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Abstract 

Aims 

Right ventricular (RV) adaptation is a common finding in the athlete’s heart. The aim of this study was 

to establish the extent of RV structural and functional adaptation in elite and academy professional 

footballers compared to age-matched controls.  

Methods and Results 

100 senior and 100 academy elite footballers, 20 senior and 19 academy age-matched controls were 

recruited. All participants underwent 2D, Doppler, tissue Doppler and strain (ε) echocardiography of 

the right heart. Structural indices were derived and indexed allometrically for individual differences in 

body surface area.  Standard RV function was assessed alongside peak RV ε and strain rate (SR). Senior 

football players had larger scaled RV structural parameters than players for the RV outflow (RVOTplax) 

(32.7±4.2 and 29.5±4.0 mm(m2)0.326, P<0.001), the proximal RV outflow (RVOT1) (26.6±3.5 and 

24.7±3.9 mm(m2)0.335, P<0.001), the basal RV inflow (RVD1) (33.1±4.1 and 30.7±3.2 mm(m2)0.404, 

P=0.020), RV length (RVD3) (66.5±6.1 and 62.9±5.1 mm(m2)0.431, P<0.001) and RV diastolic area 

(RVDarea) (16.9±2.6 and 15.7±2.6 mm(m2)0.735, P<0.001). Both academy and senior football players 

demonstrated larger scaled structural RV parameters in comparison to age matched controls. Systolic 

SR (SRS) was lower in the senior players compared to academy players in the mid (-1.52±0.49 and -

1.41±0.34 l/s, P=0.019) and apical (-1.97±0.74 and -1.72±0.42 l/s, P=0.025) wall regions, respectively. 

Conclusion 

RV structural adaptation occurs in both senior and academy football players with senior players having 

larger RV dimensions. Although senior players have slightly lower peak SRS than academy players, all 

global ε and SR are within normal ranges.  

Key Words: Football; Strain Imaging; Echocardiography; Right Ventricle; Age 
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Introduction 

It is well established that the athlete’s heart (AH) undergoes physiological remodelling in response to 

chronic exercise training with the right ventricle (RV) demonstrating both structural and functional 

adaptation1-4. Much of the work in this field has utilised either endurance or strength trained athletes3,4. 

Football involves high dynamic components to training and competition placing specific 

haemodynamic loading on the heart. The American College of Cardiology Task Force5 categorized 

football in group AIII (high dynamic [> 70% max O2] and low static [<20% maximal voluntary 

contractions]) such that this sporting discipline serves as an ideal model to assess the impact of dynamic 

training on RV structure and function. 

Football is one of the world’s most popular sports, with its world governing body Federation 

Internationale de Football Association (FIFA) requiring all players to have a resting transthoracic 

echocardiogram, including a full assessment of the RV as part of their cardiovascular screening. The 

echocardiographic assessment of the RV aims to differentiate physiological adaptation from 

pathological changes associated with arrhythmogenic right ventricular cardiomyopathy (ARVC). 

Evidence suggests that ARVC accounts for between 3 and 10% of sudden cardiac death in the athletic 

population6. FIFA guidelines suggest that tricuspid plane systolic excursion (TAPSE) and RV fractional 

area change (RVFAC) are undertaken to assess RV function despite the known limitations of these 

indices6. Myocardial strain (ε) imaging (MSI) and tissue Doppler imaging (TDI) provide alternative 

measures of RV function that may overcome some of the limitations of traditional 2D imaging7 but 

have yet to be fully explored in the footballing population. With this in mind, it is clear that a 

comprehensive understanding of RV structure and function in this sporting discipline is important to 

on-going screening programmes worldwide. 

Pre-participation cardiovascular screening is not constrained to the senior footballers with many elite, 

professional clubs providing a screening service to the academy players between the ages of 14 and 18. 

There is also a national mandate in England from the Football Association to screen any player over the 

age of 15 years. The impact of accumulate training volume with increasing age has received minimal 

attention in elite footballers. Whilst some data demonstrated a lower magnitude of left ventricular (LV) 

adaptation in adolescent athletes compared to their senior counterparts8,9 there is no available data for 

the RV.  

In view of this, the study was primary aimed to examine football-specific variation of RV structural and 

functional parameters in elite senior and academy professional players who were compared to age-

matched controls. The findings from this study will impact upon cardiovascular pre-participation 

screening.  
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Materials and Methods 

Study Design and Population  

Two hundred male elite football players were prospectively recruited into the study during pre-

participation screening. Of these, one hundred were professional senior players and one hundred were 

professional academy players. Average training hours were 20 hours/week for senior players and 15 

hours/week for academy players. Thirty-nine participants were recruited as sedentary (undertaking less 

than 3 hours structured exercise per week) controls; twenty of which were age matched to senior players 

and nineteen age matched to the academy players.  

The screening process occurred during the preseason period and all players refrained from any exercise 

within 6 hours of the examinations. Participants completed a pre-participation screening questionnaire 

prior to examination which demonstrated all to be free of known cardiovascular disease, diabetes and 

renal disease. There was no evidence of a family history of sudden cardiac death or unexplained death 

under the age of 40 years. A 12-lead electrocardiogram (ECG) was undertaken to exclude a range of 

“silent” inherited cardiovascular diseases. If any participant was found to have abnormal training-

related ECG recordings, categorised via published criteria10, they were referred for a full range of 

cardiac investigations and all were subsequently confirmed to have no cardiovascular disease. Height 

and body mass were measured using standard equipment and body surface area (BSA) was calculated 

using a standardised formula11. 

Informed consent was provided by the individual or the legal guardian (in the case of minors) and the 

study was granted ethics approval by the Ethics Committee of Liverpool John Moores University or St 

Georges University Hospital.  

 

Transthoracic Echocardiography  

All echocardiographic examinations were performed with the subject in the left lateral decubitas 

position using a commercially available ultrasound system (Vivid-Q, GE Healthcare, Horton, Norway) 

by two experienced sonographers, to maximise quality control. A complete echocardiographic study 

was performed with an additional focus of the right heart and all images were acquired in accordance 

with the American Society of Echocardiography (ASE)12,13. Images were stored in a raw Digital 

Imaging and Communications in Medicine (DICOM) format and exported to an offline analysis system 

(EchoPac, GE Healthcare, Horton, Norway). Subsequent data analysis was performed by a single 

experienced sonographer using an average of 3 cardiac cycles for all measurements.   

 



Original Article  

Standard Conventional 2D Doppler & Tissue Doppler. All RV measurements were made in accordance 

with ASE guidelines13. The parasternal long and short axis orientations were used to establish RV 

outflow tract dimensions at the proximal level from a parasternal long axis (RVOTplax) and parasternal 

short axis (RVOT1) as well as distal level (RVOT2). A modified apical four chamber orientation was 

used to obtain measurements from the main body of the RV and included dimensions at the RV base 

(RVD1), mid-cavity (RVD2) and RV length (RVD3). In addition, RV area was calculated in diastole 

(RVDarea) and systole (RVSarea) allowing the calculation of fractional area change (RVFAC). RV wall 

thickness (RVT) was measured in a subcostal orientation. TAPSE was measured using M-mode 

echocardiography with the cursor positioned through the lateral aspect of the tricuspid valve annulus.  

A 4 mm pulsed wave Doppler sample volume was placed sub-pulmonary valve in the RV outflow tract 

allowing the assessment of the velocity time interval (RVOTVTI). Pulsed wave TDI was used to 

interrogate the RV lateral wall with a 2 mm sample volume positioned within the tricuspid annulus. 

Peak systolic (S’), early diastolic (E’) and late diastolic (A’) myocardial velocities were measured.  

 

Myocardial Speckle Tracking. A modified apical four chamber with RV focus was utilised for 

assessment of myocardial ε and strain rate (SR). Images were optimised using depth, gain, compression 

and sector width to provide optimal endocardial delineation. The focal point was positioned mid cavity 

to reduce the impact of beam divergence and frame rates were set between 80 and 90 frames per second. 

Offline analysis involved placing a region of interest along the RV lateral wall from base to apex. The 

software automatically tracked the 3 segments (base, mid and apex) and provided an interpretation on 

tracking quality. Furthermore, the operator provided a subjective assessment of tracking quality and 

segments were excluded if deemed unacceptable. The peak values for ε and SR during ventricular 

systole (SRS’) and early and late ventricular diastole (SRE’ and SRA’ respectively) were reported for 

the 3 wall segments13. 

 

Statistical Analysis  

In order to establish body size independent indices for RV structural parameters we adopted sample-

specific allometric exponents for the relationship between RV data and BSA. This involved an iterative, 

non-linear protocol using age as a co-variate with the model y = a:xb*exp(c*age) providing b exponents 

and coefficient C for each structural parameter. The coefficient C was close to zero for all parameters 

suggesting that the derived b exponent could be applied to all players irrespective of age. Finally, a 

correlation analysis was undertaken for each allometrically scaled parameter to BSA to establish true 

size independence. We defined the smallest worthwhile effect for the allometric relationships as a 

correlation coefficient of r = 0.30, a moderate effect size in Cohen’s terms.  
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All absolute and scaled RV structural and functional parameters are presented in terms of mean ± SD. 

To compare between the senior and academy populations, normal distribution was confirmed using a 

Kolmogorov-Smirnov test followed by a two way between group ANOVA to compare means. Where 

a significant interaction was identified a post-hoc pairwise comparison with Bonferroni correction was 

undertaken to determine the nature and significance of the interaction.   All statistical data was analysed 

using dedicated software (Statistical Package for the Social Sciences (SPSS) version 23.0, Chicago IL). 

To inform and support clinical pre-participation screening, absolute and scaled RV upper limit (cut –

off) data for academy and senior players were established using 2 standard deviations upwards from the 

group mean. These values were compared to published data for the non-athletic population13, the 

endurance athletic population1 and ARVC population14. 

 

Results 

As would be expected the senior players and controls (25 ± 5 years and 25 ± 4 years) were older than 

academy players and academy controls (16 ± 1 years and 16 ± 1 years), respectively. There was a 

significant main effect for age for BSA with senior players and senior controls having a larger BSA (2.0 

± 0.1 m2 and 2.0 ± 0.1 m2) than academy players and academy controls (1.9 ± 0.1 m2 and 1.8 ± 0.1 m2). 

There was a main effect for playing status on resting heart rate with academy (60 ± 11 bpm) and senior 

(58 ± 11 bpm) football players having lower heart rates than age-matched controls (academy: 69 ± 11 

bpm and senior: 70 ± 8 bpm).  

 

All RV structural parameters are presented in table 1. There was a significant main effect for both age 

(P<0.05) and playing status (P<0.05) on absolute and indexed RVOTplax, RVOT1, RVOT2, RVD1, 

RVD3 and RVDarea highlighting higher values with age and elite playing status.  These differences 

remained after allometric scaling for BSA, except for RVOT2. Absolute and scaled RVD2 and RVWT 

had a significant main effect for playing status, with senior players and academy players having larger 

parameters than their respective age matched controls. There was also a significant interaction between 

age and playing status for absolute and scaled RVDarea and RVD3 (see Figure 1) with the between 

group difference demonstrating with age; these measures of RV size decline in size whilst athletes 

demonstrate a converse pattern with enlargement of the RV during the ageing process.  

 

INSERT TABLE 1 AND FIGURE 1 
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All conventional functional data are presented in table 2. There was a significant main effect for playing 

status on TAPSE with senior and academy players having higher values than their respective age 

matched sedentary controls. There was a significant main effect of age on RVOT VTI and TDI RVA’ 

with senior players and senior controls having higher values than academy players and controls.   

Regional RV peak ε and SR data tended to be more similar between groups. Both peak SRS basal and 

peak SRE basal (see table 3) presented with a significant main effect of age (P<0.05) where senior 

players and controls had higher values than academy players and controls. There was a significant 

interaction effect for age and playing status on peak basal SRE basal with the difference between senior 

players and controls being smaller than those between academy player and controls (see Figure 1).  

 

INSERT TABLES 2 AND 3  

 

Table 4 presents absolute RV upper limit (cut-off) data for academy and senior players, compared to 

published data for the non-athletic population, the endurance athletic population and ARVC population. 

Both academy and senior football groups had players whose data fell above the normal upper limits for 

RVOT1 (13% and 30%), RVD1 (20 and 57%) RVD3 (29% and 66%) and RVDarea (44% and 70%), 

respectively. Senior players also displayed data that fell above published values in endurance athletes 

for RVOT1 (1%), RVD1 (2%) and RVDarea (3%). Both academy and senior football players 

demonstrated data above cut off values for an ARVC population for RVOTPLAX (19% and 52%) and 

RVOT1 (10% and 22%), respectively.   

 

INSERT TABLE 4 

 

Discussion 

To the best of our knowledge, this is the first study of its type to assess RV adaptation in elite senior 

and academy football players. The main findings from this study are; 1) when appropriately indexed 

for body size, senior football players have significantly larger right ventricles than their academy 

counterparts, with the exception of RVOT2, RVD2 and RVWT and 2) Regional and global SR is lower 

in senior players than academy players, with mid and apical values reaching statistical significance for 

SRS and basal level for SRE.   
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Right Ventricular Structure 

RV structural adaptation to chronic exercise is a physiological process and has been linked to training 

volume and exercise type15,16. Previous work has demonstrated larger RV volumes and dimensions in 

endurance trained athletes compared to those athletes predominantly based in strength disciplines3. Our 

data builds on this and highlights that elite athletes with minimal static / strength component to their 

training still develop significant RV enlargement compared to the non-athletic population. This is likely 

based on the significant volume challenges associated with dynamic, high intensity exercise. As well 

as the increased preload required to augment cardiac stroke volume, there is the relative disproportionate 

wall stress that the RV is exposed to17, both of which are likely to act as acute stimuli for chronic 

adaptation18. 

 

To date, RV structural adaptation and its relationship to an athlete’s experience and training longevity 

has not been assessed. A single study assessed LV adaptation in 900 adolescent national level athletes 

from ten different sporting disciplines and 250 age and sex matched sedentary controls8. They observed 

increased echocardiographic dimensions compared to controls, however, when compared to reported 

values of senior athletes, the adaptation was of a lower magnitude. Our data reflects this finding in that 

all the allometrically scaled dimensions, apart from RVOT2, RVD2 and RVWT, are statistically larger 

in football groups and to a greater magnitude in senior players than academy. This is further highlighted 

when comparing individual values to normative ranges with both academy and senior players 

demonstrating average data above the established cut-offs. The lack of difference in some indices 

reflects the nature of physiological RV adaptation i.e. primarily affecting the basal inflow and proximal 

outflow. Our data is also in agreement to others as to the limited effect on RV wall thickness3 and is 

likely due to the thin walled RV not having the muscular integrity to overcome elevated wall stress 

through a process of concentric hypertrophy. This suggests that the RV may undergo greater and 

variable adaptation with repeated exposures to an exercise stimulus and is therefore dependent on 

training longevity. The lack of statistical significance between senior and academy sedentary controls 

re-confirms that this is a training-related rather than an age-related adaptation. The RVOT is an 

extremely important measurement when excluding ARVC14 and therefore we should be aware that the 

RVOTplax and RVOT1 may be larger in football players, and to a greater extent in senior players. This 

clearly has implications for pre-participation screening and hence justifies the rationale to develop a set 

of age related normal values.  

 

The use of scaling when assessing cardiac size aids diagnostic decision making and is advocated in both 

clinical and research settings19. The impact of body size on cardiac morphology is a well distinguished 
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relationship and routine ratio indexing of chamber size to BSA is recommended in guidelines13. 

However, ratio indexing is based on an assumption of a linear relationship which does not conform to 

biological associations which often occur in a non-linear fashion20. It has therefore been encouraged in 

recent literature to use allometric indexing where possible1. Published cut off values for RV size as 

defined by the ASE12 and adopted by the British Society of Echocardiography (BSE) are reported as 

absolute and unscaled. This therefore becomes problematic when attempting to compare groups of 

various body sizes. Our data highlights that values for both academy and senior football players are 

above these normal values and hence body size may in part, explain the observed difference. However, 

until a substantive indexed normal data set is available, it is unreasonable to draw any firm conclusions. 

The study by Oxborough et al. (2012) used elite endurance athletes, including top level triathletes and 

cyclists, to produce endurance athlete data. Allometrically indexed RV structural values fall below those 

of the endurance athlete population, with the exception of RVD3, which can be justified by the task force 

continuum5 where football requires the same volume of energy (10.0 METS) as an endurance pursuit 

but with a lower static component. 

 

Right Ventricular Function 

Conventional assessment of the RV is challenging due to its complex structure, location and thin 

myocardial wall6, and hence the recent interest and application of MSI. Previous literature has 

demonstrated that global ε is lower in the athletic population because of regional lower values in the 

basal segment2,21. The mechanisms behind this are unclear, with Teske et al. (2009) suggesting normal 

physiologic adaptation (representative of myocardial reserve) or RV damage due to chronic endurance 

training. Previous work by our group1 has not managed to reproduce these findings and the current data 

presented here highlights normal ε and SR values for all participants. Although all ε and SR values were 

within normal ranges we did observe a significantly lower global and regional SRS in the senior 

footballers compared to those from the academy. We could speculate that the reduced rate of systolic 

deformation could be a consequence of the increased RV volume requiring less rate of contractility to 

generate an adequate resting stroke volume i.e. smaller change for any given volume. This is important 

from a physiological perspective and highlights the direct relationship between structure and function 

which further supports the work of Teske et al.2 and La Gerche et al.17.  Interestingly, we performed a 

post-analysis bivariate correlation between RV structural indices and regional SRS which failed to 

demonstrate any relationship in both senior and academy players.  This lack of any clear correlation 

may provide evidence to refute this hypothesis however this finding may also be a consequence of 

limitations related to isolated and individual linear dimensions not being able to fully represent the 

volumetric geometry of the RV.  It is apparent that if this technique was to be taken on board for routine 

assessment of the athlete then specific demographics need to be considered when interpreting the 
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absolute values. It is equally important to note that other indices of RV function in systole and diastole 

(including TDI), apart from TAPSE and TDI RVA’, were not different between the two groups and 

therefore this finding highlights the increased sensitivity of MSI in detecting discrete changes in RV 

function. Basal RV diastolic function as determined by SRE’ demonstrated a statistical interaction 

which highlights a lower value in athletes compared to controls which normalizes with age. This 

demonstrates a reduction in regional SRE’ through normal ageing which is not seen to the same 

magnitude in the athletic population. We speculate that the enlargement of the RV in this region in the 

football players probably accounts for the initial lower values but with the additional evidence to suggest 

that a lack of structured exercise may cause an ageing decline even in this relatively young population.  

 

Limitations 

To compare the cardiac impact of training longevity, the study was conducted on a population of 

predominantly Caucasian, male footballers. Caution must therefore be taken when trying to extrapolate 

this data to athletes of other sporting disciplines, gender or ethnicity. Screening occurred at variable 

points in the competitive season and although all athletes were participating in national and international 

standard football, it would be valuable to establish whether we would observe similar findings pre-and 

post-season22. In addition, the unbalanced sample sizes for each group may impact on statistical 

significance.  

 

Conclusions 

RV structural adaptation occurs in senior and academy football players, however training longevity and 

experience appear to impact directly on the size of the RV inflow and outflow tract. Although senior 

players have slightly lower peak SRS and SRE than academy players, global ε and SR are within normal 

ranges in both groups and therefore this technique, in conjunction, with other variables may provide 

added value in the pre-participation screening environment. The proposed cut off values may also 

provide useful ranges in pre-participation screening. Allometric scaling for body size is important and 

future guidelines should aim to incorporate this into their recommendations. 

 

Perspectives 

In a young athletic population, it is thought that 3% to 10% of all cardiac sudden deaths are associated 

with ARVC6. With this is mind, the differential diagnosis of physiological adaptation from ARVC is of 

utmost importance in the pre-participation environment. The current literature provides guidelines for 
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a normal population12,13, an endurance athletic population1 and an ARVC population14, yet guidelines 

for an age specific football population are currently not available. This study presents absolute and 

scaled RV cut off values for both academy and senior football populations. It is important to highlight 

that if the RV chamber size falls within these proposed cut-offs in the presence of normal RV 

conventional indices of function and myocardial ε then physiological adaptation is likely. That aside, it 

is important to consider these findings in tandem with clinical findings, family history and the 12-lead 

ECG. Where absolute values are elevated, consider scaling allometrically and recheck. If the value still 

falls above the proposed cut-offs, then corroborative investigations are recommended. It is also 

important to note that although a relatively large specific population was utilized within this study, 

further large cohort studies should be undertaken in order to build on the current data.  
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Figure and table legends 

Table 1 – Absolute and Scaled RV Structural Parameters 

Table 2 – RV Conventional Functional Parameters 

Table 3 - RV Global Strain (ϵ) and Strain Rate variables 

Table 4 – Absolute and indexed cut-off values for screening purpose 

Figure 1 – Significant Interactions for RVDarea, RVD3 and Basal SRE’ 
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Table 1 – Absolute and scaled RV structural parameters (data are mean ± SD) 

 Academy 

Football 

 

Academy 

Control 

 

Senior 

Football 

Senior 

Control 

 

Age (years) 16 ± 1 16 ± 1 25 ± 5 

 

25 ± 4 

RVOTplax (mm) *∆ 

 

30 ± 4 29 ± 3 33 ± 4 30 ± 3 

RVOTplax (index) 

(mm(m2)0.326) *∆ 

24 ± 3 24 ± 3 26 ± 3 24 ± 3 

RVOT1 (mm) *∆ 

 

30 ± 5 29 ± 3 34 ± 5 31 ± 3 

RVOT1 (index) 

(mm(m2)0.335) *∆ 

25 ± 4 24 ± 3 27 ± 4 25 ± 2 

RVOT2 (mm) *∆ 

 

24 ± 3 22 ± 3 25 ± 4 24 ± 3 

RVOT2 (index) 

(mm(m2)0.296) * 

20 ± 3 19 ± 2 21 ± 3 19 ± 3 

RVD1 (mm) *∆ 

 

40 ± 4 37 ± 4 44 ± 6 39 ± 4 

RVD1 (index) 

(mm(m2)0.404) *∆ 

31 ± 3 30 ± 3 33 ± 4 30 ± 3 

RVD2 (mm) * 

 

30 ± 5 27 ± 4 31 ± 4 27 ± 4 

RVD2 (index) 

(mm(m2)0.64) * 

20 ± 3 18 ± 3 20 ± 3 17 ± 3 

RVD3 (mm) *∆○ 

 

82 ± 8 80 ± 9 90 ± 8 80 ± 9 

RVD3 (index) *○ 

(mm(m2)0.431) 

63 ± 5 63 ± 6 67 ± 6^+ 59 ± 7 

RVDarea (cm2) *○ 

 

25 ± 4 22 ± 3 28 ± 5^+ 22 ± 4 

RVDarea (index) 

(cm2(m2)0.735) *○ 

16 ± 3 14 ± 2 17 ± 3 13 ± 3 

RVWT (mm) *∆ 

 

3.9 ± 0.7 2.7 ± 0.6 3.9 ± 0.9 3.6 ± 0.5 

RVWT (index) 

((mm/m2)-0.111) *∆ 

4.2 ± 0.8 2.9 ± 0.6 4.3 ± 1.0 3.9 ± 0.5 

* Main effect of playing status (P<0.05) 

∆ Main effect of age (P<0.05) 

○Interaction (P<0.05) 

^ Post Hoc Pairwise Significance between Senior Players and Academy Players 

+ Post Hoc Pairwise Significance between Senior Players and Senior Controls 
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Table 2 – RV conventional functional parameters (data are mean ± SD) 

 Academy 

Football 

 

Academy 

Control 

 

Senior 

Football 

Senior 

Control 

 

RVFAC (%) 51 ± 10 

 

49 ± 7 48 ± 7 51 ± 8 

TAPSE (mm) * 23 ± 4 

 

22 ± 3 25 ± 4 22 ± 2 

RVOT VTI (cm) ∆ 21 ± 3 

 

19 ± 2 20 ± 3 23 ± 2 

TDI RVS’ (cm/s) 

 

14 ± 2 15 ± 2 14 ± 3 14 ± 2 

TDI RVE’ (cm/s) 

 

15 ± 3 16 ± 3 15 ± 3 14 ± 4 

TDI RVA’ (cm/s) ∆ 

 

8 ± 3 9 ± 3 10 ± 3 10 ± 2 

* Main effect of playing status (P<0.05) 

∆ Main effect of age (P<0.05) 
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Table 3 - RV Strain (ϵ) and Strain Rate variables (data are mean ± SD) 

  Academy 

Football 

 

Academy 

Control 

 

Senior 

Football 

Senior 

Control 

 
  

PEAK 

ϵ (%) 

Basal 

 

-24.00 ± 4.87 -26.72 ± 5.61 -23.87 ± 4.38 -23.90 ± 4.01 

Mid 

 

-27.81 ± 4.39 -28.43 ± 4.64 -26.56 ± 6.98 -28.01 ± 5.32 

Apical 

 

-29.64 ± 6.35 -31.46 ± 4.54 -30.80 ± 4.79 -31.27 ± 5.59 

 

PEAK 

SRS 

(l/s) 

Basal *∆ 

 

-1.52 ± 0.49 -1.52 ± 0.44 -1.41 ± 0.34 -1.81 ± 0.53 

Mid 

 

-1.55 ± 0.41 -1.54 ± 0.40 -1.36 ± 0.44 -1.54 ± 0.47 

Apical  

 

-1.97 ± 0.74 -2.01 ± 0.43 -1.72 ± 0.42 -1.77 ± 0.43 

 

PEAK 

SR E 

(l/s) 

Basal *∆○ 

 

1.80 ± 0.51^ 2.74 ± 0.82 1.97 ± 0.55 2.01 ± 0.83 

Mid 

 

1.90 ± 0.44 2.13 ± 0.54 1.76 ± 0.41 1.83 ± 0.64 

Apical  

 

2.34 ± 0.81 2.43 ± 0.52 2.24 ± 0.61 2.24 ± 0.67 

 

PEAK 

SRA 

(l/s) 

Basal 

 

0.93 ± 0.39 1.14 ± 0.46 1.01 ± 0.36 1.04 ± 0.52 

Mid 

 

0.91 ± 0.35 1.13 ± 0.45 0.99 ± 0.34 1.05 ± 0.43 

Apical  

 

1.14 ± 0.44 1.40 ± 0.62 1.26 ± 0.38 1.34 ± 0.60 

* Main effect of playing status (P<0.05) 

∆ Main effect of age (P<0.05) 

○Interaction (P<0.05) 

^ Post Hoc Pairwise Significance between Senior Players and Senior Controls 
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Table 4 – Absolute and indexed cut-off values for screening purposes 

 Football Cut 

off values  

Published Cut off 

values 

  

 

RV 

Parameter 

 

Academy  

(Mean ± 2 

SD) 

 

Senior 

(Mean ± 2 

SD) 

ASE 

Guidelines  

(Rudski et 

al., 2010) 

Endurance 

Athletes 

(Oxborough 

et al., 2012) 

ARVC 

Marcus 

(2010) 

% academy 

players above 

upper limits  

% senior 

players above 

upper limits 

RVOTplax 

(mm) 

38 41   32  19>ARVC  52>ARVC 

RVOT1 

(mm) 

40 43 35 44 36 13>ASE 

0>Endurance 

10>ARVC 

30>ASE 

1>Endurance 

22>ARVC 

RVOT2 

(mm)  

30 32      

RVD1 (mm) 48 55 42  54  20>ASE 

0>Endurance 

57>ASE 

2>Endurance 

RVD2 (mm) 39 40      

RVD3 (mm) 98 107 86 110  29>ASE  

0>Endurance  

66>ASE  

0>Endurance 

RVDarea 

(cm2) 

34 37 25 36  44>ASE 

1>Endurance  

70>ASE 

3>Endurance 

 


