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Abstract

A new species of Homo, Homo naledi, was described in 2015 based on the hominin skeletal 

remains from the Dinaledi Chamber of the Rising Star cave system, South Africa. Subsequent 

craniodental comparative analyses, both phenetic and cladistic, served to support its 

taxonomic distinctiveness. Here we provide a new quantitative analysis, where up to 78 

nonmetric crown and root traits of the permanent dentition were compared among samples of 

H. naledi (including remains from the recently discovered Lesedi Chamber) and eight other 

species from Africa: Australopithecus afarensis, Australopithecus africanus, Paranthropus 

boisei, Paranthropus robustus, Homo habilis, Homo erectus, Middle Pleistocene Homo sp., 

and Pleistocene and Holocene Homo sapiens. By using the mean measure of divergence 

distance statistic, phenetic affinities were calculated among samples to evaluate interspecific 

relatedness. The objective was to compare the results with those previously obtained, to 

assess further the taxonomic validity of the Rising Star hominin species. In accordance with 
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earlier findings, H. naledi appears most similar dentally to the other African Homo samples. 

However, the former species is characterized by its retention and full expression of features 

relating to the main cusps, as well as the root numbers, with a near absence of accessory 

traits—including many that, based on various cladistic studies, are plesiomorphic in both 

extinct and extant African hominins. As such, the present findings provide additional support 

for the taxonomic validity of H. naledi as a distinct species of Homo.
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Introduction

Where does Homo naledi fit in relative to other hominins? In the taxonomic 

description of the skeletal and dental remains, Berger et al. (2015) found what they 

considered to be enough similarities with Homo habilis, Homo rudolfensis, Homo erectus, 

and Homo heidelbergensis to assign the new fossils to the genus Homo, yet enough 

distinctions to merit a separate species. As would be expected, academic discussion 

concerning the “validity of H. naledi as a new and distinct species” ensued (Randolph-

Quinney, 2015a:2; Von Mirbach, 2015; Schwartz, 2015; among other issues, e.g., Val, 2016), 

with one researcher even suggesting that an assignment to the genus Australopithecus may be 

more appropriate (see the discussion in Randolph-Quinney, 2015a:2). Of course, at that time 

1) a phylogenetic analysis had yet to be conducted (see also Randolph-Quinney, 2015b), 2) 

remains from the Lesedi Chamber of the Rising Star cave system, whose morphology 

supports the original taxonomic description, had not been found (Hawks et al., 2017), and 3) 

the date of the specimens of H. naledi from the Dinaledi Chamber (Berger et al., 2015), ca. 

335–236 ka, was unknown (Dirks et al., 2017).

In a quantitative study based on published cranial data, Thackeray (2015) agreed that 

a distinct species status within the genus Homo is justified. Of his 11 African comparative 

samples, H. naledi appears most similar to H. habilis and, to a lesser degree, H. rudolfensis 

and H. erectus. These findings are based on a phenetic method (Thackeray, 2007) that yields 

standard errors of m-coefficients from pairwise comparisons of specimens in regression 

equations. This methodological approach is not without criticism, since the results are said to 

be dependent on variable number, among other issues (Gordon and Wood, 2013). More 

recently, Dembo et al. (2016) used Bayesian phylogenetic analyses on a supermatrix of 

craniodental data in H. naledi and 19 hominin species from Africa, Europe, and Asia. They 

concurred that H. naledi is a separate species, in that it forms a clade with members of the 
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genus Homo, although its position relative to species within that clade is ambiguous (Dembo 

et al., 2016). This was an ambitious first attempt at a cladistic analysis of the newly described 

species using many comparative hominin samples and characters. However, as the authors 

themselves acknowledged, there are several methodological concerns involving the treatment 

of various characters and character states.

In this paper we present results of a phenetic analysis based on 78 nonmetric dental 

traits, to explore further how H. naledi may relate to other hominin species. These traits have 

been observed in a range of fossil hominins, but, driven largely by geographic provenience, 

the focus of study is H. naledi and other African species, like Thackeray (2015) and, for the 

most part, Berger et al. (2015) and Hawks et al. (2017). The extent of the skeletal assemblage 

from the Dinaledi Chamber (≥15 individuals; Berger et al., 2015) and Lesedi Chamber (≥3 

individuals; Hawks et al., 2017) in the Rising Star cave system also influences approach. Ten 

samples comprising eight different species of Australopithecus, Paranthropus, and Homo are 

compared with H. naledi, but only eight of these with enough specimens to record the traits 

multiple times, at least to the extent possible, are analyzed quantitatively here (though see 

Supplementary Online Material [SOM] S1–-S3); the aim is to consider at least some of the 

substantial variation that occurs within groups (or in this case, species) relative to that 

between groups (e.g., Relethford, 1994, 2001; Templeton, 1999; Leigh et al., 2003). 

Although a cladistic analysis of nonmetric dental data is possible, like Bailey (2002a) 

and Irish et al. (2013, 2014a), standard coding criteria do not adequately address character 

variability—see concerns of Asfaw et al. (1999) and Curnoe (2003), also below—given the 

major increase in trait number, as well as larger sample sizes, relative to these prior studies. 

Alternate strategies for coding character states are available and have been investigated (e.g., 

Bailey, 2002a). However, all have weaknesses (see below) to match their strengths (Thiele, 

1993; Stringer et al., 1997; Wiens, 1995, 2001; Ried and Sidwell, 2002; Schols, 2004). Thus, 
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to best utilize the polymorphic nature of these traits, a non-phylogenetic method, the mean 

measure of divergence distance statistic (MMD), was applied here to trait frequencies from 

the nine largest samples to calculate phenetic affinities among H. naledi and these other 

African hominins (Sjøvold, 1977; Irish, 2010). 

The MMD has been used before to compare dental data in Plio-Pleistocene species, as 

sample sizes allowed (Irish, 1998; Bailey, 2000, 2000a; Martinón-Torres et al., 2012). It is 

preferred over several other distance measures, including the pseudo-Mahalanobis D2, by 

many researchers who study recent humans. Among several advantages, the most critical is 

that the MMD uses summary data rather than individual trait scores to address missing data 

that characterize fragmentary specimens in archaeological and, as above, paleontological, 

contexts (see Materials and methods). A supplementary technique, such as multidimensional 

scaling in this study, is then often used to visualize patterning of intersample distances. “It is 

all but certain that these phenotypic patterns reflect underlying genetic variation” (Rightmire, 

1999:2); thus, it is assumed that phenetic similarity provides a reasonable approximation of 

genetic relatedness, at least based on the findings of recent human studies (e.g., Scott et al., 

1983; Larsen, 1997; Scott and Turner, 1997; Martinón-Torres et al., 2007, 2012; Hughes and 

Townsend, 2013a, b; Rathmann et al., 2017). 

In sum, the intent of this study is twofold: 1) to use the dental nonmetric data to assess 

interspecific relationships based on overall similarity among the 11 total African samples, 

and 2) compare these results with those from Thackeray (2015) and Dembo et al. (2016), 

based on different data and methods. The overarching objective, then, is to continue work 

toward an improved understanding of where and how H. naledi ‘fits in’ relative to other 

species of hominins.
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Materials and methods

Dental trait recording

Sixty-six of the 78 nonmetric traits in this study are part of the Arizona State University 

Dental Anthropology System (ASUDAS), used to record tooth crown and root variability of 

the permanent dentition (Turner et al., 1991; Scott and Turner, 1997; Scott and Irish, 2017); 

the remaining 12, routinely used by the second author, S.E.B, are detailed below. Over 100 

ASUDAS traits could potentially be scored in each specimen depending on completeness, but 

nearly a third of these were dropped from consideration straightaway because they are either 

universally absent or present in the Plio-Pleistocene hominins. The former category includes 

tricusped upper premolars, distosagittal ridge P3, peg/reduced M3, 2-rooted C1, and I2, P4, M3, 

I1, P4, and M3 agenesis, among several others seen only in recent humans. The latter category 

includes root number M1 (i.e., 3), groove pattern M1 (Y), root number M1 (2), and the lower 

molar metaconulids, which are 100% present in all samples. Another point considered for 

initial trait selection concerns the correlation of expression within a tooth class or field. For 

example, a Carabelli’s cusp can be present on the M1 through M3, but it is routinely reported 

only on the M1 to avoid data redundancy (Turner et al., 1991; Scott and Irish, 2017). That 

said, we have found that, depending on the trait(s) and sample(s), a priori deletion may not be 

warranted without first quantifying the strength of the correlation in trait editing (described 

below). The 66 ASUDAS traits, including many that can be expressed on multiple teeth, are 

listed below in Table 1 (see Results).

Despite concern by some (e.g., Carter et al., 2014), most traits are already routinely 

recorded by paleoanthropologists, particularly those relating to: 1) relative size variation and 

position of the main molar cusps (e.g., upper molar metacone and hypocone, lower molar 

hypoconulid, lower molar groove pattern), 2) accessory cusps and crown features (e.g., upper 

molar cusp 5, Carabelli’s cusp, and parastyle, and lower molar anterior fovea, deflecting 
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wrinkle, protostylid, and cusp 7), 3) root number, and 4) other variants (e.g., labial curvature 

I1, upper incisor shoveling, upper and lower molar enamel line extensions, Tomes’ root P3). 

The key difference is that recording of these ASUDAS traits is standardized, to generally 

include even the extreme expressions seen in some early hominins, with certain exceptions 

(Bailey, 2002a; Martinón-Torres et al., 2007, 2012; Scott and Irish, 2017) that do not concern 

the African species in the present study.

As detailed in the following references, beyond standardization to promote intra- and 

interobserver replicability, ASUDAS traits hold six advantages. First, they are recorded with 

the aid of stock reference plaques and guidelines to describe minimum, maximum, and a 

range of intermediate grades on an ordinal scale (Turner et al., 1991; Scott and Turner, 1997; 

Scott et al., 2016; Scott and Irish, 2017), so the points of reference are fixed among studies; 

to illustrate, a certain trait may be defined by grades of, say, 0–3 instead of more subjective 

criteria (see Asfaw et al., 1999), such as ‘absent,’ ‘slight,’ ‘moderate,’ and ‘strong,’ which 

can vary by observer and population (see also the discussion concerning character state code 

differences among studies in Dembo et al., 2016). Second, the traits, as noted, possess a high 

genetic component in expression, at least in recent humans, where in some studies heritability 

exceeds 0.8 (Scott, 1973; Larsen, 1997; Scott and Turner, 1997; Rightmire, 1999; Martinón-

Torres et al., 2007; Hughes and Townsend, 2013a,b). This information parallels the statement 

that “paleoanthropologists consider teeth the ‘safe box’ of the genetic code” (Martinón-

Torres et al., 2007:7); thus, beyond extraordinary exceptions where aDNA may be present in 

Plio-Pleistocene material, these nonmetric traits come as close as possible to genetic data 

(e.g., Hubbard et al., 2015; Rathmann et al., 2017; see also Leigh et al., 2013). Third, as 

mostly ‘secondary’ nonmetric features unimportant to overall tooth structure or function, at 

least in recent humans, these traits are thought to be minimally affected by selection (Scott 

and Turner, 1997; Leigh et al., 2003); so, along with the preceding point, they are more likely 
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to reflect biological ancestry than adaptation. Fourth, many crown structures are observable 

despite slight wear. Of course, to avoid biasing the data (Burnett, 2016), suitable scoring 

restraint must be exercised (see Nichol and Turner, 1986; Turner et al., 1991; Burnett et al., 

2013; Stojanowski and Johnson, 2015), especially with near-occlusal traits affected at early 

wear stages (Burnett, 2016). Fifth, although polymorphic “they evolve very slowly” (Scott 

and Turner, 1997:13), so are ideal for biodistance analyses (Larsen, 1997) of both synchronic 

and diachronic samples. Sixth, the sexes can be pooled due to low or no sexual dimorphism 

in expression among recent humans (Scott, 1973, 1980; Smith and Shegev, 1988; Bermúdez 

de Castro, 1989; Turner et al., 1991; Hanihara, 1992; Irish, 1993; Scott and Irish, 2017). This, 

of course, cannot be verified for fossil hominins, but such a possibility is at least encouraging, 

given: 1) an inability to determine the sex of most Plio-Pleistocene specimens and 2) the need 

to maintain already-small sample sizes. 

With all of this said, the ASUDAS “does not include some features that are important 

for characterizing some [fossil] groups,” primarily in upper and lower premolars (Martinón-

Torres et al., 2007:13282, 2012; also Bailey, 2002a, b; Irish and Guatelli-Steinberg, 2003). 

The reason, understandably, is that the system was initially conceived to record and compare 

recent human crown and root morphology. As such, 12 additional nonmetric traits routinely 

recorded by S.E.B. are included (see Bailey, 2002a, b; Bailey and Lynch, 2005; Bailey and 

Hublin, 2013; Table 1, traits 67–78), though establishing that their attributes are comparable 

to that of the ASUDAS is still a work in progress. As a result, 78 total crown and root traits 

were employed to describe and compare samples. This number is purposefully much larger 

than that used in previous dental studies of fossil hominins (Stringer et al., 1997; Irish, 1998; 

Bailey, 2000; Irish and Guatelli-Steinberg, 2006; Martinón-Torres et al., 2007, 2012; Irish et 

al., 2013), because estimates of biological distance and/or ancestry are unquestionably more 

powerful if based on many rather than few traits (Livingstone, 1991; see also Dembo et al., 
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2016; Sjøvold, 1977). Further, all 78 have been recorded and/or at least observed in Plio-

Pleistocene species around the world (Johanson et al., 1982; Wood and Abbot, 1983; Wood 

and Engleman, 1988; Tobias, 1991; Stringer et al., 1997; Irish, 1998; Bailey, 2002a,b, Bailey 

and Lynch, 2005; Bailey and Hublin, 2013; Irish and Guatelli-Steinberg, 2003; Martinón-

Torres et al., 2008, 2012, 2013; Irish et al., 2013).

Lastly, because most of these traits are expressed bilaterally, it is necessary to select 

the antimere to study. Oftentimes, either the right or left side is scored in an individual (Green 

et al., 1979; Haeussler et al., 1988). Another approach, as used here, is to record the trait in 

both antimeres and, allowing for any possible asymmetry, count the side that has the highest 

expression (Turner and Scott, 1977); to maximize sample size if one antimere is missing, the 

existing side is counted. This is standard ASUDAS procedure (Turner et al., 1991; Scott and 

Turner, 1997; Scott et al., 2016; Scott and Irish, 2017), and assumes scoring for the maximum 

genetic potential in trait expression (Turner, 1985; Turner et al., 1991; Scott and Turner, 

1997; Scott et al., 2016; Scott and Irish, 2017). 

Quantitative analyses

For comparative analyses, the rank-scale dental traits had to be dichotomized into 

categories of present or absent, a step dictated by the multivariate nonmetric distance 

statistics available (Sjøvold, 1977; Konigsberg, 1990), including the MMD. This practice also 

streamlines the presentation of individual trait data and ameliorates further any concordance 

issues in scoring that remain despite standardization (Nichol and Turner, 1986; Turner et al., 

1991), especially between observers (Stojanowski and Johnson, 2015). The clear downside is 

that the complete range of data is not presented, precluding others from dichotomizing them 

differently. So, a list of traits with alternate breakpoints can be made available upon request. 
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In prior studies, dichotomization has been based on each particular trait’s appraised 

morphological threshold (Haeussler et al., 1988) in recent world populations as determined 

by Scott (1973), Nichol (1990), and others, using standard procedure (Turner, 1987). Thus, 

the present/absent breakpoints are consistent across studies, although some may be altered if 

necessary. For example, cusp 7 M1 is common enough in sub-Saharan Africans (see Irish, 

1997) that a grade of 2+ is considered ‘present’ in analyses of them to better differentiate 

among samples, contra 1+ when comparing other groups (cf. Scott and Turner, 1997). Given 

the extreme expression of some dental traits in fossil hominins, most breakpoints were raised 

systematically to better identify interspecific variation; several emulate those of Martinón-

Torres et al. (2012) in their Sima de los Huesos study (see trait dichotomies in Table 1). 

Some examples include: labial curvature I1 (i.e., raised from grade 2 and above, to 3+), upper 

incisor tuberculum dentale (2+ to 3+), metacone M1 (4+ to 5), upper molar cusp 5 (2+ to 3+), 

cusp number M3 (6 to 7), lower molar protostylid (1+ to 4+), and Tomes’ root P3 (3+ to 5). A 

few breakpoints were increased to an even greater extent to target early hominin variation, 

such as lingual cusp P4 (from 2+ to 8+) to capture any indication of molarization. Beyond 

addressing the greater expression, these increases can further enhance sample sizes (Burnett, 

2016) because certain traits on worn teeth are often still discernable at higher grades. One 

breakpoint was lowered, upper/lower molar enamel extension (2+ to 1), to specifically 

account for a slight projection of the buccal enamel line between roots seen in some fossil 

molars (e.g., Johanson et al., 1982). Breakpoints for the 12 non-ASUDAS traits were set by 

S.E.B. (Bailey, 2002a, b; Bailey and Lynch, 2005; Bailey and Hublin, 2013) to mostly record 

absence (grade 0) vs. presence (any visible expression, i.e., 1+) in several cases to minimize 

observer error. More information about dichotomizing threshold traits, including rationale, 

strategies, and standard breakpoints for comparison to the present values, are presented in 

Scott and Turner (1997) and elsewhere (Scott et al., 2016; Scott and Irish, 2017).
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The dichotomized data from samples of sufficient size (see below) were submitted to 

the mean measure of divergence (MMD) statistic to calculate interspecific phenetic affinities 

(Sjøvold, 1977; Irish, 2010). The MMD yields numeric distances between sample pairs, 

where smaller values indicate more similitude and vice versa. To find out whether two 

samples differ significantly the distance is compared with its standard deviation, so if the 

MMD>2×s, the null hypothesis P1 = P2 (where P = population sample) is rejected at the 

0.025 alpha level (Sjøvold, 1977). The formula used here contains the Freeman and Tukey 

angular transformation to correct for low or high frequencies of traits and, importantly, small 

sample sizes (Sjøvold, 1973, 1977; Green and Suchey, 1976; Irish, 2010). As mentioned, the 

MMD is additionally well suited for comparing small samples because it uses summary data, 

meaning that all specimens can be included irrespective of individual completeness. Other 

nonmetric distance statistics require input of individual cases that, when excessively affected 

by missing data, necessitate pairwise or list-wise deletion. The deletion of numerous variables 

will obviously moderate results. Deletion of cases, beyond reducing the already-small sample 

sizes, can also bias results because the few complete cases that remain are not likely to be 

representative of the overall sample (Little and Rubin, 2014).

Although it is a robust statistic (Irish, 2010), the MMD has several assumptions 

concerning problematic data (Harris and Sjøvold, 2004). For example, though using summary 

data, it is assumed that traits with an excessive number of missing observations are not used 

because the bias transformation was not originally designed to correct for samples of n < 10 

(Green and Suchey, 1976; Green et al., 1979). The same goes for fixed or largely invariant 

traits across samples, despite the use of the same bias transformation that corrects for low 

(≤0.05) or high (≥0.95) frequencies; such traits provide little useful information to detect 

intersample variation and can yield negative MMD distances—a statistical artifact that has 

“no biological meaning” (Harris and Sjøvold, 2004:91). And, while recommended that as 
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many traits as possible be used to compare samples, they should not be highly intercorrelated, 

otherwise differential weighting of the underlying dimensions may produce inaccurate 

distances (Sjøvold, 1977). Therefore, following standard editing procedure (Irish, 2005, 2006, 

2010, 2016), all fixed or predominantly invariant traits across hominin samples were first 

detected qualitatively for deletion. Additional traits that are minimally discriminatory were 

identified by submitting their percentages of occurrence to principal components analysis 

(PCA); those having what are considered low component loadings, < ǀ0.5ǀ, were dropped 

(Abdi and Williams, 2010). Then, the Kendall’s tau-b rank correlation coefficient was used to 

determine which trait pairs are strongly correlated, i.e., τb  ≥ |0.5| (see Cohen, 1988), in a final 

round of deletion.

Lastly, once calculated, the MMD matrix was submitted to multidimensional scaling 

(MDS) to illustrate intersample affinities. Interval-level MDS (IBM SPSS 24.0 Procedure 

Alscal) was applied because the range of distance values emulates continuous data. In the 

process, the sum of squared differences between Euclidean values from the distance matrix 

(dij) and those in the resulting (d̂ij) matrix are minimized, or optimally scaled (Hintze, 2007). 

Three-dimensional plots illustrate the present relationships. Though seemingly less intuitive 

because additional interpretation is required, assessing affinities with MDS is less subjective 

(Kruskal and Wish, 1978; Cox and Cox, 1994; Borg and Groenen, 1997) than what are 

essentially one-dimensional tree diagrams; dendrograms, for example, more or less force 

samples into groups and often return alternate results depending upon which hierarchical 

clustering algorithm is used (Romesburg, 1984). 

Studied sample

The original sample of H. naledi consists of 122 dental specimens from site UW 101 in 

the Dinaledi Chamber (Berger et al., 2015). To maximize the sample size, six specimens 
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attributed to this species from site UW 102 in the Lesedi Chamber were included (see below), 

though the date of this material is not yet substantiated (Hawks et al., 2017). Nonmetric traits 

were also directly recorded or, in some instances, derived from published data (below) in the 

10 other African samples noted in the Introduction. Eight consist of Plio-Pleistocene species: 

A. afarensis (n = 64 individual specimen numbers), A. africanus, (n = 138), P. boisei (n = 

37), P. robustus (n = 166), H. habilis (n = 19), H. erectus (n = 50), Middle Pleistocene Homo 

(n = 13)—also attributed to H. heidelbergensis, Homo rhodesiensis, and ‘archaic H. sapiens’ 

(see Berger et al., 2015), and Middle to Late Pleistocene H. sapiens (n = 38). The other two 

samples consist of Holocene age H. sapiens from South (n = 305 individuals) and East (n = 

174) Africa. 

The first six comparative fossil species were chosen because they represent the three 

main, later hominin genera and, most importantly (as above), are represented by enough 

individuals to permit at least some indication of intraspecific variation for the interspecific 

comparisons. Although few in number, the H. habilis data were not supplemented. That is, 

traits recorded in eight H. rudolfensis specimens could potentially be included (i.e., as H. 

habilis sensu lato), but these add too little data to those in the most need of augmentation, 

maxillary anterior tooth traits (refer to Table 1), to justify the pooling of different species 

with demonstrably distinct dental features. Therefore, all pairwise MMD affinities with the 

smallest of these six samples should be interpreted with extra caution. The even fewer 

maxillary anterior teeth of African H. erectus did, however, necessitate sample augmentation, 

in this case with what is said to be H. ergaster (or at least a close relative of similar age) from 

Dmanisi (Rightmire et al., 2006; Baab, 2008; Martinón-Torres et al., 2008; Martinón-Torres, 

personal communication, 2016; Rightmire and Lordkipanidze, 2010; Lordkipanidze et al., 

2013), and three maxillary incisors and one canine from African Homo sp. (Moggi-Cecchi et 

al., 2006; Curnoe, 2010; Moggi-Cecchi et al., 2010; Berger et al., 2015; specimen numbers 
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listed below). This pooling of specimens, especially African Homo sp. (albeit just four teeth) 

is not ideal, but was effected out of methodological concern to increase power of the MMD. 

It facilitates comparisons of H. naledi with the optimal regional representation of later Plio-

Pleistocene Homo for the present analyses, without requiring the inclusion of geographically 

disparate Asian H. erectus. 

Other African hominin species to which it could be of use to compare H. naledi, like in 

the aforementioned studies (Berger et al., 2015; Thackeray, 2015; Dembo et al., 2016; Hawks 

et al., 2017), are not of sufficient sample size for the present quantitative approach, including: 

Australopithecus anamensis, Australopithecus garhi, Australopithecus sediba, Paranthropus 

aethiopicus, Kenyanthropus platyops, and Homo rudolfensis. The remaining two comparative 

samples in this study are similarly affected: African Middle Pleistocene Homo and Middle/ 

Late Pleistocene H. sapiens. These small, heterogeneous samples are included because of 

some age overlap with H. naledi, ca. 700–130 ka and ca. 315-60 ka, respectively (Geraads et 

al., 1986; Grine, 2000; Oujaa et al., 2017; Richter et al., 2017), though just eight specimens 

from Florisbad, Hoedjiespunt, and Jebel Irhoud (see below) actually date between 335–236 

ka (Dirks et al., 2017). Comparable non-African data are largely unavailable to supplement 

the Middle Pleistocene Homo sample, with exceptions (Martinón-Torres et al., 2012; and 

below) and, as stated, alternative samples of African Homo sapiens are used in this study. As 

such, in this paper the analyses of these two fossil comparative samples focus on qualitative 

assessments of trait percentages.

The final two of 10 comparative samples comprise more recent H. sapiens from the 

two principal African geographic regions in which hominin remains have been recovered. 

The first includes Early through Late Holocene (ca. 12,000–2,000 BP) South African (SA) 

crania from Fish Hoek, Matjes River, Knynsa, Oakhurst Rockshelter, and other sites (Irish et 

al., 2014b). The second sample consists of Early to Late Holocene (ca. 10,000–1,500 BP) 
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East African (EA) crania from Kenya and Tanzania that are also derived from various sites: 

Bromhead’s site, Gambles Cave, Homa, Hyrax Hill, Kanam, Kisima, Koobi Fora, Loboi, 

Lowasera, Lothagam, Makalia, Molo, Naivasha, Nakuru, Ngorongoro, Njoro, and Willey’s 

Kopje (J.D.I., unpublished data). They represent the oldest South and East African H. sapiens 

samples assembled by J.D.I., and are thought to be direct descendants of considerably older 

autochthonous populations in the regions (Leakey, 1935; Robbins et al., 1980; Morris, 2002, 

2003; Stynder et al., 2007). 

All 479 dentitions of the Holocene H. sapiens were observed by J.D.I. The following 

526 Plio-Pleistocene specimens, for which dental data were recorded, were observed by the 

first three authors.

Australopithecus afarensis AL 128-23, 145-35, 176-35, 188-1, 198, 199-1, 200-1a, 200-1b, 

207-13, 241-14, 266, 277-1, 288-1, 311-1, 315-22, 330-5, 333-1, 333-2, 333-82, 333-90, 333- 

103, 333w-1, 333w-46, 333w-57, 333w-58, 333w-60, 333x-2, 333x-3, 333x-4, 333x-20, 366- 

6, 400-1a, 400-1b, 411-1, 413-1, 417-1a, 417-1d, 438-2, 440-1, 486-1, 620-1, 655-1, 763-1, 

996-1; EP 162/00; Garusi 1; LH 1, 2, 3d, 3f, 3g, 3n, 3p, 3r, 3s, 3t, 4, 6c, 14i,j,g, 14f&e, 17, 

24, 25; and Maka 12/1. 

Australopithecus africanus MLD 2, 6, 18, 19, 27, 28, 44, 45; STS 1, 4, 5, 7, 8, 9, 12, 17, 18, 

22, 23, 24, 30, 35, 37, 38, 41, 43, 46, 47, 50, 52, 53, 55, 55B, 56, 57, 59, 61, 62, 71; STW 1, 

6, 13, 14, 15, 18, 20, 43, 59, 61, 73, 106, 107, 109, 110, 111, 123, 126, 127, 128, 131, 132, 

133, 142, 169, 179, 183, 189, 192, 196, 202, 204, 213, 222, 230, 231, 233, 234, 235, 237, 

241, 246, 252, 280, 285, 306, 308, 309, 312, 327B, 327C, 327D, 353, 369, 379, 384B, 384C, 

384D, 384E, 402, 404, 410, 412, 413, 414, 415, 425, 429, 430, 446, 450, 491, 498A, 498B, 

498C, 498D, 502, 524, 529, 536, 537, 555, 560C, 560D, 560E, 586; Taung; and TM 1511, 

1512, 1519, 1520, 1523, 1527, 1528, 1531, 1534, 1561. Lockwood and Tobias (2002) 

suggested that STW 183 (above) also shows similarities to P. robustus and Homo sp.
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Paranthropus boisei KNM-CH 1; KNM-ER 403, 404, 729, 733, 801, 802, 810, 816, 818, 

1171, 1467, 1477, 1509, 1804, 1816, 1818, 1819, 1820, 3229, 3230, 3737, 3885, 3886, 3890, 

3952, 6082, 6128, 15930, 15940, 15950, 17760; KNM-WT 17396, 17400, 18600, 25520; and 

OH 30.

Paranthropus robustus DNH 1, 8, 10, 12, 14, 15A-B, 16, 17, 18, 19, 21, 22, 26, 27, 28, 29, 

34, 40, 41, 46, 51, 53, 54, 57B, 60, 68, 74, 75, 79A,, 81; KB 5063, 5222, 5223, 5383; TM 

1517, 1536, 1600, 1601, 1603; SK 1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 19, 23, 24, 25, 28, 

29, 30, 31, 32, 33, 34, 37, 39, 41, 42, 44, 46, 47, 48, 49, 52, 55, 55B, 57, 61, 62, 63, 65, 65A, 

67, 69, 70, 71, 72, 73, 74, 74A, 75, 79, 81, 83A, 83B, 85, 86, 88, 93, 98, 99, 100, 883, 885, 

891, 1512, 1586, 1587, 1588, 1589, 1591, 1593, 1595, 2354, 3114, 3300, 3971, 3974, 3975, 

3976, 6934, 14001, 14003, 14030, 14129, 14246, 14251, 24660, 24661, 27524; SKX 240, 

242, 265, 268, 271, 1016, 1313, 1788, 3354, 3355, 3356, 3601, 4446, 5002, 5004B, 5007, 

5013, 5014, 5023, 6013, 10643, 19031, 20078, 25296, 26967, 28724, 32162, 37663, 42207, 

50079; and SKW 5, 4767, 4772. Braga and Thackeray (2003) suggested that KB 5223 

(above) may belong to Homo sp. 

Homo habilis KNM-ER 1501, 1502, 1805, 1813, 1814, 42703; and OH 4, 6, 7, 13, 15, 16, 21, 

24, 27, 39, 44, 45, 62. 

Homo erectus KNM-BK 67, 8518; KNM-ER 730A, 731, 803H-I, 806B-C, 807A-C, 808A-G, 

809A, 817, 820, 992A-C, 1462, 1480, 1506A-B, 1507, 1508, 1808G-H, 1812A,C, 3733; 

KNM-WT 15000, 37745, 38340; OH 12, 22, 51; SK 15, 18a, 27, 45, 847, 2635; SKW 3114; 

SKX 268, 2354, 2355, 2356; and D 211, 2677, 2700, 2732, 2735, 2736, 2882, 3672, 3698; 

the latter nine Dmanisi specimens, attributable to H. ergaster or a closely related species, 

were included to increase sample size. Curnoe (2010) suggested that SK 15, 27, 45, and SKW 

3114 (above) belong to Homo gautengensis. 
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Homo sp. DNH 45, 71; KNM-BK 14297; and SE 1937. These African Homo specimens with 

indeterminate species assignment were included with H. erectus (above) to increase sample 

size. 

Middle Pleistocene Homo Cave of Hearths; Florisbad 1; Herto (BOU-VP-16/1); Hoedjiespunt 

(HDP1-1, HDP1-2); Kabwe 1; Sidi Abderrahmane; Rabat-Kébibat; Thomas Quarry I (94 OA 

23-24, 95 SA 26 # 89, 95/96 SA 26 # 88, 2006 PA 24 # 107); Tighenif (1, 2). 

Homo naledi UW 101 001, 005, 006, 010, 020, 037, 038, 039, 073, 144, 145, 182, 184, 277, 

284, 285, 297, 298, 333, 334, 335, 337, 339, 344, 347, 358, 359, 361, 377, 383, 412, 417, 

418, 445, 455 , 501, 505, 506, 507, 516, 525, 527, 528, 544, 582, 583, 589, 591, 593, 594, 

601, 602, 706, 708, 709, 729, 786, 789, 796, 800, 808, 809, 814, 816, 850, 867, 886, 887, 

889, 905, 908, 931, 932, 985, 998, 999, 1002, 1004, 1005, 1006, 1012, 1014, 1015, 1063, 

1075, 1076, 1107, 1126, 1131, 1132, 1133, 1135, 1142, 1261, 1269, 1277, 1304, 1305, 1362, 

1396, 1398, 1400, 1401, 1402, 1463, 1471, 1522, 1548, 1556, 1558, 1560, 1561, 1565, 1574, 

1588, 1605, 1610, 1662, 1676, 1684, 1688, 1689; and UW 102 6A, 11, 16, 24, 28, 89. 

Middle/Late Pleistocene Homo sapiens Die Kelders AP 6242, 6258, 6264, 6275, 6277, 6279, 

6280, 6281, 6282; Equus Cave H1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 71/33; Haua Fteah; Jebel 

Irhoud 3, 10, 11, 21, 22; Klasies River KRM 13400, 14691, 14692, 14693, 14694, 14696, 

16424, 41815; Mumba XXI; Sea Harvest PQ-S2878. 

All ASUDAS data in A. africanus, P. boisei, P. robustus, East African H. erectus, 

South African H. erectus and Homo sp., and H. naledi were directly recorded by J.D.I. Many 

ASUDAS data in A. afarensis and H. habilis were recorded by D.G.-S., although some traits 

in these samples subsequently chosen for inclusion in the study, i.e., within multiple members 

of a tooth class (above), were derived from high resolution casts and publications (Johanson 

et al., 1982; Tobias, 1992; Kimbel and Delezene, 2009) by J.D.I.; Dmanisi H. ergaster data 

were recorded in the same manner (in Martinón-Torres et al., 2008), as were African Middle 
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Pleistocene Homo (Tobias, 1971; Berger and Parkington, 1995; White et al., 2003; Bermúdez 

de Castro et al., 2007; Raynal et al., 2010; Zanolli and Mazurier, 2013; Smith et al., 2015; 

Oujaa et al., 2017) and Middle/Late Pleistocene H. sapiens (McBurney et al., 1953; Grine 

and Klein, 1985, 1993; Bräuer and Mehlman, 1988; Rightmire and Deacon, 1991; Grine, 

2000, 2012; Smith et al., 2007; Hublin et al., 2017). 

Finally, S.E.B. recorded the non-ASUDAS premolar traits in all samples except East 

African H. sapiens; the latter data were scored by J.D.I. from photographs of five specimens 

because they were not originally recorded. With regard to potential observer error between 

these authors, both recorded the same Neanderthal tooth casts independently for prior studies 

(Irish, 1998; Bailey, 2002a), with no significant observer differences detected in the presence 

and absence of dichotomized traits (i.e., χ2, p > 0.05). Observer error between J.D.I. and 

D.G.-S. was also found to be random, non-directional, and insignificant (χ2, p > 0.05) in a 

previous study (detailed in Irish and Guatelli-Steinberg, 2003). 

Results

The percentages of specimens that express each trait and the total number scored are 

provided in Table 1. Small sample size typifies many traits, not only in H. habilis and to a 

lesser extent H. erectus, but also in others such as P. boisei. Of course, Middle Pleistocene 

Homo evidences the most missing data, while the Middle/Late Pleistocene Homo sapiens 

sample is comparably affected. Nevertheless, a qualitative comparison of values suggests that 

notable intersample variation occurs within the tooth classes (e.g., molar traits in H. naledi 

vs. H. sapiens) and throughout the dentition (e.g., A. afarensis/EA H. sapiens; P. robustus/SA 

H. sapiens). Similarities in percentages are also evident (A. afarensis/A. africanus; P. 

boisei/P. robustus; H. habilis/H. erectus; EA H. sapiens/SA H. sapiens). 

All data, excluding Middle Pleistocene Homo and Middle/Late Pleistocene Homo 

sapiens, were then submitted to the MMD. However, because the statistic routinely produces 
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viable results even when the above-mentioned assumptions have not been met, that is, before 

editing (Irish, 2010; Irish et al., 2014b; Irish, 2016), it was decided to first analyze H. naledi 

and the eight remaining comparative samples using all 78 traits (77 for P. boisei, H. erectus); 

the goal, simply, was to obtain an initial indication of interspecific affinities. The symmetric 

78-trait MMD matrix is in Table 2. The MDS solution yields excellent representation of the 

matrix (Borgatti, 1997), as plotted in Figure 1, with r2 = 0.961 and a Kruskal’s stress formula 

1 of 0.088. The EA and SA H. sapiens are not significantly different from each other (MMD 

= 0.005, p ≥ 0.025). Several other sample pairs also do not differ significantly, particularly 

those which include P. boisei, H. erectus and, most notably, H. habilis (relating to very small 

sample sizes that may not be representative and yield high standard deviations, see above). Of 

all samples, H. naledi is clearly the most divergent. Although difficult to qualitatively assess, 

interspecific differences reflect variation across samples in Table 1, including, for example, 

labial curvature I1 (range of 0–66.67%), accessory cusps P3/P4 (14.79–83.33%), cusp 5 M1 

(0–50%), cusp 7 M3 (0–56.52%), and root number P4 (0–100%), among others. Yet, the 

sample associations in Figure 1 (A. afarensis/A. africanus, P. boisei/P. robustus, earlier and 

later Homo species) also imply some trait uniformity within each of the three genera. 

Next, given the apparent efficacy of these findings, we decided to include the Middle 

Pleistocene Homo and Middle/Late Pleistocene Homo sapiens samples in a second MMD 

comparison before trait editing. As above, the intent was to obtain at least some indication of 

their interspecific affinities. That said, both samples are of patently insufficient size to yield 

reliable results for this paper, i.e., based on standard recommendations for analysis (above). 

Instead, these MMD analyses are presented in SOM S1. Based on 62 traits in common across 

all 11 samples, including a total of 25 with only one observation in the 51 Middle/Late 

Pleistocene specimens combined, these samples appear most like other fossil Homo species; 
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of these, Middle/Late Pleistocene Homo sapiens trends nearest EA and SA H. sapiens (SOM 

Table S1, SOM Figs. S1–S2). 

The removal of problematic dental traits was then carried out as previously described. 

Because of the Plio-Pleistocene focus, all obviously invariant traits were deleted in these 

particular African fossil samples (i.e., excluding Middle Pleistocene Homo and Middle/Late 

Pleistocene Homo sapiens). Examples include: winging I1, double shoveling I2, interruption 

groove I2, root number M2, c1–c2 crest M3, and root number M3. For brevity, the 16 traits 

excluded on this basis are listed by their number from Table 1 (i.e., 1, 5, 6, 8, 9, 13, 23, 36, 

37, 50, 51, 52, 63, 64, 76, and 78). At the same time, traits with very few observations (see 

above) were addressed. It is, of course, preferable that only samples of ≥10 observations per 

trait are retained for MMD comparisons (Irish, 2010, 2016). However, such a strategy would 

reduce the analysis to a single trait comparison (enamel extension UM/LM) across samples. 

So an alternate approach was taken where deletions were made when multiple samples have 

fewer than three observations for a trait, e.g., buccal mesial accessory ridge P4, or any one 

sample has just one valid observation, e.g., distal accessory ridge C1 (Table 1). Though not 

ideal, given the 1) limitations inherent with fossil samples, and 2) capability of the MMD to 

perform well despite unmet assumptions, this strategy permits at least some assessment of 

intraspecific variation in the remaining traits. Of these, nine (1, 5, 14, 18, 19, 34, 36, 38, and 

64) do not meet these minimum criteria, including four previously removed due to minimal

or no variation across samples. As a result, 57 of 78 traits were retained for further editing; 

the submission of these percentages to PCA identifies additional, though less obvious, non-

contributory data.

Seven components with eigenvalues of >1.0 account for 99.12% of the total variance 

among the nine largest samples. However, the PCA scree plot (not shown) indicates that the 

first three (68.05% of variance) are most important. The loadings for these traits are listed in 
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Table 3, where those having strongly positive or negative values of > |0.5| drive most of the 

variation shown in a 3D plot of group component or factor scores (Fig. 2). For component 1, 

37 loadings between 0.501 and 0.963 push samples with high percentages of these traits 

nearer the positive end of the axis labeled as Factor Score 1, namely, A. afarensis, A. 

africanus, P. robustus, P. boisei, and, to a lesser extent, H. habilis and H. erectus. They are 

predominantly mass-additive traits associated with morphological complexity of teeth in 

these species, including labial curvature I1 (0.594), tuberculum dentale I1, C1 (0.690, 0.501), 

P3/P4 accessory cusps (0.756), and so forth (Table 1). On the other hand, much lower 

occurrences of these same traits, but with a strong loading (-0.500) for grade 4–5 metacone 

M3, is characteristic of samples toward the opposite end of this axis: EA and SA H. sapiens 

and H. naledi. On Factor Score 2, nine traits possessing highly positive (i.e., 0.503 to 0.943) 

and 10 with highly negative component 2 loadings (-0.501 to -0.791) show H. naledi as 

unique from other samples. Specifically, the species is characterized by a number of well-

expressed principal cusp traits farther back in the molar field, like large M2 metacone and M3 

hypocone, but few accessory features like tuberculum dentale C1, cusp 5 M1, anterior fovea 

M1, cusp 7 M1, and transverse crest P3. Lastly, strongly positive loadings (0.504–0.803) for 

the tuberculum dentale I2, cusp 5 M1, Carabelli’s M2, protostylid M3, anterior fovea P3, and 

transverse crest P4, and strongly negative loadings (i.e., -0.501 to -0.653) for shoveling I1, 

upper premolar accessory cusps, root number P3, and cusp number M1 primarily separate the 

genera Australopithecus and Paranthropus on Factor Score 3. Based on these findings, seven 

of 57 traits submitted to PCA provide little contributory information to assess interspecific 

variation, so were dropped: shoveling I2, Carabelli’s cusp M1, parastyle M1, groove pattern 

M3, cusp 7 M2, upper and lower premolar odontome, and anterior fovea P4.

In the final step of trait editing, use of Kendall’s tau-b among the remaining 50 traits 

revealed high correlations (i.e., > |0.5|) for: 1) crown asymmetry P3 with 12 traits (τb = 0.500 
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to 0.784), 2) metaconid placement P3 with six traits (τb = 0.502–0.656), 3) the buccal mesial 

accessory ridge P3 with three traits (τb = 0.508–0.609), 4) root number P3 with three traits (τb 

= 0.585–0.754) including, not unexpectedly, Tomes’ root P3, and 5) protostylid M2 with 

protostylid M1 (τb = 0.672). As a result, these five traits were deleted as well, leaving 45 for 

the final MMD comparison as identified in Table 3. 

The resulting 45-trait MMD matrix is presented in Table 4. Interspecific variation is 

once more evident, with H. naledi being the most divergent of all Plio-Pleistocene species. 

The small sample of P. boisei, after removal of traits with the most missing data and other 

editing, now yields pairwise affinities that are more in line with those of P. robustus, e.g., 

compare MMD distances with both Australopithecus species. However, because of sample 

size issues (above), H. habilis still exhibits some doubtful pairwise phenetic distances, e.g., 

with P. boisei and P. robustus (MMD = 0.013 and 0.000; p ≥ 0.025), although it does remain 

phenetically akin to H. erectus and A. afarensis (MMD = 0.000, p ≥ 0.025). The latter two 

remain close (MMD = 0.053, p ≥ 0.025), while EA and SA H. sapiens retain their similarity 

(MMD = 0.011, p ≥ 0.025). Concerning the MDS solution, Kruskal’s stress formula 1 has 

increased to 0.095 and r2 decreased to 0.946, which still indicate an excellent representation 

of the matrix (Borgatti, 1997). The interspecific variation illustrated by the new configuration 

(Fig. 3) is highly concordant with the 78-trait MDS (Fig. 1), as well as the PCA plot (Fig. 2), 

revealing only minor, mostly within-genus sample movement. The consistent relationships of 

A. afarensis/A. africanus, P. boisei/P. robustus, and the early and later Homo species, again 

reflect relative uniformity in trait percentages within each of the three genera (see Table 1). 

Discussion and conclusions

Beginning with the quantitative comparisons between H. naledi and the eight other 

largest samples, the effectiveness of the dental traits and MMD (despite many small sample 
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sizes of n < 10) is evidenced by the similarity of groupings (Figs. 1–3) to those for the same 

species in earlier studies using cladistic analyses and alternate data (Strait et al., 1997; Strait 

and Grine, 2004; Smith and Grine, 2008; Berger et al., 2010). Meanwhile, the consistency in 

patterning from MMD vs. PCA using different numbers of traits further suggests the results 

are ‘real’ and not a byproduct of method or illustrative device. Of all comparative samples, H. 

naledi appears most like others within the genus Homo, yet is distinct from them given, most 

noticeably, its extreme position on the Dimension 2 and Factor Score 2 axes. An inspection 

of individual MMD distances (Tables 2 and 4), focusing on the 45-trait matrix, finds that not 

only are all pairwise differences significant, but H. naledi is most divergent of all non-Homo 

sapiens samples. In the 45-trait matrix the average pairwise distance between H. naledi and 

the six other Plio-Pleistocene samples is 0.445; the same value among the latter six is just 

0.111. In the taxonomic description of H. naledi from the Dinaledi Chamber, Berger et al. 

(2015:20, 24) provided a summary of features likely responsible for this divergence, i.e., the 

teeth “are not only small, but markedly simple in crown morphology,” with a lack of “many 

derived features shared by [Middle] and [Late Pleistocene] Homo and H. sapiens” (below). 

This same patterning is evident in crowns of specimens from the Lesedi Chamber (Hawks et 

al., 2017). 

Sample sizes must be considered, but this description is quantified in Table 1, where 

36 of 78 traits are absent in H. naledi, most of which are present in other fossil and/or recent 

samples—in many cases at high frequencies: labial curvature I1, tuberculum dentale C1, cusp 

5 M1, Carabelli’s cusp M3, multiple P4 lingual cusps, anterior fovea M1, 6-cusped M1, 7-

cusped M3, deflecting wrinkle M1 and M3, cusp 7 M1–M3, 2-rooted P4, metaconid placement 

P3, transverse crest P3–P4, and asymmetry P3–P4. Most of these can be considered accessory 

or mass-additive traits (above). Additional traits that are present but at much lower rates than 

in other samples, notably the older species on the left of Table 1, include: accessory cusps 
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P3/P4, cusp 5 M2, 6-cusped M2, deflecting wrinkle M2, protostylid M2–M3, grade 1 enamel 

extension on upper and lower molars, and buccal median ridge P4. This is not to say that no 

‘accessory’ traits occur frequently in H. naledi, e.g., C1 double shoveling, C1 distal accessory 

ridge, and perhaps upper premolar buccal accessory ridges. That said, as noted in the PCA 

results and indicated by loadings in Table 3, especially Component 2, the species exhibits the 

highest or one of the highest percentages of traits relating to retention and expression of the 

principal (or main) cusps, as well as roots. Though not a cladistic study, such traits are known 

to be plesiomorphic (see full reference list in Irish, 1997; Irish and Guatelli-Steinberg, 2003) 

based on their presence in various fossil hominins and extinct and extant non-human primates 

(as are many of those listed above). They include: little or no reduction of root number in P3–

M3, P3, and M1–M3, along with a lack of reduction of the M1–M3 metacones and hypocones 

(grades 4-5) and presence of the fifth principal cusp, plus Y-pattern on M1–M3 (Fig. 4).  

Qualitative comparisons between H. naledi and the two pencontemporaneous samples 

(Table 1), Middle Pleistocene Homo and Middle/Late Pleistocene Homo sapiens, support the 

above findings—at least based on those teeth with multiple observations. Homo naledi shares 

a number of similar percentages with one or both samples, including: little or no occurrence 

of cusp 5 M1, Carabelli’s cusp M3, 7-cusped M3, deflecting wrinkle M3, enamel extensions, 

torsomolar angle M3, and asymmetry P4, along with prevalent protostylid M3, (perhaps) root 

number P4–M3, metaconid placement P4, and metaconid height P3–P4. On the other hand, H. 

naledi also shows some obvious distinction from these Homo samples by the: 1) frequent 

presence of principal cusps, such as metacone M2–M3, hypocone M2–M3, and hypoconulid 

with Y-pattern on M1–M3, and 2) overall lack of accessory cusps and crown features like 

cusp 5 M2, multiple P4 lingual cusps, anterior fovea M1, 6-cusped M1, deflecting wrinkle M1, 

cusp 7 M1–M3, metaconid placement P3, and transverse crest P3–P4. Again, refer to SOM S1, 

Table S1 and Figures S1–-S2. As mentioned, these two comparative samples are limited by 
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the overall lack of such African specimens, particularly Middle Pleistocene Homo. Other data 

exist; for example, Martinón-Torres et al. (2012) used the ASUDAS to record traits in the 

Middle Pleistocene Sima de los Huesos (SH) hominins, a very small sample of other 

European Homo heidelbergensis (HEI), and European Neanderthals (NEA), among others. 

However, because of, for example, the “highly derived and Neanderthal character of the Sima 

de los Huesos dentitions” (Martinón-Torres et al., 2012:55), it was assumed that these 

samples are too disparate to supplement the African data; this was found to be a valid concern 

based on marked differences in percentages for many of the 50 traits in common between 

studies (see SOM S2 and Table S2). Further, an MMD comparison of the data yields large, 

significantly different distances between SH, HEI, and NEA and the five largest Homo 

samples from the present study (SOM Table S3 and Fig. S3), including H. naledi. Another 

MMD comparison including Middle Pleistocene Homo and Middle/Late Pleistocene Homo 

sapiens, based on 41 traits in common, provides additional support; some similarity to the 

HEI sample is suggested (SOM S3, Table S4, and Fig. S4), but sample size issues are likely 

contributory. 

Overall, the present phenetic findings parallel those of Thackeray (2015)—based on 

cranial data—and Dembo et al. (2016)—based on the phylogenetic analyses of craniodental 

characters. When dental samples are compared simultaneously, for example in Figure 3, H. 

naledi most closely groups with other members of the genus Homo. Nevertheless, the species 

possesses combinations and expressions of traits that serve to distinguish it from the latter, as 

indicated by the intersample distances (Table 4). As Berger et al. (2015) and Hawks et al. 

(2017) described (also see Schroeder et al., 2017), beyond dental traits the H. naledi crania 

and postcrania present a mixture of shared and unique features relative to other Homo 

species, including: a well-developed and arched supraorbital torus that is separated from the 

vault by a continuous supratoral sulcus like in H. habilis and H. erectus, marked angular and 
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occipital tori like H. erectus, and some facial similarities to H. rudolfensis. That said, the 

cranium does not have many characteristics of more recent Homo including, notably, large 

cranial capacity (Garvin et al., 2017). In the postcranial skeleton, Homo-like features include 

relatively long lower limbs, muscle attachments indicative of a striding gate, and modern 

aspects of the ankles, feet, and hands; other traits are reminiscent of earlier species, including 

curved phalanges, wide lower thorax, and ape-like upper limbs (Berger et al., 2015; Harcourt-

Smith et al., 2015; Kivell et al, 2015; Feuerriegel et al., 2017; Garvin et al., 2017; Williams et 

al., 2017; Hawks et al., 2017). 

Dental affinities among the eight largest comparative samples are also of interest. As 

stated, interspecific patterning is consistent with that in earlier studies (Figs. 1–3). However, 

the MMD distances, beyond indicating the individuality of H. naledi, are telling. The 45-trait 

matrix is again emphasized (Table 4) and, certainly for this specific portion of the discussion, 

the make-up of the pooled H. erectus sample should be considered (above). The Holocene 

samples of EA and SA H. sapiens do not differ significantly from each other (MMD = 0.011, 

p ≥ 0.025), as may be expected with contemporary members of the same species in relatively 

proximate geographic regions. They differ significantly from all Plio-Pleistocene samples, 

but are most similar to others within the genus Homo, where the MMD distances from lowest 

to highest are: H. erectus (with SA H. sapiens = 0.346; EA H. sapiens = 0.428), H. habilis 

(SA H. sapiens = 0.371; EA H. sapiens = 0.438), and finally H. naledi (SA H. sapiens = 

0.586; EA H. sapiens = 0.591). Both SA and EA H. sapiens are highly distinct from the older 

and/or dead-end species A. afarensis, A. africanus, P. boisei, and P. robustus (range 0.689–

0.967, mean MMD = 0.867). Also suggestive of a temporal component in these affinities, H. 

erectus and H. habilis are closer to the latter four, older samples (MMD = 0.000–0.230), 

although with one exception H. erectus, at least, differs significantly from them.
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Beyond comparative purposes with H. naledi, it would clearly be important to obtain 

larger, more representative African and other Middle Pleistocene samples (though again see 

SOM S2–-S3) to more fully discern diachronic relatedness. Small sample size is also a factor 

in the better-represented samples, most conspicuously H. habilis and its implausible, 

insignificant distances with P. boisei, P. robustus, and perhaps Australopithecus (e.g., MMD 

= 0.000-0.108, p > 0.025); analogous size-influenced affinities between samples that were 

otherwise documented to be divergent have been reported in previous studies (Irish, 1993, 

2005, 2006, 2010; Irish et al., 2014b). That is, small sample sizes can reduce individual 

MMD distances, but most often increase the standard deviation that, given the significance 

formula (above), can yield a type II error; therefore, the MDS and PCA patterning among 

samples (Figs. 1–3) figures to be a better, overall indicator of interspecific variation. 

Nevertheless, the A. afarensis sample, as compiled here, appears to be more similar to H. 

habilis, as well as H. erectus, than was revealed in the abovementioned cladistic study (Irish 

et al., 2013); fewer (n = 18) traits in the latter study and standard coding, which does not 

address intraspecific variability to the level in the present analyses, likely played a role. The 

remaining affinities are not unexpected, based on the proximity of the Australopithecus and 

Paranthropus samples in all figures.

To conclude, the original qualitative taxonomic description (Berger et al., 2015), later 

quantitative analyses (Thackeray, 2015; Dembo, 2016), description of additional specimens 

(Hawks et al., 2017), and current dental nonmetric study of African samples (including SOM 

S1–S3) all provide generally concordant findings to support the inclusion of H. naledi in the 

genus Homo; or, said another way, there is little to suggest it does not belong in the genus. 

The relatively recent dates (Dirks et al., 2017) of the Dinaledi remains may also be indirectly 

supportive of this taxonomic classification, unless a relict Australopithecus population 

survived into the Middle Pleistocene or future phylogenetic research finds the hominins 
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unique enough to warrant naming a separate genus. The designation of H. naledi as a 

taxonomically valid species of Homo is also supported by the combination of cranial, dental, 

and postcranial characteristics (above) relative to other members of the genus. The likelihood 

of population homogeneity must be considered, but the highly uniform pattern of crown and 

root morphology in all specimens of H. naledi is, on its own, indicative of the species’ 

distinctiveness. None of the other samples in this study (also see SOM S2) exhibit an 

equivalent combination of small teeth with retention and full expression of the principal 

cusps on all molars, yet the absence of accessory and other traits known to be plesiomorphic 

in both African fossil and recent hominins; indeed, the samples of Holocene H. sapiens in the 

present study (Irish et al., 2014), which have smaller teeth than H. naledi (compare mean 

crown diameters in Irish et al., 2016:Table 2 with those in Berger et al., 2015:Table 2), 

evidence such accessory, plesiomorphic features (e.g., labial curvature UI1, cusp-7 LM, etc.; 

Irish, 1993, 1997, 1998, 2013). Therefore, again, H. naledi appears dentally distinct relative 

to these other species. Lastly, interspecific groupings of the other samples are comparable to 

those in previously published studies. Future comparative analyses will benefit from the 

collection of additional data not currently presented here—particularly Middle Pleistocene 

contemporaries of H. naledi. Different quantitative and illustrative methods, as stated in the 

Introduction, can then be used with these data to further discern relatedness; the goal, simply, 

is to better understand where and how H. naledi fits in.
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Figure legends

Figure 1. Three-dimensional multidimensional scaling of 78-trait mean measure of 

divergence distances among Homo naledi and eight comparative samples. Abbreviations: 

AFA = Australopithecus afarensis; AFR = Australopithecus africanus; PBO = Paranthropus 

boisei; PRO = Paranthropus robustus; HHA = Homo habilis; HER = Homo erectus; HNA = 

Homo naledi; EAF = East African Holocene Homo sapiens; SAF = South African Holocene 

H. sapiens. See main text for sample details.

Figure 2. Three-dimensional scatterplot of the first three principal components among Homo 

naledi and eight comparative samples for 57 dental traits (Table 3). It accounts for 68.05% of 

the total variance (37.67% on Dimension 1, 18.43% on Dimension 2, and 11.95% on 

Dimension 3). See abbreviations defined in Table 1 and Figure 1 caption.
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Figure 3. Three-dimensional multidimensional scaling of 45-trait mean measure of 

divergence distances among Homo naledi and eight comparative samples. See abbreviations 

definitions in Table 1 and Figure 1 caption.

Figure 4. Maxillary (A) and mandibular (B) teeth from Homo naledi holotype specimen, 

Dinaledi Hominin 1 (DH1). For this figure ‘right’ antimeres that follow the order of trait 

descriptions in the text were created by flipping the left maxilla (U.W. 101-1277) and 

corresponding left half of the mandible (U.W. 101-1261). The locations of high frequency 

crown traits in the species are designated by numbers: 1) C1 double shoveling, 2) C1 distal 

accessory ridge, 3) upper molar ASUDAS grade 4–5 metacones, 4) upper molar ASUDAS 

grade 4–5 hypocones, 5) five principal cusps-only on lower molars, 6) Y-groove pattern-only 

on lower molars. Locations where crown traits that occur in much lower frequencies than 

other hominins or are entirely absent are denoted by letters: a = labial curvature I1; b = 

tuberculum dentale C1; c = accessory cusps P3/P4; d = buccal median ridge P4; e = cusp 5 M1–

M2; f = metaconid placement P3; g = multiple P4 lingual cusps; h = transverse crest P3–P4; i = 

asymmetry P3–P4;  j = deflecting wrinkle M1–M3; k = protostylid M2–M3 (though note 

exceptional grade 7 protostylid on M3 in this particular specimen). See text for details on 

these and other high- and low-frequency traits. 











Table 1

Dental trait percentages (%) and number of specimens scored (n) for the 11 African hominin samples.

No. Trait Samplea AFA AFR PBO PRO HHA HER HMP HNA HSE EAF SAF

1 Winging I1 b % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 1.37 4.63

(+=ASU 1) n 4 11 2 21 1 2 1 6 1 73 216

2 Labial curvature I1 % 55.56 25.00 33.33 66.67 50.00 50.00 100.00 0.00 0.00 10.81 24.59

(+=ASU 3–4) n 9 12 3 15 2 4 1 4 2 74 122

3 Shoveling I1 % 0.00 0.00 25.00 7.14 0.00 25.00 0.00 0.00 0.00 0.00 2.60

(+=ASU 3–6) n 8 10 4 14 2 4 1 4 2 67 77

4 Shoveling I2 % 0.00 0.00 0.00 12.50 33.33 14.29 0.00 0.00 8.70 14.63

(+=ASU 3–6) n 6 5 4 8 3 7 6 2 69 82

5 Double shoveling I1 % 0.00 0.00 0.00 7.14 0.00 0.00 0.00 0.00 0.00 0.00 0.81

(+=ASU 2–6) n 9 13 4 14 1 4 1 5 1 71 124

6 Double shoveling I2 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43 0.90

(+=ASU 2–6) n 9 8 4 7 3 7 6 1 70 111

7 Double shoveling C1 % 0.00 16.67 0.00 0.00 0.00 0.00 36.36 1.19 0.83



(+=ASU 2–6) n 10 12 5 17 2 4 11 84 121

8 Interruption groove I1 % 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 50.00 0.00 0.00

(+=ASU 1) n 7 11 4 14 2 3 1 5 2 62 92

9 Interruption groove I2 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.82 2.11

(+=ASU 1) n 8 8 4 6 3 7 7 1 68 95

10 Tuberculum dentale I1 % 42.86 60.00 25.00 42.86 0.00 40.00 100.00 28.57 50.00 6.67 12.82

(+=ASU 3–6) n 7 10 4 14 2 5 1 7 2 60 78

11 Tuberculum dentale I2 % 25.00 14.29 0.00 0.00 0.00 0.00 0.00 0.00 4.41 6.02

(+=ASU 3–6) n 8 7 4 7 3 7 7 2 68 83

12 Tuberculum dentale C1 % 44.44 54.55 50.00 29.41 50.00 50.00 0.00 0.00 32.89 25.33

(+=ASU 3–6) n 9 11 4 17 2 4 8 1 76 75

13 Bushman canine C1 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.69 42.50

(+=ASU 1–3) n 12 13 4 16 3 4 9 1 77 80

14 Distal accessory ridge C1 % 14.29 0.00 0.00 23.08 0.00 66.67 44.44 0.00 31.34 16.13

(+=ASU 2–5) n 7 8 4 13 1 3 9 1 67 62

15 Accessory cusps P3/P4 % 44.44 56.25 83.33 83.33 60.00 50.00 0.00 14.29 33.33 31.82 22.99



(+=ASU 1) n 9 16 6 24 5 6 3 14 3 88 87

16 Buccal mesial accessory ridge P3 % 50.00 71.43 50.00 57.14 100.00 60.00 100.00 100.00 11.11 6.25

(+=ASU 2–4) n 4 7 4 7 2 5 1 9 9 16

17 Buccal distal accessory ridge P3 % 66.67 100.00 66.67 100.00 66.67 100.00 100.00 100.00 40.00 30.00

(+=ASU 2–4) n 3 5 3 4 3 2 1 9 5 10

18 Buccal mesial accessory ridge P4 % 100.00 66.67 100.00 45.45 100.00 57.14 100.00 100.00 50.00 60.00 46.15

(+=ASU 2–4) n 4 3 2 11 2 7 1 4 2 5 13

19 Buccal distal accessory ridge P4 % 100.00 100.00 100.00 100.00 100.00 33.33 100.00 100.00 50.00 40.00 60.00

(+=ASU 2–4) n 4 3 2 6 2 3 1 3 2 5 10

20 Metacone M1 % 83.33 85.71 75.00 77.50 72.73 76.92 100.00 61.54 100.00 43.62 43.64

(+=ASU 5) n 6 28 8 40 11 13 2 13 2 94 220

21 Metacone M2 % 25.00 36.67 28.57 19.23 14.29 20.00 0.00 42.86 0.00 7.02 13.72

(+=ASU 5) n 4 30 7 26 7 10 3 14 2 114 226

22 Metacone M3 % 60.00 70.00 66.67 66.67 50.00 100.00 50.00 100.00 75.00 82.41 80.52

(+=ASU 4–5) n 5 20 3 21 6 6 4 6 4 108 154

23 Hypocone M1 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 100.00 98.06



(+=ASU 4–5) n 5 28 8 39 11 14 2 13 2 94 206

24 Hypocone M2 % 100.00 93.13 100.00 96.15 83.33 90.00 50.0 100.00 33.33 52.34 72.36

(+=ASU 4–5) n 5 29 7 26 6 10 2 14 3 107 199

25 Hypocone M3 % 40.00 72.73 75.00 60.87 16.67 60.00 0.00 66.67 25.00 12.62 19.84

(+=ASU 4–5) n 5 22 4 23 6 5 4 6 4 103 126

26 Cusp 5 M1 % 50.00 25.00 14.29 6.67 28.57 36.36 100.00 0.00 0.00 10.81 14.04

(+=ASU 3–5) n 6 20 7 30 7 11 1 12 2 74 114

27 Cusp 5 M2 % 50.00 70.83 50.00 47.62 20.00 22.22 100.00 8.33 50.00 2.06 25.41

(+=ASU 3–5) n 2 24 6 21 5 9 1 12 2 97 122

28 Cusp 5 M3 % 75.00 88.89 33.33 71.43 50.00 40.00 50.00 50.00 50.00 11.58 26.80

(+=ASU 3–5) n 4 18 3 21 6 5 2 6 4 95 97

29 Carabelli's cusp M1 % 50.00 76.47 57.14 20.69 55.56 66.67 0.00 66.67 0.00 32.89 23.68

(+=ASU 3–7) n 6 17 7 29 9 9 1 9 1 76 114

30 Carabelli's cusp M2 % 50.00 85.71 25.00 27.78 50.00 14.29 0.00 33.33 0.00 0.00 3.03

(+=ASU 3–7) n 2 21 4 18 6 7 1 12 2 100 132

31 Carabelli's cusp M3 % 50.00 77.27 33.33 55.00 25.00 0.00 0.00 0.00 0.00 2.02 4.20



(+=ASU 3–7) n 6 22 3 20 4 4 4 5 3 99 119

32 Parastyle M1 % 0.00 0.00 0.00 13.33 0.00 9.09 0.00 0.00 0.00 0.00

(+=ASU 2–5) n 3 19 6 30 9 11 14 1 91 153

33 Parastyle M2 % 33.33 24..0 20.00 4.35 16.67 0.00 0.00 0.00 0.00 0.00 0.00

(+=ASU 2–5) n 3 25 5 23 6 5 1 12 1 109 177

34 Parastyle M3 % 0.00 6.67 0.00 4.76 20.00 0.00 0.00 0.00 0.00 0.00 0.77

(+=ASU 2–5) n 2 15 2 21 5 3 2 6 3 100 130

35 Root number P3 % 0.00 25.00 66.67 60.00 50.00 33.33 100.00 57.14 0.00 0.50

(+=ASU 3 and above) n 8 8 3 15 6 3 1 7 49 202

36 Root number P4 % 100.00 100.00 100.00 92.86 100.00  87.50 0.00 22.50 6.80

(+=ASU 2 and above) n 6 4 6 14 2  8 2 40 147

37 Root number M2 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00 71.70 72.44

(+=ASU 3 and above) n 3 6 3 13 2 5 8 53 127

38 Root number M3 % 80.00 100.00  88.89 100.00 100.00 100.00 100.00 100.00 36.36 16.05

(+=ASU 3 and above) n 5 1  9 2 2 1 5 3 33 81

39 Lingual cusp P3 % 33.33 25.00 60.00 66.67 20.00 12.50 0.00 60.00 50.00 2.73 6.45



(+=ASU 3–9) n 15 8 5 15 5 8 4 10 2 110 124

40 Lingual cusp P4 % 30.77 41.67 62.50 31.58 25.00 14.29 66.67 0.00 40.00 6.42 1.57

(+=ASU 8–9) n 13 12 8 19 4 7 3 8 5 109 127

41 Anterior fovea M1 % 50.00 47.06 40.00 60.71 50.00 63.64 100.00 0.00 50.00 21.25 36.67

(+=ASU 3–4) n 8 17 10 28 4 11 3 10 4 80 90

42 Groove pattern M2 % 86.96 90.91 100.00 100.00 83.33 87.50  66.66 100.00 42.85 65.73 72.08

(+=ASU Y) n 23 22 15 29 6 16 3 11 7 143 197

43 Groove pattern M3 % 57.14 61.54 70.59 92.86 100.00 88.89 100.00 100.00 20.00 51.72 44.00

(+=ASU Y) n 7 26 17 28 5 9 3 8 5 116 150

44 Cusp number M1 % 35.71 4.35 61.54 48.28 0.00 15.38 33.33 0.00 12.50 5.22 4.08

(+=ASU 6 and above) n 14 23 13 29 8 13 3 11 8 115 147

45 Cusp number M2 % 55.00 47.62 90.91 80.77 40.00 57.14 33.33 9.09 28.57 3.91 6.32

(+=ASU 6 and above) n 20 21 11 26 5 14 3 11 7 128 174

46 Cusp number M3 % 40.00 4.17 58.82 23.08 40.00 22.22 33.33 0.00 0.00 0.00 0.00

(+=ASU 7 and above) n 10 24 17 26 5 9 3 8 6 121 133

47 Deflecting wrinkle M1 % 12.50 15.00 16.67 15.38 20.00 36.36 0.00 0.00 71.43 5.00 2.06



(+=ASU 2–3) n 8 20 12 26 5 11 3 9 7 100 97

48 Deflecting wrinkle M2 % 33.33 19.05 27.27 36.36 25.00 60.00 0.00 18.18 0.00 0.74 4.49

(+=ASU 2–3) n 12 21 11 22 4 10 3 11 6 136 156

49 Deflecting wrinkle M3 % 42.86 16.67 64.29 50.00 20.00 33.33 0.00 0.00 0.00 6.61 1.50

(+=ASU 2–3) n 7 24 14 28 5 9 3 6 4 121 133

50 C1-C2 crest M1 % 25.00 0.00 0.00 0.00 0.00 0.00 33.33 0.00 0.00 0.97 0.99

(+=ASU 1) n 8 20 12 31 5 11 3 10 8 103 101

51 C1-C2 crest M2 % 0.00 0.00 0.00 0.00 33.33 0.00 0.00 0.00 0.00 0.00 0.59

(+=ASU 1) n 14 21 10 24 3 12 3 10 6 134 169

52 C1-C2 crest M3 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.71

(+=ASU 1) n 8 26 16 28 5 10 3 6 5 121 140

53 Protostylid M1 % 36.36 63.16 14.29 54.17 25.00 23.08 50.00 60.00 33.33 0.00 1.74

(+=ASU 4–6) n 11 19 7 24 4 13 2 10 6 116 115

54 Protostylid M2 % 52.94 75.00 44.44 84.21 50.00 50.00 0.00 40.00 0.00 0.00 2.67

(+=ASU 4–6) n 17 20 9 19 4 12 2 10 4 138 150

55 Protostylid M3 % 83.33 86.36 18.18 68.97 66.67 60.00 100.00 37.50 33.33 2.44 23.40



(+=ASU 4–6) n 6 22 11 29 6 10 1 8 3 123 141

56 Cusp 7 M1 % 7.14 32.00 0.00 15.63 33.33 53.33 50.00 0.00 85.71 23.77 21.59

(+=ASU 2–4) n 14 25 16 32 6 15 4 13 7 122 176

57 Cusp 7 M2 % 20.00 47.62 8.33 20.00 14.29 50.00 0.00 0.00 28.57 13.67 9.24

(+=ASU 2–4) n 15 21 12 25 7 14 3 11 7 139 184

58 Cusp 7 M3 % 55.56 56.52 21.43 41.38 50.00 50.00 33.33 0.00 33.33 10.66 17.81

(+=ASU 2–4) n 9 23 14 29 6 10 3 7 3 122 146

59 Tomes’ Root P3 % 93.33 83.33 100.00 68.42 75.00 62.50 100.00 100.00 0.00 1.96 4.19

(+=ASU 5) n 15 6 8 19 4 8 1 7 2 51 191

60 Enamel extension-all molars % 60.00 16.67 20.00 48.48 40.00 17.65 0.00 7.50 10.00 2.44 1.08

(+=ASU 1) n 15 24 10 33 10 17 10 40 10 123 279

61 Root number P3 % 70.00 80.00 85.71 57.89 66.67 60.00 0.00 100.00 0.00 1.43 1.49

(+=ASU 2 and above) n 10 5 7 19 3 5 1 6 2 70 201

62 Root number P4 % 80.00 71.43 100.00 77.78 75.00 66.67 0.00 0.00 1.75 0.00

(+=ASU 2 and above) n 10 7 12 9 4 3 2 2 57 152

63 Root number M2 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 93.44 89.93



(+=ASU 2 and above) n 14 4 18 11 6 3 2 2 4 61 149

64 Root number M3 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 86.36 50.00

(+=ASU 2 and above) n 8 1 13 9 5 3 2 4 4 44 72

65 Odontome-all premolars % 0.00 4.17 8.33 0.00 12.50 0.00 0.00 0.00 0.00 0.00 0.54

(+=ASU 1) n 14 24 12 37 8 10 10 33 18 131 186

66 Torsomolar angle M3 % 10.00 0.00 10.53 0.00 0.00 7.69 0.00 0.00 0.00 11.48 6.84

(+=ASU 1) n 10 20 19 24 7 13 2 8 4 122 190

67 Buccal median ridge P3 c % 25.00 100.00 100.00 100.00 100.00 60.00 0.00 100.00 55.56 27.78

(+=SEB 2–3) n 4 5 4 10 3 5 1 8 9 18

68 Buccal median ridge P4 % 75.00 100.00 100.00 81.82 75.00 85.71 0.00 50.00 100.00 80.00 78.57

(+=SEB 2–3) n 4 3 2 11 4 7 1 4 1 5 14

69 Anterior fovea P3 % 77.78 100.00 75.00 16.67 20.00 80.00 100.00 83.33 100.00 60.00 46.67

(+=SEB 2–3) n 18 3 4 6 5 5 2 6 2 5 15

70 Metaconid placement P3 % 10.53 100.00 100.00 100.00 25.00 20.00 33.33 0.00 50.00 20.00 20.00

(+=SEB 1) n 19 4 4 10 4 5 3 7 2 5 15

71 Metaconid height P3 % 100.00 100.00 100.00 100.00 100.00 50.00 100.00 100.00 100.00 40.00 40.00



(+=SEB 2–3) n 18 3 4 5 5 4 1 7 2 5 15

72 Transverse crest P3 % 100.00 0.00 25.00 66.67 100.00 100.00 100.00 0.00 100.00 60.00 81.25

(+=SEB 1–3) n 16 3 4 6 5 5 3 6 2 5 16

73 Crown asymmetry P3 % 84.21 100.00 75.00 90.91 0.00 66.67 50.00 0.00 100.00 0.00 0.00

(+=SEB 2–3) n 19 4 4 11 5 3 2 8 2 5 15

74 Anterior fovea P4 % 9.09 33.33 0.00 22.22 33.33 80.00 50.00 33.33 0.00 50.00 40.00

(+=SEB 2–3) n 11 3 4 9 3 5 2 3 5 4 15

75 Metaconid placement P4 % 71.43 100.00 100.00 100.00 66.67 60.00 100.00 60.00 83.33 50.00 73.33

(+=SEB 1) n 14 4 5 12 3 5 3 5 6 4 15

76 Metaconid height P4 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

(+=SEB 2–3) n 14 4 5 12 3 4 1 5 6 4 15

77 Transverse crest P4 % 100.00 50.00 0.00 16.67 25.00 40.00 75.00 0.00 0.00 25.00 25.00

(+=SEB 1–3) n 10 4 4 12 4 5 4 3 6 4 16

78 Crown asymmetry P4 % 0.00 0.00 0.00 16.67 0.00 0.00 50.00 0.00 0.00 0.00 0.00

(+=SEB 2–3) n 16 4 5 12 4 5 2 5 6 4 17

a Abbreviations: AFA = Australopithecus afarensis; AFR = Australopithecus africanus; PBO = Paranthropus boisei; PRO = Paranthropus robustus; HHA = 

Homo habilis; HER = Homo erectus; HMP = Middle Pleistocene Homo; HNA = Homo naledi; HSE = Middle and Late Pleistocene (i.e., early) Homo sapiens; EAF 



= East African Holocene Homo sapiens; SAF = South African Holocene H. sapiens (see text for sample details).

b Arizona State University Dental Anthropology System traits and rank-scale trait breakpoints described in Turner et al. (1991), Irish (1993, 1998), and Scott and 

Turner (1997), where ‘+’ refers to grade(s) at which trait is considered to be present (see text for dichotomization details).

c Premolar traits and rank-scale breakpoints defined and used by S.E.B. (e.g., Bailey, 2002a, b, Bailey and Lynch, 2005; Bailey and Hublin, 2013), where ‘+’ 

refers to grade(s) at which trait is considered to be present (see text for dichotomization details). 



Table 2.

Means measure of divergence (MMD) distance matrix for nine of the 11 hominin samples based on 

78 dental traits (see Table 1).

a Abbreviations as in Table 1. HNA intersample distances in bold for ease of reference. 

b Underlined MMD distances indicate no significant difference at the 0.025 level.

AFA AFR PBO PRO HHA HER HNA EAF SAF

AFAa 0 0.083 0.057 0.155 0.000 b 0.000 0.407 0.648 0.637

AFR 0.083 0 0.010 0.058 0.046 0.104 0.303 0.791 0.801

PBO 0.057 0.010 0 0.000 0.000 0.060 0.271 0.707 0.770

PRO 0.155 0.058 0.000 0 0.004 0.087 0.407 0.805 0.814

HHA 0.000 0.046 0.000 0.004 0 0.000 0.079 0.364 0.396

HER 0.000 0.104 0.060 0.087 0.000 0 0.222 0.327 0.378

HNA 0.407 0.303 0.271 0.407 0.079 0.222 0 0.537 0.625

EAF 0.648 0.791 0.707 0.805 0.364 0.327 0.537 0 0.005

SAF 0.637 0.801 0.770 0.814 0.396 0.378 0.625 0.005 0



Table 3

Principal component analysis loadings, eigenvalues, and variance explained for 57 traits in the 

hominin comparative samples.

Component 1 Component 2 Component 3

Labial Curvature I1 a 0.594 b -0.627 -0.179

Shoveling I1 a 0.306 -0.216 -0.532

Shoveling I2 -0.217 -0.410 -0.321

Double shoveling C1 a -0.031 0.943 0.312

Tuberculum dentale I1 a 0.690 0.126 0.452

Tuberculum dentale I2  a 0.200 -0.274 0.803

Tuberculum dentale C1 a 0.501 -0.698 0.091

Accessory cusps P3-P4 a 0.756 -0.332 -0.501

Buccal mesial accessory ridge P3 0.529 0.524 0.030

Buccal distal accessory ridge P3 a 0.687 0.440 0.087

Metacone M1 a 0.963 -0.068 0.181

Metacone M2 a 0.499 0.763 0.289

Metacone M3 a -0.500 0.422 0.076

Hypocone M2 a 0.827 0.353 0.012

Hypocone M3 a 0.709 0.503 -0.053

Cusp 5 M1 a 0.342 -0.637 0.513

Cusp 5 M2 a 0.809 -0.162 0.230

Cusp 5 M3 a 0.786 0.134 0.478

Carabelli’s Cusp M1 0.423 0.359 0.381

Carabelli’s Cusp M2 a 0.698 0.190 0.524

Carabelli’s Cusp M3 a 0.786 -0.109 0.278



Parastyle M1 0.325 -0.185 -0.356

Parastyle M2 a 0.655 -0.229 0.378

Root number P3 a 0.527 0.479 -0.653

Lingual cusp P3
 a 0.595 0.559 -0.408

Lingual cusp P4
 a 0.803 -0.187 -0.222

Anterior fovea M1
 a 0.566 -0.737 -0.053

Groove pattern M2
 a 0.783 0.519 -0.249

Groove pattern M3 0.370 0.416 -0.383

Cusp number M1
 a 0.581 -0.214 -0.503

Cusp number M2
 a 0.866 -0.256 -0.377

Cusp number M3
 a 0.605 -0.350 -0.422

Deflecting wrinkle M1
 a 0.518 -0.489 -0.129

Deflecting wrinkle M2
 a 0.626 -0.229 -0.103

Deflecting wrinkle M3
 a 0.736 -0.342 -0.431

Protostylid M1
 a 0.634 0.581 0.329

Protostylid M2 0.928 0.102 0.046

Protostylid M3
 a 0.724 -0.123 0.504

Cusp 7 M1
 a -0.074 -0.501 0.196

Cusp 7 M2 0.410 -0.380 0.432

Cusp 7 M3
 a 0.667 -0.559 0.362

Tomes’ root P3
 a 0.815 0.416 0.027

Enamel extension-all molars a 0.665 -0.332 0.035

Root number P3 0.757 0.537 0.031

Root number P4
 a 0.896 -0.364 -0.171

Odontome-all premolars 0.310 -0.096 -0.333



Torsomolar angle M3
 a -0.324 -0.511 -0.059

Buccal median ridge P3 a 0.487 0.544 -0.409

Buccal median ridge P4 a 0.426 -0.525 -0.094

Anterior fovea P3
 a 0.136 0.303 0.570

Metaconid placement P3 0.649 -0.036 -0.311

Metaconid height P3
 a 0.794 0.398 -0.012

Transverse crest P3
 a -0.157 -0.791 -0.053

Crown asymmetry P3 0.849 -0.218 0.152

Anterior fovea P4 -0.453 -0.152 0.166

Metaconid placement P4
 a 0.733 0.013 -0.192

Transverse crest P4
 a 0.236 -0.510 0.754

Eigenvalue 21.470 10.507 6.813

Variance (%) 37.666 18.434 11.953

Total Variance 37.666 56.100 68.053

a Denotes the 45 traits used in the final mean measure of divergence comparison (see text for 

details).

b Values in bold indicate strong loadings (>|0.5|) as detailed in text.

 



Table 4

Mean measure of divergence (MMD) distance matrix for nine of the 11 hominin samples based on 

45 dental traits.

AFA AFR PBO PRO HHA HER HNA EAF SAF

AFAa 0 0.193 0.212 0.210 0.000b 0.056 0.690 0.842 0.689

AFR 0.193 0 0.186 0.174 0.108 0.230 0.361 0.967 0.853

PBO 0.212 0.186 0 0.000 0.013 0.137 0.416 0.912 0.883

PRO 0.210 0.174 0.000 0 0.000 0.130 0.474 0.956 0.835

HHA 0.000 0.108 0.013 0.000 0 0.000 0.329 0.438 0.371

HER 0.056 0.230 0.137 0.130 0.000 0 0.401 0.428 0.346

HNA 0.690 0.361 0.416 0.474 0.329 0.401 0 0.591 0.586

EAF 0.842 0.967 0.912 0.956 0.438 0.428 0.591 0 0.011

SAF 0.689 0.853 0.883 0.835 0.371 0.346 0.586 0.011 0

a Abbreviations as in Table 1. HNA intersample distances in bold for ease of reference.

b Underlined MMD distances indicate no significant difference at the 0.025 level. 
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SOM S1 

Mean measure of divergence comparison of all African samples, including Middle 

Pleistocene Homo and Middle/Late Pleistocene Homo sapiens 

 As noted in the published paper, the small heterogeneous African Middle Pleistocene 

Homo (HMP; n = 13 specimens) and Middle/Late Pleistocene Homo sapiens (HSE; n = 38) 

samples, which are closest in age to Homo naledi at 335–236 ka (Dirks et al., 2017), have 

many missing data. Indeed, of the 62 non-missing traits in common across all of the species 

(i.e., trait numbers 1-3, 5, 8, 10, 15, 18-31, 33-35, 38-61, 63-66, 68-78 in Table 1 of paper), 

25 comprise one observation and 33 just two observations in these two comparative samples 

combined. This issue makes their analysis with the mean measure of divergence distance 

statistic (MMD), and its recommended minimum sample size (Sjøvold, 1977; Irish, 2010), 

particularly problematic and any results questionable. That said, because the MMD has 

proven to be a robust statistic (Irish, 2010), as apparently supported by the 78-trait results, 

MMD affinities among all African samples are provided here to attempt some quantification 

of interspecific affinities; this and the following SOM MMD analyses were also requested by 

two JHE reviewers. The resulting 62-trait phenetic distances are of particular interest between 

H. naledi and the other two Middle/Late Pleistocene samples. However, these data limitations 

oblige us to focus on qualitative comparisons for the latter in the published paper. 

 The symmetric MMD matrix is provided in SOM Table S1. Some improbably low 

MMD values (e.g., HMP with Australopithecus afarensis) and many others exhibiting no 

significant difference despite high intersample values (e.g., HSE with Paranthropus boisei) 

are likely indicative of small sample sizes and concomitant high standard deviations (as 

detailed in the paper). Other low MMD distances seem more plausible, including HMP with 

all other Plio-Pleistocene Homo samples except H. naledi, and HSE showing the closest 

affinity to EA and SA H. sapiens of all fossil samples. The remaining MMD affinities are 

concordant with those based on all 78 traits (compare SOM Table S1 with Table 2). The 

subsequent MDS solution provides a good representation of the matrix (SOM Fig. S1), with a 

Kruskal’s stress formula 1 of 0.147 and r2 of 0.911 (Borgatti, 1997). Intersample patterning is 

also concordant with that based on 78 traits (compare SOM Fig. S1 and Fig. 2 in the paper), 

albeit with the plotting of HMP and HSE in the grouping of fossil Homo species. To better 

illustrate the latter affinities, an additional MDS solution for just the seven Homo samples 

(stress = 0.104; r2 = 0.952) yielded the plot in SOM Figure S2; among other patterning, the 
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distinctiveness of H. naledi and relationship of HSE to EA and SA H. sapiens is now more 

apparent. 

 

SOM S2 

Middle Pleistocene comparative material 

The deficiency of comparative dental specimens of similar age to the Homo naledi 

material, 335–236 ka (Dirks et al., 2017), leaves the heterogeneous African Middle 

Pleistocene Homo and Middle/Late Pleistocene Homo sapiens samples in the present study 

with too few trait data to allow anything but rough, quantitative intersample comparisons 

(i.e., SOM S1) using the mean measure of divergence (MMD; Sjøvold, 1977; Irish, 2010). 

Samples of Holocene African H. sapiens are available and used in this study, so only the 

Middle Pleistocene Homo sample was considered for supplementation with non-African, yet 

closely related hominin data like for the present Homo erectus sample (i.e., Dmanisi Homo 

ergaster). Given the African focus of the study, only the most geographically proximate 

regions were considered, but very few data of this kind are available, with exception. 

Martinón-Torres et al. (2012) used the same Arizona State University Dental Anthropology 

System (ASUDAS; Scott and Turner, 2017) as the present study, along with a number of 

similar non-ASUDAS premolar traits (Bailey, 2002) in dentally characterizing the Middle 

Pleistocene hominins from Sima de los Huesos (SH), other European Homo heidelbergensis 

(HEI), and European Neanderthals (NEA). However, among other issues (e.g., lack of 

interobserver error analysis), the “highly derived and Neanderthal character of the Sima de 

los Huesos dentitions” (Martinón-Torres et al., 2012:55) led us to assume these samples are 

too disparate to relevantly supplement the African data. This assumption is supported by the 

marked differences in percentages for many of the 50 traits in common between studies (trait 

numbers 2–4, 10–14, 16–34, 39–45, 47–58, 67–68, 72, 78 in SOM Table S2). Further, an 

MMD comparison of these data produces large, significantly different distances between SH, 

HEI1, and NEA and the five largest Homo samples from the present study (SOM Table S3, 

SOM Fig. S3), including H. naledi. Therefore, the present African Middle Pleistocene Homo 

sample was not supplemented and, again, only qualitative trait comparisons with the other 

samples are stressed in the published paper. Nevertheless, the dental phenetic comparisons 

with SH, HEI, and NEA are instructive, notably the extreme dissimilarity evident between 

                                                 
1The sample’s very small size necessitates caution in interpretation of its inter-sample 
comparisons. 
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these European samples and H. naledi. The MDS solution provides excellent representation 

of the matrix, with a Kruskal’s stress formula 1 of 0.079 and r2 of 0.959 (Borgatti, 1997). 

 

SOM S3 

Mean measure of divergence comparison among all African and European Homo samples 

 Lastly, to again attempt some quantification of affinities among all 10 Homo samples, 

including those which are either 1) of insufficient size (HMP, HSE) for a proper analysis or 

2) otherwise not directly pertinent (e.g., SH, HEI, NEA) to the objectives of the published 

paper (see SOM S1 and S2), a final MMD comparison was undertaken here. The analysis is 

based on 41 traits in common across these samples (trait numbers 2–3, 10, 18–31, 33–34, 39–

45, 47–58, 68, 72, 77 in SOM Table S2). The same caveats and cautions discussed above also 

apply here. The corresponding MMD matrix is presented below (SOM Table S4), and effects 

of small sample sizes and high standard deviations are evident, particularly for HMP, and to a 

lesser extent HSE and HEI. Other intersample affinities seem more plausible, including the 

low, insignificant MMD value between HMP and HEI, among others. The various phenetic 

affinities are otherwise similar to those in the preceding MMD comparisons. The MDS 

solution has a Kruskal’s stress formula 1 value of 0.116 and r2 of 0.946), with the 3D MDS 

plot provided in SOM Figure S4.  
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SOM Figure S1. Three-dimensional multidimensional scaling of 62–trait mean measure of divergence distances (from SOM Table S1) among 

all 11 African hominin samples. See details above in SOM S1. Sample abbreviations listed in SOM Table S1.  
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SOM Figure S2. Three-dimensional multidimensional scaling of 62–trait mean measure of divergence distances (from SOM Table S1) among 

the seven African Homo samples. See details above in SOM S1. Sample abbreviations listed in SOM Table S1. 
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SOM Figure S3. Three-dimensional multidimensional scaling of 50–trait mean measure of divergence distances (from SOM Table S3) among 

the five largest African Homo samples and three European Homo samples—with data from Martinón-Torres et al. (2012). See details above in 

SOM S2. Sample abbreviations listed in SOM Table S2. Note extreme divergence of HNA and to a lesser extent the remaining African Homo 

samples from SH, NEA, and to a lesser extent HEI, as also reflected in the trait percentages (SOM Table S2).  
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SOM Figure S4. Three-dimensional multidimensional scaling of 41–trait mean measure of divergence distances (from SOM Table S4) among 

the seven African and three European Homo samples. See details in SOM S3. Sample abbreviations listed in SOM Table S2. Again, note the 

divergence of HNA, but somewhat intermediate location of the small HMP sample between African and European Homo groups. 
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SOM Table S1 

Mean measure of divergence (MMD) distance matrix based on 62 dental traits, as discussed above in SOM S1, for all 

African hominin samples: AFA = Australopithecus afarensis; AFR = Australopithecus africanus; PBO = Paranthropus 

boisei; PRO = Paranthropus robustus; HHA = Homo habilis; HER = Homo erectus; HMP = Middle Pleistocene 

Homo; HNA = Homo naledi; HSE = Middle and Late Pleistocene (i.e., early) Homo sapiens; EAF = East African 

Holocene Homo sapiens; SAF = South African Holocene Homo sapiens.  

 
AFA AFR PBO PRO HHA  HER   HMP HNA HSE   EAF  SAF 

AFA 0 0.101a 0.076 0.155 0.000 0.037 0.000b 0.380 0.260 0.721 0.636

AFR 0.101 0 0.056 0.091 0.129 0.154 0.145 0.345 0.274 0.827 0.741

PBO 0.076 0.056 0 0.000 0.002 0.110 0.141 0.249 0.216 0.705 0.689

PRO 0.155 0.091 0.000 0 0.072 0.157 0.175 0.475 0.330 0.832 0.741

HHA 0.000 0.129 0.002 0.072 0 0.000 0.000 0.111 0.067 0.347 0.299

HER 0.037 0.154 0.110 0.157 0.000 0 0.000 0.264 0.031 0.331 0.311

HMP 0.000 0.145 0.141 0.175 0.000 0.000 0 0.351 0.000 0.365 0.277

HNA 0.380 0.345 0.249 0.475 0.111 0.264 0.351 0 0.491 0.485 0.499

HSE 0.260 0.274 0.216 0.330 0.067 0.031 0.000 0.491 0 0.269 0.264

EAF 0.721 0.827 0.705 0.832 0.347 0.331 0.365 0.485 0.269 0 0.000

SAF 0.636 0.741 0.689 0.741 0.299 0.311 0.277 0.499 0.264 0.000 0 

aUnderlined MMD distances indicate no significant difference at the 0.025 level. 
bHMP and HSE intersample distances in bold for ease of reference. 
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SOM Table S2 

Dental trait percentages (%) and number of specimens scored (n) for Homo samples in current study as discussed above in SOM S2: Homo habilis 

(HHA), Homo erectus (HER), African Middle Pleistocene Homo (HMP), Homo naledi (HNA), Middle and Late Pleistocene (i.e., early) Homo sapiens 

(HSE), East African Holocene Homo sapiens (EAF), South African Holocene Homo sapiens (SAF), and for Middle Pleistocene Sima de los Huesos 

Homo heidelbergensis (SH), other European Homo heidelbergensis (HEI), and European Neanderthal (NEA) derived from Martinón-Torres et al. (2012). 

No. Trait Sample HHA HER HMP HNA HSE EAF SAF SH HEI NEA 

1 Winging I1 a % 0.00 0.00 0.00 0.00 100.00 1.37 4.63
 

 
(+=ASU 1) n 1 2 1 6 1 73 216

 

2 Labial curvature I1 % 50.00 50.00 100.00 0.00 0.00 10.81 24.59 100.00 100.00 100.00 

 
(+=ASU 3–5 b) n 2 4 1 4 2 74 122 20 1 21 

3 Shoveling I1 % 0.00 25.00 0.00 0.00 0.00 0.00 2.60 90.00 75.00 90.50 

 
(+=ASU 3–6) n 2 4 1 4 2 67 77 20 4 21 

4 Shoveling I2 % 33.33 14.29 0.00 0.00 8.70 14.63 100.00 100.00 90.30 

 
(+=ASU 3–6) n 3 7 6 2 69 82 20 2 31 

5 Double shoveling I1 % 0.00 0.00 0.00 0.00 0.00 0.00 0.81

 
(+=ASU 2–6) n 1 4 1 5 1 71 124

6 Double shoveling I2 % 0.00 0.00 0.00 0.00 1.43 0.90

 
(+=ASU 2–6) n 3 7 6 1 70 111

7 Double shoveling C1 % 0.00 0.00 36.36 1.19 0.83
 

 
(+=ASU 2–6) n 2 4 11 84 121

 

8 Interruption groove I1 % 0.00 0.00 0.00 0.00 50.00 0.00 0.00
 

 
(+=ASU 1) n 2 3 1 5 2 62 92
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9 Interruption groove I2 % 0.00 0.00 0.00 0.00 8.82 2.11
 

 
(+=ASU 1) n 3 7 7 1 68 95

 

10 Tuberculum dentale I1 % 0.00 40.00 100.00 28.57 50.00 6.67 12.82 90.00 75.00 90.50 

 
(+=ASU 3–6) n 2 5 1 7 2 60 78 20 4 21 

11 Tuberculum dentale I2 % 0.00 0.00 0.00 0.00 4.41 6.02 57.90 0.00 96.70 

 
(+=ASU 3–6) n 3 7 7 2 68 83 19  2 30 

12 Tuberculum dentale C1 % 50.00 50.00 0.00 0.00 32.89 25.33 71.50 33.33 100.00 

 
(+=ASU 3–6) n 2 4 8 1 76 75 21 3 21 

13 Bushman canine C1 % 0.00 0.00 0.00 0.00 11.69 42.50 94.70 50.00 73.70 

 
(+=ASU 1–3) n 3 4 9 1 77 80 19  2 19 

14 Distal accessory ridge C1 % 0.00 66.67 44.44 0.00 31.34 16.13 50.00 50.00 43.70 

 
(+=ASU 2–5) n 1 3 9 1 67 62 14 2 16 

15 Accessory cusps P3/P4  % 60.00 50.00 0.00 14.29 33.33 31.82 22.99  

 
(+=ASU 1) n 5 6 3 14 3 88 87  

16 Buccal mesial accessory ridge P3 % 100.00 60.00 100.00 100.00 11.11 6.25 0.00 50.00 9.10 

 
(+=ASU 2–4) n 2 5 1 9 9 16 14 2 11 

17 Buccal distal accessory ridge P3 % 66.67 100.00 100.00 100.00 40.00 30.00 28.60 50.00 36.40 

 
(+=ASU 2–4) n 3 2 1 9 5 10 14 2 11 

18 Buccal mesial accessory ridge P4 % 100.00 57.14 100.00 100.00 50.00 60.00 46.15 46.20 50.00 11.20 

 
(+=ASU 2–4) n 2 7 1 4 2 5 13 13 6 9 

19 Buccal distal accessory ridge P4 % 100.00 33.33 100.00 100.00 50.00 40.00 60.00 46.20 80.00 41.70 

 
(+=ASU 2–4) n 2 3 1 3 2 5 10 13 5 12 
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20 Metacone M1 % 72.73 76.92 100.00 61.54 100.00 43.62 43.64 11.80  0.00 17.40 

 
(+=ASU 5) n 11 13 2 13 2 94 220 17 4 23 

21 Metacone M2 % 14.29 20.00 0.00 42.86 0.00 7.02 13.72 0.00 0.00 9.50 

 
(+=ASU 5) n 7 10 3 14 2 114 226 18 3 21 

22 Metacone M3 % 50.00 100.00 50.00 100.00 75.00 82.41 80.52 0.00 0.00 16.70 

 
(+=ASU 4–5) n 6 6 4 6 4 108 154 21 2 18 

23 Hypocone M1 % 100.00 100.00 100.00 100.00 50.00 100.00 98.06 94.10 100.00 95.70 

 
(+=ASU 4–5) n 11 14 2 13 2 94 206 17 5 23 

24 Hypocone M2 % 83.33 90.00 50.0 100.00 33.33 52.34 72.36 16.70 33.33 47.70 

 
(+=ASU 4–5) n 6 10 2 14 3 107 199 18 3 21 

25 Hypocone M3 % 16.67 60.00 0.00 66.67 25.00 12.62 19.84  0.00 0.00  0.00 

 
(+=ASU 4–5) n 6 5 4 6 4 103 126 21   2 17 

26 Cusp 5 M1 % 28.57 36.36 100.00 0.00 0.00 10.81 14.04 37.50 60.00 31.80 

 
(+=ASU 3–5) n 7 11 1 12 2 74 114 16  5  22 

27 Cusp 5 M2 % 20.00 22.22 100.00 8.33 50.00 2.06 25.41 33.40 50.00 25.00 

 
(+=ASU 3–5) n 5  9 1 12 2 97 122 18 2 20 

28 Cusp 5 M3 % 50.00 40.00 50.00 50.00 50.00 11.58 26.80 0.00 0.00 41.20 

 
(+=ASU 3–5) n 6 5 2 6 4 95 97 21 2 17 

29 Carabelli's cusp M1 % 55.56 66.67 0.00 66.67 0.00 32.89 23.68 0.00 25.00 50.00 

 
(+=ASU 3–7) n 9 9 1 9 1 76 114 16 4 20 

30 Carabelli's cusp M2 % 50.00 14.29 0.00 33.33 0.00 0.00 3.03 0.00 50.00 15.80 

 
(+=ASU 3–7) n 6 7 1 12 2 100 132 18 2 19 
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31 Carabelli's cusp M3 % 25.00 0.00 0.00 0.00 0.00 2.02 4.20 14.30 0.00 13.40 

 
(+=ASU 3–7) n 4 4 4 5 3 99 119 21  2 15 

32 Parastyle M1 % 0.00 9.09 0.00 0.00 0.00 0.00 0.00 0.00 15.00 

 
(+=ASU 2–5) n 9 11 14 1 91 153 17  4 20 

33 Parastyle M2 % 16.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
(+=ASU 2–5) n 6 5 1 12 1 109 177 18 3 19 

34 Parastyle M3 % 20.00 0.00 0.00 0.00 0.00 0.00 0.77 4.80 0.00 6.30 

 
(+=ASU 2–5) n 5 3 2 6 3 100 130 21 2 16 

35 Root number P3 % 50.00 33.33 100.00 57.14 0.00 0.50
 

 
(+=ASU 3 and above) n 6 3 1 7 49 202

 
36 Root number P4 % 100.00  87.50 0.00 22.50 6.80

 

 
(+=ASU 2 and above) n 2  8 2 40 147

 
37 Root number M2 % 100.00 100.00 100.00 71.70 72.44

 

 
(+=ASU 3 and above) n 2 5 8 53 127

 
38 Root number M3 % 100.00 100.00 100.00 100.00 100.00 36.36 16.05

 

 
(+=ASU 3 and above) n 2 2 1 5 3 33 81

 
39 Lingual cusp P3 % 20.00 12.50 0.00 60.00 50.00 2.73 6.45 23.50 40.00 55.50 

 
(+=ASU 3–9) n 5 8 4 10 2 110 124 17 10 27 

40 Lingual cusp P4 % 25.00 14.29 66.67 0.00 40.00 6.42 1.57 95.00 100.00 88.90 

 
(+=ASU 8–9) n 4 7 3 8 5 109 127 20 5 27 

41 Anterior fovea M1 % 50.00 63.64 100.00 0.00 50.00 21.25 36.67 85.00 57.10 81.30 

 
(+=ASU 3–4) n 4 11 3 10 4 80 90 20 7 32 
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42 Groove pattern M2 % 83.33 87.50  66.66 100.00 42.85 65.73 72.08 40.90 55.50 70.80 

 
(+=ASU Y) n 6 16 3 11 7 143 197 22   9 24 

43 Groove pattern M3 % 100.00 88.89 100.00 100.00 20.00 51.72 44.00 23.50 14.30 60.00 

 
(+=ASU Y) n 5  9 3 8 5 116 150 17   7 15 

44 Cusp number M1 % 0.00 15.38 33.33 0.00 12.50 5.22 4.08  0.00 16.70 34.50 

 
(+=ASU 6 and above) n 8 13 3 11 8 115 147 20 6 29 

45 Cusp number M2 % 40.00 57.14 33.33 9.09 28.57 3.91 6.32 42.90 44.40 37.50 

 
(+=ASU 6 and above) n 5 14 3 11 7 128 174 21   9 24 

46 Cusp number M3 % 40.00 22.22 33.33 0.00 0.00 0.00 0.00
 

 
(+=ASU 7 and above) n 5 9 3 8 6 121 133

 
47 Deflecting wrinkle M1 % 20.00 36.36 0.00 0.00 71.43 5.00 2.06 10.50 16.70 3.40 

 
(+=ASU 2–3) n 5 11 3 9 7 100 97 19 6 29 

48 Deflecting wrinkle M2 % 25.00 60.00 0.00 18.18 0.00 0.74 4.49 0.00 22.20 13.00 

 
(+=ASU 2–3) n 4 10 3 11 6 136 156 21 9 23 

49 Deflecting wrinkle M3 % 20.00 33.33 0.00 0.00 0.00 6.61 1.50 0.00 0.00 0.00 

 
(+=ASU 2–3) n 5 9 3 6 4 121 133 22 6 15 

50 C1-C2 crest M1 % 0.00 0.00 33.33 0.00 0.00 0.97 0.99 25.00 0.00 14.30 

 
(+=ASU 1) n 5 11 3 10 8 103 101 20   6 28 

51 C1-C2 crest M2 % 33.33 0.00 0.00 0.00 0.00 0.00 0.59 0.00 11.10 9.10 

 
(+=ASU 1) n 3 12 3 10 6 134 169 21 9 22 

52 C1-C2 crest M3 % 0.00 0.00 0.00 0.00 0.00 0.83 0.71 56.50 14.30 18.80 

 
(+=ASU 1) n 5 10 3 6 5 121 140 23 7 16 
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53 Protostylid M1 % 25.00 23.08 50.00 60.00 33.33 0.00 1.74  0.00 0.00 0.00 

 
(+=ASU 4–6) n 4 13 2 10 6 116 115 21 6 31 

54 Protostylid M2 % 50.00 50.00 0.00 40.00 0.00 0.00 2.67 0.00 0.00 0.00 

 
(+=ASU 4–6) n 4 12 2 10 4 138 150 21 9 22 

55 Protostylid M3 % 66.67 60.00 100.00 37.50 33.33 2.44 23.40 9.60 0.00 0.00 

 
(+=ASU 4–6) n 6 10 1 8 3 123 141 21 7 13 

56 Cusp 7 M1 % 33.33 53.33 50.00 0.00 85.71 23.77 21.59 35.00 33.40 55.20 

 
(+=ASU 2–4) n 6 15 4 13 7 122 176 20 6 29 

57 Cusp 7 M2 % 14.29 50.00 0.00 0.00 28.57 13.67 9.24 55.00 50.00 56.50 

 
(+=ASU 2–4) n 7 14 3 11 7 139 184 20 8 23 

58 Cusp 7 M3 % 50.00 50.00 33.33 0.00 33.33 10.66 17.81 79.20 0.00 40.00 

 
(+=ASU 2–4) n 6 10 3 7 3 122 146 21   6 15 

59 Tomes’ Root P3 % 75.00 62.50 100.00 100.00 0.00 1.96 4.19
 

 
(+=ASU 5) n 4 8 1 7 2 51 191

 
60 Enamel extension–all molars % 40.00 17.65 0.00 7.50 10.00 2.44 1.08

 

 
(+=ASU 1) n 10 17 10 40 10 123 279

 
61 Root number P3 % 66.67 60.00 0.00 100.00 0.00 1.43 1.49

 

 
(+=ASU 2 and above) n 3 5 1 6 2 70 201

 
62 Root number P4 % 75.00 66.67 0.00 0.00 1.75 0.00

 

 
(+=ASU 2 and above) n 4 3 2 2 57 152

 
63 Root number M2 % 100.00 100.00 100.00 100.00 100.00 93.44 89.93

 

 
(+=ASU 2 and above) n 6 3 2 2 4 61 149
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64 Root number M3 % 100.00 100.00 100.00 100.00 100.00 86.36 50.00
 

 
(+=ASU 2 and above) n 5 3 2 4 4 44 72

 
65 Odontome–all premolars % 12.50 0.00 0.00 0.00 0.00 0.00 0.54

 

 
(+=ASU 1) n 8 10 10 33 18 131 186

 
66 Torsomolar angle M3 % 0.00 7.69 0.00 0.00 0.00 11.48 6.84

 

 
(+=ASU 1) n 7 13 2 8 4 122 190

 
67 Buccal median ridge P3 c % 100.00 60.00 0.00 100.00 55.56 27.78 29.40 50.00 40.00 

 
(+=SEB 2–3) n 3 5 1 8 9 18 17 2 15 

68 Buccal median ridge P4 % 75.00 85.71 0.00 50.00 100.00 80.00 78.57 66.70 50.00 33.33 

 
(+=SEB 2–3) n 4 7 1 4 1 5 14 18 6 15 

69 Anterior fovea P3 % 20.00 80.00 100.00 83.33 100.00 60.00 46.67
 

 
(+=SEB 2–3) n 5 5 2 6 2 5 15

 
70 Metaconid placement P3 % 25.00 20.00 33.33 0.00 50.00 20.00 20.00

 

 
(+=SEB 1) n 4 5 3 7 2 5 15

 
71 Metaconid height P3 % 100.00 50.00 100.00 100.00 100.00 40.00 40.00

 

 
(+=SEB 2–3) n 5 4 1 7 2 5 15

 
72 Transverse crest P3 % 100.00 100.00 100.00 0.00 100.00 60.00 81.25  83.30 40.00 53.80 

 
(+=SEB 1–3) n 5 5 3 6 2 5 16 18 10 26 

73 Crown asymmetry P3 % 0.00 66.67 50.00 0.00 100.00 0.00 0.00
 

 
(+=SEB 2–3) n 5 3 2 8 2 5 15

 
74 Anterior fovea P4 % 33.33 80.00 50.00 33.33 0.00 50.00 40.00

 

 
(+=SEB 2–3) n 3 5 2 3 5 4 15
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75 Metaconid placement P4 % 66.67 60.00 100.00 60.00 83.33 50.00 73.33
 

 
(+=SEB 1) n 3 5 3 5 6 4 15

 
76 Metaconid height P4 % 100.00 100.00 100.00 100.00 100.00 100.00 100.00

 

 
(+=SEB 2–3) n 3 4 1 5 6 4 15

 
77 Transverse crest P4 % 25.00 40.00 75.00 0.00 0.00 25.00 25.00 75.00 20.00 69.20 

 
(+=SEB 1–3) n 4 5 4 3 6 4 16 20 5 26 

78 Crown asymmetry P4 % 0.00 0.00 50.00 0.00 0.00 0.00 0.00
 

 
(+=SEB 2–3) n 4 5 2 5 6 4 17

 
a Arizona State University Dental Anthropology System traits and rank–scale trait breakpoints, where ‘+’ refers to grade(s) at which trait is 

considered to be present (see text for dichotomization details). 
b A fifth grade was added to the standard ASUDAS scoring system for this trait in the Martinón-Torres et al. (2012) study to account for extreme 

labial curvature seen in the European SH and NEA hominins.  
c Premolar traits and rank-scale breakpoints defined and used by S.E.B., where ‘+’ refers to grade(s) at which trait is considered to be present (see text 

for dichotomization details). 
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SOM Table S3 

Mean measure of divergence (MMD) distance matrix based on 50 traits as discussed in 

SOM S2, from SOM Table S2, for the five largest Homo samples from the present study, 

plus three European Homo samples with data derived from Martinón-Torres et al. (2012). 

Sample abbreviations listed in SOM Table S2. Note large significant distances between 

the three European samples and others, but general similarity among them.  

 
HHA HER HNA EAF SAF SH HEI NEA 

HHA 0   0.000a 0.177 0.329 0.259 0.869 0.200 0.680

HER 0.000 0 0.351 0.352 0.292 0.926 0.331 0.687

HNA 0.177 0.351 0 0.497 0.527 1.821 0.797 1.458

EAF 0.329 0.352 0.497 0 0.024 0.918 0.423 0.858

SAF 0.259 0.292 0.527 0.024 0 0.802 0.366 0.767

SH  0.869 0.926 1.821 0.918 0.802 0 0.075 0.169

HEI 0.200 0.331 0.797 0.423 0.366 0.075 0    0.039 

NEA 0.680 0.687 1.458 0.858 0.767 0.169    0.039 0 

aUnderlined MMD distances indicate no significant difference at the 0.025 level. 
bEuropean SH, HEI, and NEA intersample distances in bold for ease of reference. 
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SOM Table S4 

Mean measure of divergence (MMD) distance matrix for all 10 African and European Homo samples based 

on 41 dental traits, as detailed above in SOM S3, from SOM Table S2. Sample abbreviations listed in SOM 

Table S2.  

 
HHA HER HNA EAF SAF SH    NEA HEI  HMP HSE  

HHA 0 0.000 0.216 0.365 0.207 0.736 0.524 0.267 0.000 0.000

HER 0.000 0 0.388 0.407 0.261 0.812 0.526 0.404 0.028 0.007

HNA 0.216 0.388 0 0.434 0.365 1.571 1.120 0.789 0.579 0.434

EAF 0.365 0.407 0.434 0 0.022 0.856 0.733 0.478 0.486 0.177

SAF 0.207 0.261 0.365 0.022 0 0.781 0.650 0.411 0.270 0.078

SH 0.736 0.812 1.571 0.856 0.781 0 0.158 0.063 0.277 0.492

NEA 0.524 0.526 1.120 0.733 0.650 0.158 0 0.000 0.179 0.407

HEI 0.267 0.404 0.789 0.478 0.411 0.063 0.000 0 0.060 0.131

HMP 0.000 0.028 0.579 0.486 0.270 0.277 0.179 0.060 0 0.000

HSE 0.000 0.007 0.434 0.177 0.078 0.492 0.407 0.131 0.000 0 

aUnderlined MMD distances indicate no significant difference at the 0.025 level




