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Abstract

Kinematic and force trajectories are often normalized in time, with mean and variance summary statistic

trajectories reported. It has been shown elsewhere, for simple one-factor experiments, that statistical

testing can be conducted directly on those summary statistic trajectories using Random Field Theory

(RFT). This technical note describes how RFT extends to two-factor designs, and how bizarre “non-

phasic interactions” can occur in multi-factor experiments. We reanalyzed a public dataset detailing

stance phase knee flexion during walking in (a) patellofemoral pain vs. controls, and (b) females vs.

males using both a full model (with interaction e↵ect) and a main-e↵ects-only model. In both models

the main e↵ect of PAIN failed to reach significance at ↵=0.05. The main e↵ect of GENDER reached

significance over 5–40% stance (p=0.0005), but only for the full model. The interaction e↵ect (in the full

model) reached significance over 0–15% of stance (p=0.030), and resulted from greater flexion in females

but decreased flexion in males in PFP vs. controls. Thus there was a non-phasic interaction, in which

a non-significant interaction (over 20–40% stance) suppressed the main e↵ect of GENDER. Similarly, if

we had only analyzed 20–40% stance, we would have committed Type II error by failing to reject the

null PAIN-GENDER interaction hypothesis. The possible presence of non-phasic interactions implies

that trajectory analyses must be conducted at the whole-trajectory level, because a failure to do so will

generally miss non-phasic interactions if present.
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1 Introduction

Biomechanical processes are often summarized using one-dimensional trajectories which usually represent

kinematics or forces, and which have been registered (Sadeghi et al., 2003) to some homologous temporal

domain, often by linearly interpolating between 0% and 100% time. This paper pertains to analysis of such

data.

If an investigator has no specific a priori hypothesis where in the range 0–100% a kinematic or force

e↵ect is expected to emerge, then by definition the null hypothesis implicitly pertains to the entire trajectory

(Pataky et al., 2013). This null hypothesis of “trajectory equivalence” is valid, but to test it objectively

one must consider the behavior of random data under that null hypothesis. In particular, from a classical

hypothesis testing perspective, one must compute an ↵-defined critical threshold above which random data

would traverse in only ↵% of many repeated experiments.

Random field theory (RFT) (Adler and Taylor, 2007) describes the behavior of smooth n-dimensional

Gaussian continua, and in particular the probability that they will produce test statistic continua which

exceed arbitrary thresholds in arbitrary experiments. RFT has been used in applied form most widely in

the neuroimaging literature (Friston et al., 2007) and has also been applied to smooth kinematic/force tra-

jectories in simple one-factor experimental designs (Pataky et al., 2013), but the biomechanical implications

of trajectory-level two-way ANOVA have not yet been explored. The purposes of this Technical Note were:

(1) to demonstrate trajectory-level two-way ANOVA, and (2) to explore the biomechanical implications of

including/excluding interaction terms in statistical models.

2 Methods

2.1 Data

A public dataset detailing stance-phase knee flexion during walking in subjects with patellofemoral pain

(PFP) (Besier et al., 2009) was reanalyzed (Fig.1, Table 1). The dataset consisted of 41 subjects, including:

8 control females, 7 control males, 16 PFP females and 10 PFP males. We subsequently refer to this 2⇥2

design using the factor labels PAIN (PFP vs. controls) and GENDER (females vs. males). The public

dataset was linearly interpolated to 100 time points over stance phase and contained one mean trajectory

per subject, as estimated from at least three trials of self-paced walking.
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2.2 Statistical analysis

To assess the biomechanical implications of interaction e↵ects, we analyzed the data using both a full

two-way ANOVA (with interaction):

yijkq = (⌧pain)iq + (⌧gender)jq + (⌧pain,gender)ijq + "ijkq (1)

and a main-e↵ects only model (without interaction):

yijkq = (⌧pain)iq + (⌧gender)jq + "ijkq (2)

where yijkq is the experimental observation for the kth subject of the ith level of PAIN, jthe level of GENDER

and qth point in time, (⌧pain)iq and (⌧B)jq are group means at the qth point in time for the ith level of PAIN

and the jth level of GENDER, respectively, and (⌧pain,gender)ijq is the interaction term modeling possibly

di↵erent e↵ects of GENDER on the ith level of PAIN. The "ijkq term represents model residuals. Note that

Eqns.1&2 model three and two factors, respectively, and that there are therefore three and two F statistics,

respectively, to compute.

We followed typical two-way ANOVA procedures to calculate F values separately at each time point

q, thereby forming F statistic trajectories (see Supplementary Material). We also corrected for potential

non-sphericity (i.e. potentially unequal variance across PAIN/GENDER levels) using restricted maximum

likelihood estimates of the degrees of freedom (Friston et al., 2007).

We next conducted classical hypothesis testing at a Type I error rate at ↵=0.05. Noting that RFT

assumes that the residuals "ijkq are smooth, Gaussian random fields, and that this assumption has been

validated elsewhere for biomechanical trajectories (Pataky et al., 2014), we used RFT’s analytical descriptions

of smooth Gaussian field behavior to compute the critical threshold F

⇤ that identically smooth Gaussian

fields would reach in only ↵% of identical, repeated experiments. On this basis an F trajectory which exceeds

F

⇤ leads to null hypothesis rejection.

Last, we computed precise probability values for supra-threshold clusters in a similar manner. Briefly, a

thresholded F trajectory generally contains a collection of supra-threshold trajectory segments (or ‘clusters’),

and RFT yields analytical solutions for the probability that a cluster of a particular extent (i.e. temporal

length) would be produced at the particular threshold (Friston et al., 2007). By definition, a cluster which

just touches the threshold F

⇤ has a probability value of ↵, and p values decrease as cluster extents increase.

All analyses were implemented in Python 2.7 using Canopy 1.3 (Enthought Inc., Austin, USA). All
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computational details are available in our open-source software at www.spm1d.org.

3 Results

Although joint angle trajectories were quite variable across subjects (Fig.1), mean trajectories (Fig.2)

exhibited notable qualitative di↵erences. In particular, in controls the mean male knee angle was greater

than the mean female knee angle over the entire stance phase (Fig.2c), but in the PFP group the mean

male and female trajectories were quite similar (Fig.2d). This implies that PFP tended to produce di↵erent

e↵ects in males vs. females, and this qualitative inference can be observed in Fig.2a,b.

Results for the full statistical model (Eqn.1, Fig.3) found that, while the main e↵ect of PAIN failed to

reach significance, the main e↵ect of GENDER reached significance over 5–40% stance (p=0.0005) and the

interaction e↵ect also reached significance over 0–15% stance (p=0.030). In contrast, neither the main e↵ect

of PAIN nor the main e↵ect of GENDER reached significance for the main-e↵ects-only model (Eqn.2, Fig.4).

Note, in particular, a “non-phasic” interaction e↵fect: the interaction e↵ect, which spans only 0–15% stance

in Fig.3c, does not temporally overlap with the second peak in the main e↵ect of GENDER (Fig.3b, 20–40%

stance) yet this 20–40% main e↵ect of GENDER was absent in the second model’s results (Fig.4b).

4 Discussion

The key new results were: (1) a demonstration of trajectory-level two-way ANOVA, and (2) an iden-

tification of non-phasic interaction possibilities in biomechanical trajectories. The former is important in

the context of the Biomechanics literature, partially because only simple one-factor experiments have been

demonstrated previously (Pataky et al., 2014), but more importantly because it shows that we can conduct

a single statistical test — which simultaneously tests all trajectories at all points in time — for arbitrarily

complex experiments. By conducting only a single test, we maximize statistical power because we don’t have

to correct for multiple tests conducted on multiple scalars extracted from the single trajectories.

The latter result — non-phasic interaction — has important implications for all experiments involving

scalar/vector trajectories. First, and most simply, if we had not modeled the interaction, we would have

failed to reject the null hypothesis regarding the main e↵ect of GENDER (as in Fig.4). This reiterates

basic two-way ANOVA theory, and is applicable to all analyses, whether trajectory-level or not: a lack of a

main e↵ect in a particular factor (i.e. GENDER, Fig.4b) does not justify pooling across levels of that factor

because interaction e↵ects may hide inter-level di↵erences (Fig.3c).
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Much less trivially, the results also show that a significant interaction in one trajectory phase (Fig.3c)

can appear to amplify a main e↵ect in a separate phase (Fig.3b). We call this a “non-phasic interaction”

and its implications are important: had we decided — in an ad hoc manner — to only analyze data in the

vicinity of the first knee flexion peak (25–30% stance) (Fig.1) we would have found that there was a main

e↵ect of GENDER (Fig.3b) but not an interaction e↵ect (Fig.3c). We would thus unjustifiably conclude that

PFP does not a↵ect males and females di↵erently. In other words, interaction e↵ects, which are themselves

primary results, both vary in time and can alter the main e↵ects in a time-dependent manner. non-phasic

interactions therefore provide strong support for the notion that objective testing of hypotheses pertaining

to whole trajectories requires trajectory-level techniques.

Although the biomechanical meaning of the observed non-phasic interaction is unclear, it is biomechani-

cally clear that early-phase behaviors can produce cumulative e↵ects on later phases (Richter et al., 2014).

It is therefore possible that the presently observed non-phasic interaction relates to late-stance trajectory

convergence (Fig.1). Regardless, the precise interpretation is scientifically irrelevant; Fig.3c shows that the

no-interaction null hypothesis is correctly rejected for this dataset, and to scientifically probe its biomechan-

ical meaning an investigator must derive a relevant hypothesis to test in a future experiment.

The main limitation of the present RFT approach is that it assumes homologous data registration. This

is potentially problematic because apparently homologous events like local maxima may not be aligned

precisely in time (Fig.1), and therefore non-linear registration, by definition, reduces trajectory variance

(Sadeghi et al., 2003). Future studies should consider sensitivity of RFT results to registration particulars

and to potential mis-registrations. Nevertheless, registration’s limitations are not unique to RFT-based

inference; all analysis techniques require homologous data comparison, and mis-registration could a↵ect all

trajectory analyses. In particular, the common approach of extracting scalars from particular trajectory

regions does not guarantee homologous data comparison.

In summary, this study has shown that classical hypothesis testing can be conducted at the whole-

trajectory level for two-way ANOVA designs, and by implication, for arbitrarily complex experimental de-

signs, using an ↵-based RFT critical threshold. More importantly, this study has also demonstrated that

non-phasic interactions can exist in scalar trajectory datasets. Further investigations on independent datasets

are required to determine the likelihood of observing such e↵ects in general datasets. While 0D analysis of

1D data generally yields invalid statistical conclusions, this does not not imply that clinical/biomechanical

interpretations of 0D results are also invalid. For maximum objectivity, 1D analysis should be conducted

when one’s a priori hypothesis does not pertain to a specific temporal instant or region.
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Table 1: Subject details (means ± SD); replicated from Besier et al. (2009).

Controls Patellofemoral pain

Males (n=8) Females (n=8) Males (n=11) Females (n=16)

Age (years) 27.2±3.0 28.8±4.7 30.5±4.5 28.7±4.6

Height (m) 1.79±0.07 1.66±0.05 1.78±0.09 1.68±0.06

Mass (kg) 74.2±4.2 58.3±4.6 72.4±12.5 62.7±10.0

Walking speed (m/s) 1.49±0.12 1.43±0.15 1.52±0.14 1.52±0.20



Figure 1.  Sagittal plane knee kinematics, one trajectory per subject (from Besier et al., 
2009).



Figure 2.  Group means with SD clouds. Top panels: PFP vs. Controls in (a) Females and 
(b) Males.  Bottom panels: Females vs. Males in (a) Controls and (b) PFP.  The 
interaction (Fig.3c) is obvious when contrasting (c) vs. (d), but is less obvious when 
contrasting (a) vs. (b), implying that qualitative comparisons of mean/SD trajectories can 
miss interactions. 



Figure 3.  ANOVA results (full model, with interaction effects). Dotted horizontal lines 
depict the critical (parametric) RFT threshold at α=0.05. Cluster-specific p values 
indicate the probability that Gaussian random trajectories would yield suprathreshold 
clusters of the same temporal extent.



Figure 4.  ANOVA results (main effects model, no interaction effect).



Appendix A. ANOVA computation overview

The experiment in the main manuscript consisted of two experimental factors: PAIN and

GENDER, each with two levels: (control, PFP) and (female, male). As detailed in the main

manuscript the response variable of interest was a (1 ⇥ 100) scalar trajectory, and there were

a total of 41 responses: 8 control females, 7 control males, 16 PFP females and 10 PFP males.

We can model these data using a general linear model (GLM):

Y = X� + " (A.1)

where Y is a (41⇥100) matrix of the experimentally measured responses, X is a (41⇥4) design

matrix (Fig.A1), � is a (4⇥ 100) matrix of mean trajectories, and " is a (41⇥ 100) matrix of

residuals. Each column of X corresponds to a PAIN-GENDER pair, and the jth row contains

a single one and three zeros, with the one appearing in the column corresponding to the jth

subject’s pain condition and gender.

Figure A1: Experimental design matrix. White cells are ones and black cells are zeros.



The least-squares solution to Eqn.A.1 is:

�̂ = (XTX)�1XTY (A.2)

and the model’s residuals are:

"̂ = Y �X�̂ (A.3)

The fitted �̂ matrix is (4 ⇥ 100), containing one mean trajectory for each column of X.

The residuals matrix "̂ is (41⇥ 100) and contains the di↵erences between the original data Y

and the relevant mean trajectory �̂. From the perspective of Random Field Theory (RFT), "

are assumed to be smooth, Gaussian random fields.

The entire fitted model may be visualized as a pseudo-color plot (Fig.A2). Note that each

row of Y , �̂ and "̂ represents a single, temporally smooth trajectory.

Figure A2: Statistical model (see Eqn.1). The time-normalized data (Y) are modeled as a set
of mean trajectories (�) about which each subject’s trajectory varies smoothly (varepsilon).
The design matrix (X) is used to estimate the parameters (�) in a least-squares sense.

Since �̂ and "̂ respectively embody mean and variance trajectories, it is clear that they can

be combined to form test statistics in general, and F statistics in particular. Unfortunately the

computational details are somewhat complex, so we leave this discussion with a conceptual,

generalized summary:

Arbitrary biomechanics experiments (e.g. t tests, regression, ANCOVA, etc.) can be mod-

eled using X, and when the data can be assembled into a single response matrix Y , the model

parameters and variances can be rapidly computed using Eqns.A.2&A.3. Then test statistic



fields can be constructed using combinations of �̂ and "̂, and we can conduct statistical infer-

ence by comparing our observed test statistic field to the behavior of Gaussian fields which are

funnelled through the same experimental design X.

Readers interested in additional computational details, and a more thorough treatment of

ANOVA theory may wish to consult Christensen (1996) and Friston et al. (2007).
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Appendix B. SPM vs. PCA

Statistical Parametric Mapping (SPM) and Principal Component Analysis (PCA) have

emerged relatively recently in the Biomechanics literature. The primary di↵erence between

the two is that SPM is a hypothesis testing technique and PCA is a dimensionality reduction

technique. This Appendix aims to explain this di↵erence conceptually, as applicable to the

analysis of experimental 1D trajectories.

To start, let us revisit the general linear model (Eqn.A.1), which is replicated here for

convenience:

Y = X� + " (B.1)

The variables in this equation emerge, in chronological order, as follows:

1. X: experimental design, set by an investigator prior to conducting an experiment.

2. Y : experimental data, measured during the experiment.

3. �: computed regression parameters, usually the least-squares map between the design X

and the data Y .

4. ": computed model residuals, representing the experimental variability about the param-

eters �.

Note that this model is applicable to all experimental designs including: t tests, regression,

ANOVA (as detailed in Appendix A) and more complex designs like MANCOVA. For t tests and

ANOVA the � parameters are mean trajectories (one per group), and we shall limit subsequent

discussion to this case.

SPM and PCA are equivalent up until the end of Step #2: both involve analysis of Y as

measured during some experiment X. SPM proceeds to Step #4, and then asks a conceptually

simple question: what is the probability that the e↵ects embodied in � could be produced by

random 1D trajectories like those embodied in "? In a two-sample t test, for example, the two

rows of � represent the two groups’ mean trajectories, and those two trajectories are generally

di↵erent. Di↵erence itself is scientifically uninteresting because a variety of factors including

measurement error ensure that mean trajectories are never precisely equivalent. Probabilities

associated with trajectory di↵erences are much more relevant: if random trajectories would

frequently produce trajectory di↵erences as large or larger than the observed mean trajectory

di↵erences, then the null hypothesis (of no di↵erence) has successfully predicted the experi-

mental result. On the other hand, if random trajectories would produce the observed di↵erence

relatively infrequently, then the null hypothesis failed to predict the experimental result and can

be rejected. Formally, SPM quantifies such probabilities using Random Field Theory, which



analytically describes the frequency with which trajectory di↵erences are expected to emerge

when Gaussian random fields are routed through the experimental design X. Like all 0D para-

metric hypothesis testing procedures, SPM regards the residual trajectories " as independent

and normally distributed, but these assumptions can easily be relaxed with non-parametric

forms of SPM.

In contrast, PCA asks the following question: what trajectories represent the most variance

in Y ? Some of the resulting PCs may be similar to the sample means (�), but in general are

di↵erent. Since PCA does not compute � directly, it e↵ectively ignores the experimental design

X. This approach allows one to powerfully probe trends in Y irrespective of X, but by doing

so one loses the ability to ask probabilistic questions which pertain to X. The probabilistic

meaning of PCA results only emerges when tested on independent datasets using one or more

validation procedures, as described in the machine learning literature (Bishop C. M., 2007).

In summary, whereas SPM establishes a probabilistic link amongst all four model elements

(Eqn.B.1), PCA instead analyzes the variability in Y in isolation. The consequences are that

SPM results generalize beyond the analyzed dataset, and that PCA results must be validated

on independent datasets to establish generalizability. Most concisely: SPM is a hypothesis

testing technique and PCA is a dimensionality reduction technique.

The practical implications are as follows: if one wishes to formally test a priori hypotheses

regarding whole 1D trajectories, then SPM is a good choice. If, however, one wishes to describe

the sources of variability within a particular dataset, then PCA is a good choice. The important

scientific distinction is that, whereas SPM generates probability values corresponding to the

given experimental dataset, PCA results can only adopt probabilistic meaning when validated

on independent datasets. Interested readers may wish to consult machine learning textbooks

(e.g. Bishop, 2007), which clarify the role of PCA and other dimensionality reduction techniques

in the broader spectrum of probability computations.
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