{ LIVERPOOL

JOHN MOORES
UNIVERSITY

LJMU Research Online

Wang, R, Nguyen, TT, Li, C, Jenkinson, |, Yang, Z and Kavakeb, S

Optimising discrete dynamic berth allocations in seaports using a Levy Flight
based meta-heuristic

http:/Iresearchonline.ljmu.ac.uk/id/eprint/9548/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Wang, R, Nguyen, TT, Li, C, Jenkinson, |, Yang, Z and Kavakeb, S (2018)
Optimising discrete dynamic berth allocations in seaports using a Levy
Flight based meta-heuristic. Swarm and Evolutionary Computation, 44. pp.
1003-1017. ISSN 2210-6502

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LUIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@Ijmu.ac.uk

http://researchonline.ljmu.ac.uk/

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Optimising discrete dynamic berth allocations in seaports using a Levy Flight
based meta-heuristic

Ran Wang®!, Trung Thanh Nguyen®!* Changhe Li®, Ian Jenkinson?®, Zaili Yang®, Shayan Kavakeb®

@ Liverpool Logistics Offshore and Marine Research Institute (LOOM), School of Engineering, Technology and Maritime
Operations, Liverpool John Moores University, L3 S3AF, United Kingdom
bSchool of Computer Science, China University of Geosciences, Wuhan, China
CAECOM, United Kingdom

Abstract

Seaports play a vital role in our everyday life: they handle 90% of our world trade goods. Improving seaports’
efficiency means improving the efficiency of sending and receiving our goods. In seaports, one of the most
important and most expensive operations is how to allocate vessels to berths. In this paper, we solve this
problem by proposing a new meta-heuristic, which combines the nature-inspired Levy Flight random walk
with local search, while taking into account tidal windows. With our algorithm, we meet the following goals:
(i) to minimise the cost of all vessels while staying in the port, and (ii) to schedule available berths for the
arriving vessels taking into account a multi-tidal planning horizon. In comparison with the state-of-the-art
exact method using commercial solver and a competitive heuristic, the computational results prove our
approach guarantees feasibility of solutions for all the problem instances and is able to find good solutions
in a short amount of time, especially for large-scale instances. We also compare our results to an existing
state-of-the-art Particle Swarm Optimisation and our work produces significantly better performances on
all the test instances.

Keywords: Levy flight, Berth allocation problem, Tidal windows, Meta-heuristic algorithms, Dynamic
Optimisation

1. Introduction in one day and how much cost or benefit it will pro-

duce. On the fleet side, the schedule determines the

Nowadays seaports handle over 90% of world’s
trade (UNCTAD, 2015) and they keep expanding
the scale of import and export, hence, optimising
the efficiency of port operations is vital for the mo-
bility of goods. One of the most important op-
erations in seaports is the berth allocation prob-
lem (BAP), which is to schedule vessels to suitable
berths. On the port side, an efficient schedule de-
termines how many vessels can be accommodated

*Corresponding author
Email addresses: r.wang@2015.1jmu.ac.uk (Ran

Wang), t.t.nguyen@ljmu.ac.uk (Trung Thanh Nguyen),
Changhe.lw@gmail.com (Changhe Li),
i.d.jenkinson@ljmu.ac.uk (Ian Jenkinson),
z.yang@ljmu.ac.uk (Zaili Yang),
shayan.kavakebQaecom.com (Shayan Kavakeb)

1Co-first authors. These two authors contributed equally
to this work.

Preprint submitted to Elsevier

time the vessel should arrive the berth, which berth
to arrive and the associated cost.

The berth allocation can be the most expensive
one out of all port operations, because if a vessel
cannot be admitted in time, the port will have to
pay heavy penalty. If a vessel has to stay for long
(e.g. due to low tides or congestions due to other
incoming vessels), the shipping schedule can be de-
layed and an entire good supply chain can be af-
fected internationally. In this case minimising the
cost is very significant.

To better understand the problem, we explain
the procedure of the berth allocation operation and
then introduce the variants of BAPs. The aim of
BAPs is to schedule a set of vessels that are arriving
to a terminal of a port. Before arrival, vessels will
notify the terminal of the estimated arrival time and
other necessary information to be able to assign a

August 16, 2018

valid berth as soon as possible. While berthing, the
handling time of a vessel, which is the time needed
for cargo loading and unloading, can be fixed or
variable depending on the resource arrangement.
For example, in order to load or unload goods, a
vessel may need to wait because resources such as
certain type of quay crane may not be available yet.
In addition, the water depth sometimes affects the
availability of a berth because each vessel has a dif-
ferent draught and hence it can only stay in a berth
with a deep enough water level. The water level
at a berth can vary because of changing tides. In
other words, the tides determine the availability of
berths for each vessel. Therefore, considering tidal
constraints is essential to allocate incoming vessels
to feasible berthing positions.

Variants of BAPs have been categorised based
on criteria such as discrete or continuous, static or
dynamic, deterministic or stochastic [1, 2]. Discrete
BAPs separate a quay into a number of berths with
certain lengths so that vessels are able to moor at
one of the berths. A vessel is not able to occupy
more than one berth and a berth can only serve
one vessel at a time. In continuous BAPs, the quay
is treated as a whole with a certain length. Based
on the length of each vessel, vessels can berth at
arbitrary positions. Hybrid BAPs are similar to
discrete BAPs in that the quay is separated into
berths. In hybrid BAPs, two adjacent berths are
allowed to combine to serve a vessel if the vessel is
too long to stay at a single berth. In terms of the
arrival time of vessels, the BAP is also categorised
into static and dynamic [3]. Static BAPs generally
assume that all the vessels have been arrived to the
port from the beginning of the time horizon. On the
other hand, in dynamic BAPs vessels arrive as time
goes by. It means that a vessel cannot berth before
its arrival time. A variety of constraints reflecting
the real-world problem were also summarised in [1,
2].

Our work in this paper will mainly focus on dis-
crete dynamic BAPs taking into account tidal con-
straints. Among existing approaches, the latest ap-
proximate algorithm [4] has shown decent results on
BAPs with two-tide constraints. Because it only ac-
commodates two tides, it sometimes obtains infeasi-
ble solutions when the number of vessels increases.
The approach introduced in [4] is a greedy heuristic
which allocates vessels in a predefined order (pro-
cessing time of the vessel / unit cost of the vessel).
For each vessel, the heuristic chooses an available
berth with the minimum increment of the objec-

tive value. The final schedule is totally determined
by the fixed order of adding vessels without any
stochastic element. Unlike meta-heuristics, there is
no other operation used in [4] to improve the only
solution. In this paper our algorithm will deal with
multiple tidal windows whereas [4] only deals with
two tides. The new meta-heuristic also brings more
randomness to diverse the solution while [4] is deter-
ministic. Another state-of-the-art exact method [5]
using commercial solver ensures feasible solutions
but the capability of dealing with large-scale prob-
lems is limited and the computation time is too long
to obtain good solutions. In this paper, we propose
a new meta-heuristic to improve the limitations of
existing methods. We propose a new approximate
approach that both diversifies an existing deter-
ministic heuristic and helps that heuristic converge
more efficiently. It is a single-solution based meta-
heuristic which combines Levy flight random walk
with local search. We believe that this is the first
work of combining heuristic in [4] with Levy flight
and a new local search. Due to the nature of the
deterministic heuristic, it is also innovative that we
encode the solution as priorities of assigning vessels.

The main contributions of our algorithm are sum-
marised as follows. Firstly our algorithm pro-
vides competitive berth allocation schedules com-
paring to the state-of-the-art exact and approxi-
mate methods. Secondly it is the best algorithm
so far that can always achieves feasible solutions
for both small-scale and large-scale problems in a
short running time. Furthermore, it is also the only
algorithm that is able to provide good quality solu-
tions for the large-scale cases.

The structure of this paper is as follows. A study
of related existing work is shown in Section 2. In
Section 3 and Section 4, we will describe our prob-
lem and our approach in detail. The experiment is
carried out in Section 5 including comparisons with
other works and analysis. Section 6 highlights our
contribution and proposes potential future works.

2. Literature review

BAPs draw a lot of attentions from the academic
community, evidenced by the large amount of exist-
ing work on solving this problem. Both the discrete
and continuous BAPs have been proved to be NP-
hard [6, 7]. The survey paper [1, 2] already included
the majority of work relating to BAPs. So in this
section we only briefly review recent developments

in solving BAPs, followed by a discussion on rele-
vant work that dealt with the problem considered
in this paper. The static BAP (SBAP) was for-
mulated in [8] and it was extended as a dynamic
BAP (DBAP) firstly in [3]. An improvement of
[3] was made in [9]. A Lagrangian relaxation tech-
nique is applied to the mathematical formulation
and a genetic algorithm (GA) is proposed to solve
the problem.

In order to deal with the limited availability of
berths, we focus on reviewing relevant work. A
BAP with dynamic arrival time and due dates
was addressed in [10]. It presented a tabu search
method and was tested on a data set from a termi-
nal in Port of Gioia Tauro, Italy. The tabu search is
improved by adding an elite set of solutions to the
path relinking algorithm and a swap move to the
local search [11]. A variable neighbourhood search
heuristic was proposed by [12] aiming to minimise
the cost with the constraint which berths start to be
available from different time. [13] developed a GA
based heuristic while considering the berth avail-
ability and the priority of vessel services. [14] pre-
sented a clustering search to solve a BAP with time
windows. The clustering search consists of a sim-
ulated annealing to generate solutions, a clustering
process and a local search. [15] proposed a particle
swarm optimisation (PSO) to solve a BAP. It was
tested on the data set from [10] with an objective of
minimising the total service time. [16] applied a GA
to a tactical BAP aiming to determine berth posi-
tions, berth time and allocations of quay cranes for
incoming vessels. The tactical BAP aims to allocate
vessels to their favourite berth positions as vessels
are expected to arrive periodically. [17] formulated
the tactical BAP while considering uncertain dwell
time of vessels. Another BAP considering uncer-
tain vessels’ arrival time and operation time was
solved by [18] with a two-stage decision model and
a meta-heuristic approach for large-scale problems.
[19] proposed a robust algorithm integrating a simu-
lated annealing algorithm and a branch-and-bound
algorithm.

Instead of limited available time of berth, tidal
window is another way of representing the avail-
ability of berths. In BAPs with tidal windows, each
berth offers different availability to vessels period-
ically based on the tides. This is a more realistic
way of modelling the problem. However, there are
very few publications actually taking the tides into
consideration. [4] applied a greedy heuristic to min-
imise the total cost of waiting time of all vessels. It

considered only two tidal windows (one low tide and
one high tide) but the time horizon of the second
tide goes to infinity. [20] pointed out the limitation
in [4] and presented a POPMUSIC (partial optimi-
sation meta-heuristics under special intensification
conditions) framework while limiting the time hori-
zon to two times of the tidal window. [21] also ap-
plied a POPMUSIC method to the same problem
as in [4]. The POPMUSIC framework was firstly
proposed by [22] and it starts from a random per-
mutation and to be improved by solving a mathe-
matical formulation. A generalised set-partitioning
approach was proposed in [5] to solve the prob-
lem with multiple tides using the commercial solver
CPLEX. Apart from tidal windows, [5] also worked
on vessel time windows where serving each vessel
has to be finished by the due date. There is an
earlier work on time windows [23] which was moti-
vated by a real problem at the maritime industrial
port complex of Sao Luis. A simulated annealing-
based heuristic was used. A more recent dynamic
programming-based meta-heuristic was developed
in [24] which is capable of dealing with up to 150
ships and 15 berths. [25] proposed an Integer Pro-
gramming and Constraint Programming for BAPs
with changing water depths over tides. Moreover, a
machine learning-based system was also applied in a
bulk BAP in [26]. The system is trained by running
a set of available algorithms and then it provides
its best solution for each problem. The brief liter-
ature review above shows that meta-heuristics are
the preferred methods to solve the BAP in a major-
ity of existing research. This agrees with the find-
ing from [2] which stated the reason for the dom-
inant use of meta-heuristics is their ability to deal
with large scale problems within a relatively short
amount of time.

Sometimes according to terminal operation de-
mand, a small processing time is necessary, which
makes meta-heuristics a beneficial way of solving
the problem. To the best of our knowledge, there
is no existing work using meta-heuristics to tackle
the BAP with multiple tides that can provide
feasible solutions for all the test cases. Most work
using exact methods are not able to solve large
scale data set or reach the optimal solution in a
reasonable time because of the limitation of exact
techniques.

3. Problem description

In our work, we model the berth allocation with
multiple tides as a discrete problem. The prob-
lem is described by introducing assumptions, nota-
tions and the mathematical formulation of objective
function as follows.

3.1. Assumptions

1. One berth can only serve one vessel at a time.

2. The processing time of a vessel is the same no
matter which berth it goes to.

3. Once a vessel has started the serving process,
it cannot be interrupted.

4. Berths will become available right after a vessel
has been served.

5. All berths are available from the initial time 0.

6. The time horizon is from 0 to infinity until all
vessels are scheduled.

7. There is at least one berth available for each
vessel at low tides

3.2. Notations
The total number of berths

n: The total number of vessels

t_arr;: The arrival time of vessel j

t_wait;: Waiting time of vessel j which equals to
t_start;-t_arr;

t_proc;: Processing time of vessel j

w;: Unit cost of vessel j. A time-scaled cost
is generated after vessel j arrives at the
terminal

TF: Tide changing frequency

L;: The indicator of the availability of ves-
sel 7 at all berths at low tide

Hj: The indicator of the availability of ves-

sel j at all berths at high tide

The decision variables are shown as below:
t_start;: Start time to serve vessel j

Tyt Equals to 1 if vessel j is assigned to
berth i and 0 otherwise

L Equals to 1 if vessel j and jl are both
assigned to berth ¢ and vessel j is pro-
cessed before vessel j , and 0 otherwise

3.8. Mathematical model

Due to the strong impact of changing tides in
practice, we consider it in our problem as a restric-
tion to vessels. In our problem setting, high tides
and low tides happen alternatively. According to
Section 3.2, TF denotes tide changing frequency.
In this way, the time horizon will be divided into
[0,TF), [TF,2xTF) ... until all vessels have been
scheduled. For example, if TF = 12, the water
level alternates between low and high in every 12
hours. Because of the variety of draught of ves-
sels, not all the berths are available for a vessel at
all time. It means that at low tide and high tide,
there are certain berths that can be available to
only a specific type of vessel. Suppose a set of m
berths have been sorted in ascending order of the
water depth and denoted as 1, 2, 3, 4 ... m (m
is integer). There are a set of n vessels. Let L;
be the indicator of the availability of vessel j at
all berths at low tide (1 < j < n, j is integer),
then the set of berths that vessel j can visit at low
tide is defined as SL; = {L;,L; + 1,...,m}. For
high tide we define H; as the indicator of vessel
7 so that the set of berths can be summarised as
SH; = {H;,H; +1,...,m}. For example, as show
in Table 1, when vessel ID j = 5, L5 = 4 indicates
that at low tide only berth 4 is available for this ves-
sel, while at high tide Hs = 2 indicates that berth
2, 3, 4 are available. Note that we assume that the
water level of a berth at high tide is always higher
than that at low tide. It means that for a vessel the
amount of berths available at high tide must be no
less than at low tide.

The objective function (1) minimises the total
cost of the service time of each vessel from the time
it arrives until the time it finishes all the loading
and unloading. The service time includes the wait-
ing time and processing time.

n
min Z w;(t_wait; +t_proc;) (1)
j=1
s.t.
m
i
t_start; >t_arr; VjeEn (3)
t_startjf >t_start; +1t_proc; — m(l - Iijj')
Vi, i €n,j#jViem (4)

1
Lijy + Ly < 5 (@i + 2ij7)

V.5 €n,j<j Viem (5)
Lijjr + Lijrj 2 wij + iy — 1
Vi, i €n,j<j,Viem (6)

zy; =0 Vjen,i=1,2,...,max(L;, H;)—1

Tij € {O, 1} V] € TL,V’L eEm (8)
L € {0,1} Vj,j/ €n,s.t.j # j/,Vi eEm 9)

Constraint (2) ensures each vessel is assigned to
only one berth. Constraint (3) requires that the
vessel can only be served after it arrives. Constraint
(4) guarantees that if vessel j and j are assigned
to the same berth and vessel j is served before j/,
then the starting time of serving vessel j/ cannot
be no earlier than t_start; +t_proc;. Constraint
(5) and (6) ensure that one of /;;.» and I,/ ; equals
to 1 if vessel j and j’ are both assigned to berth 7.
They also ensure that I,;» = I;,/, =0 if vessel j or
vessel j is not assigned to berth i. Constraint (7)
restricts vessel j to be only assigned to a berth al-
ways available to it. Constraint (8) and (9) enforce
235 and I;j; to be binary.

Table 1: Example of available berths to vessels

Vessel ID i 11213145
Berth indicator at low tide | L; | 1

S
S

Algorithm 1 The process of LF-BAP

current _solution := Initialisation(); //encoding
(Section 4.1.1)
Let best_solution be the best solution so far
Let best_cost be the objective value of
best _solution
While (stopping_ criteria_not_met) do:
new_solution = LF random walk(current solution);
//Algorithm 2
dec_solution = Decoding(new _solution); //Algo-
rithm 3
Local _search(dec_solution); //Algorithm 4
Evaluate the objective value of dec solution and
denote it by new cost
If (new_cost < best_cost) do:
//update best known solution
best cost = new_ cost;
best solution = new solution;
End
current solution = new _solution;

End

Algorithm 2 The
LF random_walk()

N := step_length //calculated using (11)
For (inti=0;i <N, i++) do:
randomly pick two positions in current solution

switch the contents of them
End

pseudocode of

Berth indicator at high tide | H; | 1 | 1|1 |3 |2

3.4. The sensitivity of tidal constraints to BAPs

Due to the changing tides, the feasible intervals
and forbidden intervals for each variable are in-
tertwined. It makes finding good solutions in the
search space very difficult. Especially when the
number of vessels increases the computational com-
plexity is usually high. With the goal to minimise
the cost (1), the objective value depends on the
total weighted start time of all vessels Z?Zl w; *
t_start; since t_wait; = t_start;-t_arr;, and the
arrival time ¢_arr; and process time t_proc; are
constants. The tidal constraints not only make
some berths unavailable for some vessels, but also
cause changes on the start time of multiple vessels.
Assume a vessel is not able to stay at a berth at
low tide, it has to wait till high tide and other ves-
sels scheduled after this vessel have to wait too. It
obviously increases the total cost. In other words,
the total cost is highly sensitive to the changes of
start time of vessels.

4. Meta-heuristic for BAP

We propose a single-solution based meta-
heuristic optimisation termed LF-BAP which is
based on a random walk named Levy flight. This
random walk is based on a long tail distribution
which can be used to help an algorithm to escape
from getting stuck at a local optimum [27]. The
frequency and the length of long jumps are con-
trolled by adjusting the parameters of the distribu-
tion. The Levy flight optimisation process describes
a move strategy in which a particle flies from one
point to another following LF distribution. In the
process of LF-BAP only one individual is used. Ac-
cording to our brief review in Section 2, population-
based meta-heuristic algorithms have been applied
to BAPs by many researchers. In BAPs, however,
even a small move of an individual, which is equal
to a small change to the start time of a vessel, may
cause a major change to the berth allocation plan.
This can make population-based methods slow to

converge. Due to the above reason, many exist-
ing population-based methods on BAPs are time-
consuming. Being a single-solution search, LF-BAP
has the potential to avoid the aforementioned prob-
lem of slow-convergence on this particular problem.

The pseudocode of the proposed LF-BAP is sum-
marised in Algorithm 1. The process of LF-BAP is
terminated when certain criteria is met. Here the
algorithm will stop running if one of the following
criteria is met: 1) the limit of iteration number is
reached; 2) our approach has found the global op-
timum (provided by the exact technique from the
commercial solver, if it is able to solve the prob-
lem); 3) the best solution has not been improved
for a quarter of the maximum number of iterations.

Each generation of LF-BAP consists of two
phases. Due to the large search space caused by the
tidal constraints, the first phase aims to efficiently
explore good regions in the search space and main-
tain the diversity of scheduling vessels. It starts
from encoding an initial solution (Section 4.1.1)
and then updates the current solution by adapt-
ing a Levy flight random walk (Section 4.1.2). Our
decode procedure (Section 4.1.3) always ensures a
feasible solution. To intensify the current solution,
three local search procedures are applied in the sec-
ond phase of our algorithm. A deep exploration in
the local search space further improves the sched-
ule.

4.1. First phase

4.1.1. Encoding

To be able to solve the BAP using a meta-
heuristic like LF-BAP, we need to find a method
to encode all information of a solution into a data
structure. In this paper, we propose the follow-
ing encoding structure: information is stored in an
array X. The indices of X indicate the IDs of the
vessels, while the value of X[j| indicates the prior-
ity of vessel j. The priorities determine the order
that the vessels should be allocated to berths. The
smaller the value is, the higher the priority is given
to the vessel. An example of this encoding is shown
in Table 2. In the example, the order of allocating
vessels should be vessel 3, 1, 4, 2 and 5 based on
their priority. In the initial solution, the priority
of vessels are ordered by their arrival time. The
vessel with the earliest arrival time has the highest
priority in the order.

Table 2: Example of encoding a solution given priorities of
vessels

Vesselj | 112345
Priority | 2 |4 | 1|3 |5

s
’ Vessel allocation order \ 3 \ 1 \ 4 \ 2 \ 5 ‘

4.1.2. Adapting Levy flight walks to the BAP

To update the encoded solution, LF-BAP will un-
dertake a random walk of Levy flight by calling the
function LF random_walk(). The pseudocode is
shown in Algorithm 2. Levy flight is one of the keys
in our algorithm to maintain the randomness and
the diversity of the berth allocation optimisation.

Levy flight is a concept of a random walk under
a certain probability distribution. It is especially
useful for natural phenomena and artificial facts
such as earthquake analysis, financial mathemat-
ics, signal analysis, fluid dynamics, etc. Levy flight
search strategy contributes a lot to food pathing in
nature-inspired algorithms like Artificial bee colony
algorithm [28] and Cuckoo search algorithm [29].
Moreover, Levy flight makes an improvement in the
field of computer science. For example, Levy flight
was applied in examining the variability of internet
traffic [30]. Levy flight was combined with artifi-
cial potential field method in order to perform an
efficient searching algorithm for multi-robot appli-
cations [31]. As mentioned above, lately Levy flight
has been effectively applied to optimisation prob-
lems with large search space as it significantly in-
creases the diversity of the chromosome and avoids
to trap in local optima [32, 33|. However, to the
best of our knowledge there are not many studies
using Levy flight in global optimisation as single-
solution based meta-heuristics except for the re-
search set out in [27]. The distribution below (10)
from [27] is a normalisation of the random walking
length distributed in [34]:

__B
lo(1+ £)1+7

P(l) = (10)

where [is noted as the step length.

Moreover, [27] also provided a formulation (11)
to generate [where U is a standard uniform dis-
tribution. [y is introduced as a scale factor. The
range of step length is [0, +-00). The probability of
achieving a long step decreases when [increases.

-1 (11)

In general, Levy flight technique is designed for
continuous optimisation problems. To apply LF-
BAP to the combinatorial domain of the BAP, we
round a randomly generated step length to an inte-
ger number. This number represents the number of
swaps of two random positions in vessel allocation
order (Table 2). This ensures that all step lengths
are discrete values. The larger the step length, the
greater the number of swaps. The more swaps to
be made to a solution, the more different the new
solution will likely be in comparison to the original
solution.

4.1.3. Decoding

We also need to decode the information from the
data structure to a berth allocation solution. For
this purpose, we modify the representation in [4].
The idea of allocating a vessel to an available berth
with the minimum increment of the objective value
in [4] is used in our decoding process. However,
there are only two tides considered in [4]. All the
vessels not allocated in the first tide will be sched-
uled in the second tide. This way of allocation has a
major drawback: solutions can be infeasible under
certain circumstances as explained in [5]. There are
only two tides in [4] in which the second tide goes
to infinity. If there is a large amount of vessels ar-
riving, and the first tide can only accommodate a
small portion of them, the second tide has to be
much longer than usual. It is not suitable for real-
world problems.

As we have more than two tides in reality, to
avoid infeasible solutions, we include additional
checks that need to be done every time the tide
changes. Every tide is restricted to the same length
based on the tide changing frequency. When the
tide changes from high to low, we have to check
whether the finish time of vessels exceeds the cur-
rent tide because the same berth may become un-
available for the vessel. Furthermore, for both sit-
uations (low tide changing to high tide and vice
versa) we check whether there is any vessel with a
start time exceeding the current tide. They will be
removed from the current schedule and be allocated
in the next iteration. The pseudocode of our pro-
posed decoding procedure is described in Algorithm
3.

4.2. Second phase

To further improve the schedule, the second
phase is applied to the decoded solution. It seeks
to make most of the time horizon and find the local
optima. When changing from one tide to another,
vessels exceeding the current tide will be removed
because the same berth at the upcoming tide may
not be available. [4] proposed in the last step of
their algorithm to remove idle time without violat-
ing any constraints by shifting vessels to an earlier
time. However, for consecutive vessels it is unlikely
that the start time of all of the following vessels is
allowed to move up due to the tidal constraints. For
instance, there is a vessel that fits in an earlier idle
time period but there are other vessels in between.
If the vessels in between are not able to move, the
solution cannot be improved following the steps in
[4].

We propose a new local search which consists
of three parts: swap in berth, swap between two
berths and move vessels from one berth to another
(Algorithm 4). The first two parts were proposed
in [15] and the third part is newly proposed in this
paper. A swap in berth allows a sequence of vessels
assigned to the same berth to swap every two posi-
tions. Among all feasible solutions, the pair of ves-
sels with the best improvement in terms of the ob-
jective value is swapped. It does the same for each
berth in the schedule. Regarding swapping between
berths, for every combination of two berths, two
vessels are selected randomly and swapped. The
swap is kept only if there is an improvement. This
procedure is repeated 20 times in the following ex-
periment.

The third part of the local search is to move
vessels from one berth to another. We randomly
choose a vessel from a certain berth and insert it to
a random position in the schedule of another berth
if it provides a feasible and better result. The strat-
egy of selecting a berth to be inserted is to pick a
berth with a lower water level which is usually less
busy. For each group of an original berth and a
lower-water-level berth to be inserted to, we pick
one random vessel from the original berth and one
random position from the lower-water-level berth.
For example, assume that there are two berths by
and by with a lower water level than berth b3. We
randomly choose a vessel currently allocated to b3
and insert it to a random position in be. Similarly
for b1, we randomly choose a vessel from b3 and try
to insert it to b;. If a move like this leads to an

Algorithm 3 The pseudocode of the decoding procedure

Let V be the solution to be decoded V := {1, 2, ..., n}, where n is the number of vessels.
Let B be a set of m berths B := {1, 2, ..., m}.
Let L be a set of available berths for n vessels at low tide L := {Li, La, ..., L,}. //as explained in Section
3, L; means available berths for vessel j are L;, L;+1, ..., m.
Let H be a set of available berths for n vessels at high tide H := {H,, Ha, ..., H,}. //H; means at high
tide available berths for vessel j are H;, H;+1, ..., m.
Let the list Xp:= {x1, @2, ..., 1} denote the sequence of vessels assigned to berth b, where k is length of
sequence. Initially X; is empty.
Let t; denote the start time to serve vessel j.
Denote proc; the process time of vessel j, arr; the arrival time of vessel j and w; the weight of vessel j.
While Not all vessels have been scheduled do
T = 0; //at low tide
For j := 1 to n do:
For b:= L; to m do:
Calculate the total cost at berth b Cost;, = Z’]fz:l(tmn — arTy, 4+ Procg,) * Wy, .
For each position p (1< p < k+1), calculate the increment of the objective value if vessel V; is
inserted to Xj. For example, if p = 1, the new sequence of vessels will be {V}, z1,..., 2 }.
Update the start time of each vessel, such as ty, = max{0,arry,}, tz, = max{ty, +procy,,arry, }
and etc.
Calculate the new cost newCosty, = (ty, —arry, +procy;) *wy;, JrZ::l (tz, —arry, +procy,) *wsy, .
Calculate the increment of the objective value 4, if current vessel is inserted to position p i, =
newCost, — Costy,.
Let Iy, := minp—1,.. k+1{ip} and py := argming—1 2 . r+1{ip}.
End
Let b:— argming=r;,r,+1,....m1dv,v; }. Insert Vj to position p, of berth b.
End
Remove the vessel from current schedule if its start time is later than the time of the current tide
ends. For example, if vessel j has been sent to berth b, remove j from the list Xj.

T =T + TF; //at high tide
For j := 1 ton do:
For b:= H; to m do:
Same as at low tide.
End
Same as at low tide.
End
Remove the vessel from current schedule if its start time is later than the time of the current tide ends.
Remove vessels which will finish in the next tide and the allocated berth is not available for this vessel in
the next tide.
T =T + TF,
End

Algorithm 4 The pseudocode of Local_search()

Let S be the current schedule.
Let B be a set of m berths B := {1, 2, ..., m}.
//swap in berth
For i:= 1 to m do:
Let A := Sp, denote the list of vessels sent to B;.
For ¢:= 1 to SizeOf(A)-1 do:
For w:= ¢+ 1 to SizeOf(A4) do:
Swap A, and A, and denote the new list
Ay
Denote I, as the new objective value of
A,
End
End
Find the smallest cost I q/7w/fr0m 1.

If I o ' 1s smaller than the original cost, swap

w*

’
’ .

vessel ¢ and w'. Sp,= A
End

’
q ,w

//swap between berths
Let N be the number of times doing swapping be-
tween berths
For i:= 1 to m-1 do:
Let Vp, ¢ denote a randomly chosen vessel with
the position ¢ in Sp,.
For j:=1i+ 1 to m do:
Let Vg, . denote a randomly chosen vessel
with the position w in Sp;.
Swap Vp, 4 and Vg, .. Then check if B; is
available for VB, w and if B; is available for
VB, .,q-
If the new cost after the swap is lower, update
S.
End
End

//move vessels from one berth to another
For i:= m to 1 do:
For j:=i—1to 1 do:
Let Vp, 4 denote a randomly chosen vessel
with the position ¢ in Sp,. Let A := Sp; de-
note the list of vessels sent to B, and w denote
a randomly picked position in A.
Check if Bj is available for Vp, 4 and calculate
the new cost.
If the new cost is lower than before, insert
VBMI to Ay.
End
End

improved berth schedule with a smaller cost, the
newly created berth schedule will be kept.

5. Computational experiments

In this section, we assess the performance of the
proposed LF-BAP by carrying out a number of dif-
ferent experiments. All the algorithms are coded
in Java and all the experiments are conducted on
a PC with an Intel i7 (3.60 GHz) processor and
16GB RAM under Windows 7. In addition, the
exact method is implemented by using the state-of-
the-art commercial solver CPLEX 12.7 with a max-
imum execution time of 1 hour for each instance.
52GB maximum java heap size is set for each run
by CPLEX.

In this work, four sets of problem instances are
tested. Set I corresponds to instances used in [4, 5]
with a maximum of 8 berths and 24 vessels. In
the work of [5], the authors extended the problem
instances up to 8 berths and 50 vessels (Set II).
However, in reality a terminal can be even busier
than the situation in Set I and II. It is more com-
mon now to see big ports handling more than 100
or 200 vessels per day. According to [35], Europe’s
two biggest ports in Antwerp and Rotterdam al-
ready carried over 400 ships per day in 2008. It was
also mentioned in [36] (2016) that Port of Rotter-
dam handles averagely 383 vessels per day. Asian
ports can be even busier [37]. Port of Singapore
is used to be one of the world’s busiest ports, re-
ceiving an average of 140,000 vessels on an annual
basis (approximately 380 vessels per day) as of 2013
[38]. However, according to recent ranking tables,
many Chinese ports are deemed larger nowadays
[37, 39]. Live vessel trackers [40] also indicate that
many Chinese ports, such as Shanghai, Zhoushan,
Qingdao, Ningbo, Tianjin, have up to dozens of
hundreds vessels in ports, and a few hundred ex-
pected vessels at a moment in time. This indicates
a likely turnaround of hundreds of vessels per day
in those ports. Elsewhere in other continents, there
are also other ports with more than 100 vessels per
day, e.g. Houston [41], Tubaran [42], Cartagena
[43], etc.

In addition, the problem considered in this pa-
per deals with multiple tidal windows (there is no
limit on the number of tidal windows to be con-
sidered). This makes it highly possible for ports to
consider a berth schedule for multiple days, increas-
ing the number of vessels per instance. It means
ports with only a few dozen vessels per day (very

common in the real world) can still have large scale
instances with more than 100 vessels. This shows
the practicability of LF-BAP. Therefore, we believe
conducting experiments on large-scale scenarios is
meaningful for studying berth planning problems
in real world. In order to simulate challenging real-
world problems, we generate large-scale data sets
IIT and IV following the instruction in [4]. Set III
extends Set II to 50 berths and 500 vessels and Set
IV represents extremely busy terminals in small -
medium size with maximum 10 berths and 300 ves-
sels. TF = 12 hours in every instance and they all
start from low tide. An example instance is listed
in Table 3 and a corresponding feasible solution is
displayed (Fig. 1).

5.1. Comparing with an exact method and heuris-
tics

5.1.1. A state-of-the-art exact method

In optimisation problems, exact algorithms are
designed in a way that they guarantee finding an
optimal solution in a finite amount of time. This fi-
nite amount of time usually grows with the problem
size. Since BAPs are NP-hard [6, 7], exact methods
may need exponential effort for even medium-sized
problems. For example, for each vessel j, we may
need a binary variable S;; denoting if vessel j is
sent to berth b. Assume there are a set of vessels
V scheduled to berth b, we also need to denote an-
other binary variable P; ; to indicate if vessel ¢ will
be berthed before vessel j, where i, j belong to V.
This leads to a large number of combinations of in-
teger values for the variables that must be tested.
If the problem size increases, the complexity of the
problem is highly affected and so the number of
such combinations will rise dramatically.

In the experiments, we compare the performance
of the proposed LF-BAP with a state-of-the-art
exact method called Generalised Set-Partitioning
BAP [5] with a multi-period planning time horizon
(CPLEX-BAP). Based on the reported literature,
CPLEX-BAP is one of the few publications consid-
ering tidal constraints. As an exact method it has
shown the capability of solving small and medium
scale problems with a reasonable running time. By
conducting the experiments in this section, we will
have some insights of how our algorithm performs
comparing to the exact method in terms of the run-
ning time and objective values while the complexity
of the problem increases.

10

Lw HW
on
=
E Vessel 2 Vessel 4
=2

.
o~
=
£ Vessel 3
5]
m
~—
k=
o Vessel 5 Vessel 1
=2
1] 12 24 Time

Figure 1: A feasible solution of the example instance given
in Table 3

Table 3: An example instance using notations from Section

3.2
Vessel j t_arr; t_proc; w; L; H;
1 12 5 1 1 1
2 0 10 2 3 1
3 5 3 8 2 1
4 10 6 5 3 3
5 2 12 4 3 2

5.1.2. A modified heuristic and a modified Iterated
Greedy heuristic

In general, heuristics can provide solutions
quickly like the greedy heuristic [4]. [4] prioritises
vessels based on the available berths. Vessels with
the same number of available berths are grouped
together. Vessels in each group are sorted by the
weighted processing time t¢_proc;/w;. And then
vessels are sent to the schedule one by one follow-
ing certain rules. A solution is obtained quickly
because heuristic algorithms like [4] follow preset
and heuristic rules that can be computed rapidly
without any stochastic exploration. The downside
of this heuristic could be that it is deterministic
and hence is prone to always converging at a local
optimum.

A comparison between LF-BAP and a modi-
fied heuristic (H-BAP) from [4] would be able to
show whether stochastic elements in LF-BAP sig-
nificantly improve the results. H-BAP repeats the
algorithm in [4] so that it fits multiple tidal win-

dows. In the original algorithm in [4], the second
tidal period goes to infinity which is not feasible
for real-world problems. With the modification ex-
plained in 4.1.3, it guarantees feasible solutions to
have a fair comparison with our work.

We also compare LF-BAP with an Iterated
Greedy heuristic (IG) which is one of the best
single-solution based meta-heuristics for BAPs in
[44]. The initial solution is generated using the
first-come-first-serve rule. In each iteration, IG
improves the solution by reconstructing it with a
greedy method. The reconstruction phase ran-
domly chooses a number of vessels and reinserts
them to their best positions. The evaluation func-
tion of IG is modified to fit the tidal constraints.
With the comparison of LF-BAP and the single-
solution based meta-heurstic IG, the effectiveness of
the proposed method will be validated. In addition,
in Section 5.2 we run experiments on a population-
based meta-heuristic PSO [15] in order to show
the features of population-based meta-heuristics on
solving BAPs.

5.1.8. Sensitivity analysis of LF-BAP

With the goal of studying the impact of parame-
ter settings in LF-BAP, a statistical analysis is con-
ducted in this subsection. In Levy flight distribu-
tion, when the parameter [increases the frequency
of having long jumps decreases. Because the dis-
tribution is heavy tailed, the increase of 5 would
not make much difference if the value gets too big.
lp controls the overall scale of jumps so it is pre-
ferred to be not too big because too many swaps
in one iteration slows down the whole process. En-
suring [y greater than 1 significantly decreases the
probability of having a jump distance less than 1.
Therefore, parameter values are chosen from [y =
1, 3,5,8, 10 and 8 = 0.5, 1.5, 3, 5.

Nine random instances are chosen in different
sizes among Set I, II, IIT and IV. A Friedman test
shows that there is no significant difference of ob-
jective values between different parameter settings
once the algorithm is converged. We then com-
pare the runtime of different settings by allowing
the algorithm to run until it converges to the same
objective value. A significant difference appears af-
ter conducting the Friedman statistic test for all
the combinations of [y and 8. We notice a much
larger runtime when 8 = 0.5 (Fig. 2). Excluding
the combinations with 8 = 0.5, another Friedman
test is conducted for all the other groups. The p-
value > 0.1 is achieved, so the null hypothesis of

11

Table 4: Parameter settings

Algorithms Population size Other parameters
LF-BAP 1 Maximum iterations = 10000;
lp =10; B = 3.

CPLEX-BAP Not applicable Time limitation: 1 hour. 52GB
heap size. Other parameters set
as default.

1G 1 Maximum iterations = 10000;
Amin = 45 Cmaz = 7.

PSO 20 Maximum iterations = 500; C;
=2;Cy =2; W =0.5.

equality of treatments is accepted at 95% and 99%
confidence. It means there is no significant differ-
ences between results from each group in terms of
runtime. Thus, the performance of LF-BAP is not
noticeably sensitive to all the groups except for
= 0.5. For the best overall performance, [y = 10
and B = 3 are selected for the following comparison
with other algorithms.

We also study the speed of convergence in terms
of solution quality, i.e. objective value (Fig. 3).
Since all the randomly selected instances show a
similar pattern of convergence, two representative
test instances are displayed. From the plots in Fig.
3, we have the following observations:

e Fig. 3(a) and 3(b) report the impact of iy with
the fixed 8 = 3. A slower convergence is ob-
served when lg = 1 for almost all the tested
cases. Due to the small scale of jumps when [y
= 1, the algorithm takes longer to search for
a better solution. Other [y values yield similar
convergence speed.

e None of the § values shows a significant differ-
ence in convergence speed when [y = 10. How-
ever, when 8 = 0.5 the algorithm converges
slightly slower than the others in medium to
large scale cases. This observation has also
been pointed out in the above sensitivity anal-
ysis on computational time.

The parameter setting of LF-BAP in the fol-
lowing experiments after the sensitivity analysis is
shown in Table 4. All the settings of other algo-
rithms are shown in the table as well.

5.1.4. Computational results

The experiments evaluate the performance of our
algorithm in terms of accuracy, efficiency and capa-
bility. We run LF-BAP and IG 50 times for each
instance and one execution for CPLEX-BAP and

Impact of different values of f on computational time when 1.0 = 10

250

Sy

200
T 150
—

Q
|
0 I__ - _, .. In 1] I

£
= 100
50
618 824 850 1280 20.20030_300 6100 9.250
Test instances

==

m3=05 mp=15 mB=3

(a)

B=5

Impact of different values of 1_0 on computational time when f = 3
300
250

200

150

100
“ ifll
) —— | || | Il Iniln

39 618 8.24 850 12.80 20_20030_300 6,100 9_250
Test instances

Time (s)

5

m[0=1 m][0=3 m[0=5

(b)

10=8 m]0=10

Figure 2: Figures show the impact of different parameter settings on computaitonal time with fixed lp and £,

respectively.

Table 5: Summary of the comparison between LF-BAP and CPLEX-BAP |[5]

Data No. of Solvable cases Faster algorithm Percentage of cases with an error (%) e between LF-BAP and CPLEX-BAP
set test cases CPLEX-BAP | LF-BAP | CPLEX-BAP | LF-BAP e < 0.5% or LF-BAP is better 0.5% < e<1% 1% < e <2% 2% < e < 5% e>5%
1 120 120 120 47 73 66.67% 11.67% 10.83% 5.83% 5.00%
11 30 30 30 0 30 30.00% 16.67% 13.33% 30.00% 10.00%
111 100 40 100 0 100 60.00% 0.00% 10.00% 27.00% 3.00%
v 60 20 60 0 60 66.67% 0.00% 0.00% 10.00% 23.33%

310 210 310 47

60.97% 6.13% 8.7% 15.81% 8.39%

H-BAP because these two methods will always find
the same solutions. Firstly, the accuracy of our
work is discussed based on the objective values, the
number of instances that LF-BAP is able to find
the global optima, and the relative error. A rel-
ative error of LF-BAP (12) is defined as the gap
between the mathematically proven global optima
(found by the exact technique in CPLEX BAP)
and LF-BAP. The gap between LF-BAP and IG
is also measured in following tables. The num-
ber can be negative which means LF-BAP outper-
forms the peer algorithms. Secondly, the running
time represents how quickly and efficiently an algo-
rithm reaches its optimal solution. Finally, we eval-
uate the capability of accommodating algorithms in
large-scale problems.

_ Avg. Objrr — Avg. Objoprex

- * 100%
AUg.Ob]CPLEX 0

(12)

Accuracy In Table 5, if CPLEX-BAP cannot
solve the problem due to the out-of-memory er-
ror while LF-BAP can solve it, we consider LF-
BAP is the faster algorithm and more accurate
than CPLEX-BAP. According to Table 5, there
are 91.61% of the test cases where LF-BAP found

12

the global optima with an error e < 5%, of which
60.97% cases has an error e < 0.5%. For problems
in Set I, most of the average relative error are less
than 1%. LF-BAP provides similar quality results
(about 1% error) for solving most of test cases in
Set II, except for two instances with errors of 4.44%
and 6.85%. In the results of large-scale problems
(Table 7 and 8), the relative errors between LF-
BAP and CPLEX-BAP become a bit larger for the
instances CPLEX-BAP can solve. The overall per-
centage with an error less or equal than 5% is still
above 60% for Set III and IV although it should
be noted that in these sets there are only few in-
stances where errors can be determined thanks to
CPLEX-BAP being able to solve them to optimal-
ity. As an exact optimisation method, CPLEX-
BAP guarantees an optimal solution if the prob-
lem size is small. Since both discrete and continu-
ous BAPs have been proved to be NP-hard [6, 7],
exact methods need exponential efforts to solve it
when the problem scale increases [45]. It is reflected
in Table 7 and 8 where the computational time
of CPLEX-BAP increases exponentially in solving
medium to large scale problems, and most of the
cases become intractable. On the other hand, be-
ing an approximate method, LF-BAP can fare bet-

Test instancem=3,n=9

820
EREITEN
g goo
£ 790
=]
S 780
g? 770
760
750
740
Qo < QP O QeI o
Q9 0O 9 9O 2 0O 9 O Q0 O Q9 90 9 90 9 O Q [=1
Lo T R T B T B Y =T Yo R =T ¥> B o B 7o R <o B Vo o B Vo B o R ¥ B =
R Nm M F TR D OR NS &3
Number of function evaluations
—1.0=1 —10=3 1.0=5 1.0=8 —1.0=10
(a)
Test instancem =3,n=9
820
810
S 800 \
£ 790
5 \
=
_;780 ~
.éi 770 - ==
= 760
750
740
PP R L L LSS P PR LR D®
PRI L IR L LTI LRI PSSP S
FIEFE S L@ %(\Q,\‘?Q’B‘,"vahofe\gQ

Number of function evaluations

—p=05 —B=15 —p=3 —B=5

(c)

Figure 3: Figures show the impact of different parameter settings on objective values with fixed lp and S,

respectively.

ter in large scale problems because it offers a bet-
ter trade-off between solution quality and compu-
tational time. While exact methods put demands
on complex formulations of an optimisation prob-
lem, meta-heuristics are flexible to be adapted to a
specific problem. LF-BAP however does not guar-
antee optimal solutions, so it does not perform the
same as the exact method CPLEX-BAP. However,
94% of small-scale instances, LF-BAP still provides
similar quality solutions (e < 5%).

In comparison with H-BAP and IG, LF-BAP sig-
nificantly outperforms H-BAP in all test cases in
terms of objective values and relative errors (Table
6, 7 and 8). All the negative percentages in these
three tables indicate that LF-BAP obtains much
better solutions than H-BAP. It also shows a better
performance than IG in almost all cases except for
the smallest four instances in Table 6. All the other
negative percentages in the last column of Table 6,
7 and 8 indicate that LF-BAP obtains much bet-
ter solutions than IG, especially when the problem
scale gets large.

13

23800
23700
23600
23500
23400

Objectivevalue

23300
23200

23800

© 23700

=

g 23600

o]

= 23500

5

8]

D 23400

=

© 23300
23200

Test instance m = 6, n = 100

0o
1000

1000

7500
8000

7500
8000
8500
9000
9500

[sEN =R~ R e = RN« RN = I = I = B =« B =1
S G503 3 3D
S m S ;o S o o S
AN mm T B om 9 ¢
Number of function evaluations
—1.0=3 1.0=5 1.0=8
(b)
Test instance m = 6,n = 100
=== = = I == [=JN=NN-1
S S 23S S D S S 2
Shm OmSn dn S, D
A NG m FFHwn 3O
Number of function evaluations
—B=0.5 —B=1.5 =3 B=5

(d)

—1

9000
9500
10000

10000

4!

Table 6: A comparison of average objective values and average computational time between H-BAP, IG, CPLEX-BAP and LF-BAP on instances Set I and II. Avg
states the average value of all the test cases in each problem size. In Set I, each problem size (each row) contains 10 cases and 5 cases in Set II. UB indicates
the initial upper bound found by CPLEX-BAP.

. Tidal H-BAP [4] 1G [44] CPLEX-BAP |[5] LF-BAP Error Error Error
Set | Problem size

effect between between between
LF-BAP LF-BAP LF-BAP

and and and

Avg. Obj. Avg. Avg. Obj. Avg. Avg. Obj. Avg. Avg.UB Obj. | Avg.UB | Avg. Obj. Avg. CPLEX- H-BAP 1G (%)

Time Time Time Time Time BAP (%)
(s) (s) (s) (s) (s) (%)

m=3, n—=9 small 535.5 0.0043 467.3 0.0038 467 0.0872 1025 0.0022 469.8 0.0487 0.59% -12.28% 0.75%
m=3, n=9 big 666.7 0.003 573.7 0.0038 573.7 0.0427 1257 0.0001 587 0.0690 2.32% -11.95% 1.85%
m=4, n=12 small 791.3 0.0036 718.4 0.0627 717.4 0.101 2013.3 0.006 722.2 0.0510 0.67% -8.73% 0.62%
m=4, n=12 big 811.7 0.003 717.2 0.0787 712.5 0.0926 2158.1 0.006 718.8 0.0964 0.88% -11.45% 0.22%
m=>5, n=15 small 958.5 0.003 868.3 0.0939 863.3 0.2814 2935.2 0.1324 869.5 0.2680 0.72% -9.28% -0.02%

I m=>5, n=15 big 1066 0.0035 959.2 0.1303 947.3 0.2419 2824.4 0.1109 954.1 0.3906 0.71% -10.50% -0.46%
m=6, n=18 small 1081 0.0036 982.6 0.1591 970.1 0.5698 3380.8 0.3738 973.3 0.4030 0.33% -9.97% -0.92%
m=6, n=18 big 1215.2 0.003 1083.3 0.0647 1057.1 0.5939 3660.4 0.3749 1072.5 0.5715 1.46% -11.74% -0.81%
m=7, n=21 small 1416.4 0.0031 1308 0.1726 1279.8 1.2425 4179.7 0.9485 1286.3 0.7554 0.51% -9.19% -1.56%
m=7, n=21 big 1384.9 0.003 1238.8 0.1764 1195.6 1.2698 4355.9 0.0001 1201.8 1.2521 0.52% -13.22% -2.97%
m=8, n=24 small 1577.2 0.003 1461.1 0.1796 1420 2.4369 5347.6 1.9069 1426.3 1.5097 0.44% -9.57% -2.39%
m=8, n=24 big 1623.1 0.003 1455.2 0.1854 1394 2.1944 4561.8 1.7904 1411.4 1.8055 1.25% -13.04% -2.9%
m=6, n=30 small 1470.8 0.0038 1304.1 0.2898 1210.8 4.5912 7876.6 3.9872 1221.7 0.8000 0.90% -16.94% -5.98%
m=6, n=30 big 1606.6 0.0106 1366.1 0.3208 12774 6.1932 7679 5.5132 1294 1.2092 1.30% -19.45% -5.13%

I m=7, n=40 small 3474 0.0046 3038.2 0.384 2808.4 24.6882 14017.4 22.8302 2841.4 2.7945 1.18% -18.21% -5.58%
m=7, n=40 big 2965 0.0062 2408.9 0.425 2155.8 20.3352 12863.2 18.9092 2251.5 3.1968 4.44% -24.06% -6.35%
m=8, n=>50 small 2713.2 0.0064 2541.7 0.4801 2276.8 51.958 18654.8 47.954 2300.6 4.2861 1.05% -15.21% -9.19%
m=8, n=>50 big 4162.6 0.0046 3523.1 0.4438 3039 41.2578 15104 37.9658 3247.1 4.7728 6.85% -21.99% -8.16%

a1

Table 7: Computational results on large scale data Set III. In Set III, each problem size (each row) contains 5 cases.

. . Tidal H-BAP [4] 1G [44] CPLEX-BAP [5] LF-BAP Error Error Error
Set | Problem size

effect between between between
LF-BAP LF-BAP LF-BAP

and and and

Avg. Obj. Avg. Avg. Obj. Avg. Avg. Obj Avg. Avg.UB Obj. | Avg.UB | Avg. Obj. Avg. CPLEX- H-BAP 1G (%)

Time Time Time Time Time BAP (%)
(s) (s) (s) (s) (s) (%)

m=9, n=60 small 6924.6 0.014 6390.5 0.4973 5746.2 57.1016 19994.6 49.4976 5847.4 5.0637 1.76% -15.56% -8.48%
m=9, n=60 big 6676.2 0.0052 6459.8 0.5933 5603.6 52.7044 20582.2 44.1524 5798.8 6.0131 3.48% -13.14% -10.18%
m=10, n=70 small 8383.6 0.0086 8260.6 0.6061 7257.2 112.3554 24984.2 93.25564 7473.8 7.0482 2.98% -10.85% -9.48%
m=10, n=70 big 8233.2 0.0058 7905.9 0.5579 6704.6 107.0084 27255.8 78.7364 6957.4 7.9936 3.77% -15.50% -11.88%
m=12, n=80 small 8965.4 0.004 8629.8 0.7014 7724.8 673.6474 27838 665.5674 7911.6 11.0984 2.42% -11.75% -8.06%
m=12, n=80 big 8986 0.0042 8907.6 0.6501 7589.4 2761.022 30329.2 2736.898 7901.9 11.7207 4.12% -12.06% -11.31%
m=13, n=100 | small 12262.6 0.0062 11718.2 0.8322 10325.6 3577.88 38603.8 3493.904 10599 14.1122 2.65% -13.57% -9.55%
m=13, n=100 big 11673 0.0054 11789.2 0.8185 9977 2713.847 40098.4 2640.987| 10316.7 16.2133 3.40% -11.62% -12.47%
m=14, n=120 | small 15581.2 0.0092 15335.9 1.1342 N/S N/S N/S N/S 13835.1 25.1970 N/S -11.21% -9.77%
I m=14, n=120 big 16724 0.0094 16554.5 1.1765 N/S N/S N/S N/S 14421 28.0820 N/S -13.77% -12.94%
m=15, n=150 | small 23094.8 0.0076 22515 1.4783 N/S N/S N/S N/S 19904.8 35.6046 N/S -13.81% -11.57%
m=15, n=150 big 23457.8 0.0166 23722.6 1.4057 N/S N/S N/S N/S 20215.8 38.9161 N/S -13.82% -14.67%
m=20, n=200 | small 30812.4 0.018 30682.3 1.7822 N/S N/S N/S N/S 27116.1 69.4433 N/S -12.00% -11.57%
m=20, n=200 big 30874.2 0.0102 30678.4 2.032 N/S N/S N/S N/S 26182.2 75.6344 N/S -15.20% -14.62%
m=30, n=300 | small 45951.6 0.0166 44092.2 2.669 N/S N/S N/S N/S 39529.1 214.9714 N/S -13.98% -10.35%
m=30, n=300 big 47400.6 0.0152 46853.7 3.3009 N/S N/S N/S N/S 40281.8 215.5681 N/S -15.02% -14.01%
m=40, n=400 | small 61800.8 0.022 59499 3.3434 N/S N/S N/S N/S 52936.2 468.3557 N/S -14.34% -10.94%
m=40, n=400 big 60219.6 0.0216 60061.3 4.4109 N/S N/S N/S N/S 51751.4 438.4603 N/S -14.06% -13.85%
m=>50, n=500 | small 77196.8 0.0316 73448.2 5.2914 N/S N/S N/S N/S 66371.4 652.9757 N/S -14.02% -9.63%
m=50, n=500 big 77988.8 0.0322 75601.8 5.4872 N/S N/S N/S N/S 65460.2 955.2202 N/S -16.06% -13.4%

N/S: Not solvable by CPLEX-BAP.

Table 8: Computational results on large scale data Set IV. In Set IV, each problem size (each row) contains 5 cases.

. . Tidal H-BAP [4] 1G [44] CPLEX-BAP [5] LF-BAP Error Error Error
Set | Problem size

effect between between between
LF-BAP LF-BAP LF-BAP

and and and

Avg. Obj. Avg. Avg. Obj. Avg. Avg. Obj. Avg. Avg.UB Obj. | Avg.UB | Avg. Obj. Avg. CPLEX- H-BAP 1G (%)

Time Time Time Time Time BAP (%)
(s) (s) (s) (s) (s) (%)

m=>5, n=80 small 20560.8 0.0208 20327.1 1.03 17533.6 71.4994 54128.2 30.6754 18295.3 6.6913 4.34% -11.02% -9.97%

m=>5, n=80 big 22354.2 0.007 214224 1.0704 18048.2 58.1214 55926.2 32.5494 19465.6 9.2297 7.85% -12.92% -9.17%

m=6, n=100 small 25114.4 0.0072 25213 1.2498 21001.4 169.952 66660.2 103.3 22131.7 11.9623 5.38% -11.88% -12.2%
m=6, n=100 big 27525.6 0.0064 27892.4 1.3613 22512 519.1268 78162.6 443.9588 | 24464.4 15.5042 8.67% -11.12% -12.27%
m="7, n=150 small 47946 0.0116 48261.3 2.3068 N/S N/S N/S N/S 41710.2 31.9941 N/S -13.01% -13.58%
v m=7, n=150 big 50884.6 0.012 52033.5 2.4503 N/S N/S N/S N/S 44626.2 40.8227 N/S -12.30% -14.23%
m=8, n=200 small 77732.4 0.0234 82519 3.2408 N/S N/S N/S N/S 68726.4 67.1615 N/S -11.59% -16.68%
m=8, n=200 big 78247.4 0.021 82894.3 3.2567 N/S N/S N/S N/S 69696.7 77.2071 N/S -10.93% -15.86%
m=9, n=250 small 113770.8 0.0294 118249.6 4.642 N/S N/S N/S N/S 98179.3 123.0593 N/S -13.70% -16.89%
m=9, n=250 big 108725.4 0.0322 113971 4.8733 N/S N/S N/S N/S 95080.4 141.5667 N/S -12.55% -16.56%
m=10, n=300 | small 139798 0.0466 150286 5.1366 N/S N/S N/S N/S 122812.5 | 199.9363 N/S -12.15% -18.16%
m=10, n=300 big 141726.8 0.0488 152382.8 6.1128 N/S N/S N/S N/S 124669 229.4605 N/S -12.04% -18.2%

N/S: Not solvable by CPLEX-BAP.

91

Efficiency All three algorithms start with a
very small computational time (less than 1 second)
according to Table 6. The meta-heuristic shows a
much slower increase of computational time than
the exact method when the problem size increases.
(Fig. 4). To solve the largest problem size (m=8,
n=50) in Set I and II, CPLEX-BAP takes 10 times
of the running time of LF-BAP. This becomes more
obvious in the large-scale test cases in Table 7, 8 and
Fig. 4. The running time of CPLEX-BAP rises to
about 3600 seconds on the largest instance it could
solve while LF-BAP only needed about 14 seconds
for that same instance. When the problem size
grows up, the difference of running time between
CPLEX-BAP and the meta-heuristic is significant
(Fig. 4). We also report the initial upper bounds
and the time CPLEX took to find them in Table 6,
7 and 8. There are some large-scale test cases where
CPLEX- BAP could not find an upper bound. In
these cases, CPLEX fails to complete the initialisa-
tion stage due to the out-of-memory error. For the
rest, it takes CPLEX-BAP a significant amount of
time to find the upper bounds. The time to find
the initial upper bound is almost the same as the
total time it takes to find the global optima. The
quality of the initial upper bounds are significantly
worse than the results by LF-BAP. This suggests
that for this particular class of problem, CPLEX-
BAP is slow to find an upper bound but it can then
quickly converge to the optimal solutions.

Capability The largest problem CPLEX-BAP
is able to solve in Set IIT and IV is 13*100 and
6*100, respectively. Table 5 displays that over 310
instances in total, CPLEX-BAP is able to find a
solution for 210 instances while LF-BAP can find
global optima for some instances and good sub-
optimal solutions for all the rest. The coefficient
of variation plot of LF-BAP shown in Fig. 5 repre-
sents the statistical robustness of our algorithm. As
an approximate method, it is possible that the re-
sults of LF-BAP vary for the same test instance in
50 runs. The coefficient of variation (CV) is defined
as the ratio of the standard deviation to the mean.
A smaller CV value indicates the performance of
the algorithm is more stable statistically. As shown
in Fig. 5, the CV values are mostly less than 1%.
A majority of them is close to 0% indicating a very
small difference between 50 runs. With a normal
distribution assumed on the data of CV, [0.163%,
0.203%] is achieved as 95% confidence interval

17

[46] for the mean of CV. Therefore, a stable
performance of our algorithm can be concluded
due to the small interval of the mean of CV.

In summary, with the Levy flight distribution and
the proposed local search, LF-BAP significantly
improves the state-of-the-art heuristic H-BAP in
terms of solution quality on all test cases. H-
BAP achieves errors from 10%-37% while LF-BAP
achieves errors from 0.44%-8.67%. Compared with
the state-of-the-art single-point meta-heuristic 1G,
LF-BAP also achieves much better quality solutions
in the majority of Set I and all the test cases in Set
II, TIT and IV. In terms of computational cost, H-
BAP and IG have a very quick turnaround time
for all the instances (less than 10 second). It can
be seen from Fig. 4 (b and d) that comparing to
H-BAP, IG and CPLEX-BAP, the increase of run-
time of LF-BAP is not significant when the problem
complexity gets high. It increases from 0.05 to 4.77
seconds in Set I and II. For the cases CPLEX-BAP
is able to solve, the runtime of LF-BAP increases
to about 16.2 seconds while it takes CPLEX-BAP
almost 3600 seconds. For the largest cases which
CPLEX-BAP could not solve, it takes LF-BAP
about 955 seconds. Comparing to the state-of-the-
art exact method CPLEX-BAP, LF-BAP is also
better in terms of computational time and feasi-
ble solutions in 85% of all 310 test cases (100%
of large-scale cases). It is worth to mention that
CPLEX-BAP [5] is the only method that can guar-
antee the global optimal solutions in the cases that
it can solve. The exact model in CPLEX-BAP is
remarkably effective and should be the default first
choice for instances with about 80 vessels or less,
unless the port operators want fast solutions within
a few seconds or minutes in these similar scale cases.
However, the gap between the proposed LF-BAP
and CPLEX-BAP (less than 5% in 92% of the cases)
is acceptable in practical scenarios. The faster com-
putational time and the ability to find a good solu-
tion in the cases where CPLEX-BAP fails are the
advantages of LF-BAP, making it a better option
for large scale scenarios or any scenarios requiring
a fast solution.

5.2. Comparison
heuristics

with population-based meta-

As explained in Section 4, population-based
meta-heuristics have various shortcomings in deal-
ing with BAPs. In this section we compare the
proposed LF-BAP with an existing state-of-the-art

Setl SetIl
4500
4000
3500
U
2 3000
©
8 2500
e
3 2000
&b
1500
2
1000
500
0
D D D D D NP D P N
FOoE A 6" &2 A e e S
AN S ple o e I N SR P N
N N N N N N & N S
N N N N N & N N &

= H-BAP - CPLEX-BAP —LF-BAP

(a)

145000
125000
105000
85000
65000

Avg. Objective

45000
25000
5000

9*60 big
10*70 small

w
E
@
(=]
°
*
o

9*60 small
10*70 small

10*70 big
12*80 small

10*70 big
12*80 small

|

\

12*80 big
13*100 small

12*80 big
13*100 small

13*100 big
14*120 small

IG

SetIlI

Setl Set Il
50 -
o 40
£
= 30
g
z
20
10
R T
D % D o D b D b D e D e D S D G D
49%\ q“&é“& m“&e@%%@%%&% %“’&5@% x@%f,@& b:"&a;@& c‘&%&& 6"&%@[} q‘°\%
Qo) Q";Q\{fb Qbf*'éd é"f’*'& Q‘Cf*'\:\' Q*r\'*'bu Q‘gq,*"')g QG% N Q’*b‘* » Q‘E{’J
& N Y ® N & Ny Q &
— H-BAP CPLEX-BAP —LF-BAP IG
(b)
Set IV

14*120 big
15*150 small

15%150 big
20*200 small

20*200 big
30*300 small

30*300 big
40*400 small

40*400 big
50*500 small

50*500 big
5*80 small

— H-BAP - CPLEX-BAP —LF-BAP

Set 11

13*100 big
14*120 small

14*120 big
15*150 small

15%150 big
20*200 small

20*200 big
30*300 small

30*300 big
40*400 small

“““ CPLEX-BAP

(d)

40*400 big
50*500 small

—
1y

50*500 big
5*80 small

=s]
=
o~}

5*80 big
6*100 small

580 big
6*100 small

IG

IG

6*100 big
7%150 small

6*100 big
7*150 small

7*150 big
8*200 small

8%200 big
9*250 small

9250 big
10*300 small

10*300 big

7*150 big
8%*200 small

8%200 big
9*250 small

9*250 big
10*300 small

10*300 big

Figure 4: Comparison of four algorithms in terms of average running time and objective values. (a) Objective value
comparison on small-scale data sets. (b) Runtime comparison on small-scale data sets. (c) Objective value
comparison on large-scale data sets. CPLEX-BAP is given the maximum value on the cases it could not

solve. (d) Runtime comparison on large-scale data sets. CPLEX-BAP is given the maximum value on the

cases it could not solve.

18

1.200%

1.000% *

0.800%

0.600%

0.400%

Coefficient of variation

0.200%

0.000%

Figure 5: The coefficient of variation represents the
robustness of LF-BAP.

PSO [15] for BAPs. We replicate the PSO from
[15]. All details of the PSO remain the same as
in [15] but we need to make some modifications to
the evaluation function only to accommodate tidal
constraints. The fitness function is the same as (1).
When evaluating we check whether the berth allo-
cated is available for every vessel. If there is no
berth available for a particular vessel at any tide
according to the given information, the solution
(called particle in PSO) will be re-initialised. If
a berth is only available at high tide, the vessel will
wait to be scheduled until a high tide occurs.

We present here those instances with known
global optima (found by CPLEX-BAP) so that the
results can be compared more accurately. We can
see from Table 9 that with the same number of func-
tion evaluations, LF-BAP significantly outperforms
PSO in all of the test cases.

6. Conclusions

In this paper, we have proposed a new meta-
heuristic based on Levy flight (LF-BAP) to solve
the Berth Allocation Problem taking tidal effect
into consideration. We have conducted several ex-
periments comparing our algorithm with the state-
of-the-art exact method from [5] and the heuristic
from [4], a single-solution based meta-heuristic [44]
as well as a population-based meta-heuristic from
[15]. According to the results, LF-BAP is able to
find highly competitive approximate solutions that
are faster and feasible in large-scale cases. We be-
lieve the work we have demonstrated can make a
practical contribution to the operations of seaports
and terminals.

19

Table 9: Comparison between PSO and LF-BAP on some
test instances

Problem size Tidal effect PSO [15] LEBAP
Avg. Obj. Error (%) | Avg. Obj. | Error (%)
m=3, n=9 small 492.9 5.55% 469.8 0.59%
m=3, n=9 big 615.6 7.28% 587 2.32%
m=4, n=12 small 778.5 8.00% 722.2 0.67%
m=4, n=12 big 828.5 16.44% 718.8 0.88%
m=5, n=15 small 973.1 12.25% 869.5 0.72%
m=5, n=15 big 1113.0 18.10% 954.1 0.71%
m=6, n=18 small 1135.2 17.12% 973.3 0.33%
m=6, n=18 big 1311.3 24.27% 1072.5 1.46%
m=7, n=21 small 1551.9 22.47% 1286.3 0.51%
m=7, n=21 big 1544.5 28.43% 1201.8 0.52%
m=8, n=24 small 1819.7 27.87% 1426.3 0.44%
m=8, n=24 big 1872.7 33.94% 1411.4 1.25%
m=6, n=30 small 2452.2 103.20% 1221.7 0.90%
m=6, n=30 big 2544.7 110.06% 1294 1.30%
m="7, n=40 small 5772.6 111.99% 2841.4 1.18%
m=7, n=40 big 4938.0 127.74% 2251.5 4.44%
m=8, n=50 small 6744.3 189.77% 2300.6 1.05%
m=8, n=50 big 7960.5 181.51% 3247.1 6.85%
m=9, n=60 small 9816.1 70.37% 5847.4 1.76%
m=9, n=60 big 9779.7 76.21% 5798.8 3.48%
m=10, n=70 small 13502.3 84.11% 7473.8 2.98%
m=10, n=70 big 12555.5 86.65% 6957.4 3.77%
m=12, n=80 small 13620.9 71.90% 7911.6 2.42%
m=12, n=80 big 14025.8 85.01% 7901.9 4.12%
m=13, n=100 small 20189.5 94.30% 10599 2.65%
m=13, n=100 big 19568.9 97.79% 10316.7 3.40%
m=>5, n=80 small 30819.5 77.97% 18295.3 4.34%
m=>5, n=80 big 31039.9 71.36% 19465.6 7.85%
m=6, n=100 small 40559.0 92.75% 22131.7 5.38%
m=6, n=100 big 41507.1 87.17% 24464.4 8.67%

Error (%) comparing to CPLEX-BAP (12)

Acknowledgement

This work was supported by a Dean scholar-
ship from the Faculty of Engineering and Technol-
ogy, LIMU, a Newton Institutional Links grant no.
172734213, and a Newton Research Collaboration
Programme grant, both from the UK BEIS. We also
would like to thank Charly Lersteau for contribut-
ing the idea of statistical analysis.

References

[1] C. Bierwirth, F. Meisel, A survey of berth allocation
and quay crane scheduling problems in container termi-
nals, European Journal of Operational Research 202 (3)
(2010) 615-627.

C. Bierwirth, F. Meisel, A follow-up survey of berth
allocation and quay crane scheduling problems in con-
tainer terminals, European Journal of Operational Re-
search 244 (3) (2015) 675-689.

A. Imai, E. Nishimura, S. Papadimitriou, The dy-
namic berth allocation problem for a container port,
Transportation Research Part B: Methodological 35 (4)
(2001) 401-417.

(2]

(3]

(4]

[5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

20]

[21]

22]

D. Xu, C.-L. Li, J. Y.-T. Leung, Berth allocation with
time-dependent physical limitations on vessels, Euro-
pean Journal of Operational Research.

E. Lalla-Ruiz, C. Expoésito-Izquierdo, B. Melian-
Batista, J. M. Moreno-Vega, A set-partitioning-based
model for the berth allocation problem under time-
dependent limitations, European Journal of Opera-
tional Research 250 (3) (2016) 1001-1012.

A. Lim, The berth planning problem, Operations re-
search letters 22 (2) (1998) 105-110.

P. Hansen, C. Oguz, A note on formulations of the static
and dynamic berth allocation problems, Citeseer, 2003.
A. Imai, K. Nagaiwa, C. W. Tat, Efficient planning of
berth allocation for container terminals in asia, Journal
of advanced transportation 31 (1) (1997) 75-94.

A. Imai, E. Nishimura, S. Papadimitriou, Berth alloca-
tion with service priority, Transportation Research Part
B: Methodological 37 (5) (2003) 437-457.

J.-F. Cordeau, G. Laporte, P. Legato, L. Moccia, Mod-
els and tabu search heuristics for the berth-allocation
problem, Transportation science 39 (4) (2005) 526-538.
E. Lalla-Ruiz, B. Melian-Batista, J. M. Moreno-Vega,
Artificial intelligence hybrid heuristic based on tabu
search for the dynamic berth allocation problem, En-
gineering Applications of Artificial Intelligence 25 (6)
(2012) 1132-1141.

P. Hansen, C. Oguz, N. Mladenovié¢, Variable neighbor-
hood search for minimum cost berth allocation, Euro-
pean Journal of Operational Research 191 (3) (2008)
636-649.

M. M. Golias, M. Boile, S. Theofanis, Berth scheduling
by customer service differentiation: A multi-objective
approach, Transportation Research Part E: Logistics
and Transportation Review 45 (6) (2009) 878-892.

R. M. de Oliveira, G. R. Mauri, L. A. N. Lorena, Clus-
tering search for the berth allocation problem, Expert
Systems with Applications 39 (5) (2012) 5499-5505.
C.-J. Ting, K.-C. Wu, H. Chou, Particle swarm opti-
mization algorithm for the berth allocation problem,
Expert Systems with Applications 41 (4) (2014) 1543—
1550.

E. Lalla-Ruiz, J. L. Gonzalez-Velarde, B. Melian-
Batista, J. M. Moreno-Vega, Biased random key genetic
algorithm for the tactical berth allocation problem, Ap-
plied Soft Computing 22 (2014) 60-76.

L. Zhen, Tactical berth allocation under uncertainty,
European Journal of Operational Research 247 (3)
(2015) 928-944.

L. Zhen, L. H. Lee, E. P. Chew, A decision model for
berth allocation under uncertainty, European Journal
of Operational Research 212 (1) (2011) 54-68.

Y. Xu, Q. Chen, X. Quan, Robust berth scheduling
with uncertain vessel delay and handling time, Annals
of Operations Research 192 (1) (2012) 123-140.

E. Lalla-Ruiz, S. Vof, C. Exposito-Izquierdo, B. Melian-
Batista, J. M. Moreno-Vega, A popmusic-based ap-
proach for the berth allocation problem under time-
dependent limitations, Annals of Operations Research
(2015) 1-27.

E. Lalla-Ruiz, S. Voss, Popmusic as a matheuristic for
the berth allocation problem, Annals of Mathematics
and Artificial Intelligence 76 (1-2) (2016) 173-189.

E. D. Taillard, S. Voss, Popmusic partial optimization
metaheuristic under special intensification conditions,
in: Essays and surveys in metaheuristics, Springer,

20

23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

2002, pp. 613—-629.

V. H. Barros, T. S. Costa, A. C. Oliveira, L. A. Lorena,
Model and heuristic for berth allocation in tidal bulk
ports with stock level constraints, Computers & Indus-
trial Engineering 60 (4) (2011) 606-613.

T. Nishi, T. Okura, E. Lalla-Ruiz, S. Vo, A dynamic
programming-based matheuristic for the dynamic berth
allocation problem, Annals of Operations Research
(2017) 1-20.

T. Qin, Y. Du, M. Sha, Evaluating the solution per-
formance of ip and cp for berth allocation with time-
varying water depth, Transportation Research Part E:
Logistics and Transportation Review 87 (2016) 167—
185.

A. D. De Leon, E. Lalla-Ruiz, B. Melian-Batista, J. M.
Moreno-Vega, A machine learning-based system for
berth scheduling at bulk terminals, Expert Systems
with Applications 87 (2017) 170-182.

T. Tran, T. T. Nguyen, H. L. Nguyen, Global optimiza-
tion using lévy flights, in: Proceedings of ICT.rda’04,
Hanoi, 2004.

Z. Meng, H. Shen, T. Zhao, Hybrid artificial bee colony
algorithm based on cuckoo search strategy, in: Seman-
tics, Knowledge and Grids (SKG), 2016 12th Interna-
tional Conference on, IEEE, 2016, pp. 136-140.

X.-S. Yang, S. Deb, Cuckoo search via lévy flights,
in: Nature & Biologically Inspired Computing, 2009.
NaBIC 2009. World Congress on, IEEE, 2009, pp. 210—
214.

G. Terdik, T. Gyires, Lévy flights and fractal model-
ing of internet traffic, IEEE/ACM Transactions on Net-
working 17 (1) (2009) 120-129.

D. K. Sutantyo, S. Kernbach, P. Levi, V. A. Nepom-
nyashchikh, Multi-robot searching algorithm using lévy
flight and artificial potential field, in: Safety Security
and Rescue Robotics (SSRR), 2010 IEEE International
Workshop on, IEEE, 2010, pp. 1-6.

A. F. Ali, A hybrid gravitational search with levy flight
for global numerical optimization, Information Sciences
Letters Inf. Sci. Lett 4 (2015) 71-83.

G. Viswanathan, E. Raposo, M. Da Luz, Lévy flights
and superdiffusion in the context of biological encoun-
ters and random searches, Physics of Life Reviews 5 (3)
(2008) 133-150.

M. Gutowski, Levy flights as an underlying mechanism
for global optimization algorithms, ArXiv Mathemati-
cal Physics e-printsarXiv:math-ph/0106003.
NWEUROPE, Opportunities for Territorial Change
(2008).

URL http://www.espace-project.org/publications/
IIIBPublicationonBestIIIBprojects.pdf
ForConstructionPros, Turning Sea Into Land (2016).
URL https://wuw.forconstructionpros.com/
concrete/equipment-products/article/12278666/
turning-sea-into-land

Wikipedia, List of busiest container ports (2017).

URL https://en.wikipedia.org/wiki/List_of_
busiest_container_ports

Akanksha Gupta, The world’s 10 biggest ports (2013).
URL http://www.ship-technology.com/features/
feature-the-worlds-10-biggest-ports/

World Shipping Council, TOP 50 WORLD CON-
TAINER PORTS (2015).

URL {http://wuw.worldshipping.org/
about-the-industry/global-trade/

[40]

[41]

[42]

[43]

[44]

[45]

[46]

top-50-world-container-ports}

Vesseltracker, Vesseltracker.com (2018).

URL http://www.vesseltracker.com/en/Home.html
MarineLink, Collision closes houston ship channel
(2015).

URL https://www.marinelink.com/news/
collision-houston-channel387314

Ta Kung Pao, Capesize Freight Route High (2011).
URL http://www.hh-ship.com/hh/en/newsshow.asp?
id=35

Andrew Mwaniki, Busiest Cargo Ports In South
America (2018).

URL https://www.worldatlas.com/articles/
busiest-cargo-ports-in-south-america.html

S.-W. Lin, K.-C. Ying, S.-Y. Wan, Minimizing the to-
tal service time of discrete dynamic berth allocation
problem by an iterated greedy heuristic, The Scientific
World Journal 2014.

G. J. Woeginger, Exact algorithms for np-hard
problems: A survey, in: Combinatorial Optimiza-
tion—FEureka, You Shrink!, Springer, 2003, pp. 185—
207.

J. Neyman, Outline of a theory of statistical estimation
based on the classical theory of probability, Philosophi-
cal Transactions of the Royal Society of London. Series
A, Mathematical and Physical Sciences 236 (767) (1937)
333-380.

URL http://wuw. jstor.org/stable/91337

21

