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Antibiotics are widely used to prevent and treat bacterial infections in livestock animals, aquaculture, and humans. However, the
unconditional use of those drugs as a growth promoter for livestock animals and the wrong usage as a treatment for infections
in humans has led to high antibiotics pollution, especially in water resources. The elevated presence of antibiotics in water has
resulted in the phenomenon known as the bacterial antibiotics resistance. To prevent ecological catastrophe, continuous real-
time monitoring of water sources is necessary. The aim of this research work is to compare the abilities of three different
techniques: novel electromagnetic wave spectroscopy, UV-Vis spectrophotometry, and capacitance sensing system for the real-
time detection and quantification of antibiotics in water. Tylosin and lincomycin antibiotics were selected to the study, as both
are regularly found in water sources. Two novel microwave sensor configurations were used: a planar sensor with interdigitated
electrode pattern and a hairpin resonator sensor, as a means of real-time water analysis. Reflected S11 power signals were
analyzed in GHz frequency range for microwave sensors. In parallel, UV-Vis spectrophotometry was used, where change in the
optical absorbance was used as an indicator of water pollution, whereas change in the value of a capacitance in low frequency
range has signalled the change in the dielectric properties of the solution. It was found that in all cases the changes in the
measured parameters were dependent on both the type of antibiotic present in water and on its concentration. Fusion of all
these techniques into a comprehensive sensing platform provides adequate real-time assessment of the water pollution with
antibiotics and would allow adequate management of environment for safety and sustainable development. In particular, the
lowest lincomycin samples’ concentration, 0.25μg/l, was measured with a hairpin resonator sensor, while the lowest tylosin
samples’ concentration, 0.20μg/l, was measured with an IDE sensor. Since concentration in groundwater were 0.36μg/l of
lincomycin and 1.5μg/l of tylosin, it is demonstrating a high-sensing platform utility.

1. Introduction

Antibiotics have been used for almost a century as the
main treatment against the bacterial infections in humans,
livestock animals, and aquaculture [1]. The antibiotics con-
sumption by humans and livestock animals is dramatically

increased, and these are used not only for treatment but also
for disease prevention as well, mainly for economic reasons
in farming. Antibiotics are also essential for controlling bac-
terial diseases of plants [2]. The global human consumption
of antibiotics has risen by 30% between 2000 and 2010; more-
over, by 2030, this figure is expected to rise 105,600 tons to
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meet the demands of a projected 8.5 billion human popu-
lation [3]. In livestock, at least 63 tons of antibiotics were
consumed in 2010.

In livestock, antibiotics have a double role as growth-
promoters and as preventive treatment against infections.
The term “growth-promoter” describes any drugs used to
“help growing animals digest their food more efficiently, get
maximum benefit from it, and allow them to develop into
strong and healthy individuals” according to the National
Office of Animal Health (NOAH). The balance between
promoting growth and ensuring the animal health is often
overshadowed by the economic factors, where animals are
given antibiotics in much higher doses than necessary, to
minimise the probability of possible bacterial infections.
Notably, human and animal bodies do not completely absorb
all the antibiotics, and unused amounts of it end up polluting
water sources. As a result, a subsequent effect concerning the
growth-promoter is the environment pollution of water and
soil with antibiotics residuals. Furthermore, traceable
amounts of antibiotics can be found in meat, milk products,
and even plants that come in contact with contaminated
water. This, in turn, leads to a danger for human health and
overall environment.

The antibiotics abuse has led to a serious hazard for
health and environment: the antibiotics resistance [4, 5],
contributing to a number of deaths, where inadequate treat-
ment was received [6]. An antibiotic resistant occurs when
bacteria mutate and become fully resistant to antibiotics
which previously could treat it. Bacteria are able to reach
the resistance in three ways: natural resistance in certain
types of bacteria; genetic mutation or by one species acquir-
ing resistance from another. Particularly, the last two are
the cause of the antibiotics environmental pollution. Bacteria
with antibiotics resistance are able to reach people and ani-
mals through food, water, soil, and air.

Untreated water carries great number of antibiotics [7];
therefore, its adequate treatment is a key step to reduce the
antibiotics pollution [8] and ensure environmental safety.
In water treatment, it is fundamental that antibiotics pres-
ence and concentration are monitored continuously. Even
lowest concentrations of antibiotics in water can cause dele-
terious long-term environmental effects; therefore, new tool
and techniques are necessary to analyze them. These must
be extremely sensitive and operate in real time to provide
efficient environmental management platform.

Several methods have been proposed to detect antibiotics
and antibiotic-resistant bacteria in wastewater treatment
process [9] such as high-performance liquid chromatography
(HPLC), tandem mass spectroscopy (MS/MS), ultra-high-
performance liquid chromatography-tandem mass spectros-
copy (UPLC-MS/MS), and molecular biological method
(PCR). All these tools and techniques are extremely sensitive
but present some important issues: high purchase, operation,
and maintenance costs, they are not portable so, it is not
possible to analyze the sample directly on the sample site,
analysis take a long period of time and they require the pres-
ence of highly skilled operators.

The aim of this research work is to compare three differ-
ent techniques such as electromagnetic wave spectroscopy,

UV-Vis spectrophotometry, and capacitance sensing system
for the real-time monitoring and detection of residual antibi-
otics pollution in water [10]. In order to realize a novel
comprehensive sensing platform for real-time water quality
analysis, the approach of fusing all these techniques into a
single system with advanced sensitivity and reliability was
used, so that the water treatment process can be managed
in accordance with the present antibiotics.

In this study, to assess the feasibility of this approach, two
different antibiotics, namely, lincomycin and tylosin were
used. Tylosin is a fermentation product of Streptomyces
fradiae [11]. It is a broad spectrum antibiotics used in live-
stock animals for the treatment of infections caused by
Gram-positive and a limited range of Gram-negative bacteria
[12]; it is used as a growth promoter in some species too.
Lincomycin is a fermentation product of Streptomyces lincol-
nensis [13]. At present, it is used only in patients allergic to
penicillin antibiotics or where bacteria have developed resis-
tance because of its higher toxicity. Antibiotics tylosin were
found in 48% of 139 steam water tested in 30 states
according to the U.S. Geological Survey [14]. Antibiotics
entering the environment could potentiality alter bacterial
population and their activity in sediment water, thus
affecting biodegradation, nutrient cycling, and water qual-
ity. In addition, there is a concern that antibiotics in the
environment may induce antibiotic resistance, resulting
in adverse human health effects.

The following section provides critical overview of the
current methods used for antibiotic detection, focusing on
those that are particularly used for the chosen antibiotics. This
analysis demonstrates that the current methods are inade-
quate for real-time environmental monitoring purposed and
justifies the need to develop novel sensing solutions.

2. Modern Methods of Antibiotics
Detection in Water

Trace concentrations of antibiotics in wastewater, various
water sources, and some drinking waters can be currently
found worldwide. Concentrations in surface waters and
groundwater were 0.36μg/l of lincomycin and 1.5μg/l of
tylosin [15], whereas concentrations in treated water were
generally below 5× 10−2μg/l (or 50 ng/l) [16].

In current methods of detecting antibiotics in wastewater,
high-performance liquid chromatography (HPLC) and
tandem mass spectrometry (MS/MS) were used after the
extraction process. For example, in an approach to detect
occurrence of several antibiotics in hospital, residential,
dairy, and municipal wastewater using HPLC and MS/MS,
lincomycin was detected with some other antibiotics in
hospital and dairy wastewater [17].

Ultra-high-performance liquid chromatography-tandem
mass spectrometry (UPLC-MS/MS) method was developed
to detect selected pharmaceutical antibiotics in wastewater,
and the method showed sensitive, reliable, and accurate
performance to the three antibiotics [18].

A molecular biological method of PCR was used to find
antibiotic-resistant bacteria in wastewater biofilms and also
in drinking water biofilms [19]. PCR detected vancomycin-
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resistant enterococci in wastewater and in drinking water and
also detected methicillin-resistant staphylococci in hospital
wastewater. In another instance, the spread of antibiotic
resistance genes in wastewater treatment systems and their
occurrence in surface and drinking water systems were
revealed by quantitative PCR (qPCR) assay [20].

On the development of sensors for detecting a specific
antibiotic in wastewater effluents as well as in natural water,
an electrochemical sensor in a form of a porous nafion
multiwalled carbon nanotube composite film electrode, an
electrochemical sensor, was developed to detect the antibiotic
ciprofloxacin (CFX) [21]. The sensor was selective only for
ciprofloxacin even with the presence of other antibiotics
and nontarget water constituents. Therefore, it was recom-
mended to be applicable in wastewater effluents and in
natural waters to detect ciprofloxacin.

HPLC method was compared with enzyme-linked
immunosorbent assay (ELISA) for the detection of tylosin
and tylosin-related compounds in water [22]. As a result,
HPLC detected a lower concentration of tylosin compound,
while ELISA detected most of the tylosin-related compounds.

The combination of ELISA with HPLC/MS or with other
conventional detection methods was suggested to be poten-
tial for sensitive and specific detection of tylosin-related
compounds. HPLC with MS/MS is the commonly and widely
used technology in detecting antibiotics in wastewater as well
as in surface water. However, this method is too expensive

and time-consuming for real-time water pollution monitor-
ing at multiple locations.

This research aims to address this issue by assessing the
capabilities of UV-Vis spectrophotometer and impedance
analyzer to detect the presence, type, and concentration of
lincomycin and tylosin in water in real time.

3. Materials and Methods

The chemical structure of tylosin (C46H34NO17) and linco-
mycin (C18H34N2O6S) is shown in Figures 1(a) and 1(b),
respectively. Figure 2 depicts optical image of the original
powder for each antibiotic. The concentrations of these com-
pounds are different between untreated and treated water. In
untreated water, the concentrations are 0.36μg/l of lincomy-
cin and 1.5μg/l of tylosin, whereas concentrations in treated
water were generally below 5× 10−2μg/l (or 50 ng/l) [16].

Tylosin and lincomycin aqueous solutions samples
were prepared in two different steps. The first one was
the preparation of both antibiotics stock solution at the
final concentrations of 2.5× 105μg/l and 2.0× 105μg/l,
respectively. In order to do that, 25× 102μg and
20× 102μg of respective antibiotics were dissolved in
10ml of distilled water. In the final step, through the serial
dilutions technique, four different concentrated antibiotic
solutions were prepared, from 2.0× 105μg/l to 0.20μg/l
of tylosin and from 2.5× 105μg/l to 0.25μg/l of lincomycin.
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Figure 1: (a) Lincomycin antibiotic chemical structure; (b) tylosin antibiotic chemical structure.
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Figure 2: Optical image of lincomycin (a) and tylosin (b) particles taken with ZEISS Scope.A1 20x/0.4 EC-EPIPLAN microscope.
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In all cases, the solutions remain transparent and the water
pollution is invisible for human eye. This confirms the need
for novel sensing system to trace the presence of water pollut-
ants for environmental safety. All measurements were per-
formed on the same day the samples were prepared.

3.1. Microwave Sensor. To assess the capabilities of the
microwave sensors [23] to act as a real-time platform for
monitoring residual concentration of tylosin and lincomycin
in aqueous solution, the system shown in Figure 3 was used.

Notably, the results were obtained using an IDE sensor
for tylosin and a hairpin resonator sensor for Lincomycin
[24], both sensors connected to a Rohde and Schwarz
ZVA24 vector network analyzer (VNA). Furthermore, a
comparison between the microwave sensors and other two
different sensor technologies such as optical detection and
capacitance sensing system was performed in order to
observe which is the most efficient technology for this kind
of analysis.

A specific microwave band was generated from the VNA
depending on the sensors used so as to permit the interaction
between the sample, inside the sensor holder and, the electro-
magnetic (EM) waves. This interaction changes depending
on the specific properties of the sample [25]. The EM waves
in contact with the sample are therefore influenced by the
specific properties of it such as the permittivity, generate a
unique response signal spectrum measurable through the
VNA, using the reflected signal S11.

The EM field generated from the two sensors are a
constant; what varies is the two antibiotics’ concentration
inside the aqueous solutions; for these reasons, the
obtained spectrum interpretation allows the characteriza-
tion of the materials’ properties [26]. In other words,
changes in the spectrum profile caused by the different
samples’ concentrations are linked to the properties of
the antibiotics present in water samples and are unique
for each pollutant.

The IDE sensor has a sample holding capacity of 400μl,
and the microwave band used was from 10MHz to 15GHz,
while the hairpin resonator sensor has a sample capacity of
200μl, and the microwave band used was from to 10MHz
to 4GHz.

3.2. Capacitance Sensing System. For what concerns the
capacitance sensing approach, a capacitor sensing system
connected to a Hameg Industries programmable LCR bridge
HM8118 was used, as illustrated in Figure 4(a). In this exper-
iment, two cylindrical rods of a typical SMA connector were
used as the electrodes for capacitance measurements in
20Hz–200 kHz frequency range [27, 28]. The electrical field
is formed between the two electrodes through the voltage
applied across them (Figure 4(b)).

The capacitance describes the effects on the electric field
due to the space between the two plates, and it is determined
by the geometry of the conductors, the distance between the
electrodes, and the dielectric material [29]. Value of capaci-
tance can be found according to

C = πε0εr
ln d/r L, 1

where C is the capacitance in farads (F), ε0 is the relative
static permittivity (dielectric constant) of the material
between the plates, εr is the permittivity of free space, which
is equal to 8.854× 10−12 F/m, L is the rod length in meters, d
is the separation distance (in meters) of the two rods, and r is
the radius of the rod in meters.

A capacitive sensor uses the changes in the value of the
dielectric constant, manifested as a change in electrical signal,
as an indicator of water pollution, in this case with various
antibiotics [30]. Since the geometry of conductor and the
distance between the electrodes are constant, the dielectric
constant represents the only variable [30]. That means a
capacitance change depending on the different solutions
concentrations.

The experiments provide a capacitance measurement
for the antibiotics solutions at different concentrations
and were completed in regulated temperature and humid-
ity conditions. The frequency range used for the measure-
ment of capacitance in the antibiotics solutions was from
20Hz to 200 kHz; they are generated from an LCR bridge
tool, which was connected to a desktop computer for data
acquisition via a bespoke LabVIEW interface. The mea-
surements were taken three times for each sample with
3-second interval and then averaged.

In order to do the analysis, 400μl of solution were put
inside the sample holder, then the electrodes were immersed

Real-time spectra
displayed on vector
network analyser

Vector network analyser

Reflected signal

Antibiotic solution
sample

IDE sensor

Figure 3: Vector network analyzer (VNA) connected to a planar
IDE sensor.
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inside the solution samples, and finally, the capacitance
values were repeatedly measured for the whole range of fre-
quencies. The graphs in the next section present averaged
results, with max 5% variations between the samples.

3.3. Optical Measurements. UV-Vis spectroscopy is an ana-
lytical technique used for the quantitative analysis of different
analytes such as metal ions, organic compounds, and biolog-
ical macromolecules. It regards the measurement of adsorp-
tion of electromagnetic radiation in the ultraviolet (185–
400nm) and visible (400–800nm) spectral region; this tech-
nique is regulated by the Beer-Lambert law. It reports the
change of the light properties with respect to the material
through which the light is traveling. The law is described by

A = εcl, 2

where A in the absorbance, ε is the extinction coefficient
(M−1 cm−1), c is the sample’s concentration in molarity
(M), and l is the path length in centimeters (cm).

In other words, the absorbance of a solution is directly
proportional to the concentration of the absorbing species
in the solution and the path length.

For the experimentation, a UV-Vis spectrophotometer
tool was used. It is able to measure the intensity of the light
passing through a sample (I) and compares it to the intensity
of light before it passes through the sample (I0). The ratio I/I0
represents the transmittance (T). Absorbance is based on the
transmittance as is shown in

A = −log %T
100% 3

For the optical measurements, a Jenway 7315 UV-Vis
spectrophotometer was used; the optical measurements were
performed with the full-range wavelength from 200nm to
1000 nm.

4. Results and Discussion

This section presents the results using the three different
techniques, namely, microwave sensors, a capacitance sens-
ing system, and an UV-Vis spectrophotometer for real-time
monitoring of residual concentration of tylosin and lincomy-
cin in an aqueous solution. Each technique is presented
independently, and then the frequency regions and the oper-
ational parameters of each technique are identified to inte-
grate them into unique platform with superior selectivity
and sensitivity for the chosen antibiotics.

4.1. Optical Measurements. The maximum absorbance for
the antibiotics was observed in the range between 200nm
and 400nm as shown in Figures 5(a) and 5(b). To trace the
change in the optical absorption in UV-Vis range with
increasing concentration of lincomycin (Figure 6(a)) and
tylosin (Figure 6(b)), calibration curves at 220nm and
290 nm, respectively, can be used. This set of measure-
ments served as a benchmark for validating concentrations
of antibiotics and for comparison of sensitivities of stan-
dard optical and novel capacitance sensing approaches.
With UV-Vis, the type of antibiotic and its concentration
can be identified at high concentration and also at a spe-
cific wavelength. There is not any positive absorbance
observed at low concentrations. Therefore, it is not possi-
ble to distinguish between these two antibiotics at low
concentrations in the same solution.

LCR bridge
tool 

Electrodes

Antibiotic solution
sample

(a)

Electrodes

4 mm

2 mm

Antibiotic
solution sample

(b)

Figure 4: (a) Capacitance measurement of antibiotics solutions; (b) capacitor composed of two cylindrical rods electrodes.
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4.2. Capacitance Sensing System Results. To assess the effect
of various concentrations of lincomycin and tylosin antibi-
otics on dielectric properties of the solutions at low frequen-
cies, an approach described in Section 3.2 was used.

Figures 7(a) and 7(b) illustrate the frequency dependence of
the capacitance values in 20Hz–20 kHz range for lincomycin
and tylosin antibiotics, respectively. In line with previously
described optical measurements, once the area of the spectra
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Figure 6: (a) Absorbance change with lincomycin concentration at 220 nm; (b) absorbance change with tylosin concentration at 290 nm.
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Figure 7: (a) Frequency dependence of lincomycin solutions capacitance in 20Hz–20 kHz range; (b) frequency dependence of tylosin
solutions capacitance values in 20Hz–20 kHz range.
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that is the most representative of the effect of various concen-
trations on the capacitance values of the solution is identified,
the measurements can be simplified into a calibration curve
at a specific preselected frequencies.

To ensure repeatability of the results, five different
solutions at different concentrations were used for both
antibiotics. In particular: 2× 10−4μg/ml, 2× 10−2μg/ml,
2μg/ml, 20μg/ml, and 2× 102μg/ml. For this developed
capacitance sensing system, the three selected frequencies
for both antibiotics were 50Hz, 100Hz, and 500Hz, as
portrayed in Figures 8(a) and 8(b). These figures also pro-
vide R2 values for each calibration curve. Please note that
since the difference between the highest (2× 102) and the
lowest concentration (2× 10−4) is large and, in the graph,
all the samples’ concentration are represented, the last
three low concentrations seem overlapped. Based on the
above results, one can firmly conclude that the capacitance
sensing system was able to distinguish between tylosin and
lincomycin (Figure 9).

4.3. Microwave Sensors Response. The graphs in Figures 10(a)
and 10(b) show the repeatability of the measurements con-
ducted with the bespoke electromagnetic wave sensors. A
tylosin sample at the concentration of 0.20μg/l and a sample
of lyncomycin at the concentration of 0.25μg/l were pre-
pared andmeasured three times using the full-range frequen-
cies: 0Hz–1.5× 1010Hz for IDE sensor and 0Hz–4× 109Hz
for hairpin resonator sensor at the same conditions. In par-
ticular, Figure 10(a) demonstrated the high repeatability
about the analysis of the lowest concentration of tylosin. It
means that the sensors used have a high level of reliability,
and consequently, the experimental error is extremely low.
For what concerns lincomycin, similar results for the lowest
antibiotics concentration were obtained (Figure 10(b)).
These figures also illustrate the effect of the sensor design
(IDE and hairpin, resp.) on the reflected electromagnetic
spectra measured from the sensor.

In order to find a frequency, which can be used as a
calibration reference for a linear dependence between the

reflected power S11 and the antibiotics samples at different
concentrations, each frequency range was examined in
details. Particularly, it was selected within the entire full-
range used for the experimentation, where the distinction
between samples was maximum. For tylosin, the frequency
range was from 8.7× 109Hz to 8.8GHz (Figure 11(a)) while
for lincomycin from 1.767GHz to 1.76GHz (Figure 11(b)).

A linear dependence of the S11 transmitted microwave
signal on antibiotics was found at 8.7× 109Hz for 400μl
solution of tylosin and at 1.8× 109Hz for 200μl solution
of lincomycin; the graphs are shown in Figures 12(a)
and 12(b). The evaluation linear indicator R2 is higher
for the two antibiotics: R2 = 0 9277 for tylosin and R2 =
0 8122 for lincomycin. Importantly, once the frequency
range where the system is selectively sensitive to a partic-
ular antibiotic is known, the expensive vector network
analyzer equipment could be replaced with custom-made
hand-held electronics units for portable applications,
where the measurements can take place anywhere and
provide on-line results.

Figure 13 confirms that the IDE sensor is highly sensitive
for qualitative analysis, as it was able to discriminate the two
antibiotics. In order to have a complete overview about the
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Figure 11: Frequencies range where the reflected S11 signal from IDE sensor was the most sensitive to different concentrations of tylosin’s
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Figure 12: (a) Dependence of the S11 transmitted microwave signal on tylosin concentration at 8.7× 109Hz recorded for 400μl solution
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IDE capacity of discriminate between tylosin and lincomy-
cin, three samples’ concentration used were 0.0002μg/ml,
20μg/ml, and 200μg/ml; that are, respectively, the lowest,

the highest, and the middle concentrations. The region in
the graph where the distinction is greater is from
1.2× 1010Hz to 1.5× 1010Hz.
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Figure 13: Difference in electromagnetic spectra of tylosin and lincomycin at (a) the lowest concentration of 0.0002μg/ml, (b) the middle
concentration of 2 μg/ml, and (c) the highest concentration of 200μg/ml.
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As above results show, each method has a capability to
detect the presence of antibiotics with varying degree of sen-
sitivity. Optical spectrophotometry and capacitive measure-
ments are adequate for higher concentrations of antibiotics,
whereas to measure lower doses, as those routinely found in
water sources, microwave sensors showed more promise.
However, to achieve the highest possible resolution when
assessing the water parameters in real-time, it is feasible to
use all of these techniques in a unified sensing platform, but
only selecting the specific frequency range, which provides
the best results for each system. If the response of each sys-
tem is calibrated for the selected frequencies as discussed
above, one can produce a signal pattern, which will be spe-
cific for the residual antibiotic detected in water. Using the
pattern presented in Figure 14, one can see the unified
response of all the sensing methods to 0.02μg/ml concentra-
tion of tylosin and lincomycin. Thus, the type and concentra-
tion of antibiotics are clearly distinguished.

The concentration monitoring through the microwave
sensors presents promising results; in particular, the IDE sen-
sor for tylosin and the hairpin resonator sensor for lincomy-
cin showed that the reflected signal was strongly dependant
on the amount of antibiotic present in water, even at doses
below legally permissible in wastewater. Moreover, the IDE
sensors permit an easily discrimination between the two anti-
biotics for all the concentration range used. Regarding the
UV-Vis spectrophotometer technique, the results obtained
are extremely valuable for what concerns the detection of
the different samples’ concentration for a single antibiotic,
though it is not possible to recognize the two antibiotics espe-
cially at low concentration. The last tested technique, the
capacitance sensing system, showed the best results for mon-
itoring residual concentration of the antibiotics in an aque-
ous solution and good results also about the discrimination
of the tylosin and lincomycin. Notably, the fusion of all the
methods into a novel sensing platform could be a key for sus-
tainable environmental monitoring.

5. Conclusion

This paper reported on feasibility of using novel electromag-
netic wave spectroscopy, UV-Vis spectrophotometry, and
capacitance sensing system for the real-time detection and
quantification of tylosin and lincomycin antibiotics in water.
Each technique was assessed independently in its ability to
monitor the presence and type of antibiotics in water in real
time. Notably, to provide for adequate environmental safety
platform, capable of detecting antibiotics even below the
doses normally found in wastewater, the approach of utiliz-
ing all three techniques at once, sensor fusion was applied.
This is due to the fact that each sensing method showed a
varying degree of sensitivity and selectivity to the tested anti-
biotic solutions, and only by combining the best features of
all the devices, the efficient monitoring solution was offered.
In particular, the high response to the different solutions of
antibiotics was illustrated by planar IDE microwave sensor
for tylosin, whereas hairpin resonator microwave sensor
was more sensitive to lincomycin. Capacitance sensor was
able to differentiate both antibiotics, but at higher doses. It

is strongly believed that the reported approach, where the
response of each device to a sample of water polluted with
antibiotic is treated as a response signature pattern, is feasible
as a basis for a universal real-time water environment man-
agement system to tackle antibiotic resistance.
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