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Abstract ─ The data available from fishing vessels are scarce and often accompanied with a 

high degree of uncertainty. For this reason the use of conventional probabilistic risk 

assessment may not be well suited. This paper proposes a method using fuzzy set theory 

(FST) to model the occurrence likelihood and consequences of failure for the identified 

hazards on a fishing vessel. The method uses fault tree analysis to calculate the fuzzy 

probability of the system failure. The consequences of failure for each basic event within the 

fault tree are considered for 4 different categories. The risk of the basic events is determined 

by combining the likelihood of occurrence and consequences of failure in linguistic terms and 

is further defuzzified to produce a risk ranking. The application of this method is 

demonstrated using a hydraulic winch operating system of a fishing vessel. 
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1. Introduction 

 

Risk is defined to refer to a probability distribution over a set of outcome [Banard, 1996]. 

When the outcomes in question are hazards or injuries, risk can be understood to refer to 

different potential severity of hazards or injuries.  

Upon identifying the list of potential hazards and its contributing factors, which could be 

achieved by several methods including Hazard and Operability studies (HAZOP) [Villemeur, 



1992], Failure Mode and Effect Analysis (FMEA) [MIL-STD, 1629A], Fault Tree Analysis 

(FTA) [Henley & Kumamoto, 1992] etc, the next step is to quantify these events for the risk 

estimation phase. Quantification of risk considers two parameters, namely, 

1. Probability of failure event occurrence. 

2. Consequence severity. 

These are the two parameters that are considered in many risk assessments utilised by the 

industry at present [Preyss, 1995]. 

The frequencies of hazardous events are usually based on historical failure data. Often, little is 

known of the basis of the data or its processing and interpretation. The little that is known 

often raises doubts as to its quality, completeness and relevance. Even where data is of high 

quality, sample sizes are often small and statistical uncertainties are correspondingly large. As 

such, fuzzy set modelling approach may be more appropriate to model the probability of a 

hazardous event occurring. 

The quantification of severity can be accomplished in several ways, subjective reasoning and 

expert judgement is one of the common methods. As accidents on fishing vessels are rarely 

reported, it may be difficult to quantify the severity of an accident. Once again, the use of 

Fuzzy Set Theory (FST) and expert knowledge is well suited for this purpose. 

 

2. Background 

 

Prof. Lofti Zadeh at the University of California first introduced FST in 1973 [Zadeh, 1973]. 

The significance of fuzzy variables is that they facilitate gradual transition between states and 

consequently, possess a natural capability to express and deal with observation and 

measurement uncertainties.  

The membership function μ(x), gives the degree of membership for each element x  X. μ(x) 

is defined on [0,1] (The actual degree of membership of a system parameter in a particular 

group is indicated by the values between 0 and 1 inclusive). A membership of 0 means that 

the value does not belong to the set under consideration. A membership of 1 would mean full 

representation of the set under consideration. A membership somewhere between these two 

limits indicates the degree of membership. The manner in which values are assigned to a 

membership is not fixed and may be established according to the preference of the person 

conducting the investigation. 

 



3. A Proposed Approach 

 

The proposed approach is divided into two main modelling categories, i.e. likelihood 

probability (Part 1) and severity of consequences (Part 2). It involves several steps, which are 

represented in the flowchart shown in Figure 1. A combination of FST and expert judgement 

is used to accomplish the modelling of the two parameters. The outcome of which is used to 

rank the risk associated with an event failure according to its priority. Part 1 of the approach 

uses FTA to identify the critical components of a system [Pillay A. et. al., 2000]. Using this 

FTA, fuzzy arithmetic calculation is performed on the basic events to obtain the fuzzy 

probability estimates of the primary events. The results are left in the linguistic state to enable 

integration with the analysis of severity of consequences. 

In Part 2 of the approach, the severity of a failure is assessed for its effect on four categories, 

as will be discussed later. The results of the analysis in Parts 1 and 2 are combined using the 

min-max inference rule to obtain a linguistic term for the risk. This linguistic term is then 

defuzzified using the weighted mean of maximum method to produce the risk ranking. 

The first step of the proposed approach is to establish the type of data that is available for 

analysis. Depending on the size and organisational structure of the company, this data will 

vary in terms of its format and availability. The data available from fishing vessels are most 

likely repair data that would just reflect the date the repair was carried out and the spares 

consumed. Such data should be restructured to enable analysis using fuzzy set approach.  

The consequences of an event may not be documented in a format where it is readily useable 

for analysis. The severity of the consequence could be determined by the cost incurred from 

the result of the failure. This however may only be limited to equipment loss, production loss, 

environmental clean up cost etc. The injury or loss of life (due to the failure of an equipment) 

is normally expressed in terms of number of casualties and the extent of the injury i.e. bruises, 

required shore medical assistance, permanent disablement or death etc. 
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Figure 1 Flowchart of the proposed approach 
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3.1 Part 1: Probability of failure event occurrence 

 

Constructing fault tree  

Given the critical event or undesired condition (top event), a fault tree can be developed using 

backward logic to create a network of intermediate events linked by logic operators (usually 

AND and OR operators) down to the initiating basic events. The primary/basic events may be 

related to human error (operators, design or maintenance), hardware or software failures, 

environmental conditions or operational conditions. 

Structure selection  

In the structure selection phase, the linguistic variable is determined with respect to the aim of 

the modelling exercise. Considering the available data at hand and the aim of this approach, 

the linguistic variable is determined to be the likelihood of occurrence of an undesired critical 

event i.e. the probability of failure occurring. The linguistic terms to describe this variable are 

then decided, e.g. Very High, High, Moderate, Low and Remote.  

Membership function & estimation  

Six classes of experimental methods help to determine membership function: horizontal 

approach, vertical approach, pairwise comparison, inference based on problem specification, 

parametric estimation and fuzzy clustering [Pedrycz & Gomide, 1998]. The method selected 

depends on the way the uncertainty is manifested and captured during the sampling of data. 

Due to the nature of the arithmetic involved, the shape of the membership function suited for 

the proposed approach would either be triangular or trapezoidal, therefore the horizontal or 

vertical approach for function determination is applied [Pedrycz & Gomide, 1998]. 

Fuzzy calculation in fault trees 

When two basic events represent the input to an OR gate as shown in Figure 2, it can be 

assumed that these two events are in a series configuration. It denotes that the occurrence of 

either event will cause the OR gate to be operative. For an AND gate with two basic events as 

its input as shown in Figure 3, it can be considered that the two events are in parallel 

configuration. This denotes that only if both events occur, the AND gate will be operative 

[Bowles & Paláez, 1995]. 
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Figure 2 OR gate 

 

 

 

 

 

 

 

 

 

 

3.2 Part 2: Consequence Severity 

 

List of consequences 

When carrying a comprehensive analysis, it is important that all the consequences of a failure 

be considered. It has been noted that due to the poor documentation of accidents on fishing 

vessels, the list of identifiable consequences are limited to the serious or life threatening ones. 

Therefore, expert judgement should be used to compile a list of consequences and 

complement the historical data. This can be achieved in the form of a FMEA [Smith, 1992]. 

The analyst has to assign consequences for each event/failure into their respective groups. In 

the proposed approach, four groups have been identified, that is, Personnel, Equipment, 

Environment and Catch. For each event or failure, a rating from 1 - 4 is given for each of the 

groups. The ratings describe the consequences of an event occurring in linguistic terms such 

as ‘Negligible’, ‘Marginal’, ‘Critical’ and ‘Catastrophic’. The significance of each of the 

ratings are listed and described as follows: 

Personnel: 

Effect of failure of the item on personnel (worst case always assumed). 

Rating 1 = Negligible (No or little damage- bruises/cuts) 

Rating 2 = Marginal (Minor injuries - treatable on board) 

Rating 3 = Critical (Major injuries – requires professional attention) 

Rating 4 = Catastrophic (Death/permanent disablement) 
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Figure 3 AND gate 



Environment: 

Effect of failure of the item on the environment 

Rating 1 = No effect (No or little effect) 

Rating 2 = Marginal effect (Can be controlled by ship-staff) 

Rating 3 = Critical effect (Requires shore assistance) 

Rating 4 = Catastrophic effect (permanent damage to the environment) 

Equipment: 

Effect of failure on machinery or system in terms of down time if failure occurs and cost of 

repair. 

Rating 1 = Negligible (No or little attention needed - cleaning up/drying) 

Rating 2 = Marginal (Minor repair – few hrs lost) 

Rating 3 = Critical (Major repair – few days lost) 

Rating 4 = Catastrophic (Destruction of equipment - Total plant shutdown) 

Catch: 

Effect of failure on fishing operation in terms of catch effected: - 

Rating 1 = No effect (No or little effect) 

Rating 2 = Marginal effect (Catch affected for a few hours) 

Rating 3 = Critical effect (Catch affected for a few days) 

Rating 4 = Catastrophic effect (No catch for a few months) 

 

Calculate Total Score (xij) 

Upon assigning a score for each group, a table is generated as shown in Table 1. From this 

table, a ‘Total Score’ is calculated by summing the score of each individual group for an 

event. This total score will later be used to assign the membership function for that event 

using fuzzy rules. 

 

 Personnel Environment Equipment Catch 
Total 

Score(Xij) 

Failure Y1 X11 X21 X31 X41 Xi1 

Failure Y2 X12 X22 X32 X42 Xi2 

Failure Y3 X13 X23 X33 X43 Xi3 

 

Table 1 Event Score 



Fuzzy rules 

The fuzzy rules determining the membership function of each event are divided into 4 

categories i.e. Hazard Class 1(HC1), HC2, HC3 and HC4. The maximum score of an event is 

used to assign that particular event to the appropriate hazard class. Therefore, if an event has a 

score of [2,2,1,1] for each group respectively, it would be assigned to HC2 (the maximum 

score for that event is 2 for the Personnel and Environment categories). 

Fuzzy rules are generated based on available historical data, experience and complemented by 

expert knowledge. Following are a sample of such rules: 

Hazard Class 1 (HC1) 

If an event has a score of [1,1,1,1], which entails that for all categories considered, the effect 

of the failure is negligible, then the total effect of that failure on the system and environment 

should be negligible as well. Hence,  

1) If Xij = 4, then Negligible…………….(1.0) 

Hazard Class 2 (HC2) 

The minimum score possible in the HC2 category is 5, i.e. [2,1,1,1] or any variation of this 

score. The maximum possible score is 8, i.e. [2,2,2,2], therefore the range of membership 

function between these two extremities is assigned so as to ensure a smooth transition 

between limits to have overlapping of functions. Hence: - 

2) If Xij max = 2, and  Xij = 5 then 0.8 Negligible, 0.6 Marginal………(2.0) 

Xij = 6 then Marginal, 0.2 Critical……………...(2.1) 

Xij = 7 then 0.5 Marginal, 0.8 Critical………….(2.2) 

Xij = 8 then Critical, 0.2 Catastrophic………….(2.3) 

The above rules can also be seen in Figure 4. 

Hazard Class 3 (HC3) 

The minimum score possible in the HC3 category is 6, i.e. [3,1,1,1] or any variation of this 

score. The maximum possible score is 12, i.e. [3,3,3,3]. When assigning the linguistic 

membership function for HC3, it is important to compare the values with that of the HC2 to 

ensure that it does not contradict the rules generated for that hazard class. For the same total 

score in HC2 and HC3, the linguistic membership function for HC3 (for that particular score) 

should logically reflect a more severe consequence. For example, for a total score of 7 for 

HC2 and HC3, which would have a combination of [2,2,2,1] and [3,2,1,1] respectively, using 

expert judgement, one would say that although both classes have the same total score, a total 

score of 7 for HC3 would entail a more severe consequence. Hence the membership function 



for HC3 and a total score of 7 would be 0.8 Critical, 0.2 Catastrophic which is higher than the 

membership function for HC2 with the same total score of 7, which is 0.5 Marginal, 0.8 

Critical. Using this method, the rules for HC3 are generated for the other values of its total 

scores and are reflected as below: 

3) If Xij max = 3, and  Xij = 6 then 0.5 Marginal, Critical………………………(3.0) 

Xij = 7 then 0.8 Critical, 0.2 Catastrophic………………(3.1) 

Xij = 8 then 0.5 Critical, 0.5 Catastrophic………………(3.2) 

Xij = 9 then 0.2 Critical, 0.8 Catastrophic………………(3.3) 

Xij = 10 then Catastrophic………………………………(3.4) 

Xij = 11 then Catastrophic………………………………(3.5) 

Xij = 12 then Catastrophic………………………………(3.6) 

The above rules can also be seen in Figure 5. 

 

Hazard Class 4 (HC4) 

4) If Xij max = 4, and  Xij  7 then Catastrophic……………………………….(4.0) 
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Grouping each event into a hazard class allows direct comparison with other events and 

enables the effects of a failure to be compared based on its linguistic terms assigned to it. For 

example, if an event A has a score of [3,3,1,1] and a total of 8 and event B has a score of 

[2,2,2,2] which also gives a total of 8, from experience and expert judgements, it can be said 

that event A is more serious in nature. Hence, it should be assigned a linguistic term which 

must be 'more severe' compared to event B. Therefore, the membership function for event A 

and B will be obtained from Rule No.(3.2) and (2.3) respectively. 

 

3.3 Risk Assessment 

 

The risk associated with a failure increases as either the severity of the consequences of the 

failure or the failure probability increases. The severity of an event is ranked according to the 

seriousness of the effect of the failure. Judgement of the severity of a failure consequence is, 

by its very nature, highly subjective. 

Using a priority matrix, the “riskiness” of a failure can be obtained. The risk posed by the 

failure is expressed in linguistic terms such as ‘Very Important’, ‘Important’, ‘Moderate’ and 

‘Low’. This matrix is based on the probability of occurrence and the severity of the 

consequence. Table 2 displays the various combinations of these two parameters. 

The interpretation of hazard risk ranking is given as below: 

 Very Important    Needs immediate corrective action. 

 Important     Review and corrective action to be carried out. 

 Moderate      Review to be carried out and corrective action implemented if 

found to be cost effective. 

 Low     Review subject to availability of revenue and time. 

From this table, a risk ranking in linguistic terms can be obtained for the failure of a 

system/sub-system or component. For example, if the probability of failure is ‘High’ and the 

severity is ‘Marginal’, then the risk would be classified as ‘Important’. In order to utilise this 

information for the decision making process, a crisp number has to be obtained from the 

linguistic terms to rank the risk according to its priority. One common procedure for ranking 

risk is to use the RPN or ‘Risk Priority Number’. This method provides a numerical ranking 

for each term and multiplies them to assess the riskiness [Loughran et. al., 1999]. 
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Table 2 Probability and consequence matrix 

 

Fuzzy set approach provides a more flexible and meaningful way of assessing risk. The 

analysis uses linguistic variables to describe severity and probability of occurrence of the 

failure. These parameters are ‘fuzzified’ to determine their degree of membership in each 

input class using the membership functions developed. The resulting fuzzy inputs are 

evaluated using the linguistic rule base to yield a classification of the ‘riskiness’ of the failure 

and an associated degree of membership in each class. This fuzzy conclusion is then 

defuzzified to give a single crisp priority for the failure. 

Figure 6 shows the membership function of the riskiness of an event on an arbitrary scale, 

which would later be used to defuzzify the fuzzy conclusion and rank the risk according to a 

priority number. The membership function used is a triangular function which is developed 

using the horizontal approach [Pedrycz & Gomide, 1998] based on expert judgement. Unlike 

the trapezoidal function, the membership value of 1 in the triangular function is limited to 

only one value of the variable on the x-axis. 

Very important  Important 
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Figure 6 Membership function of riskiness 

 

Rule Evaluation 

 

Rules are evaluated using min-max inferencing to calculate numerical conclusion to the 

linguistic rule based on their input value [Zadeh, 1992]. The result of this process is called the 

fuzzy risk conclusion. 

The ‘truth value’ of a rule is determined from the conjunction (i.e. minimum degree of 

membership of the rule antecedents) [Zadeh, 1973]. Thus the truth-value of the rule is taken to 

be the smallest degree of truth of the rule antecedents. This truth-value is then applied to all 

consequences of the rule. If any fuzzy output is a consequent of more than one rule, that 

output is set to the highest (maximum) truth-value of all the rules that include it as a 

consequent. The result of the rule evaluation is a set of fuzzy conclusions that reflect the 

effects of all the rules whose truth values are greater than zero. 

Consider the risk priority table where the probability of occurrence is 'High' and the severity 

is 'Marginal' and having a membership function of 0.6 and 1.0 respectively. Thus the 

conclusion Riskness = 'Important' has a membership value of min (0.6,1.0) = 0.6. To establish 

how risky the hazard is, this fuzzy conclusion has to be defuzzified to obtain a single ‘crisp’ 

result. 

 

Defuzzification 

 

The defuzzification process creates a single assessment from the fuzzy conclusion set 

expressing how risky the hazard is, so that corrective actions can be prioritised. Several 

defuzzification techniques have been developed [Runkler & Glesner, 1993]. One common 

Risk 
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technique is the weighted mean of maximum method, which is illustrated here. This technique 

averages the points of maximum possibility of each fuzzy conclusion, weighted by their 

degrees of truth. 

 

The following is given to demonstrate how riskiness is obtained. Suppose Event A has the 

following probability of occurrence and severity of consequences: 

Probability of Occurrence – Moderate (0.6 High, 1.0 Moderate, 0.5 Low). 

Severity – Marginal (1.0 Marginal). 

Then from the risk priority table (Table 2), Event A will be denoted by the prefix MM and 

therefore is associated with a riskiness of 'Important'. However, considering all the 

membership functions of the two parameters, i.e. probability of occurrence and severity, the 

following terms of riskiness are generated: 

0.6 High, 1.0 Marginal = HM = 0.6 Important 

1.0 Moderate, 1.0 Marginal = MM = Important 

0.5 Low, 1.0 Marginal = LM = 0.5 Moderate 

From Figure 6, the support value for each linguistic term is obtained. Hence: 

The support value for Moderate = 4 

The support value for Important = 6 

The weighted mean (Z) = [(1.0)(6) + (0.5)(4)]/(1.0+0.5) 

   = 5.33 

From this result we can prioritise the riskiness of Event A as being “Important” with a 

support of 5.33. 

 

4. Application to a hydraulic winch system 

 

To demonstrate the proposed approach, data from a fishing vessel is used as a test case. The 

data collected for the test case is in the format of repair data. It includes:  

 Voyage no (shows the date when the repair was carried out). 

 Equipment repaired. 

 Parts that were changed. 

 Modifications that were made. 

 Cause of failure (in some instances). 

Specialists/contract workers carry out the repairs for this particular vessel, in the floating 

dock. Should a failure occur during operation at sea, temporary repair is carried out by the 



crew and the equipment is kept operating in the ‘abnormal’ condition. No records are kept of 

any temporary repairs done on board, however, a repair list is compiled by the Chief Engineer 

for the equipment to undergo permanent repair work at the next ‘docking’. 

In order to use this data for the modelling process certain assumptions were made:  

 Repairs and modifications are only carried out when the equipment/component had failed. 

 Upon completion of repair, the equipment is assumed to be "same-as-new". 

For this test case the trapezoidal function was selected and estimated. The boundaries of the 

trapezoidal function were determined for each set. These values being the values of x for the 

respective -cuts are subjective and were predominantly based on the policies and attitude of 

the company and on what the company thought to be tolerable limits within which they wish 

to operate. To describe the probability of occurrence, linguistic terms such as "Very High", 

"High", "Moderate", "Low", and "Remote" are used. A range of limits quantifying the 

probability of occurrence is then assigned to each term. These limits are in the form of Mean 

Time To Failures (MTTF). MTTF is given by: 

n

st
MTTF

ii 
                                        (1) 

where: ti = time to failure, si = survival time and n = number of failures. These limits are then 

converted into failure rates by the following formula: 

MTTF

1
 , 

It is assumed that the failure process follows an exponential distribution and each test is 

conducted independently and in a series process. A failure rate is calculated under the 

assumption that the mean down time and repair time is very small compared to the operating 

time. It is reflected along an ordinal scale as shown in Table 3. The membership function used 

is a trapezoidal function, which is developed using the horizontal approach [Pedrycz & 

Gomide, 1998]. This function allows a membership value of 1 for a range of probabilities 

unlike the triangular function. This function is thought to model the probability of occurrence 

close to what it is in reality. Figure 7 shows the membership function along with its ordinal 

scale. The limits and the centre point values of the ordinal scale are given by the dotted line 

and will be used to perform the fuzzy arithmetic. 



 

Probability 

(Linguistic term) 

MTBF range  

(days) 

Failure rate 

 (ordinal scale) 

Very High 1 to 5 1 to 2 x 10-1 

High 5 to 50 2 x 10-1 to 2 x 10-2 

Moderate 50 to 500 2 x 10-2 to 2 x 10-3 

Low 500 to 2000 2 x 10-3 to 5 x 10-4 

Remote 2000 to 10000 5 x 10-4  to 1 x 10-5  

 

Table 3 Probability range for linguistic terms. 

 

 

Figure.7 Membership function and ordinal scale 

 

The system used to demonstrate this methodology is an operating system of a Gilson Winch 

on board an ocean trawler. This trawler is a 1266 GRT (Gross Tonnage), deep-sea trawler 

with an L.O.A (length overall) of 60 meters. The Gilson Winch is hydraulically operated and 

is situated forward of the Main Winches. Once the Main Winches have hauled the catch onto 

the ramp of the vessel, the Gilson Winch is used to drag the net closer towards the hatch to 

unload the catch onto the conveyors1. 

Table 4 shows the failure data of the primary/basic events for a Gilson Winch failure. The 

data collected is over a period of 66 months (14 voyages), and from this data, the linguistic 

term for failure probability of each basic event is determined by identifying the number of 

occurrences per operating day(s) on the ordinal scale. The membership function is then 

determined by reading off the intersecting points on the y-axis. 

                                                           
1 The conveyors transport the fish to the fish factory below deck to begin the processing cycle. 
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Basic Events MTBF (days) 
Linguistic 

term 
Membership function 

Pipe flange leak 900 Low 0.5 Mod, Low, 0.1 Rem 

Pipe 450 Moderate 0.6 High, Mod, 0.5 Low 

Control valve fail 900 Low 0.5 Mod, Low, 0.1 Rem 

Filter choke 40 High 0.72 V.High, High, 0.18 Mod 

Brake cylinder fail 750 Low 0.5 Mod, Low, 0.1 Rem 

Brake seal fail 300 Moderate 0.6 High, Mod, 0.5 Low 

Clutch cylinder fail 900 Low 0.5 Mod, Low, 0.1 Rem 

Clutch seal leak 900 Low 0.5 Mod, Low, 0.1 Rem 

Air cylinder fail 900 Low 0.5 Mod, Low, 0.1 Rem 

 

Table 4 Probability of basic events for Gilson Winch failure 

 

Once the failure data has been gathered, it is grouped and sorted by its equipment/sub-system 

and finally the system to which the component belongs to enable a fault tree to be constructed. 

The top event of the fault tree will be the failure of the equipment (Gilson Winch failure) 

while the initiating events and basic events will be the component failure (seal leakage, brake 

failure, control valve failure etc). It is best to construct a fault tree for equipment within a 

system separately as it enables data handling and analysis to be conducted. The individual 

fault trees can later be collated to analyse the system failure. Fault tree construction can be 

achieved with the use of computer software packages such as Fault Tree +V6.0 and AvSim+ 

[Fault Tree +, 1995; AvSim+, 1998]. 

The fault tree shown in Figure 8 is generated from the data collected for the failure of the 

Gilson Winch. Each secondary or intermediate event (e.g. brake failure, clutch failure, 

hydraulic leakage etc) is modelled by gathering the available failure data and then grouping 

them according to the component or system they affect. For example, the failure of the brake 

cylinder (GBCyl) and brake seal leakage (GBSeal) will cause the brake to fail. Hence, the 

Brake Failure (G.Brake) is the secondary event with the GBCyl and GBSeal being its basic 

events. To demonstrate the application of this methodology with an example, the fault tree 

used only traces the path of failures that have been known to occur in the past, rendering the 

system inoperable. 

 

Take two basic events from the fault tree in Figure 8, GBCyl and GBSeal as an example. The 

occurrence rates for GBCyl and GBSeal are 1 failure in 750 days and 1 failure in 300 days 

respectively. Therefore event GBCyl would have a fuzzy probability of Low and GBSeal, 



Moderate. Performing the arithmetic operation on both these events will yield the result of 

0.62 High, Moderate and 0.46 Low for the secondary event, brake failure (G.Brake). Figure 9 

shows a graphical representation of this. This can be interpreted as the secondary event 

belonging to the linguistic term High with a membership of 62%, complete membership 

(100%) to Moderate and Low with a membership of 46%. 

Similarly, all the basic events in the fault tree are analysed in this manner producing an end 

result for the top event. The Gilson Winch failure has a fuzzy failure probability of HIGH 

with a membership function of 0.9 Very High, 0.84 High and 0.1 Moderate. Although the 

membership to the Very High linguistic term is the highest, when the result is defuzzified to 

reflect the range of probability which it belongs to, it falls into the High category on the 

ordinal scale. It can therefore be stated that the failure rate of the Gilson Winch lies between 2 

x 10-1 and 2 x 10-2. 

 

Gilson

Gilson winch
failure Prob:High
(0.9V.High,0.84

High, 0.1Mod)

Gils. leak

Hydraulic leakages
Prob:Moderate
(Mod,0.46 Low)

control

Control valve fail
Prob:Low

filter

Filter chocked
Prob:High

flange

Pipe flange leak
Prob:Low

Pipe

Pipe leakage
Prob:Moderate

Hydraulic

Hydraulic failure
Prob:High

(0.8 V.High,High)

mechanical

Mechanical failure
Prob:Moderate

(0.7 High,Mod,0.32
Low)

G.Brake

Brake Failure
Prob: Moderate
(0.62 High, Mod,

0.46 Low)

G.Clutch

Clutch failure Prob:
Low (0.84

Moderate,0.96
Low)

G.Air

Air cylinder fail
Prob: Low

GBCyl

Brake cylinder fail
Prob: Moderate

GBSeal

Brake seal leakage
     Prob: Low

G.cyl

Clutch cylinder fail
Prob: Low

G.seal

Clutch seal
leakage

Prob: Low

 

Figure 8 Fault tree of Gilson winch failure 

 



 

 

Figure.9 Graphical representation of fuzzy arithmetic operation on two basic events  

 

Consequence severity modelling 

 

The amount of data that was available on the consequences of a failure was scarce and 

difficult to come by. However, much of the data was in terms of cost and reports of accidents 

and incidents that lead to injuries. Since there is no standard format for reporting an accident, 

the data was obtained from telexes, faxes, superintendent reports, Chief Engineers’ logbook 

and various other sources. To complement the data, expert knowledge and judgement was 

used to assign ratings to each group i.e. Personnel, Environment, Equipment and Catch. Table 

5 shows the analyses of various failures in a Gilson Winch system. 

 

 Personn. Environ. Equip. Catch Total HC Membership function 

Pipe Flange leak 1 2 1 1 5 2 0.8 Neg, 0.6 Marginal 

Pipe leak 1 2 1 1 5 2 0.8 Neg, 0.6 Marginal 

Control v/v fail 1 1 2 3 7 3 0.8 Critical, 0.2 Catastrophic 

Filter choke 1 1 1 3 6 3 0.5 Marginal ,Critical 

Brake cyl fail 1 1 3 3 8 3 0.5 Critical, 0.5Catastrophic 

Brake seal leak 1 1 2 2 6 2 Marginal, 0.2 Critical 

Clutch cyl fail 1 1 3 3 8 3 0.5 Critical, 0.5Catastrophic 

Clutch seal leak 1 1 2 2 6 2 Marginal, 0.2 Critical 

Air cyl fail 1 1 1 1 4 1 Negligible 

 

Table 5 Gilson Winch event failures 

 

Very High High Moderate Low

Very High High Moderate Low

10-1 10-2 10-3

0.62

0.46

Membership Function

Occurrence



Risk Ranking of the Hydraulic Winch System 

 

The probability of occurrence is determined for each basic event (Table 4) and the severity of 

the same basic events is as shown in Table 5. The risk estimation and ranking of these basic 

events can be carried out. For the pipe flange leak event, the probability of occurrence was 

determined to be 0.5 Mod, Low and 0.1 Rem, and the severity as 0.8 Neg and 0.6 Marg. Using 

the rule evaluation method described above, which is summarised here in Table 6, the 

linguistic term for risk is determined. 

 

From Table 6, the risk evaluation for the pipe flange failure can be summarised as being (0.5 

Low, 0.5 Imp, 0.8 Low, 0.6 Mod, 0.1 Low and 0.1 Low).  

 

Probability of occurrence Severity Risk 

0.5 Moderate 0.8 Negligible 0.5 Low 

0.5 Moderate 0.6 Marginal 0.5 Important 

Low 0.8 Negligible 0.8 Low 

Low 0.6 Marginal 0.6 Moderate 

0.1 Remote 0.8 Negligible 0.1 Low 

0.1 Remote 0.6 Marginal 0.1 Low 

 

Table 6 Risk evaluation for pipe flange failure 

 

Weighted mean for event pipe flange leak is calculated as follows: 

 

Z  = 
) 0.50.6(0.8

  6)x  (0.5  4)x  (0.6 2)x  (0.8




 = 3.68. 

 

Therefore from Figure 6, the event “Pipe Flange Leak” will be prioritised by “Moderate” 

with a support value of 3.68. Similarly, the risk evaluation for all other basic events is carried 

out. The results of the evaluation are shown in Table 7. Table 8 shows the results of the 

calculations for the weighted mean for all the other events within the system.  



 

Events Occurrence Severity Risk 

Pipe Flange leak 0.5 Mod, Low, 0.1 Rem 0.8 Neg, 0.6 Marg 0.8 Low, 0.6 Mod, 0.5 Imp 

Pipe leak 
0.6 High, Mod, 0.5 

Low 
0.8 Neg, 0.6 Marg 0.8 Low, 0.6 Mod, 0.6 Imp 

Control v/v fail 0.5 Mod, Low, 0.1 Rem 0.8 Crit, 0.2 Cat 0.2 Mod, 0.8 Imp, 0.2 V.Imp 

Filter choke 
0.72 V.High, High, 

0.18 Mod 
Crit, 0.5 Marg 0.5 Imp, V.Imp 

Brake cyl fail 0.5 Mod, Low, 0.1 Rem 0.5 Crit, 0.5 Cat 0.1 Mod, 0.5 Imp, 0.5 V.Imp 

Brake seal leak 
0.6 High, Mod., 0.5 

Low 
Marg, 0.2 Crit 0.5 Mod, Imp, 0.2 V.Imp 

Clutch cyl fail 0.5 Mod, Low, 0.1 Rem 0.5 Crit, 0.5 Cat 0.1 Mod, 0.5 Imp, 0.5 V.Imp 

Clutch seal leak 0.5 Mod, Low, 0.1 Rem Marg, 0.2 Crit 0.1 Low, Mod, 0.5 Imp 

Air cyl fail 0.5 Mod, Low, 0.1 Rem Neg Low 

 

Table 7 Failure events of a Gilson Winch 

 

Event Risk (Linguistic term) Support value 

Filter choke Very Important 7.33 

Clutch cyl fail Important 6.72 

Brake cyl fail Important 6.72 

Control v/v fail Important 6.00 

Brake seal leak Important 5.65 

Clutch seal leak Moderate 4.50 

Pipe leak Moderate 3.68 

Pipe flange leak Moderate 3.68 

Air cyl fail Low 2.00 

 

Table 8 Ranking of failure events of a Gilson Winch 

 

5. Conclusion 

 

Lack of reliable safety data and lack of confidence in safety assessment have been two major 

problems in safety analysis of various engineering activities. This is particularly true in 

Formal Safety Assessment (FSA) due to the fact that level of uncertainty is high. In ship 

safety assessment it may often be difficult to quantify the probability of undesired events 

occurring and the associated consequences of effect due to this very reason. 



The proposed approach addresses these concerns and offers an alternative solution. Its 

application can be extended to sub-systems within an operating system to generate a list of 

components, which are ranked according to their priority for attention. This can help the 

owners and operators of fishing vessels to improve operating and maintenance strategies. This 

approach can be adopted within the FSA framework for generic ships and the results obtained 

from the analysis can be further utilised in step 4 of the FSA [Marine Safety Agency, 1993]. 
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