiles were more accurate across tasks when a combination of different cut-538 

off frequencies was used for different markers. More specifically, the best results were obtained when 539 

marker trajectories were filtered at a 20 Hz cut-off frequency, with trunk defining markers filtered at 540 

10 Hz. These cut-off frequencies were, therefore, used to filter marker trajectory data before further 541 

processing. 542 

  543 
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Appendix C: Supplementary results 544 

Figure C.1 Regression (A-C) and Bland-Altman (D-F) plots between measured and estimated 545 

resultant GRF loading characteristics impulse, impact peak and loading rate. 546 

  547 
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Table C.1 The best combinations of segments across all tasks for each given number of segments 
  RMSE (N·kg-1) 
# Segments in the combination Mean SD 
1 Trunk 6.76 ±3.62 
2 Trunk + thigh 5.91 ±3.17 
3 Trunk + thighs 4.54 ±2.48 
4 Trunk + thighs + pelvis 4.36 ±2.47 
5 Trunk + thighs + pelvis + head 4.00 ±1.94 
6 Trunk + thighs + pelvis + shanks 3.76 ±1.81 
7 Trunk + thighs + shanks + head + upper arm  3.61 ±1.66 
8 Trunk + thighs + shanks + head + upper arm + forearm  3.49 ±1.73 
9 Trunk + thighs + shanks + head + upper arms + forearm  3.42 ±1.75 

10 Trunk + thighs + shanks + head + upper arms + forearms  3.37 ±1.74 
11 Trunk + thighs + shanks + head + upper arms + forearms + hand  3.31 ±1.73 
12 Trunk + thighs + shanks + head + upper arms + forearms + hand + foot 3.28 ±1.72 
13 Trunk + thighs + shanks + head + upper arms + forearms + hand + feet 3.26 ±1.71 
14 Trunk + thighs + shanks + head + upper arms + forearms + hands + feet 3.26 ±1.71 
15 Trunk + thighs + shanks + head + upper arms + forearms + hands + feet + pelvis 3.26 ±1.72 
Best combinations of segments (i.e. with the lowest mean root mean square errors (RMSE) across 
subjects, tasks and trials) for each number of segments. If only one of two segments was included in a 
combination (e.g. thigh or foot rather than thighs or feet), this was the segment on the side of the support 
leg. SD = standard deviation. 

 548 
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