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Abstract 9 

Accurate and reliable forecasting plays a key role in the planning and designing of municipal 10 

water supply infrastructures. Recent studies related to water demand prediction have shown 11 

that water demand is driven by weather variables, but the results do not clearly show to what 12 

extent. The principal aim of this research was to better understand the effects of weather 13 

variables on water demand. Additionally, it aimed to offer an appropriate and reliable technique 14 

to predict municipal water demand by using the Gravitational Search Algorithm (GSA) and 15 

Backtracking Search Algorithm (BSA) with Artificial Neural Network (ANN). Moreover, 16 

eight weather factors were adopted to evaluate their impact on the water demand. The principal 17 

findings of this research are that the hybrid GSA-ANN (Agent=40) model is superior in terms 18 

of fitness function (based on RMSE) for yearly and seasonal phases. In addition, it is evidently 19 

clear from the findings that the GSA-ANN model has the ability to simulate both seasonal and 20 

yearly patterns for daily data water consumption. 21 

Keywords: Australia; explanatory variables; municipal water demand and neural network 22 

model. 23 
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1 Introduction 27 

The environmental outlook of the Organisation for Economic Co-operation and Development 28 

(OECD) to 2050 indicates that global demand for water is anticipated to increase by 55%, 29 

depending on 2000 as a baseline. Moreover, more than 40% of the universal population may 30 

be under acute water stress (Fogden and Wood, 2009). Adamowski et al. (2012) stated that 31 

successive dry days with high temperatures and a low number of rainy days can play a crucial 32 

role in increased water demand. Accordingly, the urban water supply infrastructure faces 33 

increasing pressures related to the impact of extreme weather factors. Under these pressures, 34 

the present urban water supply infrastructure is probably insufficient to meet future water 35 

demands. 36 

Prediction of water demand can play a significant role in optimising the design, operation and 37 

management of urban water supply infrastructures. Additionally, it can minimise the 38 

uncertainty that results from a rapid increase in water demand due to increasing the weather 39 

variables effect. Moreover, short-term forecasting is fundamentally associated with scheduling 40 

operations related to pumping and decreasing the time that water is detained in storage tanks, 41 

which can improve the water quality (Bougadis et al., 2005).  42 

Several previous researchers have examined water consumption considering weather variables 43 

by using traditional models (Zhoua et al., 2000; Gato et al., 2005). Gato et al. (2005) developed 44 

a technique based on both a simple time series and simple linear regression analysis using total 45 

daily rainfall and daily maximum temperature. This study revealed that residential water 46 

consumption during winter months was affected by weather. Bakker et al. (2014) applied three 47 
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various models: a Multiple Linear Regression, a Transfer/-noise model, and an Adaptive 48 

Heuristic with and without utilising weather input. The models' outcomes demonstrated that, 49 

when weather inputs are used, the average errors can be decreased by 7% and the largest 50 

predicting errors by 11%. Their models can be classified into traditional and new techniques.  51 

Several previous studies have investigated and compared conventional and machine-learning 52 

models to predict water demand, and they found that machine-learning techniques have the 53 

ability to predict water demand better than the traditional model; these studies include: 54 

Jain and Ormsbee (2002) presented an artificial neural network model (MLP) and compared it 55 

with two traditional models, regression and time series. The study employed the historical daily 56 

data for water consumption and weather variables in Kentucky state, USA, from 1982-1992. 57 

The results indicated that the simple ANN model offers a better ability for accurate prediction 58 

than the conventional techniques. 59 

Bougadis et al. (2005) investigated three methods: time series analysis, linear and multiple 60 

linear regression, and artificial neural networks. The research adopted the historical weekly 61 

data of water consumption for summer months only for the city of Ottawa, Canada, from 1993-62 

2002. In addition, it used the climate variables and antecedent water consumption as model 63 

inputs. The performance of the ANN models in predicting water demand consistently 64 

outperformed the traditional models.  65 

Unlike many hydrological applications, it has been noted that the artificial neural network 66 

technique has only limited application in terms of water demand modelling (Firat et al., 2010). 67 

In addition, the majority of previous studies have adopted monthly time series data in their 68 

water demand models and sometimes used weekly data; few have adopted daily time series 69 

(Sarker et al., 2013). 70 
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Most studies of water prediction have only investigated the impact of socio-economic factors 71 

or a mix of socio-economic and weather factors (Liu et al., 2003; Firat et al., 2009; Behboudian 72 

et al., 2014). Few studies have adopted weather variables only in their water demand models 73 

as well as employing limit variables (maximum temperature and total rainfall only) (Jain et al., 74 

2001; Jain and Ormsbee, 2002; Adamowski, 2008; Adamowski et al., 2012). Adamowski 75 

(2008) advised using extra weather variables in the water demand model to include 76 

evaporation, humidity, wind speed, and amount of cloud cover and sunshine. 77 

Prediction of water demand is a substantial topic for policy-makers in the water industry. It is 78 

still extremely challenging to achieve the expected forecasting accuracy with respect to the 79 

prediction trends (Behboudian et al., 2014). Accordingly, much uncertainty still exists about 80 

the relationship between the capacity of water systems and a potential rapid increase in water 81 

demand resulting from acute weather factors based on seasonal and yearly base. 82 

The aims of this research study are to: 83 

a) Utilise two novel optimisation algorithms to enhance the capability of the ANN 84 

technique to predict water demand with high accuracy and minimum error. 85 

b) Use statistical techniques to select the model inputs that increase forecasting accuracy 86 

compared with a trial and error approach.  87 

c) Examine the extra weather variables employed in the model inputs to assess the weather 88 

factors’ impact on water demand and reduce the uncertainty, and  89 

d) Develop two kinds of short-term models – seasonal and yearly time series daily data –90 

to explore the relationship between water demand and weather factors on both a 91 

seasonal / a yearly basis and explore the uncertainty.  92 
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To the best of the authors’ knowledge, no previous applications for the techniques in both 93 

points (a) and (b) have been used in water prediction for short-term daily data time series 94 

analysis. 95 

2 Studied Area and Model Data 96 

For the purpose of this study, one catchment area in Australia, the city of Melbourne, has been 97 

used to develop the water demand model. Yarra Valley Water is one of three retail water 98 

companies which receive municipal water from the Melbourne Water Corporation. Yarra 99 

Valley Water delivers municipal water supply and sewerage services to more than 1.5 million 100 

capita who live in the catchment area of the Yarra River where it flows through Melbourne. 101 

Figure 1 shows the Licence Service Area of Yarra Valley Water (YVW, 2017). 102 

Historical daily data of water consumption  and weather variables were collected from Yarra 103 

Valley Water for the areas that were served in Melbourne city from 2010-2015. This data 104 

comprises water consumption (ML), Maximum Temperature  (◦c), Mean Temperature  (◦c), 105 

Minimum Temperature  (◦c), Rainfall  (mm), Evaporation (mm), Solar Radiation (MJ/m2), 106 

Vapour Pressure (hpa), and Maximum Relative Humidity (%). Figure 2 depicts the historical 107 

daily water consumption data. 108 
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Figure 1: Yarra Valley Water's licence service area (YVW, 2017) 

 109 

 

Figure 2: Daily data water consumption for Melbourne for the period 2010-2015 



7 
 

3 Data Pre-processing Techniques 110 

Maier and Dandy (2000) stated that it is vital to pre-process data in an appropriate form before 111 

it is utilised in the ANN. These techniques are essential to confirm that all the data receives 112 

equal attention in the learning mode. 113 

3.1 Data Cleaning 114 

Data cleaning techniques comprise detection and removal of irrelevant or meaningless data, 115 

noise or outliers, to improve the outcomes of data analysis (Xiong et al., 2006). Extreme data 116 

has adverse effects on the regression solution and influences the accuracy of the model (Pallant, 117 

2011). In this study, the box and whisker technique has been used to determine the outliers’ 118 

data and then scores changed to be within the same pattern as the rest of the data. 119 

3.2 Normalisation 120 

This approach aims to smooth the answer space and minimise the effects of noise (ASCE, 121 

2000; Kotsiantis et al., 2006). Tabachnick and Fidell (2013) stated that transforming the 122 

continuous variables is important in making the time series normally or near normally 123 

distributed. Additionally, the results of the model are degraded, if the time series of variables 124 

are not normally or near normally distributed. In this research study, natural algorithm, square 125 

root, and inverse function are adopted to transfer time series data depending on the type of 126 

series.  127 

4 Selection of Explanatory Variables 128 

The selection of explanatory variables influencing water demand as model input data is one of 129 

the most significant stages in evolving a satisfactory forecast model (Zhang et al., 2006) . 130 

Previous studies have trained many ANNs with various combinations of input variables to 131 

select the model that has the best performance (Jain et al., 2001; Zhang et al., 2006; Adamowski 132 

et al., 2012). A potential drawback in the above technique is that it is model-based. In other 133 
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words, the best performance is not achieved by depending on model input variables only, but 134 

also on the structure and calibration of the model (Shahin et al., 2008). 135 

After the potential weather factors were identified (screened and normalised), a three-staged 136 

process was adopted in this study to select the ANN model input data; this was to avoid this 137 

problematic issue of choice and to reduce the uncertainty in input variables. In the first stage, 138 

correlation matrix analysis will be employed to determine the strength of association between 139 

the dependent and independent variables, as well as among the independent variables. 140 

Accordingly, the explanatory independent variables that have a significant correlation at the 141 

0.01 level (2-tailed) will be selected. In the second stage, correlation matrix analysis will be 142 

adopted to investigate the effect of lag (previous values) of the independent variables that were 143 

selected in the first stage on the dependent variable. In addition, an autocorrelation technique 144 

will be applied for water consumption time series. The final stage of the selection process, 145 

variance inflation factor (VIF), will be utilised to determine the presence of multicollinearity. 146 

These stages of the process were carried out to ensure that as many of the potential variables 147 

as possible were properly included in the map of the input-output relationship, to avoid 148 

multicollinearity, which can lead to incorrect conclusions. 149 

5 ANN Techniques 150 

The ANN approach is a system of information processing that attempts to mimic the workings 151 

of the brain's neurons by utilising a network of artificial neurons which are regular in layers. In 152 

addition, it has the ability to adequately map the non-linear water demand trend (Babel and 153 

Shinde, 2011). In this study, the Backpropagation Neural Network (BP-NN) kind and the 154 

Levenberg-Marquardt (LM) learning algorithm were employed for training, testing and 155 

validation. The LM training algorithm was adopted because it offers minimum error in addition 156 

to its speed and efficiency, as proven in Payal et al. (2015). In the ANN, before achieving the 157 
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phases of training, testing and validation, the parameters of the number of inputs, number of 158 

hidden layers, number of neurons in each hidden layer, learning rate and the number of outputs 159 

must be determined. In this research, to predict the short-term daily water demand, an ANN 160 

architecture with the following four layers was employed: (1) input layer; (2) first hidden layer 161 

(FHL); (3) second hidden layer (SHL); and (4) output layer (Ahmed et al., 2016; Gharghan et 162 

al., 2016b), as depicted in Figure 3. The input layer contains seven parameters consisting of 163 

weather variables and antecedent water consumption. In the first layer, the neurons work as a 164 

buffer to distribute the values of inputs to the first hidden layer. The values of inputs were 165 

weighted by connections wij and collected by each neuron of the FHL to pass the output of the 166 

FHL to the neurons of the SHL. The inputs of the SHL were weighted by connections wiz and 167 

collected by each neuron of the SHL to compute the output yk in the fourth layer. The 168 

tansigmoidal activation function was employed in the FHL and SHL to cover all ranges of the 169 

negative input values, whilst the output layer utilised the linear activation functions to cover 170 

the positive values of water demand. ANN parameters chosen were not secure and subject to 171 

the trial-and-error technique, which does not always offer the optimal answer. Hence, the 172 

learning rate and the number of neurons in the first and second hidden layers were determined 173 

depending on the optimisation algorithms (GSA and BSA) with population sizes 10, 20, 30, 40 174 

and 50 (Gharghan et al., 2016a). The Gravitational Search Algorithm (GSA) and Backtracking 175 

Search Algorithm (BSA) are able to remedy such a problem by locating the best learning rate 176 

value and the optimum number of neurons for both hidden layers of the ANN model. 177 

Consequently, the ANN’s performance can be improved. In this case, these algorithms could 178 

be combined with the ANN to form two different types of hybrid model, the GSA-ANN 179 

algorithm and the BSA-ANN algorithm, through which the ANN was capable of predicting 180 

water demand with minimum error.  181 



10 
 

 182 

Figure 3: The ANN algorithm architecture 183 

5.1 Heuristic Algorithms 184 

Heuristic Algorithm is an approach that tries to catch a good solution (near optimal) at a 185 

plausible computational cost without the capability for undertaking either feasibility or 186 

optimality, or even in some situations to explain how close it is to the optimal solution (Rashedi 187 

et al., 2009). Because the conventional approaches provided a high water estimation error, 188 

ANN was employed in this research to improve the predicted water error. Due to the ANN 189 

technique’s flexible modelling and learning abilities, it is likely to produce minimal errors in 190 

determining the future water demand. With a large amount of data and adequate ANN 191 

parameters, ANN has the ability to represent the relationship between dependent and 192 

independent variables. The heuristic algorithms, BSA and GSA, were hybridised with the ANN 193 

to select the optimum parameters of the ANN (i.e., the learning rate and number of neurons in 194 

both hidden layers). Choosing ANN parameters is not totally reliable and is dependent on trial 195 

and error, which in return gives a high level of error in water demand prediction.  196 

Five population sizes, 10, 20, 30, 40 and 50, and 100 iterations were applied to let each 197 

algorithm determine the population that could attain the minimal fitness function value. In 198 

addition, the parameter settings of the heuristic algorithms were detected as F=3 for BSA, G0 199 
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=1 and =0.2 for GSA (Gharghan et al., 2016a). The process of ANN training was repeated 200 

many times utilising a large number of epochs (i.e., 1000 iterations) until the error between the 201 

observed and predicted municipal water reached the minimum. 202 

5.1.1 Backtracking Search Optimisation Algorithm (BSA) 203 

BSA is a recently developed evolutionary optimisation algorithm. It has the ability to solve 204 

problems of numerical optimisation in a quick and successful way by adopting a unique 205 

technique to generate a trail individually. This approach has been employed to address different 206 

kinds of optimisation problem in engineering fields, such as home energy management (Ahmed 207 

et al., 2017), Optimisation issues (Chen et al., 2017). The BSA technique is organised into five 208 

steps: initialisation, selection-I, mutation, crossover and selection-II. Additional details can be 209 

found in Su et al. (2016). 210 

5.1.2 Gravitational Search Algorithm (GSA) 211 

Rashedi et al. (2009) proposed the GSA algorithm, which is based on the Newtonian law of 212 

gravity: “Every particle in the universe attracts every other particle with a force that is directly 213 

proportional to the product of their masses and inversely proportional to the square of the 214 

distance between them”. The mathematical principle of the GSA is dependent on the 215 

Newtonian law of gravity and the motion laws, as in the following: 216 

𝐹 = 𝐺 =
𝑀1𝑀2

𝑅2                                        (1) 217 

Where  218 

F= gravitational force,  219 

R = the distance between the first and second particles mass (M1) and (M2) respectively, and 220 

G = the gravitational constant value. 221 

 222 
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Newton’s second law states that “acceleration is inversely proportional to mass M and directly 223 

proportional to force F”, as follows: 224 

𝑎 =
𝐹

𝑀
                                                   (2) 225 

Due to the influence of declining gravity, the real value of the “gravitational constant (G)” 226 

relies on the universe’s real age. Eq. (3) offers a reduction of the gravitational constant with 227 

age (Gharghan et al., 2016a): 228 

𝐺(𝑡) = 𝐺(𝑡0) × (
𝑡0

𝑡
)𝛽       𝛽 < 1               (3) 229 

Where 230 

 G (t) = the gravitational constant at time t, and  231 

G (t0) = the gravitational constant at the first cosmic quantum-interval of time t0. 232 

 233 

The agents' positions are initialised (i.e., the masses are chosen randomly within the offered 234 

search interval). The ith agent position can be known by: 235 

𝑋𝑖 = (𝑋𝑖
1, … … … , 𝑋𝑖

𝑑 , … … . . , 𝑋𝑖
𝑘),    𝑓𝑜𝑟 𝑖 = 1,2,3, … . . , 𝑁                            (4) 236 

Where  237 

N = the number of agents,  238 

Xd
i= the ith agent position in the dth dimension, and  239 

k = the space dimension.  240 

To compute the GSA fitness function, a root mean square error (RMSE) can be adopted to 241 

select the best and the worst fit for each iteration. The purpose of the computations was to 242 

reduce the problems and locate the masses of each agent as follows (Shuaib et al., 2015): 243 

 244 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒2𝑛

𝑖=1                                     (5) 245 
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𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,,…,𝑁}

 𝑓𝑖𝑡𝑗  (𝑡)                         (6) 246 

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,,…,𝑁}

 𝑓𝑖𝑡𝑗  (𝑡)                       (7) 247 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡)−𝑊𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑊𝑜𝑟𝑠𝑡(𝑡)
                                    (8) 248 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑖(𝑡)𝑁
𝑗=1

                                               (9) 249 

Where 250 

e = the predicted water error, and  251 

n = the number of samples.  252 

The actual water consumption was obtained based on observation, whereas the predicted water 253 

was gained using the GSA-ANN algorithm. The gravitational constant G at iteration t was 254 

calculated as follows: 255 

𝐺(𝑡) = 𝐺0𝑒(−𝛼𝑡 𝑇⁄ )                                                        (10) 256 

Computation of the total force in different directions for the ith agent, calculation of the velocity 257 

and acceleration, and the position of the agents in the next iteration are as follows: 258 

𝐹𝑖
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖×𝑀𝑎𝑗

𝑅𝑖𝑗+𝜀
(𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡))                      (11) 259 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑 𝑗𝐹𝑖𝑗

𝑑  (𝑡)𝑗𝜖𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖                                 (12) 260 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖(𝑡)
                                                                       (13) 261 

𝜐𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖  × 𝜐𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡)                             (14) 262 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝜐𝑖
𝑑(𝑡 + 1)                                      (15) 263 

 264 
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Figure 4 presents the flowchart that shows the details of the GSA-ANN operation based on the 265 

previous equations.  266 

 267 

Figure 4: The GSA-ANN algorithm flowchart (Gharghan et al., 2016a) 268 
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5.2 Data Division 269 

Data division is a vital process that needs to be addressed in the ANN. It is general practice to 270 

divide the obtainable data into three sub-sets, namely: learning, testing and validation. All these 271 

three sets must have the same pattern because the ANN does not have the capability to 272 

extrapolate outside the range of data that is employed for training (Basheer and Hajmeer, 2000). 273 

In this study, data was divided randomly between the training, testing and validation sets – 274 

70%, 15%, 15% respectively (Babel and Shinde, 2011; Behboudian et al., 2014).  275 

6 Performance Measurement Criteria 276 

The statistical criteria parameters provide a means of measuring prediction accuracy, so 277 

prediction errors play a considerable role in the choice of suitable models and in providing 278 

insights in advising alterations to present models to minimise deviations in future predictions 279 

(Donkor et al., 2014). Several statistical parameters will be applied in the model’s calibration 280 

such as Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean 281 

Squared Error (MSE), Root Mean Squared Error (RMSE) and Correlation Coefficient (R). 282 

These indicators are defined in Eqs. (16) through (20). 283 

𝑀𝐴𝐸 =
∑ |𝑥𝑜−𝑥𝑝|𝑁

𝑚=1

𝑁
                                       (16) 284 

𝑀𝐴𝑃𝐸 =
∑

|𝑥𝑜−𝑥𝑝|

𝑥𝑜

𝑁
𝑚=1

𝑁
                                     (17) 285 

𝑀𝑆𝐸 =
∑ (𝑥𝑜−𝑥𝑝)

2𝑁
𝑚=1

𝑁
                                     (18) 286 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑜−𝑥𝑝)
2𝑁

𝑚=1

𝑁
                                (19) 287 

𝑅 = [
∑ (𝑥𝑜−𝑥𝑜̅̅̅̅ )(𝑥𝑝−𝑥𝑝̅̅ ̅̅ )𝑁

𝑚=1

√∑(𝑥𝑜−𝑥𝑜̅̅̅̅ )2 ∑(𝑥𝑝−𝑥𝑝̅̅ ̅̅ )
2
]                        (20) 288 
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Where xo= observed water consumption, xp= predicted water demand, N= sample size, 𝑥𝑝̅̅ ̅= 289 

mean of predicted demand, and 𝑥𝑜̅̅ ̅= mean of observed consumption. 290 

Bland–Altman analysis: this scatter plot test is employed to locate the area of agreement 291 

between (observed- predicted) versus ([observed+ predicted]/2), and the percentage of data that 292 

is distributed inside the limits of the agreement area  293 

7 Results 294 

7.1 Model Development 295 

After data pre-processing, correlation coefficients and autocorrelations were detected between 296 

dependent and independents variables. Additionally, variance inflation factor (VIF) technique 297 

then was used to select the best model input. The values of VIF was located between (2.87- 298 

4.92), which were accepted as mention in Tabachnick and Fidell (2013). Accordingly, Eq. 21 299 

can express the relation between dependent and the independents variables: 300 

WD=f (WDt-1, Tmax, Rad, Eva, WDt-2, Tmaxt-1, Evat-2)                       (21) 301 

Where: WD = water demand, Tmax = maximum temperature, Rad = solar radiation and Eva = 302 

evaporation. In addition, WDt-1 and WDt-2 represent the previous water consumption for the 303 

last first and second days and so on for the rest variables. Also, Eva and Evat-2 were offered 304 

high correlation and less collinearity compare with Evat-1. 305 

The correlation coefficients between input and output models for the best model input are 0.79, 306 

0.66, 0.49, 0.64, 0.69, 0.57 and 0.52 for WDt-1, Tmax, Rad, Eva, WDt-2, Tmaxt-1 and Evat-2 307 

respectively. In addition, all these correlation is significant at the 0.01 level (2-tailed). 308 

After selection of the best model inputs, data was divided into a seasonal (winter, spring, 309 

summer and autumn) and an annual scale to assess the effect of weather factors on water 310 
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consumption in both seasonal and yearly data. Additionally, to examine the ability of each 311 

model to predict daily water demand. 312 

To get an effective prediction, four statistical criteria were used to ensure that data set for 313 

training, testing, and validation have the same pattern. Table 1 provides a comparison of the 314 

three data sets. The results, as shown in Table 1, indicate that all the data sets have exactly the 315 

same pattern. In addition, the results of validation set will support that all sets have the same 316 

pattern.  317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 
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Table 1 the statistical parameters of training, testing, and validation sets 

Training set data 

 WD WDt-1 Tmax Rad Eva WDt-2 Tmaxt-1 Evat-2 

X̅ 5.937 5.937 4.487 3.667 5.938 1.762 4.489 1.755 

Xmax 6.242 6.242 6.245 5.568 6.242 3.162 6.245 3.131 

Xmin 5.602 5.602 3.000 1.732 5.649 0.447 3.000 0.447 

Sx 0.126 0.126 0.697 0.986 0.125 0.588 0.697 0.579 

Testing set data 

 WD WDt-1 Tmax Rad Eva WDt-2 Tmaxt-1 Evat-2 

X̅ 5.933 5.933 4.475 3.645 5.933 1.732 4.484 1.771 

Xmax 6.234 6.242 6.205 5.568 6.242 3.066 6.205 3.162 

Xmin 5.690 5.649 3.082 1.732 5.602 0.633 3.162 0.447 

Sx 0.119 0.123 0.703 0.993 0.123 0.571 0.680 0.579 

Validation set data 

 WD WDt-1 Tmax Rad Eva WDt-2 Tmaxt-1 Evat-2 

X̅ 5.934 5.931 4.445 3.689 5.929 1.737 4.423 1.735 

Xmax 6.242 6.234 6.124 5.385 6.242 3.066 6.124 3.131 

Xmin 5.700 5.700 3.082 1.732 5.694 0.447 3.082 0.447 

Sx 0.120 0.117 0.664 0.955 0.121 0.554 0.681 0.596 

X̅=mean, Xmax=maximum value, Xmin=minimum value, Sx=standard division  

 331 

7.2 Hybrid Heuristic Algorithms-ANN Techniques 332 

Several sizes of a population were simulated in MATLAB for the hybrids (BSA-ANN and 333 

GSA-ANN) to let each hybrid algorithm determine the optimal learning rate value and number 334 

of neurons in both hidden layers of the ANN. Thereby, the minimum value of the fitness 335 

function could be obtained as shown in Figurer 5. The figure was displayed that the GSA-ANN 336 
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is capable of attaining the best fitness function at the 40 population size for all seasonal and 337 

yearly water consumption data. Thus, the output of the GSA algorithm has been selected to 338 

develop the ANN model for water demand. Accordingly, table 2 presents the ANN factors for 339 

the best population size for all data types. 340 

 341 
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Figure 5: Fitness function versus iteration of all data kinds for GSA and BSA algorithms 

 354 
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Table 2: ANN parameters based on GSA-ANN algorithm for all data types 

Data type Parameters GSA-ANN 

Winter N1 15 

N2 10 

LR 0.4434 

Spring N1 17 

N2 19 

LR 0.5198 

Summer N1 16 

N2 17 

LR 0.1477 

Autumn N1 19 

N2 19 

LR 0.9729 

Yearly N1 19 

N2 17 

LR 0.5412 

N1: Number of neurons in hidden layer one, N2: Number of neurons in hidden layer two and LR: ANN's learning rate. 

 355 

The regression coefficient (R) of determination between the observed and predicted municipal 356 

water is a perfect indicator for the exploration of the forecast performance of the hybrid GSA-357 

ANN algorithm. In addition, R is equal to 0.99, 0.99, 0.97, 0.97 and 0.95 for winter, spring, 358 

summer, autumn and yearly data respectively. It can be seen that the values of (R) for seasonal 359 

data are more than the yearly data for the validation stages. These interesting findings could be 360 
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because the model is more able to capture the relation between input and output factors using 361 

seasonal data compared to when using yearly data.  362 

To examine the agreement of the model for seasonal and yearly water demand data, a Bland–363 

Altman scatter plot was employed. It has the ability to reveal the systematic and random 364 

differences as well as the merit of exhibiting the variation in the outcomes. In this plot, mean 365 

(m) and standard deviation (SD) of the differences were obtained by applying the T test 366 

technique. In addition, m+1.96 SD and m−1.96 SD represent the upper and lower limits of 367 

agreement. From this plot, it is quite easy to evaluate the level of (systematic) variation, the 368 

scatter of the values and to display whether there is a relation between the observed and 369 

predicted error. 370 

The most obvious finding to emerge from the analysis is that scattered data suggests an 371 

excellent distribution fit between agreement limits for seasonal and yearly data, as shown in 372 

Figure 6. Table 3 shows the percentage of data distributed between the agreement limits for 373 

seasonal and yearly. One of the issues that emerged from these findings was that the percentage 374 

range values were from 93.8 to 95.0. In addition, Table 3 presents four statistical indicators 375 

used to evaluate the model performance. These findings further indicate that no statistically 376 

significant difference was observed between measured and forecasted water demand, 377 

especially for winter season data. 378 

 379 
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 381 

 382 
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Figure 6: Bland–Altman plot of the relation between observed and predicted municipal 

water for seasonal and yearly data 

 383 

 384 

 385 
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Table 3: Several statistical parameters for seasonal and yearly data. 386 

Data RMSE MSE MAE MAPE BAPA % 

Winter 8.094 e-04 6.551 e-07 5.086 e-04 2.1522e-06 93.8 

Spring 0.19 0.0361 0.1449 0.0012 94.7 

Summer 0.2081 0.0433 0.1612 1.4295e-04 94.7 

Autumn 0.1799 0.0324 0.1363 0.0040 93.8 

Yearly 0.1159 0.0134 0.0833 4.7264e-04 95.0 

RMSE: root mean square error, MSE: mean square error, MAE: mean absolute error and BAPA: Bland–Altman plot accuracy 387 

According to this data analysis and statistical criteria, it can be inferred that these results 388 

provide further support for the hypothesis that water demand is driven by weather variables. In 389 

addition, this study confirms that data pre-processing techniques, data division and selection 390 

of explanatory variables are associated with the accuracy and robustness of results. Another 391 

important finding was that the model’s capability to catch the pattern of time series data 392 

depends on seasonal data rather than yearly data. Moreover, the winter season model reveals 393 

more accuracy and less error compared with the rest of the models. A possible explanation for 394 

this might be that winter weather factors have less variability than those in other seasons. 395 

Furthermore, the GSA-ANN algorithm model is a robust technique which has sufficient 396 

capability to predict water demand considering trend and seasonal pattern for seasonal and 397 

yearly time series data.  398 

8 Conclusion 399 

Prediction of water demand can assist in determining convenient alternatives for ensuring the 400 

balance between water supply and demand. The aim of this research was to examine the 401 

potential input variables to select the best model input by adopting several different statistical 402 

techniques. These techniques consisted of data screening, cross-correlation matrix, 403 

autocorrelation and variance inflection factor. The second aim of this study was to determine 404 
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the accurate prediction of short-term future urban water demand considering weather factors. 405 

To achieve these predictions, hybrid GSA-ANN and BSA-ANN algorithms were utilised. The 406 

most obvious findings to emerge from this study are that: (a) statistical criteria are powerful 407 

techniques for selecting appropriate model inputs, and (b) the GSA-ANN (Agent=40) hybrid 408 

model is quite suitable compared with the other type of hybrid model in this study in terms of 409 

water demand estimation accuracy. A key strength of this study is that selection of best model 410 

inputs and ANN factors based on optimisation techniques is better than using a trial and error 411 

method. This research could be further advanced by assessing the effects of extra weather 412 

variables, depending on the availability of data, on water demand for different locations around 413 

the world.   414 
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