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Abstract 32 

Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of 33 

the brain, but in addition, plays a role in regulating neural control of reproduction.  In this review, we 34 

consider and compare evidence from animal models demonstrating a role for insulin for physiological 35 

control of reproduction by effects on GnRH/LH secretion.  We also review the role that insulin plays 36 

in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult 37 

hypothalamus by which insulin may act to regulate reproductive function.  Finally, we review clinical 38 

evidence of the role that insulin may play in adult human fertility and reproductive disorders.  Overall, 39 

while insulin appears to have a significant impact on reproductive neuroendocrine function, there are 40 

many unanswered questions regarding its precise sites and mechanisms of action, and their impact on 41 

developing and adult reproductive neuroendocrine function. 42 

 43 

Highlights 44 

• Insulin plays a key role in the regulation of reproduction in addition to metabolism 45 

• Insulin regulates both pulsatile and surge secretion of GnRH/LH 46 

• Insulin may be a signal in prenatal programming of adult reproductive function 47 

• Insulin targets in the brain include kisspeptin, AgRP and POMC neurons 48 

• Insulin resistance in human disease is associated with reproductive dysfunction 49 

 50 

Key words 51 

Insulin receptors, hypothalamus, GnRH, kisspeptin, AgRP, POMC 52 

 53 

1. Reproduction and energy balance: the functional connection in health and disease 54 

 55 

Reproduction is a crucial function of the organism and is controlled by complex interactions between 56 

the hypothalamus, pituitary and gonads, the so-called hypothalamic-pituitary-gonadal (HPG) axis [1]. 57 

However, reproduction and the survival of offspring is also an energetically demanding process, and 58 

the relationship between reproductive success and energy balance is well established. Energy is stored 59 

primarily as fat and glycogen, and together with glucose, allows organisms to grow and reproduce [2]. 60 

However, an animal’s energy stores depend not only on the availability of energy sources (food), but 61 

also on energy expenditure. Pregnancy, parturition, lactation and maternal behavior are all 62 

energetically demanding states and in order to be successful in reproducing, the organism must be able 63 

to monitor energy status. Thus, negative energy balance either due to hypophagia (e.g. fasting, 64 

anorexia nervosa, and cachexia) or excessive energy expenditure (e.g. excessive exercize-induced 65 

amenorrhea and lactation) is linked to a suppression of reproductive function and ovarian cyclicity in a 66 

variety of species including humans [2, 3].  67 
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 68 

Since its discovery by Banting and Best in 1921 [4], insulin has been recognized as a key circulating 69 

signal mediating energy homeostasis. While major role of insulin is to maintain peripheral glucose 70 

homeostasis, via stimulation of glucose uptake, oxidation and storage [5], there is also strong evidence 71 

that insulin plays a role in regulating reproduction and may serve as a major signal linking metabolism 72 

and reproductive status.  In this review we will focus on the role of insulin as an important factor in 73 

the control of reproduction, through actions occurring not only in the periphery but also in the central 74 

nervous system (CNS). We will review evidence primarily from animal studies demonstrating a role 75 

of insulin in the regulation of reproduction during adulthood, as well as during fetal development. In 76 

addition, we will examine evidence for potential CNS targets of insulin action specifically related to 77 

reproduction.  Finally we will discuss the clinical relevance of the relationship between insulin and 78 

reproduction, with a specific focus on potential neural sites of action.   79 

 80 

2. Insulin as a signal in the metabolic control of adult reproduction 81 

 82 

2.1. Insulin: its major role in controlling glucose homeostasis  83 

 84 

In a simple sense, physiological maintenance of the regulation of blood glucose levels is the result of 85 

the coordinated function of three organs: the pancreas, which secretes insulin in response to increases 86 

in blood glucose; the liver, which decreases glucose production in response to raising levels of insulin; 87 

and skeletal muscle (and other tissues) that respond to insulin by increasing glucose uptake. In 88 

addition to this role, insulin also plays an important function in fat and protein metabolism, as it 89 

promotes the transport of amino acids from the bloodstream into muscle and other tissues/cells. Acting 90 

within cells, insulin increases the rate of incorporation of amino acids into protein and reduces protein 91 

breakdown. Moreover, insulin stimulates lipid (fat) synthesis from carbohydrate (in the process called 92 

lipogenesis) and decreases fatty acid release from tissue (in the process called lipolysis), leading to an 93 

increase in total body lipid stores [6]. Finally, insulin also possesses important vascular actions, such 94 

as vasodilatation, which leads to increase in the blood flow, and subsequent augmentation of glucose 95 

disposal in classic insulin target tissues [7, 8].  96 

 97 

2.2. Evidence for a role for insulin in the control of the HPG axis 98 

 99 

Metabolism and reproduction are closely interlinked and a large body of research has focused on 100 

elucidating the mechanism by which signals from the periphery are conveyed to the HPG axis under 101 

various metabolic states. The master molecule for the control of the HPG system in mammals is the 102 

decapeptide, gonadotropin-releasing hormone (GnRH).  GnRH is synthesized by a relatively small 103 
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number of neurons, whose cell bodies are dispersed over an area that extends from the rostral ventral 104 

forebrain to the caudal hypothalamus and varies between species [9-11]. GnRH neurons send a major 105 

axonal projection to the median eminence [12-14], where GnRH is secreted into the pituitary portal 106 

system, and subsequently causes the release of luteinizing hormone (LH) from gonadotrophs of the 107 

anterior pituitary [16]. There are two major modes of GnRH secretion: the tonic or episodic secretion 108 

of GnRH that is seen in both males and females, and the preovulatory surge secretion of GnRH which 109 

is responsible for triggering ovulation and occurs only in females Both pulsatile and surge modes of 110 

GnRH secretion are sensitive to metabolic signals [18-22]  and pathological situations which lead to 111 

acute and/or chronic hypo- or hyperinsulinemia are frequently coupled with disturbed GnRH/LH pulse 112 

and surge release patterns.  113 

 114 

The importance of insulin as a regulator of GnRH/LH pulses remains to be fully elucidated as results 115 

vary considerably between studies and the effects of insulin per se are difficult to tease apart from the 116 

role of accompanying peripheral signals and metabolites. For example, in diabetic male rats, there was 117 

a 50% reduction in LH pulse frequency and amplitude compared to non-diabetic controls [18]. Those 118 

deficits were completely reversed by twice daily insulin treatment [18]. Similarly, in Streptozotocin-119 

induced (STZ-induced) diabetic male lambs, 24h withdraw from insulin supplementation decreased 120 

LH pulse frequency and acute re-supplementation reversed the inhibition [19]. However, in this study, 121 

a longer-term insulin withdrawal (96h) exaggerated the effects on LH (with a further reduction in LH 122 

pulses) during which insulin and glucose plasma concentrations remained constant. Therefore, other 123 

suppressors such as non-esterified fatty acids and ketone bodies cannot be ruled out [19]. By contrast, 124 

studies of other hypoinsulinemic models such as fasting yield different results. In adult (non-diabetic) 125 

male rhesus monkeys that underwent 24 h of fasting a profound suppression of LH was recorded, and 126 

rapid re-feeding reversed those deficits. To test the possible role of insulin, on the day of re-feeding, 127 

post-meal insulin secretion was partially suppressed by diazoxide (40-99%). However, this treatment 128 

did not block the LH increase observed after feeding [23] indicating that insulin alone was could not 129 

account for the observed inhibition. Similarly a central role of insulin in regulating GnRH/LH pulses 130 

remains controversial. Hileman et al. [24] reported that central injection of insulin (lateral ventricle) 131 

did not increase LH secretion in the growth-restricted, hypogonadotropic lamb. By contrast, Miller et 132 

al. [25] found that the infusion of insulin into the third ventricle stimulated pulsatile LH secretion in 133 

adult male sheep. In a male diabetic sheep model, insulin infusion in the lateral ventricle reversed the 134 

decrease in LH pulse frequency but not to the same extent as peripheral insulin, providing further 135 

evidence that insulin alone cannot account for the diabetes-induced deficit in LH pulses. The reason 136 

for the discrepancy between these studies is not known, however, differences may be due to the type 137 

of model used (diabetic vs. fasting models), the doses, infusion site, and rate of insulin administered 138 

(pharmacological vs. supraphysiological; lateral vs. third ventricle; acute vs. chronic), the species 139 
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(polygastric vs. monogastric animals) and the level of hypoinsulinemia [complete (diabetes) vs. partial 140 

(fasting)].  141 

 142 

Despite variable results, the above studies taken together suggest that the peripheral and central actions 143 

of insulin are permissive rather than necessary for normal GnRH/LH pulsatile secretion.  144 

In addition to GnRH/LH pulses, the GnRH/LH surge is also sensitive to metabolic cues. Models of 145 

negative energy balance induced by fasting, caloric restriction and lactation are accompanied by a 146 

decrease in circulating insulin and disruption of estrous cyclicity in a number of species such as rats 147 

[26, 27], ewes [28], heifers [29] and monkeys [30]. Specifically, in adult female rats, short-term food 148 

deprivation blocks the LH surge [31, 32]. Short-term fasting during the luteal phase of the estrous 149 

cycle in sheep, increased serum concentrations of progesterone and delayed or diminished the pre-150 

ovulatory LH surge [33, 34]. Data on the role of insulin in these disruptions are lacking, however, 151 

insulin replacement during lactational anestrous- a model of severe undernutrition did not restore 152 

estrous cyclicity [35]. Therefore, it is likely that other metabolic signals, such as hypoglycemia, leptin, 153 

or even the activation of the stress axis may be responsible for these disruptions [35, 36]. Experimental 154 

diabetes induced in female rats with STZ [37], a state of extreme hypoinsulinemia, results in impaired 155 

ovulation rates over an extended period of observation, disruption of the positive feedback effects of 156 

estradiol, and absent or delayed LH surges [20, 38, 39]. However, in this model, reproductive 157 

abnormalities are at least partially reversed after peripheral insulin administration [40]. These results 158 

are similar to those described above, in that effects on pulsatile and surge secretion are not reversed by 159 

insulin during negative energy balance but are at least partially reversed in diabetic models 160 

(hypoinsulinemia vs. extreme hypoinsulinemia).  161 

 162 

Another commonly used experimental model for metabolic stress is insulin-induced hypoglycemia 163 

(IIH).  This model mimics the detrimental effects of an acute decrease in energy availability, but also 164 

the effects of iatrogenic insulin overdose in diabetic patients. Even though the individual roles of 165 

supraphysiological amounts of insulin and the acute hypoglycemia are difficult to tease apart, there are 166 

several pieces of evidence that suggest that insulin does indeed contribute to the GnRH surge 167 

disruption during IIH. Studies carried out in ewes have determined that IIH  during the activation, 168 

transmission or secretory phases of the GnRH surge mechanism [41, 42] initiates a sudden activation 169 

of the hypothalamic-pituitary-adrenal (HPA) axis [43, 44] resulting in a delayed and reduced 170 

amplitude LH surge in the majority of treated ewes [42, 43, 45].  By contrast, there are reports of no 171 

effect of IIH on the LH surge of proestrous rats [46] and monkeys [47]; however, the doses of insulin 172 

used in these studies were significantly less than those used in the sheep experiments, suggesting that a 173 

specific threshold of hyperinsulinemia/hypoglycemia may need to be reached for deleterious effects to 174 

occur. Glucose replacement in the IIH sheep model reverses the effects of IIH on the timing of the 175 
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surge [48] but not on its amplitude [42]. Therefore, even though the timing of the LH surge appears to 176 

be sensitive to glucose availability, surge amplitude does not, and it may be that hyperinsulinemia in 177 

this experimental model is responsible for this effect.  178 

 179 

Similar conclusions can be drawn from experiments in sheep that have been prenatally exposed to 180 

excess testosterone and exhibit metabolic and reproductive deficits similar to those seen in women 181 

with polycystic ovarian syndrome (PCOS) [49, 50]. Prenatal testosterone treated female ewes display 182 

hyperinsulinemia and insulin resistance [50], as well as defects in steroid feedback control of LH 183 

secretion, including delayed and reduced amplitude LH surges [51]. Interestingly, in this model, 184 

restoration of cumulative plasma insulin levels with an insulin sensitizer, rosiglitazone, was able to 185 

restore the amplitude but not the timing of the LH surge [52]. Taken together, data from these two 186 

sheep models (IIH and prenatal testosterone exposure) imply that hyperinsulinemia does not abolish 187 

the LH surge but does reduce its amplitude. Whether this is a result of decreased GnRH release and/or 188 

reduced pituitary responsiveness to GnRH remains to be determined, however, there is evidence that 189 

both these sites are involved. For example, in women with PCOS pituitary response to GnRH is 190 

suppressed under a euglycemic, hyperinsulinemic clamp [53] and this may account for the reduced 191 

surge amplitude observed in the prenatal testosterone treated ewe model. Similarly, substantial 192 

evidence suggests that insulin acts directly within the hypothalamus, and specifically via insulin 193 

receptor (IR) containing cells to influence GnRH excitability (see section 4.2).  The site(s) of action 194 

(neural vs pituitary) of insulin in regulating both pulsatile and surge secretion of GnRH/LH may be 195 

best addressed by future studies using the sheep model, where a specific advantage is the ability to 196 

repeatedly measure GnRH in portal blood in awake animals [54]. 197 

 198 

 199 

3. Insulin: its potential role in prenatal programming of reproduction  200 

 201 

There is a growing body of both epidemiological and experimental evidence indicating that 202 

environmental factors can act early in the development to shape relationships between the regulation 203 

of energy status and reproduction later in life. The concept that early environmental factors can 204 

permanently organize or imprint physiological and behavioral systems is called fetal or early 205 

programming [55-58]. This hypothesis originated from studies indicating that low birth weight is 206 

associated with an increased biological risk for coronary heart disease in adult life [55]. Later studies 207 

performed by Philips and collaborators [59-61] demonstrated a strong correlation between low birth 208 

weight, high cortisol levels and development of hypertension and Type 2 diabetes. There is now a 209 

good body of evidence, both from epidemiological data and experimental studies in animals, linking 210 
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the intrauterine environment with the development of hypertension, diabetes, elevated blood 211 

cholesterol and PCOS in adulthood (for review see [55, 62, 63]). 212 

 213 

Several not mutually exclusive hypotheses have been developed to explain a link between a low body 214 

weight at birth and later adult risk of metabolic syndrome. “The Fetal Insulin Hypothesis” states that 215 

pancreatic beta cell dysfunction can lead to defects in glucose stimulated insulin secretion, which in 216 

turn lead to reduced insulin mediated fetal growth and a low birth weight [64]. Those alterations at 217 

early stages would later in adulthood result in defects in beta cells and decreased insulin sensitivity, 218 

and thereby affect whole body glucose metabolism. Interestingly, however, Ng et al. [65], using a rat 219 

model of chronic high fat diet, reported that not only maternal but also paternal metabolic status could 220 

affect offspring health. Specifically, they found that the female offspring of males fed a high fat diet in 221 

adulthood showed impaired glucose tolerance and insulin secretion. Moreover, the gene-expression 222 

profile of the insulin-secreting pancreatic islet cells obtained from the daughters was abnormal, with 223 

changes in multiple gene networks and cellular pathways.  The authors speculated that exposure to a 224 

high fat diet may have affected spermatogenesis in those fathers, re-programming the gametes 225 

possibly via epigenetic mechanisms.  226 

 227 

Another explanation of the relationship between body weight at birth and adult metabolic syndrome 228 

comes from the “Thrifty Phenotype Hypothesis”, according to which a fetus that endures poor 229 

nutrition during gestation, would spare the growth of vital organs, e.g. the brain, at the expense of 230 

tissues such as the muscle and the endocrine pancreas [66]. Thus, the fetus would adapt its metabolism 231 

to conditions of limited nutrition with permanent changes in insulin and glucose metabolism, 232 

increasing the risk of adult Type 2 diabetes and the metabolic syndrome [66]. In the light of evidence 233 

discussed above it would be of particular interest to identify the regions of the brain affected by early 234 

nutritional insults. We speculate that hypothalamus, where information about nutritional status is 235 

“read”, and which plays a key role in governing reproduction, could be one such region. In support of 236 

this, recent studies using an intrauterine growth restriction rat model (maternal low protein restriction) 237 

found impaired insulin signaling in the hypothalamus in 20 days old pups [67]. Specifically, tyrosine 238 

phosphorylation levels of IRS2 and PIK3 p85α were impaired, changes which could potentially block 239 

insulin signal transduction. However, it is not known if these hypothalamic changes in insulin 240 

signaling pathway components persist into puberty and adulthood, or whether they play a causal role 241 

in affecting later metabolic or reproductive function. 242 

 243 

Of particular interest for the current review are also findings suggesting that the adverse environmental 244 

factors are related to intrauterine growth retardation (IUGR) and low birth weight may predispose 245 

individuals to the later onset of development of metabolic syndrome, and that those individuals may 246 
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also have reproductive system abnormalities. Based on those findings, a hypothesis termed the 247 

developmental origins of health and disease (DOHaD) has been developed [68], which states that an 248 

adverse perinatal environment programs or imprints the development of several tissues. In agreement 249 

with this concept, perinatal perturbations of the fetus/neonate nutrient supply might be a crucial 250 

determinant of individual programming of body weight set-point. The best-known example of the 251 

influence of negative metabolic status is the Dutch Famine Study, in which fetuses exposed to famine 252 

during early pregnancy had a higher energy intake and adiposity in adulthood [69, 70].  Importantly, 253 

prenatal growth restraint, followed by postnatal catch-up growth has been associated with relative 254 

hyperinsulinism, increased visceral fat, FSH hypersecretion, development of exaggerated adrenarche 255 

with reduced uterine and ovarian size, reduced ovulation rate in adolescent girls and early post-256 

menarche (for review see [71, 72]) as well as an advanced tempo of pubertal development and 257 

menarche [72].  Moreover, during the post-menarcheal period, girls born with low body weight have 258 

increased risk of developing PCOS, a disorder of androgen excess (in particular elevated free 259 

testosterone levels) as well as ovarian and metabolic dysfunctions [73-75]. Furthermore, women with 260 

PCOS demonstrated higher risk of developing of gestational diabetes mellitus (GDM) [76] and 261 

approximately 40% of PCOS women are insulin resistant [77]. Although PCOS manifests clinically 262 

during adolescence, the disease may originate in intrauterine life [78]. Importantly, experiments in 263 

sheep that have been prenatally exposed to excess testosterone lead to adult metabolic and 264 

reproductive deficits similar to those seen in women with PCOS [49, 50].  265 

 266 

Thus, both epidemiological studies and animal models indicate that nutritional status during gestation 267 

has long-term effects on central and peripheral systems that regulate energy balance and reproduction 268 

in the developing offspring. Moreover, perinatal nutrition impacts susceptibility to developing 269 

metabolic disorders and plays a role in programming body weight set points (for an review see [79]). 270 

Those observations led to the hypothesis of metabolic imprinting, according to which a stimulus or 271 

insult occurring during a critical period of development has a long-term effect on the physiologic and 272 

metabolic responses of the offspring (for review see [80]). However, the role of altered neural 273 

organization in effects of prenatal programming by nutrients has not been studied in the same degree 274 

of detail as the role of peripheral organ function. Insulin, which is increased in offspring of fat-fed 275 

dams [81], and insulin-like growth factors, are thought to be pivotal to neuronal differentiation, as well 276 

as synapse formation and consolidation, in the hypothalamus [82] which plays a crucial role in 277 

regulation of appetite and food intake [83, 84]. As insulin and leptin are two important hormonal 278 

signals, which are secreted into the bloodstream in proportion to the amount of adipose tissue, they are 279 

often studied in the animal models discussed above [85]. Those hormones are blood-borne and cross 280 

the brain-blood barrier to act upon the brain, including the arcuate nucleus of the hypothalamus 281 

(ARC). Within the ARC, neuropeptide Y (NPY), agouti-related peptide (AgRP) and 282 
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proopiomelanocortin (POMC) are synthesized and released [86-89]. NPY acts to stimulate food intake 283 

and reduce energy expenditure via interactions with receptors located in the paraventricular nucleus of 284 

the hypothalamus (PVN) and the lateral hypothalamus area (LHA).  POMC neurons release alpha-285 

melanocyte-stimulating hormone (α-MSH), which acts in the PVN and LHA on melanocortin 286 

receptors to decrease intake and increase energy expenditure.  AgRP released from ARC NPY/AgRP 287 

neurons acts as a functional antagonist of α-MSH at melanocortin receptors [87, 90]. In healthy 288 

organisms, adipocyte stores are correlated with a rise in the levels of insulin and leptin.  Insulin and 289 

leptin, in turn, inhibit NPY/AgRP and stimulate POMC neurons, providing a feedback influence which 290 

acts to inhibit food intake [89]. However offspring of diabetic pregnant rats displayed increased 291 

hypothalamic insulin levels, and both at weaning [91] and as adults [82] had increased number of 292 

NPY-positive neurons in ARC. Thus changes in hypothalamic appetite regulatory peptides may 293 

contribute to the development of obesity and metabolic disturbances in the offspring of diabetic female 294 

rats [91] although experimental manipulations are needed in this model to convincingly demonstrate 295 

this role.  296 

 297 

In summary, current evidence suggests that insulin may play a role in the programming of both 298 

metabolism and reproductive systems during development, and these early alterations could lead to 299 

peripheral and central abnormalities in both systems during puberty and adulthood. A possible target 300 

for early insulin action is the hypothalamus, where information about metabolic status is conveyed to 301 

the reproductive functions. Thus, in case of prenatal programming by nutrients, where insulin 302 

functions are impaired, the disruptions of reproductive system are also observed. Importantly both 303 

under- and over-nutrition could lead to obesity and diabetes, diseases associated with insulin 304 

abnormalities, in which secondary abnormalities including disruptions of reproductive functions are 305 

present. Moreover, in support of long-term programming effects, studies have shown a perpetuation of 306 

type 2 diabetes into second-generation offspring in response to maternal under-nutrition [92-100]. 307 

 308 

4.  Insulin: reproductive effects at the level of the brain 309 

 310 

4.1 Is there local production of insulin in the CNS? Is there regulated transport across the blood-brain 311 

barrier? 312 

 313 

The first studies indicating a possible role of insulin within the CNS were performed in the 1960-70s 314 

[101, 102]. For example, Havrankova et al. [103] found that insulin is present in whole brain extracts 315 

of rats, and its concentration on average was 25 times higher than seen in plasma, with the 316 

hypothalamus being identified as the brain region with the highest insulin levels. This finding was 317 

consistent with previous data [104] showing that insulin receptors are widely distributed in the CNS of 318 
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rats. These observations raised the question of the source of insulin found in the brain. It was proposed 319 

that pancreatic insulin present in the plasma and cerebrospinal fluid was taken up and stored by cells 320 

in the brain [103]. However, the possibility of extrapancreatic insulin production in the brain was 321 

suggested by immunocytochemical studies revealing the presence in the brain of C-peptide 322 

(connecting peptide), a metabolic product of insulin biosynthesis. Insulin-like immunoreactivity was 323 

shown to be present in the brain of human, rats, mice, frogs and tortoise [105]. Additionally, post 324 

mortem studies on human brain revealed that concentration of insulin and C-peptide is much higher 325 

compared to its blood levels. Moreover, the highest concentration of insulin and C-peptide was found 326 

to be present in the hypothalamus [106, 107]. Importantly, it was also shown that metabolic status 327 

influenced the presence of C-peptide-like immunoreactivity in the brain. Rats fasted for 72 h showed a 328 

decrease in the hypothalamic C-peptide-like immunoreactivity, which was reversed by glucose 329 

administration.  In addition to the presence of C-peptide immunoreactivity, preproinsulin mRNA was 330 

also detected in the brain. Both in situ hybridization and immunocytochemisty showed the presence of 331 

preproinsulin mRNA and peptide in isolated enriched cultures of rabbit brain, restricted to neurons and 332 

absent in the glia [108]. Using in situ hybridization, the mRNA encoding preproinsulin was detected in 333 

the PVN but not in other regions of the rat brain [109]. However, these early findings have not been 334 

replicated, and whether local neuronal synthesis of insulin contributes to physiological actions of 335 

insulin remains to be demonstrated. 336 

 337 

Transport of peripheral insulin across the brain-blood barrier (BBB) may also be a factor in its action 338 

in the brain. In studies of intravenous infusions of insulin performed in dog, it was found that insulin 339 

levels also increased in the cerebrospinal fluid (CSF; [110]). Additionally, it was revealed that the 340 

increase in concentration of insulin in the CSF was not proportional to its increase in plasma, leading 341 

to the suggestion that insulin passes into the CSF by the way of saturable transport system [110-113]. 342 

Of relevance to the current review, it was noted that the BBB shows regional differences in insulin 343 

permeability, with the hypothalamus being one of the brain regions with the highest permeability, 344 

where insulin is transported over twice as fast as into the whole brain [114].  Insulin transport was also 345 

shown to be regulated by physiological state (e.g. fasting) and altered in genetically obese Zucker rats 346 

[92, 115], who also show lower levels of insulin in their brain compared to lean Zucker rats [116]. 347 

However, in contrast to Zucker rats, animals with diabetes induced by injections of alloxan or 348 

streptozotocin had an increased saturable transport of insulin across the BBB [117]. This discrepancy 349 

between these two models of diabetes can in part be explained by differences in the levels of insulin in 350 

the blood. Whereas the Zucker rats are insulin resistant and have elevated levels of insulin in serum, 351 

animals with diabetes induced with alloxan and streptozotocin are insulinopenic [112]. It was also 352 

proposed that one of the mechanism by which stress, manifested as increased glucocorticoid levels, 353 
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enhances appetite and increases body weight could be related to the inhibition of insulin transport into 354 

the brain [118]. 355 

 356 

4.2. Where does insulin act in the brain to regulate reproduction?  357 

 358 

Regardless of whether insulin is produced locally or not, there is strong evidence that many of 359 

insulin’s action on the brain’s reproductive system are mediated through direct actions on neuronal 360 

insulin receptors (IR). The most compelling evidence comes from the CNS-specific IR knockout 361 

mouse that exhibits hypogonadotropic hypogonadism [15]. Moreover, intracerebroventricular (i.c.v.) 362 

insulin administration has been shown to restore normal LH surges in STZ treated rats, despite the 363 

maintenance of peripheral diabetes-induced metabolic signals and metabolites (including 364 

hypoinsulinemia; [119]). IRs are widely distributed in the brain with highest concentrations in the 365 

olfactory bulb, hypothalamus, cerebral cortex, cerebellum and hippocampus [120]. Interestingly, an 366 

abundance of IRs are localized in areas that are well known to play a key role in reproduction such as 367 

the ARC, ventromedial hypothalamic nucleus (VMH), and preoptic area (POA; [15, 121-123]). These 368 

hypothalamic areas consist of potential sites for the action of insulin to control reproduction, and most 369 

recent attention has focused on specific identified subsets of neurons in these regions known to be 370 

involved in reproductive neuroendocrine control. 371 

 372 

4.3. GnRH neurons  373 

 374 

As the final common pathway in the control of mammalian reproductive neuroendocrine function, 375 

GnRH neurons were an obvious candidate as a target for insulin action. Based on cell line 376 

observations, insulin was originally thought to be acting directly on GnRH neurons via a functional IR 377 

[124, 125]. However,a recent study suggests otherwise. Deletion of IR from GnRH neurons had no 378 

effect on adult reproductive function in mice, as indicated by normal expression of estrous cyclicity 379 

[126]. Interestingly, in the sheep, even though there is an abundance of IRβ in the POA, GnRH 380 

neurons located there were devoid of immunoreactive IRβ [121].  These data taken together indicate 381 

that the influence of insulin on GnRH secretion is most likely not mediated directly, but instead via 382 

inputs other insulin-responsive neurons. One such afferent source that has been speculated to play this 383 

role is that of kisspeptin neurons of the POA and hypothalamus. 384 

 385 

4.4. Kisspeptin neurons 386 

 387 

The first known biological function of kisspeptin was in suppression of tumor metastasis, described in 388 

1996 by Lee et al.[127]. Later, in 2003, two independent groups of scientists, discover, that mutations 389 
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of the kisspeptin receptor KISS1R (GPR54), lead hypogonadotropic hypogonadism in humans, and a 390 

failure to enter puberty [128, 129]. These findings not only revolutionized the field of reproduction but 391 

also provided a missing link in understanding the neural regulation of the GnRH system. Fruitful 392 

studies of many researchers revealed a crucial role for kisspeptin in regulation of GnRH secretion 393 

[130], including the control of both GnRH pulses and the GnRH surge.  There are two major 394 

populations of kisspeptin neurons in the mammalian diencephalon: one located in the preoptic region 395 

and the other in the ARC.  The rostral population in rodents is located in the rostral periventricular 396 

region of the third ventricle (RP3V) and has been strongly implicated in the functional control of the 397 

GnRH and LH surge [131]. The caudal (ARC) population of kisspeptin cells express two other 398 

neuropeptides important for reproduction, neurokinin B (NKB) and dynorphin [132] Because of its co-399 

expression of the three distinct neuropeptides, these cells have been termed KNDy 400 

(Kisspeptin/NKB/Dynorphin) neurons [133], and they are thought to play a critical role in the 401 

generation of GnRH pulses [134, 135]. Because of their expression of nuclear steroid hormone 402 

receptors, both kisspeptin populations are believed to conveying the influence of gonadal steroids, 403 

such as estradiol and progesterone, onto GnRH neurons, and they are also believed to be important 404 

mediators for other types of signals that regulate GnRH neuronal activity.   In this regard, much 405 

attention has been focused upon their potential role in transmitting metabolic cues to GnRH neurons 406 

[1]. As puberty and reproduction are closely connected with metabolism, recent studies focused on 407 

role of Kisspeptin and its receptor, KISS1R, in metabolic control of both puberty and fertility.  408 

 409 

Sufficient body energy stores are indispensable for the reproductive axis to start functioning at 410 

puberty, and, not surprisingly, under-nutrition and the resulting state of negative energy balance is 411 

closely associated with a lack of or delay in puberty onset in animals [136, 137] and humans [138].  412 

Castellano et al., [139] using RT-PCR of whole hypothalamic fragments from prepubertal male and 413 

female rats collected after 72h of fasting found a decrease in hypothalamic Kiss1 mRNA levels and an 414 

increase in Kiss1R mRNA expression levels. Administration of kisspeptin i.c.v. to immature, 415 

undernourished female rats was sufficient to restore vaginal opening (a marker of puberty) in about 416 

60% of animals, and induce gonadotropin and estrogen secretion. Results of these studies suggest that 417 

negative energy balance caused by fasting induces a decrease in the kisspeptin expression, and that 418 

this decrease may in part be responsible for the pubertal deficit.  Similar studies conducted by Roa et 419 

al. [140] in adult rats also showed that intracerebral infusion of kisspeptin-10 in animals subjected to 420 

chronic undernutrition increased ovarian weights and circulating LH levels. After 7 days of kisspeptin 421 

infusion, no differences were found between vehicle-treated, and kisspeptin-treated animals subjected 422 

to continued under-nutrition. These data indicate that chronic undernutrition in adult female rats 423 

markedly altered the ability of the chronic kisspeptin infusion to restore normal reproductive functions 424 

(e.g. normal pattern of gonadotropin response to continuous infusion of kisspeptin-10). 425 



13 

 

Despite the evidence supporting a role for kisspeptin in linking metabolism and reproduction, there is 426 

controversy as to whether insulin is the mediating signal. For example, uncontrolled long term 427 

diabetes in female rats is characterized by lowered LH secretion and decreased hypothalamic kiss1 428 

mRNA[141]. Furthermore, the disturbance observed in the kisspeptin system appears to be causative 429 

to altered LH secretion as i.c.v kisspeptin administration reversed gonadotropin defects,  despite 430 

prevailing metabolic perturbations [141].  However, insulin does not appear to be the upstream 431 

mediator of decreased kisspeptin, as insulin infusion in male rats was not able to reverse the diabetes 432 

induced kiss1 mRNA and LH decrease [142]. Similarly, 50% caloric restriction or lactational negative 433 

energy balance decreased kiss1 mRNA in POA kisspeptin cells, and both kisspeptin and NKB mRNA 434 

in ARC KNDy cells of the rat, and this decrease was not reversed by sc insulin injections [35, 143]. In 435 

addition, in vitro studies showed that insulin failed to stimulate kisspeptin expression in hypothalamic 436 

cell line N6 [144]. By contrast, hyperinsulinemia produced by a bolus injection of insulin in the late 437 

follicular phase dramatically increased c-fos expression in ARC kisspeptin cells of sheep [145], 438 

although this effect could reflect either direct or indirect actions.  In addition, recent studies have 439 

shown a high percentage of IR colocalization in KNDy cells but not preoptic kisspeptin cells, nor in 440 

GnRH cells, in the sheep brain [121].  However, a recent study using transgenic techniques to 441 

specifically delete IR from kisspeptin cells produced mice that display a normal onset of puberty onset 442 

[146].  Thus, while studies to date suggest that kisspeptin and KNDy cells may be mediators of insulin 443 

action, they are by themselves likely not a critical component in insulin’s influence on reproduction, at 444 

least with respect to puberty. 445 

 446 

4.5. AgRP/POMC neurons 447 

 448 

In addition to KNDy cells, two additional populations of ARC neurons have been strongly implicated 449 

as mediators of insulin action: cells which express AgRP and NPY, and a separate population that 450 

expresses POMC and cocaine amphetamine related transcript (CART; [49]).  AgRP/NPY and 451 

POMC/CART neurons are well established as key regulators of glucose homeostasis, energy 452 

metabolism and body weight [147], and may also act as a link between metabolism and reproduction 453 

[148]. First, these cells contain IR in sheep [149] and rodents [150].  While deletion of IR alone in 454 

AgRP or POMC neurons is reported to produce no gross reproductive abnormalities [151], deletion of 455 

both IR and leptin receptors in POMC neurons produced mice with ovarian abnormalities and elevated 456 

serum testosterone levels that resemble the symptoms of PCOS [152]. Second, insulin directly 457 

regulates the electrophysiological properties of these neurons; POMC neurons are activated [153] and 458 

NPY/AgRP inhibited by insulin [154]. Third, recent evidence suggests that NPY/AgRP and POMC 459 

derived peptides such as alpha-melanocyte-stimulating hormone (ɑ-MSH), are able to directly 460 

influence GnRH neuron excitability [155]. Fourth, there is anatomical evidence that projections from 461 
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NPY/AgRP and POMC/CART neurons directly contact GnRH cells in a number of species [156, 157]. 462 

Finally, there is preliminary evidence of local connections from AgRP and POMC neurons onto 463 

kisspeptin (KNDy) neurons in the ARC [158]. Thus, both AgRP/NPY and POMC/CART neurons 464 

appear to be well positioned to influence GnRH secretion directly as well as by indirect routes. The 465 

manner in which each of these ARC populations, together with KNDy/kisspeptin neurons and perhaps 466 

other neuronal populations, contribute to insulin’s effects on GnRH neuroendocrine function will need 467 

to be fully elucidated by future work.  468 

 469 

 470 

5. Clinical relevance  471 

 472 

Diabetes is usually lifelong (chronic) disease with two major types. Type 1 diabetes mellitus may 473 

result primarily from the pancreas’ failure to produce enough insulin, while type 2 diabetes mellitus 474 

result from a condition of insulin resistance. Both conditions are of great concern, but 90% of all 475 

diabetes cases are type 2 diabetes mellitus, which affects more than 285 million people worldwide. 476 

Thus, understanding the role of insulin both acting peripherally as well as within the CNS and its 477 

dysfunction in conditions such as diabetes could lead to development of better clinical treatments and 478 

improvement of heath of millions of people worldwide.   479 

 480 

In addition to primary metabolic deficits, diabetic patients show disruptions of reproductive function 481 

manifested as hypogonadism or infertility [159-161].  Most drugs available to treat diabetes mellitus 482 

act either in the pancreas by increasing insulin secretion, or in tissues such as the liver or muscle by 483 

improving insulin sensitivity. However, in view of recent studies discussed above suggesting that the 484 

brain also plays a critical role in the regulation of glucose homeostasis, this organ has also received 485 

attention as a promising new target of drugs aiming to treat both diabetes mellitus type 1 and type 2 486 

[5]. However, although the clinical association between insulin deficiency/resistance and reproductive 487 

defects is well established, whether the underlying mechanisms include actions of insulin or insulin 488 

resistance at a neural level remains to be determined. 489 

 490 

There is substantial evidence that hyperinsulinemia and insulin resistance when associated with 491 

obesity has a negative impact on human female fertility.  For example, weight reduction in obese, 492 

infertile women is associated with an increase in the frequency of ovulation and the likelihood of 493 

pregnancy. Even among ovulatory women, increasing body mass index (BMI) is associated with 494 

decreasing spontaneous pregnancy rates, with the mechanism thought to be related to adverse effects 495 

of elevated insulin levels on ovarian function [162, 163]. In addition, there is a causal association 496 



15 

 

between maternal obesity and pregnancy complications, with the risk of pregnancy complications 497 

increasing with obesity.  498 

 499 

Obesity has also a negative influence on the outcome of treatments for infertility (e.g. insufficient 500 

follicular development, lower oocyte counts, poorer outcomes from in vitro fertilization) [166-168]. 501 

Weight loss in obese subfertile women leads to favorable hormonal changes and an improvement in 502 

fertility. Metformin treatment of obese patients with infertility due to PCOS facilitates ovulation, 503 

supporting the idea that insulin resistance impairs normal oocyte development [169].  In this view, 504 

hyperinsulinemia stimulates ovarian androgen secretion directly and indirectly (by stimulating LH 505 

release or increasing ovarian LH receptors) [170, 171].  Extreme hyperinsulinemia (in hereditary cases 506 

caused by insulin receptor mutations or lipodystrophy) excessively stimulates the IGF-1 signal 507 

transduction pathway in ovarian theca cells, and results in increased androgen production by blocking 508 

the normal cellular down-regulation of response to LH [172, 173]. In general, all treatments that lower 509 

insulin levels, including weight loss or treatment with insulin sensitizers, improve female reproductive 510 

function and clinical pregnancy but there is still no evidence that metformin improves live birth rates. 511 

Therefore, the role of metformin in improving reproductive outcomes in women with PCOS appears to 512 

be limited [174, 175]. While there is clear evidence that ovary is a major target of insulin action in 513 

these interventions, the possibility also exists that some of the clinical improvements seen in these 514 

patients are due to normalizing insulin actions in the CNS [53, 59, 176]. 515 

 516 

There is much less evidence concerning impact that hyperinsulinemia has on male fertility, 517 

particularly at a CNS level.  It is known that insulin acts at very early stages of testicular development 518 

as modulator of specific genes, e.g. Sry and Sox9, which are essential for male sex determination 519 

[177].   In addition to its early actions, insulin also plays a role in the postnatal testes, regulating germ 520 

cell production before and after puberty, affecting testes size and FSH production [178]. Interestingly, 521 

the testes is an extra-pancreatic source of insulin [179], and STZ-induced diabetes has been shown to 522 

diminish testicular insulin expression in the rat [180].   To investigate the role of the testicular insulin, 523 

a diabetic model of Akita mouse was created with nonfunctional insulin gene (ins2) in both testes and 524 

pancreas.  Homozygous mice showed onset of diabetes prior to puberty and thereafter were infertile 525 

with small sized testes and arrested spermatogenesis. Exogenous insulin treatment improved testicular 526 

size and function, but because of the blood-testis barrier it was presumed that insulin in this study was 527 

exerting its effects indirectly. The authors suggested one possible site of action responsible for the 528 

restoration of testicular function was the hypothalamus; however, other sites of action were also 529 

possible [179]. 530 

While reports of genetic syndromes of severe insulin resistance have included prominent descriptions 531 

of ovarian dysfunction [181], changes in male reproductive function have rarely been reported. On the 532 
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other hand, obese men with insulin resistance frequently exhibit reduced levels of gonadotropins and 533 

testosterone, impaired semen parameters, altered androgen-to-estrogen ratios, and erectile problems 534 

[182].   However, again, whether any of these changes are due to the primary effects of changes in 535 

insulin signaling at a neural level are not known. 536 

6. Conclusions 537 

While there is ample evidence to support insulin as a key regulator of reproductive function, current 538 

knowledge of its neural actions with respect to reproduction is in many instances incomplete and 539 

rudimentary.  Insulin is clearly an important regulator of pulsatile and surge GnRH/LH secretion, but 540 

whether these effects of due to insulin, per se, or whether changes in accompanying peripheral signals 541 

and metabolites may be involved, remains to be determined.  Insulin appears to play a primarily 542 

permissive role in the control of pulsatile GnRH secretion, and those effects are due to different 543 

aspects (amplitude vs. timing) of the generation of the GnRH/LH surge responsible for ovulation.   544 

There is much epidemiological and experimental evidence to suggest a role for insulin in fetal 545 

programming of the metabolic and reproductive axes, but it is not known whether these long-term 546 

effects are due to primary actions on the developing brain.   Recent preliminary evidence in the sheep 547 

suggests that there may be a convergence of insulin and gonadal hormones early in development 548 

responsible for programming of reproductive neuroendocrine circuitry.  Specifically, co-treatment of 549 

insulin sensitizer blocked the effect of prenatal testosterone on arcuate AgRP cell number in female 550 

sheep hypothalamus suggesting that a common mediator involving both insulin and androgen 551 

signaling is responsible for the prenatal programming of this hypothalamic circuitry.  However, again, 552 

whether these effects are due to primary actions of insulin on the developing brain, or due to effects on 553 

maternal or placental function, remains to be explored. 554 

At a neural level, the specific brain targets of insulin have been examined which may be involved in 555 

relaying its influence in reproduction: these include GnRH neurons, the final common pathway 556 

mediating control of the hypothalamic-pituitary gonadal axis, as well as upstream neurons, such as 557 

those containing the neuropeptides, kisspeptin, AgRP, and POMC.  While data is mixed as to whether 558 

insulin receptors are present in GnRH neurons, there is clear evidence of their presence in the other 559 

cell types.  While kisspeptin neurons may not by themselves be critical components in insulin’s effects 560 

on reproduction [146], insulin receptors in POMC neurons may be more important since deletion of IR 561 

leads to adult female reproductive deficits [152], and the contribution of AgRP neurons to this 562 

influence have yet to be specifically investigated. Multiple anatomical interconnections among these 563 

neuronal subpopulations, however, suggest that they may comprise a redundant network that mediates 564 

insulin’s reproductive actions upon GnRH neuronal activity and neuroendocrine output. 565 
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Finally, clinical evidence clearly implicates insulin deficiency/resistance in adult human female 566 

fertility, but whether these effects are due to primary actions upon reproductive neuroendocrine 567 

circuitry, or are exerted at the level of the pituitary or gonads, is not known.  Further, while there is 568 

growing consensus of the importance of insulin signaling in the central control of reproduction, well-569 

defined experimental models are needed both in the adult and development nervous system to 570 

determine insulin’s mechanisms of action independent of associated changes in metabolic signals.  571 

The ability to selectively manipulate components of insulin signaling in a cell-specific manner within 572 

defined neuronal subpopulations by transgenic approaches [138] presents such an opportunity, but will 573 

also need to coupled with careful and detailed physiological models of adult reproductive function in 574 

order to ensure the effective clinical translation of this knowledge in the future. 575 

576 
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