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Abstract 

 

Shape-based approaches have many potential areas for development in the future for 

application to in silico pharmacology. Further exploration of the role of molecular 

shape may lead to better understanding of the substrate specificity of enzymes and the 

possibility to reduce toxic effects that may be caused by ligands binding to undesired 

target proteins. Methods exploiting molecular shape for activity and toxicity 

prediction might have a great influence on the drug discovery process.  

There are different approaches that might be used for this purpose, e.g. shape 

fingerprints and shape multipoles. Both methods describe the shape of molecules, 

discarding any chemical information, using numerical values. Focusing only on shape 

can lead to identifying novel core structures of molecules, with improved properties. 

 Molecular fingerprints are binary bit strings that encode the structure or shape of 

compounds; shape is measured indirectly by alignment to a database of standard 

molecular shapes – the reference shapes. The Shape Database should represent a wide 

range of possible molecular shapes to produce accurate results. Therefore, this was the 

main focus of the investigation. 

The shape multipoles method is a fast computational method to describe the shape of 

molecules by using only numbers and therefore it requires low storage needs and 

comparison is performed by simple mathematical operations. To describe the shape, 

it uses only 13 values (3 quadrupole components and 10 octupole components). 

The performances of both methods in grouping compounds based on shared biological 

activity were evaluated using several test sets with slightly better results in case of 

shape fingerprints. However, the shape multipole approach showed potential in 

finding differences in shape between enantiomers. Among the possible applications of 

the shape fingerprints method are solubility prediction (on comparable level as well-

established methods) and virtual screening. 
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Chapter 1  

 
 

 

Theoretical Background 
 

 

 

 

 

1.1. Introduction  

By definition, shape is the form of an object or its external boundary, outline, or 

external surface. Shape is used by everyone on a daily basis as a way of identifying 

and organizing visual information. Shapes are also the very first thing children learn 

in early childhood – it is because shape is one of the very noticeable attributes of the 

world around us.1 Before learning the name of the object, we use the description of it 

– its shape and colour, which helps us to visualize things and to help others understand 

what object we are describing.1 Although shapes like triangles, squares or circles that 

are present in the macroworld are not difficult to describe, it is not easy to define more 

complex shapes, especially those that build the microworld – the shape of molecules.  

1.2. Importance of shape in chemistry and biology 

There are many different biological processes in all organisms that distinguish 

molecules based on their shape. The size and spatial features of molecules play a 

crucial role in activation of G-protein-coupled receptors (which are responsible for 

regulation of diverse cell functions), opening ligand-gated ion channels (e.g. 
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participating in neurotransmission), antibody recognition and activation of a variety 

of enzymes (Figure 1-1).2,3,4 

 

Figure 1-1. Lock and key model – antibodies memorize pathogens mostly based on 

their shape. 2 

 
This ability of proteins to bind ligands with specific shapes was first explained by Emil 

Fischer5 in 1894 and later further explored by Linus Pauling6 during his scientific 

work. In the proposed “lock-and-key” model a substrate is treated as a key that needs 

to fit perfectly, by the means of size and shape complementarity, to a conceptual lock, 

which is the binding site of a target protein (Figure 1-2). Many ligand-protein 

complexes were analysed in the past to examine this theory, only to come to the 

conclusion that even though the ligand adapts multiple conformations, which are 

difficult to predict, the lock and key concept is still the working model for designing 

new compounds in many areas of study.3 The theory was broadly studied especially 

for its usage in rational drug design.7,8,9 A lot of computational methods like molecular 

docking and pharmacophore modelling were developed based on the hypothesis that 

a ligand needs to match the active site of the target protein in terms of shape and more 

besides.  

The image originally presented here cannot be made freely available via LJMU 
E-Theses Collection because of copyright restrictions. The image was sourced 

at: 
Zhang, J. X. J.; Hoshino, K. Chapter 1 - Introduction to Molecular Sensors. In 

Molecular Sensors and Nanodevices; Zhang, J. X. J., Hoshino, K., Eds.; 
William Andrew Publishing: Oxford, 2014; pp 1–42. 
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Figure 1-2. Complex of the human HMG-CoA reductase with Atorvastatin as an 

example of the lock and key model (pdb code: 1HWK).10 

Nowadays, there are two main approaches in similarity searching: based on chemical 

or shape similarity. Relying on the chemical structure or shape of known drugs to 

screen databases in order to find the compounds that might have a desired potency has 

a background in bioisosterism.11,12,13,14 The concept was introduced by Friedman15 and 

implies that molecules that are similar in size and shape are more likely to show similar 

activity towards the same target macromolecule.16 More common are simple isosteric 

replacements, which involves the substitution of a group of atoms in one compound 

by others with similar shape or chemistry,14 e.g. changing OH group with NH2. 

Bioisosterism concerns more drastic changes, more important or bigger groups of the 

ligand, like replacement of the core of the molecule (Figure 1-3).11,14 

 

 

 

Figure 1-3. Example of bioisostere replacement: oxygen atom is being replaced by 

triazolone.17 
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The pharmaceutical industry uses this concept to improve potential drugs, which, 

although they show a desired activity, cause side effects. It may also lead to 

improvement of potency and changes in physicochemical properties, such as 

solubility.14 Thus, a principle motive behind many virtual screening studies is to find 

compounds similar in shape and size, meaning that they show similar activity, but 

different enough to have physicochemical properties that may improve drug action 

and reduce toxicity.16,18 It can be also applied to find analogues of a drug that cannot 

be introduced to the market because of intellectual property rights. 

1.3. Structure-based vs. ligand-based methods 

Implementation of Fischer’s theory can be found in many tools used by scientists, 

mostly focusing on receptor-based approaches.7 Such methods, e.g. molecular 

docking,19 can predict the interactions that occur between the potential drug and its 

receptor. Molecular docking, since its introduction in 1982,20 has been proved to be a 

very successful technique.19,21,22 Its usefulness in predicting the ligand poses in the 

binding pocket as well as its ability to estimate the binding energy based on the formed 

non-covalent interactions, made it the leading technique in drug discovery (Figure 

1-4).23,24  

 

Figure 1-4. 2,5-dibromo-N-{(3R,5S)-1[(Z)-iminomethyl]-5-methylpyrrolidyn-3-

yl}benzenesulfonamide docked, using AutoDock, in the active site of cathepsin C (pdb 

code: 3PDF) with shown interactions. 
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However, all receptor-based techniques need sufficient data about the structure of the 

receptor or at least about its binding site.25 This might be challenging, because current 

protein structure databases may not provide the necessary structures or structures of a 

good enough quality and this way it may lead to inaccurate calculations.26 

Additionally, ligand-based approaches are usually much faster than docking methods. 

Those are major reasons that ligand-based methods (which do not require information 

about the receptor’s structure) can be useful in the early stages of the drug discovery 

process, especially in lead generation and lead optimization.27 Screening thousands or 

tens of thousands of compounds in order to discover a new drug, similar to the known 

ligand or lead compound, that would bind to the target better or cause less side effects 

is commonly used in the pharmaceutical industry.28,29,30 

1.4.  2D methods  

When structural data of the receptor is unknown or is of poor quality, the ligand-based 

drug design is preferred.26,31 Ligand-based approaches use the information of one or 

more known ligands of the protein.32,33 The underlying hypothesis is that molecules 

with similar features to the already known actives are more likely to have comparable 

biological activity.34 Among the most common approaches, there are methods based 

on chemical similarity and QSAR (quantitative structure–activity relationship) 

models, 26,31 which predict the activity/properties of molecules based on their chemical 

structure.35,36  

Most ligand-based techniques assign descriptors to the molecular structures to later 

compare and rank the molecules based on the similarity scores. The ligand-based 

methods used in medicinal chemistry relate to 2D structures of molecules, because of 

the simplicity and speed of such approaches. The similar molecules that show 

neighbourhood behaviour have similar representations as SMILES strings29,37 

(Simplified Molecular Input Line Entry Specification)38 or similar fingerprints. 39  
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1.4.1. 2D fingerprints 

There are ligand-based methods that encode the 2D structure of a molecule or its 

features using bit string representations. Such an approach is termed as molecular 2D 

fingerprints and these are one of the most commonly used methods in drug discovery 

nowadays.28,39,40,41,42 Their focus is on chemical similarity searching, therefore that is 

the information encoded in their bit strings. There are several types of molecular 

fingerprints with different fragmentation strategies (e.g. linear, radial, dendritic), atom 

types (e.g. generic, where all atoms and bonds are equivalent, functional, where atoms 

are distinguished by functional type or atoms recognized as hydrogen bond acceptors 

or donors), bit scaling rules (e.g. scaling by feature size to molecule size) and similarity 

indices.41,43  

Among the commonly used 2D fingerprints are MACCS,44 LINGO,45,46 Circular,47 

Path and Tree.40 The summary of them can be found in Table 1-1. Some of the 

fingerprints generation processes do not assign a specific feature to a bit position and 

use the hash function to map the information of molecular structure into a fixed size 

bit string.43 In such fingerprints it is therefore common to observe bit collisions, where 

the bit is set on for more than one fragments/feature.43 These are topological 

fingerprints, which are often called hashed fingerprints.43 

Table 1-1. 2D fingerprint methods and descriptions.  

FINGERPRINT 

METHOD 

DESCRIPTION 

MACCS 166 or 960 bit structural key descriptors based on SMARTS 

patterns 

CIRCULAR enumerated circular fragments hashed into a fixed-length bit 

string 

LINGO text-based molecular similarity search method based on 

fragmentation of canonical isomeric SMILES strings 

TREE enumerated tree fragments hashed into a fixed-length bit string 

PATH enumerated linear fragments hashed into a fixed-length bit 

string 
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1.4.1.1. MACCS   

MACCS keys, also known as MDL 2D keysets, are structural keys based on SMARTS 

patterns.44 This type of fingerprint encodes the presence or absence of a given 

substructure in a molecule, as shown in the Figure 1-5. 

 

Figure 1-5. Example of the hypothetical 10-bit substructure.40  

There are two possible lengths of a MACCS fingerprint – 960 or 166 bit.40,44 The most 

used is the shorter version, which covers most of the interesting chemical features for 

drug discovery and virtual screening and it is available in many software packages.40  

1.4.1.2. Path and Tree fingerprints 

Path-based and Tree fingerprints are both topological fingerprints, in which the 

fragments are analysed either in a tree or a linear way up to a given size (a certain 

number of bonds) and then all those paths are hashed into a fingerprint.40 Unlike in 

MACSS fingerprints, the particular bits cannot be traced back to certain chemical 

features as some of them might encode more than one feature. These fingerprints are 

suitable for substructure queries.40  
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Figure 1-6. Example of a hypothetical 10-bit path-based fingerprint.40  

1.4.1.3. Circular fingerprints 

Circular fingerprints are also topological fingerprints.47 However, as the name 

suggests, the radius of each heavy atom of a molecule is analysed. ECFPs (Extended-

connectivity fingerprints) are circular fingerprints based on the Morgan algorithm.40 

This type of fingerprint cannot be used for substructure queries and are rather used for 

similarity searches of the whole structure.40  

 

Figure 1-7. Example of hypothetical 8-bit circular fingerprint.  

The image originally presented here cannot be made freely available 

via LJMU E-Theses Collection because of copyright restrictions. 

The image was sourced at 

Cereto-Massagué, A.; Ojeda, M. J.; Valls, C.; Mulero, M.; Garcia-

Vallvé, S.; Pujadas, G. Molecular Fingerprint Similarity Search in 

Virtual Screening. Methods 2015, 71, 58–63. 
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1.4.1.4.  LINGO 

LINGO fingerprints are text strings45 instead of bit strings like other fingerprints types. 

Their string includes different letters, numbers and symbols, which are obtained by 

decomposing a SMILES string.45,46 As described by Vidal et al.:45 “a q-LINGO is a 

q-character string, including letters, numbers and symbols, such as “(“, “)”,“[“, “]”, 

“#”, etc. obtained by stepwise fragmentation of a canonical SMILES molecular 

representation”. The SMILES string of length n would result in (n-(q-1)) substrings 

of length q. As shown in the Figure 1-8, where q=4, the chlorpromazine is 

decomposed into 25 substrings, with three of them having two occurrences, which is 

28 in total (31-(4-1) = 28).  

 

Figure 1-8. LINGO generation process.45 

1.4.2. Similarity measures   

When comparing two molecular fingerprints, the presence or absence of a structural 

fragment is represented by setting a bit On or Off. Therefore, similar molecules are 

the ones with a higher number of bits in common, which indicates possession of 

similar features or functional groups. 

The comparison is performed by alignment of two molecules – the query and the one 

from the database, or more accurately their bit strings, and counting the number of bits 

set on in only one of the strings and those in common. The results are scored using 

one of many similarity coefficients. The most common metrics are the Tanimoto, 

The image originally presented here cannot be made freely available via 

LJMU E-Theses Collection because of copyright restrictions. The image 

was sourced at 

Vidal, D.; Thormann, M.; Pons, M. LINGO, an Efficient Holographic Text 

Based Method To Calculate Biophysical Properties and Intermolecular 

Similarities. J. Chem. Inf. Model. 2005, 45 (2), 386–393. 
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Tversky, Cosine, Euclidean and Dice.40,48 The summary of the popular similarity 

measures can be seen below in Table 1-2.  

Table 1-2. Most popular similarity measures. 

TYPE FORMULA RANGE 

TANIMOTO 𝑏𝑜𝑡ℎ𝐴𝐵

𝑜𝑛𝑙𝑦𝐴 + 𝑜𝑛𝑙𝑦𝐵 + 𝑏𝑜𝑡ℎ𝐴𝐵
 [0.0 – 1.0] 

TVERSKY 𝑏𝑜𝑡ℎ𝐴𝐵

𝛼 ∗ 𝑜𝑛𝑙𝑦𝐴 + 𝛽 ∗ 𝑜𝑛𝑙𝑦𝐵 + 𝑏𝑜𝑡ℎ𝐴𝐵
 [0.0 –  N]  

COSINE 𝑏𝑜𝑡ℎ𝐴𝐵

ඥ(𝑜𝑛𝑙𝑦𝐴 + 𝑏𝑜𝑡ℎ𝐴𝐵) ∗ (𝑜𝑛𝑙𝑦𝐵 + 𝑏𝑜𝑡ℎ𝐴𝐵)
 [0.0 – 1.0] 

EUCLIDEAN 
ඨ

𝑏𝑜𝑡ℎ𝐴𝐵 + 𝑛𝑒𝑖𝑡ℎ𝑒𝑟𝐴𝐵

𝑜𝑛𝑙𝑦𝐴 + 𝑜𝑛𝑙𝑦𝐵 + 𝑏𝑜𝑡ℎ𝐴𝐵 + 𝑛𝑒𝑖𝑡ℎ𝑒𝑟𝐴𝐵
 

[0.0 – 1.0] 

DICE 2 ∗ 𝑏𝑜𝑡ℎ𝐴𝐵

𝑜𝑛𝑙𝑦𝐴 + 𝑜𝑛𝑙𝑦𝐵 + 2 ∗ 𝑏𝑜𝑡ℎ𝐴𝐵
 [0.0 – 1.0] 

 

In the table above (Table 1-2), bothAB represents the number of common features for 

the molecules A and B, neitherAB is the number of bits set off in common for 

molecules A and B, while onlyA and onlyB are the numbers of the features present 

only in the molecule A and B, respectively.  

1.4.3. Matched Molecular Pairs 

Another, widely used ligand-based 2D approach is Matched Molecular Pair Analysis 

(MMPA). The key principle of MMPA is that the difference in properties is more 

easily and accurately predicted than the absolute value of properties.49,50 The concept 

was first introduced by Kenny and Sadowski in 2005.51 The method is used to screen 

large databases in order to find pairs of molecules with a common structural part with 

a promising change in properties.49,51,52 A Matched Molecular Pair (MMP) involves 

two compounds that have a common core and have a different fragment R as shown 

in Figure 1-9.  
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Figure 1-9. An example of pair of MMP with fragment part marked in red circle. 

There are two common approaches to finding MMPs: Fragment and Index (F+I)53 and 

Maximum Common Substructure (MCSS).54 In the MCSS approach, as used in the 

WizePairZ algorithm described by Warner et al.,54 two molecules are compared and 

the maximum common substructure shared by them is identified – the fixed part. The 

remaining part is called the changing part. In order to compare the molecules using 

this approach, the molecules are converted into graphs, which enables identifying 

common substructures between compounds.  

The outcome of the MCSS approach is governed by the choices made about deciding 

what to classify as a pair. Warner et al.54 elected to use a fast graph comparison 

technique that does not permit disconnected substructures to be generated and chose 

to limit the changing part of the molecule to be less than 10% of the fixed part.49 They 

encoded the output from their pair finding as SMIRKS (reaction transform language)55 

that permits any structural changes identified as being of interest to be able to be 

applied to molecules to which they may be relevant.54 

The key limitations of the MCSS approach are that the substructure comparison is 

slow and that most algorithms for finding the MCSS require all of the atoms to be 

contiguous and therefore prevent pairs in which linkers change from being found.49 

The second approach was introduced by Hussain and Rea.53 The algorithm works by 

generating fragments of the molecule based on predefined rules and then indexing 

those fragments. The generated fragments are stored as key – value pairs.53,56  

OH

N
N

N
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Figure 1-10. Scheme of identifying pairs in the Fragment and Index approach when 

single cuts are performed. 

In the first step, each molecule is fragmented, by breaking selected bonds (Figure 

1-10). Hussain and Rea53 achieve this by defining the bonds to be broken using a 

SMARTS pattern. They aim to have this pattern be specific to acyclic single bonds. 

Bonds are broken one at a time, and the resulting fragments are then stored as SMILES 

strings, which can be manipulated as text.49,53 This is a great advantage of the 

approach: after initial fragmentation, all subsequent steps toward the identification of 

matched pairs involve only rapid text processing.49 Also, once a molecule has been 

fragmented and added to the database, it is available to any new molecule that is added.  

Among the limitations of the fragment and index approach to finding matched pairs 

are that small changes to rings cannot be identified as pairs, highly substituted core 

changes are limited by the number of fragmentations considered, and the diversity of 

the structural changes can be limited by the restrictions that are imposed (usually 

heavy atom counts or ratio).49 One specific set of changes that are not readily identified 

is modifications to macrocyclic rings.  
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Table 1-3. Advantages and disadvantages of MCSS and F+I approaches.  

METHOD ADVANTAGES DISADVANTAGES 

MCSS  small changes to rings 

can be identified 

 

 slow  

 most algorithms for finding 

the MCSS require all of the 

atoms to be contiguous 

F+I  fast 

 once a molecule has 

been fragmented and 

added to the database, it 

is available to any new 

molecule that is added 

 restrictions in bond 

breaking - small changes to 

rings cannot be identified 

 can lead to fragmentations 

and grouping into sets of 

pairs that chemists would 

not normally consider to be 

chemically sensible 

 

 

1.5.  Scaffold hopping – chemistry vs. shape 

There are many approaches that rely on the chemistry of the molecule, discarding the 

information about the three-dimensional shape of a molecule. Those approaches rarely 

lead to compounds that are chemically very distinct and thus they are not well-suited 

for scaffold hopping.57,58 Knowing that molecules similar in shape could bind to the 

same protein even with completely different chemistry, opens new possibilities to find 

novel, sometimes unexpected compounds.  

 

 

 

 

Figure 1-11. Example of scaffold hopping. 
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Therefore, scaffold hopping gains a lot of attention in medicinal chemistry. The 

concept was introduced in 1999 by Schneider et al.59 It is a technique that identifies 

compounds with different chemistry or central core but with similar shape or 

electrostatic surface and thus leading to comparable or improved activity.57,58,60,61 The 

scaffold hopping can lead to drastic changes in molecular properties, e.g. changes in 

solubility by replacing a lipophilic structure with a more polar one, changes in the 

stability of a compound, reduction of toxicity, or improvements in DMPK (drug 

metabolism and pharmacokinetics).57  

There are many successful compounds identified using scaffold hopping. One of the 

examples can be seen in the Figure 1-12. The structure of morphine and tramadol is 

very different but they share positions of the tertiary amine, the aromatic ring, the 

hydroxyl group and also have some similarities in the overall shape.61,62 

 

A) 

 

B) 

 

Figure 1-12. Structures of pain killing drugs: Morphine (A) and Tramadol (B). 

Molecules with different core structures but similar activity are of high interest in 

medicinal chemistry mostly due to a desire to improve potency or reduce toxicity.16 It 

can be also applied to find analogues that are novel and patentable.  

1.6.  3D methods  

More and more methods are used for describing molecular shape. Among them, the 

most common and simple are pharmacophores.63 Pharmacophores are defined as 

arrangement of atoms or the features of molecule that are essential in its biological 

activity.58,63 It uses the information of hydrogen donors or acceptors, acidic/basic 
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groups and hydrophobic features in the molecule and their position in space.63 

However, that approach may not accurately indicate the shape because of treating the 

shape of molecule just as sets of atoms in space and not focusing on its volume and 

surface (Figure 1-13).  

 

Figure 1-13. The example of a pharmacophore model with three pharmacophoric 

features: one hydrogen bond acceptor (green), one hydrophobic feature (blue), and an 

aromatic ring (orange).64 

CoMFA (Comparative Molecular Field Analysis)65 is a 3D-QSAR method that links 

the shape-dependant properties of molecules to their biological activity.32 The 

molecules binding to the same receptor and in the same way are selected to develop 

the models.32,66,67 Then they are aligned based on their shape and their molecular fields 

are mapped to the 3D grid.32,67 Field values in each grid point are calculated 

corresponding to the potential energy, which is then correlated to biological 

activity.32,67 Similarly, CoMSIA (Comparative Molecular Similarity Indices)66,68 is 

also a 3D-QSAR model, but includes the hydrophobic, hydrogen-bond donor and 

acceptor together with steric features.66 

The other methods often used are shape fingerprints,69 Gaussian-based methods70 and 

moment-based method (e.g. the shape multipole method).71 These methods do not 

require chemical information and depend only on the spatial distribution of shape. 

Therefore, they might be more appropriate for scaffold hopping approaches. 

The image originally presented here cannot be made freely 

available via LJMU E-Theses Collection because of 

copyright restrictions. The image was sourced at 

Fei, J.; Zhou, L.; Liu, T.; Tang, X.-Y. Pharmacophore 

Modeling, Virtual Screening, and Molecular Docking Studies 

for Discovery of Novel Akt2 Inhibitors. Int. J. Med. Sci. 

2013, 10 (3), 265–275. 
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1.6.1. Gaussian-based methods – ROCS 

A Gaussian description of molecular shape is implemented in ROCS,72 which stands 

for Rapid Overlay of Chemical Structures, is an Openeye’s software. Two or more 

molecules are compared according to their volume overlap. The method, which 

describes molecules in terms of atom-centred Gaussian functions, performs 

optimization by rigid translation and rotation of one of the matched molecules with 

respect to the other.70 The difference between two shapes is returned as a Tanimoto or 

Tversky coefficient ranked from the highest to the lowest values.  

The ROCS package72 allows for addition of chemical feature information that can be 

used together with volume overlap to compare molecules. For these, various scores 

might be used e.g. TanimotoCombo, TverskyCombo, which includes the chemical 

information as well as shape and compares the compounds in different ways. 

Additionally, multi-conformer molecules can be used as both query and database 

molecules. However, applying these features requires more computational time. 

1.6.2. Shape fingerprints 

Fingerprint methods are not only used to describe the chemical connectivity of a 

molecule, e.g. LINGO or Tree fingerprints, but may also be applied to encode the 

shape of the molecule – via so called shape fingerprints.69 Haigh et al.69 introduced the 

concept of shape fingerprints and established the parameters that can be varied to tune 

the fingerprint. The shape of a molecule is measured indirectly by alignment to a 

database of diverse reference shapes, as shown in the example in Figure 1-14. 

Therefore, to produce accurate results, the database with reference shapes is supposed 

to represent a wide range of possible shapes of molecules to produce accurate results.  
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Figure 1-14. The example of shape fingerprint generation process for aspirin with a 

hypothetical set of reference shapes and BOV of 0.5. 

The corresponding bits are turned on or off depending on whether the similarity 

between the shape of molecules (defined by Shape Tanimoto (ST), which is calculated 

as shown in Equation 1-1) is greater or smaller than the cut-off value. 

Equation 1-1. Shape Tanimoto. 

𝑆𝑇஺஻ =  
𝑉஺஻

𝑉஺஺ +  𝑉஻஻ − 𝑉஺஻
 

 

Where VAB is the Gaussian overlap volume of the two molecules (A and B) aligned in 

such a way as to maximize the overlap. VAA and VBB are self-overlap volumes. Shape 

Tanimoto can vary from 0 (for the most dissimilar shaped molecules) to 1 (for 

molecules of identical shape). 

The shape similarity measurement is obtained by comparisons of bit strings in the 

created fingerprints, in the exact same way as described in section 1.4.2 about the most 

common similarity coefficients used in molecular fingerprint methods. 
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1.6.3. Moment-based methods – shape multipoles 

There are many methods characterizing shape by a set of descriptors, which allow for 

much faster screening of even large libraries of conformations. One such method is 

the shape multipole method, developed by A. Grant and B. Pickup.71 They described 

the algorithm for calculation of shape multipoles based on Gaussian density, which 

allows fast comparison of molecular shapes.  

Sets of descriptors need to be generated for the comparison phase - centroids and 

multipoles (monopole, dipoles, quadrupole, octupole moments). These are used to 

generate a quantitative comparison of the molecules by the sums of differences. It is 

assumed that a more detailed estimation of shape is obtained when higher order 

multipoles are calculated and used for comparison. 

Reduction of the time needed for comparison of two molecules is achieved by purely 

describing shape as numbers - thus those approaches are often labelled as numerical 

methods. The centroids and multipoles required for a similarity search can be 

computed at negligible cost.  

 

Figure 1-15. The visualisation of l=2 to l=8 multipole moments.73 

In physics the electric dipole moment (Figure 1-15) is used to describe the distribution 

of charge within a system, as shown in Equation 1-2 and the analogous equation can 

be written based on Gaussian density (Equation 1-3).71 

The image originally presented here cannot be made freely available via 

LJMU E-Theses Collection because of copyright restrictions. The image 

was sourced at 

Copi, C. J.; Huterer, D.; Starkman, G. D. Multipole Vectors--a New 

Representation of the CMB Sky and Evidence for Statistical Anisotropy or 

Non-Gaussianity at 2<=l<=8. Phys. Rev. D 2004, 70 (4). 

 



28 | P a g e  
 

Equation 1-2. Electric dipole moment, defined as the first order of the electric 

multipole expansion, where ρelec is electrostatic charge density and r is a Cartesian 

coordinate of a point. 

𝑝 = න 𝑟𝜌௘௟௘௖ (𝑟)𝑑𝑟 

Equation 1-3. The first order term in the shape multipole expansion, where V is 

defined as the Gaussian volume, rα, rβ, rγ, etc. are the Cartesian coordinates of a point 

and ρg is Gaussian density of a molecule. 

𝑆ఈ
(ଵ)

=
1

𝑉
 න 𝑟ఈ𝜌௹

௚
(𝑟)𝑑𝑟 

Higher order terms, shape quadrupoles and octupoles, can be defined as in Equation 

1-4 and Equation 1-5, respectively, leading to a more and more accurate description 

of the shape of a molecule.  

Equation 1-4. Shape Quadrupole, the second order moment. 

𝑆ఈఉ
(ଶ)

=
1

𝑉
 න 𝑟ఈ𝑟ఉ𝜌௹

௚
(𝑟)𝑑𝑟 

Equation 1-5. Shape Octupole, the third order moment.  
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𝑉
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Chapter 2  

 

 

 

Shape Fingerprints 
 

 

 

 

 

2.1.  Introduction 

One commonly used ligand-based approach is molecular fingerprinting in which 

binary bit strings encode the structure of compounds allowing fast calculations with 

low storage needs.40 There are many types of fingerprints and most encode only the 

atom types and how they are connected to one another and so do not describe the three-

dimensional character of molecules.41,74,39,47,45,40,75 However, these techniques rarely 

lead to compounds that are chemically very distinct and thus they are not well-suited 

for scaffold hopping wherein compounds are sought that have a desired activity, but 

are different enough to have improved ADMET properties (and hopefully are novel 

and patentable). 57,76 

By contrast, the shape fingerprint method encodes only the shape of compounds and 

not chemical structural information.77 The shape of a molecule is measured indirectly 

by alignment to a database of diverse reference shapes. To be effective, these reference 

shapes must represent all shapes of molecules that are likely to bind to proteins. With 

a set of reference shapes in hand, shape similarity can be assessed by comparisons of 

the bit strings in the created fingerprints. Previous work of Haigh et al.77 has outlined 
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the concept of shape fingerprints and established the parameters that can be varied to 

tune the fingerprint. However, a link between shape fingerprints and biological activity 

has never been established. This chapter shows how the description of shape via 

fingerprints for the explanation of biological activity was optimized. It presents the 

results of such optimization and shows that shape fingerprints are able to group 

molecules that are similar enough to have shared biological activity. Further, it 

describes the optimal method for making this link and makes the data needed to 

perform these calculations available. 

2.2. Methods 

2.2.1. Creating a database of reference shapes 

In the work described in this chapter, sets of reference shapes were generated by 

implementation of the algorithm previously described by Haigh et al.77 The algorithm 

(which uses Openeye’s Shape Toolkit 78) randomly selects a first reference molecule 

out of the input dataset. The remaining molecules in the dataset are compared to the 

reference molecule and a Shape Tanimoto (ST) calculated that can be defined as: 

𝑆𝑇஺஻ =  
𝑉஺஻

𝑉஺஺ +  𝑉஻஻ − 𝑉஺஻
 

 

Where VAB is the Gaussian overlap volume of the two molecules (A and B) aligned in 

such a way as to maximize the overlap. VAA and VBB are self-overlap volumes. Shape 

Tanimoto can vary from 0 (for the most dissimilar shaped molecules) to 1 (for 

molecules of identical shape). Molecules with ST greater than a user-selected value 

(the Design Tanimoto, DT) were discarded. The molecule with the smallest ST was 

then selected as the next reference molecule and the same process repeated until all 

molecules have either been selected as a reference shape or discarded (Figure 2-1).  

Thus, Design Tanimoto defines how similar are the shapes that are forming the Shape 

Database. Each set of reference shapes forms a Shape Database, referred to here as 

SDx where x is a distinguishing number. 
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Figure 2-1. The workflow of Shape Database generation process. 

2.2.2. Generating shape fingerprints 

Shape fingerprints were generated by comparing a query molecule with each reference 

shape in the Shape Database in turn. As shown in the Figure 2-2, for each reference 

shape, if the ST was above another user-defined value, the Bit-On Value (BOV) then 

the corresponding bit was set to 1 and if below the BOV, the bit was set to 0, and this 

way producing the bit string of length equal to number of shapes included in Shape 

Database.  

Select Dataset

Select Seed 
Molecule

Calculate Shape 
Tanimoto

Reject Molecules 
with ST higher 

than DT 

Retain molecules with 
ST lower than DT 
(New Database)

Select Molecule with the 
lowest ST (New Seed 

Molecule)
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Figure 2-2. The example of the shape fingerprint generation process for aspirin with 

a hypothetical set of reference shapes and BOV of 0.5. 

All the molecules were compared by aligning their bit strings, counting the number of 

bits set on (at 1) only in one of the strings and those set on in both strings. Bit Strings 

for molecular shapes A and B were compared using the Fingerprint Tanimoto (FT) as 

a similarity measure: 

𝐹𝑇஺஻ =  
𝑏𝑜𝑡ℎ𝐴𝐵

𝑜𝑛𝑙𝑦𝐴 + 𝑜𝑛𝑙𝑦𝐵 + 𝑏𝑜𝑡ℎ𝐴𝐵
 

 

Where onlyA and onlyB are the numbers of unique bits on in the bit strings for A and 

B respectively, while bothAB is the number of bits on in common to A and B. 

Fingerprint Tanimoto similarity values vary from 0 (for dissimilar compounds) to 1 

(for the most similar molecules).  

2.3. Analysis 

The evaluation of the shape fingerprints approach was performed by employing two 

test sets: 1) a set described by Taylor et al.,79 which was devised to test pharmacophore 

models and consists of 87 molecules binding to 10 different proteins as shown in 

Table 2-1 2) a group from the Astex diversity set,80 which includes 45 molecules 

binding to 4 selected proteins, shown in Table 2-2. 
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Table 2-1. Test Set 1 -  Test set described by R. Taylor et al. 79 used for validation of 

the shape fingerprints method. 

PROTEIN NUMBER OF 

COMPLEXES 

PDB CODES 

Protein kinase 5 (PK5) 2 1v0o, 1v0p 

Fatty acid binding 

protein (FABP) 

3 1tou, 1tow, 2hnx 

Neprilysin (NEP) 4 1dmt, 1r1h, 1r1j, 1y8j 

Dihydrofolate reductase 

(DHFR) 

6 1drf, 1hfr, 1mvt, 1pd9, 1s3v, 2dhf 

Checkpoint kinase 

(Chk1) 

16 1nvq, 1nvr, 1nvs, 1zlt, 1zys, 2br1, 

2brb, 2brg, 2brh, 2brm, 2bro, 2c3l, 

2cgu, 2cgw, 2cgx, 2hog 

Neuraminidase (NEU) 11 1a4g, 1a4q, 1b9s, 1b9t, 1b9v, 1inf, 

1inv, 1ivb, 1nsc, 1nsd, 1vcj 

Carbonic anhydrase 

(CA) 

13 1bn3, 1bn4, 1bnq, 1cim, 1eou, 1if7, 

1oq5, 1xpz, 1zgf, 1zh9, 2eu3, 2hoc, 

2nng 

Adenosine deaminase 

(ADA) 

11 1krm, 1ndv, 1ndw, 1ndy, 1o5r, 1qxl, 

1uml, 1v7a, 1v79, 1wxy, 2e1w 

Heat shock protein 90 

(HSP) 

10 1byq, 1uy8, 1yc1, 1yc4, 1yet, 2bsm, 

2byi, 2bz5, 2cct, 2uwd 

Acetylcholinesterase 

(AChE) 

11 1dx6, 1e66, 1eve, 1gpk, 1gpn, 1h23, 

1w4l, 1zgb, 2ack, 2c5g, 2ckm 
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Table 2-2. Test Set 2 - Test set made from the selected targets from Astex diversity 

set 80 used for validation of the shape fingerprints method. 

PROTEIN NUMBER OF 

COMPLEXES 

PDB CODES 

Chitinase B 8 1w1p, 1w1t, 1w1v, 1w1y, 3wd1, 3wd2, 

3wd3, 3wd4 

TMK 8 1mrs, 1w2g, 1w2h, 4unn, 4unp, 4unq, 

4unr, 4uns 

Tryptophan Syntase 13 1k3u, 1k7e, 1k7f, 1qop, 1yjp, 1wbj, 

2cle, 2clh, 2clk, 2j9y, 4hpx, 4ht3, 4kkx 

VDR 16 1db1, 1ie8, 1ie9, 1s0z, 1s19, 1txi, 

2ham, 3auq, 3aur, 3ax8, 3kpz, 3vhw, 

3x31, 3x36, 4ite, 5gt4 

 

In order to analyse the results, the ROC curve was used, which is a tool for diagnostic 

test evaluation.81 The ROC curves and AUC values were produced in R.82 Half of the 

matrix without the diagonal was used in these calculations. 

2.4. Conformations 

SMILES were generated using Openeye’s OEChem Toolkit 78 for all the molecules 

shown in Table 2-1 and Table 2-2. Some of the generated SMILES needed manual 

assignment of stereochemistry. Conformations were generated using OMEGA 

software83 with the maximum number of generated conformers set to 5. Shape 

fingerprints were generated for each conformation. When two molecules were 

compared, all fingerprints of one molecule were compared with all those of the other. 

Two summary values for this comparison were investigated: 1) the highest value of 

FT amongst the array arising from comparisons of all conformations of one molecule 

with all conformations of the other is selected – the MV (maximum value) method or 

2) the average of those values is selected – the AV (average value) method.  
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2.5.  Results and Discussion 

2.5.1. Defining a set of reference shapes 

A shape fingerprint is a binary encoding of the similarity of the shape of any given 

query molecule to a series of reference shapes. Having an appropriate set of these 

reference shapes is therefore critical. Haigh et al.77 used a set of reference shapes 

generated from the Cambridge structural database of small molecule crystal 

structures84 and a set of conformations generated by CORINA for the MDDR 

database85 of molecules that have been studied clinically.  As there is great interest in 

protein-ligand interactions, thus instead it was chosen to use the database of ligands 

studied by X-ray crystallography in complex with a protein – the Ligand Expo 

dataset.86 At the time, this contained the experimental coordinates for 1,158,763 non-

polymer molecules and non-standard amino acids and nucleotides. Various filtering 

criteria based on molecular weight were applied to these molecules (Figure 2-3), 

leading to 9 databases of shapes that were considered as input to the algorithm that 

was used to generate the sets of reference shapes. An alternative filtering based on the 

number of heavy atoms was also performed and yielded similar effects.  

 

Figure 2-3. The Ligand Expo Dataset 86 was filtered in 9 different ways according to 

the lower and upper limit of molecular weight shown. The number of structures to 

pass the filter criteria is shown. 
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An implementation of the algorithm described by Haigh et al.77 permitted each set of 

ligand structures to be clustered in such a way that every shape had a Shape Tanimoto 

to at least one reference shape that is above a user-selected cut-off called the Design 

Tanimoto (DT). Shape comparisons were performed with Openeye’s Shape Toolkit, 78 

as implemented in ROCS software.72 A randomly selected shape is the first reference 

shape and its Shape Tanimoto (ST) with every other shape in the input database is 

computed. All those that have Shape Tanimoto values above DT are rejected from 

further consideration. After all comparisons have been made, the shape that has the 

lowest Shape Tanimoto with the starting shape is selected and becomes the next 

reference shape in the database. The process is repeated until all shapes have either 

been rejected or selected as a reference shape. During initial investigations, a low (0.5) 

and a high value of DT (0.7) were investigated; lower values of DT lead to smaller 

Shape Databases. 

2.5.2. Evaluating shape fingerprints 

The shape fingerprints were evaluated by computing their ability to correctly group 

the molecules in two test sets. The first test set comprises a set of 87 molecules each 

of which is known to bind to one of ten proteins listed in Table 2-1.79 A second test 

set, shown in Table 2-2,was extracted from the Astex diversity set and comprised 45 

molecules binding to four different proteins.80 Both test sets include only molecules 

with known protein-ligand structures and hence ligand bioactive conformations.  

As described above, the choice of DT influences the size and nature of the Shape 

Database and this was investigated. Shape fingerprints are generated by computing the 

ST between a query structure and every shape in the Shape Database. When the 

calculated ST is above a user-defined cut-off, the Bit On value (BOV), the bit is set 

On (1) otherwise it is set to Off (0). Lower BOVs lead to higher bit densities. In the 

initial testing of the shape databases, a high and low value (0.7 and 0.5 respectively) 

for each of DT and BOV were used. 

The shape fingerprints for every molecule in both test sets were compared to those for 

every other molecule in the set. The comparison yielded another Tanimoto, the 

Fingerprint Tanimoto (FT). Receiver Operating Characteristic curves (ROC curve) 
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were created that plot the true positive rate against the false positive rate.  The 

computed AUC (Area Under Curve) for these is a measure of accuracy, where 0.9 – 1 

represents a perfect test while 0.5 represents a poor one (equivalent to random). The 

AUCs for Test Set 1 are shown in Figure 2-4.  

When DT=0.5 and BOV=0.7, the AUC is rarely distant from 0.5 suggesting no 

discrimination was achieved. The combination of low DT and high BOV leads to a 

low number of bits set On and so these are unlikely to be able to connect molecules 

(which requires bits to be set in common). The best AUC values for this test set was 

obtained for SD05 with DT=0.5, BOV=0.5 (AUC=0.67). The difference between 

AUC values for all settings was small (excluding the aforementioned settings: 

DT=0.5, BOV =0.7) for all databases except for SD05 and SD09. 

 

Figure 2-4. The AUC values for Test Set 1 when applying different settings: DT=0.5 

with BOV=0.5 and 0.7, and DT=0.7 with BOV=0.5 and 0.7. 
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The plot looks quite similar for Test Set 2, as shown in Figure 2-5. Once again, SD09 

performs noticeably worse than the other sets of reference shapes and the combination 

of DT=0.7 with BOV=0.5 provides poor discrimination. The highest AUC values, 

exceeding 0.83, are obtained for SD01 and SD04 with DT=0.5, BOV=0.5 and for 

SD03 and SD06 with DT=0.7 and BOV=0.7. When results for DT=0.5 and BOV=0.7 

are excluded, SD03 performs the best with an average AUC of 0.81, followed by SD01 

and SD02 with the same average AUC of 0.80.  

 

Figure 2-5. The AUC values for Test set 2 with varying settings.  

When the average AUC values obtained from both test sets are computed (excluding 

DT=0.5, BOV=0.7), SD03 and SD06 (with AUCs of 0.71 and 0.70 respectively) stand 

out as best when SD01, the unfiltered shape database, is excluded. The filtering criteria 

used to generate SD03 and SD06 were therefore combined to generate Shape Database 

10 with molecular weight in the range 300 to 500 with the expectation that this would 

provide the best balance of accuracy and speed (76125 molecules pass the filters for 
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consideration in the database generation process, compared to 244031 in SD01, 92465 

in SD03 and 227691 in SD06). 

A) 

 

Average 

0.62 

0.62 

0.63 

0.60 

0.55 

 

B) 

 

Average 

0.81 

0.78 

0.78 

0.74 

0.66 

 

Figure 2-6. The heatmaps generated based on AUC values for Test Set 1 (A) and Test 

Set 2 (B) when using SD01 with varying DT and BOV. 
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A) 
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B) 

 

Average 

0.77 

0.81 

0.80 

0.76 

0.68 

 

Figure 2-7.  The heatmaps generated based on AUC values for Test Set 1 (A) and Test 

Set 2 (B) set when using SD10 with varying DT and BOV. 

The values of DT and BOV were then systematically varied in steps of 0.05 between 

0.5 and 0.7. As can be seen in Figure 2-6 and Figure 2-7, the AUC values vary less 

for Test Set 1 (Figure 2-6A, Figure 2-7A), than for Test Set 2 (Figure 2-6B, Figure 

2-7B). This might be caused by differences in molecular weight distribution in both 

sets. 79,80  Experience with other datasets had shown that small molecules (about 200 

Da and below) and large molecules (about 800 Da and above) set very few (or no) bits 

and so cannot be correctly described by these shape fingerprints. The molecular weight 

ranges for the two test sets used in the present study are shown in Figure 2-8. In Test 
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Set 2, the range is slightly wider than for Test Set 1 and this may facilitate the correct 

grouping of Test Set 2. The generally good performance suggests that the shape 

databases obtained are applicable to molecules spanning the molecular weight range 

~200 to ~600 and should therefore be useful for most drug-like molecules.  

A) B) 

  

Figure 2-8. The molecular weight distribution of Test Set 1 (A) and Test Set 2 (B).  

When the variation caused by changing DT and BOV is considered in more detail, the 

influence of these settings on the AUC obtained is as shown in Figure 2-6 when using 

SD01 and Figure 2-7 when using SD10. This shows that using BOV=0.55 gives the 

best results on average and thus the impact of DT was considered while BOV was 

fixed. The choice of the best DT requires a consideration of the size of the Shape 

Database, which determines the computational time required to generate each 

fingerprint. When the average AUC value is viewed as a function of the size of Shape 

Database (Figure 2-9), the difference in average AUC value for the two highest values 

of DT for both test sets is quite small (∆AUC is 0.022 and 0.003 for Test Set 1 and 

Test Set 2 respectively), yet the difference in size of the Shape Databases is significant 

(1346 reference shapes). Therefore, SD10 with DT = 0.65 is selected as the best 

performing Shape Database. The results show that for this setting of DT, the optimum 

BOV is 0.6. The recommended settings are therefore to use DB10 with DT=0.65 and 

BOV=0.6 when grouping molecules according to their likelihood of binding to the 

same protein. 
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Figure 2-9. The graphs showing average AUC value as a function of size of Shape 

Database for both test sets when Shape Database 10 was used. 
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B) 

 

Figure 2-10. Logistic regression plot for Test Set 1 (A) and Test Set 2 (B) when using 

SD10 with DT=0.65 and BOV=0.60. The plots were created using R.82 

A) 
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B) 

 
 
Figure 2-11. ROC curve for Test Set 1 (A) and Test Set 2 (B) when using SD10 with 

DT=0.65 and BOV=0.60. The plots were created using R. 82 

Having selected the optimum method, it is useful to define a cut-off value of FT above 

which molecules have a defined likelihood of sharing biological activity. Logistic 

regression permits a continuous variable, such as FT, to be linked with likelihood of 

belonging to a particular class and has been performed for the two test sets. This is 

shown in Figure 2-10 with the frequency histograms of molecules sharing activity 

shown at the top and those that do not share activity at the bottom. This reveals that 

there is some variability between the two test sets such that when FT is above about 

0.6 for Test Set 1 or above about 0.25 for Test Set 2 there is a greater than 50% chance 

of shared biological activity. In situations where trial data on a set of compounds is 

available, it should be used to calibrate the value of FT that should be used as a cut-

off for the purposes of clustering. However, by merging the two datasets (giving an 

evaluation based on 14 protein targets) and performing logistic regression on the 

combined test set (Figure 2-12), we suggest that a value of FT above 0.45 is a 

reasonable estimate of when compounds are more likely to share biological activity 

than not. 
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Figure 2-12. Logistic regression plot Test Set 1 and Test Set 2 combined together 

when using SD10 with DT=0.65 and BOV=0.60. 

2.5.3. Resampling SD10 

Given that the selection of reference shapes begins with a random choice, it is possible 

that the results are dependent upon this starting point. Therefore, SD10 was 

regenerated with DT=0.65 ten more times. Each of the new Shape Databases was used 

to generate fingerprints for both test sets and the AUC value was recomputed. The 

results show little variation (standard deviations vary from 0.002 to 0.033 depending 

on BOV) and can be seen in the Table 2-3 and Table 2-4. On average, with DT=0.65 

the best performance is found when using BOV=0.60. The AUC values of 0.64 and 

0.84 for Test Set 1 and Test Set 2 respectively, are obtained.  



46 | P a g e  
 

 

Table 2-3. The AUC values for 10x resampled Shape Database 10 with DT=0.65 for 

Test Set 1. 

  ITERATION 

  1 2 3 4 5 6 7 8 9 10 

BOV 0.50 0.61 0.61 0.61 0.61 0.61 0.60 0.61 0.61 0.61 0.61 

0.55 0.63 0.63 0.63 0.62 0.63 0.63 0.63 0.63 0.62 0.63 

0.60 0.65 0.65 0.64 0.63 0.63 0.64 0.64 0.64 0.64 0.64 

0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.66 0.62 0.66 0.62 

0.70 0.60 0.55 0.55 0.56 0.59 0.59 0.57 0.60 0.57 0.56 

 

Table 2-4. The AUC values for 10x resampled Shape Database 10 with DT=0.65 for 

Test Set 2. 

  ITERATION 

  1 2 3 4 5 6 7 8 9 10 

BOV 0.50 0.78 0.77 0.77 0.77 0.77 0.78 0.77 0.77 0.77 0.78 

0.55 0.81 0.81 0.81 0.80 0.83 0.81 0.82 0.81 0.80 0.81 

0.60 0.86 0.85 0.85 0.83 0.83 0.86 0.84 0.83 0.82 0.85 

0.65 0.85 0.84 0.81 0.84 0.82 0.84 0.83 0.85 0.82 0.83 

0.70 0.76 0.67 0.76 0.74 0.75 0.74 0.73 0.74 0.68 0.76 

 

 

 



47 | P a g e  
 

2.5.4. Conformations  

Naturally for most shape comparisons that might be of interest, a protein-ligand crystal 

structure would not be a useful requirement and would suggest that the activity of the 

molecule is already known. Therefore, conformations were generated from the 

SMILES string for each molecule in the test sets using Openeye’s OMEGA software,83 

a knowledge-based conformer generator. In this case, relatively limited sets of up to 

five conformations were generated although some molecules in the set were 

conformationally restricted and generated less than this.  

For all the conformations, shape fingerprints were generated using Shape Database 10. 

Two approaches for evaluating the comparison of two molecules were investigated: 

1) the highest value of FT amongst the array arising from comparisons of all 

conformations of one molecule with all conformations of the other (MV) or 2) the 

average of those values (AV). As shown in Figure 2-13, there is only a small 

difference in AUC values between the methods (AV and MV), with the MV being 

slightly better. This is consistent with molecules requiring only one (reasonable) 

conformation to be similar in shape in order to share biological activity. Comparing 

the AUC values obtained for conformations generated from SMILES with those for 

crystal structures shows only a little deterioration (Table 2-5). The logistic regression 

plots and ROC curves for both test sets (when using AV and MV methods with SD10 

and DT=0.65 and BOV=0.60) can be seen in Figure 2-14 and  Figure 2-15, 

respectively. Thus, using conformations generated from SMILES instead of crystal 

structures does not greatly affect the accuracy of the shape fingerprint method. This 

shows that the method can be successfully used even when the bioactive conformation 

of the ligand is not known.   
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1A) 

 

1B) 

 

2A) 

 



49 | P a g e  
 

2B) 

 

Figure 2-13. Heatmaps with AUC values for MV (A) and AV (B) methods for Test 

Set 1 (1) and Test Set 2 (2) when using SD10 with various DT and BOV. 

1A) 
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1B) 

 

2A) 
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2B) 

 

Figure 2-14. Logistic regression plot for Test Set 1 (1) and Test Set 2 (2) using AV 

(A) and MV (B) methods for SD10 with DT=0.65 and BOV=0.60. 

 
1A) 
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1B) 

 

2A) 
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2B) 

 

Figure 2-15. The ROC curves for Test Set 1 (1) and Test Set 2 (2) when using AV 

(A) and MV (B) methods for SD10 with DT=0.65 and BOV=0.60.  

 

Table 2-5. The comparison of the AUC values of both test sets when using 

conformations generated from SMILES and crystal structures for SD10 with DT=0.65 

and BOV=0.60.  

 CONFORMATIONS CRYSTAL STRUCTURES 

AV MV 

TEST SET 1 0.61 0.61 0.64 

TEST SET 2 0.77 0.78 0.85 
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2.5.5. Comparison with 2D fingerprints and scaffold hopping 

As already mentioned, shape fingerprints neglect the chemical structure of the 

molecule. Therefore, they should complement the 2D fingerprint methods that are 

exclusively dependent on the chemical structure. In order to compare and contrast the 

two approaches, 2D fingerprints for both test sets were generated and compared using 

a Similarity Tanimoto. The calculated AUC values are shown in Table 2-6. The AUC 

values are higher when using 2D fingerprints for both test sets. However, considering 

that shape fingerprints do not use any chemical information of the molecules but only 

their shape, the slightly worse AUC values than for well-established methods is not 

too surprising.  

Table 2-6. Comparison of the AUC values for different fingerprint methods. In the 

case of shape fingerprints, values obtained for SD10 with DT=0.65 and BOV=0.60 

are shown. 

 FINGERPRINT METHOD 

 MACCS166 Path Tree Circular Shape 

Fingerprints 

TEST SET 1 0.74 0.67 0.69 0.69 0.64 

TEST SET 2 0.94 0.94 0.94 0.97 0.85 
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Figure 2-16. Plot showing ST scores obtained by both methods: Shape Fingerprints 

and MACCS166 fingerprints (2D fingerprints) for each comparison in Test Set 1 (top) 

and Test Set 2 (bottom). Points in red correspond to compound pairs that share 

biological activity those in blue do not. 

To investigate the complementarity between the two fingerprint types, the Tanimotos 

between pairs of molecules have been computed with both methods. These are plotted 

against one another in Figure 2-16. Many pairs of molecules with shared biological 

activity (colored red) have high similarity according to both methods, which is 

unsurprising. There are a small number of examples of molecules with low shape 

similarity but high 2D fingerprint similarity that share biological activity but most 

interestingly, there are also a small number with high shape similarity and relatively 
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low 2D fingerprint similarity.  The orange box on each of the plots in Figure 2-16 

highlights these examples. These are connections that represent scaffold hopping. 

One example of a pair of structures for each of the test sets is shown in Figure 2-17 

and Figure 2-18. In Figure 2-17, an example of a connection between a neuraminidase 

molecule that contains an aromatic core and one with a monosaccharide core is a very 

clear example of scaffold hopping between inhibitors that are likely to have different 

physical properties while the indole and ortho-substituted phenol pair in Figure 2-18 

show that these ring-opening scaffold hops can also be detected by shape fingerprints. 

A) 

 

B) 

 

Figure 2-17. The structures of molecules binding to Neuraminidase with pdb codes: 

1b9s (A) and1nsc (B). 

A) 

 

B) 

 

Figure 2-18. The structures of molecules binding to Tryptophan Synthase with pdb 

codes: 1k7e (A) and1tjp (B). 

The combination of shape and 2D fingerprints was also investigated. Logistic 

regression (using the combination of Test Set 1 and Test Set 2) linked values of FT 

(for shape fingerprints) and Similarity Tanimoto (for 2D fingerprints) with the 

likelihood of shared activity. When two molecules are compared, the highest 

probability (either shape or 2D) was selected in each case. In this way, the calculated 

AUC values improved for Test Set 1 to 0.74 and Test Set 2 to 0.94. The two methods 
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provide useful complementarity and combine the ability to make useful connections 

between molecules with shared chemical structures and those with shared shape and 

thus permit both clustering and scaffold hopping. 

2.6.  Conclusions 

The chapter details the implementation and validation of the shape fingerprints 

method, a promising method for describing and comparing molecular shape. The 

method is able to distinguish subsets of compounds that share biological activity with 

good levels of accuracy, considering that only the shape of molecules is considered; 

no other features are represented in these calculations. The obtained AUC values were 

0.64 and 0.85 for Test Set 1 and Test Set 2, respectively. This suggests that shape is a 

strong influence on biological activity, as envisaged by the lock-and-key concept. 

Shape fingerprints are a useful method to apply this concept and are able to group 

compounds that are likely to share biological activity. The AUC analysis (as well as 

examination of logistic regression plots) has permitted the identification of the best 

performing Shape Database: SD10. The optimum settings involve DT set to 0.65 and 

BOV to 0.60. The Shape Database 10 performs well when crystal structures are used 

but also in case of conformations of ligands generated form SMILES with AUC values 

of 0.61 and 0.61 (AV and MV method respectively) for Test Set 1and 0.77 and 0.78 

for Test Set 2, which is comparable with 2D fingerprint methods. However, the ability 

of shape fingerprints to find molecules similar in shape which could not be found using 

2D fingerprints (the different chemistry) shows great potential in scaffold hopping.  

The best Shape Database can be accessed via our GitHub repository: 

https://github.com/LeachResearchGroup/ShapeFingerprints.  
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Chapter 3  

 

 

Shape Multipoles 
 

 

 

 

 

3.1.  Introduction 

Shape multipoles71 is a fast computational method that can be used to describe the 

shape of compounds using only numbers. This comes with many advantages including 

low storage needs and fast comparisons that require only simple mathematical 

operations. The shape multipoles71 method describes the distribution of a molecule’s 

volume using centroids and multipoles (monopole, dipoles, quadrupole, octupole 

moments), which are computed using a Gaussian description of a molecule.70 Like in 

physics, where the electric dipole moment is used to describe the distribution of charge 

within a system, as shown in Equation 3-1, the analogous equation can be written 

based on Gaussian density (Equation 3-2). 

Equation 3-1. the electric dipole moment, defined as the first order of multipole 

expansion, where ρelec is electrostatic charge density and r is the Cartesian coordinates 

of a point. 

𝑝 = න 𝑟𝜌௘௟௘௖ (𝑟)𝑑𝑟 
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Equation 3-2. The first order term in the shape multipole expansion, where V is 

defined as the Gaussian volume, rα, rβ, rγ, etc. are the Cartesian coordinates of a point 

and ρg is the Gaussian density of a molecule. 

𝑆ఈ
(ଵ)

=
1

𝑉
 න 𝑟ఈ𝜌௹

௚
(𝑟)𝑑𝑟 

The Gaussian volume from Equation 3-2 is the zeroth order term describing the shape 

(monopole) and can be defined as in Equation 3-3, showing its independence from a 

change in origin for the coordinate system. 

Equation 3-3. The zeroth moment, the Gaussian volume. 

𝑉 = න 𝜌௹
௚

(𝑟)𝑑𝑟 

However, the higher order moments should not be defined before specifying the origin 

of the molecule, its centroid. The first order moment (Equation 3-2) can be therefore 

adjusted (Equation 3-4) to indicate its dependency on the centre of the molecule. The 

choice of S(1) as an origin with coordinates R=(X,Y,Z), leads to vanishing  of the first 

order moment. Now, having defined the centroid of the molecule, there can be defined 

higher order moments.  

Equation 3-4. The first order moment.   

𝑆(ଵ)ᇱ =
1

𝑉
 න 𝑟ᇱ𝜌௹

௚ (𝑟)𝑑𝑟 =  𝑆(ଵ) − 𝑅 

Higher order terms can be defined as in Equation 3-5, which can be simply 

transformed into second (Equation 3-6) and third (Equation 3-7) order of the shape 

multipole expansion, which are known as the shape quadrupole and shape octupole, 

respectively. 

Equation 3-5. Shape Nth order multipole.  

𝑆ఈభఈమ…ఈ೙

(௡)
=

1

𝑉
 න 𝑟ఈభ

𝑟ఈమ
… 𝑟ఈ೙

𝜌௹
௚

(𝑟)𝑑𝑟 
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Equation 3-6. Shape Quadrupole, the second order moment. 

𝑆ఈఉ
(ଶ)

=
1

𝑉
 න 𝑟ఈ𝑟ఉ𝜌௹

௚
(𝑟)𝑑𝑟 

Equation 3-7. Shape Octupole, the third order moment.  

𝑆ఈఉఊ
(ଷ)

=
1

𝑉
 න 𝑟ఈ𝑟ఉ𝑟ఊ𝜌௹

௚
(𝑟)𝑑𝑟 

As can be seen in the Figure 3-1 and also based on the Equation 3-6, the quadrupole’s 

components (Qx, Qy, Qz) describe how the matter is distributed along the three 

orthogonal axes such that linear molecules (such as 1,3,5-hexatriyne) have one large 

component, flat molecules (like benzene) have two large components and spherical 

molecules (like Buckminsterfullerene) have three large components. Their octupole 

moments are really small or equal to zero. This suggests that octupoles are more 

appropriate to identify asymmetric spatial distribution of shape, being almost 

neglected in symmetric molecules. However, the shape quadrupoles look the same for 

two enantiomers. As shown in Figure 3-1, some of the octupole components for (R)-

(+)-thalidomide (E) and (S)-(−)-thalidomide (F) have the same value but different sign, 

which indicate the differences in shape of those two enantiomers and indicates that 

shape octupoles describe some of the unsymmetrical distribution of matter in a 

molecule. 

A) 

 

B) 

 

C)  

 

<Quadrupoles> 

4.74, 4.68, 4.66 

<Octupoles> 

0.01, 0.00, -0.00, -

0.00, 0.00, -0.00, -

0.00, -0.01, 0.00, -

0.00 

 <Quadrupoles> 

1.59, 1.59, 0.62 

<Octupoles> 

0.00, 0.00, -0.00, -

0.00, -0.00, 0.00, 

0.00, -0.00, -0.00, -

0.00 

 <Quadrupoles> 

5.39, 0.62, 0.62 

<Octupoles> 

0.00, 0.00, 0.00, 

0.00, -0.00, 0.00, 

0.00, 0.00, -0.00, 

-0.00 
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D) 

 

E) 

 

 

<Quadrupoles> 

8.78, 1.63, 1.15 

 

<Octupoles> 

1.81, 0.30, 0.29, -1.53, -0.73, -

1.39, -0.08, 1.17, 0.01, -0.24 

 <Quadrupoles> 

8.78, 1.63, 1.15 

 

<Octupoles> 

1.82, 0.30, -0.29, -1.52, 0.71, -

1.39, 0.08, 1.17, 0.01, 0.24 

Figure 3-1. Example of calculated shape quadrupoles for Buckminsterfullerene (A) 

with three almost equal quadrupole components, benzene (B) with two components 

slightly greater than the third and hexa-1,3,5-triyne (C) with only one outstandingly 

higher quadrupole component and shape octupoles for (R)-(+)-thalidomide (D) and 

(S)-(−)-thalidomide (E). 

3.2. Components of shape multipoles 

Shape multipoles were computed using the Shape toolkit provided by Openeye78 for a 

few chosen molecules from Test Set 1 (as described in chapter 2). The reason for this 

was to examine the components of shape quadrupoles and their ability to distinguish 

similar molecular shape.  

The shape multipoles method performs surprisingly well considering the amount of 

components it includes. Hence, the components of shape quadrupoles and octupoles 

for molecules with similar shape, shown in Figure 3-2 were compared and the values 

were stored in Table 3-1. This suggests that the components of shape quadrupoles are 

capable of characterizing the broad shape features of molecules. The corresponding 

components do not deviate much from each other for very similar shapes of molecules. 

However, shape octupoles are not so straightforward to interpret but likely carry more 

specific and accurate information about the shape of compounds. 
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2brb 2brg 

  

2brh 2brm 

Figure 3-2. The chemical structures of selected Checkpoint kinase (Chk1) ligands. 

Table 3-1. Shape quadrupoles for some ligands that bind to Checkpoint kinase (Chk1).  

Ligand Q1 Q2 Q3 

2brb 9.25 4.40 0.91 

2brg 9.73 4.17 0.89 

2brh 9.90 4.75 0.78 

2brm 9.26 4.25 0.92 

 

3.3. Test Sets 

To evaluate the performance of shape multipoles, we used three test sets: 1) a set 

described by Taylor et al.79, which was devised to test pharmacophore models and 

consists of 10 sets of ligand-protein complexes 2) a group from the Astex diversity 

set80, which includes 45 molecules binding to 4 selected proteins and 3) a set of 4 

groups of protein-ligand complexes from a set described by Head et al.87  
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Shape octupoles were generated for every compound in three test sets. Molecules were 

compared with each other based on the calculated multipoles. The Euclidean distance 

between shape octupoles were used to determine the similarity between the shapes of 

each structure. Euclidean distance is equal to 0 for the most similar compounds but 

has no upper bound for dissimilar molecules.  

The performance of the method was evaluated using logistic regression and AUC 

values from ROC plots, which were generated using R.82 Logistic regression was used 

to link the Euclidean distance with the proportion of structures that bind to the same 

protein, which corresponds to the likelihood of the two molecules sharing biological 

activity. Ideally, the Euclidean distance values would be low for all molecules that 

bind to the same protein and high for compounds which do not share activity.  

A) 
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B) 

 

C) 

 

Figure 3-3. Logistic regression plots for 3 Test Sets when using ∆Octupoles: Test Set 

1 (A), Test Set 2 (B), Test Set 3 (C). 

The plots in Figure 3-3 show the distribution of Euclidean distance values for 

molecules that share activity (upper histogram) and those that do not (lower 

histogram). The logistic regression plot for shape octupoles suggests that they do not 
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provide a good distinction. Only in case of Test Set 2, the probability of two molecules 

that bind to same protein having low ∆Octupoles reaches almost 80%. However, that 

might be the result of the wide range of the Euclidean distance values.  

A) 

 

B) 
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C) 

 

Figure 3-4. ROC curves for 3 Test Sets when using ∆Octupoles: Test Set 1 (A), Test 

Set 2 (B) and Test Set 3 (C). 

The ROC curve is a fundamental tool for diagnostic test evaluation. In a ROC curve 

the true positive rate (Sensitivity) is plotted as a function of the false positive rate (100-

Specificity) for different cut-off points of a parameter. Each point on the ROC curve 

represents a sensitivity/specificity pair corresponding to a particular decision 

threshold. The area under the ROC curve (AUC) is a measure of how well a method 

is able to distinguish molecules that share biological activity from those that do not. A 

perfect method would achieve an AUC value of 1, a completely random method 0.5. 

Test Set 1 results in an AUC value of 0.54, which is not much better from a random 

distribution. Higher results were obtained for Test Set 2 – 0.81 and Test Set 3 – 0.68. 

This is slightly lower than the results obtained using the shape fingerprint method: 

0.64 and 0.85 for Test Set 1 and 2, respectively. Test Set 3 was not used with the shape 

fingerprint method as it produced bit strings with too low (or even zero) bit density, 

therefore cannot be compared here. 
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3.4. Enantiomers 

In order to check whether the shape multipole method could be applicable to find 

differences in shape between enantiomers, three sets were used that were extracted 

from the CHEMBL database88 based on their measured IC50 values: the ligands of 

acetylcholinesterase (AChE), human ether-a-go-go-related gene potassium channel 1 

(hERG) and dipeptidyl peptidase IV (DPP-IV). These comprised 448, 190 and 136 

pairs of enantiomers, respectively. 

Conformations of all molecules were generated by OMEGA83 from canonical 

SMILES with default settings. The structures that failed the generation process due to 

unspecified stereochemistry had been rejected. All the conformations were optimized 

using Szybki78 before calculating shape multipoles.  

3.4.1. Human ether-a-go-go-related gene potassium channel 1 

(hERG)  

The set of compounds, inhibitors of hERG, was downloaded from the CHEMBL 

database88 and were selected by the requirement to have a measured IC50. The 

enantiomer pairs were found by text manipulation. Initially, the set consisted of 448 

pairs of enantiomers out of which, duplicates and those without any IC50 values have 

been discarded from the further analysis leaving 105 distinct pairs. For those pairs the 

shape multipoles were calculated, both shape quadrupoles and octupoles. As 

mentioned previously, the shape quadrupoles for any enantiomer pairs are either the 

same or very similar, the further analysis was focused on comparing the shape 

octupoles of each pair. The plot in the Figure 3-5 shows the relationship between the 

difference in octupoles and the change of pIC50 for each pair of compounds.  
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Figure 3-5. The graph showing the ∆pIC50 as a function of ∆Octupoles for 

enantiomer pairs from hERG dataset. 

In the Figure 3-5, it is noticeable that the division between pairs with only one 

stereocentre and more than one is not clear. There are some points that particularly 

stand out and will be discussed below. Those are marked in red, yellow and blue circles 

in the plot in the Figure 3-5. 

In the red circle in Figure 3-5, there are enantiomer pairs with high ∆pIC50 and a 

medium difference in octupoles. As shown in the Figure 3-6, the difference in the 

octupoles is not as high as would be expected based on the difference in pIC50 these 

pairs have quite similar shapes.  

1A) 

 

1B) 
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2A) 

 

2B) 

 

Figure 3-6. The structures of enantiomer pairs: CHEMBL498260 (1A) and 

CHEMBL55826 (1B); CHEMBL239299 (2A) and CHEMBL239724 (2B). 

In the blue circle in Figure 3-5, there are enantiomer pairs with a medium ∆pIC50 and 

quite low difference in octupoles, which, as in the examples above, could be explained 

by similarities in overall shape of these particular enantiomer pairs. This can be seen 

in the Figure 3-7. 

1A) 

 

1B) 

 

2A) 

 

2B) 

 

3A) 

 

3B) 

 

Figure 3-7. The structures of enantiomer pairs: CHEMBL550471 (1A) and 

CHEMBL556648 (1B); CHEMBL1200749 (2A) and CHEMBL2447962 (2B); 

CHEMBL1091777 (3A) and CHEMBL1091778 (3B). 
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In the yellow circle in Figure 3-5, are enantiomer pairs with low ∆pIC50 and high 

difference in octupoles. As shown in the examples in the Figure 3-8, the differences 

in shapes of these pairs are not that great as is indicated by the calculated octupole 

difference.  

1A) 

 

1B) 

 

2A) 

 

2B) 

 

Figure 3-8. The structures of enantiomer pairs: CHEMBL272637 (1A) and 

CHEMBL429761 (1B); CHEMBL3124968 (2A) and CHEMBL3127672 (2B). 

The most extreme values of ∆Octupoles are obtained for enantiomer pairs with more 

than one stereocentre. As can be seen in the Figure 3-5, there are two pairs with 

∆Octupole equal to 76.58 and 62.46: CHEMBL1079823 and CHEMBL1079824 pair 

and CHEMBL2010844 and CHEMBL2010845 pair, respectively. This is mostly 

caused by the flexibility of the molecules - enantiomers have different shapes after 

optimization process, which results in high difference in octupoles.   

1A) 

 

1B) 
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2A) 

 

2B) 

 

Figure 3-9. The structures of enantiomer pairs: CHEMBL1079823 (1A) and 

CHEMBL1079824 (1B); CHEMBL2010844 (2A) and CHEMBL2010845 (2B). 

3.4.2. Acetylcholinesterase (AChE)  

The set of AChE ligands from the CHEMBL database88 consisted of 190 pairs, which 

were found by simple text manipulation. The pairs without specified IC50 values and 

those that were considered as duplicates have been removed, leaving 27 distinct pairs.  

 

Figure 3-10. The graph showing the ∆pIC50 as a function of ∆Octupoles for 

enantiomer pairs from AChE dataset. 

There is a clear distinction between pairs with one stereocentre and those with more 

than one stereocentre in the AChE set, visible in Figure 3-10. However, as the ∆pIC50 

tends to have a higher value for pairs with more stereocentres, the difference in 

Octupoles does not grow linearly with it. There is one outstanding point on the plot, 
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marked in the red circle, with ∆pIC50 = 0.93 and ∆Octupoles = 8.68. The structures 

of the pair can be seen in Figure 3-11. It is worth noting that this particular pair has 

quite a high difference in Quadrupoles (1.09), which usually gives values much closer 

to 0 for two enantiomers.  

A) 

 

B) 

 

Figure 3-11. The structures of enantiomer pair: CHEMBL470715 (A) and 

CHEMBL490359 (B). 

The most extreme value of ∆Octupoles is obtained for enantiomer pair with more than 

one stereocentre, as it can be seen in the Figure 3-5.The value of ∆Octupole is equal 

to 161.03 for CHEMBL540178 and CHEMBL556581 pair (Figure 3-12). Similarly 

as in other cases, the generated and optimized conformations differ in shape for each 

enantiomer due to flexibility of compounds and therefore comparing them resulted in 

high ∆Octupole value.  

1A) 

 

1B) 
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Figure 3-12. The structures of enantiomer pair: CHEMBL540178 (1A) and 

CHEMBL556581 (1B). 

3.4.3. Dipeptidyl peptidase IV (DPP-IV) 

The set of DPP-IV ligands initially consisted of 136 pairs, which were found by text 

manipulation. After removing duplicate pairs without specified bioactivity data, which 

was essential for further analysis, there were 34 distinct pairs left. Shape octupoles 

were calculated for them and the relation between the difference in octupoles and the 

difference in pIC50 was studied.  

 

Figure 3-13. The graph showing the ∆pIC50 as a function of ∆Octupoles for 

enantiomer pairs from the DPP-IV dataset. 

As in the case of the AChE set, the plot in Figure 3-13 has a noticeable distinction 

between pairs with different numbers of stereocentres. With one exception, generally 

for pairs with only one stereocentre the difference in Octupoles grow almost linearly 

with the ∆pIC50.   
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A) 

 

B) 

 

Figure 3-14. The structures of enantiomer pair: CHEMBL3329627 (A) and 

CHEMBL3329694 (B). 

The exception is the pair of enantiomers marked in red box on the plot in Figure 3-13, 

with the structures visible in Figure 3-14.  

The highest value of ∆Octupoles (26.27) has a pair of enantiomers: CHEMBL428936 

and CHEMBL399348. Such difference could be a result of flexibility of cyclic rings 

(Figure 3-15). 

1A) 

 

1B) 

 

Figure 3-15. The structures of enantiomer pair: CHEMBL428936 (1A) and 

CHEMBL399348 (1B). 

3.5.  Conclusions 

The shape multipole method is a fast computational method to describe the shape of 

molecules by using only numbers and therefore it requires low storage needs and 

comparison is performed by simple mathematical operations. To describe the shape, 

it uses only 13 values (3 quadrupole components and 10 octupole components). While 

the quadrupole components describe the distribution of matter in a system along the 

axes x, y, z, and therefore do not contain too specific information, the octupole 
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components describe the deviations of matter from axes in a system more accurately 

and thus can explain the differences in shape and activity between enantiomers.  

The shape multipoles method performs surprisingly well in grouping the compounds 

based on shared biological activity, considering the amount of components it includes. 

The obtained AUC values of 0.54, 0.81 and 0.68 for Test Set 1, Test Set 2 and Test 

Set 3, respectively are slightly lower than the results obtained using the shape 

fingerprint method: 0.64 and 0.85 for Test Set 1 and 2, respectively (Test Set 3 was 

not used).  

The investigation of using shape multipoles in order to find differences in shape 

between enantiomers showed potential, however requires better comparison metrics 

in order to be more effective. 
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Chapter 4  

 

 

Application of shape fingerprints 
 

 

 

 

 

4.1. Introduction  

In order to be useful, the method needs to show a good performance in addressing 

some scientific problems. Without applying it, and having proved good performance, 

to real problems that affect the chemistry world, it is hard to recommend the approach 

as a solution. This would diminish the likelihood of the shape fingerprint method being 

used. Consequently, in this chapter a few of the possible applications of the shape 

fingerprint method will be explored. These include solubility predictions, virtual 

screening or simply grouping compounds with shared biological activity.  

4.2. DUD-E diverse set 

The quantitative assessment of performance of a lot of computational methods remains 

challenging.89 The Directory of Useful Decoys (DUD) was designed to measure how 

known ligands rank versus a set of decoy molecules.90 Here, the set from the DUD-E 

database was used in an alternative way. The collection of decoys was not included 

and only actives were taken into consideration. The idea behind this was to investigate 

the ability of the shape fingerprints method to group compounds binding to different 

targets, similarly as in chapter 2, where the validation of the method was based on the 
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ability to group compounds with similar biological activity. However, the set 

presented here is much larger than used previously. This should examine how well the 

approach works on various size sets with more shape diversities.  

4.2.1. Results 

The DUD-E diverse set consists of 8 targets: serine/threonine-protein kinase AKT 

(AKT1), beta-lactamase (AMPC), cytochrome P450 3A4 (CP3A4), C-X-C chemokine 

receptor type 4 (CXCR4), the glucocorticoid receptor (GCR), human 

immunodeficiency virus type 1 protease (HIVPR), human immunodeficiency virus 

type 1 reverse transcriptase (HIVTR) and kinesin-like protein 1 (KIF11). It consists of 

290, 48, 166, 39, 258, 527, 330 and 116 actives, respectively (which is 1774 ligands 

in total) in AKT1, AMPC, CP3A4, CXCR4, GCR, HIVPR, HIVRT and KIF11, 

respectively.  

The structures of molecules were taken from the DUD-E webpage,90 provided as 

structure-data files (SDF). The shape fingerprints were generated for each structure 

using Shape Database SD10 with DT = 0.65. A bit On value equal to 0.60 was applied, 

exactly as suggested in the previous chapter to maximize the performance of the 

method. The ability to group ligands was analysed based on plots (ROC curve and 

logistic regression) produced in R.82 
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Figure 4-1. The ROC curve for the DUD-E diversity set. 

 

Figure 4-2.  Logistic regression plot for the DUD-E diversity set.  
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As shown in the Figure 4-1, the AUC value calculated for the DUD-E diversity set is 

equal to 0.55. This is a little bit lower value than the ones obtained in previous study 

in chapter 2 (0.64 and 0.85 for Test Set 1 and Test Set 2, respectively). However, the 

size of the set presented here is much greater and therefore a value in this range could 

have been expected. The large jump in the ROC curve is possibly caused by a high 

percentage of compounds with dissimilar shape yet shared biological activity. The 

probability curve from the logistic regression plot, in the Figure 4-2, reaches the value 

of 0.8 and it reveals that for FT above 0.5 there is greater than 50% chance of shared 

biological activity. This behaves slightly better than in the case of Test Set 1 used in 

evaluation of shape fingerprint method and worse than Test Set 2 described in chapter 

2.  

4.3. Virtual Screening 

Virtual screening is a computational technique used in drug discovery to search 

libraries of small molecules in order to identify those structures which are most likely 

to bind to a drug target, typically a protein, receptor or enzyme.90,91 The virtual 

screening techniques are rated based on their ability to retrieve a small group of actives 

from a large collection of structures with similar physicochemical properties but 

dissimilar 2D topology – decoys.90  

4.3.1. Results 

As virtual screening is a common technique in the drug design process,29 it was of 

great interest to check the performance of the shape fingerprint method in it. With the 

purpose to test whether the shape fingerprint method is able to distinguish the 

molecules that are active from those that are not, three sets from DUD-E were 

chosen.90 These sets include: C-X-C chemokine receptor type 4 (CXCR4), Beta-

lactamase (AMPC) and Catechol O-methyltransferase (COMT). The sets contain 40, 

48 and 41 actives, respectively and a series of decoys. The shape fingerprints were 

generated for these sets using Shape Database SD10 with DT = 0.65 and BOV = 0.60. 

The molecules were compared with each other, resulting in Fingerprint Tanimoto 
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values. The values were grouped into those arising from comparison of active 

compounds and those from the comparison of inactives. Based on that, ROC curves 

were produced for the three sets using R studio.92  

 

Figure 4-3. The ROC curve for the CXCR4 set. 

 

Figure 4-4. The ROC curve for the AMPC set. 
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Figure 4-5. The ROC curve for the COMT set. 

The shape fingerprint method performed relatively well, considering the size of the 

sets and the high ratio of decoys per ligand. The AUC values obtained from the ROC 

curve are 0.57, 0.66 and 0.62 for CXCR4, AMPC and COMT sets, respectively. This 

gives opportunities that shape fingerprints could be successfully used as a ligand-

based virtual screening technique. 

4.4. Aqueous Solubility 

Solubility prediction has a great importance in the pharmaceutical industry because of 

its implications in the formulation of drugs and in drug absorption.93 The solubility of 

compounds depends on their physical and chemical properties. The interaction of 

solutes with water and its crystallinity play important roles in determining the 

solubility of a compound.94  

 Many methods have been developed to estimate aqueous solubility using various 

physical properties of compounds. The most often used, and also the simplest model, 

is the general solubility equation (GSE), as in Equation 4-1, which was proposed by 



82 | P a g e  
 

S. Yalkowsky.95,96,97 The equation shows that the solubility of a compound can be 

calculated from the melting point (MP) and octanol-water partition coefficient (logP) 

of a compound. The logP values can be either obtained experimentally or calculated 

using scientific software e.g. MOE.98  

Equation 4-1. General Solubility Equation, where SW is aqueous solubility, MP is the 

melting point and logP is the octanol-water partition coefficient of the compound. 

𝑙𝑜𝑔 𝑆ௐ = 0.5 − 0.01(𝑀𝑃 − 25) − 𝑙𝑜𝑔𝑃 

This model, however, requires experimental data and therefore cannot be applied to 

molecules without such data or new compounds for which those values have not been 

measured, yet. Therefore, computational methods able to accurately predict solubility 

are in high demand. Based on the GSE, instead of using melting point which is 

dependent on the shape of molecules (to the extent that they influence packing in the 

solid state), it was of great interest to apply shape fingerprints.  

4.4.1. Results 

All the data for solubility studies were collected from various databases and literature. 

The data includes information from large solubility datasets: PhysProp,99 Reaxys 

Databases100 and Yalkowsky’s Handbook of Aqueous Solubility,101 as well as many 

literature published solubility datasets.102–116  For molecules without any SMILES, 

these were generated using ChemCell,117 ChemSpider,118 ChemDraw or ChemIDPlus. 

The dataset contained 102821 measurements of solubility and/or melting points. After 

taking only unique SMILES strings the number reduced to 94955. Measurements of 

solubility or melting points that had “less than” or “more than” prefixes were excluded 

from the dataset and the highest value in ranges of melting point was taken and the 

lowest value for solubility. The reason for that was to allow prediction based on the 

most stable polymorph.  
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4.4.1.1. Training and Test Set to predict solubility – Shape Database 

10 

The dataset was divided into 1) a set containing logS values 2) compounds having 

measured MP values 3) compounds with measured values of both logS and MP. The 

latter set with measured values of both logS and melting point was used as the most 

suitable for the solubility prediction and its comparison to the GSE model. The set of 

compounds (945 molecules) was divided into two sets: training (90%) and test set 

(10%). The shape fingerprints were generated for both sets (training and test) using 

SD10 and DT= 0.65 and BOV = 0.60. This Shape Database was suggested as 

producing the best results in chapter 2. The independent values were selected to be 

calculated logP (computed in MOE)98 and all the bits from the generated shape 

fingerprint string. The applied method was ‘Enter’, which means that all independent 

variables are entered into the equation in one step. The model built using the training 

set was stored (Equation 4-2, Table 4-1) and used on the 95 molecules of the test set 

to predict their logS values. The model built with clogP and experimental MP values 

was used as a benchmark (adjusted R2 = 0.612). The obtained results were compared 

to experimental values of logS as well as those predicted in MOE98 in the Table 4-2. 

Equation 4-2. The linear regression model used for prediction of solubility. The 

coefficients for each bit can be found in the table below.  

𝑙𝑜𝑔 𝑆ௐ = −2.140 − 0.427𝑙𝑜𝑔𝑃 + 0.450𝐵𝑖𝑡1 − 0.038𝐵𝑖𝑡10 + ⋯ 

 

Table 4-1. The table of constant and coefficients used for solubility prediction. Some 

bits (not listed here) are constants or have missing correlations.  

MODEL UNSTANDARDIZED 

COEFFICIENTS 

B Std. Error 

(CONSTANT) -2.140 0.259 

LOGP -0.427 0.030 

BIT1 0.450 0.565 
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BIT10 -0.038 0.244 

BIT12 15.216 13.595 

BIT14 -0.433 6.037 

BIT17 55.307 22.637 

BIT18 -0.716 1.652 

BIT22 -16.848 12.075 

BIT24 14.071 27.932 

BIT26 -1.613 6.214 

BIT30 0.066 0.199 

BIT32 0.085 0.195 

BIT36 0.352 0.221 

BIT40 0.498 0.248 

BIT45 -59.117 23.955 

BIT50 4.157 5.203 

BIT51 108.107 37.984 

BIT52 -3.234 3.443 

BIT54 -1.072 2.497 

BIT56 0.038 0.621 

BIT58 -0.538 0.213 

BIT60 -0.149 0.253 

BIT62 0.032 0.266 

BIT64 0.062 0.604 

BIT66 -4.860 38.180 

BIT70 -6.849 38.975 

BIT76 -2.325 14.958 

BIT81 -25.653 12.229 

BIT82 -0.035 1.238 

BIT83 11.325 35.828 

BIT85 0.315 0.206 

BIT87 -38.310 24.825 

BIT89 -4.293 6.423 

BIT90 -4.127 29.493 

BIT91 -54.286 16.998 
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BIT95 -23.864 17.144 

BIT96 -12.968 37.503 

BIT98 7.391 7.500 

BIT100 -32.690 14.413 

BIT102 -0.504 0.234 

BIT104 -0.207 1.420 

BIT106 3.908 3.329 

BIT108 -57.546 30.162 

BIT110 -10.662 8.545 

BIT112 0.277 0.679 

BIT114 0.350 0.979 

BIT116 -3.137 5.102 

BIT118 -6.980 24.101 

BIT121 43.058 49.661 

BIT122 -11.305 5.329 

BIT135 -10.339 5.360 

BIT139 -3.934 8.544 

BIT141 -5.110 12.954 

BIT142 -0.104 0.706 

BIT143 -13.364 11.337 

BIT146 0.310 0.294 

BIT148 0.512 0.252 

BIT152 0.077 0.308 

BIT154 -0.700 0.940 

BIT155 -13.962 8.102 

BIT156 -12.222 16.736 

BIT164 24.663 38.976 

BIT170 -0.751 0.976 

BIT171 -24.871 60.005 

BIT172 27.463 23.111 

BIT180 -0.280 0.530 

BIT182 -1.040 1.329 

BIT184 -0.526 0.264 
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BIT186 1.277 1.042 

BIT188 -1.946 0.951 

BIT196 20.175 20.918 

BIT198 63.068 31.065 

BIT200 1.055 6.689 

BIT210 53.209 35.716 

BIT211 25.563 8.271 

BIT212 -19.575 15.010 

BIT216 1.224 0.470 

BIT219 -29.239 10.192 

BIT222 -1.472 5.557 

BIT223 -96.309 58.984 

BIT224 35.954 36.368 

BIT226 -0.403 49.922 

BIT228 34.538 21.153 

BIT230 -32.121 32.697 

BIT231 -35.265 12.060 

BIT232 -34.718 20.689 

BIT233 54.616 31.301 

BIT234 -3.993 4.812 

BIT236 -1.981 7.034 

BIT237 6.938 34.962 

BIT238 14.164 32.404 

BIT241 -73.142 41.727 

BIT242 27.264 19.186 

BIT244 0.031 1.725 

BIT248 2.843 2.742 

BIT251 -78.610 65.710 

BIT254 6.675 8.863 

BIT256 11.111 6.737 

BIT258 -0.073 0.210 

BIT260 -0.312 0.242 

BIT266 77.324 35.587 
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BIT271 -36.416 16.404 

BIT273 -33.929 13.445 

BIT275 6.173 8.154 

BIT276 -1.632 1.490 

BIT277 18.698 9.128 

BIT278 -1.752 6.751 

BIT279 -0.011 21.719 

BIT282 66.805 21.526 

BIT283 0.247 2.241 

BIT286 16.796 7.158 

BIT289 6.238 39.858 

BIT290 12.659 4.512 

BIT292 -38.638 31.352 

BIT293 -20.478 11.007 

BIT298 160.230 68.863 

BIT301 6.828 6.031 

BIT303 0.238 0.383 

BIT305 -37.211 17.372 

BIT307 -0.139 0.317 

BIT309 0.945 0.538 

BIT311 0.313 1.225 

BIT313 0.920 1.073 

BIT315 -2.538 1.375 

BIT318 -2.425 5.208 

BIT322 1.944 6.623 

BIT324 -2.777 1.368 

BIT326 -102.865 49.191 

BIT328 -0.621 1.275 

BIT330 -0.609 8.385 

BIT331 -56.697 35.842 

BIT332 -13.353 20.318 

BIT335 -6.050 10.167 

BIT337 28.584 18.549 
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BIT339 1.571 1.687 

BIT343 -1.534 2.011 

BIT345 -3.408 3.132 

BIT347 8.391 23.402 

BIT349 -5.736 18.625 

BIT353 -0.897 1.478 

BIT357 -70.835 41.312 

BIT359 -75.363 29.522 

BIT361 -40.632 50.047 

BIT373 0.102 0.298 

BIT375 21.408 12.062 

BIT377 0.340 0.458 

BIT382 -17.031 20.233 

BIT384 -25.139 24.973 

BIT390 -22.209 11.659 

BIT394 -12.502 13.397 

BIT397 30.690 29.705 

BIT398 77.154 46.105 

BIT400 -2.227 3.107 

BIT402 -2.002 3.064 

BIT406 -19.401 35.368 

BIT408 -13.621 42.432 

BIT410 6.244 26.800 

BIT413 6.263 15.838 

BIT414 -60.398 51.227 

BIT416 5.022 4.151 

BIT418 0.639 0.940 

BIT420 -0.491 0.929 

BIT422 -3.144 3.016 

BIT424 21.040 19.180 

BIT426 -20.310 39.636 

BIT427 144.522 72.619 

BIT428 -8.963 9.018 
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BIT431 28.504 18.983 

BIT432 0.598 0.507 

BIT434 0.013 0.412 

BIT436 49.215 50.656 

BIT438 -3.109 1.282 

BIT440 68.913 33.500 

BIT446 56.041 39.203 

BIT447 -121.916 54.209 

BIT449 0.810 1.267 

BIT450 -5.652 3.206 

BIT453 0.100 0.277 

BIT455 1.198 2.162 

BIT457 13.163 4.768 

BIT458 -18.746 17.552 

BIT461 -13.232 24.046 

BIT462 -29.683 36.545 

BIT463 22.749 15.935 

BIT467 -4.545 22.893 

BIT470 -2.315 1.604 

BIT472 64.730 45.585 

BIT473 23.767 13.416 

BIT475 -1.894 17.679 

BIT476 -29.894 21.066 

BIT479 8.883 26.827 

BIT482 -14.772 9.922 

BIT483 -42.324 22.849 

BIT484 -23.455 53.482 

BIT485 -0.004 0.800 

BIT493 3.189 8.405 

BIT495 19.164 19.644 

BIT497 -78.415 43.803 

BIT499 22.246 80.955 

BIT501 0.267 1.736 
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BIT505 1.218 4.416 

BIT506 97.580 42.207 

BIT507 40.542 68.341 

BIT508 119.132 44.827 

BIT509 -21.783 19.109 

BIT510 -5.268 4.630 

BIT512 -0.823 0.994 

BIT513 13.737 51.130 

BIT516 -10.053 10.494 

BIT517 8.360 7.415 

BIT519 68.383 22.741 

BIT521 -0.494 0.228 

BIT525 -2.416 6.168 

BIT526 -8.253 30.331 

BIT529 3.824 5.661 

BIT532 -0.360 1.259 

BIT533 0.399 1.078 

BIT536 -51.697 23.788 

BIT537 12.505 15.997 

BIT538 23.172 26.463 

BIT539 -13.221 10.205 

BIT540 59.977 68.899 

BIT541 -0.112 0.269 

BIT542 -22.167 13.504 

BIT543 -17.622 6.871 

BIT544 -0.335 2.787 

BIT545 -18.085 22.805 

BIT547 -111.956 41.659 

BIT548 48.690 17.332 

BIT549 -13.144 22.787 

BIT550 4.094 5.623 

BIT551 -7.517 21.034 

BIT552 -7.434 33.623 
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BIT554 10.608 37.121 

BIT555 -110.685 41.798 

BIT560 -0.484 1.206 

BIT562 1.646 1.469 

BIT564 0.259 0.253 

BIT565 -72.961 54.150 

BIT568 17.639 15.559 

BIT569 -73.238 51.805 

BIT572 -75.776 34.397 

BIT575 -0.192 2.351 

BIT578 -41.980 23.765 

BIT580 10.109 9.320 

BIT581 70.458 35.961 

BIT584 -24.472 25.270 

BIT586 55.233 26.261 

BIT587 1.123 18.077 

BIT588 0.078 1.313 

BIT590 1.728 4.979 

BIT591 -0.492 10.946 

BIT593 2.023 4.575 

BIT595 19.092 16.410 

BIT599 -28.539 23.155 

BIT600 -11.460 19.116 

BIT602 -1.057 1.062 

BIT604 -30.529 11.018 

BIT606 -38.094 25.873 

BIT610 40.970 33.068 

BIT611 -14.504 9.554 

BIT614 102.874 66.747 

BIT617 49.888 16.797 

BIT618 4.550 1.781 

BIT620 1.484 38.937 

BIT623 17.730 16.974 
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BIT624 21.777 61.291 

BIT625 -73.338 20.734 

BIT628 18.205 15.800 

BIT630 -21.544 43.972 

BIT631 -10.750 8.977 

BIT632 -0.641 2.969 

BIT633 -2.659 13.107 

BIT635 12.379 8.990 

BIT636 3.412 4.588 

BIT638 -28.762 58.877 

BIT640 -23.630 11.817 

BIT641 2.367 1.777 

BIT643 0.622 0.287 

BIT645 5.170 4.384 

BIT649 -38.197 14.449 

BIT650 0.504 5.276 

BIT652 -45.255 118.630 

BIT653 17.630 30.054 

BIT654 -42.579 21.406 

BIT656 -0.943 1.834 

BIT658 -17.746 9.461 

BIT660 0.181 0.314 

BIT664 -16.253 32.597 

BIT665 -3.833 9.831 

BIT667 -2.089 1.748 

BIT670 -2.689 1.831 

BIT672 -22.434 22.593 

BIT674 -0.269 0.239 

BIT676 -1.109 1.865 

BIT679 -0.174 0.317 

BIT681 -10.901 12.234 

BIT683 13.840 5.207 

BIT684 11.938 4.066 
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BIT689 -0.253 0.265 

BIT690 11.889 23.402 

BIT692 -0.121 0.323 

BIT695 -0.509 0.384 

BIT697 -20.465 14.120 

BIT698 -0.049 2.788 

BIT699 -8.031 9.606 

BIT703 3.605 7.575 

BIT704 0.215 1.239 

BIT705 -0.421 0.274 

BIT706 47.447 41.216 

BIT707 45.884 22.485 

BIT708 21.285 12.930 

BIT709 -61.282 39.672 

BIT710 -90.066 54.392 

BIT711 15.655 9.592 

BIT712 -22.063 17.700 

BIT713 166.089 63.720 

BIT715 0.561 2.377 

BIT717 -29.816 30.397 

BIT718 -17.824 28.303 

BIT721 -0.367 0.421 

BIT723 -4.332 8.099 

BIT725 3.119 2.570 

BIT727 -0.043 1.282 

BIT728 -56.798 26.172 

BIT729 53.625 38.742 

BIT732 64.354 41.108 

BIT736 -0.362 0.636 

BIT738 9.713 4.044 

BIT739 2.752 2.670 

BIT740 -15.217 4.766 

BIT741 11.315 21.126 
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BIT742 -11.613 4.484 

BIT744 0.182 2.896 

BIT746 34.190 21.169 

BIT747 -29.231 17.688 

BIT748 -12.813 4.161 

BIT749 8.442 9.794 

BIT750 12.109 34.250 

BIT752 30.048 20.411 

BIT753 -0.051 1.474 

BIT754 -1.686 4.463 

BIT755 9.107 17.176 

BIT756 15.010 7.439 

BIT759 2.263 4.121 

BIT760 -85.591 104.228 

BIT762 4.179 1.920 

BIT763 -2.358 35.735 

BIT764 11.555 6.438 

BIT765 19.546 20.575 

BIT766 -0.061 0.838 

BIT768 18.462 12.206 

BIT769 -42.468 20.734 

BIT770 -1.480 7.549 

BIT772 2.590 4.766 

BIT773 12.172 42.781 

BIT774 -0.039 0.284 

BIT776 26.702 10.972 

BIT777 0.148 1.563 

BIT778 26.127 10.833 

BIT779 21.155 13.862 

BIT780 38.078 68.580 

BIT781 48.083 27.568 

BIT782 18.952 17.923 

BIT784 -72.081 49.301 
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BIT785 -5.006 1.235 

BIT786 -10.032 5.492 

BIT789 65.163 32.843 

BIT790 7.956 4.077 

BIT791 11.459 24.915 

BIT793 -1.524 20.951 

BIT798 3.120 3.577 

BIT802 2.564 28.023 

BIT803 18.434 21.145 

BIT806 -46.640 22.007 

BIT810 -8.735 6.134 

BIT811 -32.373 32.742 

BIT812 -1.314 1.357 

BIT813 23.739 15.226 

BIT814 -0.186 2.223 

BIT816 -15.660 10.751 

BIT817 0.117 0.252 

BIT818 0.027 2.423 

BIT819 -1.894 7.676 

BIT820 30.050 22.759 

BIT821 4.651 10.902 

BIT822 1.634 2.454 

BIT823 68.774 29.005 

BIT824 -0.128 0.542 

BIT825 -30.926 13.436 

BIT826 -28.573 17.892 

BIT827 -0.060 0.248 

BIT828 -0.264 1.496 

BIT829 18.120 15.497 

BIT830 22.235 10.766 

BIT831 -0.227 9.525 

BIT833 0.981 0.557 

BIT834 11.568 11.027 
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BIT835 0.329 0.218 

BIT837 0.302 6.550 

BIT840 0.420 0.212 

BIT842 0.985 0.798 

BIT843 27.617 11.144 

BIT844 -0.519 0.244 

BIT846 -2.397 1.777 

BIT848 -0.845 1.119 

BIT849 -17.248 11.556 

BIT850 -5.299 3.072 

BIT854 -0.564 3.851 

BIT855 -164.664 103.873 

BIT859 2.252 7.385 

BIT861 -0.044 0.248 

BIT863 -0.080 0.404 

BIT865 -1.076 0.951 

BIT868 -7.943 66.815 

BIT870 -0.118 0.401 

BIT871 -4.227 5.965 

BIT872 11.542 14.107 

BIT874 -8.671 5.019 

BIT875 5.588 6.832 

BIT877 1.592 8.504 

BIT878 0.937 2.855 

BIT879 -0.234 1.115 

BIT880 -4.468 20.371 

BIT881 1.638 2.947 

BIT882 -8.589 8.570 

BIT883 -4.321 6.161 

BIT884 -2.518 13.847 

BIT886 -1.870 1.864 

BIT887 -0.318 0.395 

BIT888 -37.957 21.074 
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BIT889 1.281 1.070 

BIT890 22.628 18.008 

BIT891 -0.269 0.717 

BIT892 20.373 40.041 

BIT893 10.456 5.834 

BIT894 -19.582 13.416 

BIT896 -5.911 14.642 

BIT897 5.462 3.920 

BIT898 25.219 13.487 

BIT899 33.964 11.376 

BIT900 3.157 2.273 

BIT903 16.273 7.003 

BIT904 0.431 1.359 

BIT905 -1.784 3.262 

BIT906 7.462 8.141 

BIT907 -31.213 13.500 

BIT909 -5.004 8.424 

BIT910 -3.758 10.764 

BIT911 -0.363 0.328 

BIT912 7.622 14.453 

BIT913 0.854 0.286 

BIT914 -0.017 2.055 

BIT915 1.383 1.004 

BIT916 0.420 6.173 

BIT918 -17.003 6.700 

BIT919 0.648 1.682 

BIT920 0.338 0.539 

BIT921 4.698 4.857 

BIT922 -2.266 2.073 

BIT924 -0.608 0.292 

BIT925 -0.530 0.349 

BIT926 0.923 1.154 

BIT927 -12.029 12.135 
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BIT928 2.708 5.139 

BIT929 -0.053 0.717 

BIT930 -0.721 2.168 

BIT931 0.391 0.454 

BIT932 0.235 0.489 

BIT933 -0.280 1.653 

BIT934 1.635 0.805 

BIT935 2.391 3.171 

BIT936 9.353 10.611 

BIT937 7.660 4.463 

 
 
Table 4-2. The predicted values of logS by the built model using shape fingerprints. 

The table also includes values of experimental logS and predicted by MOE.98 

Molecule Experimental 

logS  

Predicted 

logS value 

Standard 

Error 

Predicted 

logS value by 

MOE 

1 -6.23 -5.85 0.13 -5.7 

2 -6.21 -5.09 0.16 -4.83 

3 -4.39 -3.9 0.32 -5.25 

4 -6.19 -6.29 0.46 -6.31 

5 -6.16 -6.81 0.17 -8.11 

6 -6.15 -6.64 0.48 -4.54 

7 -3.68 -6.82 0.46 -3.59 

8 -6.08 -4.17 0.21 -6.24 

9 -6.04 -3.9 0.32 -3.76 

10 -5.14 -5.76 0.18 -6.2 

11 -6.01 -6.11 0.15 -6.01 

12 -2.97 -4.31 0.26 -4.45 

13 -5.47 -3.73 0.27 -5.64 

14 -5.84 -5.13 0.19 -6.06 

15 -5.97 -7.24 0.56 -6.69 

16 -5.96 -7.48 0.57 -4.32 



99 | P a g e  
 

17 -5.93 -4.11 0.65 -5.8 

18 -5.79 -4.51 0.15 -4.26 

19 -5.85 -2.94 0.22 -3.79 

20 -5.91 -3.14 0.5 -5.28 

21 -5.38 -4.07 0.34 -5.38 

22 -5.87 -4.02 0.52 -6.87 

23 -5.88 -3.53 0.37 -4.25 

24 -5.84 -3.51 0.41 -5.84 

25 -5.83 -5.68 1.04 -6.57 

26 -5.82 -4.59 0.45 -7.51 

27 -5.8 -4.73 0.2 -4 

28 -5.8 -4.79 0.22 -5.35 

29 -5.1 -4.81 0.15 -5.11 

30 -5.74 -1.67 0.36 -3.75 

31 -5.72 -6.52 0.24 -7.86 

32 -5.71 -7.01 0.7 -6.25 

33 -5.69 -1.64 0.32 -5.95 

34 -5.67 -5.24 0.47 -6.3 

35 -4.48 -4.48 0.21 -5.43 

36 -5.65 -5.34 0.18 -4.83 

37 -5.63 -5.24 0.48 -5.5 

38 -5.62 -5.71 0.19 -5.16 

39 -5.55 -3.85 0.3 -2.77 

40 -5.52 -3.86 0.27 -5.31 

41 -5.51 -3.64 0.29 -5.96 

42 -5.5 -5.2 0.27 -7.11 

43 -5.44 -4.79 0.46 -5.89 

44 -5.44 -4.37 0.27 -5.16 

45 -5.43 -6.68 0.28 -7.3 

46 -5.42 -4.27 0.16 -5.97 

47 -5.4 -5.28 0.21 -5.58 

48 -5.4 -4.3 0.22 -4.64 

49 -5.32 -3.02 0.45 -5.05 



100 | P a g e  
 

50 -5.3 -5.11 0.51 -4.01 

51 -3.26 -4.26 0.27 -4.59 

52 -5.28 -3.5 0.25 -5.41 

53 -5.28 -2.53 0.11 -6.39 

54 -5.03 -4.18 0.17 -4.41 

55 -5.27 -4.15 0.22 -4 

56 -5.27 -4.98 0.37 -6.79 

57 -5.22 -3.9 0.27 -4.31 

58 -5.15 -5.11 0.59 -5.08 

59 -5.2 -1.98 0.25 -3.12 

60 -5.19 -4.51 0.28 -4.3 

61 -5.19 -4.11 0.31 -6.75 

62 -5.18 -6.5 0.34 -9.6 

63 -3.61 -2.63 0.26 -4.18 

64 -1.74 -4.02 0.41 -4.46 

65 -5.12 -3.12 0.22 -4.52 

66 -5.12 -1.63 0.81 -5.45 

67 -5.03 -2.54 0.36 -4.95 

68 -5.11 -3.92 0.19 -4.24 

69 -5.08 -3.44 0.19 -2.54 

70 -5.07 -3.8 0.22 -5.36 

71 -4.98 -6.58 0.24 -5.7 

72 -5.05 -4.23 0.23 -3.66 

73 -2.93 -3.98 0.27 -4.22 

74 -5.02 -3.46 0.22 -4.27 

75 -4.53 -2.71 0.32 -5.49 

76 -5.03 -2.83 0.27 -5.09 

77 -5.02 -3.78 0.46 -4.87 

78 -5.01 -3.85 0.29 -4.58 

79 -5.01 -4.39 0.11 -6.28 

80 -4.95 -5.72 0.2 -5.33 

81 -4.93 -4.11 0.46 -4.97 

82 -4.91 -3.56 0.19 -3.66 
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83 -4.9 -5.43 0.52 -4.02 

84 -4.9 -2.46 0.71 -3.8 

85 -4.9 -3.25 0.33 -4.02 

86 -2.08 -3.48 0.34 -4.87 

87 -4.86 -7.01 0.93 -5.07 

88 -4.86 -5.97 0.23 -5 

89 -4.85 -4.17 0.42 -4.68 

90 -4.85 -4.52 0.18 -4.99 

91 -3.25 -3.29 0.28 -3.51 

92 -4.83 -5.58 0.19 -4.97 

93 -4.37 -4.38 0.46 -4.8 

94 -4.8 -4.05 0.84 -3.94 

95 -4.79 -5.91 0.7 -4.29 

 

The predicted values do not vary much from those obtained from well-established logS 

prediction software. Many compounds have either a similar or slightly worse predicted 

logS values. However, for a few compounds the values are much closer to 

experimental logS values than the ones predicted by MOE. This was summarized in 

the form of a plot (Figure 4-6).  

 



102 | P a g e  
 

 

Figure 4-6. The plot of predicted logS values vs. experimental values for shape 

fingerprints and MOE. The 1:1 line is included.  

Some predicted solubility values differ from the experimental ones more than the 

others. The logS values are not accurately predicted for the structures of molecules 

shown in the Figure 4-7.  
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B) 

 

Figure 4-7. The structures of compounds that predicted solubility differs much from 

experimental: A) predicted logS = -6.82, while experimental logS = -3.68; B) 

predicted logS = -1.64 and experimental logS = -5.69. 

 

The second set containing all molecules with measured logS had 4194 compounds in 

the training set and 464 compounds in the test set. The model was built in a similar 

way as described above. The results are shown in the Figure 4-8 in comparison to 

experimental logS values. 

 

Figure 4-8. The plot of predicted logS values for 464 compounds vs. experimental 

values for shape fingerprints. The 1:1 line is included. 

In second set, some of the logS values were poorly predicted, they vary much from 

the experimental values. The examples of the structures of the molecules with such 
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poor prediction are show in the Figure 4-9. Most probable reason for some of the 

extreme results is that the interaction of molecule with water plays more important 

role than its shape. For others, when the actual solubility is worse than the predicted 

one, probably form strong intermolecular bonds in the crystal lattice. The consequence 

of that is the difficulty of predicting solubility using shape fingerprints method.  

A) 

 

C) 

 

B) 

 

D) 

 

Figure 4-9. The structures of compounds that predicted solubility differs much from 

experimental: A) predicted logS = 18.61, while experimental logS = -5.70; B) 

predicted logS = -26.38 and experimental logS = -5.05; C) predicted logS = -27.22 

and experimental logS = -5.74; D) predicted logS = -7.26 and experimental logS = 

1.04. 

 
The proposed model predicts the aqueous solubility without the use of any 

experimental data. The only necessary data points are the calculated logP and shape 

fingerprints. As it produces similar results to MOE, it could be used simultaneously 

with it to predict quite accurately the values of logS.  

4.4.1.2. The set of 100 compounds – all Shape Databases 

The shape fingerprints were calculated for each compound from the set of randomly 

chosen 100 molecules (all 100 molecules had both MP and logS values) using all of 

the Shape Databases and different settings: 1) DT = 0.50, BOV = 0.50, 2) DT = 0.50, 

BOV = 0.70, 3) DT = 0.70, BOV = 0.50 and 4) DT = 0.70, BOV = 0.70. The prediction 
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of solubility of the set of compounds was performed using SPSS,119. The independent 

values were selected to be calculated logP (computed in MOE)98 and all the bits from 

the generated shape fingerprint string. The applied method was ‘Enter’, which means 

that all independent variables are entered into the equation in one step. The results are 

shown in Table 4-3 as adjusted R2 for each Shape Database with each setting listed 

above. The model using clogP and MP to predict logS was applied as benchmark, 

where the obtained R2 was equal to 0.694. 

Table 4-3. The adjusted R2 values obtained from SPSS.119 

SHAPE 

DATABASE 

DT = 0.50; 

BOV = 0.50 

DT = 0.50; 

BOV = 0.70 

DT = 0.70; 

BOV = 0.50 

DT = 0.70; 

BOV = 0.70 

SD01 0.739 0.676 0.909 0.733 

SD02 0.729 0.642 0.915 0.754 

SD03 0.71 0.666 0.796 0.719 

SD04 0.708 0.641 0.755 0.706 

SD05 0.77 0.641 0.79 0.691 

SD06 0.766 0.656 0.628 0.747 

SD07 0.712 0.643 1 0.754 

SD08 0.708 0.647 0.647 0.74 

SD09 0.668 0.661 0.737 0.705 

SD10 0.746 0.641 0.642 0.78 

 

The highest values of R2 were obtained for SD07 with DT = 0.70 and BOV = 0.50, 

and only a little lower for SD01 and SD02 with the same settings. This suggests that 

using a high DT and slightly lower BOV gives the best results in building models for 

solubility prediction. However, the high scores (especially R2 =1) were probably the 

effect of overfitting, as the number of terms included in model in case was too high 

compared to the number of compounds used in prediction (100). It is also worth noting 

that there is no Shape Database that performs the best across all of the applied settings.  
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4.5. Nuclear Receptors 

Nuclear receptors (NRs) are a protein superfamily that bind and respond to certain 

steroid hormones, e.g. estrogen and progesterone, and a range of other signalling 

molecules, such as retinoic acid and thyroid hormone.120,121 The superfamily is 

classified as transcription factors due to their ability to directly bind DNA and control 

the expression of genomic DNA. The NRs play an important role in many 

physiological functions such as cell proliferation, development, metabolism, and 

reproduction.120,121 Many NRs also regulate a number of proteins involved in 

xenobiotic metabolism, which protects the organism against potentially toxic 

compounds (cytochrome P450 family).120,122  

Although, there are 48 known NRs encoded in the human genome,123 for some of them 

neither physiological function nor natural ligands are known. These are called orphan 

receptors.123 This includes e.g. estrogen-related receptor and human nuclear factor 4.  

The molecular structure of NRs is very similar. Almost all of the nuclear receptors 

have two structural domains: a DNA-binding domain (DBD) and C-terminal ligand-

binding domain (LBD).123,124 Members of this superfamily also contain an N-terminal 

transactivation domain.123 The DBD domain, which is the most conserved segment of 

NRs,124 contains two zinc ions coordinated by four cysteine residues.  
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Figure 4-10. The structures of some of the NRs ligands.125 

As already mentioned, among NR ligands (Figure 4-10) there are retinoic acids, 

steroids and thyroid hormones.126 They can be characterized as lipophilic, large (200-

1600 Da) molecules that need to cross the plasma membrane in order to bind to the 

hydrophobic pocket of its receptor. 121,125  

The image originally presented here cannot be made freely 

available via LJMU E-Theses Collection because of copyright 

restrictions. The image was sourced at 

Sladek, F. M. What Are Nuclear Receptor Ligands? Mol. Cell. 

Endocrinol. 2011, 334 (1–2), 3–13. 
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Figure 4-11. Nuclear receptor signaling.121 Abbreviations: HSP – Heat Shock Protein; 

ER – Estrogen receptor; RXR – Retinoid X Receptor; NR – Nuclear Receptor; ERE – 

Estrogen Response Element; TRE – Thyroid Hormone Response Element; LXRE – 

Liver X Response Element. 

When the natural small lipophilic ligands bind to their nuclear receptor, it activates the 

signalling pathway, as shown in the Figure 4-11, based on one of four modes of 

actions: 1) the ligand frees the receptor from the chaperone, which allows the created 

complex to enter into the nucleus, where the complex forms interactions with 

coactivators and the target genes are activated (e.g. the estrogen receptor, the 

progesterone receptor); 2) ligand by binding to the receptor causes dissociation of the 

corepressors that interact with it and their replacement with coactivators (e.g. thyroid 

hormone receptor, retinoid acid receptor); 3) similarly to type 1 but with different 

organization of the hormone response elements (HREs); 4) bind as monomers to a 

single half site HREs.121  

The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright restrictions. The image was sourced at 

Sever, R.; Glass, C. K. Signaling by Nuclear Receptors. Cold Spring Harb. 

Perspect. Biol. 2013, 5 (3). 
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4.5.1. Methods 

The database of various NRs ligands was obtained from C. Mellor and F. Steinmetz.127 

The list includes identified NR agonists expanded with data from the ChEMBL 

database of bioactive molecules.79 The set comprises of the 22 NRs: the aryl 

hydrocarbon receptor (AHR), two estrogen receptors (ER): ER-alpha, ER-beta, the 

glucocorticoid receptor (GR), the progesterone receptor (PR), vitamin D receptor 

(VDR), the thyroid hormone receptor (TR), three retinoic acid receptors (RAR): RAR-

alpha, RAR-beta, RAR-gamma, the pregnane X receptor (PXR), three types of 

peroxisome proliferator-activated receptors (PPAR): PPAR-alpha, PPAR-gamma, 

PPAR-delta, two isoforms of the liver X receptor (LXR): LXR-alpha, LXR-beta, 

farnesoid X receptor (FXR), two thyroid hormone receptors (THR): THR-alpha, THR-

beta and three retinoid X receptors (RXR): RXR-alpha, RXR-beta, RXR-gamma. The 

set was updated into a MySQL database,128 which stored all ligands with added 

information of all the receptors that it binds to. This enabled easy access to those 

ligands that interact with only specific NRs and not with others.  

The conformations were generated for every compound using Openeye’s OMEGA.83 

The number of maximum conformations was set to 5. The shape fingerprints were 

calculated with SD10 and settings DT = 0.65 and BOV = 0.60. Two summary values 

were used when comparing the conformations of ligands: 1) the highest value of FT 

amongst the array arising from comparisons of all conformations of one molecule with 

all conformations of the other was selected or 2) the average of those values was 

selected.  

Two approaches were applied. In the first, the shapes of all the ligands for each 

receptor were compared. This will show the NRs in which the shape of molecules 

plays a crucial role. In the second, a selected number of ligands from each receptor 

was compared to a set of structures including ones that bind to each of the NRs and 

decoys generated by DUD-E.90  
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4.5.2. Comparing the shape of ligands binding to each receptor 

The comparison of shapes of ligands binding to the same receptor was performed to 

examine how important shape is for some of the targets and to find those receptors for 

which the shape is not an important attribute of its ligands. 

Among all of the NRs, the strongest shape similarity between ligands is visible in the 

case of AHR (Figure 4-12), ER-alpha (Figure 4-13), ER-beta (Figure 4-14), PR 

(Figure 4-18), THR-alpha (Figure 4-26) THR-beta (Figure 4-27) and GR (Figure 

4-29). For those targets, the similarity between molecules is quite high for the whole 

set, especially when using the MV method. The AV method for those NRs shows 

slightly lower values of ST. In the case of TR (Figure 4-28), PXR (Figure 4-19), 

RAR-alpha (Figure 4-20), RAR-beta (Figure 4-21) RAR-gamma (Figure 4-22), 

RXR-alpha (Figure 4-23), RXR-beta (Figure 4-24), RXR-gamma (Figure 4-25) and 

VDR (Figure 4-30) it can be observed that there are a few groups of ligands which 

are similar in shape, but this similarity is not shared across the whole set of molecules. 

The lack of shape similarity can be noticed for FXR (Figure 4-15), LXR-alpha 

(Figure 4-16) and LXR-beta (Figure 4-17) independently of the comparison method 

used (AV and MV).  

  

Figure 4-12. Heatmap of STs for AHR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by shape fingerprints method. 
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Figure 4-13. Heatmap of STs for ER-alpha ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 

Figure 4-14. Heatmap of STs for ER-beta ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 
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Figure 4-15. Heatmap of STs for FXR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 

Figure 4-16. Heatmap of STs for LXR-alpha ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 
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Figure 4-17. Heatmap of STs for LXR-beta ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 

Figure 4-18. Heatmap of STs for PR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 
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Figure 4-19. Heatmap of STs for PXR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 

Figure 4-20. Heatmap of STs for RAR-alpha ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 
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Figure 4-21. Heatmap of STs for RAR-beta ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 

  

Figure 4-22. Heatmap of STs for RAR-gamma ligands when using MV (on the left) 

and AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 
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Figure 4-23. Heatmap of STs for RXR-alpha ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 

 

Figure 4-24. Heatmap of STs for RXR-beta ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 
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Figure 4-25. Heatmap of STs for RXR-gamma ligands when using MV (on the left) 

and AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 

Figure 4-26. Heatmap of STs for THR-alpha ligands when using MV (on the left) and 

AV method (on the right). The darker the colour, the higher the shape similarity 

detected by the shape fingerprints method. 
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Figure 4-27. Heatmap of STs for THRb ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 

Figure 4-28. Heatmap of STs for TR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 
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Figure 4-29. Heatmap of STs for GR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 

  

Figure 4-30. Heatmap of STs for VDR ligands when using MV (on the left) and AV 

method (on the right). The darker the colour, the higher the shape similarity detected 

by the shape fingerprints method. 

4.5.3. Virtual Screening of NRs 

In order to check the ability to distinguish the ligands binding to one receptor from 

those binding to the others, the set of 50 compounds from each set was taken and 

analysed together with a set of molecules binding to all the other receptors. 

Additionally, a set of decoys was added for better comparison.  
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Figure 4-31. The heatmap of comparison of AHR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of AHR ligands. 

The shapes of AHR ligands (Figure 4-31) are very similar to each other and differ 

clearly from the ligands of the rest of the receptors. The similarity between compounds 

is maintained even when using the AV method to compare the conformations of the 

molecules, which shows that the generated conformations by OMEGA are quite 

similar to each other.  

  

Figure 4-32. The heatmaps of comparison of ER-alpha ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of ER-alpha ligands. 
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In the case of ER-alpha (Figure 4-32), the strong similarities between shapes of its 

ligands can be observed only when using the MV method, while the AV method does 

not show any differentiation between the ER-alpha ligands and the ligands of other 

receptors. It is worth noting that ligands that bind to the ER-beta also have a high 

Shape Tanimoto with most of the ER-alpha ligands, which is expected as both 

isoforms have similar binding pockets and therefore their ligands can share similar 

shape.  

  

Figure 4-33. The heatmaps of comparison of ER-beta ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of ER-beta ligands. 

The ER-beta ligands (Figure 4-33) do not share STs that are as high as with ER-alpha, 

when using the MV method. However, they show much higher similarity when taking 

the average value of Shape Tanimotos. This suggests that conformations of ER-beta 

ligands have similar shape and that there might be some more conformational variation 

tolerated in the ER-beta than in the ER-alpha.  
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Figure 4-34. The heatmaps of comparison of FXR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of FXR ligands. 

The FXR ligands (Figure 4-34) clearly do not show much similarity in shape using 

either of the applied methods and cannot be distinguished from ligands of other 

receptors. This could be expected, as the previous study from this chapter showed 

really low similarities amongst the shape of FXR ligands. A similar situation can be 

observed in the case of other receptors: GR (Figure 4-35), LXR-alpha (Figure 4-36), 

LXR-beta (Figure 4-37), PPAR-alpha (Figure 4-38), PPAR-delta (Figure 4-39) and 

PPAR-gamma (Figure 4-40). The ligands do not have many commonalities in shape 

and are difficult to distinguish from ligands of other receptors.  

  

Figure 4-35. The heatmaps of comparison of GR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 
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darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of GR ligands. 

  

Figure 4-36. The heatmaps of comparison of LXR-alpha ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of LXR-alpha ligands. 

  

Figure 4-37. The heatmaps of comparison of LXR-beta ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of LXR-beta ligands. 
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Figure 4-38. The heatmaps of comparison of PPAR-alpha ligands with ligands of 

other receptors with decoys when using MV (on the left) and AV method (on the 

right). The darker the colour, the higher the shape similarity detected by shape 

fingerprints method. The box (top left) encloses the set that binds of PPAR-alpha 

ligands. 

  

Figure 4-39. The heatmaps of comparison of PPAR-delta ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of PPAR-delta ligands. 
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Figure 4-40. The heatmaps of comparison of PPAR-gamma ligands with ligands of 

other receptors with decoys when using MV (on the left) and AV method (on the 

right). The darker the colour, the higher the shape similarity detected by shape 

fingerprints method. The box (top left) encloses the set that binds of PPAR-gamma 

ligands. 

In the case of PR (Figure 4-41), PXR (Figure 4-42) RAR-alpha (Figure 4-43), RAR-

beta (Figure 4-44), RAR-gamma (Figure 4-45), RXR-alpha (Figure 4-46), RXR-beta 

(Figure 4-47) and RXR-gamma (Figure 4-48), there is some barely noticeable 

similarity between ligands however it is small and it is not easy to see the difference 

from other receptor ligands and decoys. 

  

Figure 4-41. The heatmaps of comparison of PR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of PR ligands. 
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Figure 4-42. The heatmaps of comparison of PXR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of PXR ligands. 

Figure 4-43. The heatmaps of comparison of RAR-alpha ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of RAR-alpha ligands. 
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Figure 4-44. The heatmaps of comparison of RAR-beta ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of RAR-beta ligands. 

Figure 4-45. The heatmaps of comparison of RAR-gamma ligands with ligands of 

other receptors with decoys when using MV (on the left) and AV method (on the 

right). The darker the colour, the higher the shape similarity detected by shape 

fingerprints method. The box (top left) encloses the set that binds of RAR-gamma 

ligands. 
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Figure 4-46. The heatmaps of comparison of RXR-alpha ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of RXR-alpha ligands. 

  
Figure 4-47. The heatmaps of comparison of RXR-beta ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of RXR-beta ligands. 
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Figure 4-48. The heatmaps of comparison of RXR-gamma ligands with ligands of 

other receptors with decoys when using MV (on the left) and AV method (on the 

right). The darker the colour, the higher the shape similarity detected by shape 

fingerprints method. The box (top left) encloses the set that binds of RXR-gamma 

ligands. 

The THR-alpha (Figure 4-49), THR-beta (Figure 4-50) and VDR (Figure 4-52) 

ligands clearly show high shape similarity and are easily distinguished by the shape 

fingerprints method from other ligands and decoys.  

Figure 4-49. The heatmaps of comparison of THR-alpha ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of THR-alpha ligands. 
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Figure 4-50. The heatmaps of comparison of THR-beta ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of THR-beta ligands. 

  
Figure 4-51. The heatmaps of comparison of TR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of TR ligands. 

The VDR ligands are one of the easiest to distinguish from ligands of other receptors, 

but only when using the MV method of comparison. The calculated STs are high for 

VDR ligands and really small, close to 0-0.2 ST when compared with shapes of other 

ligands. In the case of the AV method this is not that easily noticeable. The values are 

much smaller, however so are the ST values for other ligands – almost all the 
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comparison between VDR ligands and other receptor ligands have values 0, which 

indicates complete dissimilarity.  

 
Figure 4-52. The heatmaps of comparison of VDR ligands with ligands of other 

receptors with decoys when using MV (on the left) and AV method (on the right). The 

darker the colour, the higher the shape similarity detected by shape fingerprints 

method. The box (top left) encloses the set that binds of VDR ligands. 

These sets of data have been analysed with ROC curves. As can be seen in the Table 

4-4, the highest AUC values are obtained for AHR, PR, TR. This indicates that the 

discrimination between ligands binding to these receptors and the set of other ligands 

and decoys, is the highest in these sets. The values are higher than the ones calculated 

for Test Sets 1 and 2 in chapter 2. Those were equal to 0.61 and 0.61 for Test Set 1 

when using AV and MV approaches, respectively and 0.77 and 0.78 for Test Set 2 

when using AV and MV methods, respectively. The AUC values results are 

complemented by logistic regression plots for each of the NRs. Some of the plots, like 

Figure 4-56, Figure 4-57, Figure 4-58, Figure 4-59, Figure 4-60, Figure 4-61 and 

Figure 4-62, clearly shows the poor discrimination between true positives (ligands) 

and true negatives (decoys). 
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Table 4-4. The comparison of AUC values for all NRs using both methods: AV and 

MV. 

NR AV MV 

AHR 0.83 0.81 

ER-ALPHA 0.63 0.72 

ER-BETA 0.63 0.64 

FXR 0.56 0.54 

GR 0.52 0.52 

LXR-ALPHA 0.52 0.50 

LXR-BETA 0.49 0.51 

PPAR-ALPHA 0.55 0.61 

PPAR-DELTA 0.59 0.53 

PPAR-GAMMA 0.60 0.57 

PR 0.76 0.74 

PXR 0.56 0.55 

RAR-ALPHA 0.65 0.67 

RAR-BETA 0.63 0.64 

RAR-GAMMA 0.67 0.69 

RXR-ALPHA 0.68 0.70 

RXR-BETA 0.65 0.67 

RXR-GAMMA 0.63 0.65 

THR-ALPHA 0.66 0.69 

THR-BETA 0.68 0.71 

TR 0.78 0.77 

VDR 0.63 0.70 

 



133 | P a g e  
 

  
Figure 4-53. The logistic regression plots of comparison of AHR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 

 

Figure 4-54. The logistic regression plots of comparison of ER-alpha ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-55. The logistic regression plots of comparison of ER-beta ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

Figure 4-56. The logistic regression plots of comparison of FXR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 
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Figure 4-57. The logistic regression plots of comparison of GR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 

 

Figure 4-58. The logistic regression plots of comparison of LXR-alpha ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-59. The logistic regression plots of comparison of LXR-beta ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

Figure 4-60. The logistic regression plots of comparison of PPAR-alpha ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-61. The logistic regression plots of comparison of PPAR-delta ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

Figure 4-62. The logistic regression plots of comparison of PPAR-gamma ligands 

with ligands of other receptors with decoys when using MV (on the left) and AV 

method (on the right). 
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Figure 4-63. The logistic regression plots of comparison of PR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 

 

Figure 4-64. The logistic regression plots of comparison of PXR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 
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Figure 4-65. The logistic regression plots of comparison of RAR-alpha ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

  
Figure 4-66. The logistic regression plots of comparison of RAR-beta ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-67. The logistic regression plots of comparison of RAR-gamma ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

Figure 4-68. The logistic regression plots of comparison of RXR-alpha ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-69. The logistic regression plots of comparison of RXR-beta ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

Figure 4-70. The logistic regression plots of comparison of RXR-gamma ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-71. The logistic regression plots of comparison of THR-alpha ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 

 

Figure 4-72. The logistic regression plots of comparison of THR-beta ligands with 

ligands of other receptors with decoys when using MV (on the left) and AV method 

(on the right). 
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Figure 4-73. The logistic regression plots of comparison of TR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 

Figure 4-74. The logistic regression plots of comparison of VDR ligands with ligands 

of other receptors with decoys when using MV (on the left) and AV method (on the 

right). 

4.6. Conclusions 

As presented in this chapter, the shape fingerprints method can be successfully applied 

to solve many problems in the chemistry world. This includes predictions of solubility 

similarly to well-established approaches, virtual screening and shape similarity 

searches.  
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The results presented in this chapter showed that the shape fingerprint method could 

be successfully applied not only to small sets, like Test Set 1 and Test Set 2 from 

chapter 2, but also to much larger sets such as DUD-E diverse set (consisting of 8 

targets with 1774 ligands in total). Grouping compounds from DUD-E diverse set 

based on the similar biological activity performed a little worse than in case of smaller 

sets. However, the obtained AUC value of 0.55 could have been expected as the size 

of the presented set is much greater than used previously.  

The AUC values obtained from virtual screening on three sets taken from DUD-E 

(AMPC, COMT and CXCR4), consisting of ligands and a series of decoys, reveal the 

potential of shape fingerprints application as a ligand-based virtual screening 

technique. The results: 0.57, 0.66 and 0.62 for CXCR4, AMPC and COMT sets 

respectively are decent considering the size of the sets and the high ratio of decoys per 

ligand in each set.  

Another potential application of shape fingerprints shown in this chapter is the 

solubility prediction. The predicted logS values are comparable (and in some case the 

predicted values are much closer to experimental ones) to those obtained using well-

established prediction software. As it produces similar results to MOE, it could be 

used simultaneously with it to predict quite accurately the values of logS. The 

approach could be improved by including also the chemistry of compounds (using 

Tanimoto Combo score instead of Shape Tanimoto in generating Shape Database and 

shape fingerprints). This might reduce number of poorly predicted solubility values 

for molecules that solubility measurements could be affected by too strong interaction 

of molecules with solute or too strong intermolecular interactions in crystal lattice and 

therefore are difficult to predict with shape-only techniques.  

Applying shape fingerprint method to 22 sets of NRs ligands showed in which NRs 

the shape plays crucial role. Among all of the NRs, the strongest shape similarity 

between ligands is visible in the case of AHR, ER-alpha, ER-beta PR, THR-alpha, 

THR-beta. Therefore, these sets performed well also in virtual screening of NRs – they 

had high AUC values and were easily distinguished from ligands of other NRs and 

decoys. In the case of TR, PXR, RAR-alpha, RAR-beta, RAR-gamma, RXR-alpha, 

RXR-beta, RXR-gamma and VDR it can be observed that there are a few groups of 

ligands which are similar in shape, but this similarity is not shared across the whole 
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set of molecules. The lack of shape similarity can be noticed for FXR, LXR-alpha and 

LXR-beta. 
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Chapter 5  

 

 

Matched Molecular Pairs 
 

 

 

 

 

5.1. Introduction 

Matched Molecular Pairs Analysis (MMPA) is a widely used approach to screen large 

databases in order to find pairs of molecules with a common structural part but 

differing by a small, well-defined change in structure and with a known change in 

properties.52,51,49,50 This approach assumes that the change of properties is more easily 

predicted than the absolute values of those properties for each molecule alone. A 

matched molecular pair (MMP) involves two compounds that have a common core 

and have a different fragment R as show in the Figure 5-1.  

  

Figure 5-1. An example of pair of MMPs with the changing fragment part marked in 

red circle. 
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There are two common approaches used to find MMPs: Fragment and Index (F+I)53 

and Maximum Common Substructure (MCSS).54 The comparison of how both 

methods find the MMPs can be found in the Figure 5-2.  

 MOLECULE A MOLECULE B 

 

  

 Fixed Part Changing Part Fixed Part Changing 

Part 

MCSS 

   

F+I 

   

Figure 5-2. The MMP, Molecule A and B, identified by two methods: Fragment and 

Index (F+I) and Maximum Common Substructure (MCSS) with shown fixed and 

changing parts. 

In the MCSS approach, as used in the WizePairZ algorithm described by Warner et 

al.,54 two molecules are compared and the maximum common substructure shared by 

them is identified – it is called the fixed part or the core. The remaining part is called 

the changing part as can be seen in the example in Figure 5-2, where the structural 

change is the change from C-Cl to N. In order to compare the molecules using this 

approach, the molecules are converted into graphs, which enables identifying common 

substructures between compounds. The structural change identified by the MCSS 

approach is encoded as SMIRKS, which is a reaction transform languagge.55  
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The disadvantages of the MCSS approach are that the substructure comparison is slow 

and that most algorithms for finding the MCSS require all of the atoms to be 

contiguous and therefore prevent pairs in which linkers change from being found.   

A second approach was introduced by Hussain and Rea.53 The algorithm works by 

generating fragments of the molecule based on predefined rules and then indexing 

those fragments, as shown in the example in Figure 5-2, where the structural change 

is from Clc1ccccc1 to c1ccnc1. The generated fragments are stored as key – value 

pairs.53,56  

In the first step, each molecule is fragmented, by breaking a selected single bond (or 

bonds). Hussain and Rea53 used a SMARTS pattern to define the bonds that could be 

broken and these are limited to acyclic single bonds. The resulting fragments are stored 

as SMILES strings, which can be manipulated as text. This is a great advantage of the 

approach: after initial fragmentation, all subsequent steps toward the identification of 

matched pairs involve only rapid text processing. Another advantage comes from the 

fact that once a molecule has been fragmented, it can be added to the database, which 

is then available for comparison to any new molecule or to find new MMPs.  

Among the limitations of the fragment and index approach to finding matched pairs 

are that small changes to rings cannot be identified as pairs, highly substituted core 

changes are limited by the number of fragmentations considered, and the diversity of 

the structural changes can be limited by the restrictions that are imposed (usually 

heavy atom counts or ratio). One specific set of changes that are not readily identified 

is modifications to macrocyclic rings.  

5.2. Methods 

In order to find matched molecular pairs, the software developed by MedChemica – 

MCPairs129 was used. It has implemented two approaches of finding MMPs: the F+I 

method described by Hussain and Rea53 and the MCSS  algorithm described by 

Warner et al.54 The structural change linking pairs of molecules is encoded by 

SMIRKS, and these are modified to include differing levels of chemical context. The 
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chemical context is encoded using SMILES for the atoms in the fixed part that are 

connected to the changing part. There are four context levels, as shown in Figure 5-3. 

 

Figure 5-3. Definition of the chemical context for a matched molecular pair. 

Both methods need the heavy atom fractions to be set to limit the possible matches. 

The FI ratio is defined as the number of heavy atoms in the fixed part divided by the 

count in the changing part. In the case of the MCSS method, the ratio is the count of 

overlapping heavy atoms to the count of heavy atoms in the smaller molecule. These 

will be described as fF+I and fMCSS for F+I method and MCSS method, respectively. 

The outcome of changing these settings for both methods and the optimum settings 

will be described in section 5.3 and was part of the investigation from the paper 

included in the appendix.50 

5.3. Results 

Three sets of data extracted from the ChEMBL database88 were used to perform 

MMPA: inhibitors of the Epidermal Growth Factor Receptor (EGFR), ligands of the 

dopamine D1 receptor, and voltage-gated calcium channel subunit alpha Cav3.2. 

These three were selected from the ChEMBL database88 based on having measured 

IC50, Ki and EC50 data for EGFR, D1, and Cav 3.2, respectively. These comprised 

1010, 903, and 792 individual compounds, respectively. 

The very first run of both methods for EGFR with default settings was performed to 

check the difference in computational time needed to find pairs. It took 6 minutes and 
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16 seconds for the F+I method and 1 day 18 hours, 36 minutes and 27 seconds for the 

MCSS method. These results show how fast the F+I method is compared to MCSS, 

where longer times come from calculating the overlap between the molecules. This 

might be especially problematic when screening large datasets. 

Both methods (MCSS and F+I) have been applied to the sets described above. The 

exact number of pairs found by each method (and for each set) can be seen in Table 

5-1 and also in Figure 5-4. It can be noticed that the higher the fF+I, the greater the 

number of found pairs, which was expected. It is the opposite in the case of the MCSS 

method, as shown in Table 5-2 and in the Figure 5-5, where a lower fMCSS leads to a 

higher number of matched pairs. It comes from the differences in defining ratios fF+I 

and fMCSS, as explained in section 5.2. 

Table 5-1. Number of matched pairs found by the F+I method for all sets of 

compounds: EGFR, D1 and Cav 3.2. 

FFI EGFR D1 CAV 3.2 

0.1 358 1856 330 

0.2 978 4738 874 

0.3 2140 11982 2090 

0.4 4078 16324 4472 

0.5 7964 24312 8174 

0.6 15450 35644 16758 

0.7 31710 56096 35304 

0.8 157500 120678 175328 

0.9 381077 236594 298666 
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Table 5-2. Number of matched pairs found by the MCSS method for all sets of 

compounds: EGFR, D1 and Cav 3.2. 

FMCSS EGFR D1 CAV 3.2 

0.1 150538 123568 136218 

0.2 129752 122867 134039 

0.3 78795 86154 47743 

0.4 25426 50019 9074 

0.5 7564 31528 2584 

0.6 3727 24480 1370 

0.7 1994 17895 924 

0.8 1106 9678 718 

0.9 650 4550 503 

 

A high ratio fF+I means that pairs of molecules might be matched by very small 

fragments, like O, CH2 or CH3, which leads to a high number of found pairs using this 

method. Similarly, low fMCSS can lead to finding pairs with a really small number of 

overlapped atoms, which obviously results in a higher number of found pairs. It is also 

possible that setting fMCSS too high might lead to cases where almost all of the heavy 

atoms of one molecule are within the second molecule and this way the structural 

change could be only hydrogen or one or two heavy atoms. That could result in too 

low a number of found pairs being found by the MCSS method. Therefore, it is crucial 

to set the optimum fF+I and fMCSS. 
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Figure 5-4. Numbers of molecular pairs found by the F+I method for different settings 

of fF+I. 

 

 

Figure 5-5. Numbers of molecular pairs found by the MCSS method for different 

settings of fMCSS.  

It is also important to analyse the number of pairs found by both approaches and those 

that were matched using only one of the methods. This analysis can be performed in 

two ways. One is to simply count the number of pairs found by both methods. A 
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second is to reduce that number to include only those pairs that are matched in the 

exact same manner, which means they have the exact same transformation encoded as 

SMIRKS. The results can be seen in tables: Table 5-3, Table 5-4 and Table 5-5 for 

all three sets of compounds. Those are the percentages of pairs found by both 

approaches. Using high values of fF+I and low values of fMCSS gives the biggest number 

of pairs found in common. However, it can be seen in  Table 5-3 that using 0.4 and 

0.7 ff+I and fMCSS respectively gives over 40% pairs in common (of total number of 

pairs found by both methods separately). Similarly, in Table 5-4 and Table 5-5, it can 

be seen that using fF+I = 0.4 and fMCSS = 0.7 allows the most pairs in common to be 

found: 33.24% and 55.06% for D1 and Cav 3.2 set, respectively.   

When considering the number of the exact same transformations used by both 

methods, the overlap is smaller than when considering pairs of molecules, which 

means that a majority of them were paired for different reasons: the F+I method can 

find changes of large groups (such as substituted phenyl rings) whereas the MCSS 

method localizes the structural change to the smallest part of the structure that is 

different between the two molecules in the pair. 
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Table 5-3. The percentage of matched pairs of molecules found in the EGFR set by 

both methods using the pair count. In brackets: the percentage of common pairs found 

by using the exact same transformations. 

  FI 

  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

MCSS 

0.9 
0.79 

(0.10) 

1.98 

(0.24) 

5.84 

(1.18) 

13.49 

(2.37) 

21.87 

(4.42) 

29.88 

(7.89) 

35.09 

(12.87) 

43.54 

(21.07) 

37.64 

(23.21) 

0.8 
1.31 

(0.15) 

3.31 

(0.37) 

9.71 

(1.79) 

20.82 

(3.53) 

30.41 

(6.45) 

38.26 

(10.98) 

39.97 

(15.93) 

38.93 

(20.01) 

23.39 

(15.98) 

0.7 
2.04 

(0.23) 

4.96 

(0.55) 

14.12 

(2.61) 

26.72 

(5.04) 

36.69 

(8.67) 

40.48 

(13.09) 

32.17 

(14.01) 

23.26 

(14.03) 

14.07 

(9.95) 

0.6 
2.97 

(0.31) 

6.92 

(0.74) 

17.89 

(3.37) 

27.73 

(6.18) 

32.90 

(9.76) 

28.36 

(11.49) 

19.03 

(9.87) 

13.06 

(8.86) 

7.69 

(5.73) 

0.5 
4.64 

(0.47) 

9.84 

(1.11) 

21.62 

(4.57) 

25.25 

(7.44) 

20.98 

(8.20) 

15.23 

(7.70) 

9.79 

(5.97) 

6.51 

(4.88) 

3.80 

(2.95) 

0.4 
7.77 

(0.80) 

11.98 

(1.75) 

15.88 

(5.22) 

11.36 

(5.35) 

6.96 

(3.82) 

4.86 

(3.04) 

3.04 

(2.10) 

1.96 

(1.58) 

1.14 

(0.91) 

0.3 
11.07 

(1.57) 

12.03 

(2.91) 

7.92 

(3.39) 

3.99 

(2.32) 

2.37 

(1.47) 

1.61 

(1.08) 

0.99 

(0.72) 

0.64 

(0.52) 

0.37 

(0.30) 

0.2 
12.14 

(2.11) 

10.40 

(2.98) 

5.13 

(2.32) 

2.57 

(1.51) 

1.47 

(0.93) 

0.99 

(0.67) 

0.61 

(0.44) 

0.39 

(0.32) 

0.23 

(0.18) 

0.1 
12.76 

(2.35) 

9.23 

(2.77) 

4.44 

(2.05) 

2.22 

(1.32) 

1.26 

(0.80) 

0.85 

(0.58) 

0.52 

(0.38) 

0.34 

(0.28) 

0.20 

(0.16) 
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Table 5-4. The percentage of matched pairs of molecules found in the D1 set by both 

methods using the pair count. In brackets: the percentage of common pairs found by 

using the exact same transformations. 

 

 
 FI 

  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

MCSS 

0.9 
5.44 

(0.71) 

7.91 

(1.37) 

15.66 

(2.83) 

20.20 

(4.27) 

23.24 

(5.95) 

27.36 

(8.23) 

29.27 

(10.33) 

26.48 

(15.54) 

24.26 

(16.66) 

0.8 
9.01 

(1.23) 

12.12 

(2.33) 

22.40 

(4.62) 

27.53 

(6.70) 

30.92 

(8.93) 

35.02 

(11.68) 

32.69 

(13.82) 

21.50 

(14.13) 

11.64 

(9.25) 

0.7 
11.75 

(1.91) 

15.30 

(3.51) 

24.65 

(6.58) 

28.64 

(9.09) 

31.11 

(11.52) 

33.24 

(14.07) 

29.16 

(14.64) 

12.11 

(9.00) 

6.49 

(5.40) 

0.6 
12.73 

(2.17) 

16.00 

(3.90) 

23.00 

(6.97) 

25.86 

(9.34) 

27.28 

(11.43) 

27.25 

(12.39) 

22.08 

(12.00) 

9.12 

(6.97) 

4.93 

(4.05) 

0.5 
14.49 

(2.61) 

17.65 

(4.60) 

23.92 

(7.93) 

26.13 

(10.33) 

25.61 

(11.23) 

21.77 

(10.57) 

17.60 

(10.05) 

7.32 

(5.62) 

3.98 

(3.20) 

0.4 
13.39 

(2.61) 

15.12 

(4.37) 

17.62 

(6.91) 

17.83 

(8.38) 

16.59 

(8.43) 

14.02 

(7.62) 

11.28 

(7.05) 

4.64 

(3.72) 

2.51 

(2.06) 

0.3 
11.57 

(2.65) 

11.96 

(4.12) 

11.60 

(5.44) 

10.68 

(5.90) 

9.83 

(5.68) 

8.26 

(4.93) 

6.62 

(4.46) 

2.70 

(2.24) 

1.46 

(1.21) 

0.2 
10.2 

(2.69) 

9.86 

(3.86) 

8.36 

(4.33) 

7.59 

(4.53) 

6.95 

(4.26) 

5.83 

(3.63) 

4.66 

(3.24) 

1.89 

(1.60) 

1.02 

(0.86) 

0.1 
10.24 

(2.71) 

9.83 

(3.84) 

8.32 

(4.31) 

7.55 

(4.51) 

6.92 

(4.24) 

5.80 

(3.61) 

4.64 

(3.23) 

1.88 

(1.59) 

1.02 

(0.85) 
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Table 5-5. The percentage of matched pairs of molecules found in the Cav 3.2 set by 

both methods using the pair count. In brackets: the percentage of common pairs found 

by using the exact same transformations. 

  FI 

  0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

MCSS 

0.9 
0.46 

(0.10) 

0.73 

(0.16) 

4.02 

(0.80) 

9.68 

(1.67) 

22.59 

(3.32) 

35.26 

(5.79) 

48.24 

(10.57) 

53.70 

(19.61) 

50.89 

(28.81) 

0.8 
0.66 

(0.12) 

1.04 

(0.20) 

5.74 

(0.97) 

13.78 

(2.00) 

32.16 

(3.94) 

49.15 

(6.74) 

47.06 

(11.75) 

40.97 

(17.59) 

35.73 

(22.90) 

0.7 
0.84 

(0.15) 

1.34 

(0.25) 

7.36 

(1.23) 

17.58 

(2.53) 

38.51 

(4.91) 

55.06 

(7.69) 

48.76 

(11.61) 

33.40 

(15.57) 

27.80 

(19.14) 

0.6 
1.23 

(0.22) 

1.95 

(0.38) 

10.14 

(1.81) 

22.56 

(3.61) 

46.19 

(6.74) 

54.16 

(9.09) 

36.36 

(10.12) 

23.34 

(12.48) 

18.78 

(14.12) 

0.5 
2.08 

(0.37) 

3.26 

(0.63) 

15.20 

(2.94) 

29.20 

(5.44) 

41.05 

(9.34) 

33.07 

(7.53) 

20.72 

(7.49) 

12.78 

(8.10) 

10.05 

(8.24) 

0.4 
4.96 

(0.87) 

7.08 

(1.41) 

21.8 

(5.88) 

23.61 

(8.68) 

15.26 

(8.74) 

10.77 

(3.92) 

6.29 

(3.14) 

3.74 

(2.81) 

2.86 

(2.55) 

0.3 
11.64 

(2.31) 

12.85 

(3.15) 

12.62 

(8.47) 

6.19 

(5.83) 

3.30 

(2.70) 

2.14 

(1.02) 

1.22 

(0.70) 

0.71 

(0.58) 

0.54 

(0.50) 

0.2 
18.45 

(5.06) 

16.35 

(5.38) 

5.86 

(9.83) 

2.71 

(2.49) 

1.22 

(1.06) 

0.77 

(0.38) 

0.44 

(0.26) 

0.25 

(0.21) 

0.19 

(0.18) 

0.1 
18.75 

(5.16) 

16.24 

(5.34) 

5.82 

(9.70) 

2.67 

(2.46) 

1.20 

(1.04) 

0.76 

(0.38) 

0.43 

(0.25) 

0.25 

(0.20) 

0.19 

(0.18) 

 

There are a lot of pairs found only by one method and not the other. Some examples 

are shown in Figure 5-6, Figure 5-7 and Figure 5-8 for EGFR, D1 and Cav 3.2 sets. 

There are pairs found only by one of the method when using fMCSS = 0.7 for MCSS 

approach and fF+I = 0.4 for F+I approach. 

 Molecule A Molecule B 

F+I 

only 

 
 

 Nfixed  = 18; Nchanging = 6 Nfixed  = 18; Nchanging = 4 
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Molecule D 

MCSS 

only 

 

N
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N

 

 Nfixed  = 11; Nchanging = 2 Nfixed  = 11; Nchanging = 1 

Figure 5-6. Pairs found only by the MCSS (bottom) and F+I (top) methods when using 

the EGFR set. 

In Figure 5-6,  the pair found by only the F+I approach has a change from aromatic 

ring c1ccccc1 to acyclic chain C=CC#C (double cut is considered here). The number 

of heavy atoms in the changing part Nchanging is 6 for the molecule A and 4 for molecule 

B. The number of heavy atoms in the whole molecule Nmolecule is 24 and 22 for 

molecule A and B, respectively. Thus, the ratio Nchanging/Nmolecule is 0.25 for the first 

molecule and 0.18 for the second. These are below the specified fF+I = 0.4, so the pair 

is allowed. The fixed and changing part identified by MCSS in this case would be 

different. The Nfixed would be 14 and the ratio Nfixed/Nmolecule would be 0.58 and 0.63 

for molecule A and B, respectively. This is below the fMCSS cutoff and therefore the 

pair would not be allowed. 

The pair of compounds found only by the MCSS method have a change in the 

heteroaromatic ring, as shown in Figure 5-6. Such structural change in the aromatic 

ring would be not possible to find by using the F+I method as it requires breaking the 

bond to the aromatic ring which gives a changing part that is a large fraction of the 

molecule. For the first molecule the Nfixed, the number of heavy atoms in the fixed part, 

is 11 and Nmolecule is 13 and for the second molecule Nmolecule is 12. Therefore, the ratio, 

Nfixed/Nmolecule is 0.85 for the first molecule and 0.92 for the second. This is greater 

than the cutoff fMCSS used in this example (0.7), which is allowed. The pair would not 

be allowed in the F+I method as the ratio Nfixed/Nmolecule would be 0.54 and 0.5 for 

molecule C and D, respectively, which is greater than the fF+I cutoff (0.4). 
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 Molecule A Molecule B 

F+I 

only 

 

 

 Nfixed  = 14; Nchanging = 7 Nfixed  = 14; Nchanging = 5 

 Molecule C Molecule D 

MCSS 

only 

 
 

 Nfixed  = 20; Nchanging = 4 Nfixed  = 20; Nchanging = 4 

Figure 5-7. Pairs found only by the MCSS (bottom) and F+I (top) methods when using 

the D1 set. 

In Figure 5-7 the pair of compounds found only by the F+I method has the structural 

change from c1ccccc1I to CCCCC and the pair found by only the MCSS approach has 

the structural change includes part of aromatic ring and because of that was not 

possible to be found by the F+I method. In case of pair found only by the MCSS 

method, the ratio Nfixed/Nmolecule is 0.83 for both molecules, which is greater than the 

defined cutoff value (0.7) so the pair is allowed. Using the F+I method, the fragments 

would be identified differently and the ratio of Nchanging/Nmolecule would be 17/24 = 0.71 

for both molecules, which is greater than cutoff 0.4 and therefore would not be 

considered as a pair. 

In the case of the pair found only by the F+I method, the ratio Nchanging/Nmolecule is 0.33 

and 0.26 for molecules A and B respectively, which is below the used fF+I (0.4) and 

therefore the pair is allowed. When the MCSS approach is applied, the ratio 

Nfixed/Nmolecule is 0.67 and 0.74. As one of the molecule has a ratio lower than the cutoff 

value (0.7) therefore the pair is not allowed. 
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 Molecule A Molecule B 

F+I 

only   

 Nfixed  = 20; Nchanging = 6 Nfixed  = 20; Nchanging = 11 

 Molecule C Molecule D 

MCSS 

only 

 
 

 Nfixed  = 25; Nchanging = 3 Nfixed  = 25; Nchanging = 3 

Figure 5-8. Pairs found only by the MCSS (bottom) and F+I (top) methods when using 

the Cav3.2 set. 

In  Figure 5-8 the pair found by only the MCSS method has a change from CCC to 

CC(C). The pair has the Nfixed/Nmolecule equal to 0.89 and 0.89 for molecule A and B, 

respectively. As the ratios for the both molecules of the pair are above the specified 

fMCSS of 0.7, this pair is allowed. The F+I approach would not identify the pair as the 

obtained ratio would be greater than the fF+I cutoff (in this approach the ratio 

Nchanging/Nmolecule is 12/28 = 0.43 for both molecules) and therefore is not allowed.  

In the case of the pair found by the F+I approach, the molecule A has 0.23 and 

molecule B has 0.35 values for the ratio Nchanging/Nmolecule. This is below the fF+I  = 0.4, 

thus it is allowed. When using the MCSS approach, this pair would not be allowed as 

the ratio Nfixed/Nmolecule is 0.38 and 0.32 for molecule A and B, respectively. This is 

lower than the specified cutoff (0.7) and thus is not allowed. 

All the examples show that using both methods for MMPA simultaneously would be 

more advantageous, as none of the presented examples of found pairs is chemically 

unreasonable. This would significantly increase the chances of finding pairs worth 

considering.  
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5.4. Conclusions 

The analyses described in this chapter lead to that conclusion that in order to most 

thoroughly explore the effect of structural transformations on chemical properties, it 

might be reasonable to use both approaches, F+I and MCSS, simultaneously. This way 

it is possible to find MMPs that would be found by one method and not the other, like 

finding changes of linkers (which is the limitation of MCSS approach but can be found 

by using F+I method) or small changes in rings or highly substituted core changes that 

are among the limitations of F+I method but could be found easily using MCSS 

method.  

The choice of optimum settings for both methods is an important decision. A high 

ratio fF+I allows to find more pairs, but too high fF+I could lead to pairs that might be 

matched by very small fragments like O, CH2 or CH3. Similarly, setting too low fMCSS 

can lead to finding pairs with a really small number of overlapped atoms. On the other 

hand, too high fMCSS could result in matched pairs with almost all of the heavy atoms 

of one molecule are within the second molecule and this way the structural change 

could be only hydrogen or one or two heavy atoms.  

It could also be suggested that the optimum settings should see fF+I and the fMCSS set 

to 0.4 and 0.7, respectively. Such choice allows to good coverage of chemical space 

and find high number of matched pairs. As was shown in this chapter, choosing the 

aforementioned settings gives over ca. 33%, 40% and 55% pairs in common for 

EGFR, D1 and Cav3.2 set, respectively. Even though the majority of them were paired 

by each approach for different reasons: the F+I method can find changes of large 

groups (such as substituted phenyl rings) whereas the MCSS method localizes the 

structural change to the smallest part of the structure that is different between the two 

molecules in the pair. 

Further analysis was conducted by the colleagues in the research  group50  and  lead to 

slightly  different conclusions - the optimum settings are fF+I=0.4 and  fMCSS=0.9.  The 

paper with full analysis and results was included in the appendix.  
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