
THE ROLE OF BARYONS AND NEUTRINOS IN

THE EVOLUTION OF LARGE-SCALE

STRUCTURE

Benjamin Mummery

A thesis submitted in partial fulfilment of the requirements of

Liverpool John Moores University

for the degree of

Doctor of Philosophy.

May 2018



Declaration

The work presented in this thesis was carried out at the Astrophysics Research Insti-

tute, Liverpool John Moores University. Unless otherwise stated, it is the original work

of the author.

While registered as a candidate for the degree of Doctor of Philosophy, for which sub-

mission is now made, the author has not been registered as a candidate for any other

award. This thesis has not been submitted in whole, or in part, for any other degree.

Benjamin Mummery

Astrophysics Research Institute

Liverpool John Moores University

IC2, Liverpool Science Park

146 Brownlow Hill

Liverpool

L3 5RF

UK

OCTOBER 8, 2018

ii



Abstract

Galaxy groups and clusters (GGCs) hold a privileged position within the cosmologi-

cal hierarchy. As the most recent structures to have formed, their abundances, spatial

distribution and individual properties bear the indelible imprint of the background cos-

mology, initial conditions and their formation history, making them valuable probes of

both cosmology and astrophysics. It has, however, become increasingly clear over the

past decade that making use of these probes for precision cluster cosmology requires

detailed, realistic predictions for the observed properties of GGCs. Producing these

necessitates the use of large cosmological hydrodynamical simulations with realistic

‘sub-grid’ prescriptions for baryonic physics. One mechanism in need of addressing is

the effect of the cosmic background of massive neutrinos. As these remain relativistic

to relatively late times, they will free-stream out of overdensities, altering the forma-

tion of large-scale structure (LSS). If this effect can be accurately modelled, it presents

an independent method of constraining the value of the neutrino mass by means of LSS

observations.

This thesis makes use of the cosmo-OWLS and BAHAMAS cosmological hydrodynam-

ical simulation suites to explore the separate and combined effects of baryon physics

(particularly feedback from active galactic nuclei, AGN) and the free-streaming of

massive neutrinos on large-scale structure. I focus on five diagnostics: i) the halo mass

function; ii) halo mass density profiles; iii) the halo mass−concentration relation; iv)

the clustering of haloes; and v) the clustering of matter; and I explore the extent to

which the effects of baryon physics and neutrino free-streaming can be treated inde-

pendently.
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Based on this work, I anticipate that the clustering of GGCs will be sensitive to the

value chosen for the summed neutrino mass. I therefore use these simulated data in

conjunction with data from the GAMA survey to compare the clustering of simulated

and observed galaxy groups in the context of a selection of potential neutrino mass

values. I extract simulated galaxy catalogues from lightcones constructed from the

BAHAMAS runs, and apply cuts to both the GAMA and BAHAMAS catalogues to cre-

ate consistent, volume-limited galaxy samples. These samples are complete down to

an integrated stellar mass of 1010M� out to a redshift of 0.2. In order to eliminate

any methodological differences between the simulated and observed measurements,

analysis of these catalogues is carried out in an exactly consistent fashion. GGCs are

identified by means of a Friends-of-Friends (FoF) algorithm run on the galaxy sam-

ples. I use the multiplicity and integrated stellar mass of each group as independent

tracers of the halo mass, calculating the 2-point, 3-dimensional GGC comoving auto-

correlation function in equally populated bins of each. I also examine the contribution

of several potential sources of uncertainty in this measurement, namely: i) the intrinsic

scatter in the stellar mass - halo mass and multiplicity - halo mass relations; ii) the

effect of redshift space distortions; and iii) the fragmentation problem arising from my

adoption of a fixed linking length in the FoF algorithm.

Consistent with previous studies, I find that both AGN feedback and neutrino free-

streaming suppress the total matter power spectrum, although their scale and redshift

dependencies differ significantly. The inclusion of AGN feedback can significantly

reduce the masses of groups and clusters, and increase their scale radii. These effects

lead to a decrease in the amplitude of the mass−concentration relation and an increase

in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of

GGCs while having no significant effect on the shape of their density profiles (thus also

affecting the mass−concentration relation and halo clustering in a qualitatively similar

way to feedback). I show that, with only a small number of exceptions, the combined

effects of baryon physics and neutrino free-streaming on all five diagnostics can be

estimated to typically better than a few percent accuracy by treating these processes

independently (i.e., by multiplying their separate effects).

iv



In comparing to the GAMA observations, I find that these data provide insufficient sta-

tistical power to constrain the value of the summed neutrino mass. This is primarily

due to the intrinsic scatter in the stellar mass - halo mass relation, and the strong de-

pendence of the sensitivity on precise mass binning. As a consequence, more precise

estimations of the halo mass will be required in future work seeking to utilise this met-

ric. Finally, I find that the clustering of simulated BAHAMAS groups is remarkably

consistent with that of observed GAMA groups. This lends additional weight to the

argument that BAHAMAS accurately reproduces the properties of the GGC population,

and supports its use as a cosmological tool.

BENJAMIN MUMMERY OCTOBER 8, 2018

v



Publications

In the course of completing the work presented in this thesis, the following papers have

been submitted for publication in a refereed journal:

Mummery, B. O., I. G. McCarthy, S. Bird, and J. Schaye

2017. The separate and combined effects of baryon physics and neutrino free stream-

ing on large-scale structure. MNRAS, 471:227-242

BENJAMIN MUMMERY OCTOBER 8, 2018

vi



Acknowledgements

First and foremost, I would like to extend the warmest thanks possible to my super-

visor, Ian McCarthy. His no-nonsense approach, decisive insights, and patient tute-

lage have proven indispensable time and time again, and his willingness to take on a

simulation-heavy project with a student with minimal coding experience is a testament

to his longanimity. While my PhD has been comparatively devoid of serious external

issues – I have suffered only one broken bone which, as I understand it, is getting off

pretty lightly – Ian’s understanding, support and humour in these matters have been in-

strumental in overcoming them. I would also like to thank my second supervisor, Ivan

Baldry, as well as Chris Collins, Simeon Bird, and Jope Schaye for their unwaver-

ing willingness to discuss any aspect of this work, however minor, and for providing

the immense benefits of their knowledge and experience in innumerable aspects of

this work. Furthermore, I would like to thank (in alphabetical order) Rob Crain, Jon

Loveday, Alex Meade, Peder Norberg, and John Peacock for their extremely useful

comments, suggestions and discussions. I owe a special debt of gratitude to Aman-

dine le Brun for her contributions to the simulations, without which much of this work

would have been impossible.

Additionally, I would like to thank Harriet Brown, Claire Burke, Danielle Coogan,

Martin Coulby, Jonathan Davies, Kate Furnell, Stacey Habergham-Mawson, David

Hyder, Phil James, Helen Jermak, Alison Keen, Gavin Lamb, Marie Martig, Rhana

Nicholson, Andrew Newsam, Simon Prentice and Sam Walton, who have, in a thou-

sand tiny or not so tiny ways, kept me from the brink of insanity, and also Joseph

Fernandez who has done nothing but push me towards it.

vii



Special mention must me made of Anna Hodgkinson, Danielle Coogan, Dan Harman,

and Stuart Macaulay for their miraculous ability to somehow make things actually

work.

Finally, I would like to extend my thanks to my family, friends and, in particular, Char-

lotte Donohoe-Keyes for their understanding and support during the extended periods

of stress and antisociality that this work has engendered, and for sharing my view that

it was all worth it in the end.

This work used the DiRAC Data Centric system at Durham University, operated by

the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facil-

ity (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure

capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, and STFC DiRAC

Operations grant ST/K003267/1 and Durham University. DiRAC is part of the Na-

tional E-Infrastructure. This research has made use of NASAs Astrophysics Data

System Bibliographic Services. Funding for this PhD was provided by a STFC PhD

studentship.

BENJAMIN MUMMERY OCTOBER 8, 2018

viii



“I’m being quoted to introduce something, but I have no idea what it is and I certainly

don’t endorse it.”

- Randall Munroe, XKCD

“The story so far:

In the beginning the Universe was created.

This has made a lot of people very angry and been widely regarded as a bad move.”

- Douglas Adams, The Restaurant at the End of the Universe

“So, in the face of overwhelming odds, I’m left with only one option:

Im going to have to science the shit out of this.”

- Andy Weir, The Martian

ix



Contents

Declaration ii

Abstract iii

Publications vi

Acknowledgements vii

Contents x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 General Introduction 1

1.1 Galaxy Groups and Clusters . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Current Cosmological Model . . . . . . . . . . . . . . . . . . . 3

1.3 The Role of Galaxy Groups and Clusters as Cosmological Probes . . . 9

1.4 Baryonic Physics and Cluster Formation . . . . . . . . . . . . . . . . 11

1.4.1 Self-Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 The Overcooling Problem . . . . . . . . . . . . . . . . . . . 12

x



1.4.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Observational History . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 The Cosmic Neutrino Background . . . . . . . . . . . . . . . 17

1.5.3 Neutrino Damping Length . . . . . . . . . . . . . . . . . . . 20

1.5.4 Mass Constraints . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.5 Implications for Structure Formation . . . . . . . . . . . . . . 25

1.6 Cosmological Hydrodynamical Simulations . . . . . . . . . . . . . . 25

1.6.1 Implications of Neutrino Dark Matter . . . . . . . . . . . . . 27

1.6.2 OWLS, and its descendants . . . . . . . . . . . . . . . . . . 28

1.7 The Internal Structure of Haloes . . . . . . . . . . . . . . . . . . . . 29

1.7.1 GGC density profiles . . . . . . . . . . . . . . . . . . . . . . 30

1.7.2 The Mass-Concentration Relation . . . . . . . . . . . . . . . 30

1.8 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 The Separate and Combined Effects of Baryon Physics and Neutrino Free-

streaming on Large-Scale Structure 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 cosmo-OWLS . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 BAHAMAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Halo Abundances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Halo Mass Functions . . . . . . . . . . . . . . . . . . . . . . 46

xi



2.3.2 Cluster Counts . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Halo structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.1 Total Mass Density Profiles . . . . . . . . . . . . . . . . . . 59

2.4.2 Mass−Concentration Relation . . . . . . . . . . . . . . . . . 67

2.5 Halo Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6 Matter Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 81

3 The Clustering of Galaxy Groups and Clusters: Comparing the BAHAMAS

Simulations with the GAMA survey 84

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.1 BAHAMAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.2 GAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Galaxy Selection, Group Finding, and Clustering . . . . . . . . . . . 91

3.3.1 Galaxy Selection . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.2 Group Finding . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.1 Initial WMAP-9 Comparison Between BAHAMAS and GAMA. 99

3.4.2 Where has the Sensitivity to Neutrino Mass gone? . . . . . . 104

3.4.3 Planck Results . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.5 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . 125

xii



4 Summary and Future Work 128

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A Fits to mass-concentration relations 135

B Overview of Halo samples 137

C Planck cosmology 144

Bibliography 154

xiii



List of Tables

1.1 Neutrino free-streaming lengths corresponding to BAHAMAS runs . . 21

2.1 Included subgrid physics and model parameter values for the cosmo-OWLS

and BAHAMAS runs used here. . . . . . . . . . . . . . . . . . . . . 38

2.2 Ranges of total numbers of haloes in the various mass bins used for the

diagnostics in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Overview of BAHAMAS simulation runs used in this work. . . . . . . 85

3.2 Overview of the galaxy samples drawn from each data set after cuts in

redshift and mass have been applied. . . . . . . . . . . . . . . . . . 92

3.3 The results of χ2 tests of the simulated BAHAMAS data against GAMA

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4 The results of χ2 tests comparing the most extreme BAHAMAS runs. . 122

A.1 Best-fit values for fits to the Mass-Concentration relation. . . . . . . 136

B.1 Overview of the galaxy group samples drawn from each data set. . . 138

B.2 Overview of the massive halo samples drawn from the BAHAMAS light-

cones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.3 Overview of the massive halo samples drawn from the BAHAMAS light-

cones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xiv



List of Figures

2.1 Halo Mass Functions for the different baryon physics runs (in the ab-

sence of neutrino physics) from cosmo-OWLS and the different colli-

sionless massive neutrino runs from BAHAMAS. . . . . . . . . . . . 47

2.2 The fractional change in the halo mass, relative to the DM-only, mass-

less neutrino case, arising from the inclusion of baryonic feedback (left

panel) and neutrino free-streaming (right panel) at z = 0. . . . . . . . 48

2.3 Comparison of the halo mass functions arising when simultaneously

simulating baryonic feedback and neutrino free-streaming, and those

calculated by multiplying the separate effects of baryonic feedback in

the absence of neutrinos and the effects of neutrino free-streaming in

the absence of baryons. . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Tests of the separability of the effects of neutrino free-streaming and

baryon physics on halo mass. . . . . . . . . . . . . . . . . . . . . . 52

2.5 Evolution of the comoving halo space densities above different mass

thresholds for the different baryon physics runs in the absence of neu-

trino physics using cosmo-OWL and in the absence of baryon physics

using the different collisionless massive neutrino runs from BAHAMAS. 56

xv



2.6 Comparison of the cluster counts above 1012M� arising when simu-

lating baryonic feedback and neutrino free-streaming simultaneously

and those calculated by multiplying the separate effects of baryonic

feedback in the absence of neutrinos, and the effects of neutrino free-

streaming in the absence of baryonic physics. . . . . . . . . . . . . . 57

2.7 Median radial total mass density profiles in 0.5 dex self-consistent halo

mass bins for difference baryon physics models in the absence of neu-

trino physics at fixed cosmology. . . . . . . . . . . . . . . . . . . . 60

2.8 Median radial total mass density profiles in 0.5 dex self-consistent

halo mass bins for different neutrino physics models in the absence

of baryon physics at fixed cosmology. . . . . . . . . . . . . . . . . . 61

2.9 Median radial total mass density profiles in 0.5 dex bins of the mass of

the “matched” DM-only, massless neutrino halo for different baryon

physics models in the absence of neutrino physics at fixed cosmology. 62

2.10 Median radial total mass density profiles in 0.5 dex bins of the mass of

the “matched” DM-only, massless neutrino halo for different neutrino

physics models in the absence of baryonic physics at fixed cosmology. 63

2.11 Comparison of the median radial total mass density profiles of haloes

arising when simulating baryonic feedback and neutrino free-streaming

simultaneously and with that calculated by multiplying their separate

effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.12 Best fit total mass c(M) relations for different baryon physics models

in the absence of neutrino physics in the WMAP-7 cosmology and for

different
∑
Mν values in the absence of baryonic physics in WMAP-9

cosmology at z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xvi



2.13 Comparison of the mass−concentration relations arising when simu-

lating baryonic feedback and neutrino free-streaming simultaneously

and those calculated by multiplying the separate effects of baryonic

feedback in the absence of neutrinos, and the effects of neutrino free-

streaming in the absence of baryonic physics. . . . . . . . . . . . . . 69

2.14 Real-space 2-point halo autocorrelation functions for the different bary-

onic physics runs in the absence of neutrino physics from cosmo-

OWLS and the different collisionless massive neutrino runs from BA-

HAMAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.15 Real-space 2-point halo autocorrelation functions for the different bary-

onic physics models in the absence of neutrino physics from cosmo-

OWLS and the different collisionless massive neutrino runs from BA-

HAMAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.16 Comparison of the real space 2-point halo autocorrelation functions (ξ)

arising when simulating baryonic feedback and neutrino free-streaming

simultaneously and those calculated by multiplying the separate effects

of baryonic feedback in the absence of neutrinos and the effects of neu-

trino free-streaming in the absence of baryon physics. . . . . . . . . 75

2.17 Matter power spectra for different baryon physics models in the ab-

sence of neutrino physics in the WMAP-7 cosmology and for differ-

ent
∑
Mν values in the absence of baryonic physics in the WMAP-9

cosmology at z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.18 Comparison of the matter power spectra arising when simulating bary-

onic feedback and neutrino free-streaming simultaneously and those

calculated by multiplying the separate effects of baryonic feedback in

the absence of neutrinos and the effects of neutrino free-streaming in

the absence of baryon physics. . . . . . . . . . . . . . . . . . . . . . 80

xvii



3.1 Redshift-space 2-point GGC autocorrelation as a function of the inter-

group separation for GAMA and BAHAMAS in equally populated bins

of integrated stellar mass. . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Redshift-space 2-point GGC autocorrelation as a function of the inter-

group separation for GAMA and BAHAMAS in equally populated bins

of multiplicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Redshift-space 2-point autocorrelation functions for BAHAMAS GGCs

in equally populated bins of halo mass M200,crit. . . . . . . . . . . . 106

3.4 Observable - halo mass relations for the various BAHAMAS runs in bins

of halo mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5 Observable - halo mass relations for the various BAHAMAS runs in bins

of the observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 Redshift-space 2-point autocorrelation functions for BAHAMAS haloes

in equally populated bins of M∗halo, the ’true’ stellar mass contained

within M200,crit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.7 Redshift-space 2-point GGC autocorrelation as a function of the inter-

group separation for GAMA and BAHAMAS in equally populated bins

of integrated stellar mass excluding the effects of peculiar motions . . 113

3.8 The multiplicity and stellar mass functions of GAMA and BAHAMAS

GGC samples identified using a FoF algorithm with a fixed value for

the linking length. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.9 The multiplicity and stellar mass functions of GAMA and BAHAMAS

GGC samples identified using a FoF algorithm with a mass-dependent

value for the linking length. . . . . . . . . . . . . . . . . . . . . . . 117

xviii



3.10 The redshift-space 2-point GGC autocorrelation as a function of the

inter-group separation for GAMA and BAHAMAS in equally populated

bins of integrated stellar mass for groups identified using a FoF algo-

rithm with a mass-dependent linking length. . . . . . . . . . . . . . 119

3.11 The redshift-space 2-point GGC autocorrelation as a function of the

inter-group separation for GAMA and BAHAMAS in equally populated

bins of integrated stellar mass for groups identified using a FoF algo-

rithm with a mass-dependent linking length and excluding the effects

of peculiar motions. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.12 Redshift-space 2-point GGC autocorrelation as a function of the inter-

group separation for GAMA and BAHAMAS in equally populated bins

of multiplicity for groups identified using a mass-dependent linking

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.13 Direct comparison between the clustering of haloes in Planck (dashed

curves) and WMAP-9 (solid curves) cosmologies. . . . . . . . . . . 123

C.1 The redshift-space 2-point galaxy group autocorrelation as a function

of the inter-group separation for GAMA and BAHAMAS in equally pop-

ulated bins of integrated stellar mass for a Planck cosmology. . . . . 145

C.2 The redshift-space 2-point galaxy group autocorrelation as a function

of the inter-group separation for GAMA and BAHAMAS in equally pop-

ulated bins of multiplicity for a Planck cosmology. . . . . . . . . . . 146

C.3 Redshift-space 2-point autocorrelation functions for BAHAMAS galaxy

groups in equally populated bins of halo mass M200,crit in the Planck

cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.4 Redshift-space 2-point autocorrelation functions for BAHAMAS haloes

in equally populated bins of M∗halo, the ’true’ stellar mass contained

within M200,crit in the Planck cosmology. . . . . . . . . . . . . . . . 148

xix



C.5 Redshift-space 2-point GGC autocorrelation as a function of the inter-

group separation for GAMA and BAHAMAS in equally populated bins

of integrated stellar mass excluding the effects of peculiar motions . . 149

C.6 The multiplicity and stellar mass functions of GAMA and BAHAMAS

galaxy group samples identified using a FoF algorithm with a fixed

value for the linking length in the context of a Planck cosmology. . . 150

C.7 The multiplicity and stellar mass functions of GAMA and BAHAMAS

galaxy group samples identified using a FoF algorithm with a mass-

dependent value for the linking length in the context of a Planck cos-

mology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.8 The redshift-space 2-point galaxy group autocorrelation as a function

of the inter-group separation for GAMA and BAHAMAS in equally pop-

ulated bins of integrated stellar mass for a Planck cosmology. . . . . 152

C.9 Redshift-space 2-pint autocorrelation as a function of the inter-group

separation for GAMA and BAHAMAS GGCs identified using a FoF al-

gorithm with a mass-dependent linking length in equally populated

bins of integrated stellar mass. . . . . . . . . . . . . . . . . . . . . . 153

xx



Chapter 1

General Introduction

1.1 Galaxy Groups and Clusters

One of the cornerstones of modern cosmology is the existence of a hierarchy of grav-

itationally bound structures spanning a wide range of physical scales, from individual

galaxies to clusters containing thousands of galaxies. Our knowledge of these larger

groupings has its roots in the late 18th century with the work of Messier (1784) and

Herschel (1785), who noted the presence of overdensities of ‘nebulae’ in, respectively,

the constellations of Virgo and Coma Berenices. The significance of this did not be-

come clear until several decades later, when Slipher (1914) and Hubble (1926) estab-

lished that the ‘nebulae’ were in fact galaxies, and these overdensities are now known

as the Coma and Virgo clusters of galaxies.

Study into these extragalactic structures rapidly bore strange fruit when the work of

Zwicky (1933) (translated into English by Andernach and Zwicky (2017)) provided a

measurement of the mass of the Coma cluster. Zwicky found that the member galaxies

had velocities1 in excess of the expected escape velocity, i.e. that required to escape the

gravity well created by the mass inferred from the optical luminosity of the member

galaxies. The apparent presence of a large but invisible mass component presented the

1Relative to the cluster centre of mass.
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1.1. Galaxy Groups and Clusters 2

first evidence for the existence of dark matter. The importance of clusters, and their less

massive cousins groups, to our current understanding of cosmology is indisputable.

Our modern understanding of galaxy clusters can be summarised as follows: they

are large collections of (typically between ∼ 100 and ∼ 1000) galaxies that are i)

gravitationally bound and ii) occupy a region of order a few Mpc across (Kravtsov and

Borgani, 2012). The difference between group and cluster is largely semantic and lacks

a physically motivated definition. For this work, I therefore adopt the acronym GGCs

(galaxy groups and clusters) as a general term, relying instead on specified ranges in

mass or other properties of the objects to specify their nature.

In addition to their historical significance, GGCs occupy a position of significance

within the cosmological hierarchy as a result of the current model of hierarchical for-

mation. Under this scheme, the formation of structure begins with the gravitational col-

lapse of small objects which then merge to form ever more massive structures. GGCs,

as the most massive collapsed structures in the Universe, consequently are the most

recent to have formed. This makes GGCs invaluable tests of both cosmology and as-

trophysics. Their abundances and spatial distribution bears the indelible mark of the

background cosmology and initial conditions – a dependence that grows as one exam-

ines more and more massive objects, since their formation is still ongoing and even

a small change in the rate of these processes will have a significant impact on their

current population. At the same time, the deep potential wells within which they form

make GGCs nearly closed boxes, positioning them as excellent laboratories within

which to study the processes governing galaxy formation and the impact thereof on the

intracluster medium (ICM), and vice versa.

Due almost entirely to the way in which the category has been defined, GGCs have a

present-day mass of between 1013 and 1015 M�, of which ∼ 80% is made up of dark

matter. Of the remaining mass,∼ 75% (∼ 15% of the total cluster mass) is contributed

by the ICM, a hot gaseous plasma distributed between the member galaxies, and ∼

10 − 15% (∼ 2 − 3% of the total cluster mass) by stars primarily located within the

member galaxies. These estimates are made possible by the fact that clusters are the

only structures for which all of these forms of matter may be directly observed (the hot
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plasma around typical individual galaxies like the Milky Way is generally too faint to

be seen).

1.2 The Current Cosmological Model

While our understanding of GGCs was developing as discussed above, our under-

standing of cosmology was undergoing a parallel, and related, evolution. The modern

paradigm began in earnest in 1915 with the development of General Relativity (Ein-

stein, 1915). This led to the proposal by Lemaı̂tre in 1927 (translated into English in

Lemaı̂tre 1931) on theoretical grounds of both the expansion of the Universe, and the

Big Bang origin thereof (in his words; “The Cosmic Egg exploding at the moment

of the creation.” (Sidharth and Joseph, 2010)); and to the derivation by Friedmann in

1922 of the isotropic and homogenious class of cosmological models. These would go

on to form the basis for the currently cosmological standard model (see, for example,

Lachieze-Rey 1995; Peacock 1998; Bartelmann 2010).

The discovery of dark matter by Zwicky (1933), as mentioned above, provided the

first evidence for an invisible but dominant mass component existing within the Uni-

verse. Further evidence followed, with the measurement of the flat rotation curve of

the Andromeda galaxy, in contravention to the expected dynamics given a mass distri-

bution following the observed luminosity distribution (van de Hulst et al. 1957; and its

companion paper Schmidt 1957), establishing the importance of DM on the scale of

individual galaxies. The exact nature of this unseen mass component continues to be

the subject of ongoing research, however it is well established from inferences drawn

from Big Bang Nucleosynthesis that the majority of this matter must be non-baryonic

(Turner, 1999).

The accidental discovery of the Cosmic Microwave Background (hereafter CMB) by

Penzias and Wilson (1965) offered a hitherto unimagined window into the early uni-

verse. Analyses of this offered firm proof that the Universe began with a hot big bang

(Dicke et al., 1965), the initial energy of which provided the impetus for the ongoing
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expansion of the Universe as postulated by Friedmann (1922) and measured by Hubble

(1926), and generally parametrised by Hubble’s law.2

This model of the Universe came with one obvious consequence: after the initial kick

of the big bang, the only force acting upon the expanding mass at cosmological scales

would be gravity acting in opposition to the expansion. The expansion rate must there-

fore be decreasing with time, and the eventual fate of the Universe would depend on

whether the total energy density was such that the Universe would continue expanding,

albeit at an ever diminishing rate; eventually come to a stop; or ultimately reverse lead-

ing to a period of contraction3. As more precise observations became available, how-

ever, they seemed to contradict this expectation. In 1998, independent albeit parallel

work by the teams of Riess et al. (1998) and Perlmutter et al. (1999) using supernovae

as standard candles demonstrated that the rate of expansion was, in fact, accelerating.

This revelation resulted in yet another paradigm shift in cosmology: the introduction

of Dark Energy (hereafter DE). This model explains the accelerating expansion by

adapting the cosmological constant Λ, an element erroneously introduced by Einstein

(1917), as a description of an additional energy component that acts repulsively. In

order to drive the acceleration of space in the required fashion, the energy density

of DE cannot behave like matter (ρmatter ∝ a−3) or radiation (ρrad ∝ a−4), which

both dilute with increasing scale factor, but must instead remain constant as the scale

factor increases (ρDE ∝ a0). Independent evidence for the expanding universe, and

the first results constraining Λ as non-zero, were achieved by jointly analysing CMB

anisotropies and the clustering of galaxies (Efstathiou et al., 2002), firmly establishing

2In brief, the line-of-sight recession velocity v of an object as a function of the line-of-sight distance
d due to the expansion of space is given by

v = Hd

where H is the Hubble constant (although as the rate of the expansion of space is not static with time,
the moniker ’constant’ is erroneous). Due to the observational uncertainty of H it is common to define
the reduced Hubble constant h as

h =
H

100 km s−1 Mpc−1
. (1.1)

to allow simple comparison between analyses that would otherwise use different values (Croton, 2013).
3These eventualities are known colloquially as the Big Rip, Big Freeze and Big Crunch scenarios

respectively.
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DE as an essential part of the cosmological model. This was the final piece of what is

now known as the ΛCDM (a contraction of Λ + cold dark matter) cosmological model,

which has since become the current favoured cosmological model.

The ΛCDM model describes a Universe that is:

• Spatially flat

• Expanding at an accelerating rate.

• Went through primordial nucleosynthesis and the decoupling of matter and radi-

ation that resulted in the CMB.

• Underwent an earlier, much more rapid period of expansion known as infla-

tion that resulted in quantum density fluctuations being blown up to macro scale

perturbations that would go on to seed the overdensities that, by gravitational

collapse, would form the presently observed large-scale structures

• Is made up of baryons, dark matter, and dark energy in the following proportions:

∼ 5% baryonic matter; ∼ 20% dark matter; and ∼ 75% dark energy.

Despite its agreement with an ever increasing set of ever more precise cosmologi-

cal measurements, this model continues to raise profound questions, not least among

which are the origins of expansion itself and the true nature of dark matter and energy.

Mathematically, any expression of the Universe must be compatible with the field

equations of General Relativity:

Rµν −
1

2
gµνR ≡ Gµν = 8πGTµν − Λgµν , (1.2)

where Rµν is the Ricci curvature tensor, gµν is the metric tensor, R is the scalar cur-

vature, Gµν is the Einstein tensor, G is Newton’s gravitational constent, and Tµν is the

stress-energy tensor (Einstein, 1915).

The framework of general relativity can be used to describe an expanding universe us-

ing the Friedmann, Lemaı̂tre, Robertson, Walker (hereafter FLRW) metric. We define
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the following parameters:

(r, θ, φ) are the comoving coordinates. This is the coordinate system that ‘factors

out’ the expansion of space, meaning that the coordinate system expands at the

same rate as the space it describes. The relative comoving distance between

two objects is constant if the relative motion of the two is due exclusively to the

expansion of the space between them.

a(t) is the growth or scale factor, which expresses the size evolution of the background

universe. This is closely related to the comoving coordinates as the scale factor

expresses the ratio between the physical and comoving coordinates.

k is the curvature of the Universe, defined such that k > 0 corresponds to a positive

curvature (resulting in a closed, spatially finite universe); k = 0 corresponds to

no curvature (resulting in a spatially flat universe); and k < 1 corresponds to a

negative curvature (resulting in an open Universe).

z is the redshift, defined as the fractional Doppler shift of light emitted by an object

due to its line-of-sight velocity:

1 + z ≡ λobserved
λemitted

=
a(t0)

a(t1)
(1.3)

where λobserved and λemitted are the observed and emitted wavelengths respec-

tively, and a(t0) and a(t1) are the scale factors at t0 (the time of emission) and t1

(the time of observation) respectively. The first equality corresponds to the ob-

servational definition of redshift, the second to the cosmological definition. Note

that although any line-of-sight velocity contributes to the Doppler shift, this def-

inition of redshift refers exclusively not to the intrinsic motion of the source

through space, but rather to the expansion of the space between the source and

the observer.
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According to Kolb and Turner (1990), the FLRW metric can then be expresses as:

ds2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

)
= gµνdx

µdxν , (1.4)

where gµν is the metric tensor.

Combining the FLRW metric (Equation. 1.4) with Einstein’s field equations (Equation.

1.2), the Friedmann energy and force equations, respectively, are obtained:

(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ+

Λ

3
(1.5)

and

2
ä

a
+

(
ȧ

a

)2

+
kc2

a2
= −8πGp, (1.6)

where Λ is the aforementioned cosmological constant and can be written as a pressure

or a density of the vacuum:

Λ ≡ 8πGρΛc
2 = −8πGpΛ. (1.7)

The Hubble parameter can be expressed as the ratio of the rate of change of the ex-

pansion factor to its present value, H ≡ ȧ
a
. Doing so allows the Friedmann equations

(Equations 1.5 and 1.6) to be written as:

H2 =
8πG

3
ρ− kc2

a2
+

Λ

3
(1.8)

and

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
. (1.9)

The present-day matter density that would result in a spatially flat (k = 0) universe

is referred to as the critical density, ρcrit = ρ(z = 0, k = 0) ≡ 3H2
0

3πG
. This quantity

is commonly used to normalise the other cosmic densities, defining Ωi(z) ≡ ρi(z)
ρcrit(z)

.
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These are the most commonly used forms of the three densities that serve as half of the

six cosmological parameters that describe the flat ΛCDM model. The full list is:

Ωm the total matter content (i.e the combined contribution of baryonic matter and DM)

Ωb the total baryonic content.

ΩΛ the total contribution of DE.

h the reduced Hubble constant, as defined in equation 1.1

σ8 the amplitude of the power spectrum of density fluctuations at the scale of 8 h−1 Mpc.

ns the spectral index of the power spectrum of the density fluctuations.

The parameters σ8 and ns are defined by the equality:

σ2
8 =

1

2π

∫
T (k)P (k)W (kR)k2 · dk, (1.10)

where k is the comoving wavenumber; P (k) is the primordial matter power spectrum

expressed as a function of k and also satisfies P (k) ∝ kns; T (k) is the transfer function

which relates the present day ‘processed’ power spectrum to the primordial power

spectrum 4, and w is the Fourier transform of a top-hat window function of real-space

radius R = 8 h−1 Mpc.

While this approach treats DM as a single ‘cold’ species (CDM), i.e. a monolithic

population of particles with velocities well below c, we know that some small fraction

of the mass considered as such is contributed by neutrinos (see Section 1.5 below). Due
4We do not observe the initial power-spectrum except on the largest physical scales. The trans-

fer function T (k) describes how the shape of the initial power-spectrum ∆k(z) in the dark matter is
modified by different physical processes through the relation

∆k(z = 0) = T (k)f(z)∆k(z) (1.11)

∆k(z = 0) is the power spectrum at the present epoch and f(z) ∝ a ∝ t2/3 is the linear growth
factor between the scale factor at redshift z and the present epoch in the matter dominated era. The
form of the transfer function is largely determined by the fact that there is a delay in the growth of the
perturbations between the time when they came through the horizon and began to grow again. In the
standard cold dark matter picture, this is associated with the fact that before the epoch of equality of
matter and radiation, the oscillations in the photon-baryon plasma were dynamically more important
than those in the dark matter.



1.3. The Role of Galaxy Groups and Clusters as Cosmological Probes 9

to their small mass and high initial energy, neutrinos are relativistic at decoupling and

remain so to relatively late times, and therefore act as a small ‘hot’ dark matter (HDM)

component. Part of the aim of this thesis is to explore the effects of such ‘mixed’ DM

models on large-scale structure formation.

For the purposes of describing the evolution of cosmological properties, particularly

distances, it is convenient to follow Peebles (1993) and define the function:

E(z) =
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ, (1.12)

commonly referred to as the Peebles function, where Ωk is the “spatial curvature den-

sity” defined by:

ΩM + ΩΛ + Ωk = 1. (1.13)

The Peebles function is proportional to ȧ(t)/a(t) and consequently expresses the ra-

tio between the present-day Hubble constant H0 and that measured by an observer at

redshift z, such that:

H(z) = H0E(z). (1.14)

1.3 The Role of Galaxy Groups and Clusters as Cos-

mological Probes

As previously mentioned, the privileged position of GGCs in the hierarchy of cosmo-

logical structure makes them invaluable probes of both cosmology and astrophysics

(for recent reviews, see Voit 2005; Borgani and Kravtsov 2011; Allen et al. 2011;

Kravtsov and Borgani 2012; and Weinberg et al. 2013).

For example, as the largest, gravitationally bound, virialized objects in existence, the

evolution of the GGC halo mass function dn/dM is a key cosmological probe. At a

fixed mass and redshift, the abundance of haloes is strongly dependent on the growth

rate of structure as their ongoing development means that a small advance or delay in

their formation can drastically alter the mass function. Consequently, dn/dM inherits
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the same sensitivities to cosmological parameters as the structure growth rate, most

directly σ8 and ΩM .

Similar dependences are found in other GGC population properties, both of the popula-

tion as a whole and of individual clusters. Of particular interest in this thesis, primarily

in Chapter 3 is the spatial clustering of GGCs. Estimators of the clustering of matter

such as the two-point autocorrelation function, which measures the excess probability

over that of a random distribution of observing a pair of objects separated by a charac-

teristic distance as a function of that distance, can be related to the underlying matter

power spectrum, assuming that sufficiently precise constraints can be placed on the

observable-mass relationships employed.

Making use of these dependences is not trivial, however. Doing so requires that we

i) infer halo masses accurately and reliably from the observed GGC properties such

as X-ray luminosity or temperature, Sunyaev-Zel’dovich effect intensity, or weak

lensing shear,

ii) account for scatter and covariance in whichever mass-observable and observable-

observable relationships are being used in the cosmological modelling

iii) possess a detailed knowledge of the survey selection function, and

iv) have a robust theoretical prediction for whatever cosmological test is being un-

dertaken.

It is therefore vital that we have accurate, highly detailed theoretical models in or-

der to make any cosmological inference from GGC observations. Doing so, however,

is not trivial. The aforementioned sensitivity of GGC properties to both cosmology

and astrophysics (1.1) that makes them such useful tests also means that accurately

modelling their properties requires a detailed understanding of a wide variety of phys-

ical processes operating at a wide range of scales. Of particular interest are the roles

played by the baryonic content of GGC haloes, and by the neutrino HDM component

of the underlying cosmology. In the following sections (1.4 and 1.5), I will provide

a brief theoretical background to the impact of these factors on GGC properties. The

measurement of GGC properties is discussed in more detail in Chapter 2.
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1.4 Baryonic Physics and Cluster Formation

1.4.1 Self-Similarity

Early simple models of formation assumed clusters to be virialized , and the properties

of clusters, and the correlations between them, to be dependent solely on gravity. The

scale-independence of gravity naturally leads to an expectation that clusters should

be self-similar, i.e. all clusters should exhibit the same relations and properties, with

those of more massive clusters scaled by a simple factor dependent only on the mass

ratio (White and Rees, 1978; Kaiser, 1986; Voit, 2005; Borgani and Kravtsov, 2011;

Kravtsov and Borgani, 2012).

As GGCs do not have sharply delineated edges, it is customary to define masses and

radii in terms of the density contrast of their underlying mass overdensity. We define a

radius r∆ as the radius from the halo centre of mass within which the density is ∆ times

greater then either the universal mean density or the critical density (ρmean and ρcrit

respectively). This naturally leads to a mass definition M∆ being the mass contained

within r∆.

Under the assumption of self similarity, it is relatively easy to predict the evolution of a

given mass-observable relation for clusters. The dependence of the critical density on

the expansion rate means that its evolution can be expressed with the Peebles function

as described in Section 1.2:

ρcrit(z) = E(z)2ρcrit,0, (1.15)

(where ρcrit,0 ≡ ρcrit(z = 0) is the present-day critical density). Since our definitions

for mass and size can explicitly depend on ρcrit, including the redshift evolution in our

modelled observables is trivial. For example, since

M∆ ∝ ρcrit(z)r3
∆ (1.16)
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then the cluster size r∆ by definition must scale with mass as

r∆ ∝M
1/3
∆ E(z)−2/3, (1.17)

meaning that the mass density profiles ρ(r) will be identical for all haloes, independent

of mass and redshift, when the radius is scaled by M1/3
∆ E(z)−2/3.

1.4.2 The Overcooling Problem

In the early 1980s and 90s, the advent of the Einstein Observatory, EXOSAT and

ROSAT provided the first X-ray observations of large large numbers of galaxy clus-

ters. These data quickly showed the self-similar model to be inconsistent with a num-

ber of observational parameters, such as the observed X-ray luminosity evolution (e.g.

Evrard and Henry 1991; Kaiser 1991).

This indicated that the underlying assumption of the self-similar model, that the only

relevant processes are gravitational, was incorrect. In particular, low-mass clusters are

observed to exhibit lower densities than more massive clusters, indicating a depen-

dence of the mass density profile on the system total mass.

Similar solutions were presented by Kaiser (1991) and Evrard and Henry (1991) in the

form of an unspecified process that imposes a minimum gas entropy. Physically, this

process is modelled as heating the gas prior to it falling into the collapsing halo. This

is referred to as the pre-heating model.

Another possibility was offered by radiative cooling of the baryonic content (see, for

example, Bryan 2000; Dav et al. 2002; Voit and Ponman 2003). Although it seems

obvious that this should be a factor given that GGCs are known to contain galaxies, its

importance was bolstered by the realisation that gas in the centres of galaxies is able

to cool rapidly by means of line emission and thermal bremsstrahlung (e.g. White and

Rees 1978; White and Frenk 1991).

In the late 1990s, comparisons of models incorporating radiative cooling and star for-
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mation (hereafter SF) to increasingly precise observational constraints revealed that

the predicted galaxies and clusters exhibited stellar fractions in excess of the obser-

vational upper limits, as well as unrealistic ICM properties (e.g. Balogh et al. 2001;

McCarthy et al. 2004). This became known as the overcooling problem, making it

clear that cooling alone was not a valid solution to the self-similarity breaking. Ac-

curate modelling of galaxy formation therefore requires the inclusion of some form of

feedback process(es).

1.4.3 Feedback

Star formation itself offers an obvious source of feedback in the form of supernovae

(SNe). These dramatic expulsions of energy can drive interstellar winds and heat the

ISM, delaying further star formation (Larson, 1974; White and Frenk, 1991; Ponman

et al., 1999; Voit, 2005).While a necessary inclusion, SN feedback fails to fully resolve

the overcooling problem at group and cluster scales (Borgani et al., 2004; Kay et al.,

2004; Borgani et al., 2005, 2006; Davé et al., 2008). Additional form(s) of feedback

are therefore necessitated.

It is now commonly accepted that the centres of galaxies are host to supermassive black

holes (SMBHs), giving rise to active galactic nuclei (AGN) (King, 2003). Mounting

observational evidence over the past two decades has supported the theory that the

growth of the SMBHs is closely tied to the growth of their host galaxies, and has gone

so far as demonstrating close correlations between AGN feedback and the properties

of massive galaxies, groups, and clusters (Benson et al., 2003; Bower et al., 2006; De

Lucia and Blaizot, 2007; McNamara and Nulsen, 2007; McCarthy et al., 2010, 2011;

Fabian, 2012). As an example, where the pre-heating model would dictate that non-

gravitational processes should heat low-entropy gas in the high-redshift progenitors of

groups, McCarthy et al. (2011) found that AGN feedback has the effect of ejecting

such gas from the progenitor.

In addition, baryonic physics has importance well beyond its effect on the properties of

GGCs. The work of van Daalen et al., for example, has demonstrated that the physics
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of galaxy formation has a significant effect on the clustering of matter, both in terms

of the matter power spectrum (van Daalen et al., 2011) and the 2-point autocorrelation

function of galaxies and subhaloes (van Daalen et al., 2014). These results indicate that

constraints drawn from cosmological data are dependent on the baryon physics model

even where those data are not directly related to the baryonic content of the Universe.

1.5 Neutrinos

As mentioned in Section 1.2, the presence of neutrinos contributes a small HDM com-

ponent to the cosmology. This modifies the processes of structure formation (see Sec-

tion 1.5.5 below), necessitating the inclusion of neutrino physics in LSS models. In

this section, I provide a brief overview of our current observational and theoretical un-

derstanding of the Universe’s neutrino content, before discussing in general terms the

mechanics of its effect on the GGC population.

1.5.1 Observational History

The existence of the neutrino (specifically the electron neutrino νe) was first postulated

in 1930 by Wolfgang Pauli5 (Pauli, 1994) to explain the apparent breaking of energy,

momentum and angular momentum conservation in beta decay. Over the next two and

a half decades, indirect observational evidence for the neutrino continued to mount,

culminating with the first direct detection by Cowan et al. (1956). Detections of the

muon neutrino (νµ) and tau neutrino (ντ ) followed in 1962 and 2000 (Danby et al.,

1962; DONUT Collaboration et al., 2001), although the existence of the latter had

been strongly indicated since the discovery of the Tau particle by Perl et al. (1975).

Detections of neutrinos have primarily focussed on solar neutrinos produced as elec-

tron neutrinos via the proton-proton chain reaction, as these are vastly more abundant

on earth than those from any other sources. Early detections of these, specifically the

5Although the neutrino name was not attached to the particle until 1932.
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Homestake Experiment in the late 1960s, found a flux of electron neutrinos between

one half and one third of the expected value (Cleveland et al., 1998). This discrepancy,

dubbed the ‘solar neutrino problem’, posed a significant challenge for neutrino physics

for the next 4 decades. Although multiple explanations were proposed, data from the

Super-Kamiokande (Fukuda et al., 1998) experiment provided a positive detection of

neutrino oscillations.

The ability of neutrinos to oscillate between flavours was first proposed by Bruno Pon-

tecorvo in 1957 (Cohen et al., 2009). In brief, this posits that the three active neutrino

flavours are in fact each a different superposition of three neutrino states of different

masses. This emerges as a natural outcome of gauge theories with massive neutrinos,

where the neutrino flavour ∆ ∈ {e, µ, τ} and mass eigenbasis i ∈ {1, 2, 3} can be

written as:

|ν∆〉 =
∑
i

U∗∆i |νi〉

|νi〉 =
∑

∆

U∆i |ν∆〉 (1.18)

where X∗ is the complex conjugate of X , and U∆i is the Pontecorve-Maki-Nakagawa-

Sakata (PMNS) matrix, an analogue for the CKM matrix that describes the mixing of

quarks.6

The propagation of the mass eigenstates |νi〉 can be described with a plane wave solu-

tion. In natural units with c = 1, ~ = 1 , such a solution can be expressed as a function

of the time t from the start of propagation as:

|νi(t)〉 = e−i(Ei−~pi·~x) |νi(t0)〉 (1.19)

6This applies explicitly for neutrinos. For antineutrinos, the complex conjugate should appear in the
second expression rather than the first, such that:

|ν∆〉 =
∑
i

U∆i |νi〉

|νi〉 =
∑
∆

U∗
∆i |ν∆〉
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where Ei is the energy of the relevant mass eigenstate i, ~pi is the three-dimensionsal

momentum, and ~x is the particle’s current position relative to its initial (t0) position.

As all currently observable neutrinos are ultra-relativistic, the approximations |~pi| =

pi � mi and t ≈ L, where L is the travel distance, may be applied. Doing so permits

the total energy E of a particle to be related to its mass eigenstate by the relation

Ei =
√
p2
i +m2

i ≈ E +
m2
i

2E
, (1.20)

and thus the wavefunction (Equation 1.19) may be written as:

|νi(L)〉 = e−im
2
i
L
2E |νi(L0)〉 . (1.21)

The dependence of the exponent on the mass mi means that eigenstates with differ-

ing masses will oscillate at different frequencies, heavier ones oscillating with greater

frequencies. As the measured flavour at a point in time t (or distance L) from the

beginning of the neutrino’s propagation is a combination of these eigenstates, then a

neutrino emitted with flavour a has a probability of being measured as having flavour

b, Pa→b, that varies as a function of t (L). Specifically:

Pa→b = | 〈νb(t)|νa〉 |2 =

∣∣∣∣∣∑
i

U∗aiUbie
−im2

i
L
2E

∣∣∣∣∣
2

. (1.22)

As this model explicitly depends upon different mass values mi for the three active

neutrino species, its confirmation as the solution of the solar neutrino problem firmly

establishes that at least two of these species are massive.

Oscillation experiments such as Super-Kamiokande are sensitive to the differences

of the squared neutrino masses. Observations of solar neutrinos constrain ∆m2
2,1 =

m2
2 − m2

1, while experiments observing atmospheric neutrinos, those produced by

cosmic rays colliding with nuclei in the upper atmosphere, are sensitive to ∆m2
3,1 =

m2
3 −m2

1. The current values of these constraints are approximately ∆m2
2,1 ≈ 2.5 ×

10−5eV2,∆m2
3,1 ≈ 7.5 × 10−5eV2 (Qian and Vogel, 2015). However, because these
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experiments are not sensitive to an absolute mass scale, the hierarchy of masses re-

mains unclear. Specifically, it is not yet known whether m3 is greater or lesser than

m1 and m2. The former case is referred to the ‘normal’ hierarchy, and the latter as the

‘inverted’ hierarchy.

While a fascinating problem and focus of ongoing research, the specific nature of the

neutrino mass hierarchy is not directly relevant to this work. What is of relevence, for

reasons discussed below (Section 1.5.5), is the sum of the masses of the three active

neutrino species Σmν =
∑

i νi = m1 + m2 + m3. The above values of ∆m2
2,1 and

∆m2
3,1 impose a strong lower limit on Σmν of 0.056(0.095) eV for a normal (inverted)

mass hierarchy.

1.5.2 The Cosmic Neutrino Background

The existence of neutrinos has interesting implications for cosmology. In particular,

the frequent weak interactions occurring at high temperatures in the early Universe

(such conditions being required by the standard hot big bang model) would produce

a large number of neutrinos. As the Universe cools, the weak interaction rate falls

below the expansion rate and the neutrinos decouple from the rest of the matter, form-

ing the cosmic neutrino background (CνB). This occurs at t ∼ 1s, meaning that the

CνB in principal carries information about the Universe pre-dating the surface of last

scattering, although direct detection remains a distant possibility.

Prior to decoupling, weak interactions are sufficiently rapid to maintain thermal equi-

librium at a single temperature between the neutrinos and the “thermal bath” of matter

and radiation. As spin 1/2 particles, the distribution of energies among neutrinos obeys

the relativistic Fermi-Dirac distribution. After decoupling, the neutrinos that now con-

stitute the CνB evolve largely independently of the physics of the rest of the universe,

retaining a close approximation of their equilibrium distribution:

f(ε) =
gs
h3
p

1

ε/kBTν + 1
(1.23)
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where ε = a(p2 +m2
ν)

1/2 is the comoving energy, Tν,0 is the neutrino temperature, gs is

the number of spin degrees of freedom, and hp and kB are the Planck and Boltzmann

constants respectively. (Ma, 2000).

Although neutrino decoupling does not occur instantaneously at a fixed Tν,dec as the

precise temperature is at which decoupling occurs is dependent on the neutrino flavour,

the instantaneous approximation is reasonably accurate. Under this assumption, since

the momenta and temperature are affected identically by the expansion of the Universe,

the CνB retains both the comoving number density and the momentum spectrum of the

coupled neutrinos, i.e.:

feq(p) =
[
exp

( p
T
− µν
T

)
+ 1
]−1

, (1.24)

where T is the temperature, and µν
T
≡ ξν , the ratio of the neutrino chemical potential

to the temperature, is the neutrino degeneracy parameter.

The value of Tν,dec can be approximated by equating the weak interaction rate

Γν = 〈σνnν〉 ∼ G2
FT

5, (1.25)

where GF is Fermi’s Constant, with the expansion rate

H =

√
8π

3M2
p

ρ ∼ T 2

Mp

, (1.26)

where Mp is the planck mass and ρ is the total energy density which is dominated by

radiation so that ρ ∝ T 4. Equating these gives:

T ∼
(
MpG

2
F

)−1/3 ∼ 1MeV (1.27)

putting the time of neutrino decoupling at approximately 1 second after the big bang.

Shortly after this point, pair production of electron-antielectron pairs becomes inef-

ficient, heating the photons by e± annihilations. If it is assumed that having already

decoupled the neutrinos are unaffected in this entropy transfer, the entropy of the elec-
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tromagnetic plasma is conserved. Consequently, the change in the photon temperature

before and after this point can be calculated. As their evolution will be identical with

the exception of this discontinuity, we can equate the photon temperature before this

point with the neutrino temperature: T beforeγ = T beforeν . Therefore:

Tγ
Tν

=
T afterγ

T beforeγ

=

(
11

4

) 1
3

≈ 1.40102 (1.28)

according to Lesgourgues and Pastor (2012). The combination of this with the momen-

tum spectrum presented in Equation 1.24 allows present-day properties of the CνB to

be conveniently calculated. As the neutrinos are governed by Fermi-Dirac statistics,

their number density per flavour may be calculated as:

nν =
3

11
nγ =

6ζ{3}
11π2

T 3
γ (1.29)

where ζ{X} is the zeta function of X , leading to a present day value of approximately

113 cm−3 per flavour or 339 cm−3 in total in the standard case of 3 neutrino species.

The total energy density of neutrinos, must be calculated numerically, however the

extreme limits are well defined analytically as:

ρν(mν � Tν) =
7π2

120

(
4

11

) 4
3

T 4
γ

ρν(mν � Tν) = mνnν . (1.30)

Consequently, in the non-relativistic limit the contribution of the massive neutrinos

to the energy density, and consequently their effect on cosmology, is a function of

the sum of their masses. Current constraints on the values of
√

∆m2
3,1 and

√
∆m2

2,1

both exceed the present day value of Tν , therefore at least two of the neutrino species

must be non-relativistic today. If the third species is sufficiently light to have remained

relativistic, its relative contribution to ρν will consequently be negligible. In the more

commonly used cosmological units of the ratio to the universal critical density, this can

be expressed as:

Ων =
ρν
ρcrit

=

∑
imi

93.14h2 eV
(1.31)
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1.5.3 Neutrino Damping Length

Following their decoupling from matter and radiation, neutrinos can be described as a

collisionless fluid, the constituent particles of which free-stream with a characteristic

velocity equal to their thermal velocity vth (at least on average). As a consequence,

over a given time interval they will move out of overdensities whose physical size is

smaller than the distance they can travel in that time. In other words, density perturba-

tions will be damped on scales smaller than the free-streaming length.

One can define the free-streaming wavenumber as:

kFS =

(
4πGρ̄(t)a2(t)

v2
th(t)

)1/2

. (1.32)

Neutrinos become relativistic at time tNR, the point at which their kinetic energy 3kBTγ

is comparable to their rest mass energy mνc
2. While the neutrinos are relativistic vth

is approximately c and the free-streaming length is approximately equal to the Hubble

radius. After becoming non-relativistic, the thermal velocity decays like

vth =
〈p〉
mν

≈ 158(1 + z)
(mν

eV

)−1

kms−1 (1.33)

such that the non-relativistic free streaming wavenumber is given by:

kfs(t) = 0.8

√
ΩΛ + Ωm(1 + z)3

(1 + z)2

( m
eV

)
hMpc−1. (1.34)

The free streaming length continues to increase after the neutrinos become non-relativistic,

but does so more slowly than the scale factor. The comoving free streaming length

therefore actually reaches a maximum at tNR. The comoving wavenumber for this

point can be calculated as

kNR = 0.018Ω1/2
m

(mν

eV

)1/2

hMpc−1 (1.35)
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Table 1.1: Neutrino free-streaming lengths corresponding to BAHAMAS runs with massive neu-
trinos. The columns are: (1) The simulation run considered; (2) The comoving free-streaming
wave number at tNR; and (3) The comoving free-streaming length at tNR. The values given in
columns (2) and (3) are calculated using Eqn. 1.35 with values from Table 3.1

(1) (2) (3)
BAHAMAS run log(kNR) λNR

[log(hMpc−1)] [h−1Mpc]

WMAP-7

NU 0.06 -2.633 429.2
NU 0.12 -2.482 303.5
NU 0.24 -2.332 214.6
NU 0.48 -2.181 151.7

Planck

NU 0.06 -2.612 409.5
NU 0.12 -2.460 288.5
NU 0.24 -2.307 202.7
NU 0.48 -2.152 141.8

(Lesgourgues and Pastor, 2014).

In Table. 1.1 I present values of the comoving free streaming length λNR and wavenum-

ber kNR calculated using Eqn. 1.35 for the various neutrino models used in this Thesis.

These simulations comprise a 400 h−1 Mpc comoving periodic box. As can be seen

from the Table, λNR is comparable with the box size in all cases, with only the lowest

mass neutrino realisation, mν = 0.06 eV, exceeding the box size. Consequently, the

simulation runs used in this Thesis cover (almost or entirely) the full range of scales

at which neutrino free-streaming is expected to impact on large-scale structure (LSS)

formation.

1.5.4 Mass Constraints

Current observations are consistent with a flat universe, i.e. Ωtotal = Ωm+Ων+ΩΛ ≈ 1,

with the contribution of non-relativistic matter Ωm approximately equal to 0.3. By

application of equation 1.31, this places a hard upper limit on the summed neutrino

mass of:

Σmν . 27.9 h2 eV (13.7 eV for h = 0.7) (1.36)
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in the extreme case where Ωm = Ων .

More reasonable constraints can be obtained by careful analysis of cosmological data.

In brief, the presence of massive neutrinos that are relativistic at decoupling alters the

CMB temperature anisotropy spectrum CT
l and matter power spectrum P (k): delaying

the time of equality, enhancing small scale perturbations and expanding the size of the

sound horizon at equality; and reducing the growth of CDM fluctuations. This effect

can be seen as a slight enhancement and shift to lower l of the acoustic peaks in CT
l ,

and a concomitant attenuation in P (k) at high k. Mass constraints derived from these

effects depend on the cosmological observations included in the analysis.

Briefly, CMB data alone is able to set a limit of
∑
Mν < 1.31.4 eV depending on

whether the dark energy component is a cosmological constant or not. Introducing

observations sensitive to the background cosmological evolution can greatly improve

this boundary, for example the inclusion of direct H0 measurements as well as BAO

scale observations reduces this limit to
∑
Mν < 0.48 eV.

In addition to the CMB, LSS measurements can provide useful constraints on P (k) at

a range of scales and redshifts. The most applicable observations are:

Galaxy or GGC clustering. The use of the spatial distribution of objects to constrain

cosmological parameters is one of the more venerable techniques on this list,

dating back to the work of Rubin (1954) and Limber (1954), at which stage its

calculation comprised predominantly of manually counting galaxies in specified

cells on photographic plates. The advent of reliable redshift measurements to

provide line-of-sight distance information and computers with which to analyse

the ever larger catalogues becoming available has only increased the applicabil-

ity of this measurement (see, for example, Peebles (1980)). Relating the power

spectrum of galaxies or groups to P (k) is made difficult at small scales where

the corrections are non-linear and redshift-space distortions and light-to-mass

bias would need to be accurately constrained. In the linear regime, this can con-

strain the shape of P (k, z), but the inclusion of the bias as a (admittedly well

motivated) free parameter makes it impossible to constrain the amplitude. More



1.5. Neutrinos 23

recent work by (amongst others) Thomas et al. (2010) and Reid et al. (2010a)

using the Sloan Digital Sky Survey (SDSS) and Riemer-Sørensen et al. (2012)

using data from the Dark Energy Survey (DES) have placed valuable constraints

on the halo power spectrum. For sufficiently deep data sets, there is also the

option of performing tomography, as has been done with the Sloan Digital Sky

Survey (SDSS) data by Xia et al. (2012).

Cluster mass function. As their formation depends on the growth of initial density

perturbations, the distribution of the masses of haloes that make up LSS, and

therefore that of the GGCs that form within them, may be related to the prop-

erties of the initial perturbation field. Specifically, the mass function of GGCs

dn(M, z)/dM within a mass and redshift bin is related to the quantity σ2(M, z),

the variance in density found within a sphere containing mass M. This can be

derived from the convolution of an appropriate window function with P (k, z).

Seminal work with N-body simulations by Press and Schechter (1974) estab-

lished a useful theoretical framework by which the mass function could be stud-

ied. Subsequent extensions and alternative derivations have followed, notably

Jenkins et al. (2001), predominantly motivated by the results of ever more de-

tailed numerical simulations. Despite the difficulties entailed in observationally

determining GGC or halo masses, observational constraints on dn(M, z)/dM

and therefore σ8 are provided by (amongst others) Mantz et al. (2010) and Reid

et al. (2010b), the former using X-ray observations from ROSAT, the latter the

MaxBCG catalogue.

Galaxy weak lensing. The effects of foreground mass concentrations on the light of

background sources were first detected by Lynds and Petrosian (1986), who ob-

served a ring-like distributions of light in surveys of GGCs, although it the grav-

itational mechanism by which they arise was not proposed until Soucail et al.

conducted further analysis of one such ring in 1987. While such examples of

strong lensing are too rare and limited to exceptionally high mass foreground

lenses to be of much assistance when studying populations of GGCs, the poten-

tial of “weak” lensing effects to carry information about GGC masses has been
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well established since its first observational detection by Tyson et al. (1990).

Briefly: as the image of a background galaxy passing through an overdensity be-

comes extended tangential to the centre of mass (‘sheared’), a statistical analysis

of the alignments of galaxies can map the foreground lensing potential. This

can be related to P (k, z) via the Poisson equation. As with galaxy clustering,

it is possible to capture redshift evolution by splitting a sufficiently deep cata-

logue into redshift bins and performing shear tomography. More recent cosmic

shear surveys (see, for example, Tereno et al. (2009)) have achieved sufficient

precision to provide bounds on neutrino parameters.

Lyman-alpha forest. The light emitted from distant quasars is depleted at wavelengths

corresponding to the Lyman alpha series of hydrogen transitions as photons are

absorbed by foreground neutral hydrogen in the interstellar galactic medium

(IGM). As photons are continuously redshifted, the observed wavelength at which

light from a given source affected depends on the line-of-sight distance from the

observer to the absorbing IGM. The fraction of photons of that wavelength that

were absorbed at that point is proportional to its local density of neutral hydro-

gen. Hence, within a limited wavelength range referred to as the Lyman alpha

forest, the variation of quasar spectra with wavelength traces the variation in hy-

drogen density along the line of sight. This mechanism was first proposed by

Lynds (1971) to explain the absorption spectrum of quasar 4C 05.34, and linked

to the distribution of intergalactic gas along the line-of-sight (as opposed to in-

teractions within the quasar sources themselves) by Oort (1981).

The Fourier expansion of the spectrum (averaged over sufficiently many spectra)

provides an estimate of the flux power spectrum that can then be related to P (k).

This is complicated somewhat by the fact that the scales probed by this technique

are mildly non-linear, typically 0.3 < k < 3hMpc−1, and therefore require

numerical techniques including hydrodynamical treatment of baryonic physics

in order to model accurately. Nonetheless, analyses of Lyman alpha data alone

place a bound of
∑
Mν < 0.9eV . Work by Viel et al. (2010), for example, has

succeeded in inferring neutrino mass bounds by these means.
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Better results can be achieved by combining the data listed above, allowing the models

to be constrained over a wider range in k and z. The results arrived at depend somewhat

on which data are used, and I refer the reader to Lesgourgues and Pastor (2012) for a

detailed overview. However, taken as a whole, the combinations of all of the data sets

described above consistently indicate an upper bound of Σmν < 0.3 eV at a 95%

confidence level for the standard ΛCDM model, or Σmν < 0.5 eV for DE with an

arbitrary equation of state.

1.5.5 Implications for Structure Formation

Due to their small mass and thermal decoupling, the neutrinos constituting the CνB

remain relativistic up to relatively late times. As a result, they are less susceptible to

gravitational collapse than the rest of the matter content of the Universe. Neutrinos tend

to free-stream out of overdensities. Consequently, whatever portion of the mass content

of the Universe is contributed by the neutrinos is functionally unavailable for structure

formation. This is highly significant as it means that knowledge of the neutrino physics

may be necessary for accurate predictions of large-scale structure or, inversely, if the

other factors can be constrained, observations of large-scale structure can be used to

place constraints on the neutrino mass.

1.6 Cosmological Hydrodynamical Simulations

The highly non-linear nature of the processes governing galaxy formation, and there-

fore the overall growth of structure, require that numerical techniques be used to accu-

rately model them. While these have the advantage of allowing simultaneous treatment

of gravitational and hydrodynamical processes, limitations are imposed by the finite

spatial and mass resolutions.

The current highly advanced crop of numerical simulations have humble roots. The

very first gravitational simulation considered only 37 particles, and predated the widespread
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use of digital technology by almost 2 decades. Instead, particles were represented by

light bulbs, and the gravitational force between them approximated by the resultant

flux (Holmberg, 1941).

The advent of digital computing made carrying out these sorts of calculations signifi-

cantly easier, and collisionless “N-body” gravitational simulations of roughly 100 par-

ticles were being produced by the early 1960s (von Hoerner, 1960, 1963; Aarseth,

1963). Simulations incorporating gas dynamics closely followed, with seminal 1-

dimensional work carried out by Larson (1969), as the scale and detail of simulations

continued to increase.

The application of these tools to the study of the growth of cosmological structure

has its roots in the work of Press and Schechter (1974) who used N-body simulations

to study the mass distribution of haloes arising from hierarchical structure formation.

This development took place alongside a number of milestones in cosmological theory,

notably the development of plausible dark matter models (Cowsik and McClelland,

1972; Bond et al., 1980) and Gaussian random field theory (Bardeen et al., 1986), that

spurred an increased interest in cosmological simulation.

Gravitational N-body simulations provided invaluable insights into the behaviour of

DM, for example the halo density profile determined by Navarro et al. (1996), and the

numerous successes of the Millennium Simulation (Springel et al., 2005b) and its suc-

cessors in describing the distribution of matter on extremely large scales. However, for

the study of GGCs and smaller scales, such as the formation or dynamics of individual

galaxies, it has become increasingly apparent that non-gravitational physics must be

taken into account. This has necessitated the development of hydrodynamical simu-

lations that incorporate prescriptions for baryonic physics alongside the gravitational

calculations. While such projects inevitably lag behind their N-body counterparts in

terms of resolution due to the increased number of calculations required per-particle,

they are more successful at reproducing galaxy- and GGC-scale observations. For ex-

ample, Metzler and Evrard (1994) demonstrated that the inclusion of stellar feedback

in the form of galactic winds produced more realistic galaxy cluster properties. As

available computational power continued to increase, such ’hydrodynamical’ simula-
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tions were able to probe increasing scales in increasing detail, with Pearce et al. (1999)

presenting the first successful effort to simulate galaxy formation at sufficiently large

scales that the clustering of the resultant galaxies could be studied.

An ongoing challenge of these programs has been the calibration of the descriptions

for physical effects that fall below the spatial or mass resolution of the simulation,

for example radiative cooling and feedback from star formation, supernovae and AGN

heating. These ‘sub-grid’ prescriptions must be put in by hand to approximate the

larger-scale effects of these processes, and can therefore require careful tuning in order

to match observations.

1.6.1 Implications of Neutrino Dark Matter

As an example of the power of cosmological simulation, consider the following case.

In the 1980s the presence of the CνB posed a potential solution to the ongoing ques-

tion regarding the exact nature of DM. For a neutrino mass of ∼ 30 eV, the neutrino

density Ων would be sufficient to match observations consistent with a flat universe

without invoking DM beyond the standard model. However, this gives a characteristic

damping length on the scale of tens of megaparsecs. With the neutrino mass compo-

nent dominating the gravitational behaviour of the Universe, this would prevent the

collapse of overdensities smaller than this scale. Analogously to the calculation of the

Jeans mass, one can calculate the minimum mass for an overdensity to undergo col-

lapse under these conditions. For these assumptions, this mass is of order 1015M�,

i.e. the mass of a supercluster. Hot dark matter-dominated universes therefore undergo

top-down structure formation, with the most massive objects forming first. For a full

derivation and discussion of this calculation, see Bond and Efstathiou (1984).

While initially promising, this model was proven to be inconsistent with the observed

Universe through the application of two separate simulation approaches. Firstly, sim-

ulations of nonlinear collapse taking into account the dissipation of baryonic matter

carried out by, for example, Bond et al. (1984); Shapiro et al. (1983) showed that the

shock of gravitational collapse on this scale heats the baryonic content to the point
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where 85% remains unable to condense. The absence of X-rays from shock-heated

gas and the obvious inconsistency of the observed “cooled” mass contributing only

15% of the total baryonic matter when primordial nucleosynthesis constrains Ωb ≈ 0.1

strongly disfavour this model (White, 1986).

Meanwhile, N-body simulations by (amongst others) Frenk et al. (1983) demonstrated

that the observed distribution of superclusters restricted their formation time to zsc < 2

and favoured zsc ≤ 0.5 .

Cosmological simulations are therefore responsible for ruling out neutrinos as the dom-

inant component of DM, and place a strong upper limit on their mass.

1.6.2 OWLS, and its descendants

The OverWhelming Large Simulations (hereafter OWLS) project presented in Schaye

et al. (2010) represented an important development in the field of cosmological mod-

elling. This was the first time that simulations succeeded in simultaneously matching

the observed present-day properties of the hot plasma and stellar populations within

galaxy groups, the former only made possible by the inclusion of ‘sub-grid’ prescrip-

tions for AGN feedback.

However, computational limitations restrict not only the minimum mass and spatial

resolution, but also the total number of particles that can be followed, and by extension

places an upper limit on the volume that can be considered for a given resolution.

While successful in reproducing the properties of individual groups and clusters, the

100 Mpc on a side cube OWLS volume did not contain enough of these massive (and

therefore rare) systems to allow the study of their population properties. In order to

facilitate this, Le Brun et al. (2014) produced the cosmo-OWLS extension, expanding

the volume to 400 Mpc on a side. In terms of its simulation strategy, cosmo-OWLS

aimed to explore the parameter space associated with the modelling of AGN feedback

at fixed cosmology.

The latest addition to this is the BAryons and HAloes of MAssive Systems (BAHAMAS,
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McCarthy et al. 2018). While mechanically closely related to the cosmo-OWLS project,

with which it shares code, total volume, (some) subgrid prescriptions and resolution,

BAHAMAS differs markedly in two significant factors. First, it includes a prescription

for the presence of a cosmic background of massive neutrinos. Second, BAHAMAS

has an almost perfectly opposed simulation strategy to cosmo-OWLS, adopting a fixed

subgrid model for baryonic physics while varying the background cosmology, specif-

ically the value chosen for the summed mass of the three active neutrino species. It

is these two complementary simulations suites, cosmo-OWLS and BAHAMAS, that are

used within this thesis. 7

1.7 The Internal Structure of Haloes

Both neutrino free-streaming and baryonic feedback, as discussed above, act to oppose

the formation of structure, and are therefore expected to exhibit qualitatively broadly

similar effects on the abundances of haloes. It is, however, less evident in what way

the internal properties of individual haloes are impacted. Two diagnostics of partic-

ular interest are the radial mass profiles and mass–concentration relations. I briefly

summarise these measurements below.
7BAHAMAS and cosmo-OWLS are part of an ongoing effort by the community to produce cos-

mological simulations of very high accuracy. Notable other projects include the EAGLE (Evolution
and Assembly of GaLaxies and their Environments) and Illustris simulation sets. Briefly, EAGLE, like
cosmo-OWLS, is a successor to the OWLS project and uses much of the same simulation framework.
It differs primarily in volume and resolution – whereas cosmo-OWLS aimed to simulate a significantly
larger volume, EAGLE retains the same box size as OWLS, but simulates it at much higher resolution.
This reflects the EAGLE project’s focus on the physics of galaxy formation and evolution.

The Illustris project is similar in focus and scope to EAGLE, however it utilises a novel adaptive mesh
refinement (AMR) realisation in which cells can move with time, as opposed to the smoothed particle
hydrodynamics (SPH) of EAGLE. Significantly, it shares EAGLE’s focus on galaxies and their formation,
and is of comparable volume and resolution (although a direct resolution comparison between SPH and
AMR is impossible).

In both cases, the simulations are engineered to produce reasonably accurate reproductions of the
properties of the observed galaxy population. EAGLE, for example, calibrates the subgrid model directly
on the z ∼ 0 galaxy stellar mass function. While they exhibit remarkable success in the galaxy regime,
these projects are ill suited to studies of GGCs due to their comparatively limited volume. Additionally,
they lack the prescription for a massive neutrino background available in BAHAMAS.

I refer the reader to Schaye et al. (2015) and Crain et al. (2015) for further information on EAGLE;
and to Vogelsberger et al. (2014) for Illustris.
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1.7.1 GGC density profiles

As mentioned above, one of the early successes of cosmological simulations was the

discovery by Navarro et al. (1996) of the universality of the spherically-averaged 1-

dimensional radial density profiles of DM haloes. Later work has shown that this

degree of self-similarity does not exactly mirror reality due to the scale-dependent

nature of the non-gravitational physical effects that govern galaxy formation (see Sec-

tions 1.4.1 - 1.4.3, and the references therein). Nonetheless, the Navarro-Frenk-White

(NFW) profile remains a good approximation outside the central (i.e. galaxy-dominated)

regions.

Measuring the density profile observationally presents a number of challenges as the

dark matter mass in radial bins is difficult to measure directly. However, spectrographic

X-ray data in radial annuli, for example, can be used with careful deprojection to infer

the dynamical properties of the hot gas component including its mass profile (Voigt and

Fabian, 2006; Newman et al., 2013). On smaller scales, stellar dynamics of galaxies

can be used similarly to constrain the overall mass distribution.

A full discussion of the observational techniques involved in measuring the GGC den-

sity profile is beyond the scope of this work, however in the context of perfectly con-

strained simulation data it presents a useful and informative diagnostic.

1.7.2 The Mass-Concentration Relation

Closely related to the density profile is the mass-concentration relation. This arises

from the fact that the scaling parameters that define the Navarro-Frenk-White (NFW)

profile may be expressed in terms of the halo mass M∆ and a dimensionless “concen-

tration” parameter c, this latter being the ratio of the radius within which the aforemen-

tioned mass is measured, r∆ to the “scale radius” rs, the point where the gradient of

the density profile is equal to the isothermal value of r−2.8 This is a convenient way to

8In most cases, r∆ is chosen to approximate the virial radius of the halo, so the concentration pa-
rameter may be conceptualised as the ratio of virial and scale radii.



1.8. Thesis Layout 31

generalise the internal structures of the halo population in the form of the relationship

c(M) between the concentration and halo mass.

In gravitational simulations, the characteristic concentration of a halo depends solely

on the critical density of the universe at the time of its collapse. As a consequence,

at fixed redshift c increases monotonically with halo mass as the more massive haloes

formed at earlier times when the value of ρcrit was higher. A degree of scatter is in-

troduced by the dependence of the subsequent evolution of c on the halo mass, with

evolution happening faster in lower mass haloes. The inclusion in simulations of bary-

onic feedback and other non-gravitational effects that modify the density profiles has

a concomitant impact on c(M).

Observationally, c(M) suffers the same difficulties as the density profile, compounded

by its own intrinsic scatter. Nonetheless it remains a useful tool for constraining the

internal properties of GGCs as a population. (Ludlow et al., 2014)

1.8 Thesis Layout

This thesis is organised as follows:

In Chapter 2 I explore the effects of baryon physics (particularly feedback from active

galactic nuclei, AGN) and the free streaming of massive neutrinos on LSS forma-

tion and the properties of GGCs, in the context of simulated haloes drawn from the

cosmo-OWLS and BAHAMAS simulation suites. In particular, I examine the effects

both in isolation, and when included self-consistently, investigating in detail the extent

to which the two may be addressed independently. I focus on five diagnostics: i) the

halo mass function; ii) halo mass density profiles; iii) the halo mass−concentration

relation; iv) the clustering of haloes; and v) the clustering of matter.

Consistent with previous studies, I find that both AGN feedback and neutrino free-

streaming suppress the total matter power spectrum, although their scale and redshift

dependencies differ significantly. The inclusion of AGN feedback can significantly
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reduce the masses of GGCs, and increase their scale radii. These effects lead to a

decrease in the amplitude of the mass−concentration relation and an increase in the

halo autocorrelation function at fixed mass. Neutrinos also lower the masses of GGCs

while having no significant effect on the shape of their density profiles (thus also af-

fecting the mass−concentration relation and halo clustering in a qualitatively similar

way to feedback). I show that, with only a small number of exceptions, the combined

effects of baryon physics and neutrino free-streaming on all five diagnostics can be

estimated to typically better than a few percent accuracy by treating these processes

independently (i.e., by multiplying their separate effects).

As part of this investigation, I establish that the amplitude of the real-space, 3D, 2-

point autocorrelation function of GGC haloes is sensitive to the summed value of the

neutrino masses
∑
Mν . I pursue this further in Chapter 3, exploring the possibility of

using the observed clustering of GGCs to constrain the neutrino mass. I use galaxy

catalogues drawn from the GAMA survey, and compare to equivalent catalogues taken

from simulated observations constructed from lightcones of the BAHAMAS simulations

with a range of values of
∑
Mν . In order to ensure the maximum methodological

consistency, I treat the simulated and observed data identically at each stage. From

these, I construct GGC catalogues, assigning galaxies on the basis of a Friends-of-

Friends (FoF) algorithm, then estimate the 2-point 3D redshift space autocorrelation

function of GGCs in observable bins (specifically the GGC richness and integrated

stellar mass).

I conclude that these measurements have insufficient statistical power to constrain the

neutrino mass. By comparison with a parallel analysis making use of the ‘true’ proper-

ties of the simulated GGCs (i.e. those perfectly constrained by the detailed knowledge

of the simulation space), I determine that this is primarily the result of scatter in the

observable–halo mass relations ‘smearing out’ the heavily mass-dependent effect of

neutrino free-streaming. Significantly, however, I find by direct comparison between

the BAHAMAS and GAMA results that the simulations reproduce the observed GGC

clustering to remarkable precision.

Finally, in Chapter 4 I provide a summary of these results, along with a discussion of
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future work that will build on this work.



Chapter 2

The Separate and Combined Effects of

Baryon Physics and Neutrino

Free-streaming on Large-Scale

Structure

The majority of the work presented in this chapter and Appendix A was published in a

peer reviewed journal:

Mummery, B. O., I. G. McCarthy, S. Bird, and J. Schaye

2017. The separate and combined effects of baryon physics and neutrino free stream-

ing on large-scale structure. MNRAS, 471:227-242

2.1 Introduction

Recent simulation-based work has shown that various physical processes associated

with galaxy formation (e.g., radiative cooling, star formation, and feedback processes)

can significantly affect not only the predicted distribution of baryons, but also that of

the underlying dark matter component. For example, it has been shown that both the

34
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total matter power spectrum (e.g., van Daalen et al. 2011; Schneider and Teyssier 2015)

and the halo mass function (e.g., Sawala et al. 2013; Cui et al. 2014; Velliscig et al.

2014; Cusworth et al. 2014; Schaller et al. 2015) can be affected at the tens of percent

level relative to that predicted by a standard gravity-only dark matter simulation. If

these effects are ignored, they are expected to lead to significant biases in cosmolog-

ical parameters inferred by comparing predicted and observed aspects of large-scale

structure (LSS) (e.g., Semboloni et al. 2011; Eifler et al. 2015; Harnois-Déraps et al.

2015).

However, galaxy formation is not the only process that affects the resultant distribution

of LSS. Recently, there has been a resurgence in interest in the effects of massive

neutrinos. This resurgence has been driven by the apparent tension in the observed

abundance of massive GGCs compared to that predicted when a Planck cosmology

based on the primary CMB is adopted (e.g., Planck Collaboration et al. 2014, 2016b),

in conjunction with similar tensions between the Planck primary CMB constraints and

those derived from tomographic analysis of cosmic shear data (Heymans et al., 2013;

Hildebrandt et al., 2017). It has been argued that massive neutrinos can potentially

reconcile this tension (e.g., Wyman et al. 2014; Battye and Moss 2014), although this

remains controversial (e.g., MacCrann et al. 2015). Regardless of whether neutrinos

resolve the tension, atmospheric and solar oscillation experiments have found that the

three active species of neutrinos have a summed mass of at least 0.06 eV (0.1 eV)

when adopting a normal (inverted) hierarchy (Lesgourgues and Pastor, 2006). The fact

that neutrinos have appreciable mass and will act as a form of hot dark matter that

will resist significant gravitational collapse (due to free streaming motion), implies

that they will affect the predicted LSS. Whether these effects are minor or dominant in

comparison to those due to galaxy formation is presently unclear and depends on the

(relatively poorly constrained) absolute mass scale of the neutrinos and the efficiencies

of relevant feedback processes.

Given that both baryon physics and massive neutrinos likely play a role in the for-

mation of LSS in the Universe, it is important to consider their combined effect and

whether it amounts to more (or less) than ‘the sum of its parts’. That is, to what ex-
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tent is there cross-talk between the baryon physics and neutrinos? Do they suppress or

enhance each other’s effects on LSS, or can they be treated separately?

The work presented in this chapter aims to address these questions by means of di-

rect numerical simulation. The effects of baryon physics and massive neutrinos are

considered separately and in combination, using the recent cosmo-OWLS (Le Brun

et al., 2014; McCarthy et al., 2014) and BAHAMAS (McCarthy et al., 2018) suites of

cosmological hydrodynamical simulations. The two suites are complementary, in that

cosmo-OWLS varies the implemented subgrid physics for stellar and AGN feedback at

fixed cosmology (with massless neutrinos), while BAHAMAS varies the neutrino mass

for a fixed (calibrated) feedback model. I further complement these simulations with

reference dark matter-only simulations (both with massless and massive neutrinos).

This combination of complementary simulations provides an unprecedented opportu-

nity to examine the effects of both baryon feedback and the free-streaming of massive

neutrinos not simply in isolation, but also capturing their combined effects on large-

scale structure.

In this chapter I examine five different ways of characterising LSS:

1. The halo mass function;

2. The total mass density profiles in bins of halo mass;

3. The mass−concentration relation;

4. The spatial clustering of haloes (characterised by the 3D 2-point autocorrelation

function); and

5. The clustering of matter (characterised by the total matter power spectrum)

I demonstrate that both feedback and neutrino free-streaming can have considerable

effects on these aspects of LSS and that, to typically better than a few percent accuracy,

their combined effects can be estimated by treating these processes independently (i.e.,

by multiplying their separate effects).

This chapter is organised as follows. In Section 2.2 I present a brief summary of the

cosmo-OWLS and BAHAMAS simulations. In Section 2.3 I examine the effects of

baryon physics and neutrinos on the abundance of haloes. In Section 2.4 I examine
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their effects on the total mass density profiles (2.4.1) and the mass−concentration re-

lation (2.4.2). In Sections 2.5 and 2.6 I explore how the spatial clustering of haloes and

matter (respectively) are affected. Finally, in Section 2.7 I summarize and discuss my

findings.

2.2 Simulations

I use the cosmo-OWLS (Le Brun et al., 2014; McCarthy et al., 2014) and BAHAMAS (Mc-

Carthy et al., 2017) suites of cosmological hydrodynamical simulations, both of which

are descendants of the OverWhelmingly Large Simulations (OWLS) project detailed

in Schaye et al. (2010). As already noted in Section 2.1, the two suites are predicated

on different investigation strategies. Cosmo-OWLS varies the implemented subgrid

physics for stellar and AGN feedback at fixed cosmology. In contrast, BAHAMAS im-

pliments a fixed, calibrated feedback model while varying the cosmology. These ap-

proaches are complimentary, allowing the two effects to be examined independently as

well as in conjunction. Below I provide a brief overview of the simulations, but I refer

the reader to Le Brun et al. (2014) and McCarthy et al. (2018) for further details of the

simulations and comparisons with the observed properties of present-day GGCs.

Table 2.1 provides a summary of the included subgrid physics and the model parameter

values for the various cosmo-OWLS and BAHAMAS runs I have used in this chapter.

2.2.1 cosmo-OWLS

The cosmo-OWLS suite of cosmological hydrodynamical simulations consists of 400

Mpc/h comoving on a side, periodic box simulations containing 2 × 10243 particles.

The simulations adopt a cosmology based on the maximum likelihood parameter val-

ues obtained from the analysis of WMAP-7 data (Komatsu et al., 2011); i.e., {Ωm,

Ωb, ΩΛ, σ8, ns, h} = {0.272, 0.0455, 0.728, 0.81, 0.967, 0.704}. The algorithm of

Eisenstein and Hu (1999) was used to compute the transfer function and N-GenIC (de-
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Table 2.1: Included subgrid physics and model parameter values for the cosmo-OWLS and BAHAMAS runs used here. (1) Simulation name; (2)
inclusion of photoionizing ultra-violet and X-ray backgrounds according to Haardt and Madau (2001); (3) inclusion of radiative cooling and star formation;
(4) for runs with star formation, Vw is the velocity kick (in km/s) adopted in the stellar feedback (with a fixed mass-loading of 2); (5) inclusion of AGN
feedback; (6) ∆Theat is the temperature by which gas is heated by AGN feedback; (7) nheat is the number of gas particles heated by AGN feedback; (8)
inclusion of massive neutrinos; (9) the summed mass of neutrinos (assuming a normal hierarchy of neutrino masses); (10) dark matter particle mass; (11)
initial baryon particle mass. A more detailed discussion of these parameters can be found in Section 2.2.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Simulation
UV/X-ray Cooling and Vw AGN ∆Theat nheat

ν Mν MDM Mbar,init

background star formation [km/s] feedback [K] [eV] [109M�/h] [108M�/h]
cosmo-OWLS
NOCOOL Yes No - No - - No - 3.75 7.54
REF Yes Yes - No - - No - 3.75 7.54
AGN 8.0 Yes Yes 600 Yes 108.0 1 No - 3.75 7.54
AGN 8.5 Yes Yes 600 Yes 108.5 1 No - 3.75 7.54
AGN 8.7 Yes Yes 600 Yes 108.7 1 No - 3.75 7.54
DMONLY No No - No - - No - 4.50 -
BAHAMAS
NU 0.00 Yes Yes 300 Yes 107.8 20 Yes massless 3.85 7.66
NU 0.06 Yes Yes 300 Yes 107.8 20 Yes 0.06 3.83 7.66
NU 0.12 Yes Yes 300 Yes 107.8 20 Yes 0.12 3.81 7.66
NU 0.24 Yes Yes 300 Yes 107.8 20 Yes 0.24 3.77 7.66
NU 0.48 Yes Yes 300 Yes 107.8 20 Yes 0.48 3.68 7.66
NU 0.00 DM No No - No - - Yes massless 4.62 -
NU 0.06 DM No No - No - - Yes 0.06 4.61 -
NU 0.12 DM No No - No - - Yes 0.12 4.58 -
NU 0.24 DM No No - No - - Yes 0.24 4.53 -
NU 0.48 DM No No - No - - Yes 0.48 4.44 -
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veloped by V. Springel)1 was used to make the initial conditions, at a starting redshift of

z = 127. The dark matter and (initial) baryon particle masses are≈ 3.75×109 h−1 M�

and ≈ 7.54 × 108 h−1 M�, respectively. The gravitational softening is fixed to 4 h−1

kpc (in physical coordinates below z = 3 and in comoving coordinates at higher red-

shifts).2

The simulations were carried out with a version of the Lagrangian TreePM-SPH code

GADGET3 (last described in Springel, 2005), which was modified to include new sub-

grid physics as part of the OWLS project. Le Brun et al. (2014) presented a set of five

baryon physics models along with a corresponding dark matter only run, all of which

adopted identical initial conditions. I make use of each of these for this investigation.

These models are:

• DMONLY: A dissipationless “dark matter-only” simulation.

• NOCOOL: A standard non-radiative model; i.e., inclusion of baryons and hydro-

dynamics but no subgrid modules for radiative cooling, star formation, etc.

• REF: In addition to the inclusion of baryons and hydrodynamics, this model in-

cludes prescriptions for element-by-element radiative cooling (Wiersma et al.,

2009a), star formation (Schaye and Dalla Vecchia, 2008a), stellar evolution,

1http://www.mpa-garching.mpg.de/gadget/
2In principal, the gravitational forces between two simulation particles i and j may be calculated by

simple Newtonian mechanics as:

Fi,j = Gmimj
rj − ri
|rj − ri|3

. (2.1)

However, problems arise at short distances for two reasons. First, simulation particles typically rep-
resent masses far in excess of the typical mass of a star (∼ 109 M� in the case of BAHAMAS and
cosmo-OWLS) and therefore represent systems the mass of which is distributed over some region. At
a sufficiently close approach, therefore, the point mass approximation of the simulation particle is no
longer a good description for the physical mass distribution it represents. Secondly, the increasingly
rapid dynamics that result from close encounters between mass distributions means that at some limit
the chosen timestep will fail to adequately capture their resulting motions.

These difficulties are typically addressed by smoothing the pointwise gravitational potential, modify-
ing the gravitational law at small distances, for example as:

Fsoftenedi,j = Gmimj
rj − ri

(|rj − ri|2 + ε2)
3/2

(2.2)

where ε, which determines the degree to which the potential is smoothed, is the softening length. This
replaces the point mass with an extended mass distribution at sufficiently close approach (i.e. |rj−ri| ∼
ε) and reduces to the point mass case in 2.1 for |rj − ri| � ε Rodionov and Sotnikova (2005)
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mass loss and chemical enrichment (Wiersma et al., 2009b) from Type II and

Ia supernovae and Asymptotic Giant Branch stars, and kinetic stellar feedback

(Dalla Vecchia and Schaye, 2008).

• AGN 8.0, AGN 8.5, and AGN 8.7: In addition to the physics included in the

REF model, these models include a prescription for supermassive black hole

(BH) growth and AGN feedback (Springel et al., 2005a; Booth and Schaye,

2009).

A full discussion of the black hole physics included in the AGN 8.0, AGN 8.5, and AGN

8.7 runs can be found in Springel et al. (2005a) and Booth and Schaye (2009), but I

include an overview of them here. In brief, an on-the-fly friends-of-friends (FoF) algo-

rithm, with a linking length of 0.2 times the mean interparticle separation, is run during

the simulation and any FoF haloes identified with at least 100 dark matter particles that

do not already contain a BH ‘sink’ particle are seeded with one, with an initial mass of

0.001 times the initial gas particle mass. BH particles then grow in mass via mergers

with other BH particles and through gas accretion, as described in Booth and Schaye

(2009). In terms of feedback, the BHs accumulate the feedback energy in a reser-

voir until they are able to heat neighbouring gas particles by a pre-determined amount

∆Theat. cosmo-OWLS uses 1.5 per cent of the rest-mass energy of the gas which is

accreted on to the supermassive black holes for the AGN feedback, which results in a

good match to the normalisation of the black hole scaling relations (Booth and Schaye

2009; Le Brun et al. 2014), independently of the exact value of ∆Theat. The three AGN

models differ only by their value of ∆Theat, which is the most important parameter of

the feedback model in terms of the gas-phase properties of the resulting GGC popula-

tion (Le Brun et al. 2014; McCarthy et al. 2018). It is set to ∆Theat = 108.0 K for AGN

8.0, ∆Theat = 108.5 K for AGN 8.5, and ∆Theat = 108.7 K for AGN 8.7. Note that

since the same quantity of gas is being heated in these models, more time is required

for the black holes to accrete a sufficient amount of gas to heat the adjacent gas to a

higher temperature. Therefore, increased heating temperatures lead to more episodic

and violent feedback events.
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The range of cosmo-OWLS models considered here is notably somewhat extreme.

While the AGN 8.0 and AGN 8.5 models skirt the upper and lower bounds of the ob-

served trend between hot gas mass and halo mass for X-ray-bright galaxy groups (see

Le Brun et al. 2014), the third AGN model, AGN 8.7, featuring the most extreme

feedback, yields GGCs with gas fractions that are considerably lower than those ob-

served. At the other end of the scale, the REF and NOCOOL models which neglect

AGN feedback have significantly higher total baryon fractions than observed for lo-

cal X-ray-bright galaxy groups (e.g., Sun et al. 2009). While this range of models is

clearly somewhat extreme, there are three important caveats to consider:

i) since the role of observational selection effects is not well understood for GGCs,

current observations cannot rule out the existence of a population of virialized

groups which are X-ray faint and may have lower gas fractions, therefore the

AGN 8.7 model cannot be necessarily excluded on this bases;

ii) there are too few observational constraints on high-redshift systems to judge

whether or not the various models are realistic at earlier times; and

iii) for the purposes of this chapter, accurately reproducing the observed Universe

is of secondary importance to my primary goal of investigating the underlying

trends and interactions of these two mechanisms: baryonic feedback and neu-

trino free-streaming.

Bearing these caveats in mind, I elected to explore the trends using the full ensemble

of cosmo-OWLS models discussed.

A resolution study for cosmo-OWLS can be found in Appendix A of Le Brun et al.

(2014), where it is demonstrated that the gas and stellar mass fractions of the simulated

GGCs are reasonably well converged. Specifically, these metrics change by only a few

percent over an increase in mass resolution of a factor of 8.
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Table 2.2: Ranges of total numbers of haloes in the various mass bins used for the diagnostics
in this Chapter. The columns are: (1) The diagnostic for which the specified range is used;
(2) Boundaries of the specified bin in units of log(M�); (3) The redshift value of the simula-
tion snapshot from which haloes are sourced; and (4) The minimum and maximum number of
haloes found in the specified bin across the various BAHAMAS and cosmo-OWLS runs exam-
ined.

(1) (2) (3) (4) (5)

Diagnostic Mass range
[
M = log

(
M200

M�

)]
z Nmin

haloes Nmax
haloes

Halo Mass Functions 2× 1012 ≤M < 1015

0 114,920 - 134,152
1 83,441 - 116,923
2 34,606 - 61,474

Cluster Counts

M ≥ 1012

0 231,603 - 261,120
1 198,028 - 239,211
2 101,358 - 149,565

M ≥ 1013

0 19,011 - 28,115
1 9,292 - 17,472
2 1,810 - 4,979

M ≥ 1014

0 646 - 1,675
1 101 - 337
2 2 - 9

Density Profiles

12.0 ≤M < 12.5

0

153,581 - 18,2687
12.5 ≤M < 13.0 50,152 - 59,366
13.0 ≤M < 13.5 14,176 - 20,303
13.5 ≤M < 14.0 3,889 - 6,137
14.0 ≤M < 14.5 856 - 1,460
14.5 ≤M < 15.0 83 - 206
15.0 ≤M < 15.5 7 - 10

Mass-Concentration 13 ≤M < 15.5
0 19,011 - 28,115
1 9,292 - 174,72
2 1,810 - 4,970

Halo CLustering
12 ≤M < 13

0
208,218 - 237,768

13 ≤M < 14 18,065 - 26,440
14 ≤M < 15 939 - 1,666
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2.2.2 BAHAMAS

In common with cosmo-OWLS, the BAHAMAS suite presented in McCarthy et al.

(2017) consists of 400 Mpc/h comoving on a side, periodic box simulations contain-

ing 2 × 10243 particles. In this chapter, I use a subset of the BAHAMAS suite whose

initial conditions are based on the updated maximum-likelihood cosmological param-

eters derived from the WMAP-9 data (Hinshaw et al., 2013); i.e., {Ωm, Ωb, ΩΛ, σ8,

ns, h} = {0.2793, 0.0463, 0.7207, 0.821, 0.972, 0.700}.

I also use a massive neutrino extension of BAHAMAS recently completed by McCarthy

et al. (2018). Specifically, using the semi-linear algorithm of Ali-Haı̈moud and Bird

(2013), McCarthy et al. have run massive neutrino versions of the WMAP-9 cos-

mology for several different choices of the total summed neutrino mass, Mν , ranging

from the minimum mass implied by neutrino oscillation experiments of ≈ 0.06 eV

(Lesgourgues and Pastor, 2006) up to 0.48 eV, in factors of two. When implementing

massive neutrinos, all other cosmological parameters are held fixed apart from σ8 and

the matter density in cold dark matter, which was decreased slightly to maintain a flat

model (i.e., so that Ωb + Ωcdm + Ων + ΩΛ = 1). The parameter σ8 characterises the

amplitude of linear theory z = 0 matter density fluctuations on 8h−1 Mpc scales. In-

stead of holding this number fixed, the amplitude, As, of the density fluctuations at the

epoch of recombination (as inferred by WMAP-9 data assuming massless neutrinos)

is held fixed, in order to retain agreement with the observed CMB angular power spec-

trum. Other strategies for implementing neutrinos are also possible (e.g., decreasing

ΩΛ instead of Ωcdm) but McCarthy et al. have found with small test simulations that

the precise choice of what is held fixed (apart from the power spectrum amplitude)

does not have a large effect on the local GGC population. Most important is the value

of Ων , which is related to Mν via Ων = Mν/(93.14 eV h2) (Lesgourgues and Pastor,

2006) and ranges from 0.0013 to 0.0105 for our choices of summed neutrino mass. For

completeness, the runs with Mν = 0.0, 0.06, 0.12, 0.24, and 0.48 eV have σ8 = 0.821,

0.813, 0.799, 0.766, and 0.705, respectively.
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For both the runs with and without massive neutrinos, the Boltzmann code CAMB3

(Lewis et al. 2000; April 2014 version) was used to compute the transfer functions

and a modified version of N-GenIC to create the initial conditions, at a starting red-

shift of z = 127. N-GenIC has been modified by S. Bird to include second-order

Lagrangian Perturbation Theory corrections and support for massive neutrinos4. Note

that in producing the initial conditions for BAHAMAS, the separate transfer functions

computed by CAMB for each individual component (baryons, neutrinos, and CDM)

are used, whereas in cosmo-OWLS (and indeed in most existing cosmological hydro

simulations) the baryons and CDM adopt the same transfer function, corresponding to

the total mass-weighted function. Note also that McCarthy et al. use the same ran-

dom phases for each of the simulations, implying that intercomparisons between the

different runs are not subject to cosmic variance complications.

The BAHAMAS runs used in this chapter have dark matter and (initial) baryon particle

masses for a WMAP-9 massless neutrino cosmology of ≈ 3.85 × 109 h−1 M� and

≈ 7.66× 108 h−1 M�, respectively. The particle masses differ only slightly from this

when massive neutrinos are included. These alterations are detailed in Table 2.1. The

gravitational softening of the runs presented is fixed to 4 h−1 kpc, as in cosmo-OWLS.

The BAHAMAS runs were carried out with the same version of the GADGET3 code that

was used in (cosmo-)OWLS. As noted above, to perform runs with massive neutrinos

included, McCarthy et al. used the semi-linear algorithm developed by Ali-Haı̈moud

and Bird (2013) (see also Bond et al. 1980; Ma and Bertschinger 1995; Brandbyge

et al. 2008; Brandbyge and Hannestad 2009; Bird et al. 2012), implemented in the

GADGET3 code. Schematically, the semi-linear code computes neutrino perturbations

on the fly at every time step using a linear perturbation integrator sourced from the

non-linear baryons+CDM potential, adding the result to the total gravitational force.

Because the neutrino power is calculated at every time step, the dynamical responses of

the neutrinos to the baryons+CDM and of the baryons+CDM to the neutrinos are mu-

tually and self-consistently included. Because the integrator uses perturbation theory,

3http://camb.info/
4https://github.com/sbird/S-GenIC



2.2. Simulations 45

this method does not account for the non-linear response of the neutrino component

to itself. However, this limitation has negligible consequences for my purposes, and

indeed most analyses of BAHAMAS, as only a very small fraction of the neutrinos (with

lower velocities than are typical) are expected to collapse and the neutrinos as a whole

constitute only a small fraction of the total matter density. This has been explicitly

tested by comparing the predicted mass density profiles of simulated GGCs using the

semi-linear algorithm with that predicted using a particle-based treatment of the mas-

sive neutrinos (e.g., Viel et al. 2010; Bird et al. 2012), for simulations with CDM and

neutrinos but no baryons. The resulting mass profiles typically agree to better than two

percent accuracy over the full range of radii resolved in the simulations.

In addition to neutrinos, the various BAHAMAS runs (with or without massive neutri-

nos) also include the effects of radiation when computing the background expansion

rate. This leads to a few percent reduction in the amplitude of the present-day linear

matter power spectrum compared to a simulation that only considers the evolution of

dark matter and dark energy in the background expansion rate.

As touched on above, BAHAMAS differs significantly from cosmo-OWLS in terms of

its approach to the choice of parameter values for the subgrid feedback. In particular,

McCarthy et al. (2017) explicitly calibrated the stellar and AGN feedback models to

reproduce the observed present-day galaxy stellar mass function and the amplitude of

the hot gas mass−halo mass relation of GGCs respectively, as determined by X-ray

observations. By calibrating to these observables, the simulated GGCs are guaranteed

to have the correct baryon content in a global sense. The associated back reaction

of the baryons on the total matter distribution should therefore also be broadly cor-

rect. McCarthy et al. (2017) have shown that the BAHAMAS simulations reproduce an

unprecedentedly wide range of properties of massive systems, including the various

observed mappings between galaxies, hot gas, total mass, and black holes.

A resolution study for BAHAMAS is presented in Appendix C of McCarthy et al.

(2017), where it is demonstrated that the gas and stellar mass fractions are reason-

ably well converged (to better than ≈ 10% in the case of a strong test, and to ≈ 2% in

the case of a weak test, using the terminology of Schaye et al. 2015) over the range of
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halo masses that I consider in this work.

In Table 2.2 I present an overview of the various mass bins used for the diagnostics

throughout this Chapter. In each bin, I specify the minimum and maximum number of

haloes found to occupy it across the various cosmo-OWLS and BAHAMAS simulation

runs examined.

2.3 Halo Abundances

2.3.1 Halo Mass Functions

I begin by examining the effects of baryonic physics and the inclusion of massive

neutrinos, both separately and in combination, on the halo mass function (HMF). I

define the halo mass function, Φ, as the number of haloes with mass M200,crit per

comoving cubic Mpc per logarithmic unit mass. In other words,

Φ ≡ dn

d log10(M200,crit)
, (2.3)

where M200,crit is the mass contained within a radius that encloses a mean density of

200 times the universal critical density at that redshift. Haloes are identified using a

standard FoF algorithm run on the dark matter distribution, with a linking length of 0.2

in units of the mean interparticle separation. The SUBFIND algorithm (Springel et al.,

2001; Dolag et al., 2009) is used to calculate the spherical overdensity mass M200,crit

(i.e., the mass contained within the radius that encloses a mean density that is 200×

the critical density at that redshift). These spheres are centred on the position of the

main subhalo’s particle with the minimum gravitational potential.

In the left panel of Figure 2.1 I plot the HMFs for the various baryon physics runs

(without neutrinos) from cosmo-OWLS. For runs that lack feedback from AGN, the

HMF, as expected, largely follows that of the DMONLY case, at least for the range of

halo mass in which I am interested for the purposes of this chapter. However, when

one includes feedback from AGN the situation changes significantly – gas is ejected
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Figure 2.1: Halo mass functions (HMFs).for the different baryon physics runs (in the absence
of neutrino physics) and the different massive neutrino runs in the absence of baryon physics.
Top Left: HMFs for the different baryon physics runs (in the absence of neutrino physics) from
cosmo-OWLS. Bottom Left: The cosmo-OWLS HMFs normalised by the DMONLY case. Top
Right: HMFs for the different collisionless massive neutrino runs from BAHAMAS. Bottom
Right: The BAHAMAS HMFs normalised by the massless neutrino case. Suppression of the
HMF due to AGN feedback (orange, yellow and green, left) is important at intermediate (group)
masses but becomes less important at high halo masses, where it begins to converge towards
the DMONLY case (with the mass scale where the convergence occurs depending on the AGN
heating temperature ∆Theat). The suppression due to feedback is only a weak function of
redshift. In the collisionless neutrino simulations (right panel), the suppression is strongest for
the highest mass haloes and, in contrast to the effects of feedback, exhibits a strong redshift
dependence.
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Figure 2.2: The fractional change in the halo mass, relative to the DM-only, massless neutrino
case, arising from the inclusion of baryonic feedback (left panel) and neutrino free-streaming
(right panel) at z = 0. As in Figure 2.1, colours denote the various BAHAMAS and cosmo-
OWLS runs as detailed in Table 2.1. Top: AGN feedback can reduce the mass of a halo by up
to ≈20% at group masses, but tends towards the DMONLY case at higher masses with the mass
scale for convergence depending on the choice of AGN heating temperature ∆Theat. Bottom:
The free-streaming of massive neutrinos in collisionless simulations reduces halo masses to a
similar degree at group masses, but is of increasing importance at higher masses. These effects
drive those seen in the HMFs (Figure 2.1).
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from the high-redshift progenitors of GGCs (McCarthy et al., 2011) leading to a sig-

nificant suppression (of up to ≈ 20 − 30%) of the HMF at masses of ∼ 1013−14M�

in M200,crit, in agreement with that previously reported by Velliscig et al. (2014), who

analysed a subset of the cosmo-OWLS runs (see also Cui et al. 2014; Cusworth et al.

2014). The reduction in the baryonic mass also leads to a shallowing of the gravi-

tational potential well. This causes the dark matter distribution to expand outwards

becoming less densely concentrated, and also results in a reduction in the accretion

rate onto the main progenitor (e.g., Sawala et al. 2013; Velliscig et al. 2014), which is

why the M200,crit masses of individual haloes can be reduced by somewhat more than

the universal baryon fraction of Ωb/Ωm.

The deeper potential wells of higher-mass (M200,crit>1014M�) systems are able to re-

tain a larger fraction of their baryons. Consequently, the behaviour in the HMF tends

back towards the DMONLY case at the highest masses. The precise mass scale where

the AGN runs converge towards the DMONLY case depends on the adopted heating

temperature, with higher heating temperatures increasing this mass scale, as one would

anticipate based on the strong dependence of the baryon fraction on the AGN heating

temperature reported previously by Le Brun et al. (2014) and McCarthy et al. (2017).

At lower masses (below 1013M�), the trends for the AGN cases also tend back towards

the DMONLY case. This is due to inefficient accretion onto the black holes. The precise

location of this convergence in the simulations, however, is sensitive both to the initial

mass of black hole sink particles and the halo mass at which they are seeded.

In contrast, neutrino free-streaming, as shown in the right panels of Figure 2.1, pref-

erentially suppresses the high-mass end of the HMF (see also Costanzi et al. 2013).

This is due to the fact that the effect of the free-streaming of massive neutrinos on the

linear matter power spectrum grows with time, and appears in the clustering statistics

from the collapse redshift of the halo. Consequently, more massive objects, which

collapse later in CDM-based cosmologies, are more strongly affected by neutrino free-

streaming. The strength of this suppression also varies strongly as a function of the

summed neutrino mass, with higher values leading to a stronger reduction of the HMF.

Interestingly, while the suppression due to baryonic feedback (left panels of Figure 2.1)
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is only weakly dependent on redshift, the massive neutrino runs show stronger evolu-

tion with redshift.

While Figure 2.1 shows the change in number density at fixed halo mass, I also want

to explicitly examine the change in halo mass at fixed number density. This is a more

physical measurement, since baryonic feedback and neutrino free-streaming do not

directly affect the abundance of haloes, rather they alter distribution of the masses of

the haloes.

In order to determine the effects of baryonic feedback and neutrino free-streaming

on individual haloes, I construct a matched set of haloes across all simulation runs.

Haloes are matched using the unique particle IDs for the dark matter particles. For

each particle assigned to a halo in the DM-only, massless neutrino case, the particle

with the matching ID is identified in each of the other simulations. In each case, the

halo containing the highest number of identified particles is selected as the match.

This method finds matches for ≈ 83% and ≈ 90% of haloes in the cosmo-OWLS and

BAHAMAS cases respectively, for haloes in the range 12 ≤ log(MDMONLY
200,crit /M�) ≤ 15

where the MDMONLY
200,crit value under consideration is that of the halo in the DM-only,

massless neutrino case.

I show in Figure 2.2 the fractional change in halo mass as a function of the mass in

the dark matter only, massless neutrino case. Unsurprisingly, the behaviour of the

alteration to halo mass arising from baryonic feedback and neutrino free-streaming is

almost identical to their effects on the HMF (Figure 2.1).

Henceforth, when using the matched sample of haloes I use for each halo the values of

M200 and r200 that correspond to the matching halo in the dark matter-only, massless

neutrino case.

Separability

While the effects of baryon physics and neutrino free-streaming have individually been

investigated in a number of previous studies (although generally with much poorer
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Figure 2.3: Comparison of the halo mass functions arising when simultaneously simulat-
ing baryonic feedback and neutrino free-streaming, and those calculated by multiplying the
separate effects of baryonic feedback in the absence of neutrinos and the effects of neutrino
free-streaming in the absence of baryons. Top: Curves display the HMFs arising when si-
multaneously simulating neutrino free-streaming and baryonic feedback. The multiplicative
calculations are displayed by crosses. In both cases, colours correspond to different values for
the summed neutrino mass while solid, dashed and dotted curves display the results at redshifts
of 0, 1 and 2 respectively. Bottom: The ratio of each simultaneous simulation to the corre-
sponding multiplicative prediction. The two cases agree to within a few percent accuracy over
the full range of halo masses and redshifts that I have examined.
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Figure 2.4: Two tests of the separability of the effects of neutrino free-streaming and baryon
physics on halo mass. Top: The effect on the halo mass due to baryon physics at different fixed
values of the summed neutrino mass for a matched set of haloes. Colours correspond to the
different values for the summed neutrino mass. The effect of baryon physics on the halo mass
is independent of the choice of summed neutrino mass to approximately 1% accuracy. Bot-
tom: The effect on the halo mass due to neutrino free-streaming for different physics models,
normalised to the collisionless case. Solid and dashed lines correspond to the dark matter-
only results and those of the BAHAMAS feedback model respectively. The effect of neutrino
free-streaming is independent of the implemented baryon physics.
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statistics), their combined effect has not been examined. In particular, it is unclear

to what extent the baryonic effects (particularly gas expulsion from AGN feedback)

and neutrino free-streaming can be treated independently, or whether they amplify (or

perhaps suppress) each other.

To answer this question, I compare the HMFs of the BAHAMAS runs that include both

baryon physics and massive neutrinos (curves) with that expected if the feedback and

free-streaming are treated separately (crosses) in the top panel of Figure 2.3. Specif-

ically, I characterise the effect of the HMF due to AGN feedback alone as the ratio

of the HMF of the BAHAMAS hydro run with massless neutrinos (NU 0.00) to that of

the BAHAMAS DMONLY run with massless neutrinos (NU 0.00 DM), and I characterise

the effect due to neutrino free-streaming alone as the ratios of the various BAHAMAS

DMONLY runs with massive neutrinos (NU 0.06 DM, NU 0.12 DM, NU 0.24 DM, and

NU 0.48 DM) to the BAHAMAS DMONLY run with massless neutrinos (NU 0.00 DM).

I then multiply these separate suppression factors to obtain the combined suppression,

such that the multiplicative prediction for the HMF is given by:

ΦMult
NU X = ΦNU 0 DM ·

(
ΦNU X DM

ΦNU 0 DM

)
·
(

ΦNU 0

ΦNU 0 DM

)

=
ΦNU X DM · ΦNU 0

ΦNU 0 DM

, (2.4)

where NU X DM is the chosen collisionless (i.e. excluding baryonic physics) run

with massive neutrinos, i.e. X ∈ {0.06, 0.12, 0.48}.5

In the lower panel of Figure 2.3 I show the ratio of the HMF of the self-consistent

5I have also experimented with combining the separate effects of neutrinos in additive fashion, by
adding the mass loss due to baryons alone to that from neutrino free-streaming alone and comparing
the resulting halo mass function with that derived from the self-consistent simulations with both effects
present simultaneously. Explicitly, for a measurement f I define the additive prediction in the case with∑
Mν= X eV, fAddNU X , as:

fAddNU X = fNU 0 DM + (fNU X DM − fNU 0 DM ) + (fNU 0 − fNU 0 DM )

= fNU X DM + fNU 0 − fNU 0 DM (2.5)

I find, however, that this generally results in a poorer reproduction of the HMF predicted by the self-
consistent simulations, whereas the multiplicative treatment works very well over all mass ranges. I
therefore proceed with the multiplicative approach.
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simulations (i.e., with both baryons and neutrinos present together) to that predicted

by the treating the baryons and neutrinos separately. In other words, I take the ratio

of the lines and crosses in the top panel of Figure 2.3. As can be seen, multiplying

the separate effects of baryon physics and neutrino free-streaming reproduces their

combined effect obtained when both are included simultaneously remarkably well.

The self-consistent HMFs are reproduced to a few percent accuracy by combining the

separate effects of neutrinos and baryons in a multiplicative fashion over the full range

of halo masses, summed neutrino masses, and redshifts that I consider.

It is perhaps somewhat surprising that the effects of baryon physics and neutrinos can

be treated independently in this way. For example, an implication of Equation 2.4

is that a halo whose mass has been reduced (relative to a dark matter-only sim) by

neutrino free-streaming is not any more susceptible to gas expulsion by AGN feedback

than a halo of the same mass in a massless neutrino case. In other words, the effects of

baryon physics or neutrino free-streaming in a simulation with both present are almost

of the same magnitude as when one of these processes is omitted.

To further explore the separability of baryon physics and neutrino free-streaming, I

perform two further tests. Firstly, I examine the amplitude of the isolated effect of

baryon physics on the halo mass in the context of the various neutrino masses, i.e. is

the amplitude of the change in the halo mass due to baryon physics sensitive to the

choice of neutrino physics? For each chosen neutrino mass X ∈ { 0.06, 0.12, 0.24,

0.42 }, I compare the mass of each matched halo in the DM-only dissipationless run

incorporating the selected neutrino mass, MNU X DM , to its mass in the hydrodynam-

ical run with that neutrino mass, MNU X . To directly compare between the different

neutrino runs, I plot the median ratio of these masses MNU X/MNUXDM in the top

panel of figure 2.4 in bins of the mass of the matching halo in the DM-only case with

massless neutrinos.

To an accuracy of approximately 1 per cent, the effect on the median halo mass due to

baryon physics is independent of the choice of summed neutrino mass.

In the bottom panel of Figure 2.4, I show the effect on the halo mass due to neutrino
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free-streaming for two different physics models: the dark matter-only case (charac-

terised as MNUX/MNU0.00) and the BAHAMAS calibrated feedback model (charac-

terised as MNUXDM/MNU0.00DM ). Here one can again see that the effects of neu-

trino free-streaming are nearly independent of the included baryon physics. Thus, the

level of accuracy with which the simple separability assumption reproduces the self-

consistent neutrinos+baryon physics simulations in Figure 2.3 is no coincidence, it

reflects the fact that these processes truly are approximately independent of one an-

other.

2.3.2 Cluster Counts

In Figure 2.5 I show the effects of baryon physics and neutrino free-streaming on

the halo space density for haloes with masses exceeding different threshold values of

1012 M�, 1013 M�, and 1014 M�. At a given redshift, I compute the space density by

simply integrating the HMF above a given mass threshold6. The halo space density, or

‘number count’, is more closely linked to what is typically measured observationally,

as many surveys do not have a sufficiently large volume to robustly measure the HMF,

particularly at high masses.

The results presented in the top panels of Figure 2.5 demonstrate that the evolution

of the halo space density is sensitive to baryon physics and the presence of massive

neutrinos, although the dependencies on halo mass and redshift are clearly stronger.

In the bottom panels of Figure 2.5, I effectively remove the halo mass dependence

by showing the ratio of the halo space density with respect to that predicted by the

DMONLY case (left) or with respect to the NU 0.00 DM case (right) for the differ-

ent mass thresholds. The bottom left panel of Figure 2.5 shows that AGN feedback

reduces the abundance of haloes of fixed mass (as shown previously, e.g., Cusworth

et al. 2014; Velliscig et al. 2014). I find that the suppression does not evolve signifi-

cantly with redshift. By contrast, the abundance of haloes above a fixed mass threshold

becomes increasingly suppressed at high redshift by neutrino free-streaming, particu-

6Note that because of the steepness of the HMF, the total halo space density is dominated by haloes
with masses near the chosen threshold value.
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Figure 2.5: Evolution of the comoving halo space densities above different mass thresholds
[i.e., n(M200,crit > Mthreshold, z)] for the different baryon physics runs in the absence of neu-
trino physics using cosmo-OWLS and for the different neutrino physics runs in the absence of
baryon physics using the different massive neutrino runs from BAHAMAS. Top Left: Comov-
ing halo space densities for the different baryon physics runs in the absence of neutrino physics
from cosmo-OWLS. Bottom Left: The halo space densities for the baryon physics models
normalised to the DMONLY cas Top Right: Comoving halo space densities for the different
collisionless neutrino physics runs from BAHAMAS. Bottom Right: The halo space densities
for the massive neutrino models normalised to the dark matter-only, massless neutrino (NU

0.00 DM) case Solid, dashed, and dotted curves correspond to threshold masses of 1012 M�,
1013 M�, and 1014 M�, respectively. The introduction of AGN feedback results in a sup-
pression of the halo space density that is nearly independent of redshift, while the suppression
above a fixed mass threshold due to neutrino free-streaming increases strongly with increasing
redshift, particularly for models with high values of the summed neutrino mass.
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Figure 2.6: Comparison of the cluster counts above 1012M� arising when simulating bary-
onic feedback and neutrino free-streaming self-consistently (solid lines) and those calculated
by multiplying the separate effects of baryonic feedback in the absence of neutrinos , and the
effects of neutrino free-streaming in the absence of baryonic physics (dashed lines). Bottom:
each of the multiplicative models normalised by the corresponding self-consistent case. In gen-
eral, treating these effects separately reproduces the combined result to a few percent accuracy
across the range of redshifts considered here.
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larly for high mass thresholds and high summed neutrino masses (bottom right panel

of Figure 2.5). The latter result can be understood by recognizing that by considering

haloes above a fixed mass threshold, we are considering increasingly rare systems with

lower initial overdensities when moving to higher redshift (e.g., a 1013 M� at z = 2

will correspond to a massive cluster today).

Separability

I now examine the separability of the two effects. I follow the technique laid out in

Section 2.3.1, wherein the combined effect is predicted by multiplying together the

fractional effect due to each of the mechanisms in isolation. As I adopt this approach

for each of the tests going forward, I here generalise Equation 2.4 so that the multi-

plicative prediction for an arbitrary measurement f in the context of a cosmology with

a summed neutrino mass
∑
Mν /eV= X is given by:

fMult
NUX = fNU0DM ·

(
fNUXDM
fNU0DM

)
·
(

fNU0

fNU)DM

)
=
fNUXDM · fNU0

nNU0DM

(2.6)

In Figure 2.6 I present the results of this investigation. As was the case for the HMF,

I find that the combined effects of baryon physics and neutrino free-streaming on the

integrated halo space density can be recovered to a few percent accuracy by treating

the baryon physics and neutrino effects separately.

2.4 Halo structure

Having explored the separate and combined effects of feedback and massive neutrinos

on the overall abundance of haloes, I now examine their effects on the internal structure

of haloes. In particular, I examine the spherically-averaged density profiles in bins of

halo mass, and the halo mass−concentration relation.
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2.4.1 Total Mass Density Profiles

In Figures 2.7 and 2.8, I plot the median total mass density profiles in bins of the

total halo mass. Each panel corresponds to a different halo mass range (each 0.5 dex

in width), ranging from log(M200,crit/M�) = 13 to 15.5 (top left to bottom right).

Note that ‘total mass’ here includes only DM in collisionless runs (i.e. Figure 2.8 and

subsequently Figure 2.10), while additionally including the contributions of stars and

gas in hydrodynamical runs (i.e. Figure 2.7 and subsequently Figures 2.9 and 2.11).

Despite the differences in composition, these measures are directly equivalent as the

DM content in collisionless runs is increased to represent the ‘missing’ baryonic mass.

Despite this, I never directly compare results from these two sets of simulation runs,

only comparing the relative change in the profiles.

Figure 2.7 shows the effects of baryon physics in the absence of massive neutrinos

on the total mass density profiles, while Figure 2.8 shows the effects of neutrino free-

streaming in the absence of baryon physics. To reduce the dynamic range of the plots,

I have scaled the mass density by r2 (i.e. so that an isothermal distribution would

correspond to a horizontal line). The subpanels display the ratio of the each profile to

the median profile in the relevant DM-only, massless neutrino case (i.e. DMONLY in

Figures 2.7 and 2.9; NU 0.00 DM in Figures 2.8 and 2.10). The oscillatory features

visible at low radii in Figure 2.10 are the result of radial bin edge effects. As r/r200

in the matched case is defined in terms of the r200 value of the matched halo in the

DMONLY case, radial bins in a given mass bin have the same physical sizes across all

simulation runs. As neutrino free-streaming lowers the overall density while leaving

the shape of the profile unchanged, this means that local random deviations from a

smooth density distribution are found in the same bin in all cases, leading to the noise

in low radii (and therefore narrow and less populated) bins being highly correlated

between simulation runs. Note that this effect is not present in the matched cases

presented in Figures 2.9 and 2.11, as inclusion or otherwise of baryonic physics, and

the relative strength thereof, alter the dynamics of the central regions, fundamentally

changing the mass distribution.
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Figure 2.7: Median radial total mass density profiles in 0.5 dex mass bins for different baryon
physics models in the absence of neutrino physics at fixed cosmology. The panels correspond
to different mass bins with the stated ranges in log(M200,crit/M�). The upper section of each
panel displays the median profiles scaled by r2; the lower section of each panel displays the
ratio of each of the radial density profiles to that of the DM-only, massless neutrino case
(DMONLY) in the selected mass bin. Haloes are binned on their own, present-day mass (i.e.
not using the matched halo mass). Different baryon physics runs are denoted by colour as in
Figures 2.1 and 2.5. Baryon physics significantly alter the overall shape of the radial density
profile. Turning on cooling (i.e. going from NOCOOL to REF) significantly increases the den-
sity at small radii (r . 0.1 R200). AGN feedback reduces the central densities, increasing the
density at higher (r > 1 R200) radii. The strength of these effects increases with the AGN
heating temperature (e.g. going from AGN 8.0 to AGN 8.7).
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Figure 2.8: Median radial total mass density profiles in 0.5 dex mass bins for different neutrino
physics models in the absence of baryonic physics at fixed cosmology. The panels correspond
to different mass bins with the stated ranges in log(M200,crit/M�). The upper section of each
panel displays the median profiles scaled by r2; the lower section of each panel displays the
ratio of each of the radial density profiles to that of the DM-only, massless neutrino case (NU

0.00 DM) in the selected mass bin. Haloes are binned on their own, present-day mass (i.e. not
using the matched halo mass). Different neutrino masses are denoted by colour as in Figures
2.1 and 2.5. Increased values of

∑
Mν result in a ’tilt’ of the radial density profile - lowering

the densities within ≈ 0.4 R200 and increasing it above this radius.
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Figure 2.9: Median radial total mass density profiles in 0.5 dex mass bins for different
baryon physics models in the absence of neutrino physics at fixed cosmology. Individual
panels correspond to mass bins in the dark matter-only, massless neutrino simulation with the
stated ranges of log(M DMONLY

200,crit /M�). Within each of the 6 panels,the upper section displays
the median profiles scaled by r2, while the lower section displays the ratio of each density
profile to that of the DM-only, massless neutrino case (DMONLY) in that bin. Haloes in
other simulations were binned using the mass of their matched DM only, massless neutrino
equivalent and r200 corresponds to that from the DM-only, massless neutrino run. Line colours
correspond to runs with different subgrid prescriptions for baryon physics as in Figures 2.1
and 2.5. The vertical dashed line marks the location of three times the gravitational softening
length from the halo center.

The inclusion of baryonic cooling results in much higher central densities while leaving
the outskirts largely untouched compared to the NOCOOL case. The introduction of AGN
heating redistributes material from the central regions (r/r200 < 0.1) to the outskirts
(r/r200 > 0.5). This effect is greatest at low halo masses.
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Figure 2.10: Median radial total mass density profiles in 0.5 dex mass bins for different
neutrino physics models in the absence of baryonic physics at fixed cosmology. As in Figure
2.9 the panels correspond to different mass bins with the stated ranges in log(M DMONLY

200,crit /M�).
The upper section displays the median profiles scaled by r2, while the lower section of each
panel displays the ratio of each of the radial density profiles to that of the DM-only, massless
neutrino case (NU 0.00 DM) in the selected mass bin; and haloes are binned on the mass
of the matched DM-only, massless neutrino halo. Different neutrino masses are denoted by
colour as in Figures 2.1 and 2.5. The vertical dashed line marks the location of three times the
gravitational softening length from the halo center.

Neutrino free-streaming lowers the amplitude of the mass density profiles while approximately
preserving their NFW-like shape (within the virial radius).
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Figure 2.11: Comparison of the median radial total mass density profiles of haloes arising
when simulating baryonic feedback and neutrino free-streaming simultaneously (curves) and
with that calculated by multiplying their separate effects (crosses). Haloes are binned using
their self-consistent masses from each of the simulations, with the mass ranges for each bin
stated in units of log(M200,crit/M�). Line colours correspond to runs with different neutrino
masses as in Figs 2.3 and 2.4. The upper section in each panel displays the median profiles
scaled by r2, while the lower panel shows the ratio of each of the multiplicatively predicted
profiles to the corresponding self-consistent profile. The two cases agree to within a few percent
at r > 0.05r200, with the exception of the highest mass bin where there are relatively poor
statistics.
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It is clear from Figure 2.7 that the baryonic processes, as expected, result in marked

alterations to the density profile. Most notably, the inclusion of radiative cooling (i.e.

moving from NOCOOL to REF) increases the density at small radii r < 0.1 R200 as

particles can sink lower into the gravity well. Activating AGN feedback opposes this

process, heating the central regions and lowering their density. This also results in

increased densities at higher radii, r > 1 R200, an effect that can be understood as a

side effect of imposing a fixed mass bin. Altering the feedback processes alters the

shape of the radial density profile, but the binning scheme ensures that the median

mass contained be identical in each case.

This effect can also be seen in the neutrino mass case displayed in Figure 2.8. Higher

values of
∑
Mν lower the density at small radii and increase it at higher radii, with

the inflection point lying at about 0.4 R200. In contrast to Figure 2.7 however, this is

clearly the result of a change in the ’tilt’ of the profile.

As above, while this information is useful from an observational point of view, my

aim is to understand the effect of these physics on a halo-by-halo basis. I therefore

construct a new selection of haloes for each bin, binning first the haloes in the relevant

DM-only, massless neutrino case by their total mass, then selecting these same objects

in the other simulation runs using the unique particle ID matching scheme described

in Section 2.3.1. These results are displayed in Figures. 2.9 and 2.10.

As seen in Figure 2.7, Figure 2.9 shows that the inclusion of baryonic physics can

significantly alter the radial total density profile away from the standard Navarro-

Frenk-White (NFW) shape. In the absence of radiative cooling and AGN feedback,

the baryons closely trace the dark matter resulting in minimal alteration to the profile

(e.g., Lin et al. 2006). However, the activation of radiative cooling, star formation and

stellar feedback causes much higher central densities. In contrast to Figure 2.7, there is

a corresponding reduction in the density between 0.08 and 1 r200 of≈ 10%, as seen by

comparing the REF and NOCOOL cases. AGN heating somewhat counteracts this effect,

reducing central densities while redistributing material to the outer regions of the halo.

While the density profiles of all three AGN models examined here are similar between

0.08 and 1 r200, higher values for AGN heating result in higher densities beyond r200
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and lower densities in the central regions of the halo. The redistribution of material

causes the scale radius to increase relative to the DMONLY case. This makes intuitive

sense as the more energetic (albeit comparatively infrequent) outbursts of AGN with

higher heating temperatures will eject more mass from the progenitors of the halo and

cause a greater degree of expansion of the dark matter. The effects of baryonic physics

become less important in higher mass bins, due to the deeper potential wells of these

systems.

Figure 2.10 shows that, to a first approximation, the impact of neutrino free-streaming

alone (i.e., with no baryons present) is to produce haloes with a lower overall amplitude

of the mass density profiles within r200 while approximately preserving the Navarro-

Frenk-White (NFW)-like shape. In effect, the free-streaming of massive neutrinos acts

primarily to reduce the mass of a given halo relative to the mass it would achieve

in the absence of neutrino physics. Beyond ∼ r200, however, there is also a change

in shape, as is evident from the ‘oscillatory’ feature in the subpanels that show the

ratio of the profiles with respect to that of the massless neutrino case. Physically, I

interpret this feature as being due to the less evolved state of collapse of GGCs in the

simulations with massive neutrinos. In the language of clustering, the scale that marks

the transition from the ‘1 halo’ term (i.e., the profile of the central halo) to the ‘2 halo’

term (the clustering of other nearby systems), as well as its amplitude, is altered by

neutrino free-streaming. I plan to explore the use of this feature as a constraint on the

summed neutrino mass in a future study.

This effect is responsible for the changing ’tilt’ observed in Figure 2.8. Haloes selected

at fixed self-consistent halo mass in runs with higher values of
∑
Mν correspond to

higher mass bins in terms of their matched halo mass. Since neutrino free-streaming

acts to lower the amplitude of the density profile without changing its shape, these

objects transition through ρ ∝ r−2 at higher values of r
R200

(i.e. are less concentrated).

At the same self-consistent mass, they therefore have lower densities in the central

regions and higher densities at higher radii. It is this effect that dominates Figure 2.8.
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Separability

As in Section 2.3, I investigate to what degree the two processes may be treated inde-

pendently. In Figure 2.11, I compare the results of simulation runs combining baryon

physics and neutrino free-streaming (curves) with those obtained by multiplying to-

gether the strengths of the two effects in isolation, this time for the radial density

profiles (crosses). My formalism for this is identical in form to that shown in eq. (2.4),

with the HMF exchanged for the radial density profile. As can be seen, the combined

effects are reproduced to an accuracy of a few percent in all but the very central regions

of the halo (r < 0.05 r200), with the exception of the highest mass bin where we have

comparatively poor statistics.

It is important to note here that in Figure 2.11 I have reverted back to an unmatched set

of haloes. That is, I have used the self-consistent masses from each of the simulations

for this test.

2.4.2 Mass−Concentration Relation

The internal structure of CDM haloes in cosmological simulations is known to depend

on their formation history, in that systems that collapsed earlier tend to have higher

present-day concentrations on average than those that collapsed later on (e.g., Wech-

sler et al. 2002). This sensitivity is linked to the evolution of the (background) density

of matter in the Universe, such that systems that collapsed earlier on had to have a

higher physical density (in an absolute sense) to be overdense with respect to the back-

ground density, which was higher at earlier times. In CDM models, low-mass haloes

typically collapse before high-mass haloes and, when combined with the evolution of

the background density, this gives rise to the expectation that low-mass systems ought

to be more concentrated than high-mass haloes, a result which is borne out in high

resolution cosmological simulations (e.g., Bullock et al. 2001; Eke et al. 2001; Neto

et al. 2007).

As I have demonstrated in Section 2.4.1, non-gravitational processes (e.g., feedback)
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Figure 2.12: Best fit total mass c(M) relations for different baryon physics models in the
absence of neutrino physics in the WMAP-7 cosmology (left) and for different

∑
Mν values

in the absence of baryonic physics in WMAP-9 cosmology (right) at z = 0. Halo masses are
those from each of the individual simulations (i.e., not the matched DM-only masses). Stars
mark the locations of the mean concentration value in each 0.5 dex mass bin, solid lines display
the best-fit power laws to these means with the functional form of equation 2.8. The upper
panel displays these in log(c) - log(M) space, while the lower panel displays the same data
normalised to the best fit for the the relevant DM only model. In the top left panel I additionally
plot the results of Duffy et al. (2008), Mandelbaum et al. (2008), and Vikhlinin et al. (2005) for
comparison. Increasing

∑
Mν results primarily in a reduction of the amplitude of c(M) with

respect to the DMONLY NU 0.00 DM model with minimal alteration to the gradient. Conversely,
baryonic feedback alters both the amplitude and the gradient. The amplitudes of both effects
are comparable to, or less than, the scatter in observational data.
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Figure 2.13: Top: Comparison of the mass−concentration relations arising when simulating
baryonic feedback and neutrino free-streaming simultaneously (stars) and those calculated by
multiplying the separate effects of baryonic feedback in the absence of neutrinos, and the ef-
fects of neutrino free-streaming in the absence of baryonic physics (crosses). As in Figure 2.12,
lines display the best fit total mass c(M) relationship to these data, solid lines corresponding to
the self-consistent case, dashed lines to the multiplicative prediction. Bottom: each of the mul-
tiplicative models normalised by the best fit relation of the corresponding self-consistent case.
In general, treating these effects separately reproduces the combined result to a few percent
accuracy.
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and neutrino free-streaming also alter the internal structure of collapsed haloes, and

therefore ought to modify the mass−concentration relation. Here I examine the sepa-

rate and combined effects that these processes have on this relation.

As is customary, I define the concentration parameter, c∆, as the ratio of the radius

enclosing an overdensity of ∆ times the critical density, r∆ to the Navarro-Frenk-

White (NFW) scale radius, rs, i.e.:

c∆ ≡
r∆

rs
. (2.7)

I derive two estimates of the scale radius (and therefore the concentration), by fitting

Navarro-Frenk-White (NFW) profiles to the total and dark matter mass density pro-

files, respectively. Below I present results for the case of ∆ = 200. When deriving

estimates of the scale radius, I fit the Navarro-Frenk-White (NFW) profile over the ra-

dial range 0.1 ≤ r/r200 ≤ 1.0 for halo masses of log(M200,crit/M�) ≥ 13, noting that

by adopting a minimum radius of 0.1 r200 I am largely avoiding the region dominated

by stars that is typically not well fit by the Navarro-Frenk-White (NFW) form for these

haloes. I exclude haloes below this mass as the star dominated region approaches the

scale radius (see Figure 2.9).7 To give approximate equal weighting to the different

radial bins over the range that I consider, I actually fit to the quantity ρ r2, as done in

several previous studies (e.g., Neto et al. 2007). I derive concentration estimates for

each individual halo satisfying M200,crit > 1013M� in all of the simulations.

I bin the resulting c200 values into equally-spaced logarithmic mass bins (0.5 dex width)

between 13.0 and 15.0 in log (M200,crit/M�). In each bin, I calculate the mean con-

centration value, 〈c200〉, the standard deviation (σln(c200)) of the intrinsic scatter around

〈c200〉, and the mean halo mass, 〈M200,crit〉. As the scatter in c200 is approximately

log normal, 〈c200〉 and σln(c200) were computed by fitting a Gaussian distribution to the

histogram of the c200 values in 100 equally-spaced logarithmic bins spanning 3 dex

centred on an estimate for the mean value.

Previous studies found that the distribution of mass and concentration values for DMONLY

7Note that rs > 0.1 r200 for the halo mass ranges under consideration.
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haloes in N-body simulations at z = 0 was well fitted by a power law of the form

c∆(M∆) = A ·
(

M∆

MFiducial

)B
. (2.8)

Gao et al. (2008) demonstrated that a power law of this form continued to be a good fit

to samples of haloes in N-body simulations out to redshifts of 2, although the value of

the parameter A varied as a function of z. I follow Duffy et al. (2008) and parametrise

this redshift dependence by expanding Eqn. 2.8 to the form

c∆(M∆) = A ·
(

M∆

MFiducial

)B
· (1 + z)C . (2.9)

Note that at fixed redshift, the A and C parameters in Eqn. 2.9 are degenerate. There-

fore, when I present the results of my analysis below at z = 0 I present fits to Eqn. 2.8.

However, I include the results of fitting Eqn. 2.9 over the redshift range 0 ≤ z ≤ 2 in

Table A.1 in Appendix A.

In Figure 2.12 I display the best-fit z = 0 total mass−concentration relations from

equation 2.8 for different baryon physics models in the absence of neutrino physics

in the WMAP-7 cosmology (left panel), and for the different
∑
Mν values in the

absence of baryonic physics in the WMAP-9 cosmology (right panel), using the self-

consistent masses from each simulation (i.e., for an unmatched set of haloes). In the

upper-left panel of this plot I additionally display best fitting relationships derived by

Duffy et al. (2008) and Mandelbaum et al. (2008), the former of which is fitted to

DM haloes in a WMAP-5 cosmology (taken from the millenium simulations), while

the latter made use of observed clusters with weak-lensing masses identified in the

Sloan Digital Sky Survey (SDSS). Finally, I have also overplotted the hydrostatic mass

and concentration values, and their associated errors, of low-redshift relaxed clusters

measured by Vikhlinin et al. (2005) using Chandra data. Note that the values of these

last data are not directly comparable with the results presented in the rest of the plot as

they display c500 and M500, however the magnitude of the measurement errors and the

extent of scatter may be compared qualitatively.
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Consistent with previous studies (e.g., Duffy et al. 2010), I find that the inclusion of

efficient feedback results in a lowering of the amplitude of the mass−concentration

relation (left panel of Figure 2.12). There is also a slight shallowing of the relation

with respect to the DMONLY case, driven by the increasing importance of feedback

with decreasing halo mass. Note that the mass−concentration relation is altered in

two ways: the profile shapes (and therefore the scale radius) are altered by feedback

(Figure 2.9) and the overall halo mass is also affected.

It can be seen from the right panel of Figure 2.12 that neutrino free-streaming lowers

the amplitude of the mass−concentration relation and also has a slight effect on its

shape. As in the case of feedback, this is due both to a (slight) change in the shapes of

the profiles (an increase in the scale radius) and to a lowering of the overall halo mass.

By analysing the mass−concentration relation for a matched set of haloes, I deduce

that the change in the halo mass is more important than the change in the scale radius

for halo masses above ∼ 14.5 in log(M200,crit/M�), while the reverse is true at lower

masses. The overall amplitude and slope of the relations measured here are broadly

consistent with those measured in previous work, in the context of both simulated and

observed haloes (see also the direct comparison with the best-fit parameters of Duffy

et al. (2008) in Appendix A). However, the magnitude of the effect is small, with even

the most extreme AGN case (AGN 8.7) sitting within the scatter of observed haloes.

In analogy to my exploration of the halo masses, I have examined to what extent the

effects of baryon physics and neutrino free-streaming on the mass−concentration re-

lation can be treated separately (i.e., does it reproduce the combined effect, when both

baryons and massive neutrinos are present). I find that in a relative sense treating these

effects separately reproduces the combined result to a few percent accuracy, as would

be expected from the similar success in recovering the density profiles (see Figure

2.11). These results are displayed in Figure 2.13.
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Figure 2.14: Real-space 2-point halo autocorrelation functions (ξ) for the different baryonic
physics runs in the absence of neutrino physics from cosmo-OWLS (left) and the different
collisionless massive neutrino runs from BAHAMAS (right). Solid, dashed and dotted curves
correspond to ξ for haloes in mass bins of 1012−1013M�, 1013−1014M� and 1014−1015M�
in M200,crit respectively. The bottom left panel shows ξ for each of the baryonic physics mod-
els normalised to the DMONLY case, while the bottom right panel shows the massive neutrino
models normalised to the dark matter-only massless neutrino (NU 0.00 DM) case. The intro-
duction of AGN feedback results in a ∼ 10% increase in the amplitude of the autocorrelation
function, with the precise shift depending on the halo mass range and AGN heating temperature
under consideration. Neutrino free-streaming also increases the amplitude, with the strength of
the effect depending sensitively on the precise value of the summed neutrino mass.
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Figure 2.15: Real-space 2-point halo autocorrelation functions (ξ) for the different baryonic
physics models in the absence of neutrino physics from cosmo-OWLS (left) and the different
collisionless massive neutrino runs from BAHAMAS (right). The bottom left panel shows ξ for
each of the baryonic physics models normalised to the DMONLY case, while the bottom right
panel shows the massive neutrino models normalised to the dark matter-only massless neutrino
(NU 0.00 DM) case. In contrast to Figure 2.14, solid, dashed and dotted curves correspond to
ξ for matched haloes in mass bins of 1012 − 1013M�, 1013 − 1014M� and 1014 − 1015M�
in M DMONLY

200,crit respectively, i.e. selecting the same set of haloes in each simulation. As can be
clearly seen from the bottom-left panel, the large-scale clustering of a chosen set of haloes
is, to a very high level of accuracy, unaffected by baryon physics. Conversely, neutrino free-
streaming can suppress the amplitude of the halo autocorrelation function by ∼ 10%.
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Figure 2.16: Comparison of the real space 2-point halo autocorrelation functions (ξ) arising
when simulating baryonic feedback and neutrino free-streaming simultaneously (curves) and
those calculated by multiplying the separate effects of baryonic feedback in the absence of
neutrinos and the effects of neutrino free-streaming in the absence of baryon physics (crosses).
Solid, dashed and dotted lines correspond to ξ for haloes in mass bins of 1012 − 1013M�,
1013 − 1014M� and 1014 − 1015M� in M200,crit respectively. The bottom panel shows each
of the multiplicative models normalised by the corresponding combined case. The multiplica-
tive treatment recovers the combined result with a few percent accuracy for r > 1h−1Mpc
independent of the chosen summed neutrino mass in all but the highest mass bin.
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2.5 Halo Clustering

Having quantified the effects of feedback and neutrino free-streaming on the masses

and internal structure of haloes, I now proceed to examine their separate and combined

effects on the spatial distribution of haloes. Specifically, I focus here on the clustering

of FoF haloes in bins of halo mass, as characterised by the 3D two-point autocorrela-

tion function. I examine the clustering of matter in general in Section 2.6.

I compute the autocorrelation function, ξ, of FoF groups as the excess probability (with

respect to a random distribution) of having another FoF group present at a particular

distance; i.e.,

ξ(r) =
DD(r)

RR(r)
− 1, (2.10)

whereDD(r) andRR(r) are the ‘data’ and ‘random’ pair counts in radial bins. I com-

puteRR(r) analytically, assuming the FoF groups are spread homogeneously through-

out the simulation volume at the mean density of haloes of the particular mass range

under consideration. I compute ξ in 20 logarithmic radial bins between 0.1 and 100

h−1 comoving Mpc.

In Figure 2.14 I show the separate effects of baryon physics (left panel) and neutrino

free-streaming (right panel) on the autocorrelation function in three different halo mass

bins. Consistent with the results of van Daalen et al. (2014), I find that AGN feedback

increases the amplitude of the autocorrelation by∼ 10%, with the precise shift depend-

ing on the halo mass range and the AGN heating temperature. Neutrino free-streaming

has a qualitatively similar effect, with the shift depending sensitively on the adopted

mass range and the summed mass of neutrinos, Mν .

At first sight it is odd that the inclusion of massive neutrinos leads to an increase in

the amplitude of the halo clustering signal, given that it is well known that neutrinos

suppress the matter power spectrum (e.g., Bond et al. 1980, see also Section 2.6). The

origin of this apparent inconsistency lies in the fact that I am plotting the clustering

signal in bins of halo mass in Figure 2.14 and that I am using the self-consistent masses

from each of the simulations when placing the FoF groups into halo mass bins. Since
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feedback and neutrino free-streaming affect the halo masses (they generally lower them

with respect to the DMONLY case with massless neutrinos), the clustering signal will

be different for different simulations simply because I am considering a different set

of systems for each simulation. Indeed, van Daalen et al. (2014) have shown that, in

the case of massless neutrino simulations, the increased amplitude of the large-scale

autocorrelation in hydrodynamical simulations with respect to the DMONLY case can

be entirely accounted for by the change in halo mass.

I confirm the findings of van Daalen et al. (2014) in the left panel of Figure 2.15, where

I use my halo matching technique to identify a common set of haloes for the different

simulations. Specifically, I bin haloes by their corresponding masses in the DMONLY

case. To a high level of accuracy, I find that on scales r � r200 the clustering is

unaffected by baryon physics when considering a common set of haloes (i.e., feedback

does not push haloes around).

The situation is different in the case of neutrino free-streaming, however, which I con-

sider in the right panel of Figure 2.15. In particular, when I account for the effects of

changes in the halo mass, by adopting a common set of haloes, I find that the large-

scale clustering signal is now suppressed by∼ 10%. Physically this makes sense, since

the free-streaming of the neutrino background acts to delay the growth of fluctuations

(i.e., it suppresses the matter power spectrum). This result is useful for galaxy surveys

that compare with semi-empirical models such as SHAM, or with SA models, which

are based on the masses of haloes in DMONLY simulations. However, it is important to

note that for observational surveys that use directly measured masses, e.g. by combin-

ing with galaxy-galaxy lensing, it is Figure 2.14 that is most directly relevant.

In Figure 2.16 I test how well treating the effects of baryon physics and neutrino free-

streaming separately (i.e., multiplicatively) reproduces their combined effects on the

clustering of massive haloes. For this test, I use the self-consistent halo masses from

each simulation, rather than identifying a common set of haloes and binning using

masses from the massless DMONLY run. In the top panel of Figure 2.16 I compare

the clustering signal measured directly from the hydrodynamics+neutrino simulations

(curves) to that predicted by treating these two processes separately (crosses). So,
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for example, the prediction for the NU 0.24 case would be to multiply the clustering

signal of the massless DMONLY run, NU 0.00 DM, by the ratio of the hydrodynamics to

DMONLY case with massless neutrinos (i.e., NU 0.00/NU 0.00 DM) and by the ratio of

the massive to massless neutrino cases in the absence of baryon physics (i.e., NU 0.24

DM/NU 0.00 DM). The bottom panel of Figure 2.16 shows the ratio of the prediction

arising from the multiplicative approach to the self-consistent calculation.

I find that for r > 1h−1Mpc and 12 ≤ log(M200,crit/M�) ≤ 14, the combined effects

of neutrino free-streaming and baryon physics can be reproduced extremely well (1-

2% accuracy), by considering these effects separately, independently of the choice of

summed neutrino mass, Mν . This agreement worsens slightly in the highest mass bin,

where the two cases deviate by ≈ 10% at large radii for the highest summed neutrino

mass.

2.6 Matter Clustering

As a final LSS diagnostic, I now consider the effects of baryon physics and massive

neutrinos on the total matter power spectrum. I compute the matter power spectra using

the GenPK code8.

In Figure 2.17 I show the separate effects of baryon physics (left panel) and neutrino

free-streaming (right panel) on the matter power spectrum at three different redshifts.

Consistent with the previous findings of van Daalen et al. (2011), I find that AGN

feedback suppressed the matter power spectrum on small scales (k>1 h/Mpc), at levels

of up to 10-20%. Neutrino free-streaming also suppresses the matter power spectrum,

but over a wider range of scales (up to the free-streaming scale ∼ 100 Mpc, Ali-

Haı̈moud and Bird 2013). While the suppression due to neutrino free-streaming is

largely insensitive to the redshift, that due to baryonic feedback grows by a factor of

∼ 2 between z = 2 and z = 0

In Figure 2.18 I show the combined effects of baryon physics and neutrino free-

8https://github.com/sbird/GenPK
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Figure 2.17: Matter power spectra for different baryon physics models in the absence of neu-
trino physics in the WMAP-7 cosmology (left) and for different

∑
Mν values in the absence of

baryonic physics in the WMAP-9 cosmology (right) at z = 0. As in Figure 2.1, colours denote
the various runs (see the legend and Table 2.1), while the different linestyles denote different
redshifts. The bottom left panel shows matter power spectra for the cosmo-OWLS runs nor-
malised to the DMONLY case, whereas in the bottom right panel the collisionless BAHAMAS
runs have been normalised by the massless neutrino case. Baryonic feedback suppresses the
matter power spectrum by 10-20% on small scales (k>1 h/Mpc). In contrast, the suppression
due to neutrino free-streaming depends strongly on the choice of summed neutrino mass and
has an effect over a much wider range of scales. The suppression due to baryonic feedback
grows by a factor of ∼ 2 between z = 2 and z = 0, whereas the level of suppression resulting
from neutrino free-streaming is only weakly dependent on redshift.
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Figure 2.18: Comparison of the matter power spectra (P (k)) arising when simulating baryonic
feedback and neutrino free-streaming simultaneously (curves) and those calculated by multi-
plying the separate effects of baryonic feedback in the absence of neutrinos and the effects
of neutrino free-streaming in the absence of baryon physics (crosses). Solid, dashed and dot-
ted lines correspond to P(k) at redshifts of 0, 1 and 2 respectively. The bottom panel shows
each of the multiplicative models normalised by the corresponding combined case. As in Fig-
ure 2.16, the multiplicative treatment recovers the combined result to better than 3% accuracy
independent of the chosen summed neutrino mass for 0.04 ≤ k[h/Mpc] ≤ 10.
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streaming (curves) and compare this with the predicted power spectra when these ef-

fects are treated separately and then multiplied (crosses). The predictions reproduce

the power spectra from the self-consistent simulations to typically better than 2% ac-

curacy over the full range of redshifts and summed neutrino masses I have considered

for wavenumbers of k<10 h/Mpc. This result provides some reassurance for exist-

ing studies that have treated these processes independently (e.g., Harnois-Déraps et al.

2015).

2.7 Summary and Discussion

I have used the cosmo-OWLS and BAHAMAS suites of cosmological hydrodynami-

cal simulations to explore the separate and combined effects of baryon physics (par-

ticularly AGN feedback) and neutrino free-streaming on different aspects of large-

scale structure (LSS), including the halo mass function and halo number counts, the

spherically-averaged density profiles and mass−concentration relation, and the clus-

tering (autocorrelations) of haloes and matter.

From this investigation I conclude the following:

• AGN feedback can suppress the halo mass function by ≈ 20 − 30% relative to

the DMONLY case on the scale of GGCs, a result which is largely insensitive to

redshift (Figure 2.1, left panels), as also found by Velliscig et al. (2014). Neu-

trino free-streaming preferentially suppresses the high-mass (cluster) end of the

HMF, with a strong dependence on redshift and the choice of summed neutrino

mass (Figure 2.1, right panels).

• In terms of mass density profiles, the inclusion of baryonic physics, and in par-

ticular radiative cooling and AGN heating, produces higher central (due to cool-

ing) and peripheral densities (due to gas ejection), with lower densities at in-

termediate radii (due to gas ejection), relative to the DMONLY case. The gas

expulsion leads to an expansion of the dark matter, such that the Navarro-Frenk-

White (NFW) scale radius increases (Figure 2.9). To a first approximation, the
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free-streaming of massive neutrinos reduces the amplitude of the mass density

profiles while approximately preserving their shape within the virial radius (Fig-

ure 2.10). However, there is a change in the shape of the profile just beyond the

virial radius, such that the radius that marks the transition from the ‘1 halo’ to

the ‘2 halo’ term decreases with increasing summed neutrino mass.

• The free-streaming of massive neutrinos results in a reduction in the amplitude of

the mass−concentration relation by ∼ 10% (depending on the summed neutrino

mass) with only minimal alteration to its slope (Figure 2.12, right panels). This is

due both to a lowering of the overall halo mass and a slight increase of the scale

radius. By contrast, AGN feedback alters both the amplitude and the slope of the

mass−concentration relation (Figure 2.12, left panels), as also found by Duffy

et al. (2010). The amplitude shift here is due mainly to an increase in the scale

radius, driven by the expansion of the dark matter halo due to gas expulsion from

feedback. The change in slope reflects the increased importance of feedback for

groups relative to clusters.

• In bins of halo mass, both AGN feedback and neutrino free-streaming result in

an apparent enhancement of the amplitude of the 2-point halo correlation func-

tion on large scales (r � r200), by ∼ 10% with respect to the DMONLY case

with massless neutrinos at z = 0 (Figure 2.14). In the case of simulations with

baryons and massless neutrinos, this is due entirely to the effect on the halo

mass (so that the mass bins contain different systems in different simulations)

rather than a true alteration of the spatial distribution of haloes (Figure 2.15, left

panels), consistent with the findings of van Daalen et al. (2014). In the case of

simulations with massive neutrinos, when the change in halo mass is accounted

for, I find that the large-scale clustering of haloes is actually suppressed relative

to a massless neutrino case (Figure 2.15, right panels), as expected.

• On small scales (k>1 h/Mpc) the matter power spectrum can be suppressed by

AGN feedback by up to 10-20% at z = 0, consistent with the previous findings

of van Daalen et al. (2011). This factor increases by a factor of ≈2 between

z = 2 and z = 0 (Figure 2.17, left panels). Neutrino free-streaming also sup-
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presses the matter power spectrum, but over a much wider range of scales (see

also Semboloni et al. 2011). This suppression is nearly insensitive to redshift

but depends strongly on the adopted summed neutrino mass (Figure 2.17, right

panels).

• I have investigated the extent to which the effects of baryon physics and neutrino

free-streaming can be treated independently. The procedure of multiplying to-

gether the magnitudes of the two effects when taken in isolation reproduces their

combined effects to typically a few percent accuracy for the halo mass function

(Figure 2.3), the mass density profiles (Figure 2.11), the mass−concentration re-

lation (Figure 2.13), and the clustering of haloes (Figure 2.16) and matter (Fig-

ure 2.18) over ranges of 12 ≤ M200,crit/M� ≤ 15, 12 ≤ M200,crit/M� ≤ 14.5,

12 ≤ M200,crit/M� ≤ 14 and 0.04 ≤ k [h/Mpc] ≤ 10, respectively. My

simulation-based matter power spectrum findings are therefore consistent with

those of Mead et al. (2016), who explored the degeneracies between feedback,

massive neutrinos, and modified gravity in the context of a modified ‘halo model’

formalism (see Mead et al. 2015 for further details).

My work has demonstrated that both AGN feedback and neutrino free-streaming can

have a considerable impact on LSS. They should therefore both be included in cosmo-

logical analyses. Through the use of self-consistent cosmological simulations I have

shown that, to a high degree of accuracy, these processes are separable (i.e., can be

treated independently), which should considerably simplify the inclusion of their ef-

fects in cosmological studies that adopt, for example, the halo model formalism or the

linear matter power spectrum (e.g., from CAMB).



Chapter 3

The Clustering of Galaxy Groups and

Clusters: Comparing the BAHAMAS

Simulations with the GAMA survey

3.1 Introduction

Recent years have seen a resurgence of interest in the effects of massive neutrinos

on LSS which has been driven primarily by a number of apparent tensions between

the Planck primary CMB cosmological constraints and constraints coming from, for

example, the observed abundances of massive clusters (Planck Collaboration et al.,

2014, 2016b) and constraints from tomographic analysis of cosmic sheer data (Hey-

mans et al., 2013; Hildebrandt et al., 2017).

While the invocation of massive neutrinos to reconcile these tensions (e.g., Wyman

et al. 2014; Battye and Moss 2014; McCarthy et al. 2018) remains controversial (e.g.,

MacCrann et al. 2015), their inclusion in cosmological models is a necessity for precise

LSS predictions. This is because solar oscillation experiments have found that the

three active neutrino species have a summed mass Mν of at least 0.06 eV (0.1 eV)

when adopting a normal (inverted) hierarchy (Lesgourgues and Pastor, 2006). Since
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Table 3.1: Overview of BAHAMAS simulation runs used in this work. The columns are: (1) The label assigned to the cosmology in which the run
has been carried out; (2) The label assigned to the individual run; (3) The summed mass of the three active neutrino species; (4) Hubble’s constant; (5)
The present-day matter density (in units of the critical density); (6) The present-day baryon density; (7) The present-day dark matter density; (8) The
present-day neutrino density

(
computed as Ων = Mν

93.14 h−1eV

)
; (9) The spectral index of the initial power spectrum; (10) The amplitude of the initial

matter power spectrum at a CAMB pivot k of 2× 10−3 Mpc−1; (11) The present-day linearly evolved amplitude of the initial matter power spectrum on
a scale of 8 h−1Mpc; (12) The dark matter particle mass; (13) The initial baryon particle mass.

Cosmology run
∑
Mν H0 Ωm Ωb Ωcdm Ων ns

As σ8
MDM Mbar,init

[eV] [kms−1Mpc−1] [10−9] [109h−1M�] [108h−1M�]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

WMAP-9

NU 0.00 0

70.00 0.2793 0.0463

0.2330 0.0

0.9720 2.392

0.8211 3.85

7.66
NU 0.06 0.06 0.2317 0.0013 0.8069 3.83
NU 0.12 0.12 0.2304 0.0026 0.7924 3.81
NU 0.24 0.24 0.2277 0.0053 0.7600 3.77
NU 0.48 0.48 0.225 0.0105 0.7001 3.68

Planck

NU 0.06 0.06 67.87 0.3067 0.0482 0.2571 0.0014 0.9701 2.309 0.8085 4.25 7.97
NU 0.12 0.12 67.68 0.3091 0.0488 0.2574 0.0029 0.9693 2.326 0.7943 4.26 8.07
NU 0.24 0.24 67.23 0.3129 0.0496 0.2576 0.0057 0.9733 2.315 0.7664 4.26 8.21
NU 0.48 0.48 66.43 0.3197 0.0513 0.2567 0.0117 0.9811 2.253 0.7030 4.25 8.49
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cosmological relic neutrinos will remain relativistic until relatively late times, a non-

zero neutrino mass will result in them acting as a form of hot dark matter. This leads

to a portion of the total mass budget available for the formation of structure acting to

resist significant gravitational collapse due to free-streaming motion, and therefore to

an effect on the overall LSS. Precise predictions of LSS therefore require the inclusion

of massive neutrinos.

The BAHAMAS project, a suite of cosmological hydrodynamical simulations including

prescriptions for the effects of massive neutrinos, was enacted in part to address this

necessity. BAHAMAS provides a selection of runs wherein the value of Mν is dialled

in the context of a fixed feedback model calibrated to reproduce observed baryon frac-

tions of massive galaxies and GGCs, and with the remaining cosmological parameters

based on either the WMAP-9 or Planck best fit parameters (see McCarthy et al. 2018

for further details).

Work by Jakobs et al. (2017) has demonstrated that BAHAMAS reproduces the observed

stacked weak lensing and thermal Sunyaev-Zel’dovich effect signals as a function of

GGC richness or integrated stellar mass. This supports the use of BAHAMAS not sim-

ply as a tool for investigating the qualitative behaviour of LSS as a function of various

cosmological models, but as a way to make quantitative predictions of LSS observa-

tions. On this basis, the present study aims to compare predictions of the clustering of

GGCs (as characterised by the GGC 2-point autocorrelation function) from BAHAMAS

with observations from the GAMA survey.

This chapter is organised as follows: In Section 3.2 I discuss the simulated (Sec-

tion 3.2.1) and observational (Section 3.2.2) datasets used. Section 3.3 describes my

treatment of these datasets, specifically the construction of consistent, volume-limited

galaxy catalogues for both the simulated and observed datasets (Section 3.3.1); the

assignment of these galaxies to FoF groups (Section 3.3.2); and the methodology by

which I estimate the GGC clustering (Section 3.3.3). The results of this investigation

are presented in Section 3.4, first the comparison of the GAMA and BAHAMAS results

in Section 3.4.1; then an examination of potential sources of uncertainty in these data

in Section 3.4.2. Finally in Section 3.5 I present my conclusions and a summary of this
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work.

3.2 Datasets

3.2.1 BAHAMAS

I use the BAryons and HAloes of MAssive Systems (BAHAMAS) suite of cosmological

hydrodynamical simulations to make predictions for the GAMA observations. I provide

a brief summary of the simulations here, and refer the reader to McCarthy et al. (2017)

and McCarthy et al. (2018) where they are discussed in further detail.

The BAHAMAS suite comprises a selection of 400 h−1 Mpc comoving box simulations,

each containing 2×10243 particles. Transfer functions were computed with the Boltz-

mann code CAMB1 and the initial conditions were created using a version of N-GenIC

that has been modified to include support for massive neutrinos and second-order La-

grangian Perturbation Theory corrections2. A version of the Lagrangian TreePM-SPH

code GADGET3 (last described in Springel 2005), modified as part of the OWLS

project to include new subgrid physics as described in Schaye et al. (2010), was used

to run the simulations. This version has been further modified to implement the semi-

linear algorithm developed by Ali-Haı̈moud and Bird (2013) to include the effects

of massive neutrinos on both the background expansion rate and the growth of den-

sity fluctuations. At each timestep, the algorithm uses a linear perturbation integrator

sourced from the non-linear baryons+CMD potential to compute neutrino perturba-

tions on the fly which are added to the total gravitational force. This allows for the

self-consistent inclusion of the mutual responses of the neutrinos to the baryons+CDM

and of the baryons+CDM to the neutrinos at each time step.

In addition to the effects of massive neutrinos (where applicable), the computation of

the background expansion rate includes the effects of radiation. SPH smoothing is

carried out using the nearest 48 neighbours, and the gravitational softening is fixed to

1http://camb.info
2https://github.com/sbird/S-GenIC

http://camb.info
https://github.com/sbird/S-GenIC
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4h−1 Mpc comoving at z > 3, and 4h−1 Mpc in physical units below this.

Subgrid prescriptions are included for metal-dependent radiative cooling (Wiersma

et al., 2009a), star formation (Schaye and Dalla Vecchia, 2008b), stellar evolution,

mass loss and chemical enrichment from Type II and Ia supernovae and asymptotic

giant branch stars (Wiersma et al., 2009b). Also incorporated into the simulations

are stellar feedback (Dalla Vecchia and Schaye, 2008) and the prescription for AGN

feedback and black hole growth detailed in Booth and Schaye (2009).

In order to ensure that collapsed structures arising in the simulations have the correct

global baryon content, the parameters governing the efficiencies of the stellar and AGN

feedback mechanisms have been adjusted so that the simulations produce present-day

NFW and gas mass fraction - halo mass relations of GGCs that are consistent with

those inferred from high-resolution X-ray observations. This ensures that the associ-

ated back reaction of baryons on the total matter distribution should be broadly correct.

McCarthy et al. (2017) demonstrated that this approach accurately reproduces an un-

precedented range of massive system properties, including the observed mappings be-

tween galaxies, hot gas, total mass and black holes. Note that the feedback efficiency

parameters used are identical across the varying cosmological parameters of the dif-

ferent BAHAMAS runs. While the calibration was explicitly carried out in the context

of the fiducial WMAP 9-year cosmology with massless neutrinos, McCarthy et al.

(2018) demonstrated that the internal properties of collapsed structures are largely in-

sensitive to the variations in cosmology considered by BAHAMAS, and I am therefore

confident in the continued validity of this calibration over different runs.

I use a total of 10 runs from the BAHAMAS suite for this work. These runs span five

different values for the summed neutrino mass between 0 and 0.48 eV. For each value,

runs have been carried out with initial conditions based on the WMAP-9 and Planck

cosmological constraints. As discussed in McCarthy et al. (2018), two subtly differ-

ent approaches have been taken when selecting the values of the other cosmological

parameters for the WMAP-9 and Planck cases. For runs using the WMAP-9-based

cosmological constraints, the value of Ωcdm in each case is reduced in order to maintain

a flat geometry, i.e. Ωm = Ωcdm + Ωb + Ων + ΩΛ = 1, while the remaining parameters
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are held constant. For runs based on the Planck cosmological parameters, the Markov

chains of Planck Collaboration et al. (2016a) have been used to select best fitting pa-

rameters when the selected massive neutrino realisation is included. The advantages

of this approach is that the adopted cosmological model retains a virtually identical

match to the primary CMB angular power spectrum, whereas adjusting only Ωcdm (in

the case of the WMAP-9-based simulations) does not precisely preserve the CMB TT

power spectrum. However, the differences in these approaches are negligibly small for

my purposes.

Light cones

In order to facilitate direct comparisons between the simulations and observations,

‘synthetic observations’ of the simulations have been produced. Specifically, light

cones are first created by randomly translating and rotating simulation snapshots, which

are stacked along the line of site between z = 0 and z = 0.5 (McCarthy et al., 2014,

2018). Given the size of the simulation box, the largest opening angle that can be

adopted (i.e., without replicating across the field of view) is just larger than 15 de-

grees. Catalogues are therefore produced spanning an area of 15 deg × 15 deg back

to z = 0.5. Ten quasi-independent light cones per simulation are produced by using

different random transformations of the simulation snapshots along the line of sight.

To more closely match the geometry of the GAMA survey, each field is separated into

three 5 by 12 degree fields matching the angular sizes of the three equatorial GAMA

fields. From these fields are drawn the galaxy catalogues which I use to make direct

comparisons with GAMA observations.

Galaxy stellar masses are calculated as the sum of the masses of all star particles be-

longing to the FoF subhalo within a spherical 3d aperture of 30 kpc radius centered

on the location of the subhalo particle with the lowest gravitational potential. Schaye

et al. (2015) and McCarthy et al. (2017) have shown that this measurement agrees well

with the Petrosian stellar mass estimate.

In addition to the synthetic datasets, I also make use of the full halo and simulated
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galaxy catalogues drawn from the light cones. This gives me an additional population

with which to compare in the case of each BAHAMAS run. Haloes are identified by

using a standard 3D Friends-of-Friends (FoF) algorithm run on the particles in the

simulation snapshots, adopting a linking length of 0.2 times the mean interparticle

separation. These catalogues provide me with a ‘true’3, spatially-complete sample of

overdense regions for which the ‘true’ values of important parameters, such as the 3D

spherical overdensity mass, the number of luminous galaxies they contain within some

3D aperture, and positions and peculiar velocities, are known. Comparison between

analyses of these ‘true’ samples and the corresponding synthetic samples permits me

to determine the impact of effects such as scatter in M∗ −Mhalo relation of GGCs and

the impact of peculiar velocities on FoF group finding.

I present a summary of the cosmological parameters and mass resolution of simulations

used in Table 3.1.

3.2.2 GAMA

For comparison with BAHAMAS I use galaxy catalogues from the GAMA survey data

release 3 (Baldry et al., 2018). GAMA is a spectroscopic survey covering∼ 286 degrees2

split across five fields. In total, it has observed nearly 300,000 galaxies and is highly

complete down to a limiting magnitude of r < 19.8. I make use of the G09, G12 and

G15 equatorial fields, comprising a total of 180 degrees2. This choice is motivated by

the uniform target selection adopted in these fields (Kuijken et al., 2015).

An important advantage of spectroscopic surveys is that they allow one, at least in

principle, to robustly distinguish systems which are collapsed/collapsing from collec-

tions of galaxies that are grouped purely in projection, which happens in the absence

of redshift information or with uncertain photometric redshift estimates.

The masses of galaxies in the GAMA catalogues used here are derived by stellar popula-

tion synthesis (SPS) fitting. Briefly, stellar evolution models are used with an assumed

3i.e. perfectly capturing the simulated reality of the BAHAMAS runs
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initial mass function to produce models that describe the spectral evolution of single-

age, or ‘simple’, stellar populations (SSPs). These SSPs are then combined according

to some an assumed galaxy star formation history in order to construct composite stel-

lar populations (CSPs) that describe the spectral characteristics of a galaxy. These

synthesised CSPs can then be used to produce predicted spectral energy distributions

(SEDs) that can be compared with spectrographic observations of real galaxies. Fitting

to the observational SED data allows constraints to be placed on the stellar population

parameters, most notably, at least for my purposes here, the stellar mass. For a full

discussion of this technique and its specifics with regards to GAMA I refer the reader

to Taylor et al. (2011).

The work carried out by Jakobs et al. (2017) confirmed the validity of using GAMA stel-

lar mass estimates derived by this method alongside the measurements made within

BAHAMAS and described in Section 3.2.1 above. Specifically, for an approximately

volume limited sample created with identical mass and redshift cuts as those used for

this work, the NFWs are in good agreement (See Figure. 2 of that paper). This is

largely unsurprising as the BAHAMAS simulations were explicitly calibrated to repro-

duce the observed present-day NFW derived from SDSS data, against which mass

estimates the GAMA galaxy stellar masses were shown to be in agreement by Taylor

et al. (2011).

3.3 Galaxy Selection, Group Finding, and Clustering

3.3.1 Galaxy Selection

Following McCarthy et al. (2017), I limit my analysis of BAHAMAS simulated galaxies

to systems with stellar masses of M∗ ≥ 1010 M�, where M∗ is measured within a 3D

30 kpc (physical) aperture. Schaye et al. (2015) (see also McCarthy et al. 2017) have

shown that this aperture choice results in stellar mass estimates that are a good approx-

imation to more observationally-oriented estimates, such as those based on Petrosian

fluxes. Note that this stellar limit was adopted in McCarthy et al. based on the results
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Table 3.2: Overview of the galaxy samples drawn from each data set after cuts in redshift and
mass have been applied. The columns are: (1) the data set from which the galaxy sample is
drawn; (2) the total number of galaxies in the sample; (3) the angular density of galaxies in the
sample. Note that the values quoted for the BAHAMAS WMAP-9 data sets are aggregated over
30 5 by 12 degree fields for , while those for BAHAMAS Planck are aggregated over ten 15 by
15 degree fields.

Sample Ngal
ngal

[106Gpc−3]
(1) (2) (3)

GAMA WMAP-9
G09 12,329 3.681
G12 15,770 4.708
G15 15,901 4.747

GAMA Planck
G09 12,329 3.396
G12 15,770 4.344
G15 15,901 4.380

BAHAMAS WMAP-9

NU 0.00 528,459 5.259
NU 0.06 525,801 5.232
NU 0.12 526,519 5.240
NU 0.24 514,595 5.240
NU 0.48 495,086 4.927

BAHAMAS Planck

NU 0.06 673,135 4.944
NU 0.12 676,885 4.935
NU 0.24 684,364 4.900
NU 0.48 683,389 4.734
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of a resolution study of the BAHAMAS simulations (see the appendix of that study).

As I want to make a like-with-like comparison between the simulations and obser-

vations, I impose the same lower stellar mass limit when selecting galaxies from the

GAMA survey. GAMA is a spectroscopic survey of galaxies identified in the SDSS and

is, like SDSS, an inherently flux-limited survey. As a consequence, GAMA is only

(approximately) spectroscopically complete to galaxies with M∗ ≥ 1010 M� out to

z ≈ 0.2. While I could in principle adopt the same flux limit for BAHAMAS as in

GAMA and proceed out to higher redshifts (i.e., with both the simulated and observed

galaxy samples probing progressively more massive systems beyond z ≈ 0.2), for the

present study I instead limit my analysis to z ≤ 0.2, constructing effectively volume-

limited samples for both BAHAMAS and GAMA . This approach was also adopted by

Jakobs et al. (2017). One advantage of using volume-limited samples is that it re-

sults in a consistent definition for GGCs that is independent of redshift. Additionally,

quantities such as the multiplicity (richness) and integrated GGC stellar mass, which

are often used to track halo mass, are also implicitly independent of redshift, as they

are derived by integrating galaxies down to the same stellar mass limit independent of

distance.

I therefore apply these two cuts, i.e., M∗ ≥ 1010 M� and z ≤ 0.2, to both the GAMA

and BAHAMAS galaxy catalogues, resulting in approximately volume-limited galaxy

samples of equal angular size, total volume and depth. All subsequent treatment of

these catalogues is carried out consistently between the simulated and observed data.

The total number of galaxies in these samples are presented in Table 3.2. As I combine

the 30 fields for each BAHAMAS WMAP-9 run I quote the total number of galaxies

across these fields. Similarly, for the Planck runs the quoted values are totals across the

ten 15 by 15 degree fields for each run. To facilitate qualitative comparisons between

these samples, in column (3) of table 3.2 I include the comoving number density of

galaxies (in (Gpc/h)−3) in each sample, although these values do not account for the

reduction in the effective area of the GAMA fields due to the masking of foreground

sources. This leads to an apparent overestimation of the galaxy number density within
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BAHAMAS. Full-sky comoving volumes for each cosmology were computed using the

Cosmology calculator developed by Wright (2006). The comoving volume contained

within the footprint of each survey was computed by:

Vsurvey = Vfullsky
Asurvey
Afullsky

= Vfullsky
π∆RA ·∆Dec

3602
(3.1)

where ∆ RA and ∆ Dec are the RA and Dec range of the survey footprint respectively.

3.3.2 Group Finding

I identify GGCs by means of a 2D FoF algorithm following the scheme of Robotham

et al. (2011), albeit in the context of a volume-limited galaxy sample.

Two galaxies are linked together if their angular (transverse) and line-of-sight distances

are smaller than the predefined ‘linking lengths’. The transverse and line-of-sight link-

ing lengths are defined based on (fractions of) the mean comoving separation(s) of

objects in the sample. Two galaxies i and j are linked if:

tan θi,j ·
dcom,i + dcom,j

2
≤ b · 〈sepi〉,

|dcom,i − dcom,j| ≤ b ·R · 〈sepi〉 (3.2)

where θij is the angle between the galaxies, dcom,k is the line-of-sight comoving dis-

tance to galaxy k (derived from the redshift), 〈sepi〉 is the mean comoving separation,

and b and R are multiplicative coefficients. These expressions are equivalent to equa-

tions (1) and (4) of Robotham et al. (2011).

I compute the mean separation 〈sepi〉 by first rank ordering the galaxies by stellar mass

and then computing the space density per comoving volume, n, of galaxies with mass

> M∗. The separation as a function of stellar mass is then just 〈sepi〉 ≡ n
−1/3
i .

Note that, in general, adopting a scheme where the linking lengths are determined by

(a fraction of) the mean space density of objects can lead to different linking lengths

being adopted for the simulations and the observations, or even between different sim-
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ulations. This is just because the space density of galaxies of a given stellar mass can

be different between the simulations and the observations (i.e., there can be differences

in the galaxy stellar mass functions). If this is the case, the grouping of galaxies could

differ in a systematic way between the simulations and observations and complicate

comparisons between them. However, I point out that, in the present case, the galaxy

stellar mass functions agree very well between the different simulations (see figure

4 of McCarthy et al. 2018) and between the simulations and GAMA (see figure 2 of

Jakobs et al. 2017). The latter is a direct result of the feedback calibration strategy

of BAHAMAS (McCarthy et al., 2017). As a consequence, the adopted linking lengths

agree very well between the different simulations and GAMA. Furthermore, I have

explicitly checked that adopting precisely the same linking lengths (derived from the

BAHAMAS NU 0.00 simulation) for all the datasets yields virtually identical results

and my conclusions remain the same.

In order to fully specify the linking lengths, I also require values for the multiplica-

tive coefficients, b and R. These values cannot be derived from first principles and

are therefore somewhat arbitrary, but a common strategy to specify them is to use syn-

thetic (or ‘mock’) galaxy catalogues and compare the resulting GGC catalogues with

the ‘true’ one as the values of b andR are systematically varied. Robotham et al. (2011)

followed this strategy using synthetic catalogues generated from a semi-analytic model

of galaxy formation. By comparing the resultant FoF groups and their galaxy member-

ship to the ‘true’ galaxy groups in the model, they found that b = 0.06 and R = 18 are

good choices for robustly linking galaxies to groups within their virial radii. Note that

R needs to be significantly larger than b in order to account for the peculiar motions

of galaxies (which leads to the so-called ‘Finger of God’ effect in redshift space). I

follow Robotham et al. (2011) and adopt the same values for b and R in my analysis.

My initial analysis follows Jakobs et al. (2017) in adopting fixed linking lengths for

the entire selection, where 〈sepi〉 = 〈sepall〉 is the mean separation for all galaxies

in my sample. Note that this mean separation is effectively set by the space density

of the lowest-mass galaxies (with M∗ ≈ 1010 M�), since they are the most abundant.

However, adopting a fixed linking length is not necessarily the optimal strategy. In-
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deed, Jakobs et al. (2017) have found that adopting a fixed linking length results in a

degree of spurious fragmentation of high-mass GGCs compared to the ‘true’ catalogue

(see also Section 3.4.2 below). While in principle this should not impede my ability

to compare the observed and simulated GGCs (since I have consistently applied the

same linking strategy for both), I nevertheless explore how my results are affected by

the linking strategy later (see Section 3.4.2).

Finally, I note that when applying the FoF algorithm, a reference cosmology must be

adopted in order to convert redshifts and angular separations into comoving distance

separations. Consequently, it is necessary to re-analyse the observational data when

comparing to synthetic observations based on simulations with different cosmologies.

Note, however, that most of the effects of varying the background cosmology are im-

plicitly removed as I use comoving distances in units of Mpc/h and my analysis is

restricted to relatively low redshifts. Nevertheless, when performing quantitative com-

parisons between GAMA and BAHAMAS I consistently adopt the given simulation’s

cosmology (either WMAP-9 or Planck) when analysing the GAMA data.

3.3.3 Clustering

Clustering Estimator

The spatial clustering of a population of objects, such as GGCs, can be characterised

by its two-point autocorrelation function. Here I employ the two-point function w(θ)

introduced by Landy and Szalay (1993). While the overall amplitude and shape of

the autocorrelation function is somewhat sensitive to the estimator used, my interest is

in relative differences between identically calculated autocorrelation functions and my

results are therefore insensitive to the precise estimator that is used.

I have performed the initial clustering analysis in the context of both the 3D redshift

space autocorrelation function, ξ(r), and the projected angular autocorrelation func-

tion, w(θ). While the results in both cases are qualitatively similar (as would be ex-

pected), projection effects in the latter mean that the former is better constrained. I
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therefore adopt ξ(r) as my clustering estimator throughout this study.

For a distribution of objects and a suitably normalised random distribution of identical

mean density and sampling geometry, the Landy and Szalay (1993) estimator is given

by:

ξ(r3D) =
DD(r3D)− 2DR(r3D) +RR(r3D)

RR(r3D)
, (3.3)

where DD(r) and RR(r) are the pair counts as a function of the 3D radial separa-

tion between the data and random distributions, respectively, and DR(r) is the cross-

correlated pair counts of the data and random datasets. The pair counts are calculated

as:

DD(r3D) =

ND∑
i

ND∑
j

P (|pD,i − pD,j|, r3D)

DR(r3D) =

ND∑
i

NR∑
j

P (|pD,i − pR,j|, r3D)

RR(r3D) =

NR∑
i

NR∑
j

P (|pR,i − pR,j|, r3D), (3.4)

where ND and NR are the total number of points in the data and random sets, respec-

tively, and pX,n is the position vector of the nth point in dataset X . This estimator has

been shown to be less affected by bias and variance than similar estimators (Kerscher

et al., 2000).

In order to reduce Poisson noise, I scale NR up by a factor F relative to ND, normal-

ising the resulting pair counts by the relevant factor (F in the case of DR and F 2 in

the case of RR) before calculating ξ. I adopt F = 10 as a good trade-off between

minimising the statistical noise and computational expense.

I generate random distributions of galaxies to which to compare by drawing random

values of RA, Dec and z within the limits set by the maximum and minimum values

in the observed and simulated datasets after normalising the RA and Dec values to the

central values in each field.

RA and Dec values are drawn from a uniform distribution. In order to reproduce
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the redshift distribution in the data sample, I draw random redshift values from the

cumulative distribution function of data redshifts, smoothed with a Gaussian kernel

to remove local overdensities in z. I follow Collins et al. (2000) in using a standard

deviation for the gaussian of 5600 kms−1.

For each of the GGC catalogues described above (whether derived from GAMA or the

synthetic or ‘true’ BAHAMAS datasets), I calculate 2-point GGC autocorrelation func-

tions as a function of the comoving radial distance r3D using the techniques discussed

above in three bins of both integrated stellar massM∗ and multiplicityN . Note that the

integrated stellar mass is just the sum of the stellar masses of the individual galaxies

belonging to a GGC, so it is integrated down to a stellar mass limit of 1010M�. Note

also that in order to accurately estimate the real stellar mass of a GGC it is necessary to

apply a correction to account for low mass galaxies that are not reliably detected. For

the purposes of this comparison, since my primary interest is the relative differences

between the clustering signals, such an adjustment is unnecessary. The construction of

consistent galaxy samples and identical treatment of the observed and simulated data

sets ensures that the mass binning is consistent. For comparison, I also compute the

clustering for the ‘true’ BAHAMAS datasets; i.e., I use the ‘true’ halo catalogues from

the simulation and bin in ‘true’ halo stellar massM∗,halo (using the all of the associated

galaxies above the minimum mass within r200,crit) and ‘true’ multiplicityNhalo, as well

as the total halo mass M200,crit

I choose bin edges such that the three bins are approximately equally populated in the

case of the GAMA dataset forM∗ andN bins, or in the NU 0.00 BAHAMAS case for the

Nhalo bins. Autocorrelation functions for each individual field are averaged in each co-

moving radial bin, and the standard error on the mean calculated. Due to my selection

of light cones, I am also able to estimate the cosmic variance errors on the BAHAMAS

data by rank ordering values in each comoving radial bin for each BAHAMAS run and

selecting the central 60% of values.

Note that the factor of 10 increase in survey area between the GAMA and BAHAMAS

datasets means that the simulated BAHAMAS result is much better constrained than the

observational GAMA result.
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3.4 Results

In this section, I present a comparison of the two-point autocorrelation functions of

GGCs from BAHAMAS and GAMA. I will conclude that the simulations reproduce

the observed clustering of GGCs in GAMA very well, but that this comparison does

not strongly constrain the summed mass of neutrinos, as might have been expected

given the theoretical results of Mummery et al. (2017), presented in Chapter 2. In Sec-

tion 3.4.2, I explore four possible causes for why the clustering of optically-identified

GGCs is not as sensitive to the summed neutrino mass as the clustering of dark matter

haloes, concluding that the main culprit is the scatter in the GGC observable-halo mass

relations.

3.4.1 Initial WMAP-9 Comparison Between BAHAMAS and GAMA.

In the top rows of Figures 3.1 and 3.2 I display the redshift-space 2-point autocorrela-

tion functions for GAMA and BAHAMAS in equally populated bins of integrated stellar

mass and multiplicity, respectively. A WMAP-9 cosmology is adopted for both the

simulations and observations, while the summed neutrino mass is varied between Mν

= 0 and 0.48 eV. The middle rows display the same data normalised to the BAHAMAS

massless neutrino case, while the bottom rows display them normalised to the mean

of the three GAMA fields. In all panels, thick error bars correspond to the error on the

mean in each comoving radial bin, while the thin error bars show the 60% confidence

interval of the cosmic variance between BAHAMAS light cones, as described in the

previous section.

Whether binned by integrated stellar mass (Fig. 3.1) or multiplicity (Fig. 3.2), the

simulations reproduce the observed clustering of GAMA GGCs remarkably well. A

slight offset is present at the very largest scales (r > 10h−1 Mpc), which is due to the

finite box size of the simulations (e.g., Tormen and Bertschinger 1996; Bagla and Ray

2005).

Note that in order to accurately reproduce the observed clustering of the GGCs, a num-
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Figure 3.1: Top: Redshift-space 2-point GGC autocorrelation as a function of the inter-group
separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins
of integrated stellar mass. For the BAHAMAS curves, thick error bars display the standard error
on the mean and thin error bars show the 60th percentile of the cosmic variance. In the GAMA

case, error bars show the standard error on the mean. Middle: The ratio of the autocorrelation
function in each case to the BAHAMAS massless neutrino (”nu 0.00”) case. Bottom: The ratio
of the autocorrelation function in each case to the GAMA case. There is remarkably good
agreement between the BAHAMAS and GAMA cases in all three bins. However, there is no
evidence for a systematic offset between the BAHAMAS neutrino cases.
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Figure 3.2: Top: redshift-space 2-point GGC autocorrelation as a function of the inter-group
separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins
of multiplicity. For the BAHAMAS curves, thick error bars display the standard error on the
mean and thin error bars show the 60th percentile of the cosmic variance. In the GAMA case,
error bars show the standard error on the mean. Middle: The ratio of the autocorrelation
function in each case to the BAHAMAS massless neutrino (”nu 0.00”) case. Bottom: The ratio
of the autocorrelation function in each case to the GAMA case. There is remarkably good
agreement between the BAHAMAS and GAMA cases in all three bins. However, there is no
evidence for a systematic offset between the BAHAMAS neutrino cases.
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ber of non-trivial conditions should be met by the simulations. These include having

approximately the correct cosmology (as this sets the abundance of host dark matter

haloes), the simulated stellar mass–halo mass relation should be correct for the selected

galaxy sample (required so as to select the same types of systems in the simulations

and observations, prior to group finding), and the distribution and abundance of satel-

lites should be correct (otherwise the richness and integrated stellar mass would be

incorrect). Of these, it is only the second condition (i.e., the match in the stellar mass–

halo mass relation of galaxies) that was achieved via calibration. Otherwise, no aspect

of the simulations was calibrated to reproduce the optical properties of GGCs or how

such systems cluster in space.

While overall the simulations agree well with the GAMA observations, it is evident

from the middle plots that any offset between the various neutrino realisations in the

BAHAMAS runs is small compared to the errors on the autocorrelation function. In

order to make a statistical statement about the fits, I calculate reduced χ2 values for

each BAHAMAS run as a model for the GAMA data. These values are calculated from

the standard error on the means, and are displayed in Table 3.3.

It can be seen from the results displayed in Table 3.3 and Figures 3.1 and 3.2 that,

while the BAHAMAS simulations provide a very good fit to the GAMA GGC autocor-

relation functions, no strong statistical argument can be made for the data favouring

any one neutrino case. I therefore turn my attention to determining the primary issues

in detecting the effect of massive neutrinos in the GGC autocorrelation function, and

determining what schemes may be most effective for future work.

Several possible mechanisms exist to explain the non-detection of the expected neu-

trino signal in GAMA-equivalent simulated BAHAMAS observations. I know from the

work presented in Chapter 2, specifically the left panel of Figure 2.14, that the neutri-

nos affect the 3D 2-point halo autocorrelation function in bins of halo mass by upwards

of 10%. The issue, therefore, must lie in the translation between the 3D clustering of

haloes at a fixed redshift and binned on halo mass and the observationally-determined

redshift-space clustering of identified GGCs within a redshift range and binned in some

tracer of halo mass, i.e. stellar mass or multiplicity.
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Table 3.3: The results of χ2 tests of the simulated BAHAMAS data against GAMA data, and between the most extreme BAHAMAS runs. The columns are:
(1) The variable and range for the specified bin; (2-6) The χ2/NDF value for each simulation run with respect to the GAMA data.

Bin
χ2 w.r.t. GAMA

NU 0.00 NU 0.06 NU 0.12 NU 0.24 NU 0.48
(1) (2) (3) (4) (5) (6)

WMAP-9 10.00 ≤M∗ < 10.55 10.5 5.41 1.40 1.40 3.69
fixed linking length 10.55 ≤M∗ < 10.84 0.962 1.02 1.65 0.820 1.15

10.84 ≤M∗ < 12.50 5.06 9.72 2.19 0.980 0.947
5 ≤ N < 6 1.10 1.23 1.05 1.35 0.899
6 ≤ N < 8 0.514 0.418 0.540 0.434 0.426
8 ≤ N 0.198 0.321 0.288 0.443 0.299

WMAP-9 10.00 ≤M∗ < 10.55 1.32 1.95 0.728 1.94 1.15
mass-dependent 10.55 ≤M∗ < 10.84 0.843 0.966 1.08 0.645 0.838
linking length 10.84 ≤M∗ < 12.50 3.98 2.59 1.53 1.74 3.00

5 ≤ N < 6 0.748 0.779 0.39 0.667 0.565
6 ≤ N < 8 0.480 0.585 0.372 0.488 0.409
8 ≤ N 0.737 0.699 0.379 0.517 0.477

Planck 10.00 ≤M∗ < 10.55

-

0.541 0.901 0.485 1.78
fixed linking length 10.55 ≤M∗ < 10.84 1.36 0.735 1.29 0.951

10.84 ≤M∗ < 12.50 0.695 0.558 0.715 0.609
5 ≤ N < 6 1.15 1.47 1.24 1.01
6 ≤ N < 8 1.34 1.55 2.40 1.61
8 ≤ N 0.874 1.38 0.914 0.757

Planck 10.00 ≤M∗ < 10.55

-

0.753 0.67 0.962 1.24
mass-dependent 10.55 ≤M∗ < 10.84 0.953 1.87 2.44 0.775
linking length 10.84 ≤M∗ < 12.50 1.22 1.34 1.37 1.49

5 ≤ N < 6 1.65 1.24 3.53 1.60
6 ≤ N < 8 1.19 1.33 1.25 0.877
8 ≤ N 1.24 1.31 16.7 2.09
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Below, I explore a number of potential causes for decreased sensitivity to neutrino

mass, namely:

• Contributions from GGCs over a redshift range with evolving clustering.

• Cosmology dependence of, and scatter in, the relations between GGC observable

(e.g., multiplicity) and halo mass.

• The impact of peculiar velocities on group finding.

• The fragmentation of more massive GGCs resulting from the use of a fixed FoF

linking length.

3.4.2 Where has the Sensitivity to Neutrino Mass gone?

Evolution of Clustering Over a Range of Redshifts

The GGCs I have selected from GAMA and BAHAMAS span a range of redshifts,

0 < z < 0.2. Evolution of the clustering even over this relatively modest range of

redshifts could potentially ‘smear out’ the cosmological signal I am looking for. In

order to test this, I make use of the ‘true’ halo catalogues from the BAHAMAS light

cones. As discussed in Section 3.2.1, these catalogues are produced by first running a

standard 3D FoFalgorithm on the particles in the full simulation box at each snapshot.

The ‘true’ FoF groups are then distributed in light cones in precisely the same manner

as done for the simulated galaxies (i.e., stacking the FoFcatalogues from each snap-

shot along the line of sight, using the same random rotations/translations as for the

galaxy catalogues). The ‘true’ halo catalogue therefore provides access to perfectly

constrained values for GGC properties, such as M∗200,crit (the integrated stellar mass

within r200,crit), as well as the corresponding halo properties, in particular M200,crit.

In order to deduce the impact of moving from a fixed-redshift halo sample as in Sec-

tion 2.5 to a sample spanning a range of redshifts, I investigate the halo autocorrelation

function in bins of M200,crit from the light cones. My results can then be compared
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with Figure 2.14, in which I also examined the clustering in bins of halo mass but at a

fixed epoch (i.e., not from light cones). Aside from the selection of sources, the tech-

nique employed to compute the halo clustering is identical to that utilised to compute

the GGC clustering in Section 3.4.1.

In Figure 3.3 I show the redshift-space 2-point GGC autocorrelation function for the

full BAHAMAS light cones in bins of M200,crit for the WMAP-9 cosmology. The

lower panels display the fractional differences between the different neutrino mass

implementations. As can be seen in these plots, higher values of the summed neutrino

mass systemically prefer a higher amplitude for the autocorrelation function. This

effect is strongest in my highest mass bin (12.77 ≤ log
(
M200

M�

)
< 15.5), where I

observe a ∼ 15% offset between the most extreme case (
∑
Mν = 0.48 eV) and the

massless case. This is consistent with my expectations from Mummery et al. (2017).

Note that the reported errors are somewhat larger here compared with Mummery et al.

(2017), as they used the full BAHAMAS simulation volumes rather than light cones,

which necessarily sample only a fraction of the total simulation volume.

In order to quantify the contribution of each effect I investigate in this section, I per-

form statistical tests to determine whether different neutrino runs may be distinguished.

Specifically, I attempt to rule out the null hypothesis of there being no difference be-

tween the neutrino runs. To do so, I treat the NU 0.48 data, the most extreme neutrino

case, as the prediction of a model describing NU 0.00, the case with massless neutri-

nos, and calculate the reduced χ2 value. I do this jointly across all three bins in each

case, as well as computing individual values for each bin. The results of these tests for

each effect investigated are presented in Table 3.4. The high values of χ2/NDF in the

top row demonstrate that the effects of neutrinos can be statistically differentiated in

the BAHAMAS lightcones when using ‘true’ halo properties. I can therefore exclude the

evolution of clustering as the dominant contributor to the non-detection of the effects

of massive neutrinos in Figures 3.1 and 3.2.
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Figure 3.3: Top: redshift-space 2-point autocorrelation functions for BAHAMAS GGCs in
equally populated bins of halo mass M200,crit. As above, thick error bars display the standard
error on the mean while thin error bars show the 60th percentile of the cosmic variance. Bottom:
The autocorrelation function in each case normalised to the massless neutrino case. BAHAMAS

runs with higher values for the summed neutrino mass show a higher amplitude for the GGC
clustering than those with lower values. This effect is greatest in bins with higher halo mass.
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Figure 3.4: Multiplicity - halo mass and stellar mass - halo mass relations for the various
BAHAMAS runs in the context of the WMAP-9 cosmology. Top Left: Multiplicity - halo mass
relations. Bottom Left: RMS of the log10 scatter in the Multiplicity - halo mass relations in
bins of halo mass. Top Right: Stellar mass - halo mass relations. Bottom Right: RMS of the
log10 scatter in the Stellar mass - halo mass relations in bins of halo mass. Note that while the
lower panels share a y scale, the upper panels do not.
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Figure 3.5: Multiplicity - halo mass and stellar mass - halo mass relations for the various
BAHAMAS runs in the context of the WMAP-9 cosmology. In contrast to Figure 3.4, the
relations are binned on the observable rather than the halo mass. Top Left: Multiplicity - halo
mass relations. Bottom Left: RMS of the log10 scatter in the Multiplicity - halo mass relations
in bins of multiplicity. Top Right: Stellar mass - halo mass relations. Bottom Right: RMS of
the log10 scatter in the Stellar mass - halo mass relations in bins of multiplicity.
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GGC Observable–Halo Mass Relations: Cosmology Dependence and Scatter

I now turn my attention to potential issues associated with the GGC observable–halo

mass relations. The first potential issue is that these relations could differ between the

simulations (i.e., they depend on neutrino mass). This would would imply that, when

computing the clustering of GGCs in bins of some observable (e.g., multiplicity), the

halo mass distribution within a given observable bin could vary with the simulation.

As a consequence, I would therefore be comparing the clustering of objects of differ-

ent halo masses when comparing different simulations. A second issue is the potential

impact of intrinsic scatter in the GGC observable–halo relations. Intrinsic scatter will

affect the measured clustering, as its presence implies that bins of fixed observable

can contain a potentially wide range of halo masses (depending on the amount of scat-

ter and the bin widths). This, in turn, will tend to smear out the effects of massive

neutrinos, as their impact on the clustering of haloes is an increasing function of halo

mass (see, e.g., Figure 2.14). Here I examine the nature of the observable–halo mass

relations in BAHAMAS simulations.

In the upper panels of Figure 3.4 I display multiplicity–halo mass (left) and stellar

mass–halo mass (right) relations for each of the BAHAMAS runs used. This I calculate

as the mean multiplicity (stellar mass) value in logarithmic bins of halo mass for the

full GGC catalogue generated in Section 3.3.2, with error bars corresponding to the

log10 RMS (i.e., scatter) about the mean. The absolute RMS of the scatter is displayed

in the lower panels. While this shows the intrinsic scatter in the observable quantities

in bins of the halo mass, I also include the scatter in halo mass in bins of the observable

quantities in Figure 3.5.

In both cases I find that the observable is, as expected, an almost linear tracer of the un-

derlying halo mass. I also note that there is almost no variation in the amplitude, form

or intrinsic scatter of the relation between neutrino models. Naively, this is somewhat

surprising, as I know from Chaper 2 that the inclusion of massive neutrinos leads to

a not insignificant alteration (a reduction) to the halo mass. The lack of a visible dif-

ference here between the different simulations indicates that the values of N and M∗
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are sensitive to this change and adjust accordingly. This makes intuitive sense, as the

alteration to the growth of structure arising from the inclusion of massive neutrinos is

present from their inception, and therefore the causal relationships between the halo

mass and these parameters will still hold. In other words, the haloes do not know that

they are ‘supposed’ to be more massive (i.e., they evolve along these relations as the

neutrino mass is dialled).

The low scatter in high mass (both stellar and halo) and multiplicity bins found here is

in agreement with that measured by Farahi et al. (2018). This is a logical consequence

of growth of structure - as hierarchical clustering causes the potential wells of haloes

to grow ever larger, both in physical size and in depth, the region within which the

baryonic processes have a significant effect becomes more restricted to the centre of the

halo. Beyond this, gravitational forces dominate and the self-similar scalings predicted

for collisionless haloes reappear.

Significantly for this work, the consistency of the mean stellar mass– and multiplicity–

halo mass relations indicates that the scaling relations are virtually independent of

cosmology, implying that (at least in the absence of scatter) the clustering observable

bins should have approximately the same cosmology dependence as clustering in halo

mass bins.

Moving on to the impact of intrinsic scatter, I investigate this by examining the (‘true’)

halo autocorrelation functions in bins of ‘true’ stellar mass and multiplicity. By fo-

cusing on the clustering of bins of (‘true’) observable for the ‘true’ halo catalogue, I

am able to isolate the impact of binning on an observable (and therefore the effect of

scatter in the observable–halo mass relation) as opposed to halo mass. The results for

the clustering in bins of ‘true’ integrated stellar mass are displayed in the upper panels

of Figure 3.6. As in Figure 3.3, the lower panels display the ratio of each case to the

massless neutrino run. The results of χ2 tests comparing NU 0.00 and NU 0.48 are

given in Table 3.4.

A comparison between Figures 3.6 and 3.3 shows that the scatter in the stellar mass–

halo mass relation causes a notable increase in the noise of this measurement. Fur-
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Figure 3.6: Top: redshift-space 2-point autocorrelation functions for BAHAMAS haloes in
equally populated bins of M∗halo, the ’true’ stellar mass contained within M200,crit. Halo sam-
ples were identified by means of an on-the-fly FoF algorithm run on the BAHAMAS simulation
particles. As above, thick error bars display the standard error on the mean while thin error
bars show the 60th percentile of the cosmic variance. Bottom: The autocorrelation function in
each case normalised to the massless neutrino case. BAHAMAS runs with higher values for the
summed neutrino mass show a higher amplitude for the GGC clustering than those with lower
values. This effect is greatest in bins with higher stellar mass.
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thermore, in the highest mass bin (11.12 ≤ log
(
M∗halo

M�

)
< 13.00) one can see that

the offset between the various BAHAMAS runs is no longer clearly monotonic as it was

for objects binned on their halo mass. While some small difference is still discernible

for the highest neutrino mass case, it is clearly much less dramatic than for the case

where the correlation functions were computed in bins of halo mass. Note that as in

Figure 3.3, the mass bins in Figure 3.6 have been chosen such that the numbers of

objects per bin in the GAMA dataset are approximately equal. This is confirmed by the

sharp decrease in χ2 when changing from binning on the true halo mass to observable

mass tracers.

This result indicates that while highest mass objects are the most affected by neutrino

free-streaming, their scarcity and the strong dependence of this effect on mass binning

means that even the remarkably small scatter in the observable–halo mass relationships

for these objects is sufficient to significantly reduce the measured amplitude of this

effect.

The Impact of Peculiar Velocities

The peculiar motions of galaxies can potentially affect the clustering results in two

ways. First, galaxies that are near GGCs, but not actually physically associated with

them, can be assigned to the group in redshift space by the FoF algorithm, purely as

a result of the observable redshift not reflecting the ‘true’ Hubble redshift (i.e., the

distance). This, in turn, will affect the GGC observable–halo mass relations, adding

both bias and scatter to them. Second, in terms of the GGCs themselves, their peculiar

velocities will affect the derived 3D distances between GGCs, particularly at small sep-

arations. I examine the impact of the latter below. In terms of the former, the addition

of scatter to the GGC observable–halo mass relations will impact the clustering results

as described in Section 3.4.2. This scatter, however, is in addition to the intrinsic scat-

ter in the ‘true’ scaling relations explored there, implying that my conclusions about

the significant impact of scatter in the observable–mass relations on the clustering are

conservative.
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Figure 3.7: Top: Redshift-space 2-point GGC autocorrelation as a function of the inter-group
separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins
of integrated stellar mass. In contrast to Figure 3.1, the redshift values used in the construction
of these results for the simulated data do not include the contribution of the peculiar motions of
galaxies and GGCs, i.e. only the Hubble redshift is considered. For the BAHAMAS curves, thick
error bars display the standard error on the mean and thin error bars show the 60th percentile of
the cosmic variance. In the GAMA case, error bars show the standard error on the mean. Middle:
The ratio of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu
0.00”) case. Bottom: The ratio of the autocorrelation function in each case to the GAMA

case. Since the peculiar motions cannot be excluded in the GAMA data, the agreement between
GAMA and BAHAMAS is somewhat worsened in comparison to Figure 3.1. The exclusion of
peculiar motions does not improve the sensitivity of this diagnostic to the neutrino mass.
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In order to assess the impact that peculiar velocities have on the 3D clustering, I repeat

my calculation of the 3D comoving autocorrelation function of BAHAMAS GGCs (see

Figures 3.1 and 3.2) but have altered the redshift calculation to exclude the contribution

from peculiar motions (i.e. the Hubble redshift only). I present the results of this

analysis in Figure 3.7

I find that peculiar motions are responsible for a small increase in noise at lower values

of the comoving 3D radius and for lower values of GGC stellar mass or multiplicity.

These trends make intuitive sense. First, as the peculiar motions of the galaxies are ex-

pected to be approximately randomly distributed, in more populated GGCs the mean

observable redshift will tend toward the Hubble redshift. Furthermore, the impact of

residual peculiar motions on the inferred separation between GGCs will be a decreas-

ing function of group separation. This is simply because the peculiar redshift becomes

small in comparison to redshift difference between GGCs at large physical separations.

Additionally, removing peculiar motions from the analysis results in a small appar-

ent decrease in the clustering amplitude at all radii. As noted above, their peculiar

motions change which galaxies are assigned to FoF groups. Consequently, the fixed

stellar mass and multiplicity ranges select slightly different GGC populations which

cluster at slightly different characteristic distances, resulting in an apparent shift in the

amplitude.

Thus, I find that peculiar GGC motions do not significantly impact upon the cosmo-

logical sensitivity of their clustering, particularly since it is the more populated GGCs

which are the most sensitive to cosmology and the least affected by peculiar motions.

It is worth pointing out that in my main analysis I have focused on the 3D correlation

functions, as opposed to the projected (2D) correlation functions. Projected correlation

functions are insensitive to peculiar motions, so long as they are integrated over a suf-

ficiently large line of sight distance. That there is no statistically significant difference

between the BAHAMAS neutrino realisations in the projected clustering precludes pe-

culiar motions as an important mechanism by which the underlying dependence on the

neutrino mass is obscured. However, as noted above, the peculiar motions do add scat-
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ter to the GGC observable–mass relations, which can affect the clustering (as described

in Section 3.4.2).

Varying the Galaxy Linking Strategy

As described in Section 3.3.2, I have until this point assigned galaxies to groups by

means of a FoF algorithm with a fixed linking length based on the mean separation

of galaxies within the survey volume. Due to the slope of the NFW, less massive

galaxies are the most numerous and therefore dominate the calculation of the mean

separation. As more massive GGCs tend to consist of characteristically more massive

galaxies, and these galaxies cluster at greater characteristic distances than their less

massive counterparts, this leads to the most massive FoF groups being fragmented into

smaller groups (see Jakobs et al. 2017). As can be seen in Figures 3.3 and 3.6, it is

the most massive GGCs that have the greatest sensitivity to the neutrino mass. The

fragmentation problem may therefore be a potential contributor to the non-detection of

the neutrino signal in my predictions for GAMA clustering.

In order to examine the impact of linking strategy, I re-analyse each dataset using

a galaxy stellar mass-dependent linking length. As discussed in Section 3.3.2, this

modifies the FoFalgorithm such that the mean separation is calculated not based on

the number density of all galaxies in the sample, but rather on that of all galaxies of

greater or equal stellar mass to the galaxy for whose friends I am searching. This

results in longer linking lengths for more massive galaxies and effectively prevents the

fragmentation of FoF groups.

This impact of varying the linking strategy can be seen by comparing Figures 3.8 and

3.9, which display the stellar mass and multiplicity functions of FoF identified GGCs

in GAMA and BAHAMAS in the case of fixed and mass-dependent linking lengths,

respectively. In each case, the upper panels display the multiplicity function (left) and

stellar mass function (right) of the three GAMA fields and various BAHAMAS runs,

while the lower panels show the ratio of these data to the GAMA result.

Note that the apparent turnover in the GGC stellar mass function is not physical, but
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Figure 3.8: The multiplicity and stellar mass functions of GAMA and BAHAMAS GGC samples
identified using a FoF algorithm with a fixed value for the linking length. Top Left: the multi-
plicity functions of the GAMA fields and BAHAMAS runs. The black curve shows the stacked
function for the G09, G12 and G15 GAMA fields. Coloured lines show the functions for the
various BAHAMAS neutrino mass cases, stacked over all cones and cuts. Error bars are the
poisson error on the count in each integrated stellar mass bin. Bottom Left: the ratio of the
multiplicity function in each BAHAMAS case to the GAMA result. Top Right: the integrated
stellar mass functions of the GAMA fields and BAHAMAS runs. The black curve shows the
stacked function for the G09, G12 and G15 GAMA fields. Coloured lines show the functions
for the various BAHAMAS neutrino mass cases, stacked over all cones and cuts. Error bars are
the poisson error on the count in each integrated stellar mass bin. Bottom Right: the ratio of the
stellar mass function in each BAHAMAS case to the GAMA result. BAHAMAS is reasonably suc-
cessful at reproducing the GAMA integrated stellar mass function at low masses (M∗ < 1011.7),
but shows more significant deviation at higher masses. There is a clear difference in gradient
between the BAHAMAS and GAMA multiplicity functions.
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Figure 3.9: The multiplicity and stellar mass functions of GAMA and BAHAMAS GGC samples.
In contrast to figure 3.8, GGC samples in this case are identified by means of a FoF algorithm
with a mass dependent value for the linking length. Top Left: the multiplicity functions of
the GAMA fields and BAHAMAS runs. The black curve shows the stacked function for the
G09, G12 and G15 GAMA fields. Coloured lines show the functions for the various BAHAMAS

neutrino mass cases, stacked over all cones and cuts. Error bars are the poisson error on the
count in each integrated stellar mass bin. Bottom Left: the ratio of the multiplicity function
in each BAHAMAS case to the GAMA result. Top Right: the integrated stellar mass functions
of the GAMA fields and BAHAMAS runs. The black curve shows the stacked function for the
G09, G12 and G15 GAMA fields. Coloured lines show the functions for the various BAHAMAS

neutrino mass cases, stacked over all cones and cuts. Error bars are the poisson error on the
count in each integrated stellar mass bin. Bottom Right: the ratio of the stellar mass function in
each BAHAMAS case to the GAMA result. The use of a mass dependent linking length increases
the relative abundance of high stellar mass / multiplicity groups compared to a fixed linking
length for both BAHAMAS and GAMA. It also results in notable better agreement in this region,
albeit with slightly worse agreement at lower masses / multiplicities.
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rather arises due to the missing stellar mass of galaxies that fall below my galaxy mass

cut. As lower mass GGCs consist preferentially of comparatively lower-mass galaxies,

a greater proportion of the stellar mass of these objects is contained within galaxies

that I am not counting towards their total stellar mass.

Figures 3.10 and 3.12 are updates of Figures 3.1 and 3.2 using the mass-dependent

linking length GGC sample. The results of χ2 tests on the calculated autocorrelation

functions are given in Tables 3.3 and 3.4. As can be seen from these, the updated GGC

sample offers minimal improvement over the fixed linking length case. My results

remain consistent with the null hypothesis of there being no difference between the

clustering of GGCs as a function of the summed neutrino mass.

For completeness, in Figure 3.11 I display the results of repeating this analysis while

excluding peculiar motions as described above. Unsurprisingly, removing peculiar

velocities in this context has an almost identical effect as doing so in the context of

GGCs identified using a fixed linking length.

Summary

Of the four potential causes I have explored for the reduction in the sensitivity of the

GGC autocorrelation to cosmology (specifically neutrino mass), the largest effect I

have identified is that of scatter in the GGC observable–halo mass relations. Even

just the intrinsic scatter in the true 3D ‘observables’ is sufficient to remove most of

the sensitivity, without including other relevant sources of observational scatter (e.g.,

incomplete or inaccurate FoF group membership assignment). Scatter affects the mea-

sured clustering, as its implies that bins of fixed observable can contain a potentially

wide range of halo masses. This smears out the effects of massive neutrinos, as their

impact on the clustering of haloes is an increasing function of halo mass.
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Figure 3.10: Top: The redshift-space 2-point GGC autocorrelation as a function of the inter-
group separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally pop-
ulated bins of integrated stellar mass for a WMAP-9 cosmology. In contrast to figure 3.1,
groups have been identified by means of a FoF algorithm with a mass dependent linking length
as described in section 3.3.2. For the BAHAMAS curves, thick error bars display the standard
error on the mean and thin error bars show the 60th percentile of the cosmic variance. In the
GAMA case, error bars show the standard error on the mean. Middle: The ratio of the autocor-
relation function in each case to the BAHAMAS massless neutrino (”nu 0.00”) case. Bottom:
The ratio of the autocorrelation function in each case to the GAMA case. There is remarkably
good agreement between the BAHAMAS and GAMA cases in all three bins. However, there is
no evidence for a systematic offset between the BAHAMAS neutrino cases.
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Figure 3.11: Top: The redshift-space 2-point GGC autocorrelation as a function of the inter-
group separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally popu-
lated bins of integrated stellar mass for groups identified using a FoF algorithm with a mass-
dependent linking length and excluding the effects of peculiar motions for a WMAP-9 cos-
mology. As in Figure 3.10, groups have been identified by means of a FoF algorithm with a
mass dependent linking length as described in section 3.3.2. In contrast to that Figure, only
the Hubble redshift has been considered. For the BAHAMAS curves, thick error bars display
the standard error on the mean and thin error bars show the 60th percentile of the cosmic vari-
ance. In the GAMA case, error bars show the standard error on the mean. Middle: The ratio
of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu 0.00”)
case. Bottom: The ratio of the autocorrelation function in each case to the GAMA case. As in
Figure 3.7, the exclusion of peculiar motions results in a small However, there is no evidence
for a systematic offset between the BAHAMAS neutrino cases.
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Figure 3.12: Top: redshift-space 2-point GGC autocorrelation as a function of the inter-group
separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins
of multiplicity. In contrast to Figure. 3.2, groups were identified by means of a FoF algorithm
with a mass-dependent linking length. For the BAHAMAS curves, thick error bars display
the standard error on the mean and thin error bars show the 60th percentile of the cosmic
variance. In the GAMA case, error bars show the standard error on the mean. Middle: The
ratio of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu
0.00”) case. Bottom: The ratio of the autocorrelation function in each case to the GAMA case.
There is remarkably good agreement between the BAHAMAS and GAMA cases in all three bins.
However, there is no evidence for a systematic offset between the BAHAMAS neutrino cases.
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Table 3.4: The results of χ2 tests determining how well the various neutrino runs can be
distinguished in the different data sets and binning strategies constructed in this section. For
each of the data the reduced χ2 value is calculated as the goodness of fit between the NU 0.00
and NU 0.48 BAHAMAS runs. This is done individually in each bin, as well as jointly across all
three bins considered. The columns are: (1) The dataset in question. Sets denoted Xhalo refer
to the ‘true’ halo properties determined from the BAHAMAS FoF groupfinder run on the full
particle distribution. Sets denoted X−zpec do not include peculiar velocities in the calculation
of the line-of-site distance, i.e. the 3-dimensional distribution within the cone is recovered
perfectly. (2) The FoF linking strategy used to identify GGCs. (3) The reduced χ2 between NU

0.00 and NU 0.48 in each individual bin (see Table 3.3 for the bin edges) . (4) The reduced χ2

between NU 0.00 and NU 0.48 calculated jointly across all three bins.

(1) (2) (3) (4)
Data FoF linking strategy Bins Total
Mhalo

200 BAHAMAS particle 1.19 3.42 4.92 3.17
Mhalo
∗ groupfinder 1.33 1.95 2.14 1.71

Nhalo 0.957 0.428 3.11 1.45
M∗ − zpec 1.76 0.862 2.82 1.21
N − zpec fixed linking 1.21 1.19 2.02 1.48
M∗ length 0.519 0.974 1.85 1.14
N 1.27 1.97 2.49 1.21
M∗ − zpec 0.981 1.06 2.73 1.86
N − zpec mass-dependent 1.88 1.56 2.30 1.63
M∗ linking length 1.41 1.22 1.90 1.83
N 1.30 1.31 0.463 0.969
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Figure 3.13: Direct comparison between the clustering of haloes in Planck and WMAP-9
cosmologies. Top: The redshift-space 2-point GGC autocorrelation as a function of the inter-
group separation for objects identified from the full BAHAMAS catalogue in the context of
WMAP-9 (solid curves) and Planck (dashed curves) in bins of the ‘true’ halo mass M200. Bin
limits are quoted in units of M200/M�. Bottom: The ratio of each of the Planck functions to
the corresponding WMAP-9 function. In all cases, the amplitude of clustering in the Planck
case is lower than that of the equivalent WMAP-9 case by ∼ 20%.
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3.4.3 Planck Results

All of the results discussed above have been arrived at in the context of a WMAP-9

cosmology, this being the primary cosmology adopted by the BAHAMAS simulations.

In parallel to this investigation, however, I have replicated each of the tests performed

utilising data drawn from BAHAMAS runs based on the Planck cosmology, as detailed

in Section 3.2. Since deriving redshift-space distances requires that a cosmology be

assumed, I have re-analysed the GAMA data in the context of the Planck cosmology

in order to facilitate direct comparisons in the same manner as the WMAP-9 compar-

isons presented in Section 3.4.1.

The results of this investigation are not substantively different to those arising in the

context of the WMAP-9 cosmology. In both cases, the sensitivity of the GGC clus-

tering to the choice of value for the summed neutrino mass is insufficiently large to

be distinguished. This loss of sensitivity results primarily from intrinsic scatter in the

observable–halo relationships. The GGC clustering prediction from Planck BAHAMAS

runs exhibits remarkably good agreement with that observed from GAMA data analysed

in the context of the Planck cosmology.

The Planck versions of WMAP-9-specific figures displayed throughout this chapter

are included in Appendix C.

Additionally, in Figure 3.13 I present the results of a direct comparison between the

BAHAMAS WMAP-9 and Planck predictions for the GGC clustering. The lower pan-

els display the ratio of each Planck prediction to that of the WMAP-9 run with the

matching choice of neutrino mass.

Since the value of σ8 is higher in Planck than in WMAP-9, one might naively ex-

pect that the Planck clustering result should have a higher amplitude than that of the

WMAP-9 result. While this is indeed the case for a fixed set of haloes, at fixed mass

range, the situation is somewhat more complex. The lower σ8 in WMAP-9 means that

a given initial overdensity evolves into a less massive halo in WMAP-9 than in Planck.

Thus a fixed halo mass range selects an intrinsically different population of haloes –
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the haloes found in Planck would more accurately correspond to a higher mass range

in WMAP-9 haloes.

Because more rarefied objects cluster at larger characteristic distances, they exhibit

higher clustering amplitudes at fixed r. Consequently, at fixed halo mass range the

difference in selected halo population results in apparently lower clustering amplitudes

for Planck than for WMAP-9. This is the same effect that results in the dependence

on halo clustering amplitude found in Chapter 2 (specifically Figure 2.14).

3.5 Conclusions and Discussion

I have made a careful and consistent comparison of the GGC 3D redshift-space auto-

correlation functions derived from the GAMA survey and from the BAHAMAS suite of

cosmological simulations (McCarthy et al., 2018). In particular, I use identical meth-

ods for selecting galaxies, assigning them to FoF groups, and computing the two-point

correlation functions of the simulated and observed GGCs.

I find that the simulated clustering agrees remarkably well with the observations (see

Section 3.4.1).

In Chapter 2, I demonstrated that the amplitude of the dark matter halo autocorrelation

function in BAHAMAS is dependent on the value of the summed neutrino mass (due

mainly to its effect on σ8). Note that this statement is not just true for the most massive

clusters, but also for group- and galaxy-mass dark matter haloes. The naive expectation

was, therefore, that a sample of robustly-identified GGCs (i.e., from a spectroscopic

survey, such as GAMA) could be used to place constraints on cosmology when com-

pared to the predictions of simulations.

Although the BAHAMAS simulations reproduce the observed clustering of GAMA GGCs

remarkably well, the anticipated sensitivity to cosmology was not realized when the

simulations were analysed in a consistent observational manner. I examined four pos-

sible mechanisms that could be responsible for the reduced sensitivity to cosmology
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(see Section 3.4.2), namely:

i) evolution of clustering over a range of redshifts;

ii) cosmology dependence of and intrinsic scatter in the GGC observable–halo mass

relations;

iii) peculiar motions of galaxies and GGCs; and

iv) galaxy linking strategy.

While all of these impact the results at some level, the most dominant effect is intrinsic

scatter in the GGC observable–halo mass relations.

The fact that the simulated clustering agrees so well with observations in the context

of both the WMAP-9 and Planck cosmologies should not be particularly surprising.

It is clear from the results of this investigation that the 2-point autocorrelation function

of GGCs alone is insufficient to place constraints on the background cosmology.

My findings demonstrate the importance of producing synthetic observations and per-

forming like-with-like comparisons between theory and observations. Although it

proved impractical to constrain the neutrino mass based on the GGC clustering in ob-

servable bins in a GAMA - scale survey, this remains an intriguing line of evidence. As

stated previously, the dominant effect preventing such constraints being placed in this

case is the intrinsic scatter in the GGC observable–halo mass relations. This suggests

that significant improvements could be made by employing methods that reduce the

extent of this scatter.

However, even with the intrinsic scatter removed the various neutrino cases are only

just distinguishable in the higher mass bins, and remain consistent with each other in

the lowest (see Figure 3.3). Given that the BAHAMAS group catalogue is larger than

that of GAMA by a factor of ∼ 10, the size of the observational catalogues would need

to be increased by this factor in order to achieve comparable results even if the scatter

were completely removed (i.e. ≈ 55 or roughly 1,800 square degrees, the equivalent

of 30 of the 12 by 5 degree fields used here). An additional issue is that of cosmic

variance. While the variation between BAHAMAS fields is a useful indication of the

variance, it must be borne in mind that the BAHAMAS fields are stacks of projections of
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the same 400 h−1Mpc simulation volume, and are not truly independent. The extent of

the cosmic variance error bars used here are therefore conservative estimates of the true

value. The expected variance between observational fields would therefore be expected

to be somewhat larger than this, necessitating an even greater increase in effective area

in order to achieve the same statistical power. Finally, extending the survey area to

greater line-of-sight distance as a way to increase the probed volume would also bring

with it an additional (although small, at least at first) reduction in the overall signal.

This is because fixed mass bins extending to higher redshift begin to include objects

whose present-day properties would place them in higher mass bins. This effectively

blurs the mass boundary. Given that the neutrino mass-dependent amplitude shift in

the clustering signal arises due to the transition of a comparatively small number of

objects over this boundary, this presents an additional challenge. Nonetheless, these

requirements are not unassailable barriers. the Sloan Digital Sky Survey (SDSS), for

example, currently covers 14,555 square degrees and has spectroscopic data on ∼ 109

galaxies.

Despite this setback, the close agreement between the predicted clustering of BAHAMAS

GGCs and that measured from GAMA remains highly significant. The use of clusters to

perform cosmology requires that accurate and self-consistent predictions can be made

of their properties. The success of BAHAMAS in matching so precisely the observed

clustering without direct tuning, as well as it’s other comparable successes already re-

ported (see, for example, McCarthy et al. 2018) presents an increasingly strong case

for the viability of using simulations for cluster cosmology.



Chapter 4

Summary and Future Work

4.1 Summary

In Chapter 2 I presented the results of my investigation into the separate and combined

effects of baryon physics (particularly AGN feedback) an neutrino free-streaming on

different aspects of large scale structure: the halo mass function and number counts;

the spherically-averaged density profiles; the mass−concentration relation; and the

autocorrelation functions of haloes themselves as well as matter in general.

Analysis of these measures led to the following conclusions:

The Halo Mass Function

• AGN feedback can suppress the HMF by ≈ 20 − 30% relative to the DMONLY

case on the scale of galaxy groups and clusters as AGN heating acts against

gravitational collapse. This effect is largely insensitive to redshift.

• Neutrino free-streaming preferentially suppresses the cluster end of the HMF,

exhibiting a strong dependence on redshift and the choice of neutrino mass. This

is due to the formation of the most massive structures continuing to late times,

causing their abundance to be more sensitive to slight changes in their formation
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timescale.

Radial Density Profiles

• The inclusion of baryonic physics results in higher central densities due to cool-

ing, and higher periphal densities due to gas ejection relative to the DMONLY case.

Expelling gas leads to an expansion of the DM, causing the NFW scale radius to

increase.

• The free-streaming of massive neutrinos reduces the present-day amplitude of

the mass density profile of a given halo while leaving their shape approximately

unchanged within the virial radius. The radius at which the profile transitions

from the ‘1 halo’ to the ‘2 halo’ term decreases with increasing
∑
Mν .

The Mass–Concentration Relation

• The amplitude of the mass–concentration relation is reduced by neutrino free-

streaming by up to ∼ 10% for the most extreme (
∑
Mν=0.48) case considered

here, with only minimal alteration to its slope. This is due both to a lowering of

the overall halo mass and a slight increase of the scale radius.

• AGN feedback alters both the amplitude and the slope of the mass–concentration

relation. The amplitude shift is the result of an increase in the scale radius as

observed in the context of the radial density profiles, while the change in slope

reflects the increased efficacy of AGN feedback in altering the structure of group

scale haloes as opposed to cluster scale.

Halo Clustering

• In bins of the self consistent halo mass, both AGN feedback and neutrino free-

streaming result in an apparent enhancement of the amplitude of the 2-point halo

correlation function on large scales (r � r200), by ∼ 10% with respect to the

DMONLY case with massless neutrinos at z = 0. In the case of simulations with
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baryons and massless neutrinos, this is due entirely to the effect on the halo mass

(so that the mass bins contain different systems in different simulations) rather

than a true alteration of the spatial distribution of haloes.

• In the case of simulations with massive neutrinos, when the change in halo mass

is accounted for, I find that the large-scale clustering of haloes is actually sup-

pressed relative to a massless neutrino case as expected, due to the reduction in

accretion rate for these systems.

Matter Clustering

• On small scales (k>1 h/Mpc) the matter power spectrum can be suppressed by

AGN feedback by up to 10-20% at z = 0. This factor increases by a factor of

≈2 between z = 2 and z = 0

• Neutrino free-streaming also suppresses the matter power spectrum, but over a

much wider range of scales. This suppression is nearly insensitive to redshift but

depends strongly on the adopted summed neutrino mass. This result formed part

of the motivation for the work presented in Chapter 3.

Separability

• I have investigated the extent to which the effects of baryon physics and neutrino

free-streaming can be treated independently. The procedure of multiplying to-

gether the magnitudes of the two effects when taken in isolation reproduces their

combined effects to typically a few percent accuracy for the halo mass function,

the mass density profiles, the mass−concentration relation, and the clustering of

haloes and matter over ranges of 12 ≤M200,crit/M� ≤ 15, 12 ≤M200,crit/M� ≤

14.5, 12 ≤M200,crit/M� ≤ 14 and 0.04 ≤ k [h/Mpc] ≤ 10, respectively.

My work has demonstrated that both AGN feedback and neutrino free-streaming can

have a considerable impact on LSS. They should therefore both be included in cosmo-

logical analyses. Through the use of self-consistent cosmological simulations I have
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shown that, to a high degree of accuracy, these processes are separable (i.e., can be

treated independently), which should considerably simplify the inclusion of their ef-

fects in cosmological studies that adopt, for example, the halo model formalism or the

linear matter power spectrum (e.g., from CAMB).

In Chapter 3 I explored the possibility of constraining the value of
∑
Mν by means

of direct comparison between simulated and observed GGC clustering. Data from

the BAHAMAS suite was used to construct simulated observations in the form of light

cones. Catalogues of galaxies were drawn from these, then cuts in stellar mass and

redshift applied both to these simulated galaxy catalogues, and the observed galaxy

catalogues from the GAMA survey data release 3 in order to ensure that the selection

functions of the two data sets were identical.

To ensure that no uncertainty could be introduced by methodological differences, I

then treated these catalogues consistently throughout. I assigned galaxies to groups

based on a FoF algorithm, then computed the 3D, redshift-space 2-point autocorrela-

tion function of GGCs in equally populated bins of observable mass tracers, specifi-

cally the integrated stellar mass and richness.

Despite the promising result of Figure 2.14, I found that the statistical power of GAMA-

equivalent observations is insufficient to detect the alteration to the clustering resulting

from changing the neutrino mass, even when considering the most extreme case cov-

ered by BAHAMAS (ΣMν = 0.48 eV) and a survey area ten times larger than the actual

GAMA fields used in this study.

I then explored in detail the potential causes of this loss of precision. Returning to the

BAHAMAS light cones in their unprocessed form, I was able to investigate the impact

on the sensitivity of the clustering signal of:

i) considering a redshift range, however small, as opposed to measuring the clus-

tering at a fixed redshift value;

ii) the cosmology dependence of, and intrinsic scatter in, the group observable–halo

mass relations;

iii) the peculiar motions of galaxies and groups; and



4.2. Future Work 132

iv) the galaxy linking strategy.

While each of these effects serves to decrease the sensitivity of the GGC clustering to

the neutrino mass, I found that the largest contributor was the intrinsic scatter in the

group observable–halo mass relations. This leads me to the conclusion that it is not

viable to perform cosmology with these data alone. Having identified the largest effect

diminishing the sensitivity it is relatively easy to foresee methods by which this may

be mitigated, however even with this effect removed entirely placing constraints on the

neutrino mass requires an increase in the size of the observational catalogue by at least

an order of magnitude over that used here.

A more heartening result arises from the comparison of the simulated data not to other

simulations but to the observations. The agreement between the observed GGC clus-

tering in GAMA, and that predicted by the BAHAMAS simulations is remarkably close.

This stands with similar successes in reproducing other cluster properties (see, for ex-

ample, McCarthy et al. 2018) in presenting an increasingly strong case for the viability

of simulations in the pursuit of cluster cosmology.

4.2 Future Work

This thesis utilised the unique opportunity presented by the BAHAMAS and cosmo-

OWLS simulation suites to study in detail the effects of baryon physics and the free

streaming of massive neutrinos and large-scale structure formation in the context of

self-consistent, hydrodynamical cosmological simulations. The findings presented in

Chapter 2 demonstrated that these effects are necessary inclusions in models of LSS

formation, while also establishing that, over the range of masses and redshifts consid-

ered, the two effects can be considered independently to high accuracy. This should

simplify considerably their implementation as corrective terms in theoretical models.

However, further work should be undertaken to establish how far beyond the regime

considered here the multiplicative approximation remains valid.

Although placing constraints on the neutrino mass from GGC clustering proved non-
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viable with the GAMA data set alone analysed in this way, this work identified the

intrinsic scatter in the observable–halo mass relations as the primary factor in reducing

the sensitivity of the clustering signal to this cosmology. An obvious route for future

study, therefore, is the utilisation of techniques that reduce or eliminate the effect of

this scatter. One possible avenue is exemplified in the work of Farahi et al. (2018), who

found that the scatter in the stellar mass–halo mass and gas mass–halo mass relations

of GGCs in BAHAMAS is anti-correlated, implying that one can potentially combine

optical and X-ray observations to construct a better estimator of halo mass. Use of

such observables would significantly improve the sensitivity of the clustering mea-

surement to the cosmology. An alternative approach would be the combined analysis

of GGC clustering with independent methods of determining the halo mass. For ex-

ample, weak lensing is (in theory) directly sensitive to the true halo mass and would

therefore bypass the scatter introduced by the stellar- and richness-halo mass relations.

However, weak lensing itself introduces a number of additional sources of uncertainty

such as additive and multiplicative biases, the choice of PSF model, and, significantly,

intrinsic alignments. As a result, the scatter between weak lensing mass and true halo

mass is significant. This scatter is less problematic at high masses where the effect of

neutrinos is strongest, but is nonetheless sufficient to reduce the immediate applicabil-

ity of weak lensing as a workaround in this specific case. However, since this scatter

is predominately independent of the scatter in the mass-observable relationships dis-

cussed above, joint analysis of multiple independent mass measurement techniques

could serve to provide a more beneficial estimator (Mandelbaum, 2017).

As discussed in Section 2.4.1 and shown most clearly in Figure 2.10, the influence of

neutrino free-streaming on the radial total mass density of a consistent set of haloes is

to reduce the amplitude without altering the shape. However, beyond the virial radius

can be seen an ‘oscillatory’ feature in ratios between the different neutrino cases. This

I interpret as the transition between the one-halo term, where the radial density pro-

file is dominated by the halo upon which it is centred; and the two-halo term, where

the contribution of nearby systems becomes significant. This sensitivity offers an ad-

ditional potential route by which constraints may be placed on the neutrino mass by
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observations of GGCs.

Finally, while it represents an important step forward in the use of simulations for

cluster cosmology, the BAHAMAS project in its current state remains limited to inves-

tigating the effects of varying a single cosmological parameter. This work therefore

ignores a potentially large degree of uncertainty in its results – since the other cosmo-

logical parameters are fixed to their best-fit values (or adjusted only in reaction to the

changing Ων , see Section 3.2.1), the contribution of the uncertainty in their values goes

unaddressed. Estimating the true uncertainty is not trivial, however, as the parameters

affect the observables and one another in complex ways. The eventual goal of the

BAHAMAS project is to capture the entire parameter space of the cosmological param-

eters. However, it is computationally expensive to run even a single realisation, let

alone the large number required for such a probe. Further development of BAHAMAS,

therefore, will focus on developing an interpolation system, allowing the prediction of

observable properties as a function of any combination of cosmological parameters by

interpolating between the outputs of simulations run on a carefully sampled grid within

the parameter space.



Appendix A

Fits to mass-concentration relations

In Table A.1 I provide the best fit power law parameter values to the mass−concentration

relations of the various cosmo-OWLS and BAHAMAS runs. The listed values corre-

spond to the coefficients of Equation 2.9. I provide these values both for the total mass

density profiles, and the DM density profiles.

For comparison, I also include the values found by Duffy et al. (2008).
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Table A.1: Best-fit values for the coefficients of eq. (2.9) for z = 0 − 2 and MFiducial = 1014M�, and the 1 − σ log-normal scatter of concentration
values around the best fit relation. The columns are: (1): The simulation run and background cosmology of the run under consideration. (2-4): The
best-fit values of the coefficients of Equation 2.9 found when considering the DM-content of the haloes alone. (5): The 1-σ extent of scatter around the
best-fit relationship described by (2-4). (6-9): As (2-5), but considering the total mass content of the haloes.

DM Tot
A B C scatter A B C scatter

(1) (2) (3) (4) (5) (6) (7) (8) (9)
NOCOOL 4.878 -0.099 -0.507 0.340 4.720 -0.062 -0.457 0.339
REF 4.650 -0.112 -0.360 0.353 4.124 -0.111 -0.327 0.353

WMAP-7 AGN 8.0 4.105 -0.061 -0.391 0.363 3.614 -0.105 -0.424 0.363
AGN 8.5 3.917 -0.073 -0.432 0.364 3.599 -0.108 -0.462 0.364
AGN 8.7 3.842 -0.071 -0.461 0.369 3.640 -0.094 -0.485 0.369
NU 0.00 4.553 -0.072 -0.467 0.373 4.099 -0.114 -0.515 0.373
NU 0.06 4.498 -0.070 -0.458 0.374 4.053 -0.112 -0.511 0.375

WMAP-9 NU 0.12 4.411 -0.074 -0.449 0.373 3.985 -0.114 -0.504 0.375
NU 0.24 4.329 -0.070 -0.446 0.374 3.901 -0.111 -0.499 0.376
NU 0.48 4.055 -0.068 -0.402 0.385 3.646 -0.108 -0.450 0.386

Duffy et al. (2008) 4.11 -0.084 -0.47



Appendix B

Overview of Halo samples

The total number of GGCs in each bin for the various binning schemes used within

this Thesis. The numbers identified by the various FoF strategies run on GAMA data

and the equivalent BAHAMAS synthetic observations are given in Table B.1. For the

full BAHAMAS catalogues contained within the lightcones, the appropriate numbers of

objects are given in Table B.2 for WMAP-9 data and Table B.3 for Planck.
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Table B.1: Overview of the galaxy group samples drawn from each data set. For the GAMA

data sets, I quote the values for each of the G09, G12 and G15 fields independently, as well as
the aggregate across all three fields. In order that values from different data sets may be directly
compared, I include in square brackets in each case the comoving number density in units of
103 Gpc−3. The columns are: (1): The label assigned to the data set from which the sample
is drawn; (2): The total number of identified galaxy groups with two or more members; (3):
The total number of identified galaxy groups with five or more members; (4-6): The number
of identified galaxy groups that fall within the stellar mass bins defined in Section 3.4.1; (7-9):
The number of identified galaxy groups that fall within the multiplicity bins defined in section
Section 3.4.1. The sections are: (A): The total number in each bin of galaxy groups identified
from the GAMA galaxy catalogues using a fixed FoF linking length; (B): The total number in
each bin of galaxy groups identified from the BAHAMAS galaxy catalogues using a fixed FoF
linking length; (C): The total number in each bin of galaxy groups identified from the GAMA

galaxy catalogues using a mass-dependent FoF linking length; (D): The total number in each
bin of galaxy groups identified from the BAHAMAS galaxy catalogues using a mass-dependent
FoF linking length. In each of these sections, we present the results arising in the context of
both the Planck and WMAP-9 cosmologies, as described in Section 3.2.1. Note that for the
GAMA data set, results in different cosmologies arise from re-analysing the GAMA fields with
different sets of cosmological parameters, whereas BAHAMAS has separate runs and therefore
separate data sets for each cosmology.

Sample N M∗ N

≥ 2 ≥ 5 10-

10.55

10.55-

10.84

≥

10.84

5-6 6-8 ≥ 8

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(A) GAMA fixed linking length - WMAP-9

G09 1,628 195 524 540 564 63 63 69

[486.0] [58.22] [156.4] [161.2] [168.4] [18.80] [18.80] [20.60]

G12 2,148 238 692 749 707 84 73 81

[641.3] [71.05] [193.8] [223.6] [211.1] [25.08] [21.79] [24.18]

G15 2,133 243 745 683 705 88 67 88

[636.8] [72.55] [222.4] [203.9] [210.5] [26.27] [20.00] [26.27]

Total 5,909 676 1,961 1,972 1,976 232 203 238

[588.0] [67.27] [190.9] [196.2] [196.7] [23.38] [20.20] [23.68]

Planck

G09 1,628 235 524 540 564 63 84 88

[541.8] [65.22] [144.3] [148.8] [155.4] [17.35] [23.14] [24.24]

G12 2,085 203 629 749 707 63 73 67
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[578.7] [56.34] [17.35] [206.3] [194.7] [17.35] [20.11] [18.46]

G15 2,133 238 745 683 705 69 81 88

[592.0] [66.06] [205.2] [188.1] [194.2] [19.01] [22.31] [24.24]

Total 5,846 676 1,898 1,972 1,976 195 238 243

[579.4] [67.00] [174.3] [181.1] [181.4] [18.29] [21.85] [22.31]

(B) BAHAMAS fixed linking length - WMAP-9

NU 0.0061,728

[614.2]

5,334

[53.08]

22,902

[227.9]

19,215

[191.2]

19,608

[195.1]

2,307

[22.96]

1,608

[16.00]

1,419

[14.12]

NU 0.0661,377

[610.8]

5,340

[53.14]

22,974

[228.6]

18,960

[188.7]

19,440

[193.5]

2,259

[22.48]

1,776

[17.67]

1,305

[12.99]

NU 0.1261,833

[615.3]

5,310

[52.84]

22,488

[223.8]

19,377

[192.8]

19,968

[198.7]

2,190

[21.79]

1,728

[17.20]

1,392

[13.85]

NU 0.2459,871

[595.8]

5,094

[50.69]

22,941

[228.3]

17,952

[178.6]

18,975

[188.8]

2,001

[19.91]

1,770

[17.61]

1,323

[13.17]

NU 0.4857,888

[576.1]

4,731

[47.08]

22,044

[219.4]

18,003

[179.2]

17,841

[177.5]

1,749

[17.40]

1,674

[16.66]

1.308

[13.02]

Planck

NU 0.0679,988

[587.5]

6,673

[49.02]

31,466

[231.1]

24,937

[183.2]

23,469

[172.4]

2,647

[19.44]

2,284

[16.78]

1,742

[12.80]

NU 0.1280,188

[531.4]

6,681

[44.28]

31,554

[209.1]

25,050

[166.0]

23,470

[155.5]

2,637

[17.48]

2,260

[14.98]

1,784

[11.82]

NU 0.2481,304

[485.0]

6,924

[41.31]

31,291

[186.7]

25,366

[151.3]

24,542

[146.4]

2,720

[16.23]

2,302

[13.73]

1,902

[11.35]

NU 0.4880,869

[680.9]

6,885

[57.97]

31,014

[261.1]

24,879

[209.5]

24,840

[209.1]

2,747

[23.13]

2,360

[19.87]

1,778

[14.97]

(C) GAMA mass-dependent linking length - WMAP-9

G09 1,580

[471.7]

304

[907.6]

445

[132.9]

503

[150.2]

632

[188.7]

69

[20.60]

89

[26.57]

146

[43.59]

G12 1,946

[581.0]

391

[116.7]

541

[161.5]

629

[187.8]

773

[230.8]

96

[28.66]

90

[26.87]

205

[61.20]
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G15 1,935

[577.7]

362

[108.1]

590

[176.1]

602

[179.7]

742

[221.5]

92

[27.47]

72

[21.50]

198

[59.11]

Total 5,461

[543.5]

1,057

[105.2]

1,576

[156.8]

1,734

[172.6]

2,147

[213.7]

257

[25.58]

251

[24.98]

549

[54.63]

Planck

G09 1,579

[250.5]

304

[482.3]

444

[122.3]

502

[138.3]

633

[174.4]

69

[19.01]

89

[24.52]

146

[40.22]

G12 1,943

[539.3]

391

[108.5]

540

[148.7]

630

[173.5]

773

[212.9]

96

[26.44]

93

[25.62]

202

[55.64]

G15 1,934

[536.8]

362

[100.5]

589

[162.2]

603

[166.1]

742

[204.4]

92

[25.34]

72

[19.83]

198

[54.54]

Total 5,456

[540.8]

1,057

[104.8]

1,573

[144.4]

1,735

[159.3]

2,148

[197.2]

257

[23.60]

254

[23.32]

546

[50.13]

(D) BAHAMAS mass-dependent linking length - WMAP-9

NU 0.0064,359

[640.5]

11,064

[110.1]

20,373

[202.7]

18,822

[187.3]

25,143

[250.2]

3,108

[30.93]

3,024

[30.09]

4,932

[49.08]

NU 0.0663,807

[635.0]

10,956

[109.0]

20,247

[201.5]

18,750

[186.6]

24,792

[246.7]

3,054

[30.39]

3,093

[30.78]

4,809

[47.56]

NU 0.1264,275

[639.6]

10,962

[109.1]

19,983

[198.9]

19,050

[189.6]

25,224

[251.0]

3,138

[31.23]

3,018

[30.03]

4,806

[47.83]

NU 0.2462,976

[626.7]

10,407

[103.6]

20,229

[201.3]

18,279

[181.9]

24,438

[243.2]

2,868

[28.54]

2,982

[29.67]

4,557

[45.35]

NU 0.4861,317

[610.2]

9,963

[99.14]

19,956

[198.6]

18,018

[179.3]

23,328

[232.1]

2,679

[26.66]

2,844

[28.30]

4,440

[44.18]

Planck

NU 0.0682,695

[607.4]

13,869

[101.9]

25,406

[186.6]

24,686

[181.3]

32,553

[239.1]

3,715

[27.29]

3,861

[28.36]

6,293

[46.22]

NU 0.1283,649

[554.4]

14,021

[92.92]

25,569

[169.5]

25,078

[166.2]

32,953

[218.4]

3,715

[24.62]

3,957

[26.22]

6,349

[42.08]
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NU 0.2484,615

[504.8]

14,297

[85.29]

25,545

[152.4]

25,089

[149.7]

33,942

[202.5]

3,885

[23.18]

4,003

[23.88]

6,409

[38.24]

NU 0.4884,828

[714.2]

14,070

[118.5]

25,275

[212.8]

25,115

[211.5]

34,397

[289.6]

3,725

[31.36]

4,183

[35.22]

6,162

[51.88]
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Table B.2: densities in 106 per Gpc3 Overview of the massive halo samples drawn from the BAHAMAS lightcones in the WMAP-9 cosmology. The
columns are: (1): The total number of haloes in the sample with true multiplicity Nhalo of at least 2; (2): The total number of haloes in the sample with
true multiplicity Nhalo of at least 5; (3): The total number of haloes in the sample with total mass M200 of at least 1012M�; (4-6): The number of haloes
that fall within each of the chosen true multiplicity bins; (7-9): The number of haloes that fall within each of the chosen true stellar mass bins; (10-12):
The number of haloes that fall within each of the chosen true total halo mass bins. In each case, I include in square brackets the comoving number density
of haloes in each bin in units of 106Gpc−3.

Totals Nhalo log(M∗) M200

Nhalo ≥
2

Nhalo ≥
5

M200 ≥
1012

5 ≤
N < 6

6 ≤
N < 8

N ≤ 8 10 ≤
M∗ <
10.647

10.647 ≤
M∗ <
10.940

M∗ ≤
10.940

12 ≤ M200 <
12.36

12.36 ≤
M200 < 12.77

M200 < 12.77

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
NU 0.00
935,717 125,927 2,224,003 37,854 37,406 50,667 784,474 676,794 733,215 1,313,030 588,947 322,026
[7.45] [1.00] [17.7] [0.301] [0.298] [0.403] [6.25] [5.39] [5.84] [10.5] [4.69] [2.56]
NU 0.06
930,997 124,564 2,203,453 38,319 36,631 49,614 773,057 669,265 731,955 1,304,938 583,413 315,102
[7.41] [0.992] [17.5] [0.305] [0.292] [0.395] [6.15] [5.33] [5.83] [10.4] [4.64] [2.51]
NU 0.12
925,840 122,848 2,192,201 38,104 36,573 48,171 746,305 676,166 745,002 1,303,345 579,320 309,536
[7.37] [0.978] [17.5] [0.303] [0.291] [0.383] [5.94] [5.38] [5.93] [10.4] [4.61] [2.46]
NU 0.24
907,379 117,121 2,124,026 36,373 35,186 45,562 746,152 643,494 707,849 127,0547 56,0988 292,491
[7.22] [0.932] [16.9] [0.290] [0.280] [0.363] [5.94] [5.12] [5.64] [10.1] [4.47] [2.33]
NU 0.48
86,8761 106,443 2,005,103 34,907 32,279 39,257 702,685 614,006 664,054 1,222,684 524,498 257,921
[6.92] [0.847] [16.0] [0.278] [0.257] [0.313] [5.59] [4.89] [5.29] [9.73] [4.18] [2.05]
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Table B.3: densities in 106 per Gpc3 Overview of the massive halo samples drawn from the BAHAMAS lightcones in the Planck cosmology. The columns
are: (1): The total number of haloes in the sample with true multiplicity Nhalo of at least 2; (2): The total number of haloes in the sample with true
multiplicity Nhalo of at least 5; (3): The total number of haloes in the sample with total mass M200 of at least 1012M�; (4-6): The number of haloes that
fall within each of the chosen true multiplicity bins; (7-9): The number of haloes that fall within each of the chosen true stellar mass bins; (10-12): The
number of haloes that fall within each of the chosen true total halo mass bins. In each case, I include in square brackets the comoving number density of
haloes in each bin in units of 106Gpc−3.

Totals Nhalo log(M∗) M200

Nhalo ≥
2

Nhalo ≥
5

M200 ≥
1012

5 ≤
N < 6

6 ≤
N < 8

N ≤ 8 10 ≤
M∗ <
10.647

10.647 ≤
M∗ <
10.940

M∗ ≤
10.940

12 ≤ M200 <
12.36

12.36 ≤
M200 < 12.77

M200 < 12.77

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
NU 0.06
977,531 126,074 2,541,042 38,302 37,458 50,314 958,586 768,616 768,634 1,492,357 676,381 372,304
[7.18] [0.926] [18.7] [0.281] [0.275] [0.370] [7.04] [5.65] [5.65] [11.0] [4.97] [2.73]
NU 0.12
976,620 125,213 2,542,683 38,626 36,877 49,710 956,913 766,782 773,083 1,499,201 674,858 368,624
[7.12] [0.913] [18.5] [0.282] [0.269] [0.362] [6.98] [5.59] [5.64] [10.9] [4.92] [2.69]
NU 0.24
975,487 122,871 2,557,275 38,552 36,790 47,529 949,718 782,568 787,095 1,516,806 677,595 362,874
[6.98] [0.880] [18.3] [0.276] [0.263] [0.340] [6.80] [5.60] [5.63] [10.9] [4.85] [2.60]
NU 0.48
961,273 112,757 2,528,446 36,188 34,771 41,798 933,361 775,209 784,477 1,526,328 666,247 335,871
[6.66] [0.781] [17.5] [0.251] [0.241] [0.290] [6.47] [5.37] [5.43] [10.6] [4.61] [2.33]



Appendix C

Planck cosmology

The plots included in this appendix are directly equivalent to Figures 3.1 to 3.12 (ex-

cluding Figure 3.4) of Chapter 3, differing in the fact that they present the results

of anaylsis of the data carried out in the context of a Planck cosmology rather than

WMAP-9.

In all cases, the results are qualitatively similar to those presented in Chapter 3.
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Figure C.1: As Figure 3.1, but in the context of a Planck cosmology. Top: The redshift-space
2-point galaxy group autocorrelation as a function of the inter-group separation for GAMA

(black curve) and BAHAMAS (coloured curves) in equally populated bins of integrated stellar
mass for a Planck cosmology. Groups have been identified by means of a FoF algorithm with
a fixed linking length as described in section 3.3.2. For the BAHAMAS curves, thick error
bars display the standard error on the mean and thin error bars show the 60th percentile of the
cosmic variance. In the GAMA case, error bars show the standard error on the mean. Middle:
The ratio of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu
0.00”) case. Bottom: The ratio of the autocorrelation function in each case to the GAMA case.
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Figure C.2: The equivalent of Figure 3.2 but in the context of a Planck cosmology. Top: The
redshift-space 2-point galaxy group autocorrelation as a function of the inter-group separation
for GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins of mul-
tiplicity for a Planck cosmology. Groups have been identified by means of a FoF algorithm
with a fixed linking length as described in section 3.3.2. For the BAHAMAS curves, thick error
bars display the standard error on the mean and thin error bars show the 60th percentile of the
cosmic variance. In the GAMA case, error bars show the standard error on the mean. Middle:
The ratio of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu
0.00”) case. Bottom: The ratio of the autocorrelation function in each case to the GAMA case.
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Figure C.3: As Figure 3.3, but in the context of a Planck cosmology. Top: Redshift-space 2-
point autocorrelation functions for BAHAMAS galaxy groups in equally populated bins of halo
mass M200,crit in the Planck cosmology. As above, thick error bars display the standard error
on the mean while thin error bars show the 60th percentile of the cosmic variance. Bottom:
The autocorrelation function in each case normalised to the massless neutrino case. BAHAMAS

runs with higher values for the summed neutrino mass show a higher amplitude for the galaxy
group clustering than those with lower values. This effect is greatest in bins with higher halo
mass.
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Figure C.4: As Figure 3.6, but for the Planck cosmology. Top: redshift-space 2-point autocor-
relation functions for BAHAMAS haloes in equally populated bins of M∗halo, the ’true’ stellar
mass contained within M200,crit in the Planck cosmology. Halo samples were identified by
means of an on-the-fly FoF algorithm run on the BAHAMAS simulation particles. As above,
thick error bars display the standard error on the mean while thin error bars show the 60th per-
centile of the cosmic variance. Bottom: The autocorrelation function in each case normalised
to the massless neutrino case. BAHAMAS runs with higher values for the summed neutrino
mass show a higher amplitude for the galaxy group clustering than those with lower values.
This effect is greatest in bins with higher stellar mass.
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Figure C.5: Top: Redshift-space 2-point GGC autocorrelation as a function of the inter-group
separation for GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins
of integrated stellar mass. This is the equivalent of Figure 3.7, but in the context of the Planck
cosmology. In contrast to Figure C.1, the redshift values used in the construction of these results
for the simulated data do not include the contribution of the peculiar motions of galaxies and
GGCs, i.e. only the Hubble redshift is considered. For the BAHAMAS curves, thick error bars
display the standard error on the mean and thin error bars show the 60th percentile of the cosmic
variance. In the GAMA case, error bars show the standard error on the mean. Middle: The ratio
of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu 0.00”)
case. Bottom: The ratio of the autocorrelation function in each case to the GAMA case. Since
the peculiar motions cannot be excluded in the GAMA data, the agreement between GAMA

and BAHAMAS is somewhat worsened in comparison to Figure 3.1. The exclusion of peculiar
motions does not improve the sensitivity of this diagnostic to the neutrino mass.
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Figure C.6: The multiplicity and stellar mass functions of GAMA and BAHAMAS galaxy group
samples identified using a FoF algorithm with a fixed value for the linking length. This Figure
is the equivalent of Figure 3.8 in the context of a Planck cosmology. Top Left: the multiplicity
functions of the GAMA fields and BAHAMAS runs. The black curve shows the stacked function
for the G09, G12 and G15 GAMA fields. Coloured lines show the functions for the various
BAHAMAS neutrino mass cases, stacked over all cones and cuts. Error bars are the poisson
error on the count in each integrated stellar mass bin. Bottom Left: the ratio of the multiplicity
function in each BAHAMAS case to the GAMA result. Top Right: the integrated stellar mass
functions of the GAMA fields and BAHAMAS runs. The black curve shows the stacked function
for the G09, G12 and G15 GAMA fields. Coloured lines show the functions for the various
BAHAMAS neutrino mass cases, stacked over all cones and cuts. Error bars are the poisson
error on the count in each integrated stellar mass bin. Bottom Right: the ratio of the stellar
mass function in each BAHAMAS case to the GAMA result.
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Figure C.7: The multiplicity and stellar mass functions of GAMA and BAHAMAS galaxy group
samples in the context of a Planck cosmology. In contrast to figure C.6, galaxy group samples
in this case are identified by means of a FoF algorithm with a mass dependent value for the
linking length. This plot is the Planck equivalent of Figure 3.9. Top Left: the multiplicity
functions of the GAMA fields and BAHAMAS runs. The black curve shows the stacked function
for the G09, G12 and G15 GAMA fields. Coloured lines show the functions for the various
BAHAMAS neutrino mass cases, stacked over all cones and cuts. Error bars are the poisson
error on the count in each integrated stellar mass bin. Bottom Left: the ratio of the multiplicity
function in each BAHAMAS case to the GAMA result. Top Right: the integrated stellar mass
functions of the GAMA fields and BAHAMAS runs. The black curve shows the stacked function
for the G09, G12 and G15 GAMA fields. Coloured lines show the functions for the various
BAHAMAS neutrino mass cases, stacked over all cones and cuts. Error bars are the poisson
error on the count in each integrated stellar mass bin. Bottom Right: the ratio of the stellar
mass function in each BAHAMAS case to the GAMA result.
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Figure C.8: The equivalent of Figure 3.10 Top: The redshift-space 2-point galaxy group auto-
correlation as a function of the inter-group separation for GAMA (black curve) and BAHAMAS

(coloured curves) in equally populated bins of integrated stellar mass for a Planck cosmology.
In contrast to figure C.1, groups have been identified by means of a FoF algorithm with a mass
dependent linking length as described in section 3.3.2. For the BAHAMAS curves, thick error
bars display the standard error on the mean and thin error bars show the 60th percentile of the
cosmic variance. In the GAMA case, error bars show the standard error on the mean. Middle:
The ratio of the autocorrelation function in each case to the BAHAMAS massless neutrino (”nu
0.00”) case. Bottom: The ratio of the autocorrelation function in each case to the GAMA case.
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Figure C.9: As Figure 3.11, but in the context of a Planck rather than WMAP-9 cosmology.
Top: Redshift-space 2-point GGC autocorrelation as a function of the inter-group separation for
GAMA (black curve) and BAHAMAS (coloured curves) in equally populated bins of integrated
stellar mass. In contrast to Figure C.5, GGCs have been identified by means of a FoF algorithm
using a mass-dependent linking length. For the BAHAMAS curves, thick error bars display the
standard error on the mean and thin error bars show the 60th percentile of the cosmic variance.
In the GAMA case, error bars show the standard error on the mean. Middle: The ratio of the
autocorrelation function in each case to the BAHAMAS massless neutrino (”nu 0.00”) case.
Bottom: The ratio of the autocorrelation function in each case to the GAMA case.
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