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Gait and Posture 
 

Abstract 

Introduction: Side-cutting tasks are commonly used in dynamic assessment of 

ACL injury risk, but only limited information is available concerning the 

reliability of knee loading parameters. The aim of this study was to investigate 

the reliability of side-cutting data with additional focus on modelling 

approaches and task execution variables. 

Methods: Each subject (n=8) attended six testing sessions conducted by two 

observers. Kinematic and kinetic data of 45° side-cutting tasks was collected. 

Inter-trial, inter-session, inter-observer variability and observer/trial ratios were 

calculated at every time-point of normalised stance, for data derived from two 

modelling approaches. Variation in task execution variables was regressed 

against that of temporal profiles of relevant knee data using one-dimensional 

statistical parametric mapping. 

Results: Variability in knee kinematics was consistently low across the time-

series waveform (≤5 °), but knee kinetic variability was high (31.8, 24.1 and 

16.9 Nm for sagittal, frontal and transverse planes, respectively) in the weight 

acceptance phase of the side-cutting task. Calculations conveyed consistently 

moderate-to-good measurement reliability. Inverse kinematic modelling 

reduced the variability in sagittal (~6 Nm) and frontal planes (~10 Nm) 

compared to direct kinematic modelling. Variation in task execution variables 

did not explain any knee data variability. 

Conclusion:  Side-cutting data appears to be reliably measured, however high 

knee moment variability exhibited in all planes, particularly in the early stance 

phase, suggests cautious interpretation towards ACL injury mechanics. Such 

variability may be inherent to the dynamic nature of the side-cutting task or 

experimental issues not yet known. 
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Introduction 

 The occurrence of non-contact lower-limb injury in sports that involve dynamic 

sporting tasks is a substantial burden on clubs and their players, both financially and in terms 

of playing time [1,2]. Attempts to explore the mechanics of knee ligament injury, particularly 

of the anterior cruciate ligament (ACL), are well documented and frequently involve the 

estimation of knee kinematics and kinetics during side-cutting tasks [3-8]. Side-cutting is 

commonly used as it challenges the knee in a manner that is consistent with the reported ACL 

injury mechanism [9], and therefore could be important to assess ACL injury risk. Thus, it is 

important to know the reliability of side-cutting data, as well as the variability within typical 

protocols so that appropriate limits for detectable differences can be established, and the 

correct interpretation of injury risk made.  

 

 Limited information concerning the reliability of side-cutting data has been presented. 

The chosen analysis methods are varied and include average intra-class correlation 

coefficients (ICC) [4,10], coefficients of multiple correlations (CMC) [11,12], and 

coefficients of multiple determinations (R
2
) [13]. As well as different quantification methods, 

different components of reliability have been observed. Besier et al. [13] reported within and 

between session reliability for various tasks and found that, of their side-cutting tasks (30° 

and 60°), transverse knee moments displayed the lowest reliability within-session (average R
2
 

= 0.84 ± 0.09), and sagittal knee moments displayed the reliability between-sessions (average 

R
2
 = 0.89 ± 0.04). Sigward and Powers [11,12] reported between-session reliability and found 

frontal and transverse plane kinematics (CMC = 0.63 and 0.61, respectively) to be less 

reliable than frontal and transverse plane kinetics (CMC = 0.90 and 0.93, respectively). 

Although this reliability evidence exists, they lack a number of facets that are important for 

clinical inference. Firstly, previous studies failed to consider between-observer reliability 

which is crucial to assess results across laboratories or in clinical practice. Secondly, these 

methods summarise reliability by either considering discrete time points (e.g. peak values) or 

collapsing the entire time series (e.g. CMC calculates average reliability over time). 

Therefore information about whether reliability is evenly distributed across different phases 

of the side-cutting manoeuvre is unknown. Thirdly, the summary reliability statistics are not 

presented in the context of the original data, making it difficult to interpret the magnitude of 

reliability (e.g. ICC of 0.6 versus 0.7) in the context of the magnitude of the actual data 

signals. A comprehensive observation of side-cutting data reliability is therefore necessary. 



 
 

 We also take the opportunity to address i) the reliability of the modelling approach as 

this can affect knee kinematics and kinetics [14] and ii) the variability of the task itself. 

Firstly, different modelling approaches can be chosen to either allow or restrict joint rotations 

or translations and also attempt to reduce soft tissue artefact. In a recent comparison of the 

direct kinematic (DK) versus inverse kinematic (IK) modelling approaches [14], significantly 

larger peak knee abduction moments were found using the DK approach yet the reliability of 

two approaches are unknown. Secondly, as variability can also exist through variations in the 

execution of the side-cutting task itself, we quantify whether knee kinematic and kinetic 

variability can be explained through inherent variations in task execution. Such information 

will help to standardise modelling approaches and evaluate the importance of task execution.  

 

 The purpose of this study was to investigate the reliability of side-cutting data from an 

inter-trial, inter-session, and inter-observer perspective. This will be complemented by 

investigating the reliability of two modelling approaches (DK vs. IK), and by examining the 

contribution of the side cutting task execution to the variability observed. 

 

Methods 

Participants 

The participants for this study were eight recreationally active soccer players who had 

at least 6 years of playing experience and trained 1-2 times per week (four male; four female; 

age - 25.8 ±4.4 years; mass - 64.8 ± 7.2 kg; height - 1.7 ± 0.1 m). All participants had no 

reported ACL injury and had been injury free for six months prior to data collection. All 

participants wore tight fitting shorts and standardised indoor footwear (Highroad). Females 

also wore a cropped vest, tight fitting base layer or sports bra. Ethical approval for this study 

was granted by the institutional ethics committee, and written consent was obtained from all 

participants.  

 

Protocol 

All participants engaged in a familiarisation session which included full replication of 

one session of the protocol. Prior to side-cutting, all participants completed a ten minute 

general warm-up. This was followed immediately by a 5 minutes specific warm-up. 

Participants nominated their preferred leg for side-cutting and this was standardised for the 

assessment. Approach speed was controlled using photocell timing gates (Brower Timing 



 
 

Systems, Utah, USA) which were placed 2 m apart, and 2 m from the force plates, where the 

side-cutting was performed. Cones were also placed 3 m from the force plates to mark a 

target gate at the required 45°. Trials were excluded if approach speed was not between 4 and 

5 m·s
-1

, targeting of the force plate was observed, or if the subjects did not achieve the angle 

of 45° determined by running between the cones. 

 

 Data were collected by two different observers using a repeated measures design over 

six separate sessions; four on day one, and two on day two (Fig. 1). The observers were both 

PhD students and had been working with this biomechanical model for approximately 4 

months previous, in both application and processing. The two observers conducted three 

sessions each; two each on day one, and one each on day two, with 48 hours between day one 

and two. This allowed each participant to be tested by each observer, within and between 

days. A 10-minute cool down session was conducted before a 15-minute rest, and then the 

next session would start.  

 

Data collection  

 All side-cutting was performed over a 0.9 x 0.6 m Kistler force platform (9287C, 

Kistler Instruments Ltd., Winterthur, Switzerland) sampling at 1500 Hz for the measurement 

of ground reaction forces. Simultaneous kinematic data was recorded in Qualisys Track 

Manager (Qualisys AB, Gothenburg, Sweden) using 10 optoelectronic cameras (Oqus 3, 

Qualisys AB, Gothenburg, Sweden) sampling at 250 Hz. 

 

Biomechanical model 

 A full description of the LJMU model utilised in the current study, based on direct 

kinematic (DK) calculations, is provided in supplementary material elsewhere [15]. Both 

observers were blind to the application of markers by the other observer. Each observer 

applied and removed the markers at the beginning and end of their testing sessions. Visual 3D 

(v.4.83, C-Motion, Germantown, MD, USA) was used for all modelling and analysis with 

segments being represented by geometric volumes. The inverse kinematic model (IK), 

processing was identical to [14] where translational joint constraints were applied to the hip, 

knee, and ankle joints giving each segment three degrees-of-freedom each. 

 

 

 



 
 

Data and statistical analysis 

 Marker coordinate and force data were filtered using a Butterworth 4
th

 order low pass 

filter with a 20 Hz cut-off frequency [16]. Touch-down and toe-off events were identified 

using a threshold of 20 N. For the comparison of modelling techniques, DK and IK 

kinematics were used separately to estimate the net external moments using inverse 

dynamics. Knee angle and moment data (order of rotations – X, Y, Z) from sagittal, frontal 

and transverse planes was normalised, to 101 data points, for the contact phase of side-

cutting. All mean peak knee angle and moment data, for three planes, were calculated during 

the weight acceptance phase of the side-cutting. The weight acceptance phase was defined as 

0-25% of normalised ground contact for this study.  

  

 The inter-trial, inter-session and inter-observer variability were estimated using the 

procedures outlined in Schwartz et al. [17]. As well as the point by point calculation over the 

entire contact phase, inter-observer variability was also expressed as a ratio to inter-trial 

variability. The same variability calculations (inter-trial, -session and –observer) were made 

for both modelling techniques, as well as calculation of overall average curves and standard 

deviations for angle and moment data, in all three planes.  

 

One-dimensional statistical parametric mapping (SPM, [18]) was used to examine the 

relationship between the DK knee angle and moment waveforms and selected task execution 

(TE) variables (resultant centre of mass (CoM) touchdown velocity; CoM toe-off velocity; 

CoM touchdown, and toe-off cutting angle; contact time; and both horizontal, and vertical 

impulses). This was similar to a recent investigation looking at the influence of approach 

speed on knee kinematics and kinetics during side-cutting [19]. The following linear 

regression models were defined: 

 

Knee angle (t) = (β1(t) × TE variable) + α1(t) + ε(t) 

Knee moment (t) = (β2(t) × TE variable) + α2(t) + ε(t) 

 

The slopes of the task execution variable-angle and -moment relations (β1 and β2) were 

computed at each time node (t) resulting in β trajectories. These β trajectories were first 

computed for each subject and secondly, all subjects β trajectories were submitted to a 

population-level one-sample t-test yielding a SPM{t} statistical curve. The significance of 

each SPM{t} was then determined topologically using random field theory (see [18]). 



 
 

Results 

 For all kinematics, inter-trial, -session and -observer variability was below 5.5° for the 

full waveforms, in all planes (Fig. 2d-f). The inter-trial variability was consistently lowest 

and no part of the waveform provided consistently higher variability. Typically the 

waveforms of the inter-trial variability were similar but lower in magnitude than the inter-

session and inter-observer variability. 

  

 In the kinetic, the weight acceptance phase of normalised ground contact (0-25 %) 

provided the largest inter-trial, inter-session and –observer variability with peak magnitudes 

of all types of variability for the sagittal plane, frontal plane and transverse plane ranging 

between 32-42 Nm, 24-31 Nm and 17-20 Nm, respectively (Fig 3, d-f).  Inter-trial variability 

was lowest across all kinetic waveforms peaking at 32, 24 and 17 Nm for sagittal, frontal and 

transverse knee moments, respectively. Inter-session and –observer variability echoed the 

waveforms of inter-trial variability, but at a higher magnitude across the time-series. 

Differences between inter-trial variability and inter-session/–observer variability were highest 

in the sagittal plane and lowest in the transverse plane.  

 

 Mean peak knee kinematics and kinetics (± standard deviation) from weight 

acceptance were presented for DK and IK, in all three planes, in addition to the mean inter-

observer/inter-trial variability ratios for the same variables (Table 1). Where peaks were not 

clear in weight acceptance, the value at the upper threshold (25%) was used (‘*’ denotes this 

occurence in Table 1). Greater inter-observer/inter-trial ratios were found for IK in the frontal 

and transverse planes (2.3 and 2.9, respectively) versus DK (1.6 and 1.9, respectively).    

 

 The DK and IK derived kinematics and kinetics (Fig. 2 a-c and Fig. 3 a-c) were 

similar to those previously reported [14] where the frontal plane knee angles and moments 

differed most. IK kinematic variability appeared visually smoother in comparison to DK 

(Fig.2 DK = d-f, IK = g-i). Where DK variability appeared to oscillate, particularly during 

weight acceptance, IK variability was more consistent.  For the kinetic data, in weight 

acceptance, for DK modelling, inter-trial, inter-session and between–observer variability 

reduced from sagittal to frontal to transverse plane knee moments. In weight acceptance for 

IK modelling, in comparison to DK, there is a reduction in variability for sagittal plane (~ 6 



 
 

Nm reduction) and frontal plane knee moment (~ 10 Nm reduction), but variability for the 

transverse plane knee moment remained similar. 

 

 Variation in kinematic or kinetic profiles was not explained by variation in any of the 

task execution variables, as demonstrated in the SPM regression analysis by non-significant 

relationships. An example of SPM linear regression is also provided (Fig. 4). All SPM 

analyses are available as supplementary material (see Supplemental Digital Content 1). 

  

 

Discussion 

 The primary aim of this study was to investigate the reliability of side-cutting data 

using inter-trial, inter-session and inter-observer observations. Whilst kinematic data 

variability was consistently low across the time-series, irrespective of plane, kinetic data 

variability was distinctly elevated to seemingly high magnitudes in the weight acceptance 

phase. Such observation is a concern when pursuing typical ACL injury markers, such as 

frontal plane knee moments, however, it is important to consider the source and 

proportionality of variability, to fully interpret the reliability of this data. 

 Previously, kinematic and kinetic data from side-cutting has been suggested to be 

reliable, in inter-trial and inter-session observations [11-13]. However, the current study is 

the first to investigate and present variability for every point across the time-series for side-

cutting data signals. Furthermore, the variability data suggests that the main issue lies with an 

inherently high inter-trial variability, and the addition of multiple sessions and observers has 

minimal impact. This is further supported by the observer/trial ratios, where the impact of 

multiple observers, and the experimental implications that introduces (e.g. marker 

placement), is less influential in kinetic data than kinematics. This is important for studies 

using multiple sessions and observers, but requires further exploration of inter-trial variability 

 

 When exploring the source of the inter-trial variability, the dynamic nature of the 

side-cutting task should be considered. For example, inconsistencies in technique, perhaps 

within-subject, such as horizontal forces, foot-placement or postural control, may elicit 

variable knee kinetics, whilst knee kinematics remains relatively unaffected. A similar study 

examining variability in drop vertical jumping [15] found comparable peak magnitudes of 

kinematic variables to this study, but there is greater kinetic variability in side-cutting. A 



 
 

proportional comparison of kinetic signal against observed variability may help to identify 

the impact of such variability on clinical inference. In the present study the knee kinetic trial-

to-trial variability represented approximately 15, 56 and 34 % of the average peak knee 

moment for sagittal, frontal and transverse planes, respectively. In Malfait et al. [15], for drop 

vertical jumps, the knee moment trial-to-trial variability represented approximately 14, 26 

and 29 % of the average peak knee moment. Thus, although the side-cutting task places a 

greater planar demand in execution compared to the drop vertical jump, the greatest 

variability may be considered proportionally similar at least in flexion/extension and 

internal/external rotation. The proportional variability in abduction/adduction is greater for 

side-cutting kinetics, compared to drop vertical jumps [15], and is likely to be due to the 

larger horizontal forces required to execute the task. 

 

 Comparison of modelling approaches suggests a potential benefits of IK compared to 

DKas IK showed a reduction in variability reported in both the sagittal (~6 Nm) and frontal 

planes (~10 Nm). Therefore, the IK modelling approach could potentially offer an alternative 

when we are looking to reduce variability in observing knee sagittal and frontal plane 

loading. Increased variability in the DK approach could be due the soft tissue artefact which 

directly influences the calculated kinematics. DK modelling approaches would therefore 

require greater sample sizes to detect the same magnitude of effect as the IK approach. 

However, interpretation of the inter-observer/inter-trial ratio suggests that IK modelling may 

be more sensitive to multiple observers than DK modelling for kinematic data (see Table 1). 

The specific causes of this discrepancy are unclear though. It may be that IK modelling 

“filters” true signal by fitting measured motion to the model and does not simply remove the 

effect of soft tissue artefact. This however requires further investigation.  

 

 Although the reporting of task execution variables during side cutting is limited, 

evidence has shown the importance of variables like approach velocity, in relation to known 

key loading variables [19]. The SPM regression analyses failed to find any significant 

relationship with the task execution variables and the joint kinematic or kinetic data. This 

suggests that the small variations in task execution, that occur over the narrow approach 

speed, and which are inherent to performing such a dynamic task, did not explain knee joint 

kinematic or kinetic variability. Researchers may expect that high magnitudes of variability 

could be reduced by more stringent task execution criteria, but our results indicate that this is 

unlikely. 



 
 

 High magnitudes of variability also have implications for the magnitudes of a 

detectable difference and therefore study design, in terms of sample recruitment. To illustrate 

this, sample size estimation was calculated for a one sample t-test. To observe a difference 

≥10 Nm in the peak knee joint moment in the frontal plane (for DK only) a sample size of 

n≥48 is required (refer to Supplemental Digital Content 2) based on our inter-trial variability 

of 24.1 Nm and a statistical power of 80 %. As the inter-session and inter-observer variability 

were greater than the inter-trial variability, additional participants would be required to detect 

the same 10 Nm difference (n=67 and n=76, respectively) in study designs requiring 

participants to be tested in different sessions or by different observers. Although 10 Nm was 

chosen as an arbitrary value, this indicates the relationship between the study design, the 

detectable difference, sample size and statistical power. The sample sizes calculated here are 

model and lab-specific therefore similar processes should be undertaken by other labs.  

 

 Limitations to this study were that no between-subject observation was made, which 

may potentially contribute to sources of reported variability. This would be an opportunity for 

further research, as would investigation of other potential ACL injury variables during side-

cutting that may not just be associated with the knee. It is possible that adjusting the 

dispersion or number of sessions, or the addition of further observers may have some impact 

on inter-session or inter-observer variability, however, the analyses was based on 192 trials of 

data using similar research design as published previously for relevant reliability studies 

[15,17]. Thus, the main aim moving forward must be to explain the remaining inter-trial 

variability observed in the kinetic signal. Indeed, inherent variability of the method derived 

from such experimental concerns as soft tissue artefact may reduce the inter-trial variability. 

 

 In conclusion, this is the first study that attempts to fully identify the reliability of 

kinematic and kinetic knee data from side-cutting, using a method that provides a specific 

focus toward relevant phases of a highly dynamic task. Although the variability of the 

kinematic signals from side-cutting does not pose a major cause for concern, the variability of 

the kinetic signals, specifically in the weight acceptance phase suggests that the use of these 

signals for diagnostic purposes may be challenging. An alternative approach may be to 

consider the variability itself as a predictor of ACL injury risk, as previously reported from 

different research perspectives [20,21]. The relevance of signal variability as an ACL injury 

predictor requires further investigation.  

 



 
 

Conflict of Interest 

The authors declare that no financial or personal relationship exists which may have 

influenced this manuscript. 

 

Disclosure of Funding 

None 

 

Acknowledgments 

We would like to acknowledge Dr Todd Pataky for his advice with the statistical analysis. 

 

  



 
 

References 

[1]  Hawkins RD, Hulse MA, Wilkinson C, Hodson A, Gibson M.  The association 

football medical research programme: an audit of injuries in professional football. Brit 

J Sport Med 2001;35:43–7.  

[2]  Myers CA, Hawkins D. Alterations to movement mechanics can greatly reduce 

anterior cruciate ligament loading without reducing performance.  J Biomech 

2012;43:2657–64.  

[3]  Besier TF, Lloyd DG, Ackland TR, Cochrane JL. Anticipatory effects on knee joint 

loading. Med Sci Sport Exer 2001;33:1176–81. 

[4]  Houck JR, Duncan A, De Haven KE. Comparison of frontal plane trunk kinematics 

and hip and knee moments during anticipated and unanticipated walking and side step 

cutting tasks. Gait Posture 2006;24:314–22.  

[5]  Kristianslund E, Krosshaug T.  Comparison of Drop Jumps and Sport-Specific 

Sidestep Cutting: Implications for Anterior Cruciate Ligament Injury Risk Screening. 

Am J Sport Med 2013;41:684-8.  

[6]  Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ. Gender 

differences exist in neuromuscular control patterns during the pre-contact and early 

stance phase of an unanticipated side-cut and cross-cut maneuver in 15-18 years old 

adolescent soccer players. J Electromyogr Kines 2009;19:e370–9.  

[7]  McLean SG, Huang X, van den Bogert AJ. Association between lower extremity 

posture at contact and peak knee valgus moment during sidestepping: implications for 

ACL injury. Clin Biomech 2005;20:863–70.  

[8]  Pollard CD, Davis IM, Hamill J. Influence of gender on hip and knee mechanics 

during a randomly cued cutting maneuver. Clin Biomech 2004;19:1022–31.  

[9]  Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GAM, Slauterbeck 

JL. Combined knee loading states that generate high Anterior Cruciate Ligament 

Forces. J Orthopaed Res 1995;13:930–5. 

[10]  Ford KR, Myer GD, Toms HE, Hewett TE. Gender Differences in the Kinematics of 

Unanticipated Cutting in Young Athletes. Med Sci Sport Exer 2005;37:124–9.  

[11]  Sigward SM, and Powers CM. The influence of gender on knee kinematics, kinetics 

and muscle activation patterns during side-step cutting. Clin Biomech 2006;21:41–8.  

[12]  Sigward SM, and Powers CM. The influence of experience on knee mechanics during 

side-step cutting in females. Clin Biomech 2006;21:740–7.  

[13]  Besier TF, Lloyd DG, Cochrane JL, Ackland TR. External loading of the knee joint 

during running and cutting maneuvres. Med Sci Sport Exer 2001;33:1168–75. 



 
 

[14]  Robinson MA, Tsao J, Donnelly CJ. Impact of knee modelling approach on markers 

and classification of ACL injury risk. Med Sci Sport Exer 2014;46:1269-76.  

 [15]  Malfait B, Sankey SP, Raja Azidin RMF, Deschamps K, Vanrenterghem J, Robinson 

MA,et al. How reliable are lower limb kinematics and kinetics during a drop vertical 

jump? Med Sci Sport Exer 2014;46:678-85. 

[16]  Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting 

technique and knee abduction loading: implications for ACL prevention exercises. Brit 

J Sport Med 2014:48:779-83. 

 [17]  Schwartz MH, Trost JP, Wervey RA. Measurement and management of errors in 

quantitative gait data. Gait Posture 2004;20:196–203.  

 [18]  Pataky TC. One-dimensional statistical parametric mapping in Python. Comp Method 

Biomech Biomed Engineer 2012;15:295–301.  

[19]  Vanrenterghem J, Venables E, Pataky T, Robinson MA. The effect of running speed 

on knee mechanical loading in females during side cutting. J Biomech  2012:45:2444-

9.  

[20]  Heiderscheit B. Movement variability as a clinical measure for locomotion. J Appl 

Biomech 2000;16:419–27. 

[21]  Preatoni E, Hamill J, Harrison AJ, Hayes K, van Emmerick REA, Wilson Cet al. 

Movement variability and skills monitoring in sports. Sport Biomech 2013;12:69–92.  

    

  



 
 

Tables 

Table 1, Direct kinematic (DK) and inverse kinematic (IK) derived peak mean (± SD) knee 

angle (deg) and knee moment (Nm) data from weight acceptance phase. Mean inter-observer/ 

inter-trial ratio, for DK and IK modelling, over full time series for knee angle and moment 

data for side-cutting.  

  
Sagittal (FLEX/EXT) Frontal (ABD/ADD) 

Transverse 

(IR/ER) 

  DK IK DK IK DK IK 

Mean Peak 

Angles (deg) 

-36.41 * 

-

46.28 

* -9.93 -3.12 14.38 7.52 * 

SD 3.1   5.74   3.99 3.83 4.34 4.59   

Mean 

Observer/trial 

ratio 

1.4   1.4   1.6 2.3 1.9 2.9   

                    

Mean Peak 

Moments (Nm) 

197.6 * 187.6 * 45.0 21.4 -52.8 -52.9   

SD 23.8   18.0   19.62 19.8 20.3 26.3   

Mean 

Observer/trial 

ratio 

1.3   1.3   1.3 1.4 1.3 1.3   

NB. ’*’ denotes no clear peak was observed in weight acceptance of normalised ground 

contact. 
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Fig. 1. Schematic representation of the repeated-measures experimental design, showing 

eight participants; two observers; six sessions; and trials per side-cutting direction. 

  



 
 

 

Fig. 2. Kinematic data and error data for the knee in all three planes – planar data are in one 

column each. Row one (a-c) shows mean (±SD) knee kinematics for the Direct Kinematic 

(DK) versus Inverse Kinematic (IK) modelling approach; Row two (d-f) shows the standard 

deviation inter-trial, inter-session (Observer A = Obs A; Observer B = Obs B), and inter-

observer error waveform observed for DK modelling; Row three (g-i) shows the standard 

deviation within-subject, inter-session (Obs A and Obs B), and inter-observer error waveform 

observed for IK modelling. 

 



 
 

Fig. 3. Kinetic data and error data for the knee in all three planes – planar data are in one 

column each. Row one (a-c) shows mean (±SD) knee kinetics for the Direct Kinematic (DK) 

versus Inverse Kinematic (IK) modelling approach; Row two (d-f) shows the standard 

deviation inter-trial, inter-session (Observer A = Obs A; Observer B = Obs B), and inter-

observer error waveform observed for DK modelling; Row three (g-i) shows the standard 

deviation within-subject, inter-session (Obs A and Obs B), and inter-observer error waveform 

observed for IK modelling. 

 



 
 

 Fig. 4. An example of the SPM analysis used to linearly regress task achievement variables 

and knee angles and moments across the entire stance phase. In (a) one subject’s knee flexion 

angle waveforms are shown and coloured according to their cutting angle at take-off. In (b) 

the slope of the relationship between the knee flexion angles and the cutting angles at take-off 

is shown. The process in (a and b) is repeated for each subject to generate a β curve per 

subject (c), the β trajectory from (b) is shown in bold. All subjects’ beta curves are then 

analysed using a one-sample t-test yielding the SPM{t} curve (d). As the critical t threshold 

of 3.26 was not exceeded, there was no significant relationship between subjects for knee 

flexion angle and cutting angle at take-off. 

 

  



 
 

Supplemental Digital Content 

Supplemental Digital Content 1, All statistical parametric mapping (SPM) data. 

This appendix contains the linear regression analysis for the task execution variables 

and the knee angle and moment components. There are no significant relationships 

between the task execution variables and the angle and moment components that 

coincide with the times of high variability during weight acceptance. 

Please download from the following link: 

 

Supplemental Digital Content 2, Sample size estimation. 

 

Supp. Figure 1. An illustration of the sample size estimation based on the peak knee joint 

moment in the frontal plane. Sample sizes are plotted at intervals of 10 participants until the 

10 Nm difference intersects a statistical power of 80 % (n≥48). The alpha level was set to 

0.05. The SD was taken from the inter-trial calculations (24.1 Nm). 

http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0966636215000831/1-s2.0-S0966636215000831-mmc1.pdf/271166/html/S0966636215000831/a7c8dc6caed567da7d731aaf4d1b699e/mmc1.pdf

