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Executive summary. 

It is becoming accepted that exercise increases gastrointestinal (GI) symptomology and 

permeability potentially effecting performance and recovery. This thesis addresses the 

issues of how exercise intensity, modality and pattern of exercise will impact upon GI 

permeability, damage and symptomology expression. Further it will examine how these 

factors may be modified by the environmental conditions under which they take place and by 

the use of pharmacological agents. In study 1 chapter 4, six male soccer players undertook 

both a 90-min rest or soccer specific intermittent exercise protocol (SSIE) under two 

environmental conditions (Hot 32°C or Cold 12°C) to evaluate how GI permeability and 

symptomology was affected by simulated soccer match play activity. SSIE elevated GI 

permeability relative to rest in both hot and cold conditions but these changes were only 

significant in the protocols undertaken in the heat. Such differences potentially reflecting the 

attenuated exercise intensity elicited by the protocol. However, exercise and rest in the heat 

relative to cold was associated with significantly higher GI permeability and wider array of 

subjective gastrointestinal symptomology.  

 

In study 2 chapter 5 the activity patterns typically experienced in soccer i.e. continuous and 

intermittent running were compared when 10 male participants undertook a series of 

protocol (s); rest, continuous steady state and intermittent exercise performed at the same 

‘relative intensity’ of 70% V̇O 2 peak. Interaction with environmental stressors in the Hot 32°C 

or Cold 12°C on GI permeability and subjective GI symptomology was determined. GI 

permeability increased under both continuous and intermittent exercise compared to rest. No 

differences between continuous and intermittent exercise patterns were observed when 

undertaken in the cold. However, a stepwise increase in permeability was noted in the heat: 

Rest < SS < HIIT. Minimal expression of GI symptoms was noted and these were unrelated 

to the objective GI permeability markers. When relative exercise intensity is controlled for at 

70% of a velocity associated with V̇O 2 peak no difference in GI permeability occur between 

HIIT and steady state exercise when this is undertaken in the cold. This response is 

abolished when exercise is undertaken in under HOT conditions but does not attain 

significance. 

 

Study 3 chapter 6 using a double blind repeated measures design examined the effects of 

HIIT exercise and the co-administration of Non-Steroidal Anti Inflammatory Drugs (NSAIDs) 

upon GI permeability and symptomology. Twelve trained intermittent games players 

participated.  It was observed that HIIT exercise consisting off, repeated sprint activity [4 sets 

x 6 x 35 m (< 6s)] does not increase GI permeability relative to rest. Further when NSAIDS 
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(2 x 400 mg Ibuprofen) are added to this model no further changes in gut permeability and 

symptoms are observed above that off the relevant control.   These data suggest that 

following the present dosing regimen in trained male games players GI permeability and 

symptoms are unaffected by a single bout of HIIT exercise. Taken together the HIIT exercise 

model undertaken here and the co administration of Ibuprofen do not increase GI 

permeability seen with longer duration exercise. 

 

Finally, study 4 chapter 7 addressed whether exercise modality running vs cycling may be 

important in the development of GI disturbances give the epidemiological data that reports 

higher GI symptomology during and after running. Six male triathletes undertook three 

separate trials; a steady state 1000 kilojoule (KJ) cycling work test at 70% V̇O2 peak, an 

equivalent treadmill running protocol matched on total energy expenditure and equivalent 

period of non-exercise. Under these conditions GI permeability, as expressed by L:R ratio 

and GI symptoms were examined. Data indicate relative to rest an increase in GI 

permeability but indicate no modality specific differences in GI permeability and symptom 

expression between running and cycling. Running relative to cycling is associated with 

higher albeit still relatively limited subjective GI symptoms contrasting the equivalence seen 

in GI permeability L:R ratios. This disassociation in subjective symptoms and objective GI 

permeability in triathletes requires further consideration as regards mechanism of action and 

causality between these markers.    

 

This thesis has considered the effect of exercise intensity, modality and exercise patterning 

and their interactions with environmental stress upon objective and subjective markers of GI 

Function. Data suggest that exercise induced increases in GI permeability relative to rest 

occur when the exercise intensity and duration exceed a critical threshold of ~70 %  peak 

aerobic capacity for at least 50 minutes. Manipulation of exercise patterning i.e. HIIT vs 

continuous undertaken at the same relative intensity shows no difference in GI permeability 

when under taken in the cold relative to the heat.  Undertaking exercise in a Hot (32°C) 

environment accentuates permeability. Subjective GI symptomology does not mirror 

changes in the objective GI permeability markers with all subjective data indicating 

registering limited symptomology. It was further observed that HIIT exercise consisting of 

supra-maximal, short duration repeated sprints (<6s) performed on a repeated basis does 

not alter GI permeability. When NSAIDS are co-ingested with this model no further changes 

in gut permeability and symptoms are observed. Finally, exercise modality does not impact 

alter GI permeability and the relationship to GI symptomology. 
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Introduction 

1.1 Background 

Physical stress in the form exercise activity represents a challenge to the maintenance of 

homeostasis. It is through the repeated imposition and manipulation of this stress that 

positive and negative exercise related changes in health and performance occur principally 

through the manipulation of frequency, intensity, duration and type of exercise as well as 

recovery super-compensation and adaptation will occur (Cunanan et al., 2018). Whilst, much 

is understood about these adaptive responses at both the whole body and molecular level in 

cardiovascular, muscular and, immunological systems the effects of exercise performed 

acutely and chronically on the gastrointestinal tract/barrier (GI) has been subject to limited 

evaluation (Barberio et al., 2015; Costa et al., 2017a; Gil et al., 1998). Given the central role 

of the gut in nutrient absorption (Janssen Duijghuijsen et al., 2016; Pfeiffer et al.,  2009) and 

emerging roles in regulation of immunity (Valdés-Ramos et al., 2010), inflammation 

(Somsouk et al., 2015), host-microbiotica interactions (Marques et al., 2014; Yu, 2012), 

fatigue (Shukla et al., 2015) and the regulation of heat related injury (Avinash et al., 2017; 

Vargas & Marino, 2016) further understanding of how the gastrointestinal system is affected 

by exercise is warranted. 

 

The anatomy and functionality of the gastrointestinal system has been well described; 

essentially in its basic form consisting of a long tube extending from the oral cavity to the 

anus with sections adapted to digesting extracting and expelling ingested materials. 

However, this simplicity of concept is underpinned by a highly complex interrelated physical, 

immunological, hormonal, central and peripheral neural axis and microbiota regulated 

pathway(s) that are still been elucidated; pathways whose effects impact across metabolic, 

physiological, immunological psychological and behavioral constructs (Bischoff, 2011; 

Stewart et al., 2017) . The "Gastrointestinal Barrier" is a generic term used to describe the 

combination of physical, cellular and humoral properties of the gastric and intestinal mucosa; 

a barrier that plays a critical role in regulating the selective transfer of nutrients, whilst 

excluding potentially harmful substances passing into systemic circulation (Bischoff, 2011; 

Camilleri et al., 2012; Fasano, 2011; Lambert, 2008; Stewart et al., 2017). However, the 

integrity of the GI barrier may be compromised by a range of stressors i.e. illness, exercise, 

heat stress, bacteria, and pharmacological agents (Ashton et al., 2003; Costa et al., 2017b; 

Grootjans et al., 2013a; Shulman et al., 2014; Vieth & Montgomery, 2017). Loss of GI barrier 

integrity leads to an increase in gastrointestinal permeability, i.e. the non-mediated transfer 

of luminal antigenic agents from gut to systemic circulation effecting mild to severe local and 

systemic inflammatory reactions and adverse gastrointestinal symptoms (Fasano & Shea-
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Donohue, 2005; Fehrenbach & Schneider, 2006; Lambert, et al., 2002b; Selkirk, et al., 

2008b).  

 

Epidemiological and experimental data report increased symptomology of gastrointestinal 

disturbance in both the upper and lower GI tract (nausea, regurgitation, wind, vomiting, 

diarrhoea, cramps, abdominal pain and bloating) in both male and female athletes (Haaf, et 

al., 2014; Lambert et al., 1999; Peters et al., 1999; Riddoch & Trinick, 1988; ter Steege, et 

al., 2008; ter Steege, et al., 2012). In particular, athletes that take part in endurance events 

across a range of duration/distance’s seem susceptible to this symptomology and frequently 

express gastrointestinal symptoms in a range between 4-96% (Costa et al., 2017; Haaf et 

al., 2014; ter Steege et al., 2008). Interestingly, Worobetz et al. (1985) and Riddoch & 

Trinick, (1988) have indicated lower frequencies of GI symptomology in cycling and 

swimming activities relative to running. It may be that the modality of exercise and the 

relative mechano-physiological stimuli elicited induce changes in GI function, although the 

mechanism and magnitude of any resultant dysfunction are unquantified.   

 

It has been suggested that the training status of the individual/athlete, the exercise duration 

and intensity undertaken (Lambert et al.,1999; Pals et al., 1997), as well environmental 

temperature (Pires et al., 2016) and hydration status (Costa et al., 2016b; Rehrer et al., 

1990) may be critical factors predisposing towards the expression of subjective GI 

symptomology and objective markers of GI dysfunction (Pals et al., 1997; Selkirk et al., 

2008). Mechanistic links between the presentation of gastrointestinal symptoms, and 

disruption to gut mucosa have been ascribed to tissue hyperthermia, reductions in 

splanchnic blood flow of 50-80 %, due to sympathetic mediated vasoconstriction of the 

splanchnic vascular bed in order to meet blood flow requirements of the active muscles and 

cutaneous blood flow to support the transfer of heat from the core to the body surface 

(Crandall & Gonzalez-Alonso, 2010). This reduction in blood flow being inversely 

proportional to the percentage of maximal oxygen consumption (V̇O2 max) achieved during 

exercise performance (Ashton et al., 2003; de Oliveira et al., 2014; Gutekunst et al., 2013; 

van Wijck, et al., 2011). Impairments in splanchnic blood flow may further predispose toward 

heat mediated disruption to epithelial, mucus and smooth muscle barriers in the GI wall 

(Lambert, 2009; Selkirk et al., 2008). Secondary to acute reductions in splanchnic blood flow 

tissue hypoxia may be expressed due to an ischemia reperfusion cycle and associated 

oxidative and nitrosative stress (Hayashi et al., 2012; Kannan et al., 2011; Lambert et al., 

2002; Mensink et al., 2011; Rowell, 2004; Wu et al., 2017). As a consequence the 

magnitude of the paracellular penetration of GI luminal antigens may increase, leading to 

immune activation and inflammation  (Fasano, 2012). The mechanism of this ‘leaky gut’ as it 
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has been termed, has been associated with disruption to enterocyte tight junction protein 

expression and impairment of basement membrane function subsequent to up-regulation of 

pro-inflammatory pathways in humans (Fasano, 2012; Fasano & Shea-Donohue, 2005; Zuhl, 

et al., 2014b).   

 

Given the importance of maintaining GI splanchnic blood flow and dissipating heat 

accumulation, knowledge of the impact of exercise patterning such as how the exercise 

intensity and duration are modulated to alter the training load may have an important bearing 

upon GI symptomology and permeability. In particular  experimental and epidemiological 

data on both objective and subjective markers of GI dysfunction has generally reported upon 

a continuum off steady state activities from short [5 k-21k], marathon, ultra-marathon  to 

multi day endurance activities (Gill et al., 2015a; Haaf et al., 2014; Keeffe et al., 1984; 

Roberts et al., 2016a; Wilson, 2017). The physiological and metabolic responses to 

intermittent exercise are well established, recent work has considered high intensity 

intermittent exercise to convey performance and health related benefit’s in a more time 

efficient and enjoyable manner than longer duration steady state activity (Burgomaster et al., 

2008; García-Pinillos et al., 2017; Jiménez-Pavón & Lavie, 2017) , however the nature of the 

exercise results in a cyclical pattern of cardiovascular strain and gut perfusion/reperfusion 

that could impact gut function. Comparison of the relative effects of constant intensity 

exercise to intermittent exercise with regard to GI symptomology and permeability remains 

unknown, the effects of very high intensity exercise remains unknown, the effects of these 

activities under differing environmental stress remains unknown. The combined interaction 

between steady sate and intermittent exercise, similar to that expressed during invasion field 

games remains unknown.  Further work to resolve these considerations are warranted.  

 

Whilst exercise may mediate changes in GI function and contribute to subjective symptom 

expression its combination with pharmaceutical agents and impact on the gut has come to 

prominence (McAnulty et al., 2007; Nieman et al., 2006; Tscholl & Dvorak, 2012). 

Nonsteroidal anti-inflammatory drugs (NASIDs) are widely used over the counter agents 

used in the acute and chronic treatment and management of soft-tissue injuries and for 

analgesic purposes in athletes (Da Silva et al., 2015; Holgado et al., 2017; Tscholl, et al., 

2016; Vaso et al.,   2015).  Clinically, NSAID induced GI mucosal damage is a well described 

adverse effect of their usage (Marlicz et al., 2014). Significantly, NSAIDs such as ibuprofen 

have previously been found to increase gastrointestinal GI permeability at rest and following 

exercise particularly after prolonged, sub-maximal endurance events such as marathon and 

triathlons (Jeukendrup et al., 2000; Küster, et al., 2013; McAnulty et al., 2007; Nieman et al., 

2006; Smetanka et al., 1999; Whatmough, et al., 2017). Since the use of NSAIDs in a variety 
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of sports and individual events is widespread, it is important to determine the effect it has on 

the GI barrier function especially when they are combined with exercise particularly High 

Intensity Interval Training (HIIT).   

 

As a result of physical activity whether undertaken for health or performance related 

outcomes the gastrointestinal system is subject to a range of stressors that are likely to 

impact upon individual health and wellbeing. Whilst several possible mechanisms of action 

and pathways to explain these effects are postulated there remains a paucity of data as 

relates to the effects of exercise intensity, duration, patterning and their environmental 

interactions. There is a clear need to characterise the impact of these factors upon GI 

subjective and objective functioning.  

 

1.2 Aims and objectives  

The aim of the thesis is to examine the role of exercise, environment and 

pharmacological agents upon on gastrointestinal permeability, damage and 

symptomology. 

 

Objectives: 

1. To examine the impact of combined continuous and intermittent exercise in the form of 

soccer specific intermittent exercise (SSIE) under Cold (12  ̊C) and Hot (32  ̊C) 

environmental conditions upon GI permeability and GI symptomology. 

2. To examine the individual role of continuous and intermittent exercise performed under 

Cold (12 ̊C) and Hot (32 ̊C) environmental conditions upon GI permeability and 

symptomology. 

3. To examine the effects of high intensity repeated sprint exercise upon GI permeability and 

secondly to determine the effects of acute NSAID [ibuprofen] ingestion preceding such 

activity upon GI permeability and symptomology. 

4. To examine the role of exercise modality i.e. cycling vs. running upon GI permeability, 

damage and symptomology. 
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1.4 Hypothesis 

 

Each research chapter will involve its own hypothesis to be tested. 

 

Chapter 4: Soccer specific intermittent exercise [SSIE] in the heat will increase GI 

permeability and symptoms relative to rest and cold condition.  It will also be 

expected that exposure to heat will increase passive GI permeability and 

symptomology relative to cold. 

Chapter 5:  High intensity intermittent (HIIT) and continuous steady state exercise will 

increase GI permeability and symptomology relative to rest. High intensity 

intermittent relative to steady state exercise in the Heat (32 ̊ C) relative to 

Cold (12  ̊C) will express higher GI permeability and GI symptomology. 

Chapter 6: GI permeability and symptomology will increase following supramaximal High 

Intensity Intermittent Exercise (HIIT) relative to rest. HIIT exercise and NSAID 

ingestion will act synergistically to augment this increase in GI permeability 

and symptoms relative to placebo and rest conditions. 

Chapter 7: Indices of GI permeability and symptomology will be higher during running 

relative to cycling when matched for absolute work load and relative exercise 

intensity. 
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Chapter 2 – Literature Review 
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2.0 The Gastrointestinal System. 

 

The gastrointestinal system in its simplest form consists of a hollow muscular tube arising in 

the oral cavity, continuing through the pharynx, oesophagus, stomach and intestines to the 

rectum and anus, where food is eventually expelled. A variety of other accessory organs 

(salivary glands, liver, pancreas and gall bladder) contribute to this digestive and absorption 

process through the secretion of a different enzymes to break down the food into its 

component nutrients. Through the action of the muscular walls of the gut facilitating a 

peristaltic action, the ingested materials are moved along the length of the GI tract. 

 

Figure 2.1 Schematic representation of the Human GI system. ( Pearson Education 2009)  

 

The primary purpose of the gastrointestinal system is to facilitate the digestion of ingested 

material and absorption of ingested fluids in addition to excretion and immunological 

regulation (Cheng et al., 2010). In its simplest form food must be ingested into the mouth to 

be mechanically processed and moistened via mastication. Secondly, digestion occurs 

mainly in the stomach and small intestine where proteins, fats and carbohydrates are 

chemically broken down into their basic building blocks. Smaller food derived molecules are 

then absorbed across the epithelium of the small intestine and subsequently enter the 
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circulation. The large intestine ( colon) plays a key role in reabsorbing water and the 

compaction and storage of waste in the sigmoid colon and rectum prior to elimination. In 

relation to the questions under consideration in this thesis the primary portion of the GI tract 

under consideration is the small intestines. It this structure which will be briefly reviewed in 

relation to its anatomy and functions. 

 

2.1 The Small intestine. 

 

The small intestine has three major components; the duodenum, jejunum, and ileum. 

Structurally it is approximately 6m in length, extending from the pyloric sphincter of the 

stomach to the ileo-caecal valve that separates the ileum from the caecum. The small 

intestine is compressed into numerous folds and occupies a large proportion of the 

abdominal cavity (Figure 2.1). The small intestine performs the majority of digestion and 

absorption of nutrients. The duodenum is the proximal C-shaped section that facilitates the  

mixing of digestive enzymatic secretions from the pancreas and liver with the contents 

expelled from the stomach. The start of the jejunum is defined by the duodeno-jejunal 

flexure, it is in the jejunum where the majority of digestion and absorption of nutrients occurs. 

The final portion, the ileum, is the longest  part of the small intestine and empties into the 

caecum at the ileocaecal junction, prior to entry into the large intestine. The small intestine is 

lined with specialist cells arranged into permanent folds called plicae circulares. Each plica 

has numerous villi (folds of mucosa) and each villus is covered by epithelium with projecting 

microvilli (brush border), the primary functional role being to increase the surface area for 

absorption (Figure 2.2).  

 

 

Figure 2.2 Schematic cross sectional representation of the small intestine Human GI system. 

(Pearson Education 2009).  
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The mucosa of the small intestine contains several specialized cells. Some are responsible 

for absorption, whilst others secrete digestive enzymes and mucous to protect the intestinal 

lining from digestive actions (Grootjans et al., 2016). In addition, the gut provides a barrier 

between the systemic circulation and potentially toxic intra-luminal antigens (Grootjans et al., 

2016). In order to facilitate this function, the GI tract is equipped with several barriers.  It is 

this element of the GI tract that this review will now consider. 

 

2.2 The Gastrointestinal Barrier: Structure and Function  

 

 

 

 

 

Figure 2.3 Schematic cross sectional representation of the small intestine Human GI system. 

(Taken from Stewart et al., 2016).  

 

The gastrointestinal (GI) barrier from a structural perspective can be described in terms of 

two key components: (1) the intrinsic barrier comprising a monolayers of absorptive 

enterocyte cells  and lining epithelial cells with associated tight junction proteins between 

them; and (2) the extrinsic barrier; comprising specialised secretions (mucins), 

immunological cells in close contact with both the epithelial cells and external environment of 
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the lumen (Bischoff et al., 2014; Fasano et al., 2011; Stewart et al., 2016; Zuhl et al., 2014). 

In terms of its function, the intestinal barrier serves two main purposes: (1) to act as a filter to 

allow the absorption of essential nutrients from the intestinal lumen into the circulation and 

(2) a preventative barrier/mechanism inhibiting the translocation of antigenic agents and 

endotoxin i.e. lipopolysaccharide from the lumen of the GI tract (Camilleri et al., 2012; 

Farhadi et al., 2003).  Maintaining an intact and effective GI barrier is critical in the 

maintenance of general health, the prevention of oxidative stress related tissue damage and 

disease through implementing a selective transport process (Camilleri et al., 2012; Farhadi 

et al., 2003). A range of specialised membrane proteins (tight junction proteins) of the 

intrinsic barrier connect adjacent cells on the apical and lateral membranes, to form an 

extracellular selectively permeable barrier or ‘Tight Junction’ (Figure 2.4). These proteins 

include a wide range of protein families that include claudin, occludin and junctional 

adhesion molecules (JAM) (González-Mariscal et al., 2003; Fasano et al., 2011). Whilst a 

large number of these proteins are now identified it is likely that those of the Claudin family 

and its distinct primary isoforms 1, 2 and 3 are functionally responsible for cell adherence, 

whilst those of the occludin family act to partially regulate tight junction integrity (Doklandy et 

al., 2016; Zuhl et al., 2014). However, the complexity of tight junctions is such that their 

integrity and function are also associated with other peripheral scaffolding proteins (e.g. 

Zonulin) which are in turned linked to actin and microtubules scaffolds (Van Itallie & 

Anderson et al., 2014). This complex network of regulatory proteins is also associated with 

other signaling proteins that affect the barrier and broader cell functions through mediating 

alterations in their phosphorylation states (Gonzalez-Mariscal et al., 2008). These tight 

junctions are estimated to exclude substances with a radius exceeding 15 Å (~3.5 kDa) 

passing via a paracellular pathway (Vojdani et al., 2013). Functionally, through these 

structural and signalling pathways this barrier regulates selective movement of ions, water 

and nutrients, and helps protect against leakage of luminal related antigens (Camilleri et al., 

2012). It is this leaky gut that has been associated with the widespread reports of GI 

symptoms during and following exercise activity. In the following section this aspect of 

exercise and the GI system will be explored 

 

2.3  Epidemiology and Symptomology of Gastrointestinal Dysfunction. 

Epidemiological and experimental data report increased expression of GI symptomology and 

disturbance in both the upper and lower GI tract (nausea, regurgitation, wind, vomiting, 

diarrhoea, cramps, abdominal pain and bloating) in both male and female athletes (Haaf et 

al., 2014; Lambert et al., 1999; Peters et al., 1999; Riddoch & Trinick, 1988; ter Steege, et 

al., 2008; ter Steege et al., 2012). In particular, athletes that take part in endurance events 

across a range of duration/distance’s seem susceptible to this symptomology and frequently 
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express gastrointestinal symptoms in a range between 4-96% (Costa et al., 2017; Haaf et 

al., 2014; Peters et al., 1999; ter Steege et al., 2008). Symptom severity presented in such 

events range from mild (wind, bloating) to severe (acute colitis, faecal occult blood, chronic 

ischemia) the latter symptoms being expressed particularly at the extreme endurance event 

end of the scale (Cohen et al., 2009; Costa et al., 2016; Gill et al 2016; Grames & Berry-

Cabán, 2012; Jeukendrup et al., 2000; Pfeiffer et al., 2012; Roberts et al., 2016a; Stuempfle 

& Hoffman, 2015; Stuempfle et al., 2016). Consequently, a graded response across 

literature is evident in symptom frequency and severity which may be considered as a 

function of distance covered (Costa et al., 2016b; Haaf et al., 2014; Riddoch & Trinick, 

1988). It is evident that as athletes move from shorter distances such a marathon to ultra-

distances and multistage races there is a more consistent rise in symptom expression and 

severity (Gill et al., 2015; Stuempfle & Hoffman, 2015). A predominance towards either 

upper or lower gastrointestinal symptom expression is also not consistently apparent across 

endurance activities (Snipe, et al., 2017; ter Steege et al., 2008). Interestingly, a dichotomy 

exists in that most experimental studies measure small intestine function (Gill et al., 2015; 

Lambert et al., 2008; March et al., 2017; McKenna et al., 2017; Playford et al., 2001; Pugh et 

al., 2017; Smetanka et al., 1999) whilst the data still indicate significant symptomology in the 

large intestine which has been largely ignored experimentally (Lambert, 2004).  

In terms of the general aetiology of such factors; age, gender, environment, nutrition both 

pre and in-event as well as clinical predisposition to GI issues may be contributory factors 

(Lambert et al., 1999; Packer & Hoffman-Goetz, 2012; Pfeiffer et al., 2012; Wright et al., 

2011). The complex nature of the GI system and its functions, most likely mean that there is 

probably no single causal factor that predisposes to GI dysfunction. Several recent narrative 

and systematic reviews suggest there are complex pathways involved which may cause GI 

dysfunction and symptomology (Costa et al.,  2017; van Wijck et al., 2012; ter Steege et al., 

2012). 

 

2.4 Gastrointestinal permeability. 

 

Gastrointestinal permeability refers to the non-mediated translocation of low molecular 

weight particles through the mucosal and endothelial membranes via paracellular and/or 

transcellular pathways (Figure 2.4) (Arrieta et al., 1996; Camilleri et al., 2012). As such ‘GI 

permeability’ is a description of the functional status of the GI barrier and can be assessed 

by measuring the rate of movement of ‘measurement probes’ across the GI barrier. In 

defining permeability, it must be remembered that permeability is a normal function of the GI 

barrier and essential to maintaining health and function (Vojdani et al., 2013). It is only when 

this GI barrier is subject to a breach that facilitates the transferal of substances that should 
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be exclude mediates adverse physiological responses or pathology development (Bischoff et 

al., 2014; Fasano et al., 2011). The following sections shall explore the assessment of GI 

permeability. 

 

 

 

Figure 2.4 Schematic representation of the GI Barrier with barrier integrity maintained and 

disrupted with pathways of translocation outlined (After Stewart et al., 2016). 

 

2.5 Gastrointestinal Permeability Assessment.  

 

Gastrointestinal permeability has been evaluated using a number of techniques in both 

human and animal models (Lambert et al., 2009; Rao et al., 2011). Determination of GI 

permeability is commonly applied in clinical and research settings and is usually determined 

by the differential urinary excretion or serum appearance of orally administered non-

digestible, sugar probes sometimes termed the ‘Sugar Absorption Test’ [SAT] (Camilleri et 

al., 2012; Fleming et al., 1996; Haase et al., 2000; van Wijck et al., 2012; van Wijck et al., 

2013) (Table 2.1a). Using a combination of inert ‘sugar’ probes that vary in molecular weight 

provides an indication of the different regions of the gut subject to intestinal permeability 

changes may be determined (Lambert, 2008; van Wijck et al., 2013). In selecting the 

appropriate sugar probes the primary method of translocation across the GI barrier should 

be considered so as to allow direct quantification on the mechanism by which they cross the 

intestinal epithelium i.e. specific pathway of mediated or non-mediated transport enabling a 

probe for a specific function or pathway for investigation to be selected (Arrieta et al., 2006; 

Lambert, 2008). The sugar probes to be utilised it is suggested should resist metabolic 

degradation and be fully excreted by the kidney after reaching the circulation to ensure a 

reliable quantitative relationship between uptake from the intestine and recovery in the urine 

and/or blood (Arrieta et al., 2006). 
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The type of sugars previously used in ‘SAT’ assessment  are diverse although a 

disaccharide (usually lactulose) and a monosaccharide (L-rhamnose, mannitol or D-xylose) 

are typically combined to assess small intestine non-mediated permeability i.e. simple 

diffusion (van Wijck et al., 2013) (Table 2.1). Lactulose (molecular weight = 342 Da & 

0.42nm diameter) the larger of the probes is assumed to only be absorbed through low-

incidence, large aqueous mucosal pores but mainly by paracellular pathways when intestinal 

barrier function is compromised whereas L-rhamnose, mannitol and D-xylose (molecular 

weight = 164 Da, 182 Da & 150 Da respectively <0.4 nm) the smaller, are considered to 

cross the intestinal barrier freely by simple diffusion through high incidence, small aqueous 

mucosal pores  (Arrieta et al., 2006; Bischoff et al., 2014; Stewart et al., 2017). As such the 

different size molecules follow different routes through the intestinal barrier: the larger 

molecules are assumed to permeate via paracellular pathways, and the smaller molecules 

are assumed to translocate via a mixture of paracellular and transcellular route. Varying the 

number of sugars in the test solution to assess intestinal absorption and permeability 

reduces the variation due to non-mucosal factors; all sugars are likely to be affected to a 

similar extent. This multi-sugar approach facilitates region specific permeability 

measurements of the GI tract (Arrieta et al., 2006; Lambert, 2009). In using this approach for 

example sucrose is destroyed once it leaves the stomach and so sucrose permeability is a 

reflection of gastroduodenal disease whilst lactulose and mannitol/l-rhamnose are 

metabolised in the caecum and provide information regarding the small intestinal epithelium. 

Finally, probes such as sucralose and Cr-EDTA are stable throughout the gut and can 

therefore provide estimates as to the permeability of the colonic epithelium (Arrieta et al., 

2006; Fassano et al., 2011; Lambert, 2009).    

 

Intestinal permeability can therefore be determined as a ratio of urinary/serum/plasma 

recovery of the large molecules divided by the small molecules normally over a 5 hour period 

or other chosen time frame (Karaeren et al., 2002; Mattiol et al., 2010). Whilst the urinary 

recovery of these ‘sugar probes’ has been the clinical gold standard more recently others 

have sought to modify the assay process in order to improve logistics and reduce the burden 

of the assessment method. Blood derived permeability analysis can also be used to assess 

intestinal damage over a shorter time period usually 2 hr (Fleming et al., 1996; van Wijck et 

al., 2012; van Wijck et al., 2013). Generally, serum or plasma derived measured have been 

validated as an alternate protocol although this validation protocol has been utilised only in 

passive situations. As such it may be impacted by several factors including the 

pharmacokinetics (Van wijck et al., 2013) and dynamics of the sugar probes in the blood 

following exercise (Lenz et al., 2010). It is known that when exercise is undertaken the 
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pharmacokinetics i.e. the rate at which a substance(s) is/are absorbed, appear and are  

eliminated from circulation can be altered due to modifications in GI pH, GI motility, 

splanchnic blood flow (Lenz et al., 2010, Khazaeinia & Ramsey, 2000; Ylitalo,1991) no data 

currently exists to support a similar time course during exercise as has been reported during 

the rest validation work for SAT tests during exercise related studies. This is key limitation on 

numerous exercise model studies as the peak determination of L:R ratio may be delayed 

beyond the time frame previously reported. In addition to potential difference in the kinetics 

of sugar detection, conflicting information exists as to the appropriate time which to ingest 

the sugar probes to optimise the estimation of change in GI permeability. Literature reports a 

number of studies were the ingestion of the sugar probes occur either pre exercise (Pugh et 

al., 2017) or mid exercise (vanWijck et al., 2011) the impact of this difference in probe 

ingestion time upon estimates of permeability remain to be resolved, particularly when 

considered in conjunction with the above considerations. In urinary assessments pre-

absorption factors such as gastric emptying, dilution by secretion and intestinal transit time, 

and post-absorption factors such as systemic distribution and renal clearance are 

considered to affect both molecules to a similar extent (Lambert, 2008). As such, the ratio of 

the two probes will primarily be affected by the state of mucosal permeability (Sequeira et 

al., 2014). However, permeability estimates are subject to a range of possible complicating 

factors (Figure 2.5)  

 

Whilst the sugar absorption test has been the clinical gold standard, several issues have 

been raised as regards the tests correlation with the development of GI related symptoms, 

inflammation and immune activation. Vojdani et al. (2013) suggests that sugar absorption 

tests are not indicative of large macromolecules permeation through the GI barrier and fail to 

correlate with bacterial lipopolysaccharides (LPS) measurements which have been reported 

extensively in the literature. Several authors have argued that large diameter (high molecular 

weight > 4000 DA) probes should be used to present a surrogate of macromolecule or food 

antigen molecules that are implicated in GI dysfunction (Vojdani et al. 2013). Essentially 

sugar probes markers it is asserted may not represent macromolecular absorption and do 

not fully represent how the gastrointestinal tract manages luminal antigenic permeability 

through the GI barrier (Jolanen et al.,1991; Vojdani et al., 2013)  
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Figure 2.5   Non-Mucosal factors likely to impact upon the measurement of GI permeability, 

(Travis and Perkins, 1992). 

 

2.6 Biomarkers of Gut Permeability 

Alternatively, other biomarkers have been sought to represent a variety of GI dysfunction 

terms: gastrointestinal ‘dysfunction’, ‘permeability’, ‘damage’ to represent a diverse patho-

aetiology (Fengming & Jianbing, 2014). In general, these markers have been developed for 

and applied in clinical settings with application in the exercise setting based upon their 

clinical utility profile; interestingly the utility of these parameters in terms of both sensitivity 

and specificity as well as normal ranges have never been properly established in healthy 

athletic populations. The range of biomarkers examined that may be a surrogate of GI 

damage has included Intestinal fatty acid binding protein [I-FABP] a small cytosolic protein 
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situated in the apical border of the small intestinal villi that is released into the circulation 

upon cellular damage/hypo-perfusion/hypoxia. It has been the most widely applied 

biomarker in the exercise setting as a marker of enterocyte tissue damage via putative 

hypoperfusion and/or hyperthermia (Costa et al., 2017; March et al., 2017; Pugh et al., 2017; 

Snipe et al., 2017; van Wijck et al., 2012). In general, the efficacy of IFABP as a marker is 

still debated in the exercise field, as it would seem to be highly liable with reference ranges 

at rest and during exercise highly variable (Pugh et al., 2017; Van Wijck et al., 2011; Mc 

Kenna et al., 2017; March et al., 2017). Other markers utilised have included Liver Fatty Acid 

Binding Protein (van Wijck et al., 2011), D-Lactate (Kondoh, et al., 1992; van der Voort et al., 

2014; Wong et al., 2016), calprotectin (Fagerhol et al., 2005; Wang et al., 2013), faecal 

lipocalin2 (Chassaing et al., 2012), citrulline (Crenn, et al., 2007; van der Velden et al., 2013; 

van Wijck et al., 2014). However, there exist insufficient data in the exercise field to 

comment on their potential efficacy as a biomarker. 

 

The prevalence of such biomarkers also raises an important point as mentioned around the 

use of terminology to describe dysfunction within exercise based gastrointestinal research; 

leaky gut (Fasano, 2011), GI Permeability  (Gutekunst et al., 2013; Lambert, 2008) gut 

damage (Playford et al., 1999; Snipe et al., 2017) have been utilised somewhat 

interchangeably however each measures a distinct process and is likely to have different 

pathway’s and time sequences of activation, progression and outcome. Costa et al. (2017) 

have ascribed the more generic term ‘Exercise induced gastrointestinal syndrome’ to reflect, 

probably more correctly the abundance of terms reflecting these collective GI functional 

issues. Further work to clarify biomarker specificity and sensitivity is required in the exercise 

field. 

 

The integrity of the GI barrier may be compromised by a variety of factors. Various stressors 

including, endotoxaemia (O’Dwyer et al., 1988; Brock-Utne et al., 1988), psychogenic stress 

(Meddings & Swain, 2000), non-steroid anti-inflammatory drugs (NSAID’s) and aspirin use 

(Lambert et al., 2001; Vieth and Montgomery, 2016), exercise stress (Ashton et al., 2003; 

Pals et al., 1997; Pugh et al., 2017), heat stress (Dokladny et al., 2006; Hall et al., 2001; 

Lambert et al., 2002), local bacterial or viral infection (Bischoff et al., 2014) and ischemia-

reperfusion injury (Bulkley, 1987; Gathiram et al., 1988) can independently, or collectively 

induce GI barrier dysfunction. The consequences of a loss in GI barrier integrity is an 

increase in intestinal permeability and a range of clinical symptomologies, inflammation and 

immunological reactivity that can range from mild to severe (Farhadi et al., 2003; Lambert, 

2009; Camilleri et al., 2012). The following section will now consider the effect these putative 

factors that are associated with GI permeability may express.  
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2.7 The Gastrointestinal Barrier and Exercise. 

 

Evidence from previous studies suggests that the gastrointestinal tract and specifically the 

GI barrier may be negatively affected, when exercising (Table 2.2 a,b,c) (Lambert et al., 

2002; Lambert, 2009; Pugh et al., 2017). The association between exercise and increased 

GI permeability has been subject to increasing examination; generally, the exercise 

stressors utilised have in the majority of studies been continuous, submaximal efforts of 

running or cycling over a varied range of exercise durations from hours to days. Notionally, 

the literature indicates that exercise activity increases GI permeability if performed at 

sufficient intensity and duration i.e. 70% of V̇O2 peak/max  a so called ‘critical threshold’ 

(Costa et al., 2017; Pals et al., 1997). It has been observed that 60 minutes’ steady-rate 

cycling at 70% Wmax ( van Wijck et al., 2011; van Wijck et al., 2012;), treadmill running at 

70% V̇O2max (Marchbank et al., 2011; Zuhl et al., 2014), 80% V̇O2max (Davison, et al., 

2016; Gisolfi, 1997; March et al., 2017; Pals et al., 1997;), interval running 90%/50% 

V̇O2max (Pugh et al., 2017) and marathon/ultramarathon running (Gill et al., 2015; Lambert 

et al., 1999; Ryan et al., 1998; Smetanka et al., 1999), will increase GI permeability. Pals et 

al. (1997) demonstrated that increased GI permeability accrued during 60 minutes of 

treadmill running, could be mediated by exercise intensity in a dose response manner. 

Higher intensity exercise (80% V̇O2 max), exhibiting a greater permeability than exercise at 

lower intensities at 40% and 60% V̇O2 max. The majority of similar studies exploring GI 

permeability have shown similar results; they expand the likely clauses to suggest where 

exercise in excess of 70% of maximal work or aerobic capacity, and where exercise duration 

is greater than 50 minutes plus shows increased GI permeability (Davison & Diment, 2009; 

Jeukendrup et al., 2000; March et al., 2017; Roberts et al., 2016; van Nieuwenhoven et al., 

2004; van Wijck et al., 2014). Although, studies several report no significant changes in 

permeability following treadmill running at 60-70% V̇O2max (Lambert et al., 2008; Snipe et 

al., 2017; van Wijck et al., 2014; Yeh et al., 2013). However, across literature there is a 

dearth of information as regards the assessment of the GI permeability during very high 

intensity ‘interval’ exercise. Pugh et al. (2017) more recently has undertaken interval 

exercise in well trained males and demonstrated increases in GI permeability after a 20 X 

400m intervals. Whilst a general interpretation is likely to confirm that stepwise increments in 

intensity lead to increased permeability they fail to examine an ecologically valid model of 

stepwise intensity increase or the effect of repeated very short high intensity repeated 

exercise that is apparent during invasion field games. 
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2.8 GI Permeability, Hyperthermia, and Hypoperfusion. 

 

Physical activity and exercise result in a significant elevation in metabolic rate which can as 

a consequence elevate total body heat accumulation. Thermoregulatory mechanisms are 

therefore essential to dissipate this accumulated heat load and maintain normal 

physiological function (Crandall & Gonzalez-Alonso, 2010).  Under both passive and active 

conditions body core temperature is maintained within tight boundaries through complex 

neurological and hormonal negative feedback mechanisms (Gonzalez-Alonso et al., 2008; 

Pires et al., 2016). Increases in core temperature elicit specific countermeasures which 

involve the induction of a sweating response to facilitate evaporative heat loss and via 

peripheral cutaneous vasodilation. However, these responses may induce significant 

cardiovascular/haemodynamic challenges that impair central venous return and reduce 

splanchnic blood flow in line with increases in exercise intensity (Rowell, 2004; Van Wijck et 

al., 2011).   

 

Mechanistic links between the presentation of gastrointestinal symptoms, and disruption to 

gut mucosa have been partially ascribed to both passive and exertional tissue hyperthermia 

(Pals et al.1997).  Where exercise occurs under different ambient conditions  this may 

mediate secondary to the thermoregulatory challenge imposed reductions in splanchnic 

blood flow of up to 80%, due to sympathetic mediated vasoconstriction of the splanchnic 

vascular bed (Crandall & Gonzalez-Alonso, 2010; van Wijck et al., 2011). Briefly, during 

moderate to strenuous exercise, the release of noradrenaline and its binding to α-adreno-

receptors of the sympathetic nervous system, induces a splanchnic vasoconstriction. Such 

responses result in an increase in the total splanchnic vascular resistance whilst, at the 

same time, leading to a reduction in vascular resistance in skeletal muscle and skin. The 

reduction in splanchnic blood flow being inversely proportional to the percentage of maximal 

oxygen consumption (V̇O2 max) achieved during exercise performance (Ashton et al., 2003; 

de Oliveira et al., 2014; Gutekunst et al., 2013). As a result, when blood flow is redirected 

from the splanchnic region to the skeletal muscle and other active tissues GI ischemia and 

hypoxia may also result (ter Steege et al., 2012b). Elevations in oxidative stress and 

nitrosative stress in the GI barrier are considered to be causally associated ( Lambert et al., 

2002; Dokladny et al., 2016). These physiological responses have been associated with 

several frequently expressed GI symptomology such as nausea, vomiting, abdominal pain, 

and diarrhea although the strength of association is weak to moderate at best (ter Steege et 

al., 2012a). 
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Impairments in splanchnic blood flow under passive, exertional and additional heat stress 

models seen in literature; may predispose toward build-up of heat in the GI wall and heat 

mediated disruption to epithelial, mucus and smooth muscle barriers in the (GI) wall 

(Lambert, 2009; Pires et al., 2016; Selkirk et al., 2008; Zuhl et al., 2014). Mechanistically, 

hyperthermia-induced morphological disruption of enterocytes and tight junction protein 

function is noted in rodent models at high gut wall temperatures (≥46 °C) (Lambert et al., 

2002). In vitro, temperatures of 38.3°C have been demonstrated to cause damage to Madin-

Darby canine kidney epithelial cells (Moseley et al., 1994). Temperature increases in the 

physiological range from 37 to 41°C also are reported to cause increased permeability in an 

in vitro intestinal epithelial model through enterocyte cell death, tissue oxidative and 

nitrosative stress (Bulkley, 1987; Hall et al., 2001; Hayashi et al., 2012; Lambert et al., 2002; 

Machado et al., 2017; Taylor & Colgan, 2007). However, these responses may be 

accentuated or  attenuated depending upon the athlete’s acclimation to and the severity of 

the environmental conditions in which exercise is undertaken as well as fluid loss (Costa et 

al., 2017; Guy et al., 2016; Lambert et al., 2001; Pires et al., 2016).  

 

van Wijck et al. (2011) recently discussed that when exercising in the heat there is an extra 

loss of the total body water and a decrease in plasma volume due to inadequate fluid intake, 

which can impair cardiac output, further reducing the blood flow to the gut resulting in 

intestinal hypoxia.  Dehydration levels approximating 2 % of body mass may be sufficient to 

increase GI permeability (Lambert et al., 2008).  Through a process of down regulation of 

Na+/K+ -ATPase which contributes to normal intestinal fluid balance; fluid balance may be 

compromised (Lambert et al., 2008). Subsequently, an increased chloride secretion in the 

enterocyte crypts and decreased sodium absorption in the villus tips [likely due to transient 

ischemic damage] can lead to a net fluid loss from the small intestine. As noted by others  by 

ensuring the athletes remain relatively hydrated with regular water replacement may mitigate 

the risk of fluid imbalance effecting intestinal absorption (Costa et al. 2017; de Oliveria et al., 

2014; Lambert et al., 2008).  

 

Where core temperature and permeability increase combined with bacterial translocation 

several authors have ascribed this as a putative mechanism in exertional heat illness and 

heat stroke, which can in turn result in damage to the organs (Fehrenbach and Schneider, 

2006; Selkirk et al., 2008). Marchbank et al. (2010) have indicated that running for as little as 

20 minutes at 80 % of V̇O2 max elevates core temperature by ~ 2oC and increases gut 

permeability by ~250 %. Similarly during longer distance exercise intestinal permeability has 

been increased after the completion of extended duration runs > 2 h (Snipe et al., 2017), 
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half, full and ultra-marathons marathon (Oktedalen et al., 1992; Gill et al., 2015; Stuempfle et 

al., 2016). 

 

Pires et al. (2016) in a recent systematic review on in vivo alterations to GI permeability 

suggest that impariements in GI barrier dysfunction may be subject to a ‘critical threshold’ 

whereby core temperatures of up to 38.0°C ‘may likely facilitate’ increased permeability, 

whereas temperatures of above 39.0°C ‘definitely induce’ GI permeability (Pires et al., 

2016). Although others, have examined GI permeability in the heat and found GI 

permeability to remain unaffected (Snipe, 2017; Yeh et al., 2013). It should be remembered 

the hyperthermia reported is a function of the core temperature assessment methods which 

may influence reported values. Rectal thermometry may underestimate the temperature 

observed in the small intestine GI wall by up to 0.5-20C due to location difference between 

rectum and small intestine.  Pearson et al. (2012) have suggest a ‘temporal lagging’ with 

rectal GI measure of temperature relative to pulmonary artery temperature. The implication 

that the GI tract may be slower to increase in temperature but also slower to cool down upon 

exercise cessation.  As such the rate and extent of small intestine wall temperature changes 

may precede the core temperature rise and then likely lag behind in terms of enterocyte heat 

exposure reduction (Pearson et al., 2012). 

 

 

 

Figure 2.6 Schematic representation (modified) of the potential contributory factory to GI 

mediated dysfunction and its potential impact. [After van Wijck et al. (2012) American 

Journal of Physiology-Gastrointestinal and Liver Physiology 2012, 303, G155-G168]. 
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2.9 GI Barrier and Exercise Mediated Endotoxaemia. 

During exercise splanchnic blood flow may be modulated by various factors including 

relative exercise intensity (V̇O2 max), duration (Ashton et al., 2003; Bosenberg et al., 1988; 

Otte et al., 2001; Pals et al., 1997), environmental temperatures (Rowell, 1983; ter Steege et 

al., 2012) and hydration status (Lambert et al., 2001; Sawka, 1992).  As a consequence of 

this competition between splanchnic, skin and muscle blood flow, intestinal tissue hypoxia 

events are common leading to a possible paracellular penetration of pathogenic bacteria and 

toxic luminal antigens including endotoxins due to increased intestinal permeability or as has 

been described ‘leaky gut syndrome’ (Ashton et al., 2002; Dokladny et al., 2006; Fasano et 

al., 2011). Endotoxins are lipopolysaccharides (LPS) derived antigens which can cause a 

variety of symptoms through activation of cytokine cascades and inflammatory pathways 

particularly in clinical populations but also in athletes during heat stress (Marchbank et al., 

2010; Selkirk et al., 2008 ). Athletes competing in prolonged exercise events in the heat and 

in particular marathon runners have reported symptoms such as; fever, nausea, dizziness 

and in particular, GI problems such as stomach cramps, intestinal cramps, sickness and 

diarrhoea (Lambert et al., 2008; Selkirk et al., 2008). It has been discussed that many of 

these symptoms may serve as a warning sign for impending problems such as sepsis and 

exertional heat stroke (Moncada-Jimenez et al., 2010; Selkirk et al., 2012).  

 

The passage of lipopolysaccharide (LPS) (endotoxaemia) a constituent of gram negative 

bacterial cell walls from the GI lumen into the GI basal mucosa and circulation following GI 

barrier dysfunction can act as a major trigger to activate local immune response and secrete 

soluble factors such as sCD14 via activation of T-lymphocytes, monocytes and tissue 

macrophages (Jeukendrup et al., 2000; Stuempfle et al., 2016).  In exercise studies, LPS 

has been frequently assayed to examine associations between LPS and GI damage and 

inflammation (Barberio et al., 2015; Bosenberg et al., 1988; Camus et al., 1997; Jeukendrup 

et al., 2000; Roberts et al., 2016; Yeh et al., 2013). The mechanism for cytokine activation 

involves the binding of LPS to serum lipopolysaccharide-binding protein (LBP) to form a 

LPS-LBP complex. This response increases the production and release of pro-inflammatory 

cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) which further 

disrupts GI barrier tight junction proteins (Dokladny et al., 2008; Dokladny et al.,2016; 

Moncada-Jimenez et al., 2010). This release, likely controlled by the expression of nuclear 

factor kappaB (NF-κB) which under normal homeostatic conditions is attached and regulated 

to its inhibitor lkappa-B (IκBα) situated in the cytosol (Vargas & Marino, 2016). It would 

appear initial antigen passage through GI barrier may result in even greater intestinal barrier 

dysfunction through further phosphorylation of IκBα, releasing NF-κB and subsequently 

promoting further pro-inflammatory cytokine release, although one must access cytokine 
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correlation across GI literature with caution as data presents high levels of variability 

(Lambert, 2008; Dokladny et al., 2008; Dokladny et al., 2016). Endotoxaemia has been 

suggested to play a role in inflammatory responses leading to sepsis, multiple organ failure 

and can be fatal in certain situations characterized by exercise in hot and humid 

environments (Camus et al., 1994; Fehrenbach & Schneider, 2006). However  across 

literature there exist a poor correlation between LPS concentrations and GI symptomology 

(Moncada-Jiménez et al., 2009; Costa et al., 2017). Several factors may contribute to this 

observation including variances in LPS assay methodologies (Wong et al., 2016). Indeed, 

inflammation and associated cytokine elevation follow a similar pattern relative to symptom 

expression that present either no or limited correlations across a range of exercise 

intensities and durations (Barberio et al., 2015; Gill et al., 2015; Nieman et al., 2006).  

 

2.10 Exercise GI Motility and Gastric Emptying.  

 

As a result of these putative mechanistic pathway  alterations in the  GI barrier function as a 

result of possible splanchnic hypo-perfusion, hypoxia  and/or hyperthermia interaction 

mediate an antigenic stimulation, and GI permeability/damage along with possible 

contributions to GI symptomology (Dokladny et al., 2015; Zuhl et al., 2014). Whilst 

permeability changes and endotoxin release into circulation are considered to be important 

factor in the patho-aetiology of exercise mediate GI disturbances. Several other factors have 

previously been examined in attempts to provide understanding of possible exercise related 

GI symptomology.  Changes in GI motility (i.e. passage of material through the gut) have 

been documented to be present in the gastrointestinal tract: the esophagus, the stomach, 

and the intestine. Impaired esophageal peristaltic activity and increased gastro-esophageal 

reflux during exercise (van Nieuwenhoven et al., 2004; de Oliveria et al., 2014). Impairments 

in gastric emptying have also been observed although exercise intensity would seem critical 

with moderate intensity exercise marinating normal gastric emptying response but very high 

intensity and /or intermittent activity exercise impairs gastric emptying (Gill et al., 1998). 
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Table 2.1: Gastrointestinal permeability assessment mono and disaccharide sugar probes used in healthy volunteer and clinical models. 

Reference Group Probe In Vivo/In Vitro Urine Collection 
Timing, hr 

Permeability 

Michiel et al. (2000). Male and Female  
athletes 

Lactulose, L-rhamnose 
and glucose 

In vivo 0-5 Increased 

Rao et al. (2011). Healthy Males Lactulose and 
mannitol 

In vivo 0-2 Increased 

Dunlop et al. (2009) IBS-D (PI and non-PI), 
IBS-C 

51Cr-EDTA In vivo 0–3, 3–5, 5–24 Increased 

Marshall et al. (1999). IBS patients Sucrose, lactulose, 
mannitol 

In vivo Overnight Increased 

Spiller et al. (2005). IBS patients Lactulose, mannitol In vivo 0–6 Increased 

Shulman et al. (2001) Paedatric IBS and 
abdominal pain 

Sucrose, lactulose, 
mannitol, sucralose 

In vivo 0–3 Increased 
(sucrose/lactulose) 
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Table 2.2 Gastrointestinal assessment probes and responses used during and following exercise in healthy volunteers. 

Reference Participant Probe/method Exercise In Vivo/In 
Vitro 

Permeability 
measurement 
Urine/blood 

Collection Timing hr 

Gut Permeability 

van Nieuwenhoven et 

al. (2004) 

Male and female 

athletes 

Lactulose, 

L-rhamnose and 

glucose 

Rest, cycling 

and running 

on the 

treadmill 

In vivo Urine 

0-5  

Increased 

Rao et al. (2011) Healthy males Lactulose and 

mannitol. 

No exercise In vivo Urine 

0-2  

Increased 

Yeh et al. (2013) Healthy male 

and Females 

No probe involved 

LPS determination 

Running on 

the treadmill 

In vivo Blood 

2-5  

LPS Increased 

Lambert et al. (2008) Healthy male 

and females 

Lactulose, 

L-rhamnose, mannitol 

Walk and 

running 

In vivo Urine Increased 

van Wijck et al. 

(2011). 

Healthy males Lactulose, sucralose, 

erythrithol, sucrose 

and L-rhamnose 

Cycling In vivo Sugar 5-24 hr Increased 
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Table 2.3  Effect of exercise modality, intensity and duration on gastrointestinal permeability across different environmental conditions.  

 

Reference Sampl  Exercise 
Mode 

Exercise 
intensity 
% V̇O2 max 

Duration 
(min) 

Permeability 
protocols  

Environmental
: T (°C) & 
RH(%) 

 GI Permeability  

Pals et al. 
(1997)  

6 Active (5 
men and 1 
woman) 

Treadmill  40, 60, and 
80%  

60 5 h post Thermoneutral 
22; 50 

U L/R %R  Increased 

Lambert et al. 
(2001) 

17 Runners 
and 
cyclists 
(13 men 
and 4 
women) 

Treadmill  70%  60 Pre and  
4 h post 

Thermoneutral 
22.4; 48.0 

U L/R %R Increased 

Lambert et al.    
( 2007) 

8 Runners 
(6 men 
and 2 
women) 

Treadmill  70%  60 During and  
4 h post 

Thermoneutral 
23.2; 36 

U L/R %R Increased 

Lambert et al. 
(2008) 

20 Runners 
(11 men 
and 9 
women) 

Treadmill  70%  60 Pre and 5 h  
post 

Thermoneutral 
24.4; 32.7 

U L/R %R Increased 

Ng et al. (2008) 32 Male 
runners 

21-km 
road race 

  ~110 Pre and post Thermoneutral 
27; 80 

        LPS Increased 
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Table 2.3 cont.  Effect of exercise modality, intensity and duration on gastrointestinal permeability across different environmental conditions.  

 

Selkirk et al. (2009) 23 Healthy men 
(12 trained 
and 11 
sedentary) 

Walking 30%  ~135 Before and every 
0.5 °C increase of 
body temperature 

Hot 
40; 30 

Plasma LPS Increased 

Lim et al. (2009) 18 Male 
runners 

Treadmill 
r 

70 %    Pre, post and 1.5 
h post 

Hot 
35; 40 

Plasma LPS Increased 

Kuennen et al. 
(2015) 

8 Healthy 
and 
physically 
active men 

Treadmill  50%  45 Pre and 8 h post Hot 
47.0; 19.7 

U L/plasma LPS 

Marchbank et al. 
(2011) 

12 Healthy 
men 

Treadmill  80%  20 Pre and 5 h post   U L/R %R 

Yeh et al. (2013) 15 Runners 
(14 men 
and 1 
woman) 

Treadmill  70%  60 Pre, 2 and 5 h 
post 

Hot 
33; 50 

LPS 

Thermoneutral 
22; 62 

Morrison et al. 
(2014). 

15 Male 
runners (7 
trained and 
8 
untrained) 

Cycling 
and 
treadmill 
running 

50–80% 
Reserve 
heart rate 

90 Pre and post run 
1, post run 2, and 
5 h post-exercise 

30; 50  I-FABP 

Shing et al. (2014) 10 Male 
runners 

Treadmill  80% 
ventilatory 
threshold 

33 Pre, immediately 
after, and 1 h post 

Hot 
35; 40 

U lactulose/plasma LPS 

Zuhl et al. (2014) 8 Runners (5 
men and 3 
women) 

Treadmill  65–70%  60 Pre and 5 h post Hot 
30; 12–20 

U L/R %R 

Barberio et al.(2015) 8 Healthy 
men 

Treadmill  78%  ~25 Pre, immediately 
after, 1 and 3 h 
post 

Hot 
40; 40 

Plasma  LPS and I-FABP 
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Table 2.3 cont.  Effect of exercise modality, intensity and duration on gastrointestinal permeability across different environmental conditions.  

Zuhl et al. (2015) 7 Runners (2 
men and 5 
women) 

Treadmill  70%  60 Pre and 5 h post Hot 
30; 12–20 

U L/R %R 

Davison et al. 
(2016) 

8 Male (4 
runners, 1 
cyclist, 1 2 
games 
player,) 

Treadmill  80%  20 Pre and 5 h post  - U L/R %R 

Pugh et al. (2017) 10 Recreation
al active 
male  

 Treadmill   70%   60  15 min post 
exercise 

 Hot 
30;40-45% 

Serum L/R 

Pugh et al. (2017) 11  male 
runners 

 Treadmill   120%      Thermoneutral 
 

Serum L/R 

Karhu et al. (2017) 17  active 
runners 

 Treadmill   80%  90 min  Post 24 hour Thermoneutral 
 

Serum L/R 

Snipe at al. (2017)    10 Endurance 
runner  

 Treadmill   60%  2hr Pre and post  Hot 
35;22 

Serum L/R 
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2.11 GI Symptomology and Exercise Modality (mechanical effects). 

Whilst  splanchnic perfusion, hypoxia and hyperthermia responses have been advanced as 

primary aetiological pathways for GI dysfunction. Several other avenues have been explored 

as to possible causal relationships. Worobetz et al. (1985) has indicated lower frequencies of 

(GI) symptomology in cycling and swimming activity relative to running. Riddoch & Trinick, 

(1988) also noted a greater prevalence of GI symptoms whilst running than during cycling or 

swimming. In addition, Rehrer et al. (1992) and van Nieuwenhoven et al. (2004) have 

reported triathletes to experience elevated GI symptoms during the run rather than swim or 

cycling elements of a triathlon. Combined it is postulated that the modality of exercise and 

the relative mechano-physiological stimuli elicited during each induce changes in GI 

function, although the mechanism and magnitude of any resultant dysfunction are 

unquantified (Wright et al., 2011). Mechanical trauma imparts increased vibrations via 

elevated ground reaction forces transmitted through the abdominopelvic cavity during 

running than cycling (Rehrer & Meijer, 1991), leading to what has been termed slosh 

stomach (Bioendich et al., 2016).  Others have suggested that this may affect the colon and 

stool physiology (Simons & Kennedy, 2004). However, there has been little research into this 

process.  

If there was a true, substantial effect of mechanical trauma, it could be presumed that this 

would be a major cause of GI symptoms in other sports involving changes in abdominal 

movement from running, as well as jumping, cutting and other jarring movements i.e. team 

sports. However, there has been little research into sports other than running and cycling. 

Babic et al. (2001) investigated GI bleeding in rugby players and suggested that mechanical 

abdominal trauma was not an important factor in GI symptoms as incidence of bleeding was 

lower than that typically seen in runners, despite the high impact contact nature of the sport. 

It may be the volume of running undertaken, is more damaging that less frequent traumas 

that are greater in force i.e. tackles. Verification of this hypothesis is required. 

Whilst epidemiological and experimental literature have focused on the perceived negative 

effects of exercise and adverse symptom reporting it should be remembered that exercise 

may improve some clinical GI related symptoms particularly in conditions such as Irritable 

Bowel Syndrome (IBS) or Crohns disease (Johannesson, 2015; Johannesson et al., 2011; 

Matsuzaki et al., 2016; Pérez, 2009; Stehle et al., 2012). As with other system models such 

as immunity (Nieman et al., 2011) a dose response model for the induction of GI 

symptomology may be speculated upon but remains to be properly described (Costa et al. 

2017; Pires et al., 2016).  
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2.12 GI Symptomology and Permeability 

Exploration of the associations between subjective GI symptomology and objective markers 

of GI permeability/damage has been the focus of much of the literature; generally,  across 

most studies where objective and subjective markers have been explored outcome data has 

been poorly associated. Further consideration is required amongst other forms of exercise 

activity intensities and durations to determine potential/common association’s (Karhu et al., 

2017; Pugh et al., 2017). Whilst epidemiological and experimental literature have focused on 

the perceived negative effects of exercise and adverse symptom reporting it should be 

remembered that exercise may improve some clinical GI related conditions such as Irritable 

Bowel Syndrome (IBS) or Crohns disease (Johannesson, 2015; Johannesson et al., 2011; 

Matsuzaki et al., 2016; Pérez, 2009; Stehle et al., 2012). As with other system models such 

as immunity (Nieman, et al., 2011) a dose response model for the induction of GI 

symptomology may be speculated upon but remains to be properly described (Pires et al., 

2016).  

 

2.13 NSAIDS and GI damage and permeability. 

Whilst exercise may mediate changes in GI function and contribute to subjective symptom 

expression its combination with pharmaceutical agents and its clinical impact on the gut has 

come to prominence as an increasing problem (McAnulty et al., 2007; Nieman, et al., 2006; 

Sanabria & Zabala, 2017;Tscholl & Dvorak, 2012). Nonsteroidal anti-inflammatory drugs 

(NASIDs) are widely available over the counter agents used in the acute and chronic 

treatment and management of soft-tissue injuries and for analgesic purposes (Tscholl et al., 

2016). It is generally assumed, incorrectly, that the use of NSAIDs can help performance 

due to their facilitation of more frequent, intense training sessions by acting to mask adverse 

musculoskeletal issues; therefore, they are regularly used by athletes in a variety of sports    

(Alaranta et al., 2008; Gorski et al., 2011; Tscholl & Dvorak, 2012). The high prevalence 

rates for NSAID consumption particularly from a prophylactic perspective is often 

accompanied by limited awareness of the side effects of use particularly on a chronic basis 

(Didier et al., 2017; Gorski et al., 2011; Warden, 2009). Several reports on the use of NSAID 

medication across team sports has indicated an unexpectedly high level of both prescribed 

and un-prescribed consumption of NSAIDs (Holgado et al., 2017; Tscholl & Dvorak, 2012; 

Tscholl et al., 2015). Due to NSAIDs analgesic, anti-inflammatory and antipyretic effects, 

they have evolved into one of the most commonly used class of pharmaceutical agent by 

athletes to ameliorate a range of musculoskeletal pathologies including post exercise muscle 

soreness (Da Silva et al., 2015; Holgado et al., 2017; Vaso et al., 2015). Clinically, NSAID 
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induced GI mucosal damage in the form of mucosal erosion and ulceration is a well 

described adverse effect of their usage (Marlicz et al., 2014). Significantly, NSAIDs such as 

ibuprofen have previously been found to increase gastrointestinal GI permeability at rest 

(Blackler et al., 2014; Sostres et al., 2017) and following exercise particularly after 

prolonged, sub-maximal endurance events such as marathon and triathlons (Jeukendrup et 

al., 2000; Küster  et al., 2013; McAnulty et al., 2007; Nieman et al., 2006; Smetanka et al., 

1999; Whatmough et al., 2017). NSAID [Ibuprofen] induced complications are thought to be 

caused as a result of the inhibition of cyclooxygenase (COX) isotypes 1 and 2 and in 

particular (COX-2), via a reduction in localised nitric oxide (NO) production and inhibition of 

prostaglandin release (Vieth & Montgomery, 2017). These responses to NSAID ingestion 

can cause an inflammatory response of the GI barrier and may impair perfusion of the upper 

GI tract (Holgado et al., 2017; Lambert et al., 2007; Lanas et al., 2003). Such modifications 

altering mucosal cytoskeleton integrity and causing GI damage, permeability and necrosis 

(Vieth & Montgomery, 2017).   

 

Since the use of NSAIDs in a variety of sports and individual events is widespread, the effect 

they have on the GI barrier function alone or when combined with exercise (predominately 

endurance exercise) have been subject to limited review. Given NSAIDs widespread use 

amongst invasion field sports such data would provide insight into potential adverse effects 

on GI function (Tscholl & Dvorak, 2012; Vaso et al., 2015). Lambert et al. (2001) report 

increased gastroduodenal and intestinal permeability after ingesting 1,300 mg of aspirin prior 

to 60 minutes of running at 70% V̇O2max. Lambert et al. (2007) further reported different 

responses between aspirin and ibuprofen, with aspirin increasing intestinal permeability 

relative to ibuprofen again following steady state running. Aspirin effects the COX-1 

pathway, which is involved with synthesis of the mucosa and ibuprofen predominately effects 

the COX-2 pathway, which is involved with inflammation (Iwamoto et al., 2013).  van Wijck et 

al. (2012) have reported increased GI permeability and damage after one hour of moderate 

intensity exercise following acute NSAID ingestion. Such data inform the view that NSAIDS 

are known to accentuate GI injury particularly under physical stress (Audet et al., 2016) and 

have also been shown to mediate lethality between NSAIDS, hyperthermia and/or exercise 

in rodents; although to date this has not been reported in humans (Takahashi et al., 2001; 

Audet et al., 2017). 
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2.14 Summary of literature.  

It is apparent from the proceeding literature that the coincidence of exercise, environmental 

challenge and variations in both the duration and intensity of exercise leading to 

perturbations in GI perfusion may predispose the gastrointestinal system to adverse 

changes notably in its ability to partition the content of GI lumen from systemic circulation. 

Epidemiological data clearly report increased symptomology of gastrointestinal disturbance 

(nausea, vomiting, diarrhoea cramps and bloating) in both male and female runners and 

athletes, with symptomology perhaps increasing as a function of exercise modality, distance 

run, and gender (Peters et al., 1999; van Nieuwenhoven et al., 2004; ter Steege et al., 

2008). Mechanistic links between the presentation of the gastro-intestinal symptoms, the 

exercise challenge, and disruption to gut mucosa have been ascribed to reductions in 

gastrointestinal blood flow due to vasoconstriction of splanchnic vasculature (ter Steege et 

al., 2012). This redistribution of cardiac output away from the splanchnic vasculature to 

active skeletal muscle in order to maintain exercise activity is proportional to the increase in 

exercise intensity. As such splanchnic blood flow may be reduced by up to 80% of resting 

blood flow, leading to gastro-intestinal ischemia, transient hypoxia and oxidative and 

nitrosative stress for as long as exercise stress is maintained. A further corollary of the 

increase in exercise intensity is a progressive hyperthermia (Lim and Mackinnon, 2006; 

Gonzalez-Alonso et al., 2008; Selkirk et al., 2008). Increased thermal strain from both the 

exercise itself and exercise undertaken in different environmental temperatures (Lim and 

Mackinnon, 2006; Gonzalez-Alonso et al., 2008; Selkirk et al., 2008) and in different exercise 

models (Yano et al., 2002; Lambert, 2004; Lambert, 2008) may also be contributory to GI 

damage. The alteration GI permeability and damage in hyperthermia conditions being 

characterised as subject to a threshold effect (Pires et al., 2016). Several recent models 

have summarised this conceptual framework (Figure 2.6). Determination of the effects of the 

interaction between intensity and modality of exercise on GI function remains to be fully 

elucidated. 
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Chapter 3 - General Methodology 
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3.0 General Method  

The present chapter describes the measurement techniques used within this thesis for the 

collection of physiological, thermoregulatory and metabolic data and common biochemical 

analysis undertaken. The procedures, equipment, test equipment and test presented in this 

thesis are employed in at least two of four studies are described in this chapter, whereas 

those utilised in only a single study can be found in the methods section of that study.  

 

3.1 Ethics  

All studies were granted full ethical approval from the Ethics Committee of Liverpool John 

Moores University in advance of the studies being undertaken. All participants who 

volunteered did so by their own accord, and were finally informed of the nature, purpose and 

possible risks before they provided written inform consent that was initial in the presence of 

a third-party witness. Exercise and biochemical analysis were carried out in the physiology 

and biochemical laboratories respectively at the Research Institute for Sport and Exercise 

Sciences Liverpool John Moore’s University. Moreover, all measurements were taken at the 

same time of day in order to avoid circadian variation in internal body temperature (Reilly & 

Brooks, 1990). Analysis of Lactulose and L-Rhamnose was performed at Royal Cornwall 

Hospital Trust Cornwall UK, one of only two accredited UK labs. All other assay procedures 

were performed at Liverpool John Moore’s University. Assistance is acknowledged where 

required. 

 

3.2 Participants 

All participants were non-smokers with no history of neurological disease or musculoskeletal 

abnormality. Particpants were asked to abstain from alcohol, drugs and spicy foods in the 

preceding 48 hours before testing. A minimum of three days were scheduled between tests. 

This was based on the complete turn overrate for small intestine enterocytes i.e. whole small 

intestine enterocytes are replaced every 72 hours. 

 

Table 3.1 – Participants characteristics. 

 

Study 1 Study 2 Study 3 Study 4 

Age (years) 24 ± 2.4 24 ± 3 19.6 ±0.7 29 ± 10 

Height (m) 1.80 ± 0.09 1.78 ± 0.1  1.78 ± 0.06 1.78± 0.06 

Body mass (kg) 74.4 ± 11.9 79.6 ± 4 75.1 ± 5.9 78.4 ± 10.1 

V̇O2 peak (mL·kg-1·min-1) 57.1 ± 8.1 53.6 ± 7 - 56.4 ± 5.0 
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3.3 Body Mass and Height  

Participants body mass was assessed to the nearest 0.1 kg using a Seca weighing scales 

(Seca, model 702, Germany), and height, to the nearest 0.1 m, using the Seca stadiometer 

(Seca, Model 217,Germany) during the initial visit to the laboratories that coincided with their 

assessment of physiological fitness.  

 

3.4    CARDIO-RESPIRATORY MEASUREMENTS 

3.4.1 Heart Rate 

Participants were fitted with a short-range radio telemetry system for the measurement of 

heart rate (Polar S610i, Kempele, Finland) in all exercise and passive rest experiments. In all 

studies, heart rate (b•min-1) was continually measured at 5-second intervals; data as 

presented in each chapter represents an average over designated time periods as outlined 

in that chapter’s specific methodology. The chest strap was worn directly below the chest at 

V5 level with the transmitter positioned centrally on the xipho-sternum.  

 

3.4.2 Assessment of expired respiratory gases during exercise 

Participants were required to wear a Hans Rudolph oro-nasal facemask (7450 Hans 

Rudolph, Cranlea UK Birmingham for measurement of expired fractions of oxygen (

mL·kg-1·min-1) and carbon dioxide during breath-to-breath measurement and averaged over 

each 10-second period via an on-line open circuit spirometry system (Oxycon Jagger, 

Netherlands) or the Metalyzer 3B (Cortex, Germany) across experiments (Figure 3.1)  Within 

each experiment the same system was utilised across all time points and participants. The 

systems both utilise a low resistance two-way valve that has an integrated infra-red flow 

transducer and expired gas collection tube. The expired gases are sampled into a negatively 

pressured tube as gases enter the flow transducer. These are dried as they progress down 

the tube and then analysed via changes in conductance of an electrical signal across a fuel 

cell and infa-red CO2 analyser. The Oxygen and Carbon dioxide sensors were calibrated 

with both ambient air and an ά- gravimetric gas (Oxycon Jagger, Netherlands) which 

contained 16 % O2 and 4 % CO2 with the balance nitrogen. Calibration of the volume 

transducer was performed with a three-litre syringe (Model 5330, Hans Rudolf, MO, USA), 

being pumped through the transducer at varying flow rates to match system designated 

requirements. Respiratory data were expressed as Standard Temperature and Pressure 

Dry. 

3.5 Treadmill 

A motorised treadmill (H/P Cosmos Pulsar, Germany) was used in all studies for maximal 

exercise assessments during running and experimental exercise protocol performance. 

VO2
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3.6 Maximal/Peak Aerobic Power (V̇O2 peak/max) 

Participants V̇O2 peak was determined using a progressive incremental protocol on a 

motorized treadmill (HP/Cosmos Pulsar, Germany). This evaluation characterised 

physiological capacity and facilitated adjustment of the workload for each participant in the 

subsequent work protocols employed across the thesis protocols to appropriate % of V̇O2 

peak. The protocol commenced at 8 km·h-1 at 0 % inclination with 2 km·h-1 increments at 2 

minute intervals to a maximal velocity of 16 km·h-1 with 2.5 % inclinations occurring every 2 

minutes thereafter until volitional exhaustion. The criteria of the British Association of Sport 

and Exercise Sciences (BASES) were used to classify V̇O2 response attained (Winter, 

Jones, Davidson, Bromley, & Mercer, 2007). The attainment of V̇O2max was accepted as 

being achieved based on the following and point criteria: 1) heart rate within 10 b·min-1 of 

age predicted maximum, 2) respiratory exchange ratio >1.15, and 3) lactate 

blood >8mmol·L-1. 4) volitional exhaustion. Participants were also verbally encouraged 

during the final stages of the test to maintain exercise for as long as possible to ensure that 

they reached exhaustion.   

 

 

Figure 3.1 Expired gas fraction analysis during exercise (Borg, 1982). 

3.7 Rating of perceived exertion (RPE)  

RPE was assessed utilising the 15-point 6-20 ratio scale outlined by Borg (1982). 

Participants were familiarised with using the scale during the initial maximal incremental 

exercise test to exhaustion. Each end of the scale was ‘anchored’ during the maximal 

exercise protocol so as to introduce the perception of effort associated with progression 

through the scale from 6 [rest] through 20 [maximal effort], ( Birk & Birk, 1987). In doing so 

this provides a construct against which participants can gauge subsequent efforts during 

exercise trials. 
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Rating Description 

6 No Exertion At All 

7 Extremely Light 

8 

 9 Very Light 

10 

 11 

 12 

 13 Somewhat Hard 

14 

 15 Hard 

16 

 17 Very Hard 

18 

 19 Extremely Hard 

20 Maximal Exertion 

 

Figure 3.2  Borg scale for reporting subjective RPE during exercise (Borg, 1982). 

 

3.8. Thermal Comfort 

At the same time points for assessment of Subjective Shivering, participants also reported 

subjective Thermal Comfort (Young, Sawka, Epstein, Decristofano, & Pandolf, 1987)(Figure 

3.4).  

  

Figure 3.3: Thermal comfort scale used for subjective rating of thermal strain.  



56 
 

3.9 Thermoregulatory Variables 

 

3.9.1 Rectal temperature 

Core temperature was assessed via a flexible rectal thermistor (Mini-thermistor; Grant 

instruments Ltd, Shepreth, UK) self-inserted 10 cm beyond the external anal sphincter. 

Rectal temperature was recorded at regular intervals throughout the experimental protocol 

day using an electronic data logger system Squirrel 1000 data logger (Grant Instruments Ltd, 

Shepreth, UK). The rectal probe was inserted, at least 30 min prior to any measures.  

 

3.10 Gastrointestinal Permeability Assessment. 

In order to determine gastrointestinal permeability each participant will undergo a GI 

permeability assay. This will involve consuming a water solution containing the following 

mono and disaccharide sugar probes. The probes consist of 5 g Sucrose, 5 g Lactulose, 1 g 

Rhamnose and 0.5 g D-Xylose, in solution. Fifteen min after ingestion of the sugar probe, 

the participant commences the exercise protocol. Sugar probe permeability will be 

determined in this thesis through two methods 1).via a continuous pooled urine collection for 

5 h (300 minutes) into a polypropylene container that will be refrigerated and contain agents 

(thymol) for inhibition of bacterial growth. 2) Through serum collection to determine sugar 

probe concentration’s in the circulation after 2 h collection window. Briefly, for urine 

collection, to assess sugar probe presence will be performed at each bladder voiding.  If a 

participants are unable to void at 5 h (300 min) then the bladder void immediately following 

this time frame will be taken (van Nieuwenhoven, et al., 1999b). The sugar probes present in 

the urine will be determined by High performance liquid chromatography. Blood samples 

taken pre dosing and 2 h post drink ingestion will be collected following the model of van 

Wijck et al. (2011). Ratios of the sugars will be determined and used to indicate changes in 

GI permeability across different regions of the GI tract. 

 

3.10.1 Gastrointestinal Permeability Profiling Beverage. 

A standard beverage was maintained for every allocation throughout the study. Participants 

were asked to ingest a drink containing, the sugar test solution; 5 g lactulose (L), 1 g L-

rhamnose (R), and 5 g sucrose (S) in 115 ml of water, whereby 5 h urine collection 

period commenced. They were instructed to consume the beverage within one minute; 

upon ingestion the clock was started. Participants remained in a fasted state, but were 

allowed water at a rate of 1 mL·kg every 15 min.   This water selection was utilised to 

minimise what has been termed “slosh stomach” (Biondich & Joslin, 2016).  
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3.11 Procurement, storage and analysis of blood samples. 

Differing volumes of whole blood were required for the different trials performed in this 

thesis. As such two methods to procure these blood samples were applied; via an indwelling 

cannula (BD Nexiva Closed IV Catheter 22G Blue, Becton Dickinson, Oxford, UK) or 

butterfly needle (BD safety set 21 G ¾, Becton Dickinson, Oxford, UK )  dependent upon 

participant preference although all were encouraged to have the former procurement method 

were feasible.  In relation to venepuncture the needle was placed into a superficial vein in 

the anti-cubital fossa of the forearm using standard venepuncture techniques (Vacutainer 

Systems, Becton Dickinson, Oxford, UK) or the cephalic vein on the lateral aspect of the 

forearm for cannulation. Patency of the cannula was maintained with a 5 mL 0.9 % sodium 

chloride flush (Posifush, Becton Dickinson, Oxford, UK) after each blood draw.  Briefly, for 

venepuncture a tourniquet was applied to the mid bicep to induce an increase in 

intravascular pressure and venous return; the median antecubital vein was cleaned with 

several medi-swab isopropyl alcohol wipe BP 70 % (Seaton Health Care Group, Oldham, 

UK). The needle was inserted, once a flashback was observed, it was advanced, secured 

and the collection tubes were attached to correspond to the order of draw recommendations 

i.e. gold, green, lavender (Vacutainer Systems, Becton Dickinson, Oxford, UK).  Upon 

completion of the sampling the needle was removed and pressure applied to the puncture 

site to minimise any possible subcutaneous haematoma. All blood samples were collected 

into vacutainers™ of differing volumes (6.0 mL – 10 mL) (Becton Dickinson, Northampton 

UK). The samples were collected into four vacutainers; a serum separation tube (SST), 

Ethylenediaminetetraacetic acid (EDTA) and lithium heparin (LH) which was used as a 

chelating agents for the blood. Briefly the serum separation tube was allowed to sit at room 

temperature for approx. 30 min until clotted then placed on ice until centrifugation. The 

samples were then centrifuged at 1500 x g for 15 minutes at 4°C. The plasma/serum was 

then carefully removed from the vacutainer using a pipette (Fisherbrand, Finnpipette, U.S.A.) 

and aliquoted into triplicate replicates for future analysis. Following this, plasma and serum 

were then stored at -80°C (Thermo Forma – 970 ULT Freezer, Ohio U.S.A).  
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Figure 3.4   Procurement of blood via insertion and management of Nexiva cannula. 

 

3.11.1 Haemoglobin whole blood photometry and haematocrit determination. 

The quantitative determination haemoglobin was determined via a calibrated HemoCue™ β-

Haemoglobin analysers (HemoCue™, Derbyshire, UK). Photometers were calibrated prior to 

use to variance of 0.3 g·dL-1 with photometry calibration cuvette. The CV were the equation 

were ~ 6 % for hb. The β-Haemoglobin technique is based upon drawing up a small sample 

of blood 10 μl via capillary action into the measurement chamber of the microcuvette where 

the internal reagents (40 % w/w sodium deoxycholate, 20 % w/w sodium nitrite, 18 % 

sodium azide) mix with the sample. The microcuvette is then placed in the HemoCue™ 

photometer where the light transmittance through the microcuvette is determined and the 

level of haemoglobin quantitated. The test principle is based on the conversion of 

methaemoglobin to azidemethaemoglobin. Briefly, the reagent 40 % w/w sodium 

deoxycholate cause lysis of the erythrocyte membranes, the 20 % w/w sodium nitrite 

converts the haemoglobin iron from ferrous to ferric state to form methaemoglobin which 

finally forms azidemethaemoglobin. 

 

3.11.2 Measurement of Haematocrit and Plasma Volume Change. 

Prior to centrifugation, two micro-haematocrit tubes (LIP, Shipley, England) were filled 2/3 

capacity with blood. The micro-tubes were sealed at one end using critical-seal putty (Oxford 

Labware, Sherwood, Medical St Louis, MO, USA) and centrifuged (Hettich Zentrifugen, 

Tuttlingen, Germany) at 10000 rev·min-1 for 5 min to  resolve samples into a plasma and 

cellular component for the determination of haematocrit (HCT) and plasma ratio in each 

tube. Samples were then removed from the centrifuge and read on a Hawksley reader 
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(Hawksley and Son, England). Plasma volume alterations were calculated using the 

equations of Dill and Costill, (1974) 

 

3.12 Gastro-Intestinal Symptomology Questionnaire (Pre and Post protocol): 

The gastrointestinal questionnaire was usually presented to the participants pre-exercise, 

post exercise, post 1 hour after exercise This consists of visual analogue scale (VAS) to 

assess GI symptoms such following the model of Moncada-Jimenez et al.,(2009). 

Participants completed a 16-question visual analogue scale questionnaire (100-mm lines) 

with the participant indicating via a mark on a line their perception of how they feel, and 

quantitated in terms of percent full scale (i.e., 0 % = none, 100 % = severe). Issues around 

gastrointestinal upset with reference to upper and lower gastrointestinal tract to be assessed 

included; side stitch, nausea, bloating, urge to burp, urge to vomit, urge to defecate, 

diarrhoea, stomach cramps, stomach upset; intestinal cramps, dizziness, shivering and heart 

burn. GI VAS data will be collected at time points corresponding to chapter specific 

protocols. An abdomino-pelvic segmented model was included to determine from, 

participants any areas where they felt specific pain or discomfort during protocols.  

 

3.12.1 Gastro-Intestinal General Symptomology Questionnaire (within protocols) 

Further to the pre and post questionnaire gastrointestinal symptoms were recorded during 

each experimental protocol using a GI discomfort scale (Pfeiffer et al., 2009). Participants 

rated their symptoms on a 10-point scale, ranging from 0 (‘no problem at all’) to 9 (‘the worst 

it has ever been’), with a score > 4 being regarded as serious.  

 

3.13 HPLC Assessment of intestinal permeability  

Intestinal permeability for the recovery of Lactulose and L-Rhamnose was assessed by 

analysing pooled 5 h urine samples using a previously published protocol (Fleming et al., 

1996), with the modification of using L-rhamnose instead of mannitol as the monosaccharide 

probe. The various sugars were separated using high‐pressure liquid chromatography 

(HPLC) and quantitated by use of a pulsed electrochemical detector using a gold working 

electrode and silver/silver chloride reference electrode. The detection potential was -0.01 V 

(0-0.5 s), the oxidation potential was +0.75 V (0.51-0.64 s), the reduction potential was -0.75 

V (0.65-0.75 s), and the integration period was 0.05 to 0.5 s. Retention times were 2.7 min 

for L-rhamnose and 6.1 min for lactulose. The coefficient of variation for the samples in the 

trial in this thesis using this method has been found to be between 1.8 – 8.5 %.  
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3.14. Assessment of Serum Cortisol. 

Serum cortisol across studies was determined via automated Roche COBAS electro-

chemilum in escence immunoassay procedure following the manufacturer’s instruction. The 

CV was <10 %. The lower and upper limits of measurements were 0.5 and 1750 nmol/L, 

respectively. 

 

3.15 Statistical Analysis 

SPSS software (version 23; SPSS inc., Chicago, IL) was used for data entry and analysis for 

all studies. Excel was utilised to calculate mean and SD across the chapters. In each 

chapter a description of the analysis process is provided.  

 

3.15.1   Sample size.  

In this thesis the sample size across the studies were relatively small only chapter 5 has a 

sample size close to the recommendations of 12 per study (Julious, 2005). Throughout the 

thesis, the temptation to cite sample size as a restriction on the studies has been resisted. 

Retrospective sample size power estimation in order to assess how many participants would 

be required to turn a non-significant result in a significant result should be avoided.  Such an 

approach is statically incorrect, data from the chapters can be used to estimate effect sizes 

for planning future work but not to explain lack of statistical significance in current data 

(Beck, 2013).  
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3.16 Pilot study 1. 

Effect of steady state exercise relative to rest on gastrointestinal damage:  exploration 

of faecal calprotectin utility in short term exercise. 

 

3.17 Introduction. 

The gastrointestinal barrier has a role in protecting the internal environment from harmful 

substances entering the blood stream (Camilleri et al., 2012; Fasano & Shea-Donohue, 

2005). A breach in this barrier may be the primary event in the pathogenesis of intestinal 

inflammatory disorders (Farhadi et al., 2003; Farhadi et al., 2007). However, a main concern 

is that a variety of physiological, psychological and immunological challenges such as 

prolonged strenuous exercise affects the physical and chemical integrity of the intestinal 

barrier (Lambert et al., 2008). Epidemiological data report increased expression of 

gastrointestinal (GI) disturbance symptomology in athletes after exercise of varying durations 

and intensity across gender and fitness status  (Haaf et al., 2014; Keeffe et al., 1984; Peters 

et al., 1999; ter Steege et al., 2008). These symptoms have been associated with a loss of 

GI epithelial barrier integrity secondary to hyperthermia, splanchnic hypo-perfusion, GI 

hypoxia (Calder et al., 2013; Dokladny et al., 2006; Pires et al., 2016; van Wijck et al., 2011; 

Zuhl et al., 2014b). Determination of the magnitude and extent of changes to the GI intestinal 

barrier as a result of exercise have utilised a range of biomarkers borrowed from clinical 

practice to quantitate the extent of potential damage/inflammation to the GI barrier (Snipe, et 

al., 2017; van Wijck et al., 2011). A broad range of sugar absorption tests designed to 

determine breaches in membrane integrity, and a range of other bio-markers such as 

cytosolic proteins have been utilised (Calder et al., 2013; Crenn et al., 2010; Lostia et al., 

2008; van der Voort et al., 2014). Recently, calprotectin, a 36-Kda cytosolic zinc binding 

protein marker of GI inflammation has been postulated as a biomarker of exercise related 

perturbations in GI function (van Wijck et al., 2011). Calprotectin is found in the cytoplasm of 

activated macrophages and neutrophil representing 30-60 % of the cytosolic proteins 

present and has potent morphological disruption and antibacterial effects upon release 

(Pimentel et al., 2015; Soubières & Poullis, 2016). Calprotectin shows high levels of 

correlation to morphological, histological, immunological and cytokine derived markers of 

inflammatory bowel diseases (Sherwood & Walsham, 2016). It presence in faecal samples is 

indicative of GI barrier breach and inflammatory cascade activation (Soubières & Poullis, 

2016). It has been extensively used in clinical settings to diagnosis and classify a range of GI 

inflammatory related conditions such as inflammatory bowel disease, Crohn’s disease, 

irritable bowel syndrome; as a clinical test it presents a high level of diagnostic sensitivity 

and specificity of 95 % and 91 % (Chang et al., 2014; Wang et al., 2013) It presents with a 
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normal diagnostic range of <50 ug/g, with concentration’s between 50-180 µg/g associated 

with morphological disruptions to the gastric and GI barrier, 100-200 µg/g related to 

ulceration disorders, and concentrations of >220 µg/g metastatic disorders (Lehmann, et al., 

2015; Wang et al., 2013). It is feasible that faecal calprotectin concentrations of >50 µg/g 

may provide an indicator of GI inflammation as a result of exercise. Calprotectin responses 

to exercise have previously been reported, however as these were derived from serum 

estimates they may fail to adequately reflect GI concentrations (Fagerhol et al., 2005; 

Janssen Duijghuijsen et al., 2017a; Mortensen et al., 2008). 

 

This pilot study aims to explore the effect of steady state exercise upon GI permeability, with 

faecal calprotectin and GI discomfort being an indicator of inflammation of the gut. The 

hypothesis tested was that following a bout of steady state exercise, there will be an 

increase in measurements of faecal calprotectin (µg/g) and GI discomfort (AU) when 

compared to resting activity.  

 

3.18 Test protocol 

 

3.18.1 Preliminary testing: 

Aerobic capacity (V̇O2 peak): 

Participants were required to attend the sports science lab of the TRB to undergo a graded 

maximal exercise treadmill exercise running test. Participants warmed up for 7 minutes at 

intensity self-selected intensity. After this period, the exercise protocol commenced at 8.0 

km·h-1 after every 2-minute interval the speed increases by 2.0 km·h-1 until 16 km·h-1. 

Subsequent to this the gradient increased by 2.5 % until maximal voluntary exhaustion. 

Expired gas fractions were measured to assess the volume of oxygen uptake and CO2 and 

excretion. The resultant V̇O2 peak estimates were used to regress V̇O2  against velocity to 

determine running velocities/V̇O2 relationships equivalent to 70% of V̇O2 peak for use in 

future steady state exercise protocols. RPE 6-20 scale was determined to anchor effort 

perceptions as outlined by Birk and Birk, (1987). 

 

 

 

3.19 Experimental Design:  

3.19.1 Participants. Four male participants (age 20.5 ± 0.5 years; mass 72.6 ± 11.2 kg; 

height 1.78 ± 0.11 m;  V̇O2 peak  4.03 ± 0.49 L·min-1) undertook a counter balanced repeated 

measures design of 50 minutes of rest (Control) or steady state running upon a motorised 

treadmill (~70%  V̇O2 max) . Participants gave informed consent in line with the institutional 
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ethical procedures of Liverpool John Moore’s University. Participants were required to 

abstain from exercise for 24 hours and alcohol and spicy food (Section 3.2).  All confirmed 

their compliance with these criteria upon arrival at the laboratory. 

 

3.19.2 Experimental Conditions: Rest (Control) and Exercise:  

An EasySampler® Stool Sample Collection kit (Alpha Laboratories, UK) was given to 

participants before coming into the lab to collect their last faecal output from the previous 

day for the determination of calprotectin. The faeces sample from the day before testing was 

collected and placed in faecal collection tube via a sample spatula by the participant’s 

double bagged and sealed for transportation to the lab following NHS guidelines on stool 

collection and storage. Faecal calprotectin samples remain viable at room temperature for at 

least 7 days (Sherwood & Walsham, 2016). Participants were then asked to insert a rectal 

probe 10 centimetres (cm) past the external anal sphincter and attach T31 coded™ 

transmitter (Polar™, Kempele, Finland) around their chest at V5 just under the pectoral 

muscle and wear a FT2 watch (Polar™) linked to the T31 coded™ transmitter. In the rest 

condition the participants were then allowed to pass the allocated experimental time by 

whatever way they chose as long as they stayed seated for the full 50 minutes. Conversely 

in the exercise condition participants commenced running at a speed equivalent to 70% of 

their individual V̇O2 peak for 50 min. During both protocols, heart rate HR (b·min-1)   was 

recorded every minute and every 3 min’ core body temperature (•C), rate of perceived 

exertion (RPE), thermal comfort and GI comfort (Pfeiffer et al., 2009) were measured. Once 

the 50 min had expired participants took another EasySampler® Stool Sample Collection kit 

to collect the next faecal sample i.e. post exercise and recorded how long after exercise it 

was passed. This sample was then returned labelled and stored at -80°C. A minimum of 5 

days between trials was 

 

3.19.3 Faecal calprotectin analysis. 

The analysis of the faecal calprotectin involves three key steps; extraction of the stool 

sample, sample processing and lateral flow assay procedure and readout (Figure 3.5). The 

extraction of the stool sample involved defrosting the sample, once fully defrosted the faecal 

sample was taken out of the test tube and placed on a sterile surface, the dosing tip was 

then placed 2cm into the faecal sample until all collection groves were completely full then 

placed back into the dosing tube with extraction solution and firmly closed. The sample was 

then homogenized by vortexing for 30 s at 2500 rpm by a VWR Signature Digital Vortex 

Mixer. This process was repeated until all the faecal sample had been completely removed 

from the dosing tip. The solution was left for 10 minto allow the precipitation to settle at the 

bottom of the tube. The supernatant was then diluted using a ratio of 1:16 with the extraction 
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buffer (i.e. 20 µl of sample to 300 µl of extraction buffer) this was again vortexed at 2500rpm 

for 30 s. After this all samples were centrifuged at 3000 x g for 5 minutes then left to settle 

for 10 min again. The calibration of Quantum Blue® Reader was set with an internal 

reference cassette. 60 µl of extracted supernatant was then pipetted onto the sample 

loading port of the test cassette and incubated at room temperature for 12 min. The test 

cassette was then loaded into the reader and scanned. Data was expressed as ug/g. 

 

 

Figure 3.5 Extraction, processing and lateral flow analysis of faecal calprotectin (right to 

left). 

 

3.20 Statistical analysis 

Calprotectin concentrations were not statistically analysed due to small sample size. Data 

interpretation will therefore be descriptive. Microsoft Excel 2010 (Microsoft) was used to 

calculate averages of each variable across the time frame as well as standard deviation. 
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3.21 Results 

3.21.1 Gastrointestinal Damage 

3.21.1.1 Faecal Calprotectin 

Faecal calprotectin in the pre-exercise rest condition was not higher than the mean of faecal 

calprotectin post-exercise rest condition. Similarly, little difference between the pre-exercise 

sample and the post-exercise sample from the steady state exercise condition were noted 

(Figure 3.6). There was no difference between the pre-exercise samples from both the rest 

condition and steady state exercise faecal calprotectin was much lower in the post samples 

of the rest condition than observed after steady state exercise (Figure 3.6). 

 

 

Figure 3.6 Faecal calprotectin responses during exercise and rest. 
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3.21.2 Physiological variables 

3.21.2.1 Heart Rate 

The mean heart rate during steady state exercise was elevated above that seen during the 

rest condition (Figure 3.8). 

 

Figure 3.7 Average heart rate responses during both protocol completions. 

3.21.2.2 Core Body Temperature: 

Core body temperature varied as a function of protocol undertaken. The mean core body 

temperature during steady state exercise was significantly higher than during rest (Figure 

3.9). 

 

Figure 3.8 Average rectal temperature responses during both protocols completion. 
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 3.21.2.3Rate of Perceived Exertion 

The mean rate of perceived exhaustion during rest) was lower than during steady state 

exercise (Figure 3.10). 

 

Figure 3.9 Average RPE responses during both protocols completion.  

3.21.2.4 Thermal Comfort Scale: 

The average response to the thermal comfort scale was higher during steady state exercise 

than at rest. All participants reporting generally higher scores heat perception during the 

steady state exercise. 

 

Figure 3.10 Thermal Comfort subjective ratings responses during both protocols completion. 
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3.21.2.5 Gastrointestinal Comfort Scale. 

The average GI comfort scale response was not significantly lower during rest than during 

exercise at 70% of V̇O2 peak. Only one participant displayed signs of GI comfort above 

minor problems (>4) in both rest and steady state exercise.  

 

Figure 3.11 Average Thermal Comfort ratings responses during both protocols completion. 
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3.22 Discussion 

 

The aim of this pilot study was to examine the potential efficacy of Faecal calprotectin as a 

marker of GI damage/inflammation. Upon an inflammatory response/damage in the intestinal 

mucosa, degranulation of neutrophils, monocytes and activated macrophages releases 

calprotectin and its concentration increases in the intestinal lumen as such this makes it a 

specific marker for gastrointestinal inflammation (Poullis et al., 2004; Wang et al., 2013). 

Therefore, calprotectin’s potential as a non-invasive biomarker of intestinal inflammation has 

been advocated in clinical scenarios (Fengming & Jianbing, 2014). In the present study, we 

extended this concept to determine if faecal calprotectin may show efficacy due to exercise 

mediated inflammation in the GI tract. It was hypothesised that the concentrations of faecal 

calprotectin would be elevated post exercise relative to the non-exercise day due to 

increased GI permeability leading to endotoxin leakage and a subsequent neutrophil 

activation and recruitment to the gut (Soubières & Poullis, 2016).  

 

However, this scenario of elevated faecal calprotectin was not reflected in the data. High 

levels of faecal calprotectin from the pre steady state exercise sample were indicative of an 

activation of inflammatory cascades at rest relative to and greater than that observed 

following exercise (Figure 3.8). This inherent variability is inconsistent with the idea that 

faecal calprotectin presents a sensitivity to detect exercise meditated increases in GI 

inflammation (van Wijck et al., 2011). The faecal calprotectin concentration expressed are 

higher than the traditional clinical cut off for the initiation of further investigative procedures 

(ref). Since this work, several studies have utilised the faecal calprotectin approach in larger 

samples during running based studies, the absolute values and magnitude of changes in 

their faecal calprotectin concentrations were much lower that noted herein and may reflect 

the analysis methodology applied (Karhu et al., 2017; Snipe et al., 2017).   Van Wijck et al. 

(2011) has also shown that faecal calprotectin concentrations rise slightly after 60 minutes of 

cycling at high intensity but not significantly above resting values and in line with observation 

of others (Snipe et al., 2017). Others have noted more significant elevations in calprotectin 

after exercise (Fagerhol et al., 2005) however this was determined in the blood compartment 

rather than the GI tract; it has been noted that exercising skeletal muscle presents a 

significant source of circulating calprotectin as such its usefulness in this compartment as a 

GI biomarker is therefore unsubstantiated (Mortensen et al., 2008). Compartment specific 

assessment of calprotectin is therefore critical if it is to reflect the local gut inflammatory 

responses. 
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There are several factors both intrinsic and extrinsic to the assay procedure which may have 

contributed to the elevated calprotectin observations noted i.e. sample collection, 

management, extraction and preparation. Firstly, the measurement of faecal calprotectin, are 

based on immunochemical techniques utilising either polyclonal or monoclonal antibodies 

targeted at various epitopes on the calprotectin molecule (Sherwood & Walsham, 2016). 

These can be divided into those that produce a quantitative (ELISA/lateral flow) result and 

those that produce a positive or negative result, i.e. qualitative result high/low. In the present 

study we utilised the BÜHLMANN. • Quantum Blue® calprotectin solid phase assay, which is 

a rapid bench top lateral flow assay with antibody embedded into a cassette. The addition of 

a supernatant extracted from faecal samples allows determination of calprotectin through a 

colorimetric reaction and reading which varies from that applied during ELISA.  Second, 

sample management, extraction and preparation are critical factors. Stool samples are 

collected, temporarily stored and transported by participants, whilst several studies have 

indicated the stability of faecal calprotectin at room temperature variation from room 

temperature may alter bacterial degradation within the sample (Lasson et al., 2015; 

Whitehead et al., 2015). In terms of sample preparation and extraction faecal calprotectin is 

suggested to be uniformly distributed throughout a faecal sample thus minimising the impact 

of sampling site from the primary stool sample impacting upon the final estimates of faecal 

calprotectin (Sherwood & Walsham, 2016). In relation to faecal calprotectin extraction the 

use of the ‘easy sampler extraction system’ is designed to minimise inter-sample variability 

in relation to the faecal mass presented into the extraction buffer medium through a grooved 

system that collects the requisite amount required; although this view hasn’t been supported 

(Whitehead et al., 2015).  

 

A more fundamental consideration with faecal calprotectin determination is the duration of 

time allowed to pass between exercise/rest protocol performances until the collection of the 

faecal sample. The temporal disassociation between protocol execution and stool collection 

means it cannot be ascertained whether the release of calprotectin in the gut is due to 

normal GI mediated background inflammatory response or as a result of exercise related GI 

inflammation. Participants are free living and unless diet is restricted and standardised post 

protocol this may impact local gut inflammatory response (Mendall et al., 2016). Whilst non-

exercise day samples presented may provide a representation of the background 

inflammation levels, the 12-18-hour gap between protocol execution and sample acquisition 

does not provide confidence in the provenance of the faecal calprotectin concentrations 

acquired. Indeed time of day variations are likely within clinical population from morning to 

evening (Lasson et al., 2015). If several baseline measurements were taken then the faecal 

calprotectin background could be established to compare the results obtained after the 
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exercise period, particularly as the results are somewhat counter intuitive to what was 

hypothesised and expected. Snipe et al. (2017) has also raised questions over the sensitivity 

of faecal calprotectin as a marker on similar grounds, i.e. resolving the temporal relationship 

between a likely but transient elevation in exercise induced inflammation and the ability to 

collect a faecal sample that match this transient inflammation.  

 

Beyond the methodological factors, explanation of the data may rest with non-adherence to 

the protocol on rest/control days.  Furthermore, whilst participants were requested to abstain 

from NSAID’s and exercise prior to the assessment days, adherence to these guidelines is 

predicated upon participants’ verbal confirmation. Clearly from the variation in calprotectin 

levels between rest and exercise, other variables were affecting the faecal calprotectin 

concentrations. It may also be that the exercise didn’t stimulate sufficient GI distress 

because the intensity was not high enough and/or the duration not long enough; gut 

discomfort subjective ratings were low and did not exceed ‘4’ a level which Pfeiffer et al. ( 

2009) considers noteworthy in terms of subjective symptoms.  However, some studies have 

noted this intensity and duration of exercise doesn’t always increase GI permeability 

(Lambert et al., 2008; Snipe et al., 2017; Yeh et al., 2013) it does increase markers of tissue 

damage and potential inflammation (March et al., 2017; McKenna, 2017; Pugh et al., 2017; 

Snipe et al., 2017) Many other studies however have related increases in GI permeability 

with exercise of this intensity (Pals et al., 1997; Pugh et al., 2017; van Wijck, et al., 2011). 

These types of events cause reduction in splanchnic blood, hyperthermia and dehydration 

which causes mucosal barrier damage (Costa et al.,  2017). Therefore, based on the faecal 

calprotectin concentrations observed it could be argued that no significant exercise mediated 

damage to the mucosal structure occurred. However, because faecal calprotectin was the 

only measure of gut damage/inflammation utilised the application of dual sugar tests and or 

other markers such as Intestinal Fatty Acid Binding Protein and/or others such as cytokine 

profiles, lactoferrin or antitrypsin-1 would be needed to confirm this view.  

 

In conclusion we observe that steady state exercise for 50 min had no clear effect on faecal 

calprotectin levels. We observed a wide variability in the faecal calprotectin values obtained, 

with values exceeding some clinical guidelines thresholds.  The lack of established ‘normal’ 

calprotectin ranges for young healthy athletic male population limits the conclusions that may 

be drawn from present data as clinical guidance indicates raised values can be associated 

with normal GI morphology and inflammation levels. The role of faecal calprotectin as a 

marker of exercise mediated gut inflammation/damage is thus unproven particularly with the 

assay methodology applied. Further research is required to validate the use of this 
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biomarker. In terms of application of faecal calprotectin in this thesis the application of this 

test will not move forward in the following studies. 
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4.0 Gastrointestinal and physiological responses to soccer specific exercise 

performed under differing environmental conditions. 

 

The aim of this chapter was to examine the effect soccer specific intermittent exercise has 

upon GI permeability and symptoms and how these may be modified by differing thermal 

environmental conditions. This study was presented orally at the Conference on Movement, 

Health and Exercise (MoHE 2017), Kuala Lumper, Malaysia, September 2017. 

 

4.1 Introduction 

Soccer is an intermittent, invasive field based sport characterized by repeated bouts of high 

intensity exercise super imposed upon a background low intensity exercise or static recovery 

(Bangsbo et al., 2006; Mohr et al., 2003). Typically, work rate analysis data indicates that 

during match play, players cover on average 10-14 km dependent upon position (Di Salvo et 

al., 2009), of this activity most is executed at low to moderate intensity (Bradley & Noakes, 

2013). However, high intensity activity is critical to performance and accounts for 

approximately 8 % of the distance covered, with on average >1400 m acceleration and 

deceleration activities and >500 plus change of direction executed which vary as a function 

of player role (Bradley et al., 2010; Carling et al., 2012; Di Mascio & Bradley, 2013; Di Salvo, 

et al., 2012). More recently, the adoption of a metabolic cost paradigm to training and match 

play have ascribed higher levels of energetic and physiological load than that attributed to 

work rate analysis alone (Gaudino et al., 2014; Osgnach et al.,  2010). Typically, players 

achieve average heart rates of ~85 % age predicted maximum which may correspond to an 

average of ~70 % maximal oxygen consumption ( max) (Bangsbo et al., 2006; Krustrup 

et al., 2006). Taken together both approaches are indicative of a performance environment 

that imposes high levels of both physical and metabolic load upon players (Di Salvo et al., 

2012; Gregson et al.,  2010; Suarez-Arrones et al., 2015).  

 

In particular, the prolonged aerobic and intermittent nature of soccer activity imposes 

significant thermal loads which elevates core body temperature during soccer-match play, 

changes which are strongly associated with impaired physical, skills and cognitive 

performance across a range of performance metrics independent of performance 

environment (Kurdak et al., 2010; Mohr et al., 2012; Nybo et al., 2014; Ozgünen et al., 

2010). These responses may be further compounded when match play is undertaken across 

different environmental conditions particularly where ambient temperatures are elevated 

(Aldous et al., 2016; Chmura et al., 2017; Maughan et al., 2010). Exercise in ‘Hot’ conditions 

i.e. >32°C is associated with an elevation in body temperature reducing the gradient for heat 
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exchange between the skin and environment (Nielsen et al., 1993). The imposition of 

humidity (>45 %) may further exacerbate such increases impairing evaporative heat loss 

and thermoregulatory response (Dvorak & Racinais, 2010; Grantham et al., 2010). 

Consequently, the combined exercise activity and heat stress imposed, mediates a number 

of well described compensatory physiological responses in molecular, metabolic and 

cardiovascular systems (González-Alonso et al., 2008; Nybo et al., 2014; Racinais & Sawka, 

2015). In particular, the haemodynamic challenge of meeting exercising skeletal muscle 

demands and meeting thermoregulatory demands of exercise activity in hot conditions 

(>32°C) places significant stress on the gastrointestinal system in relation to thermal load 

management and maintenance of splanchnic perfusion (Hayashi et al., 2012; Perko et al., 

1998).  Appreciation of such challenges are vital in light of the frequent single and multiple 

exposure players have to match play particularly in hot and /or humid ambient condition. 

Qatar (2022) will see world cup match’s played and training undertaken in conditions of high 

thermal load (Maughan et al., 2010; Sofotasiou et al., 2015). Hence, the effects of heat 

exposure during match play are important factors in performance and recovery management 

from games in light of the well documented effects hyperthermia may have on the induction 

of fatigue  and impact upon the gastrointestinal system (Grantham et al., 2010; Kurdak et al., 

2010). 

 

Gastrointestinal disturbances as a result of exercise activity has been extensively reported 

across a range of athletic events and populations (de Oliveira et al., 2014; Riddoch & Trinick, 

1988; ter Steege et al., 2008). It has been suggested that 4 % to 90 % of endurance sport 

participants experience some adverse GI symptoms related to exercise including nausea, 

vomiting, abdominal cramps and the urge to have a bowel movement (Haaf et al., 2014; 

Pfeiffer et al., 2009; Pfeiffer et al., 2012; Wilson, 2017). Whilst it is clearly evidenced that 

sustained endurance exercise of varying durations and intensity mediate increased 

permeability and damage in the GI tract (Jeukendrup et al., 2000; Pals et al., 1997; Roberts 

et al., 2016b; van Nieuwenhoven et al., 1999; van Wijck et al.,  2011), the effect of the 

combined endurance and intermittent activity of soccer related intermittent exercise on GI 

permeability remains unknown. It also remains to be determined what impact the 

performance of such intermittent exercise under different environmental condition that 

challenge the maintenance of splanchnic blood and thermoregulation have on GI 

permeability and the expression of GI symptomology. The aim of this study was therefore 

twofold; 1) to assess changes in GI permeability after combined continuous and intermittent 

i.e. soccer specific intermittent exercise (SSIE) for 90 min’ relative to no exercise and 2.) to 

determine the impact of environmental conditions i.e. Hot (32°C) vs Cold (12°C) on GI 

permeability and symptomology. 
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4.2 Method 

Initially 12 recreational soccer players volunteered and were recruited to participate in the 

study, all providing signed informed consent in accordance to the Liverpool John Moore’s 

university ethics committee procedures, however due to  illness and inability to commit to 

testing schedules only six male university soccer players were included in the final analysis 

(age 24 ± 2.4 years; body mass 74.4 ± 11.9 kg; peak oxygen uptake ( peak; 57.1 ± 8.1 

mL·kg-1·min-1). Players were recruited during the pre-and early season period and were 

actively participating in soccer matches and team training. Sample size estimates were 

determined a priori based upon data of Pals et al. (1997).  Assuming an exercise to rest GI 

permeability ratio difference of 0.05 arbitrary units and an anticipated SD of 0.02. the initial 

sample of 12 was determined. Assuming a type I error of .05, a type II error rate (i.e. power 

of 80%) a total of 12 participants were estimated as required for this study (V.18, Minitab Inc, 

PA, USA)..  

 

 

 

4.3 Experimental design  

This study was a, counterbalanced repeated measures design. Five testing sessions were 

organised; one preliminary assessment session followed by two rest and activity sessions, 

each interspersed by 3-7 days (Figure 4.0). All participants were tested in a post-absorptive 

state from an 8 h overnight fast, between 08:00-11:00 h. Participants were instructed to 

refrain from strenuous exercise 48 h prior to data collection sessions. During the 24 h period 
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prior to testing, each participant recorded a nutrition diary to reduce nutritional variation and 

were asked to avoid consumption of non-steroidal anti-inflammatory drugs and ergogenic 

aids, such as caffeine and alcohol during 24 h prior data collection. Participants were 

excluded if they used non-steroidal anti-inflammatory drugs. Environmental temperatures 

were set at 12°C and 32°C, relative humidity of 45 % for cold and hot environmental 

conditions, respectively in a environmental chamber (TISS,UK). These temperatures were 

selected as they represented the typical playing conditions experienced during transit from 

the start to the end of the typical European season. The soccer-specific intermittent exercise 

protocol was performed on a motorized treadmill (h/p/cosmos pulsar, Germany) and 

consisted of different exercise intensities that are observed during a 90-minsoccer match 

(e.g. walking, jogging, cruising, and sprinting) (Drust, et al., 2000). The rest protocol required 

no physical or psychological stressing activities, whilst seated upright for an identical 

duration and environmental conditions utilised for the soccer-specific intermittent protocol. 

Figure 4.1 Schematic representation of the typical activity segment following the 

Drustet al. (2000) soccer specific intermittent exercise protocol. 

 

4.4 Preliminary testing  

Participants  peak was determined using a progressive incremental protocol on a 

motorized treadmill (h/p/cosmos pulsar, Germany); temperature of 22°C and 45 % relative 

humidity. The protocol followed that previously outlined in (Chapter 3; section 3.6). The 
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criteria of the British Association of Sport and Exercise Sciences (BASES) were used to 

clarify if peak/max was attained (Winter et al., 2007). Expired respiratory gases were 

analysed by breath-by-breath, automated gas-analysis system (Metalyser, 3B Cortex, AZ, 

USA). (Chapter 3; section 3.6). 

 

4.5 Experimental protocol 

Upon arrival to the laboratory, each participant provided a urine sample, whereby volume 

and osmolality was recorded (Pal-Osmo, Vitech Scientific Ltd., Japan). Nude mass (SECA, 

704 Birmingham, UK), resting heart rate (Polar Electro Oy, F-90440 Kempele, Finland), 

rectal temperature (VALSUITE, ellab A/S, Copenhagen, Denmark) and fingertip capillary 

blood lactate (Lactate Pro LT-1710, Arkray, Japan) was also recorded. Resting perceptions 

of effort (RPE) (Borg, 1982) and Thermal Comfort (Young et al., 1987) was also recorded. 

The participant then ingested the sugar test solution; 5 g lactulose (L), 1 g L-rhamnose (R), 

D-Xylose (0.5 g) and 5 g sucrose (S) in 115 ml of water, whereby 5 h urine collection period 

commenced. A gastrointestinal symptomology visual analogue scale (GI-VAS) (Moncada-

Jimènez et al., 2009) to assess upper and lower GI symptoms such as heartburn, nausea, 

abdominal cramps, urge to defecate, was completed 15 min post ingestion of the test sugar 

solution. Participants were asked to place a mark on a line pertaining to their perception, and 

these were quantified in terms of percent full scale (i.e. 0 % = none, 100 % = severe). During 

exercise, heart rate and rectal temperature were continuously monitored and recorded at 1 

min intervals. Participants RPE and thermal comfort were also continuously monitored and 

recorded at 2 min intervals. Fingertip capillary blood lactate was recorded prior to beginning 

of each half, and upon completion of each 22.5 min cycle of the soccer-specific intermittent 

exercise protocol (Figure 4.1)(Drust et al., 2000). Urine samples were collected and stored, 

with volume and osmolality recorded at 0 and 90-min time intervals. GI-VAS to document 

incidence of GI symptoms during each respective 45 min periods of the soccer-specific 

intermittent exercise protocol were completed. Participants ingested ~1 mL·kg-1 of water 

(temperature 10°C) at 15 min intervals. Participants were removed from the environmental 

chamber during the 15-min half-time interval, whereby they rested in a seated position in 

environmental temperature of 22°C and relative humidity of 45 %. Participants ingested ~1 

mL·kg-1 of water immediately prior to re-entering the environmental chamber to commence 

the second period of the soccer specific exercise protocol. 

 

Post-exercise nude mass was recorded to determine fluid loss (Pre- Post [+fluid ingested]). 

Participants then ingested water to replace mass loss and to encourage urination. Urine 

samples were collected and stored, with volume and osmolality recorded at over the 
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remaining time period up to 5 h after sugar ingestion. Total urine volume and osmolality (5 h 

urine collection period) was recorded (mL). If participants needed to urinate during exercise, 

post sugar probe ingestion and outside of allotted times, these were recorded and urine 

added to total volume. All urine samples collected throughout the 5 h collection period was 

stored and frozen at -80°C for analysis, by HPLC assay. Participants were allowed to 

consume non-sucrose containing foods 3 h post sugar test solution ingestion, during each 

rest and activity testing sessions. A final GI-VAS was completed 5-h post-test solution 

ingestion. 

 

4.6 Analytical procedures  

Assessment of intestinal permeability  

Intestinal permeability for the recovery of Lactulose and L-Rhamnose was assessed by 

analysing pooled 5 hour urine samples using a previously published protocol (Fleming et al., 

1996), with the modification of using L-rhamnose instead of mannitol as the monosaccharide 

probe. (Chapter 3, section 3.10).   

 

4.7 Statistical analysis 

Descriptive statistics were produced for all data sets to check for normal distribution 

as indicated by Kolmogorov-Smirnov (accepted if P>0.05). Data was examined 

utilising a two-way within subject design general linear model Mode: [Exercise vs 

Rest] and Environment [Hot vs Cold] to determine the effects of discrete parameters 

of GI Permeability and GI Symptomology. Physiological and perceptual responses to 

soccer-specific intermittent exercise over time for the parameters heart rate, RPE, 

thermal comfort, rectal temperature, were determined via the addition of a third main 

effect [time] (Three way) ANOVA. Where a significant main effect was determined, 

pairwise comparisons were analysed according to Bonferroni post hoc in order to 

locate specific differences.  If Mauchley’s test of sphericity indicated a minimum level 

of violation, as assessed by a Greenhouse Geisser epsilon (ε) of ≥ 0.75, data were 

corrected using the Huynh-Feldt ε. If Mauchley’s test of sphericity was violated, data 

were corrected using Greenhouse Geisser ε. Paired t-test analysis was use where 

appropriate. Statistical significance was set at p < 0.05. Statistical analysis was 

performed using SPSS statistical software (SPSS 23.0, SPSS, Inc., Chicago, IL, 

USA). Visual representations of experimental data were produced using Microsoft 

Excel software package. Data are presented throughout as Mean ± SD. 
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4.8 Results 

4.8.1 Physiological Responses Rest. During exercise heart rate, rectal temperature, 

lactate, and body mass losses were all significantly increased in relation to their 

corresponding rest and environmental condition. Ratings of perceived exertion and thermal 

sensation were also significantly increased in relation to rest and their corresponding 

environmental condition (P< 0.05) (Table 4.1).  

 

Table 4.1  Physiological response to SSIE and rest in Cold (12°C) and Hot (32°C) 

environmental conditions. 

    Rest     Exercise   

Variable Cold   Hot Cold   Hot 

 
Average Heart 
rate (b·min-1) 

 
 

59 ± 5   

 
 

70 ± 7† 

 
 

139 ± 15*   

 
 

163 ± 7*^ 
 

Peak Heart rate 
(b·min-1) 56 ± 5    66 ± 7† 155 ± 18*    185 ± 4*^ 

 
Peak rectal 
temperature 

(Tc°C) 36.7 ± 1.0   37.0 ± 0.3 38.3 ± 0.5*   39.1 ± 0.5*^ 
 

Lactate  
(mmol•L

-1) 0.9 ± 0.1   0.9 ± 0.1 2.0 ± 0.1*   4.2 ± 0.7*^ 
 
Pre-post protocol 

mass loss (kg) 
 

 
0.2 ± 0.3 

   
0.4 ± 0.3 

 
0.9 ± 0.3* 

   
1.6 ± 0.5*^ 

 

RPE (AU) 6 ± 0  6 ± 0 12 ± 2*  13 ± 2*^ 
 

Thermal comfort 
scale (AU) 

 
2 ± 0  

  
7 ± 0† 

 
5 ± 0* 

  
7 ± 1*^ 

 

*Significant from rest (P < 0.05), † significance from cold rest (P < 0.05),^ significant from 

cold exercise, (P < 0.05), RPE- Rating of perceived exertion. (AU) = Arbitrary Units. 

 

 

 

4.8.2 Physiological Responses: Soccer Specific Exercise. 

4.8.2.1 Heart Rate. 

Heart rate was significantly elevated relative to rest and during 90 min’ SSIE exercise in 

32°C  than 12°C (F1, 25 = 2.993, P = 0.0001). (Figure 4.1). 
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Figure 4.1 Heart rate responses at rest and during soccer-specific intermittent exercise in 

Cold (12°C) and Hot (32°C) temperatures. * Significant difference between exercise vs rest 

and environmental conditions ∆ (P < 0.005). 

 

4.8.2.2 Rectal Temperature. There was a significant main effect of condition, environmental 

temperature on rectal temperature responses during exercise (F 1, 5 = 21.257, P = 0.006) 

(Figure 4.2). Rectal temperatures responses were significantly elevated during exercise in 

32°C relative to 12°C. There was a significant main effect of time upon temperature 

elevation during soccer-specific exercise with greater increases observed during second 

period than the first period (F11, 55 = 42.901, P < 0.001). There was a significant interaction 

(F11, 55 = 9.411, P < 0.001) with the increase in rectal temperature higher during hot (1.2°C) 

than during cold (0.9°C) conditions. 
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Figure 4.2 Rectal temperature response at rest and during soccer-specific intermittent 

exercise in Cold (12°C) and Hot (32°C) temperatures. * Significant difference within and 

between exercise conditions and rest conditions (P < 0.001).  

 

 

4.8.2.3 Lactate. There was a significant main effect of environmental temperature upon 

capillary lactate accumulation during exercise (F1, 5 = 15.577, P = 0.011) (Figure 4.3). There 

was a significant main effect of time of soccer-specific exercise (F1, 25 = 7.887, P < 0.001). 

There was a significant interaction, such that lactate increased to a greater extent under hot 

relative to cold exercise condition’s (F1, 25 = 2.993, P = 0.03). 
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Figure 4.3 Lactate response at rest and the soccer-specific intermittent exercise in Cold 

(12°C) and Hot (32°C) temperatures * Significant difference between exercise conditions. 

4.8.2.4 Pre- Post Body Mass Loss. Body mass loss (kg) was significantly greater during 

hot than cold exercise (1.7 ± 0.5 kg VS 0.9 ± 0.3 kg) (t5 = -3.945, P = 0.011), with greater 

losses observed during hot than cold corresponding to a 2. 2 ± 0.7% and 1.2 ± 0.4% body 

mass loss, respectively (Figure 4.4). 

 

Figure 4.4 Body mass loss (sweat loss) following rest and the soccer-specific intermittent 

exercise in Cold (12°C) and Hot (32°C) temperatures. * Significant difference between 

environmental conditions (P < 0.05). 

* 
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4.8.3 Psycho-physiological components 

4.8.3.1 Ratings of Perceived Exertion. There was a significant main effect of 

environmental temperature upon ratings of perceived exertion during exercise  with RPE 

responses were significantly elevated during exercise in 32°C than 12°C ( Figure 4.5)  (F 1, 5 

= 17.652, P = 0.008).  There was a significant main effect of time upon soccer-specific 

exercise (F 11, 55 = 29.166, P < 0.001), with greater increases observed during second period 

than the first period (P < 0.001). There was a significant interaction (F 11, 55 = 7.355, P < 0.05) 

with RPE elevated to a greater extent during hot  than during cold exercise . 

 

Figure 4.5 Rating of perceived exertion during rest and soccer-specific intermittent exercise 

in the Cold (12°C) and Hot (32°C) temperatures  . * ⨘ Significant difference between 

exercise conditions (P < 0.05). Note standard error bars are obscured due to SD=0 on rest 

hot and cold conditions which overlie each other. AU = Arbitrary units 

 

4.8.3.3 Thermal Comfort. There was a significant main effect of environmental temperature 

upon ratings of perceived thermal comfort during exercise (F1,5 = 41.967, P<0.001). Mean 

thermal comfort responses were significantly elevated during exercise in 32°C relative to  
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12°C  (Figure 4.6). There was a significant interaction such that thermal comfort increased 

more in the hot relative to the cold conditions (F 11, 55 = 3.957, P<0.05). 

 

Figure 4.6 Ratings of thermal comfort (sensation) during soccer-specific intermittent 

exercise in Cold (12°C) and Hot (32°C) temperatures. *⨘ Significant difference between 

exercise conditions  and  temperatures (P < 0.05). AU = Arbitrary units. 

 

4.8.4 GI Permeability. Evaluation of gastrointestinal permeability via Lactulose/L-rhamnose 

ratio indicated there was a no main effect of soccer-specific intermittent exercise upon 

intestinal permeability as assessed by lactulose/L-rhamnose ratio, compared to rest (F1, 5 = 

3.30, P = 0.129). There was however a significant main effect of environmental temperature 

(F1, 5 = 8.35, P = 0.034. No significant interaction (F1, 5 = 1.56, P>0.05) effect was apparent. 

Urinary excretion ratio of Lactulose/L-rhamnose increased during exercise in both hot (86 %) 

and cold (46 %) relative to their corresponding rest conditions (Figure 4.7).  
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Figure 4.7  Urinary excretion (5 h post ingestion) Lactulose/L-Rhamnose ratio following rest 

and soccer-specific intermittent exercise in cold (12°C) and hot (32°C) temperatures. * 

Significant main effect of environment (P < 0.05). 
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4.8.4.1 .Gastrointestinal Symptoms. Gastrointestinal symptoms expressed during exercise 

and rest under both hot and cold environmental conditions are represented in Table 4.2.  

 

Table 4.2 Pooled symptomology severity (mm) for all time points (pre, half-time, full-time, 3 h 

post) during exercise testing sessions in cold (12°C) and hot (32°C) temperatures  

 

Gastrointestinal 
Symptoms 

Cold 
Exercise 

Hot 
Exercise 

Cold Rest Hot Rest 

Side stitch 0.1 ± 0.3 0.1 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 

Nausea 0.0 ± 0.0 0.2 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 

Bloating 0.0 ± 0.0 0.3 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 

Urge to burp 0.0 ± 0.2 0.5 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 

Urge to Vomit 0.0 ± 0.0 0.0 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 

Urge to Defecate 1.6 ± 2.3 1.0 ± 1.8 0.0 ± 0.0 0.0 ± 0.0 

Diarrhoea 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Need to fluctuate 1.2 ± 2.0 0.5 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 

Flatuation 1.5 ± 2.4 0.4 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 

Stomach Cramps 0.1 ± 0.4 0.5 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 

Stomach Upsets 0.0 ± 0.0 0.6 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 

Intestinal Cramps 0.0 ± 0.0 0.3 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 

Dizziness 0.0 ± 0.0 0.9 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 

Shivering 0.0 ± 0.0 0.8 ± 1.8 0.0 ± 0.0 0.0 ± 0.0 

Heart Burn 0.0 ± 0.0 0.2 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 
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4.9 Discussion  

 

The primary findings of this study indicate that relative to rest the soccer specific intermittent 

exercise model (SSIE) applied in this study does not significantly elevate GI permeability or 

increase the expression of subjective symptoms of GI dysfunction. However, data does 

indicate a significant additive effect of environmental temperature upon GI permeability but 

not GI symptoms in the Hot (32°C) relative to Cold (12°C) conditions across both exercise 

and rest conditions. The findings suggest that prolonged exposure to heat creates a greater 

gastrointestinal and systemic burden than in cold conditions. This is the first study to 

investigate the effect of SSIE upon GI permeability and the expression of subjective 

symptoms of GI dysfunction as well as examining permeability responses when undertaken 

under different environmental conditions. The hypothesis tested was based upon the general 

consensus that exercise activity would increase GI permeability if performed at sufficient 

intensity and duration (Pals et al., 1997). Superimposed upon that initial consideration was 

the idea that by ‘clamping’ the SSIE activity under two divergent environmental temperatures 

it would be possible to evaluate the effects of SSIE exertional induced 

permeability/symptomology and the additive/synergistic effect of SSIE undertaken in a low 

and high external thermal load environment.  

 

The novel data herein indicate that SSIE does increase GI permeability by 86 % and 46 % 

relative to rest in Hot vs Cold conditions; these changes were however, non-significant. 

These non-significant changes in permeability following 90 min of SSIE exercise relative to 

rest are consistent with some (Lambert et al., 2008; Snipe et al., 2017; van Wijck et al., 

2014; Yeh et al., 2013) following treadmill running at 60-70% max; but not all literature. 

Increases in GI permeability are more frequently reported and have been described across 

differing exercise intensities and durations. It has been observed that 60 minutes’ steady-

rate cycling at 70 % maximal power output  (van Wijck et al., 2012; van Wijck et al., 2011), 

treadmill running at 70% max (Marchbank et al., 2011; Zuhl et al., 2014), 80 % max 

(Davison et al., 2016; March et al.,  2017; Pals et al., 1997), interval running (Pugh et al., 

2017) and marathon/ultramarathon running (Gill et al., 2015; Ryan et al., 1998; Smetanka et 

al., 1999), all elevate GI permeability. The discrepancy between the current data and 

aforementioned studies may be due to a variety of situational factors that impact upon small 

intestine GI barrier function. Pires et al. (2016) has recently summarised a widely held idea 

that exercise intensity alone may be only a part of an inter-related network of factors that 

bring about changes in GI permeability status and for permeability to manifest requires other 

factors to be co-expressed; a view echoed by others to include a complex mix of exercise 

VO2
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modality and duration, hyperthermia, splanchnic perfusion changes, initial training and 

acclimation status, hydration status, and antioxidant status (Costa, et al., 2017; Dokladny et 

al., 2008; 2016; Pires et al., 2016; van Wijck et al., 2012). In addition, possible 

methodological issues relating to GI permeability detection methods may also contribute to 

observed differences (Pugh et al., 2017).  Varied approaches relating to gut permeability 

probe selection, timing of probe administration, detection protocols of the sugar-based 

permeability tests combined with the use of different analytical techniques during these 

studies make it difficult to compare quantitative permeability indices directly across studies 

(Pugh et al., 2017; van Wijck  et al., 2012; van Wijck et al., 2013).  

 

Exercise intensity and duration are thought to be critical factors in driving and regulating GI 

permeability responses through modulating hyperthermia and splanchnic perfusion 

responses  (Costa et al., 2017; Lambert et al., 2008; Pals et al., 1997; Pugh et al., 2017). As 

such, the physical strain imposed in the current simulation is critical to the consideration of 

the GI permeability responses noted. It should accurately reflect that seen in soccer match 

play, and mimic the physiological strain it imposes on the GI system. The physiological strain 

imposed during soccer under a range of environmental conditions, means players may 

typically achieve average heart rates of ~85 % - 95 % of age predicted maximum which can 

correspond to an average of ~70 % -90 % ( max) dependent upon the environmental 

conditions under which the activity is implemented, the match-play conditions and  playing 

position  (Gregson et al., 2010; Kurdak et al., 2010; Mohr et al., 2012).  Soccer match play 

however expresses a high level of variability that impacts upon performance and 

physiological metrics returned during any given match scenario (Aldous et al., 2016; Di 

Salvo et al., 2009)  Understanding the impact of soccer performance across physiological 

system, has necessitated the development of a range of soccer simulation protocols to 

restrict this variability and facilitate the replication of soccer specific stress with more precise 

experimental control  (Aldous et al., 2016; Roelands et al., 2015).   

 

In the present study a motorised treadmill protocol was utilised (Drust et al., 2000; Sari-

Sarraf et al., 2011; Sari-Sarraf et al., 2008) in order to impose a soccer match play match 

specific physiological strain upon the participants. Physiological data (Table 4.1) would 

indicate that the soccer specific protocol in the cold and the hot conditions elicited ~70% and 

84% of maximal heart rate equating to estimated ~<60 % and ~<74 %  peak. Such 

observations reflects the present population were relatively well conditioned with  peak 

measures of ~57 mL·kg-1·min-1 and the estimated level of fractional utilisation of maximal 

exercise capacity elicited during both protocols lower than is noted in other similar activities 
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(Harper et al., 2016; Mohr et al., 2012).  Additionally, the blood lactate responses indicate a 

significantly lower exercise intensity in the cold than the hot conditions and values below that 

noted in literature for both temperate and hot conditions (Dvorak & Racinais, 2010; Mohr et 

al., 2012).  Taken together with the perceptual response data, it may be concluded that the 

exercise stress imposed as a result of the simulation protocol was insufficient particularly in 

the cold condition to mirror a ‘realistic’ soccer specific match-play load or that imposed 

during other simulation protocols (Aldous et al., 2016; Grantham et al., 2010; Harper and 

Hunter, 2016; Mohr et al., 2012). It is only with the superimposed ‘heat stress’ that 

physiological responses become similar to ‘match play’ observed under thermo-neutral 

conditions (26°c) (Gregson et al., 2010; Kurdak et al., 2010; Mohr et al., 2012). The lower 

exercise intensities of the SSIE protocol may explain the failure to achieve a significant 

increase in GI permeability when SSIE was considered alone. Several recent investigations 

indicate that 70 % of  max for 50- 60 min may be a critical threshold for increases in 

permeability to be observed (Pires et al., 2016) with several studies at similar intensities also 

reporting no GI permeability alterations (Lambert et al., 2008; Snipe, 2017; Yeh et al., 2013). 

Present data should be considered in light of these observations.  

 

During SSIE the onset of physical activity imposes a haemodynamic challenge in order to 

meet the increasing metabolic demands of skeletal muscle and the thermoregulatory 

demands of SSIE activity under varying environmental stress (Ozgünen et al., 2010).  This 

challenge places significant stress on the gastrointestinal system in relation to managing 

splanchnic perfusion, thermal load and oxidative stress (Hayashi et al., 2012; Knight et al.,  

2017; Lambert, et al., 2002; Perko  et al., 1998). The onset of SSIE is likely to bring about a 

redistribution of cardiac output with reductions in splanchnic blood flow of  up 80 % noted 

(Crandall & Gonzalez-Alonso, 2010; Knight et al., 2017; Rowell, 2004; van Wijck et al., 

2012). Consequently, splanchnic hypo-perfusion both passively and during activity have 

been  aetiologically associated with the expression of GI symptomology and changes in 

small intestine GI permeability (Otte et al., 2001a; ter Steege et al., 2012). Contributory to 

this association will be factors such as exercise intensity, pattern of load application, 

exercise duration and environmental temperature/humidity (Gutekunst et al., 2013; ter 

Steege & Kolkman, 2012). van Wijck et al. (2011) suggests as little as 20 minutes exercise 

at 70 % of  max will impair GI splanchnic perfusion. Whilst Crandall et al. (2010) 

suggest both exertional and passive heat stress will accentuate splanchnic hypo-perfusion in 

ranges from 10-80 % reduction in blood flow. Pugh et al. (2017) following high intensity 

interval exercise have suggested a similar mechanism may be responsible for increased GI 

permeability as well as tissue injury although perfusion data is absent.  

VO2
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In the context of experimental protocols undertaken herein a significant hyperthermia during 

both the rest and SSIE protocols, was apparent with the highest temperatures achieved 

toward the end of the 1st and 2nd periods of play in the SSIE during the hot relative to cold 

conditions (Figure 4.2). This pattern of increase, and core temperatures achieved reflects 

that observed in similar studies during both passive hyperthermia and sustained soccer 

related activity in the heat and during other simulation protocols despite the lower relative 

exercise intensities achieved with the present protocol (Aldous et al., 2016; Chmura et al., 

2017; Kurdak et al., 2010; Ozgünen et al., 2010). Passive and exercise-induced 

hyperthermia in the heat are both associated with elevated physiologic strain when 

compared to similar task execution in temperate or cold conditions (Crandall & Gonzalez-

Alonso, 2010; González-Alonso et al., 2008; Snipe et al., 2017). Present finding concurs with 

this observation.  

 

The elevations in small intestine GI permeability under passive, exertional and additional 

heat stress models presented here; are likely associated with epithelial barrier dysfunction 

(Lambert et al., 2002). It is thought that, hyperthermia-induced morphological disruption of 

enterocytes and tight junction protein function is noted in rodent models at high gut wall 

temperatures (>46 °c) (Lambert et al., 2002). In vitro, temperatures of 38.3°C have been 

demonstrated to cause damage to canine kidney epithelial cells (Moseley et al., 1994). 

Additionally, elevations in core temperature in the physiological range (37°C to 41°C) cause 

increased permeability in an in vitro intestinal epithelial model (Bulkley, 1987; Hall et al., 

2001; Lambert et al., 2002; Taylor & Colgan, 2007; Ward et al., 2014). Such interactions are 

potentially brought about via disruption of the tight junction family of protein structures 

including, Zonulin-1 (ZO-1), occludin, and claudin proteins within the GI barrier (Derikx et al., 

2010; Grootjans et al., 2016; Matthijsen et al., 2009). These modifications likely impacting 

the structural integrity of adjoining epithelial cells, as well as the stabilization of the internal 

myosin light chain structures (Derikx et al., 2010; Grootjans et al., 2016; Zuhl et al., 2014). 

Disruption which accentuates GI barrier impairment (Barberio et al., 2015; Lambert, 2004; 

Vargas & Marino, 2016) .  

 

Taken in tandem, hyperthermia and perfusion-reperfusion changes  are considered 

important as a source of gut morphological damage in clinical and non-clinical scenarios and 

may contribute to observed GI permeability changes observed herein (King et al., 2015; 

Lambert et al., 2002; Zuhl et al., 2014). In vivo changes in small intestine GI permeability 

may be subject to a ‘critical threshold’ whereby core temperatures of up to 38.0°C ‘may 

facilitate’ increased permeability, whereas temperatures of above 39.0°C ‘definitely induce’ 

permeability (Pires et al., 2016). Present data would suggest that these thresholds where 
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exceeded with peak temperature in excess of these thresholds (Figure 4.2). Although others, 

have examined GI permeability in the heat using a slightly different exertional 

intensity/duration and thermal model heat (35°c) vs temperate (22°C) and found GI 

permeability to remain unaffected (Snipe et al., 2017; Yeh et al., 2013).  

 

It should be remembered the level of hyperthermia reported is a function not only off the 

exercise and environmental stress but off the core temperature assessment methods utilized 

to assess it. In this study core temperature was determined with rectal thermometry; this 

approach may underestimate the temperature observed in the small intestine GI wall by up 

to 0.5-2°C due to location difference between rectum and small intestine.  Pearson et al., 

(2012) suggest a ‘temporal lagging’ occurs between rectal GI measure of temperature 

relative to pulmonary artery temperature. The implication for the present work being the GI 

tract may be slower to increase in temperature but also slower to cool down in the post 

exercise period.  As such the rate and extent of small intestine wall temperature changes 

may precede the core temperature rise and then likely lag behind in terms of enterocyte heat 

exposure reduction. Such extended thermal strain/exposure beyond the initial exercise 

phase may bring about further disruption to GI barrier integrity beyond the 90 minute window 

reported in the current model (Dokladny et al., 2006). This may provide an explanation for 

the increased between treatment GI permeability changes in high ambient heat environment.  

 

A further confounding factor during the SSIE, is that core temperature elevation and 

splanchnic hypo-perfusion are likely to be accentuated with fluid loss. It is well established 

that total body water loss through sensible and insensible pathways reduces plasma volume, 

and reduces exercise performance (>2 % body mass loss),, particularly in hot environments. 

The 2.2 % observed herein despite fluid ingestion is sufficient to impair performance 

(Edwards et al., 2007; Maughan et al., 2010; Nuccio et al., 2017).  Such progressive losses 

in total body water may contribute to splanchnic blood flow reductions and impairment in the 

dissipation of thermal load from the GI wall.  

 

Subjective reports of gastrointestinal disturbances are frequently  reported, particularly 

amongst endurance sports and athletes (de Oliveira et al., 2014; Hoffman et al.,  2016; 

Stuempfle & Hoffman, 2015; Wilson, 2017). In the present study, subjective expression of 

gastrointestinal symptomology was disassociated from the objective permeability marker 

(Table 4.2). The low symptomology scores expressed during both passive and SSIE, across 

both Hot and Cold conditions for both upper and lower GI symptoms is the first for a team 

sport activity profile, how this data reflects real world scenarios remains to be determined. 

Parallels may be drawn with Pugh et al. (2017) who described a similar dissociation 
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following high intensity interval exercise. These observations of no or mild symptoms are in 

line with that reported more recently following acute exercise across a range of exercise 

intensities, modalities, and environmental conditions particularly in controlled laboratory 

studies (Karhu et al., 2017; Lambert et al., 2008; Marchbank et al., 2011b; Morrison et al., 

2014; Pugh et al., 2017; van Wijck et al., 2011; Zuhl et al., 2014). At present the narrative is 

generally consistent; a clear divergence in symptomology expression to that expressed in 

field studies (Pfeiffer et al., 2012; Rehrer et al., 1990; Riddoch & Trinick, 1988; ter Steege et 

al., 2008; ter Steege et al.,  2012). This apparent discrepancy between field and laboratory 

symptom expression may be due to a number of factors. The variances may be reflective of 

the young trained population utilized, the administration of fluids thorough-out, carbohydrate 

ingestion, as well as the previously discussed protocol /exercise intensity effects. Exercise 

modalities used in laboratory studies have often been shorter in duration and lower in 

relative intensity than those typically seen in competitive endurance races with more 

heterogeneous populations.  

 

In relation to the practical importance of these changes in GI permeability, small intestine 

permeability can have major implications for the digestion and absorption of carbohydrates 

and dietary protein in the acute recovery phase following exercise (Janssen Duijghuijsen et 

al., 2016; Janssen Duijghuijsen et al., 2017; van Wijck et al., 2014). Whilst we have 

observed increases in L/R ratios as a surrogate of increased GI permeability which are 

similar to the endurance-type exercise, this may indicate that soccer-specific intermittent 

exercise may compromise the small intestines integrity and impact upon its primary 

functional role to digest and absorb nutrients, impairing vital recovery processes.  

 

4.10 Conclusions.  

This study indicates GI permeability is elevated when un-acclimated well-trained soccer 

players are exposed to acute periods of both passive and exercise stress under hot 

conditions. Finding are supportive of the hypothesis linking additional thermoregulatory strain 

induced by environmental heat exposure to the observed elevated GI permeability. This 

change being brought about via possible exacerbation of  splanchnic hypo-perfusion, 

intestinal ischemia, and hyperthermic strain upon the intestinal epithelium (Pires et al., 2016;  

ter Steege et al., 2008; Zuhl et al., 2014). However, confirmation of these mechanistic 

aspects requires further experimental verification as no assessment of GI perfusion has 

been undertaken during SSIE performance to corroborate these considerations. We also 

reported a clear divergence between objective and subjective markers of permeability and 

symptomology which poses questions as to the usefulness of these subjective scales under 

such settings of soccer specific intermittent exercise. 
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5.0 Effect of high intensity intermittent (HIIT) vs steady state (SS) exercise in a cold 

(12°c) versus hot (32°c) environment on GI permeability and GI symptomology. 

 

This chapter develops the concept outlined from Chapter 4, in that it isolates and examines 

the relative impact of exercise pattern i.e. HIIT vs steady state continuous exercise upon GI 

permeability and symptoms and how these may be impacted under different environmental. 

It is hypothesised that both will increase GI permeability relative to rest and that permeability 

will increase to a greater extent under the Hot relative to Cold conditions. 

 

5.1 Introduction  

Gastrointestinal disturbances resulting from exercise activity have been extensively reported 

across a range of athletic events and populations (de Oliveira et al., 2014; Riddoch & Trinick, 

1988; ter Steege et al., 2008). Wide variances in the numbers of individuals  that report GI 

symptoms exist with 4 % to 90 % of endurance sport participants experiencing what they 

perceive to be some form of adverse GI symptoms (Haaf et al., 2014; Pfeiffer et al., 2009; 

2012; Wilson, 2017). Literature supports the view that sustained endurance exercise of 

varying durations and intensity mediate increased GI permeability and damage (Jeukendrup 

et al., 2000; Pals et al., 1997; Roberts et al 2016; van Nieuwenhoven et al., 1999; van Wijck 

et al., 2011). The mechanisms of these subjective GI disturbances remain to be fully 

clarified, although possible mechanisms highlight increases in paracellular and transcellular 

intestinal permeability to luminal antigenic molecules (Lambert, 2009); secondary to the 

initiation of splanchnic hypo-perfusion (ter Steege et al., 2008; van Wijck et al., 2011), 

splanchnic hyperthermia (Dokladny et al., 2006; Lambertet al.,  2002), tissue hypoxia and 

disruption to enterocyte tight junction proteins (Dokladny et al., 2016; Zuhl et al.,  2014) with 

subsequent endotoxaemia development (Barberio et al., 2015; Brock-Utne et al., 1988). It is 

apparent from these studies that as exercise intensity increase there is a corresponding 

reduction in splanchnic perfusion (Otte et al., 2001; Rowell, 2004). In addition this exercise-

hypo-perfusion response mirrors the inverse relationship apparent between exercise 

intensity and intestinal permeability (Pals et al.,1997). Consequently, it may be hypothesized 

that changes in blood flow and permeability respond as a function of how exercise intensity 

and duration are programmed.  As such, it may be that the type of exercise training 

undertaken will predispose toward increased GI permeability and symptom expression. 

 

High intensity interval training (HIIT) has become increasingly used as a mechanism for 

driving cardiovascular and skeletal muscle adaptation in a time efficient manner when 

considered relative to traditional sustained intensity endurance training (Buchheit & Laursen, 

2013). However, whilst HIIT may provide an optimal training stimulus for improving aerobic 
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fitness, knowledge of how these different types of training HIIT and sustained endurance 

training influence the GI system is unknown as comparative evaluations haven’t been 

completed. To date only one study has examined GI permeability response during 

Intermittent exercise noting that GI permeability and damage were increased. However no 

steady-state exercise  protocol was implemented to evaluate if the activity profile (Pattern) 

impacted the level of GI permeability or symptoms expressed  (Pugh et al., 2017). The 

question as to whether one form of exercise programming i.e. HIIT vs Steady state is more 

damaging to the GI system than another remains unresolved. A hypothesis may be 

advanced that would imply that HIIT exercise would be more damaging to the GI tract than 

steady state continuous exercise. That argument would proceed as follows; interval training 

which follows a ‘work-recover-work-recover….’ model will set up an oscillatory pattern of 

splanchnic blood that moves between periods of hypo-perfusion (exercise) followed by 

reperfusion (recovery). Consequently, this perfusion–reperfusion pattern is likely to induce 

local tissue hypoxia (exercise), and mediate possible increases in perfusion-reperfusion 

oxidative stress (recovery) all of which may impact upon GI barrier function. Whether the GI 

permeability and symptoms elicited following this model are higher relative to those 

observed following sustained steady state exercise is unknown (Otte et al., 2001; van Wijck 

et al., 2011). A separate analysis of HIIT vs sustained endurance exercise vs passive rest 

is therefore necessary to determine more precise effects of these exercise programming 

approaches on gut permeability and function.  

 

Given that these exercise programmes are undertaken across a range of environmental 

conditions it also remains to be determined what impact performance of such intermittent 

and steady state exercise under different environmental conditions that challenge the 

maintenance of splanchnic blood and thermoregulation have on GI permeability and the 

expression of GI symptomology. The aim of this study was to therefore; 1) to assess 

changes in GI permeability and symptom expression after steady state continuous and 

intermittent exercise relative to rest and 2.) to determine the affect of environmental 

conditions i.e. Hot (32°C) vs Cold (12°C) on GI permeability upon the continuous and 

intermittent exercise conditions. It is hypothesised that 1. Exercise relative to rest will 

increase GI permeability and symptom expression 2. HIIT exercise would increase 

permeability and symptom expression to a greater extent than that observed during steady 

state exercise 3. GI permeability and symptomology would increase across all protocols 

when undertaken in the Hot relative to the Cold conditions.   
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5.2 Methods 

Participants. Initially 23 recreational athletes volunteered and were recruited to participate in 

this study all providing signed informed consent in accordance to the Liverpool John Moore’s 

university ethics committee procedures, however due to illness and inability to commit to 

testing schedules, failure to adhere to guidelines only ten male recreational athletes (age 25 

± 3 years; body mass 74.4 ± 6.7 kg; Peak oxygen uptake (V̇O2 peak) 56.5 ± 3.8 mL·kg-1·min-

1 were included in this final analysis. None of the participants had any previous history of GI 

related diseases or other gastric problems and were not regularly consuming non-steroidal 

anti-inflammatory drugs (NSAIDs). Participants were asked to abstain from exercise and 

alcohol at least 24 hours prior to experimental assessment and refrain from using NSAID 

during the study. Participant’s confirmed verbally compliance with these requirements prior 

to experimental data collection. All experimental procedures and potential risks/discomforts 

were explained in detail and written informed consent was obtained prior to testing. The 

study was approved by the Liverpool John Moores University Ethics Committee. Sample 

size estimates were determined a priori based upon the data of Pals et al. (1997).  Assuming 

an exercise to rest GI permeability ratio difference of 0.05 arbitrary units and an anticipated 

SD of 0.02. the initial sample of 12 was determined. Assuming a type I error of .05, a type II 

error rate (i.e. power of 80%) a total of 12 participants were estimated as required for this 

study (V.18, Minitab Inc, PA, USA).  
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Figure 5.0. Schematic representation of the gastrointestinal and physiological responses to 

soccer specific exercise performed under differing environmental conditions.  

 

5.2.1 Experimental design.  

This study employed a counterbalanced repeated measures design. Seven data collection 

sessions were organised; one preliminary assessment session (section 5.2.1) proceeded by 

two passive rest (R) protocols RHOT/RCOLD; two steady state (SS) treadmill runs SSHOT/SSCOLD 

and two high intensity intervals (HIIT) HIITHOT/HIITCOLD treadmill runs, each interspersed by 

5-7 days (section 5.2.4).  These protocols were performed under two different environmental 

conditions either a Cold (12°C) or Hot (32°C) condition. Passive rest and exercise protocol 

duration was set at 50 min. All participants were tested in a post-absorptive state from an 8 h 

overnight fast, between 08:00-11:00 h. Participants were instructed to refrain from strenuous 

exercise 48 h prior to data collection sessions. During the 24 h period prior to testing, each 

participant recorded a nutrition diary to reduce nutritional variation and were asked to avoid 

consumption of non-steroidal anti-inflammatory drugs and ergogenic aids, such as caffeine 

and alcohol during 24 h prior data collection. Environmental temperatures were set at 

12°Cand 32°C, relative humidity of 45 % for the cold and hot environmental conditions, 

respectively. The protocol-specific steady state or intermittent exercise protocol was 

performed on a motorized treadmill (H/P/cosmos pulsar, Nussdorf-Traunstein, Germany). 
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The rest protocol required no physical or psychological stressing activities, whilst seated 

upright for an identical duration and environmental conditions utilised for the alternate 

exercise protocol(s). All participants provided verbal confirmation as to compliance with the 

pre experimental instructions.  

 

5.2.2 Preliminary testing: 

Participants V̇O2 max/peak was determined using a progressive incremental protocol on a 

motorized treadmill (H/P/cosmos pulsar, Nussdorf-Traunstein, Germany) as outlined in 

(Chapter 3 Section 3.6); lab temperature of 22°c and 60 % relative humidity. The criteria of 

the British Association of Sport and Exercise Sciences (BASES) were used to classify 

attainment of V̇O2max/peak (Winter et al., 2007), (Chapter 3, Section 3.6). Expired 

respiratory gas fractions were analysed via a Hans Rudolph oro-nasal mask continuously 

sampling using an online gas analysis system (Oxycon Pro, Jaeger, Netherlands) ( Chapter 

3, section 3.6) to allow for the subsequent determination (linear regression) of the workload 

required for the experimental steady state 70% V̇O2 peak or HIIT trials (90 % - 50 % V̇O2 

peak).  

 

5.2.3 Exercise Intensity Verification Trial. 

Subsequent to the maximal treadmill running test participants rested for 30 min and then 

undertook a treadmill verification run to determine a V̇O2 /velocity relationship associated 

with the relative exercise intensity desired in the experimental protocols i.e. the high intensity 

(90 %), steady state (70 %), and recovery (50 %) of V̇O2 peak. Briefly participants, 

commenced running at the speed calculated from the regression analysis (section 5.2.3) to 

equate to either 50 % 70 % or 90 % of V̇O2 max; oxygen uptake (Oxycon Pro, Jagger, 

Netherlands) was measured as participants ran for 5 min’ blocks at the speed corresponding 

to the required fraction of V̇O2 peak. Treadmill speed was adjusted either up or down to 

equate speed to V̇O2. Where values remained with ± 3 mL·kg-1·min-1 this was accepted as 

the protocol running velocity. This was repeated across all three intensities  (50 %, 70 %, 

90 %) with a 5-min break between each starting at 50 % intensity and working upward.  

 

5.2.4 Experimental Protocol 

On arrival at the laboratory, participants were seated for 15 min and had a venous cannula 

inserted into an ante-cubital vein for serial blood sampling for the assay of GI permeability 

following the time frame; pre protocol, immediately post protocol completion and 2 h post 

sugar probe ingestion (Chapter 3, section 3.10).  Nude body mass was recorded (Seca 704, 

Birmingham, UK). Sample procurement and management and storage followed that outlined 

in Chapter 3 (section 3.13).  Core body temperature was assessed via a rectal thermistor 
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(Mini-thermistor; Grant instruments LTD, Shepreth, UK) and monitored throughout exercise 

using an electronic data logger (Grant Squirrel 1000 series, Grant Instruments, Cambridge, 

UK) (Chapter 3, section 3.9.1). A Polar FT1 heart rate monitor transmitter band was 

positioned across the chest level with the xipho-sternum (Polar Electro Oy, Kemple, Finland) 

and heart rate was recorded at 1 min intervals. Pre and post-exercise haematocrit was 

determined using a fingertip blood sample collected into micro-capillary tubes. Tubes were 

spun at 10,000 rpm for 5 min (Heraeus Pico 17, Thermo Scientific, UK) and haematocrit was 

measured using a micro-haematocrit reader (Hawksley, Sussex, UK). Fingertip capillary 

blood for haematocrit and haemoglobin (Hb 201+, HaemoCue AB, Angelholm, Sweden) 

were determined using standard auto analysers (Chapter 3, Section 3.15). After 

instrumentation was complete, participants consumed the GI sugar permeability probe 

solution ( chapter 3 section 3.10), 15 min for gastric emptying then elapsed whereby the 2 h 

collection period commenced (Chapter 3, Section 3.11). During exercise, rate of perceived 

exertion (RPE; 6-20) and GI comfort scale (0-10) were recorded every 3 min (Chapter 3, 

Section 3.7). Subjects consumed water at a rate of at least ~1 mL·kg-1 every 15 minutes to 

alleviate fluid loss. Total fluid intake was recorded and post exercise nude body mass was 

obtained to determine estimated sweat rate. Upon completion of exercise a further blood 

sample was immediately obtained at 2 hours post sugar probe ingestion.  

 

5.2.5 Experimental HIIT and Steady State Exercise Protocols. 

In order to effectively address the issue of activity profile impact on GI permeability (i.e. HIIT 

and SS) we utilised a protocol system following the model of Bartlett et al.,  (2011) that were 

matched for total oxygen consumption and energy expenditure after being matched for 

average intensity, duration and distance ran.  Briefly, each protocol consisted of running on 

the same motorised treadmill (H/P/cosmos pulsar, Nussdorf-Traunstein, Germany).  The 

HIIT protocol began with a 7-min warm up at a running velocity corresponding to ~70 % 

V̇O2max followed by 6 X 180 s- repetitions at a velocity corresponding to ~90 % V̇O2max.  The 

HIIT intervals were separated by further 180 s active recovery periods at a velocity 

corresponding to 50 % V̇O2max.  Upon completion of the interval and recovery phase, 

participants then undertook a 7-minute cool down at a running velocity corresponding to 

70 % V̇O2max.  The exercise protocol gave a cumulative time of 18-min of interval exercise 

and 18-min of active recovery, providing for a total interval exercise time of ~36 min. 

Including the warm-up and cool-down times, the total duration of the exercise protocol was 

50-min ensuring the protocols were matched for duration.  The steady state (SS) protocol 

consisted of 50-min of continuous running at a velocity corresponding to ~70 % V̇O2max.  The 

average intensity during the HIT and the SS protocol, when quantified according to average 
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running velocity, equated to ~70 % V̇O2max.  The exercise protocols and their relationship to 

each other are presented in Figure 5.1. 

 

 

Figure 5.1: Schematic representations of the exercise steady state and intermittent exercise 

protocols. Redrawn after the model of Bartlett et al., (2011). 

 

5.3 Analytical procedures.  

5.3.1 Assessment of intestinal permeability  

Intestinal permeability for the recovery of Lactulose and L-Rhamnose was assessed by 

analysing serum samples using a previously published protocol (Fleming et al., 1996), 

(Chapter 3, section 3.10).   

 

5.3.2 Assessment of Serum Cortisol  

Serum cortisol concentrations determined via automated Roche COBAS electro-

chemiluminescence immunoassay procedure following the manufacturer’s instruction. The 

CV was <10%. The lower and upper limits of measurements were 0.5 and 1750 nmol·L-1, 

respectively. 
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5.4 Statistical analysis.  

Descriptive statistics were produced for all data sets to check for normal distribution 

as indicated by Kolmogorov-Smirnov (accepted if P>0.05). Data was examined 

utilising a two-way within subject design general linear model Mode: [Exercise vs 

Rest] and Environment [Hot vs Cold] to determine the effects of discrete parameters 

of GI Permeability and GI Symptomology. Physiological and perceptual responses to 

rest, steady state and high intensity intermittent exercise over time for the 

parameters heart rate, RPE, thermal comfort, rectal temperature, were determined 

via the addition of a third main effect [time] (Three way) ANOVA. Where a significant 

main effect was determined, pairwise comparisons were analysed according to 

Bonferroni post hoc in order to locate specific differences.  If Mauchley’s test of 

sphericity indicated a minimum level of violation, as assessed by a Greenhouse 

Geisser epsilon (ε) of ≥ 0.75, data were corrected using the Huynh-Feldt ε. If 

Mauchley’s test of sphericity was violated, data were corrected using Greenhouse 

Geisser ε. Paired t-test analysis was use where appropriate. Statistical significance 

was set at p < 0.05. Statistical analysis was performed using SPSS statistical 

software (SPSS 23.0, SPSS, Inc., Chicago, IL, USA). Visual representations of 

experimental data were produced using Microsoft Excel software package. Data are 

presented throughout as Mean ± SD. 
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5.5 Results 

Exercise significantly elevated the parameters of heart rate, rectal temperature above the 

corresponding resting protocols when considered across both environmental condition 

(P<0.05). Ratings of perceived exertion, and thermal comfort were also significantly 

increased in relation to rest and their corresponding environmental condition (P<0.05) (Table 

5.1). All parameters showed a significant pre-to post exercise increase in the exercise 

condition in the hot and cold conditions (P<0.05) with no significant elevations apparent in 

the resting protocols across both environmental conditions (P>0.05).  

 

Table 5.1 Physiological and perceptual responses to rest, steady state and HIIT 

exercise in Cold (12°C) and Hot (32°C) conditions.  

 

 
Rest Steady State(SS) HIIT 

Variable Cold (120C) Hot (320C) Cold (120C) Hot (320C) Cold (120C) Hot (320C) 

HR (b·min
-1

)  
(Average) 

61 ± 10 63 ± 7 161 ± 12† 167 ± 12† 162 ± 13† 166 ± 12† 

HR (b·min
-1

) 
(Peak) 

61 ± 10 63 ± 7 174 ± 14† 177 ± 17† 173 ± 15† 180 ± 11† 

Rectal Temp(°C) 
(Average) 

37.1 ± 0.4 36.9 ±1.0  37.7 ± 0.3 38.1 ± 0.2* 37.6 ± 0.3 38.0 ± 0.3 

Rectal Temp(°C) 
(Peak) 

37.1 ± 0.2 36.9 ± 0.4 38.0 ± 0.5 38.9 ± 0.1*† 38.4 ± 0.1 38.9 ± 0.1†* 

Pre- post protocol  
mass loss (kg) 

 
0.1 ± 0.2 0.1 ± 0.2 0.4 ± 0.3 1.0 ± 0.4 0.5 ± 0.5 0.9 ± 0.7 

Thermal Comfort 
Scale (AU) 

2.4 ± 0.8 3.3 ± 1.5 4.7 ± 1.0 7.0 ± 1.6†* 5.4 ± 1.5 7.7 ± 0.8†* 

RPE (AU) 6 ± 0 6 ± 0 11.9 ± 1.1† 13.6 ± 1.6† 12.4 ± 2.0† 13.8 ± 2.0† 

GI Discomfort  
Scale (AU) 

0.4 ± 0.6 0.5 ± 0.6 2.0 ± 1.2 1.6 ± 1.0 1.5 ± 0.8 1.6 ± 0.9 

 † Significantly different to both rest conditions 
* Significantly different to equivalent condition in the cold.  (AU) Arbitrary Units 
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5.5.1 Physiological Responses:. 

5.5.1.1 Heart Rate. Average heart rate was elevated relative to rest and during 50 min’ of 

HIIT and SS exercise in both hot and cold conditions (P<0.05). Heart rate was significantly 

higher during exercise relative to rest (P<0.05).  No significant interactions were apparent 

between Hot and Cold conditions (P>0.05) (Figure 5.1). There was a significant effect of 

exercise duration apparent (P>0.05). However, we noted higher heart rate peak heart rates 

in the heat relative to the cold for HIIT exercise only.   

 

 

 

Figure 5.1: Heart rate response (b.min-1) to HIIT, steady state exercise and rest protocols in 

Cold (12°C) and Hot (32°C) conditions. *  significant difference rest vs exercise across both 

cold (12°C) and hot (32°C) conditions.  

 

5.5.1.2 Rectal Temperature. There was no significant main effect of exercise and 

environmental condition upon rectal temperature responses, however a main effect of time 

during all exercise conditions but not rest was apparent (P<0.001). (Figure 5.2). Average 

rectal temperatures responses were higher but did not attain not significance during exercise 

in 32°C relative to 12°C (P<0.05). There was a significant main effect of time upon 

temperature elevation during SS and HIIT exercise with temperature rising as exercise 

duration increased (P< 0.001).  
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Figure 5.2  A.  and B Core temperature response to HIIT and steady state exercise and rest 

protocols in Cold (12°C) and Hot (32°C) conditions over time and by condition expressed as mean 

and 95% CI (B). Broken line indicates the postulated Pries et al. (2017) threshold for temperature 

derived permeability induction hypothesis.  

5.5.2 Psycho-Physiological Responses.  

Ratings of Perceived Exertion. There was a significant main effect of exercise upon ratings 

of perceived exertion relative to rest (Figure 5.3). There were no significant interactions 

between exercise activity (SS and HIIT) and environmental temperature. 
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Figure 5.3 Rating of perceived exertion response to HIIT, SS exercise and rest protocols in 

Cold (12°C) and Hot (32°C) conditions.  

 

Figure 5.4:  Thermal comfort responses to HIIT, steady state exercise and rest condition in 

Cold (12°C) and Hot (32°C) conditions.* Significant main effect of exercise alone relative to 

rest conditions (P < 0.05).  

 

5.5.Thermal comfort scale. There was a significant main effect of exercise relative to rest 

upon for ratings of perceived thermal comfort during exercise (P< 0.01). Mean thermal 
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comfort responses were significantly elevated during exercise in 32°C  than 12°C (Figure 

5.4). There was a significant main effect of SS and HIIT duration of (P ≤ 0.001).  

 

5.5.3 Gastrointestinal Responses. 

5.5.3.1 GI Symptoms. Gastrointestinal symptoms expressed during exercise and rest under 

both hot and cold environmental conditions are represented in Figure 5.5. There was a main 

effect for exercise relative to rest (P<0.05), however there was no main effect for 

environment apparent ( P<0.05). 

 

Figure 5.5:  GI discomfort scale response to HIIT, steady state exercise and rest protocols 

in cold (12°C) and hot (32°C) conditions. * Significant main effect of exercise alone relative 

to rest conditions (P < 0.05). 

 

5.5.3.2 GI Permeability. Evaluation of GI permeability via Lactulose/L-rhamnose ratio 

indicated there was a main effect of exercise upon intestinal permeability, compared to rest 

(F2, 12 = 5.28, P >0.05) with HIIT and steady state exercise elevating permeability above the 

resting condition. There was no significant main effect of environmental temperature upon 

exercise related GI permeability (F1, 6 = 1.78, P> 0.05.) No interaction (F2, 12 = 2.68, P>0.05) 

effects were apparent with both steady state and HIIT responding in a similar manner across 

the hot and cold conditions (Figure 5.6).  
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Figure 5.6: Serum recovery (2 hrs post ingestion) of Lactulose/L-Rhamnose ratio following 

rest, steady state and HIIT exercise in Cold (12°C) and Hot (32°C) conditions. * Significant 

main effect of exercise relative to rest conditions (P < 0.05). 

5.5.4 Serum Cortisol responses 

Serum cortisol showed a main effect for activity and time alone  ( P <0.05) with no main 

effect for environment apparent ( P>0.05)  (Table 5.2). 

Table 5.2 Serum cortisol responses to the rest, steady state and HIIT protocols in cold 

(12°C) and Hot (32°C) conditions.  

 Variable   Rest  
 Steady State 

Exercise 
HIIT  

Exercise 

Time  Cold Hot Cold Hot Cold Hot 

 
Pre-Protocol 

 
414± 239 

 
414 ± 247 

 
380 ± 167 

 
397 ± 177 

 
435 ± 186 

 
422 ± 195 

(nmol•L
-1

) 
 

Post-Protocol   375± 190  308± 153 486 ± 196  671 ± 214† 606 ± 245†  691 ± 162†  
(nmol•L

-1
) 

 
2 Hrs Post 
(nmol•L

-1
) 315 ± 140 290 ± 133† 382 ± 156 554 ± 179 399 ± 214  505 ± 285  

† Significantly different to both rest conditions 
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5.6 Discussion 

The aim of this study was to examine the effects of continuous ‘steady state’  and HIIT 

exercise upon GI permeability and GI symptomology and to determine the role 

environmental stress may play upon the expression of these markers (Camilleri et al., 2012; 

Fasano & Shea-Donohue, 2005; Karhu et al., 2017; Pals et al., 1997; Pugh et al., 2017). The 

primary findings indicate that relative to rest both the steady state and HIIT exercise when 

performed at the relative intensity of 70 % of V̇O2 max significantly elevated GI permeability 

but did not increase subjective ratings of GI dysfunction. Data also indicates an additive 

effect of environmental temperature upon GI permeability in the Hot (32°c) relative to Cold 

(12°c) conditions with HIIT exercise GI permeability elevated by 68 % relative to all other 

cold conditions and 48 % to the Hot protocols.  

 

This is the first study to undertake a comparative evaluation of the effects of steady state vs 

HIIT exercise upon GI permeability and subjective symptoms of GI dysfunction. The 

hypothesis advanced in this work was based upon the idea that exercise would increase GI 

permeability, particularly if performed at sufficient intensity and duration (Pals et al., 1997). In 

addition, we sought to undertake these activities under divergent environmental 

temperatures to understand possible additive effects of a low and high external thermal load 

may have upon GI permeability. Pires et al. (2016) has recently summarised that exercise 

intensity alone whilst important may only be a part of an inter-related network of factors that 

bring about changes in GI permeability and for GI permeability to occur requires other 

factors to be co-expressed; a view echoed by others to include a complex interaction of 

exercise modality and duration, hyperthermia, splanchnic perfusion, training and acclimation 

status of participants, and hydration status (Costa et al., 2017b; Dokladny et al., 2008; 2016; 

Lambert et al., 2008; Pires et al., 2016; van Wijck et al., 2012).  In this study, we sought to 

partition out and examine several of these factors by looking at the interaction between the 

way the exercise intensity is applied [patterned] i.e. steady state vs HIIT and its impact upon 

GI permeability under different environmental condition shot and cold . The novel data in this 

chapter indicates that steady state and HIIT exercise increases GI permeability relative to 

rest in both Hot vs Cold conditions. These observed changes are in line with previously 

expressed views that increases in GI permeability are a likely outcome of exercise activity 

when intensity and duration exceeds a ‘critical exercise intensity threshold’. Notionally this 

threshold has been ascribed to activity equating to or exceeding 70 % of V̇O2 max ( Pals, et 

al., 1997; Marchbank et al., 2011; Zuhl et al., 2014; Davison et al., 2016; Pugh et al., 2017). 

The present data extends current literature in that we show under hot conditions when the 

average exercise intensity is held constant  but the pattern of exercise activity varies above 

and below this average i.e. interval running it leads to GI permeability been elevated. It also 
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shows an additive effect of thermal load in hot relative to cold conditions upon GI 

permeability. However, the elevations in GI permeability noted herein are inconsistent with 

others that note no changes in GI permeability following treadmill running at 60-70 % 

V̇O2max (Lambert et al., 2008; van Wijck et al., 2014; Yeh et al., 2013).  

 

The experimental approach undertaken in this study modelled the exercise intensities of the 

HIIT and steady state protocols to achieve an average intensity profile of ~70 % of 

V̇O2max/peak each, independent of the activity pattern. In this study, we utilised the 

validated protocol of Bartlett et al., (2011) to match the interval and continuous exercise 

patterns for this average exercise intensity [quantified as running velocity corresponding 

~70 % V̇O2max], and exercise duration, (Bartlett et al., 2012; Bartlett et al., 2013). 

Physiological, cortisol and perceptual data (Table 5.1 and Table 5.6) would indicate that the 

steady state and HIIT protocols elicited similar average loads across conditions. The cortisol 

response are in line with that reported for exercise in similar environments (Bergeron, 2014).  

 

Further, the mechanisms of these changes in GI permeability will result directly from the 

manipulation of the intensity and duration of the ‘exercise stimulus’. Upon commencement of 

both steady state and the HIIT exercise a redistribution of cardiac output from the splanchnic 

organs with reductions in splanchnic blood flow of up 80% is likely (Crandall & Gonzalez-

Alonso, 2010; Knight et al., 2017; van Wijck et al., 2012). van Wijck et al. (2011) suggests as 

little as 20 minutes exercise at 70 % of V̇O2 max will impair GI perfusion. Consequently, 

splanchnic hypo-perfusion has been associated with the expression of GI symptomology and 

changes in GI permeability ( Otte et al., 2001; Otte et al., 2005; ter Steege et al., 2012).  

 

In this comparison of steady state and HIIT exercise, it is likely that whilst hypo-perfusion 

may occur the pattern(s) it follows will likely differ. HIIT is likely to establish an oscillatory 

pattern of splanchnic blood flow with perfusion and re-perfusion occurring as exercise 

intensity increases and decreases. Conversely, with steady state exercise a reduction in 

perfusion will occur that will remain approximately constant until the exercise stimulus is 

removed (Crandall & Gonzalez-Alonso, 2010; van Wijck et al., 2011). This reduction in blood 

flow places significant stress on the gastrointestinal system in relation to managing 

splanchnic perfusion and dissipating thermal load (Hayashi et al., 2012; Knight et al., 2017; 

Lambert et al., 2002; Perko et al., 1998; Ward et al., 2014).  

 

In the context of hyperthermia contributing towards an increased GI permeability (Figure 5.6)  

observed under the steady state and HIIT exercise models and the observed step wise 

increase from rest through steady state to HIIT both exercise protocols presented significant 
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corresponding hyperthermic responses, with the highest temperatures achieved toward the 

end of the 50 min of steady state and HIIT exercise activity in the heat relative to cold 

(Figure 5.3 A and B). This pattern of increase and core temperatures achieved reflects that 

observed separately in steady state and interval exercise (March et al., 2017; Pugh et al., 

2017).  Data indicates  that heat stress is associated with an additive impact, which extends 

GI permeability beyond that noted for exercise in the cold (Figure 5.6). This is consistent with 

the view that exercise in the heat  is associated with elevated physiologic and thermal strain 

when compared to similar task execution in temperate or cold conditions (Crandall & 

Gonzalez-Alonso, 2010; González-Alonso et al., 2008; Snipe et al., 2017). Lloyd et al. (2016) 

has recently expressed the idea that when two stressors are co-expressed i.e. exercise 

intensity/pattern x environment an additive and/or synergistic level of stress is applied with 

the overall response governed by what they call the ‘worst strain takes precedence model’.  

In light of this model present data suggest  that the increased GI permeability observed in 

HIIT exercise hot condition is likely due to additional environmental heat exposure 

exacerbating splanchnic hypo-perfusion, and hyperthermia upon the intestinal epithelium 

(Pires et al., 2016; Zuhl et al., 2014b) rather than the HIIT exercise pattern itself which under 

cold displays no difference to steady state. This additive effect at a mechanistic level is likely 

to reside with, a hyperthermia-induced (37 to 41°c) morphological disruption of enterocytes 

and their respective tight junction proteins (Lambert et al., 2002b; Ward et al., 2014; Zuhl et 

al., 2014). Pires et al. (2016) recently hypothesised a ‘critical threshold’ model whereby core 

temperatures close to or above 38.0°C ‘may facilitate’ increased GI permeability, whereas 

temperatures of above 39.0°C ‘definitely induce’ permeability.  Core temperatures’ achieved 

within the HIIT and steady state exercise protocols fall within this physiological range. In line 

with the ‘worst strain model’ outlined above it is therefore probable that elevated GI 

temperatures are a significant co-contributor along with exercise mediated hypo-perfusion to 

augmenting increased GI permeability in the exercise trials and in particular the HIIT trial in 

the heat (Barberio et al., 2015; King et al., 2015; Vargas & Marino, 2016). The similarity in GI 

permeability between HIIT and steady state in the cold where external thermal load is 

minimised may support this idea. 

 

A further confounding factor that may contribute to GI permeability is fluid loss. An 

approximation of whole body dehydration during the steady state and HIIT protocols was 

estimated using body mass reduction; after each trial, in spite of fluid replacement at 1 mL• 

kg-1 every 15 minutes, the reduction in body mass indicates a small progressive dehydration. 

The 1 % observed here is unlikely to have impaired performance  but it is interesting to note 

that despite extensive fluid replacement we still observed increased GI permeability 

(Edwards et al., 2007; Maughan et al., 2010). The idea that fluid replacement may attenuate 
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exercise induced GI permeability is not supported within the present study; unlike others 

(Lambert et al., 2008). 

 

In epidemiological studies examining gastrointestinal complaints amongst athletes, 

symptomology is normally assessed via retrospective questionnaires assessing subjective 

symptom frequency and intensity whilst laboratory work tends to employ both subjective and 

objective markers of GI dysfunction (de Oliveira et al., 2014; Hoffman et al., 2016; Stuempfle 

& Hoffman, 2015; Wilson, 2017). In the present study, we prospectively assessed the 

subjective expression of gastrointestinal comfort (Pfeiffer et al., 2012) rather than a defined 

list of GI related symptoms (Pugh et al., 2017). However, despite this more generalist 

approach, we observed that subjective symptoms of GI distress were disassociated from the 

objective GI permeability measures (Figure 5.5). The low GI symptomology scores 

expressed (none to mild categorization zones) during all exercise conditions reflect a 

minimal perception of disruption to the GI tract. Pugh et al. (2017) describe a similar 

dissociation following high intensity interval exercise, present findings confirm that data in a 

different HIIT model. These observations are consistent with that reported more recently 

following acute exercise activities across a range of exercise intensities, modalities, and 

environmental conditions in both laboratory and field studies (Karhu et al., 2017; Morrison, et 

al., 2014; Pfeiffer et al., 2012; Pugh et al., 2017; van Wijck et al., 2011; Zuhl et al., 2014). 

The critical question of causality between permeability and symptomology remains 

unresolved. 

 

5.7  Conclusions 

The current study determined GI permeability in response to different exercise intensity 

patterns [steady state and HIIT] and their application under different environmental 

conditions. Data indicates GI permeability but not GI symptomology is elevated relative to 

resting values when an un-acclimated individual is exposed to acute periods of average 

equivalent intensity steady state and HIIT exercise. Further, it is shown that when exercise at 

the same relative intensity i.e. 70 % V̇O2 peak is undertaken in cold conditions the GI 

permeability response are independent of how the exercise is delivered i.e. either 

continuously or in an intermittent form. When the same protocols are repeated in the heat 

this relationship is abolished and HIIT would appear to elevate GI permeability more than 

continuous steady state exercise. A clear divergence between the objective and subjective 

markers of GI permeability and symptomology is noted which poses questions as the causal 

relationship between permeability and symptomology but also the usefulness of these 

subjective scales under such settings of laboratory based short duration steady state and 

HIIT based exercise. 
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Chapter 6 

 

 Effects of Acute High Intensity Intermittent Exercise on Gut 

Permeability Following Ibuprofen or Placebo Ingestion. 
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6.0 Effects of Acute High Intensity Sprint Exercise on Gut Permeability Following 

Ibuprofen or Placebo Ingestion. 

 

This chapter develops from Chapter 5, in that it isolates and examines the relative impact of 

performing supra-maximal HIIT activity upon GI permeability and symptoms. In addition, it 

addresses the issue of whether the co-ingestion of NSAIDS widely used in athletic 

populations would accentuate exercise related GI permeability and symptomology.  

 

6.1 Introduction 

Nonsteroidal anti-inflammatory drugs (NASIDs) are widely available over the counter agents 

used in the acute and chronic treatment of soft-tissue injuries as well as for analgesic 

purposes (Tscholl et al., 2016). Due to NSAIDs analgesic, anti-inflammatory, and antipyretic 

effects, they have become one of the most commonly used drug groups by recreational and 

high level athletes to ameliorate a plethora of musculoskeletal pathologies including post 

exercise muscle soreness (Da Silva et al., 2015; Holgado et al., 2017; Vaso et al., 2015). In 

particular prevalence data on the use of NSAIDs indicates team sports participants express 

high consumption rates of both officially prescribed and unofficially consumed NSAIDs 

(Holgado et al., 2017; Tscholl et al., 2012; 2015). The high prevalence rates of NSAID 

consumption for prophylactic purposes are often accompanied by limited awareness of the 

side effects of their use and more appropriately overuse particularly on a chronic basis 

(Didier et al., 2017; Gorski et al., 2009).  

 

Clinically, NSAIDs induce GI mucosal damage in the form of mucosal erosion and ulceration, 

they increase GI permeability and GI inflammation all off which are well described adverse 

effect of their normal clinical usage (Marlicz et al., 2014; Blackler et al., 2014; Sostres et al., 

2017). Significantly, NSAIDs such as Ibuprofen have previously been reported to increase 

gastrointestinal GI permeability and inflammation following prolonged, sub-maximal 

endurance exercise such as marathon and triathlons. No data exists on the effects 

expressed during other forms of exercise in particular during intermittent and supramaximal 

high intensity activity exist where NSAID use in conjunction with exercise is widespread 

(Jeukendrup et al., 2000; Küster et al., 2013; McAnulty et al., 2007; Nieman et al., 2006; 

Smetanka et al., 1999; Whatmough et al., 2017). Since the use of NSAIDs in a variety of 

sports and individual events is widespread, it is important to  characterise the effect they 

have on the GI barrier function especially when they are ingested prior to exercise 

performance; a common occurrence many sports (Tscholl et al., 2012). As such athletes 

may be particularly vulnerable to adverse GI symptoms and damage due to the effects of 

NSAIDs and exercise interacting to damage the GI system.   
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Several animal models have indicated a synergistic effect when both exercise and NSAIDS 

are combined leading to increased GI permeability and mucosal damage (Bradford et al., 

2007; Lambert et al., 2007; Lambert et al., 2012). Empirical data on the effects of NSAIDs 

ingestion on GI permeability and damage in athletes is limited; having been described in 

endurance activity alone the effects following intermittent and high intensity intermittent 

exercise (HIIT) are undetermined (van Wijck et al., 2012). Given NSAIDs widespread use 

amongst invasion field sports (Tscholl et al., 2015) were exercise activity requires high 

intensity repeated bouts of activity, data on the interaction between exercise and NSAIDs 

would provide insight into potential effects on GI function.  

 

The aims of the current study are therefore twofold; 1. to assess the effects of repeated high 

intensity interval sprint exercise on gut permeability and symptomology relative to rest and 2. 

Assess the effect of the co-administration of the NSAID [Ibuprofen] and exercise and 

compare to corresponding rest conditions. It is hypothesised that GI permeability will 

increase following HIIT exercise relative to rest, when combined exercise and ibuprofen will 

act synergistically further accentuating the exercise mediated increase in permeability. GI 

permeability is hypothesised to increase following ibuprofen ingestion at rest when 

compared to a placebo in the same condition. 
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6.2 Methods. 

Participants. All participants were recruited from a physically fit, healthy male population of 

intermittent games players from the Liverpool John Moores University who were experienced 

in completing high intensity training. Initially 17 male participant’s were recruited to 

participate, due to drop out for logistical, illness and failure to comply with inclusion criteria 

instructions in the final analysis, twelve male participants (age: 19.6 ± 2.3 years; height 1.78 

± 0.06m); body mass 75.1 ± 5.9 kg) participated. None of the participants had any previous 

history of GI related diseases or other gastric problems and were not regularly consuming 

non-steroidal anti-inflammatory drugs (NSAIDs). Participants were asked to abstain from 

exercise and alcohol at least 24 h prior to experimental assessment and refrain from using 

NSAID during the study apart from that dispensed under the experimental allocation. 

Participant’s confirmed verbally compliance with these requirements prior to experimental 

data collection. All experimental procedures and potential risks/discomforts were explained 

in detail and written informed consent was obtained prior to testing. The study was approved 

by the Liverpool John Moore’s University Ethics Committee. Sample size estimates were 

determined a priori based upon data of Pals et al. (1997).  Assuming a type I error of .05, a 

type II error rate (i.e. power of 80%) with an exercise to rest GI permeability ratio difference 

of 0.05 arbitrary units and an anticipated SD of 0.02. A total of 12 participants were 

estimated as required for this study.  
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Figure 6.0 Schematic representation of the GI mediated responses to supramaximal HIIT 

exercise performed under Ibuprofen and placebo controlled conditions.  

 

 

6.2.1 Experimental Design: Participants’ completed a double blind placebo controlled 

counterbalanced repeated measure design separated by several days. Participants were 

required to complete four experimental trials at LJMU physiology Laboratory; 1) ingestion of 

Ibuprofen prior to resting protocol, 2) placebo ingestion prior to resting protocol, 3) ingestion 

of Ibuprofen prior to repeated sprint protocol and 4) placebo ingestion prior to repeated sprint 

protocol. All participants were asked to avoid strenuous exercise 24 h prior to both trials and 

were asked to consume either 800 mg of Ibuprofen or Placebo (400 mg the evening before 

and 400 mg on the morning of experiment) as detailed in section 6.3 below.  

 

6.2.2 Pre-exercise arrangements: Two Ibuprofen tablets (200 mg, iso-butyl-propanoic- 

phenolic acid; GlaxoSmithKline, Brentford, Middlesex, United Kingdom) or two placebo 

tablets (maltodextrin) were ingested by the participants on the evening before the 

experimental protocol performance day and two [2 x 200 mg] on the morning of the 

experimental data collection day 60 min prior to the experiment. This procedure was to 
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utilised to enhance the ecological validity of the protocol to mimic athlete behaviour i.e. 

ingesting ibuprofen prior to training and/or competition.  Participants fasted on the morning 

of experimental data collection; albeit they were allowed a digestive biscuit with the tablets 

to following prescribing recommendations (GlaxoSmithKline, Brentford, Middlesex, UK). 

 

6.2.3 Experimental Protocol; Participants arrived at the Liverpool John Moores University 

(LJMU) laboratory at 10:00 am, on the four occasions as described above; 2 rest and 2 

exercise conditions, separated by several days. Dosages of 800 mg (2x400 mg of ibuprofen 

or placebo pill) were given to each participant to take prior to bedtime  (400 mg) the night 

before (e.g. 10.00 pm) and then one hour prior to protocol performance (400 mg) on the 

morning of the experiments. Participants were also asked not to ingest any additional form or 

dosage of NSAIDs during the course of the study and verbally confirmed this on each trial. 

On arrival at the laboratory, heart rate monitors (Polar FT1; Polar Electro, Tampere, Finland) 

were attached at approximately the V5 level around the chest. The heart rate monitor, worn 

around the participants’ wrist, indicated their HR and continuously displayed heart rate 

throughout.  A peripheral venous cannula (Nexivia, Becton Dickinson, Cambridge, UK)  was 

inserted into an the antecubital vein prior to testing to allow procurement of blood samples 

and remained in-situ throughout exercise and post exercise period (Chapter 3, section 3.16). 

Samples were drawn during both rest and exercise trials at baseline (rest), post exercise (36 

min) and 2 hrs post exercise. In addition, participants had their initial resting blood lactate 

levels analysed using a fingertip capillary blood lactate (Lactate Pro LT-1710, Arkray, Kyoto, 

Japan), analyser.  Baseline psycho-perceptual data was collected to included RPE, GI 

discomfort and thermal comfort in line with procedures outlined in Chapter 3; Section (s). 3.7 

and 3.8). After instrumentation was complete, participants ingested the GI sugar permeability 

probe solution for the determination of gut permeability [and thereafter followed by a 2 hour 

protocol collection period commenced (Chapter 3, section 3.10 ). 
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6.2.4 Experimental Test Protocols 

6.2.4.1 Passive [Rest] Protocols. In line with the instrumentation process outlined above 

under the passive rest trial participants were required to be seated in the laboratory in a 

relaxed condition reading or watching TV for 120 minutes (Temperature 21± 2.2°c humidity 

58 ± 4 %). Protocol commenced 15 min after ingestion and data was collected for 36 min, 

HR and RPE (6–20 scale; Borg, 1982) were monitored every minute. This time frame 

equated to the period of data collection during the alternate exercise protocol. Participants 

were given water following the schedule outlined (Chapter 3, section 3.11). Upon completion 

of the two hours’ protocol i.e. time from drink ingestion the participants provided a final blood 

sample and the cannula was then removed. Psycho-perceptual data was collected as above 

(Chapter 3, Section 3.14).  

 

6.2.4.2 Exercise Repeated Sprint Protocol [HIIT].  

On a separate day, following several days’ rest, the participants were asked to return to the 

LJMU laboratory (Temperature 19 ± 1.1°c  humidity 52 ± 7 %) for the high intensity repeated 

sprint protocol under the alternate condition(s). Participants, following instrumentation and GI 

sugar ingestion commenced exercise. Each participant performed 4 sets of 6 x 35m sprints 

following a modified Running-based Anaerobic Sprint Test (RAST) sprint (Draper & Whyte, 

1997). Track sprinting performance times were measured with wireless automated timing 

gates (Brower Timing Systems, Utah, USA) at start (0) and end point (35), to record sprint 

times (s) (Figure. 6.2).  After each repetition, subjects reported their HR, perceived rate of 

exertion (RPE) and after 6 consecutive sprints with a 15 s jog back in between, blood lactate 

and thermal comfort were recorded as they engaged in a 5-min rest where water was 

supplied (Chapter 3, section 3.7). After four sets of high intensity sprints a post-test final 

lactate was collected along with bloods in line with the procurement schedule outlined.  

 

 

Figure 6.1: Schematic of  6 x 35 m x 4 sets repeated sprint protocol setup. 
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Figure 6.2 Wireless automated timing gates (Brower Timing Systems, Utah, USA) at 

start (0) and end point (35), to record sprint times (s) 

 

6.2.6 Analytical Procedures;  

Assessment of intestinal permeability: Intestinal permeability was assessed by 

analysing serum samples using a previously published method (Fleming et al., 

1996), with the modification of using L-rhamnose instead of mannitol as the 

monosaccharide probe. (Chapter 3, section 3.10). 

 

6.2.7 Statistical Analysis. Descriptive statistics were produced for all data sets to 

check for normal distribution as indicated by Kolmogorov-Smirnov (accepted if 

P>0.05). Data was examined utilising a two-way within subject design general linear 

model Mode: [Exercise vs Rest] and Condition [Ibuprofen vs Placebo] to determine 

the effects of discrete parameters of GI Permeability and GI Symptomology. 

Physiological and perceptual responses to rest, steady state and high intensity 

intermittent exercise over time for the parameters heart rate, RPE, thermal comfort, 

rectal temperature, were determined via the addition of a third main effect [time] 

(Three way) ANOVA. Where a significant main effect was determined, pairwise 

comparisons were analysed according to Bonferroni post hoc in order to locate 
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specific differences.  If Mauchley’s test of sphericity indicated a minimum level of 

violation, as assessed by a Greenhouse Geisser epsilon (ε) of ≥ 0.75, data were 

corrected using the Huynh-Feldt ε. If Mauchley’s test of sphericity was violated, data 

were corrected using Greenhouse Geisser ε. Paired t-test analysis was use where 

appropriate. Statistical significance was set at p < 0.05. Statistical analysis was 

performed using SPSS statistical software (SPSS 23.0, SPSS, Inc., Chicago, IL, 

USA). Visual representations of experimental data were produced using Microsoft 

Excel software package. Data are presented throughout as Mean ± SD. 
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6.3 RESULTS. 

6.3.1 GI Permeability: Lactulose/L-Rhamnose. 

Lactulose-/L-Rhamnose: There was no significant main effect on drug or placebo treatment 

(F1, 10 = .465, P >0.05) on GI permeability ratio. There was no significant main effect of 

activity (F1, 10 = 2.24, P > 0.05). There were no significant interaction effects (F1, 10 = .465, P > 

0.05).  

 

Figure 6.3 Lactulose/L-Rhamnose ratio (%) in the four exercise conditions; placebo rest, 

placebo exercise, ibuprofen rest and exercise.  

 

6.3.2 Plasma Metabolite Responses to Exercise; 

6.3.2.1 Lactate: There was no significant main effect for condition (placebo and ibuprofen) 

(F1, 10 = 0.02, P = 0.88). There was a significant main effect for activity rest vs sprints  with 

significant increases in lactate concentrations from pre to post for both conditions (F1, 10 = 

801.2, P < 0.001) (Figure 6.4). There was no significant interaction between activity and drug 

(F1.19, 8.94 = 0.01, P = 0.92).  
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Figure 6.4 Lactate concentrations (mmol·L-1) pre-to post exercise across trials after rest and 

exercise (4 x [6 x 35 m]) maximal intermittent sprints in the all four experimental conditions; * 

significantly different pre to post and # compared to passive experimental trials (P<0.001).  

 

6.3.3 Physiological Responses to Exercise.  

6.3.3.1 Heart rate (HR); There was a significant main effect for condition (rest and exercise) 

(F1, 10 = 450.22, P < 0.001) upon HR. There was no significant main effect for condition 

(placebo and ibuprofen) (F1, 10 = 3.10, P = 0.12) on HR during exercise. There was a 

significant main effect for time with HR elevated from rest to exercise, with similar values 

between condition (placebo vs ibuprofen) (Figure 6.5). There was no significant interaction 

between placebo and ibuprofen (F1, 10 = 2.61, P = 0.15).  
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Figure 6.6 Heart rate (b·min-1) average at rest and exercise (4 x [6x35m]) maximal 

intermittent sprints in the all four experimental conditions; * Significantly different exercise 

compared to passive experimental trials (P<0.05).  

 

6.3.3.2 Rating Perceived of Exertion (RPE); There was a significant main effect of activity 

on RPE with exercise showing higher level than rest (F1, 10 = 608.87, P <0.001)  (Figure 6.6). 

There was a significant main effect for condition (placebo vs ibuprofen) with both exercise 

placebo and Ibuprofen showed an increase in RPE between set 1 and set 4 of exercise and 

a significant interaction effect between set 3 and 4 showed higher RPE in when Ibuprofen 

was ingested (P< 0.05).   

 

 

 

Figure 6.7 Ratings of Perceived Exertion (AU) averages at rest and exercise (4 x [6x35m]) 

maximal intermittent sprints in the all four experimental conditions; * Significantly different 

exercise compared to passive experimental trials (P<0.001). # significantly different to 

alternate exercise condition.  

 

6.3.3.3 Exercise Sprint Performance Time (PT). There was no significant main effect of 

treatment (placebo vs ibuprofen) upon sprint performance (F1, 10 = 2.53, P >0.05) (Figure 6.8).  

There was no significant effect of time on average running speed from set 1 to set 4 

(P >0.05).  
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Figure 6.8 Sprint Performance (s) over the four sets (4 x [ 6 x 35 m]) maximal intermittent 

sprints during placebo and Ibuprofen ingestion.  

 

6.3.3.4 Tympanic Aural Temperature.  There was no significant main effect of treatment 

( rest vs exercise) or ( Ibuprofen vs Placebo) (P>0.05) (Figure 6.9). (P>0.05) upon 

temperature (P>0.05). However values are below that reported for core temperature 

estimates. 
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Figure 6.9 Tympanic (aural) temperature (s) over the treatments during placebo and 

ibuprofen ingestion.  

6.4 Discussion. 

 

The purpose of present study was to examine the effects repeated high intensity intermittent 

sprint exercise upon GI permeability and GI symptomology expression relative to rest and 

furthermore to evaluate the effect co-administration of the NSAID [ibuprofen] has on both 

these factors during both exercise and at rest.  The primary findings suggest that an acute 

bout of repeated supramaximal HIIT exercise does not increase GI permeability or elevate 

GI symptoms. In addition, the expected adverse synergistic interactions between the 

exercise/rest protocols and NSIAD consumption (800 mg  Ibuprofen [ 2 x 200mg per dose]) 

does not increase GI permeability or GI symptomology above the control/placebo conditions.  

 

Although the association between exercise and increased GI permeability has been 

previously examined; the exercise stress utilised in the majority of studies have been 

continuous, sub-maximal endurance efforts of running or cycling over a varied range of 

exercise durations (Costa et al., 2017b; Lambert, 2009; Snipe et al., 2017). The results of 

this current study do not agree with these previous findings, with data suggestive of a 

divergence in GI permeability between supramaximal HIIT exercise and the more continuous 

submaximal, variable duration models prevalent in the literature (Jeukendrup et al., 2000; 

March et al., 2017; Roberts et al., 2016). The primary factor differentiating the present data 

from these previous studies is the intensity and duration of the exercise undertaken. The 

HIIT task required very short durations of supramaximal (anaerobic) efforts for 5-6 s followed 

by 15 s of sub-maximal jogging to return to the start line for the subsequent sprint effort. This 

equated to about 120 s supramaximal and sub-maximal effort in each set followed by 5 min 

of rest between each set (1:2.5 work: rest ratio) delivered across 4 sets. In total, work time 

was about ~8 min over the course of the 36 min protocol, which is approximately in line with 

recommendations for other models of HIIT (Burgomaster et al., 2008; García-Pinillos et al., 

2017; Jiménez-Pavón & Lavie, 2017). These factors of a short but intense exercise time and 

extended intra-session rest periods between sets when considered relative to sustained but 

moderate intensity exercise may have contributed to the differentiated i.e. lower the GI 

permeability and symptomology responses. Pals et al. (1997) demonstrated that increased 

GI permeability may be accrued by increasing exercise intensity in a dose response manner, 

with higher intensity exercise (80 % V̇O2 max), exhibiting a greater permeability than 

exercise performed at lower intensities of 40 % and 60 % V̇O2 max. Others have shown 

similar results, where exercise in excess of 70 % of maximal work/aerobic capacity occurs. 

However, common to both reports is the fact that exercise takes place over an extended 
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duration. Notionally, where exercise duration is greater than 50 min plus increases in GI 

permeability are observed (Costa et al., 2017; Pals et al.,1997; van Wijck et al., 2014;).  

As this is the first study to examine the effects of supramaximal HIIT on GI permeability, the 

reasons for the current findings must be considered in relation to those reported from 

endurance exercise. Several factors that may explain these differences in GI permeability 

responses include a reduction in splanchnic blood flow which is a function of exercise type, 

duration and intensity (ter Steege & Kolkman, 2012). Sustained exercise activity is 

acknowledged to decrease splanchnic blood flow up to 80 % (Otte et al.,  2001; ter Steege & 

Kolkman, 2012; van Wijck et al., 2011); alternatively intermittent exercise and sprint activity 

splanchnic blood flow responses have been very poorly characterized (Cerný & Cvachovec, 

2000; Kolkman et al., 2000). As such, it is uncertain the degree to which splanchnic blood 

flow is impaired, the period of time over which the reduction occurs and how long it is 

sustained during HIIT  where the activity is short but anaerobic in nature.  Speculatively, the 

oscillatory ‘interval’ activity pattern during HIIT may induce a rapid hypo-perfusion within 

each exercise  set with the extended rest period between sets allowing splanchnic blood flow 

restoration thus facilitating higher levels of GI perfusion than would be expected under 

continuous exercise. In addition core temperature increases as function of exercise intensity 

and duration  (Racinais & Sawka, 2015). Elevations in GI temperature brought on by 

exercise or passive heating have been recognised to compromise the integrity of the GI 

mucosal barrier leading to increased GI permeability (Dokladny et al., 2016; Vargas & 

Marino, 2016). Core temperature was not directly assessed in this study due the logistics of 

measuring it during the supramaximal HIIT trials thus the relative contribution of 

hyperthermia to the observed GI permeability was assessed with a surrogate measure. Aural 

[tympanic] temperature was utilized as a marker of core temperature; average values 

reported were lower than would be expected (Figure 6.8). It has been noted that this aural 

canal approach provides an underestimation of core temperature (Casa et al., 2007; Towey 

et al., 2017). It remains undetermined with current experimental methods whether the lack of 

change in permeability after HIIT exercise may be attributed to attenuation in splanchnic 

hypo-perfusion and/or GI temperature elevations.  

 

Understanding why supramaximal HIIT does not increase GI permeability may come down 

simply to the brevity of stress exposure rather than intensity; the cumulative stress load 

from ‘intensity x duration’ relationship would seem to be insufficient to significantly elevate 

GI permeability in the present study. In conjunction with this observation gastrointestinal 

symptomology reported within the study was rated as not-present or very mild across all 

conditions a finding consistent with the findings reported during interval and steady state 

exercise activity (Karhu et al., 2017; Pugh et al., 2017) (Figure 6.10).   
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Given the prevalence of NSAIDs usage in sport and their known GI toxicity profile it was 

hypothesised that when the NSAID (Ibuprofen) were co-administered prior to exercise and 

passive rest there would be a synergistic effect increasing GI permeability above that noted 

with placebo; present data indicate that this outcome was not observed. These findings are 

contrary to previous studies that have examined the issue of NSIAD ingestion following 

exercise over a range of dosing regimen, NSIAD agents Cox 1-[aspirin] and COX 2 

[ibuprofen], exercise duration and type (s) (Audet  et al., 2016; Lambert et al., 2001; Lambert 

et al., 2007a; Lambert et al., 2012; McAnulty et al., 2007;  Smetanka et al., 1999; van Wijck, 

et al., 2012). These differences are not unsurprising given the contrasting exercise protocols 

applied; repeated sprint interval relative to continuous endurance activity. 

 

The present HIIT sprinting protocol with ibuprofen co-administered demonstrated no 

difference in permeability relative to the same exercise activity without ibuprofen ingestion. 

Indeed at rest no increase in permeability was apparent which is contrary other reports on 

ibuprofen effects after passive ingestion (van Wijck et al., 2012). Mechanistically, studies 

have reported that after the consumption of NSAIDs and via the inhibition of cyclooxygenase 

(COX) isotypes 1 and/or 2 a reduction in nitric oxide production occurs. Physiological and 

tissue effects include reduced GI tissue perfusion, as well as  mucosal cytoskeleton integrity 

impairment leading to elevated permeability and inflammation causing GI enterocyte 

damage and necrosis (Holgado et al., 2017; Iwamoto, 2013; Tscholl et al., 2016). Ibuprofen 

is a specific COX-2 inhibitor and is categorized as a weak acid although it is undetermined 

the exposure dose and frequency required to elicit these responses. These findings 

contribute to the idea that ibuprofen ingestion with a very short duration exercise protocols 

and adequate rest periods may not increase permeability when a normal conservative 

dosing regimen(s) on a single use basis are followed. It should be considered that the 

participants in this study were well trained intermittent games players thus one may assume 

some degree of training related adaption to HIIT type activity as well as possible GI training 

related adaption as well due to prior exposure to NSAIDs in the past (Costa et al., 2017; 

Miall et al., 2017). These considerations may limit the generalisability of the data beyond 

these strict delimitations.  It is known that conservative dosing/usage of NSAIDs by 

recreational and elite athletes may not be adhered too (Gorski et al., 2011a; Tscholl & 

Dvorak, 2012; Vaso et al., 2015). Further work should consider longer duration dosing 

regimen and approximate the usage patterns reported in athletes more closely to determine 

if the present data can be replicated.  
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6.5  Conclusions 

In conclusion, the current study is the first to assess the effects of HIIT intermittent maximal 

sprints on GI permeability and symptom expression. It was initially hypothesized that both 

exercise and ibuprofen would act synergistically accentuating their known individual adverse 

Gastrointestinal profile to increase GI permeability and elevate GI symptom expression. No 

increase in GI permeability or symptomology was present under both conditions (ibuprofen 

or placebo) either at rest or following exercise. The implications of the current findings, 

suggest that immediately preceding supramaximal HIIT exercise activity with the use of 

ibuprofen (400mg) will not adversely affect the GI permeability in participants who express 

no previous contraindications to their use. An important caveat, is that we must limit our 

findings to the ingestion of Ibuprofen in line with recommended UK prescribing guidelines. 

We also suggest that unlike longer duration steady state exercise, supramaximal HIIT does 

not seem to increase permeability or symptoms of GI distress. Given the popularity of HIIT 

exercise this may add a further advantage to its efficacy profile.  
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Chapter 7 

 

Effects of exercise modality (Running vs Cycling) on 

Gastrointestinal Permeability, Symptomology and Damage in 

Triathletes. 
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7.0 Effects of exercise modality (Running vs Cycling) on Gastrointestinal 

Permeability, Symptomology and Damage in Triathletes. 

 

This chapter develops the theme of activity and GI permeability to examines the relative 

impact of exercise modality i.e. running vs cycling upon GI permeability and damage. It is 

suggested that running will increase GI permeability relative to cycling and rest due to 

variances in mechanical loading on the GI system when relative exercise intensity and work 

completed are held constant. 

 

7.1 Introduction  

 

A loss in GI barrier integrity is considered to lead to intestinal permeability resulting in 

systemic inflammatory reactions and the occurrence of GI distress symptoms (nausea, 

vomiting, diarrhoea and abdominal cramps) (Haaf et al., 2014; Peters, 2001; ter Steege et 

al., 2008). The prevalence of exercise induced GI disturbance appear common in both male 

and female athletes, and often lead to impaired performance and the termination of exercise 

(Jeukendrup et al., 2000). Athletes perusing endurance-based sports appear susceptible to 

a greater frequency of GI distress with 25-70 % of elite endurance athletes experiencing 

such problems (Lambert et al., 1999; Riddoch & Trinick, 1988). Jeukendrup et al., (2000) 

reported in Ironman distance triathletes that 43 % of competitors expressed serious GI 

symptoms with 7% having to abandon the race. Exact causality amongst symptomatic 

athletes appears to be multifactorial, although a reduction in splanchnic blood flow as well as 

hyperthermia and tissue hypoxia are suggested as a primary mechanism relative to exercise 

intensity, duration and putative environmental  factors ( ter Steege et al., 2012; van Wijck, et 

al., 2011). However, delineating the precise mechanism remains elusive between 

symptomatic and asymptomatic athletes (Karhu et al., 2017; Wright et al., 2011). As such 

other potential factors may be contributing to the patho-aetiology of both objective and 

subjective symptomologies of GI dysfunction noted in athletes. 

 

Exercise modality and their associated movement mechanics may be potential factors 

responsible in modulating GI permeability and the development of GI symptoms. 

Epidemiological data report differential rates of GI symptomologies in running compared to 

other sports such as cycling or swimming were the body remains in a more stable position 

with running expressing higher GI symptom prevalence and severity scores (Peters, et al., 

1999; Riddoch & Trinick, 1988; ter Steege et al., 2008). Rehrer et al. (1992) and van 

Nieuwenhoven et al. (2004) have reported triathletes to experience a greater proportion of 

GI symptoms during the running part of a triathlon in relation to swimming and cycling 
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components. The disparity in GI symptoms and GI permeability during different exercise 

modalities are thought to be as result of the repetitive high impact vertical and lateral 

oscillations that are transmitted during running to the GI tract (Rosado-Dawid et al., 2013; 

Rudzki et al., 1995; Stewart et al., 1984; Waterman & Kapur, 2012). Such observations may 

therefore help explain the diarrhoea and lower GI complaints prevalent amongst runners in 

comparison to cycling ( Peters et al., 1999; Peters et al., 2002). 

 

The exact underlying mechanisms that explain the higher prevalence of GI symptoms 

amongst runners remain to be elucidated (Costa et al., 2017; Pires et al., 2016). However, a 

direct comparison of exercise modality where increased loading and no loading is applied 

(i.e. running versus cycling) to examine GI permeability and symptomology has not been 

considered. Especially, where both exercise modalities are isolated to a single activity bout 

and matched for exercise intensity and total work load completed. The aim of the present 

study was therefore to examine isolated modality specific effects of loaded [running] vs 

unloaded [cycling] upon GI permeability, symptomology and tissue damage. It is 

hypothesised that GI permeability, as expressed by the serum appearance of lactulose to L-

rhamnose ratio (L/R) will be elevated after running relative to cycling when matched for 

exercise intensity and total work completed. Second the cytosolic protein intestinal fatty acid 

binding protein (IFABP) will be elevated during running versus cycling as a marker of 

enterocyte tissue damage and third these will be associated with GI symptoms expressed.  
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7.2  Methods  

7.2.1 Participants. 

Initially 11 male participants were recruited to participate, due to drop out for logistical, 

illness in the final analysis, six male triathletes training in excess of six h per week and 

competing on a regular basis were recruited from triathlon clubs in the North West of 

England (Age: 29 ± 10 years; Body mass: 78 ± 10 kg; V̇O2 max cycle: 56.4 ± 5.0 mL·kg-

1·min-1, V̇O2 max run: 62.7 ± 4.6 mL· kg-1·min-1). None of the participants had any previous 

history of GI related diseases or other gastric problems and were not regularly consuming 

non-steroidal anti-inflammatory drugs (NSAIDs). Participants were asked to abstain from 

exercise and alcohol at least 24 hours prior to experimental assessment and refrain from 

using NSAID during the study. Participant’s confirmed verbally compliance with these 

requirements prior to experimental data collection. All experimental procedures and potential 

risks/discomforts were explained in detail and written informed consent was obtained prior to 

testing. The study was approved by the Liverpool John Moores University Ethics Committee. 

Sample size estimates were determined a priori based upon data of Pals et al. (1997).  

Assuming a type I error of .05, a type II error rate (i.e. power of 80%) with an exercise to rest 

GI permeability ratio difference of 0.05 arbitrary units and an anticipated SD of 0.02. A total 

of 12 participants were estimated as required for this study. However, failure to recruit to the 

study and dropout mean the final sample size reflects a convenience sample. 

 

 

Figure 7.0 Experimental design summary for the effects of exercise modality [cycling versus 

running] upon GI permeability and biomarkers of GI damage, response in triathletes. 
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7.2.2 Experimental design and Exercise Protocol:  

Each participant was required to attend the laboratory on 5 separate occasions (ambient 

conditions were similar between visits; temperature 22-24°C, humidity 45 %-52 %,). The 

initial visits were to establish running and cycling V̇O2 max/peak and the final 3 visits to 

complete each experimental trial ‘running’ ‘cycling’ and ‘rest’. All experimental trials were 

conducted in a repeated measures design, at least 4-hpost-prandial with a minimum 4-day 

wash out period between each. We were unable to employ a randomization procedure, as 

the 1000 KJ workload had to be pre-determined first in order to set the subsequent workload 

during the run performance test; therefore, all particpants performed the cycling trial first.  

 

The exercise protocols consisted of a steady state cycling absolute 1000 KJ work test and 

an equivalent running workload test both performed at a fixed load eliciting ~70 % V̇O2 max. 

Performance of 1000 KJ of work was quantified in real time during cycling trials using the 

Lode Ergometry Manager Software (Lode Excalibur Sport, Groningen, and The 

Netherlands). Breath-by-breath indirect calorimetry was measured throughout (Oxycon Pro, 

Jaeger, The Netherlands) to determine total energy expenditure (EE). Total EE was then 

replicated during the running trial to ensure comparison of workload between the two 

conditions. The running protocol was performed at a 1 % gradient Jones & DOUST, 1996) to 

reflect the metabolic and oxygen demands of running outdoors.  

 

On arrival at the laboratory, participants were seated for 15 min and had a venous cannula 

inserted into an ante-cubital vein for serial blood sampling for the assay of GI permeability 

and damage following the time frame; pre protocol, immediately post protocol completion 

and 2 h post sugar probe ingestion (Chapter 3, section 3.7).  Nude body mass was recorded 

(Seca 704, Birmingham, UK). Sample procurement and management and storage followed 

that outlined in (Chapter 3, section 3.9).  Core body temperature was assessed via a rectal 

thermistor (Mini-thermistor; Grant instruments LTD, Shepreth,) and monitored throughout 

exercise using an electronic data logger (Grant Squirrel 1000 series, Grant Instruments, 

Cambridge, UK) (Chapter 3, section 3.5.1). A Polar FT1 heart rate monitor transmitter band 

was positioned across the chest (Polar Electro Oy, Kemple, Finland) and heart rate was 

recorded at 1 min intervals. Pre and post exercise haematocrit and haemoglobin was 

determined as outlined in (Chapter 3, Section 3.9.1). After instrumentation was complete, 

participants consumed the GI sugar permeability probe (Chapter 3, Section 3.7). During 

exercise, rate of perceived exertion (RPE; 6-20) and GI comfort scale (0-10) were recorded 

every 3 min (Chapter 3, Section 3.5 and 3.5.1). Participants consumed water at a rate of at 

least ~1 mL·kg-1 every 15 minutes to alleviate fluid loss. Total fluid intake was recorded and 

post exercise nude body mass was obtained to determine estimated sweat rate. Upon 
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completion of exercise a further blood sample was immediately obtained (~5 min) at 2 h post 

drink ingestion.  

 

7.2.3 Preliminary testing: Running and cycling maximal oxygen uptake (V̇O2max) were 

determined during two incremental exercise tests performed to volitional exhaustion. The 

maximal running and cycling tests were performed using the same motorised treadmill (H/P 

Cosmos Pulsar, Nussdorf-Traunstein, Germany) and electronically braked cycle ergometer 

(Lode Excalibur, Groningen, The Netherlands) as used during each experimental trial. 

Briefly, participants VO2 peak was determined using a progressive incremental protocol on a 

motorized treadmill (h/p/cosmos pulsar, Nussdorf-Traunstein, Germany)(Chapter 3 Section 

3.6); temperature of 22°c and 45 % relative humidity. The cycle ergometer test commenced 

at 125 w and increased by 25 w every 2 min thereafter until volitional exhaustion.  The 

criteria of the British Association of Sport and Exercise Sciences (BASES) were used to 

classify attainment of V̇O2max peak or max oxygen uptake criteria (Winter et al., 2007). 

Chapter 3, section 3.6) Expired respiratory gas fractions were analysed continuously using 

an online gas analysis system (Oxycon Pro, Jaeger, Netherlands) to allow for the 

subsequent determination (linear regression) of the workload required for the experimental 

trials (70 % V̇O2 max) ( Chapter 3, section 3.6).  

 

7.2.4 Analytical Procedures:  

7.2.4.1 Assessment of intestinal permeability  

Intestinal permeability for the recovery of Lactulose and L-Rhamnose was assessed by 

analyzing serum samples using a previously published protocol (Fleming et al., 1996). 

Chapter 3, section 3.10) 

 

7.2.4.2 Assessment of I-FABP  

I-FABP was determined by analysis of plasma samples using an ELISA kit (Hycult 

Biotechnology, Uden, the Netherlands) according to the manufacturer’s instructions. I-FABP 

concentrations (pg/mL) were measured in samples taken pre-exercise, immediately post-and 

2 hrs post exercise. The intra-assay coefficient of variation was <8 %. 

 

7.2.4.3 Serum Cortisol  

Serum cortisol concentrations determined via automated Roche COBAS electro-

chemiluminescence immunoassay procedure following the manufacturer’s instruction. The 

CV was <10 %. The lower and upper limits of measurements were 0.5 and 1750 nmol·L-1, 

respectively. 
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7.2.4.4 Statistical Analysis: Statistical analysis was conducted using the Statistical 

Package for the Social Sciences (version 22; SPSS Inc., Chicago, IL). All data were 

analysed with a standard 2-tailed paired t-test to determine differences between cycling and 

running trials. All data in text, figures and tables are presented as means ± SD; a P value 

<0.05 was accepted as indicative of a statistical significance in the data.  
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7.3 Results  

7.3.1 Physiological and Perceptual effort.  

Heart rate was significantly elevated during the running trial when compared to cycling (161 

± 13 b·min-1 vs 153 ± 11 b·min-1; P = 0.035). Oxygen uptake was similar during both the 

cycling and running experimental trials (48.9 ± 14.3 mL·kg-1·min- 1 vs 52.2 ± 9.7 mL·kg-1·min-

1; P= 0.471) respectively. Average core body temperature did no differ between the cycling 

and running experimental trials (39. 0 ± 0.25°C vs 39.4 ± 0.59°C; P = 0.118). No significant 

differences in the ratings of perceived exertion during cycling and running (15.7 ± 2.4 vs 14.6 

± 2.1; P = 0.721) was noted.  Absolute energy expenditure did not differ between cycling and 

running trials (1374 ± 412 kcal vs 13757 ± 359 kcal; P = 0.209). Average distances and time 

to completion for cycling and running experimental trials are shown in Table 7.1. The 

duration of the cycling trial was significantly longer than the running trial (78.3 ± 11.0 min vs 

62.4 ± 11.8 min; P = 0.014).  Total percentage loss in body mass did not differ between 

cycling and running experimental trials (1.8 ± 0.6 vs 2.1 ± 0.6 kg; P = 0.076). Data are 

presented in table 7.1. 

 

Table 7.1:Physiological, perceptual and performance data during running and cycling.  

 

 

 

 

 

 

 

 

 

 

  

Parameter Cycling Running P Value 
    
V̇O2 max (mL·kg-1·min-1) 58.2 ± 7.4 65.4 ± 10.0* (P<0.05) 

 
V̇O2   (mL·kg-1·min-1) 48.9 ± 14.3 52.2 ± 9.7 (P>0.05) 

 
Heart Rate (b·min-1) 153 ± 11 161 ± 13* (P<0.05) 

 
Energy Expenditure (Kcal) 1374 ± 412 1375 ± 355 (P>0.05) 

 
Rectal Temperature (0

C) 38.9 ± 0.2 39.4 ± 0.5 (P>0.05) 
 

RPE (AU) 15.7 ± 2.4    14.6 ± 2.1 (P>0.05) 
 

∆ Body mass (kg) 1.8 ± 0.6      2.1 ± 0.6 (P>0.05) 
 

Distance (km) 66.6 ± 0.5 13.5 ± 1.2* (P<0.0001) 
 

Time to complete (min) 78.3 ± 11.0 63.4 ± 11.8 (P>0.05) 
 

GI Discomfort (AU) 0.7 ± 1.0 2.1 ± 1.3 (P<0.05) 
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7.3.2 GI permeability, Damage and GI comfort 

Subjective severity ratings of GI discomfort (Table 7.1) recorded during the cycling trial was 

significantly lower than during running.  

 

7.3.3 GI Permeability  

Serum Lactulose-to-rhamnose ratios are presented in Figure  1. The mean serum ratio of 

lactulose to rhamnose was not different (P = 0.252) between cycling vs running (0.0318 ± 

0.008 vs 0.0301 ± 0.006; P = 0.252) indicating no differences in small intestine permeability.  

Analysis wasn't performed on the rest condition due to sample size constraints (n=3). 

 

Figure 7.1 GI permeability as determined by lactulose: L-Rhamnose ratios following running and 

cycling (n=6) and rest (= 3). 
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7.3.4 Intestinal Fatty Acid Binding Protein 

Serum Intestinal fatty acid binding protein concentrations are presented in Figure 7.2. The 

mean serum IFABP area under the curve was determined with concentrations not 

significantly different between cycling vs running, pre; post  or 2-Hrs post indicating no 

significant differences in small intestine damage between conditions.  

 

Figure 7.2 Plasma I-FABP response to cycling and running pre, immediately post and 2 h 

post exercise.  

 

Figure 7.3 Individual plasma I-FABP response to cycling and running pre, immediately post 

and 2 h post exercise modality performance.   

0

500

1000

1500

2000

2500

baseline post 2hrs

I-
FA

B
P

 (
p

g/
m

L)
 

Cycling

Running

C
ycle

 P
re

R
un P

re

R
un P

ost

C
ycle

 P
ost

R
un 2

h

C
ycle

 2
h

0

500

1000

1500

Exercise Condition and time points.

IF
A

B
P

 c
o

n
en

tr
at

io
n

s
 (

p
g

/m
L

)



140 
 

7.3.5 Cortisol Responses. 

Serum cortisol release increased significantly pre-to post exercise and 2 h post exercise 

(P<0.05). However no significant difference between running and cycling were observed 

(P>0.05). 

 

Table 7.2 Serum cortisol responses during running and cycling matched for energy 

expenditure and exercise intensity.  

 

Condition  Time 

 Pre-Ex (nmol•L
-1

) Post-Ex  (nmol•L
-1

) 2h-Post EX(nmol•L
-1

) 

Running Pre-Exercise 

(nmol•L
-1

) 385 ± 115.8 710 ± 85.9* 

 

786.8± 86.8* 

Cycling Post Exercise 

(nmol•L
-1

) 432.5 ± 172.1 812 ± 189.6* 

 

906  ± 162* 

            Cortisol responses   * significantly different from pre-exercise condition (P<0.05).  
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7.4 Discussion  

The aim of the present study was to quantify the difference in GI permeability and damage 

between the exercise modalities of running and cycling where each exercise was  allocated 

to a single isolated session and matched for total energy expenditure and relative exercise 

intensity. Present data indicate that GI permeability and damage are not significantly 

affected by exercise modality. However, a clear disassociation between GI symptomology 

and markers of GI permeability and damage is apparent. 

 

In evaluating these results, it is important to consider the potential mechanisms which may 

explain the observed outcomes. Firstly, tight junction proteins are essential to the 

maintenance of GI barrier integrity and the prevention of luminal antigen translocation via of 

paracellular pathways i.e. GI permeability (Bischoff et al., 2014; Shen 2012; Zuhl et al., 

2014). During exercise, the structure and function of these tight junction proteins are 

modulated by various physiological stimuli including splanchnic hypo-perfusion, splanchnic 

hyperthermia and GI enterocyte hypoxia. These factors when expressed during exercise are 

subsequently followed by a loss in epithelial integrity  and an increase in GI permeability in 

human and animal models (Dokladny et al.,  2015; Pires et al., 2016; ter Steege & Kolkman, 

2012; van Wijck et al., 2012). The magnitude of permeability would seem to reflect the 

duration and magnitude of splanchnic hypo-perfusion and hyperthermia (Derikx et al., 2007; 

Otte et al 2001; ter Steege & Kolkman, 2012; van Wijck et al., 2011). We have observed 

across both the running and cycling protocols hyperthermia at a level sufficient to induce 

increased permeability, however a tonometry wasn’t available to measure GI perfusion we 

can’t comment upon the level of hypoperfusion. However, it is accepted that exercise at 

similar level can impair GI perfusion by up to 80 % (Pires et al., 2016; ter Steege & Kolkman, 

2012). However, others have observed that splanchnic haemodynamics between GI 

symptomatic and asymptomatic athletes do not differ (Wright et al., 2011).  As such it is 

postulated that other mechanisms associated with differences between the mechanics of 

running and cycling could be potential factors responsible in modulating GI permeability and 

the development of GI symptoms (Rudzki et al., 1995).  

 

Epidemiological data report differential rates of GI symptomology during running compared 

to other sports such as cycling or swimming were the body is subject to less mechanical 

loading. Running expresses higher GI symptom prevalence and severity estimates as well 

as increased clinical diagnosis of GI pathology (Choi et al., 2001; Halvorsen & Ritland, 1992; 

Heer et al., 1987; Peters et al., 1999; Riddoch & Trinick, 1988; ter Steege et al., 2008). 

Rehrer et al. (1992) and Lambert et al. (1999) have reported that triathletes experience a 
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greater proportion of GI symptoms during the running section of a triathlon relative to the 

swimming and cycling components. However, these observations are confounded due to the 

sequential nature of the triathlon where the stress during running is applied concurrently 

after cycling. Residual fatigue from the former may impact the latter element, thus negating 

differentiation between the relative effect of the different modalities on symptoms. Similarly, 

van Nieuwenhoven et al. (2004) has observed in a laboratory simulation amongst triathletes 

an elevated GI permeability and symptoms during running following cycling. Again, 

explanation may lie with the experimental design where the cycling and running exercise 

protocols were performed concurrently rather than separately thus differentiating between 

modality effects is confounded by their interaction. 

 

 

These observations support the idea that repetitive high impact mechanical loading/forces 

are transmitted to and through the abdominal viscera that may contribute to the higher 

occurrence of symptoms observed during running. Rehrer and Meijer, (1991) have argued 

the abdomen is subject to vertical and lateral vibrations/oscillations due to the repetitive high 

impact ground reaction forces [2.5-3 body mass] which increase the rate of 

acceleration/deceleration loading imposed during running compared with cycling. This view 

being supported by others (Bahlsen & Nigg, 1987; de Oliveira et al., 2014; Simons & 

Kennedy, 2004; Waterman & Kapur, 2012). Increases in diaphragmatic pressure alter intra-

gastric and intra-abdominal pressures mediating abdominal distention/bloating, cramps and 

the release GI hormones (MacLaren et al., 1995; O'Connor et al., 2006). Such mechanical 

loading has been noted to disrupt the enteric nervous system signalling and neuroendocrine 

communication patterns effecting an upregulation in local tissue inflammation 

(Chandrasekharan et al., 2013).  Elevations in GI hormones and neural activity may further 

alter fluid balance in the intestine and induce abdominal cramps and diarrhoea (de Oliveira 

et al., 2014). Such observations may therefore help explain the gastroesophageal 

symptoms, diarrhoea and lower GI complaints prevalent amongst runners in comparison to 

cycling ( Peters et al., 1999; Peters et al., 2002). Notionally support for a mechanical trauma 

effect may be seen in another analogous running related condition ‘foot strike Haemolysis’ 

that occurs as a result of increased loading during running relative to non-weight bearing 

activities (Telford et al., 2003). 

 

In order to effectively evaluate the effect of exercise modality on GI permeability and the 

tissue damage surrogate IFABP, it was important that exercise intensity and absolute 

workload were matched. Data indicate no significant differences in energy expenditure, 

average oxygen consumption, RPE, core temperature, cortisol responses and percentage of 
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body mass lost between the experimental trials as such the two exercise modalities were 

appropriately matched as regards exercise intensity and energy expenditure. (Table 7.1 and 

7.2). However, contrary to the initial hypothesis, no significant differences in GI permeability 

between cycling and running at ~70 % V̇O2 peak when matched for total energy expenditure 

was observed. GI permeability values are approximately comparable with previous studies 

illustrating a change in permeability after running at ~70 and ~80 % V̇O2 max (Karhu et al., 

2017; Lambert et al., 2008; Pals et al.,1997; Yeh et al., 2013). Indeed, when considered 

relative to rest both the running and cycling protocols induced a level of stress sufficient to 

compromise GI barrier integrity and increase IFABP in a manner indicated by others (van 

Wijck et al., 2014; Pugh et al., 2017). In order to match intensity and energy expenditure 

exercise time to completion was not off a fixed duration. The fact that our exercise trials 

varied in duration by approximately 20 min could explain the lack of difference in GI 

permeability between running and cycling protocols. The extended duration of the cycling 

activity relative to running may have imposed an additional period of ‘stress’ extending GI 

exposure to additional periods of splanchnic hypo-perfusion, hyperthermia and enterocyte 

hypoxia. The resultant effects could have mediated the equivalence in GI permeability seen 

between conditions. 

 

IFABP is an enterocyte cytosolic protein that is released upon mechanical damage to the 

distal tip of the intestinal villi (van Wijck et al., 2011). Elevated circulating I-FABP have 

previously been correlated with both clinical and exercise induced splanchnic ischemia 

(Relja et al., 2010; van Wijck et al., 2011; 2014) and in patients with abdominal tissue 

trauma.  As a secondary marker of tissue damage to the villus structure rather than the 

basement membrane, IFABP concentrations were determined over the time course of both 

running and cycling trials. In line with the initial hypothesis there is a clear but highly variable 

inter-individual GI tissue damage response within both modalities of exercise relative to pre-

exercise samples.  The running modality clearly induces a higher IFABP response overall 

but also more variable responses evidenced by the larger variances from the mean. It may 

be that IFABP is more sensitive to the mechanical loading differences between running and 

cycling. Although several of the post exercise IFABP concentrations are similar to pre-

exercise baseline values (Figure 7.3). Costa et al. (2017) also noted IFABP resting values 

that exceed exercise values reported by others. The magnitude and variability in IFABP 

responses noted here are comparable to that reported by others across similar exercise 

modalities (Pugh et al., 2017; Snipe et al., 2017; van Wijck et al., 2011a; van Wijck et al., 

2014). The variance observed in IFABP has been a particular problem for this biomarker 

across literature indicating that the efficacy of a clinical biomarker may not fully translate 
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through to different exercise related populations and applications.(Janssen Duijghuijsen et 

al., 2016; Janssen Duijghuijsen, et al., 2017; Pugh et al., 2017; van Wijck et al., 2011; van 

Wijck et al., 2014).  Normative ranges for IFABP across athletic populations haven’t been 

effectively established as yet, to benchmark the utility of this marker. As such, IFABP as a 

marker of GI damage requires further exploration. Subjective ratings of GI discomfort were 

elevated during the running relative to cycling. However, the GI severity values need to be 

contextualised as the ratings obtained are clustered around the ‘very mild’ discomfort rating 

[lower end of the scale]. This is again consistent with the trend emerging in the literature 

reporting disassociations between subjective and objective markers of GI function (Karhu et 

al., 2017; Pugh et al., 2017). Future work may need to seek alternate pathways to explain 

the observed epidemiological association between exercise, permeability and subjective 

symptomology.  

 

7.5 Conclusion  

In summary, this study indicates that there is no difference in GI permeability between an 

acute bout of running and cycling when the two exercise modalities are matched for total 

energy expenditure and exercise intensity. Despite this, the reported severity of GI 

discomfort was greater during running compared with cycling, a common phenomenon noted 

amongst endurance athletes. However, this observation must be tempered with the very mild 

nature of the symptom expressed. The mechanisms which lead to an elevated GI 

dysfunction amongst runners are complicated and multifactorial, it is however possible that a 

greater reduction in splanchnic blood flow, hyperthermia, and the possible 

mechanical/vibrational stimuli during running may compromise GI barrier function. We 

observe as with previous work a lack of association between subjective and objective 

markers of GI symptoms. However, current finding indicate that as GI permeability was 

increased to a similar level across both exercise modalities; as such the upregulation in GI 

permeability and IFABP related damage would appear unrelated to possible mechanical 

differences between modes of exercise.  
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8.0 Synthesis of Findings 

The purpose of this chapter is to integrate and interpret the findings obtained from the 

individual studies completed within this thesis. The realisation of the aims of the thesis as set 

out in each chapter will be confirmed prior to reviewing the initial hypothesis set out. The 

general discussion that follows will consider the main findings of each chapters in relation 

understanding the effects of exercise on GI permeability, symptoms and damage. The 

outcomes will then be presented prior to the development of conclusions. 

 

8.1 Review of Hypothesis 

A series of hypotheses were developed prior to conducting the studies described in the 

thesis 

Hypothesis 1:  

 Chapter 4:  Soccer specific intermittent exercise [SSIE] in the heat will increase GI 

permeability and symptoms relative to rest and cold condition.  It will also be 

expected that exposure to heat will increase passive GI permeability and 

symptomology relative to cold. 

 

This hypothesis was partially accepted. Although this study indicates GI permeability is 

elevated relative to cold conditions when un-acclimated well-trained soccer players are 

exposed to acute period of both passive and SSIE exercise under hot conditions. Whilst GI 

permeability is increased, it fails to show under each condition a statistically significant 

elevation relative to rest. Present findings are supportive of the hypothesis linking additional 

thermoregulatory strain induced by heat exposure to the elevated GI permeability through 

what is suggested to be a possible exacerbation of splanchnic hypo-perfusion, intestinal 

ischemia, and hyperthermia of intestinal epithelium. We also reported a clear divergence 

between objective and subjective markers of permeability and symptomology which poses 

questions as to the usefulness of these scales under such settings of SSIE. 

 

Hypothesis 2.   

 Chapter 5: High intensity intermittent (HIIT) and continuous steady state exercise will 

increase GI permeability and symptomology relative to rest. High intensity 

intermittent relative to steady state exercise in the Heat (32 °c) relative to Cold (12°c) 

will express higher GI permeability and GI symptomology. 

 

This hypothesis was partially accepted. This study indicates GI permeability is elevated 

relative to resting values when an un-acclimated individual is exposed to acute periods of 

both steady state and HIIT exercise in both the hot and the cold. Further, it is shown that 
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when exercise at the same relative intensity i.e. 70 % V̇O2 peak is undertaken in cold 

conditions the GI permeability response are independent of the exercise patterns i.e. either 

continuous or intermittent. When the same protocols are repeated in the heat this 

relationship is abolished and HIIT elevates GI permeability to a greater extent than 

continuous steady state exercise; however, this failed to attain statistical significance.  A 

clear divergence between the objective and subjective markers of GI permeability and 

symptomology is again noted posing questions as to the usefulness of these scales under 

laboratory based short duration steady state and HIIT based exercise.  

 

Hypothesis 3   

 Chapter 6: GI permeability and symptomology will increase following supramaximal 

High Intensity Intermittent Exercise (HIIT) relative to rest. HIIT exercise and NSAID 

ingestion will act synergistically to augment this increase in GI permeability and 

symptoms relative to placebo and rest conditions.  

 

This hypothesis was rejected. The current study indicated no increase in GI permeability 

or symptomology relative to rest where present after undertaking very short but intense 

sprint exercise on a repeated basis. Furthermore, after ingestion of Ibuprofen relative to a 

placebo no interaction between exercise and ibuprofen or rest and ibuprofen were apparent 

to elevate GI permeability or symptomology relative to the placebo. Preceding short but 

intense HIIT type exercise with the use of ibuprofen does not adversely affect the GI 

permeability in persons who express no previous contraindications to their use. Unlike longer 

duration steady state exercise, the present HIIT protocol not increases GI permeability or 

symptoms of GI distress. GI symptomology was reported as minor to mild and did not 

increase significantly with NSAIDS or exercise. In line with previous chapters a 

disassociation in objective and subjective measures is presented 

 

Hypothesis 4 

 Chapter 7: Indices of GI permeability and symptomology will be higher during 

running relative to cycling matched for absolute work load and relative exercise 

intensity. 

 

This hypothesis was rejected. The current study observed indicates no difference in GI 

permeability or symptomology after performing acute bouts of running and cycling at 70 % 

Vo2 peak, when the both modalities are matched for total energy expenditure and exercise 

intensity in separate sessions. Whilst elevations in symptomology during running vs cycling 
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were apparent, the magnitude of these were very mild. We observe as with previous work 

again the lack of association between subjective and objective markers of GI symptoms. 

 

8.2 General Discussion  

Epidemiological data report increased symptomology of gastrointestinal disturbance in both 

the upper and lower GI tract (nausea, regurgitation, wind, vomiting, diarrhoea, cramps, 

abdominal pain and bloating) in both male and female athletes (Haaf et al., 2014b; Lambert 

et al., 1999; Peters et al., 1999b; Riddoch & Trinick, 1988; ter Steege et al., 2008; 2012). In 

particular endurance athletes seem susceptible to this symptomology and frequently express 

gastrointestinal symptoms ( Costa et al., 2017; Haaf et al., 2014; ter Steege et al., 2008). 

Gastrointestinal symptom severity presented across the studies ranged from mild (wind, 

bloating) to  severe/clinically significant (acute colitis, faecal occult blood, chronic ischemia) 

the latter symptoms being expressed particularly at the extreme endurance event end of the 

scale (Cohen et al., 2009; Costa et al., 2016; Grames & Berry-Cabán, 2012; Jeukendrup et 

al., 2000; Pfeiffer et al., 2012; Roberts et al., 2016; Stuempfle et al., 2016; Stuempfle & 

Hoffman, 2015). In examining this literature association have seen sought between objective 

and subjective symptoms to provide explanation as to possible factors that contribute to the 

expression of these symptoms (Costa et al., 2017; Lambert et al., 2008). GI permeability and 

GI damage which although used interchangeably represent different patho-physiology; the 

former leading to translocation of molecules from luminal to systemic circulation whilst the 

later provide an indicator of loss of distal villus integrity (Grootjans et al., 2016; Grootjans et 

al., 2013).  The central driving mechanism around these changes in gastrointestinal 

permeability, damage and symptomology are factors related exercise intensity, exercise 

pattern, modality and environment in which they are performed. A central theme in literature 

indicates that 70 % V̇O 2 max/peak  may be a critical threshold for permeability changes to 

occur (Pires et al., 2016). It is important to note that GI permeability in this thesis is 

considered relative to rest (within treatment effect) and relative to alternative treatment. In 

line with this model, the exercise intensity applied across the studies was designed to 

achieve approximately 70 % V̇O 2 peak (chapter 4,5,&7) or to exceed it (chapter 6). In 

chapter 4 the impact of a SSIE protocol which can be classified as aerobic combined with 

periods of high intensity intermittent exercise was assessed for it impact on GI permeability. 

It was determined that performance of the SSIE protocol did not significantly increase GI 

permeability relative to rest; which may reflect the protocol not exceeding the 70% V̇O 2 peak 

‘critical threshold’ under cold conditions. However, when environment was considered as an 

additional stressor the SSIE in the heat achieved (>70 % V̇O 2 peak) relative to the cold with 

increased GI permeability and symptoms also observed. Whilst we note increased GI
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Figure 8.0 Schematic representation of the effects of exercise intensity, exercise pattern modality and pharmacological upon GI permeability 
and damage.  
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 permeability in the heat the significance of this needs to be ascertained particularly in the 

context of soccer games played in hot environments (>32°C) and especially when the co-

expressed symptomology scores are mild. Where permeability and heat stress are co-

expressed there seems from present data to be a synergistic/additive effect present that 

elevates GI permeability without translating effectively to increased symptomology. It may be 

this GI permeability could lead to an increased risk of heat illness and heat stroke secondary 

to systemic inflammatory responses as a result of  luminal antigen translocation from the gut 

(Selkirk et al., 2008; Selkirk et al., 2009).  In studies 5 and 7 this theme of ‘exercise intensity’ 

being critical to GI permeability response was further explored. In chapter 5 relative exercise 

intensity was held at 70% V̇O 2  peak during the performance of two separate protocols 

designed to determine how the exercise pattern i.e. continuous steady state vs intermittent 

exercise effects GI permeability and symptomology. Across both studies permeability was 

again increased relative to rest, with no change in symptom expression.  In treadmill HIIT 

programmed at a 90%-50% work to active recovery ratio (~70 % V̇O 2  peak) and steady 

state exercise as well as cycling performed at 70 % V̇O 2  peak for minimum of 50 min will 

increase GI permeability.  Importantly the magnitude of the increase in permeability does not 

appear to differ when undertaken in the cold for steady state exercise. However, as noted in 

chapter 4 the addition of heat stress to the HIIT protocol accentuated GI permeability; in this 

case relative to the cold. Based upon the observations from study 1 (chapter 4) and study 2 

(chapter 5), exercise in the heat (32°C) is an  important factor that provides an additive 

stress upon the GI tract contributing to increased GI permeability. In relation to how the 

exercise is patterned t is interesting to note that comparison of chapter 5 HIIT exercise 

consisting of long interval(s) (180 s) relative to study 3 (chapter 6) supra maximal sprint HIIT 

(short intervals <6 s x 6 [~36 sec]) indicates that supramaximal HIIT does not increase 

permeability (no environmental thermoregulatory challenge presented). The factors 

contributing to these differences can’t be resolved within the current data set as no data on 

core temperature in the HIIT short intervals was determined. It is likely the short intensity 

bouts and long rest will attenuate heat load accumulation which would seem to have been 

an important factor elevating permeability in studies 1 and 2 (chapters 4 and 5). Further, 

when Non-Steroidal Anti-Inflammatory Drugs (NSAIDS) are added to this HIIT model 

contrary to initial the hypothesis no further changes in GI permeability and symptoms are 

observed. These data are contrary to that reported in steady state exercise studies (Audet et 

al., 2016; van Wijck et al., 2012) and may thus differentiate HIIT from steady state NSAID 

effects observed in literature. In study 4 (chapter 7) maintaining the ‘critical exercise intensity 

threshold’ concept the first direct comparison of permeability after running and cycling was 

determined. It had been postulated that differences in GI symptomology between running 

and cycling could be explained largely by differences in mechanical/loading characteristics 
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applied to the GI tract (Gil et al., 1998). The direct comparison of running to cycling when 

closely matched indicates no difference in permeability as a result of mode of exercise 

during short term exposure (< 90 min).   

 

In aligning a possible series of mechanism to explain the diverse results outlined above, GI 

permeability will be impacted by several key factors resulting from the protocols undertaken 

i.e. splanchnic hypo-perfusion, GI hyperthermia, perfusion-reperfusion related tissue hypoxia 

and oxidative stress (Costa et al., 2017; Lambert et al., 2002b; ter Steege et al., 2008;  Ward 

et al., 2014). The onset of exercise is likely to bring about a redistribution of cardiac output 

from the splanchnic organs with reductions in splanchnic blood flow of up 80% dependent 

upon the exercise protocol applied and pattern of activity (Crandall & Gonzalez-Alonso, 

2010; Knight et al., 2017; van Wijck et al., 2012b). In particular comparison of steady state 

activity and intermittent activity will result in different blood flow patterns with the former 

seeing a reduction and maintenance of that reduction in blood flow until exercise cessation. 

Conversely with HIIT exercise an oscillatory pattern of splanchnic blood flow will result as 

exercise intensity increases and decreases during progression through the protocol. This 

difference in splanchnic perfusion places significant stress on the gastrointestinal system in 

relation to managing thermal load and oxidative stress (Hayashi et al., 2012; Knight et al., 

2017; Lambert et al., 2002;  Perko et al.,  1998). However, a sense of the likely impact of 

these pattern differences can be observed from the lack of difference in GI permeability 

responses under the HIIT vs steady state model in the cold (Chapter 5). Where exercise was 

under taken under different environmental conditions i.e. hot conditions heat accentuates 

permeability at rest (chapter 4) and with exercise (chapter 4 and 5).  Figure 8.1 summarises 

the impact of the 4 individual studies upon GI permeability. 

 

8.3 Achievement of Aims, Objectives  

The primary aim of the present thesis was to examine the effects of exercise intensity, 

modality and environment upon gastrointestinal permeability, damage and symptomology. 

Initially, utilising an intermittent treadmill simulation protocol the effect of soccer related 

activity was evaluated to examine how GI permeability and symptomology is affected 

(Objective # 1). It was determined that performance of this SSIE simulation protocol did not 

significantly increase GI permeability. However, when environment was considered soccer 

performance in the heat relative to the cold increased GI permeability (Objective # 1). Study 

2 [chapter 5] deconstructed the activity patterns typically experienced in soccer i.e. 

continuous running and intermittent exercise and directly compared how when matched for 

relative intensity the pattern of exercise impacts upon GI permeability and symptoms and 

whether this was modifiable by environment (Objective # 2).  It was determined that GI 
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permeability increased under both continuous and intermittent exercise compared to rest. No 

differences between continuous and intermittent exercise patterns were observed when 

undertaken in the cold. However, a stepwise increase in permeability was noted after activity 

in the heat: Rest < SS < HIIT. Minimal expression of GI symptoms was noted and these 

were unrelated to the objective GI permeability markers (Objective # 2). Drawing upon this 

idea of deconstructing the elements of soccer related activity Study 3 [chapter 6] examined 

the effect of supra-maximal (sprint running) High Intensity Intermittent training (HIIT <6s) 

upon GI permeability and symptoms.  It was observed that contemporary HIIT exercise 

consisting off, short duration repeated sprint (< 6s) performed on a repeated basis does not 

alter GI permeability significantly from rest. Further we find that when Non-Steroidal Anti-

inflammatory Drugs (NSAIDS) are added to this model no further changes in GI permeability 

and symptoms are observed (Objective # 3).   Finally, study 4 [chapter 7] addressed how 

modality of exercise impacted upon GI permeability, symptoms and damage (Objective # 4).  

Comparing running to cycling activity at the same relative intensity and with completion of 

similar absolute energy expenditures to assess possible effects high ground reaction force 

activity (running) to minimal-load baring activity (cycling).  No modality specific differences in 

GI permeability and symptom expression between running and cycling were noted. 

 

8.4 Conclusions 

This thesis has considered the effect of exercise intensity, modality and patterning and their 

environment interactions upon objective and subjective markers of GI function.  

 

Based on the data presented the following conclusions are advanced: 

1. Soccer specific intermittent exercise in the heat increases GI permeability with no 

corresponding increases in GI symptoms (chapter 4) 

2. Continuous and Intermittent exercise increase GI permeability relative to rest, 

both patterns of exercise mediate similar GI permeability responses however this 

relationship is modified when the activities are undertaken in hot conditions. 

(chapter 5) 

3. Exercising in the heat accentuates GI permeability responses (chapter 4 &5) 

4. Contemporary HIIT exercise consisting of supra-maximal, short duration repeated 

sprints (<6 s) do not alter GI permeability and symptomology (chapter 6). 

5. The duration and pattern of HIIT may mediate different GI permeability responses 

i.e. long HIIT (chapter 5) vs Short HIIT (chapter 6). 

6. Acute NSAIDs ingestion in conjunction with HIIT exercise does not increase GI 

permeability (chapter 6). 
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7. Running relative to cycling activity performed at 70 % V̇O 2 peak does not increase 

GI permeability (chapter 7). 

8. A critical threshold of 70 % V̇O 2 peak must be achieved for GI permeability to occur 

when exercise duration is relatively short in duration 60-90 min. 

 

8.5 Limitations. 

Participants in studies 1 and 2 were not acclimated to heat stress thus observations outlined 

are only relevant to those who have not yet acclimated to heat stress, whether variations in 

GI permeability vary as a function of heat acclimation are undetermined and require further 

clarification. It is unlikely the data would be altered by participant’s transitioning from un-

acclimated to acclimated as a result of the two heat exposures and has not been reported 

previously during similar activity (Barberio et al., 2015; Chalmers et al., 2014). Second, 

acquiring GI perfusion data was not possible; as such references to perfusion changes 

represent literature derived reports and may not fully reflect the magnitude and temporal 

pattern of splanchnic perfusion changes experienced during the SSIE and the population 

utilised.  Third as noted, it remains to be determined whether the permeability is reflective of 

that observed if the physiological loads where more analogous to that experienced during 

‘actual’ soccer match play, as such further work with more strenuous simulation protocols is 

required. It must be remembered that the responses in GI permeability and symptoms are 

likely to be specific to the chosen exercise intensities and work-rest ratios applied here thus 

other combinations may elicit different physiological, metabolic and thermoregulatory 

demands. GI permeability and symptoms may thus be a function of exercise stimulus 

(González-Alonso et al., 2008; Jiménez-Pavón & Lavie, 2017; Milanovic et al., 2015; Thum 

et al., 2017). Attribution of putative mechanisms of changes in GI permeability to splanchnic 

perfusion in this thesis were outlined upon the basis of comparative analysis to that 

observed in literature. No direct measure of splanchnic blood flow was possible in the 

present study i.e. via gastric tonometry as such this is a clear limitation in the exploration of 

mechanisms of action. Chapter 6 examined the effects of NSAID ingestion upon GI 

permeability. It should be considered that the participants in study 3 [chapter 6] were trained 

intermittent games players thus one may assume some degree of training related adaption 

to HIIT activity as well as possible GI training related adaption as well as prior exposure to 

NSAIDs ( Costa et al., 2017; Miall et al., 2017). These factors may limit the generalisability of 

the data to other populations. Consideration in non-HIIT trained individuals is warranted 

given its widespread recommendation as a preferential mode of training. The reduced 

duration of exercise and extended rest periods present, coupled with possible attenuation in 

splanchnic hypo-perfusion and hyperthermia may have modified the effect ibuprofen had on 

the GI barrier compared to other longer duration endurance based studies outlined. In the 
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present work all studies were undertaken in a fasted state at least 8 hours post prandial.  

This period follows the models applied elsewhere in the literature (Davison & Diment, 2009; 

Playford et al., 2017; Pugh et al., 2017), but does differ from what normal practice in athletes 

would be, unless they were following a low carb fasted training regimen. Fasting for such 

periods of time in animal models from 4.5 to 10 hours has been shown to increase GI stress 

and affect intestinal morphology (Gilani et al., 2017; Higashizono et al., 2018).  Therefore, it 

is important to consider that such factors may influence the degree of permeability likely to 

occur through non-exercise enterocyte stress priming the gut to be more permeable when 

exercise is undertaken.  

 

The present thesis utilised two approaches to measure GI permeability a urine and a serum 

based protocol. The serum approach utilised in that latter studies of this work chapters (5,6 

&7) differs from the urine used in chapter 4 alone. As such comparison of the soccer study 

where permeability was determined by urine recovery and the remaining studies may be 

confounded methodologically. Other have indicated that urine and serum L:R ratio samples 

collected at the same time provide different estimates of L:R ratios which are not associated 

(Pugh et al., 2017). This may be reflective of different kinetics of sugar absorption and 

transport. Whilst the method of serum recovery for L:R ratio has been validated previously 

(van Wijck et al., 2013), this validation was performed at rest. It is known that when exercise 

is undertaken the pharmacokinetics i.e. the rate at which a substance appears and is 

removed from circulation is altered (Boscarino et al., 2012) no data exists to support a 

similar 2 h time course during exercise as has been reported during the rest validation work. 

This is key limitation on these studies as the peak L:R ratio values may be delayed beyond 

this time frame. 

 

Across all studies in the present thesis a clear limitation was the recruitment and retention of 

participants into the respective studies. Generally, each study was logistically complex and 

physically demanding spanning several weeks or more of time commitment and restraint 

upon physical activity and other lifestyle factors. As indicated in the individual chapters this 

impacted upon participant recruitment and retention, whether those that dropped out were in 

some way physiologically different to those that remained and completed the study is 

undetermined. Generally, lack of time and inability to meet testing schedules and pre-data 

collection restrictions was the predominant reason given rather than physical inability to 

meet the test requirements 
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8.6 Recommendations for future work. 

 

In chapter 4 it was identified that the intensity of the soccer specific intermittent exercise  

treadmill protocol underestimated that observed during typical match play (Carling et al., 

2012a). Recently free running over ground protocol(s) (Barrett et al., 2013) have been 

developed that provide strong associations with in game physical work rate and 

physiological responses it would be appropriate to undertake the determination of GI 

permeability and symptomology expression to determine if GI permeability is increased 

when work load provides for a more realistic level of work noted during soccer match play. 

This has important connotations especially for the examination of putative counter-measures 

whether nutritional or environmental that could impact upon recovery after exercise 

performance.  

 

It is argued that the interaction of splanchnic perfusion and hyperthermia provide a 

synergistic stimulus to increase GI permeability and damage. To date splanchnic perfusion 

has been determined in a very restricted series of studies were GI permeability and markers 

of damage have been undertaken concurrently. None have been carried out in the past 5 

years. It is critical therefore to determine the individual contributory role of hyperthermia in 

inducing increased GI permeability relative to splanchnic hypo-perfusion and examine which 

has a more important effect on permeability.  

  

The determination of GI permeability relies of the ingestion and appearance of mono and 

disaccharide sugar probes in serum or urine to characterise the breakdown in GI barrier 

integrity. To date no consideration has been applied to key methodological issue that impact 

upon GI permeability assessment with L:R ratios or other sugar probe combinations. First, in 

order to determine the optimal time frame to detect GI permeability damage a ingestion 

timing study should be initiated that consider not only the timing of dose administration but 

also the influence of different types of exercise activity i.e. intermittent vs continuous on L:R 

ratio expression.  Second, in order to determine the effects of a change in sugar 

pharmacokinetics upon peak determination of L:R sugars in serum exercise and rest 

comparative studies to evaluate pharmacokinetics should be performed. Third, Intestinal 

fatty acid binding protein is widely used as a marker of GI damage, however as marker it 

currently presents no population specific normative ranges at exercise intensity dose 

response context. Further work should address these issues in athletic males and females, 

across a spectrum of sport and age ranges. 
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The impact of NSAIDs usage in conjunction with very high intensity intermittent exercise 

upon GI permeability was considered in chapter 6. It is known that the conservative usage of 

NSAIDs by recreational and elite athletes is not adhered with high levels of  use and abuse 

within invasion field games acknowledged (Tscholl & Dvorak, 2012; Vaso et al., 2015). 

Understanding how GI permeability and GI symptoms are impacted in these populations is 

warranted. GI permeability changes with NSAID ingestion before undertaking a full 

intermittent field game simulation protocol that accurately represents work rate and 

physiological cost in these sports will provide insight into potential GI issues arising from the 

integration of exercise and drug were prescription dosing guidelines are not always adhered 

to. Further work should consider longer duration dosing regimen and approximate the usage 

patterns reported in athletes more closely. It would further be advantageous to consider GI 

permeability and symptomology expression in those athletes that classify themselves as 

habitual NSAID users relative to a NSAID naive group as an evaluation of chronic 

maladaptation the GI tract. A dose response profile for NSAID ingestion upon GI 

permeability and symptoms after the performance of a standardised exercise activity should 

be undertaken to understand threshold of toxicity and whether it varies when addition 

stressor i.e. physical activity and hyperthermia and oxidative stress are co-expressed.  

 

Female participants were not assessed in this thesis given that GI symptoms appear to be 

more prevalent in female athletes  with prevalence and severity higher than male athletes 

future studies need to determine female athlete responses to exercise markers of intestinal 

damage (Haff et al., 2014; de Oliveira et al., 2014). 
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