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Abstract  

Ultrasound is used to trigger the cytotoxicity of chemical compounds, known as sonosensitisers, in 

an approach called sonodynamic therapy (SDT), which is under investigation herein. The 

generation of reactive oxygen species (ROS) has been proposed as the main biological occurrence 

that leads to the cytotoxic effects, which are achieved via the synergistic action of two components: 

the energy-absorbing sonosensitiser and ultrasound (US), which are both harmless per se. Despite 

some promising results, a lack of investigation into the mechanisms behind US sonosensitiser-

mediated ROS generation has prevented SDT from reaching its full potential.  

The aim of this work is to investigate the US-responsiveness of a variety of metal-porphyrin 

complexes, free-base porphyrin and Fe(III), Zn(II) and Pd(II) porphyrin, by analyzing their ROS 

generation under US exposure and related bio-effects. All experiments were also carried out under 

light exposure and the results were used as references.  

Our results show that porphyrin ultrasound-responsiveness depends on the metal ion present, with 

Zn(II) and Pd(II) porphyrin being the most efficient in generating singlet oxygen and hydroxyl 

radicals. ROS production efficiency is lower after ultrasound exposure than after light exposure, 

because of the various physico-chemical mechanisms involved in sensitiser activation. US and 

porphyrin-mediated ROS generation is oxygen-dependent and the activation of porphyrin by US 

appears to be more compatible with sonoluminescence-based photo-activation rather than a radical 

path process that occurs via the homolytic bond rupture of water. Notably, the cytotoxicity results 

reported herein, which are mirrored by ex-cellulo data, confirm that the type of ROS generation 

achieved by the US activation of intracellular porphyrins is pivotal to the effectiveness of cancer 

cell killing.	 
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INTRODUCTION 

Sonodynamic therapy (SDT) is a proposed therapeutic approach based on the synergistic effect 

between a suitable chemical compound (sonosensitiser) and low intensity ultrasound (US), which is 

used to kill cancer and microbial cells [1, 2]. The effectiveness of SDT has been demonstrated in in 

vitro and in vivo animal models [3-10], although the underlying sonosensitization mechanism is still 

not fully understood.  

It is widely accepted that the biological effects elicited by US (in pulsed or continuous mode) are 

predominantly due to one or a combination of the following factors: i) heat generation [11], ii) 

sonoporation [12], iii) cell membrane rupture [13], and iv) free radical generation [14]. The last of 

these is thought to play the predominant role in SDT [15]. It has been proposed that some US-

mediated biological effects rely on the occurrence of acoustic cavitation [16]; a phenomenon that 

involves the nucleation and growth of gas-filled bubbles in a liquid milieu exposed to an 

appropriate US field. In this phenomenon, bubbles in a state of stable (non-inertial) cavitation 

oscillate, causing streaming and mixing in the surrounding liquid/medium, whereas gas bubbles in 

inertial cavitation grow to near resonance size and expand to a maximum before collapsing 

violently [17]. In this latter case, the energy released by bubble implosion, referred to as a 

“sonochemical reactor”, generates flashes of light known as sonoluminescence (SL), whose 

UV/visible emission spectra have been found to indicate the presence of high local temperatures 

(from 5000 up to 15000 °K) and pressures associated with bubble collapse [15, 18-21]. 

Acoustic cavitation is a highly complex phenomenon that is not yet completely understood despite 

being well known in a variety of scientific fields, from physics to chemistry and medicine. For 

some researchers, acoustic cavitation is an extreme phenomenon that is responsible for generating 

excessive vibration, erosion, reduced hydraulic performance and structural damage [22], while, for 

others, it is seen as an enormous concentration of energy with a wide range of unexplored chemical 

and physical consequences [23, 24]. In particular, the emission of SL [25-27] has been proposed as 
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the pivotal trigger for the sonosensitiser-mediated generation of reactive oxygen species (ROS) in 

SDT [28, 29]. This hypothesis was formulated because most of the chemical compounds used in 

SDT are also photosensitisers [14]. It has therefore been suggested that the mechanism that 

underlies SDT is similar to the one behind photodynamic therapy (PDT) [30]. Moreover, this 

hypothesis is consistent with the idea that sonodynamic activity may predominantly take place 

inside cells and that singlet oxygen may play an important role in eliciting sonodynamic 

cytotoxicity. Even though this hypothesis has created some consensus, doubts have been expressed 

as to the occurrence of intracellular acoustic cavitation. Nevertheless, this idea has fostered some 

support thanks to indirect evidence, including reports of sonodynamic cancer cell death occuring in 

cancer cells exposed to aminolevulinic acid [31-33], a pro-drug capable of augmenting the 

intracellular pool of the sonosensitiser protoporphyrin IX, and the scavenger-mediated identification 

of singlet oxygen [29, 34]. Moreover, efficient cancer cell killing by SDT has been achieved using 

sensitisers of very diverse molecular structure, including porphyrins and tetrapyrroles, non-steroidal 

anti-inflammatory drugs, xanthenes and anticancer drugs [35, 36]. The chemical heterogeneity of 

the sonosensitizing species naturally leads to the assumption that sonosensitiser structure has no 

central role to play in STD and that they are simply a tools that can produce longer-lived free 

radicals and other highly reactive species under acoustic cavitation in order to kill cancer cells, 

predominantly by damaging the cell membrane. Therefore, although it is generally agreed that the 

generation of free radicals is the main cause of sonodynamic cancer cell killing, there is less 

consensus as to the underpinning mechanism behind reactive species generation (intracellular 

acoustic cavitation and/or sonoluminescence occurrence), the role of the sonosensitiser in ROS 

production, the kind of reactive species produced and where sonodynamic processes take place 

(inside or outside the cells). 

With this in mind, we have undertaken this study with the aim of elucidating the influence that a 

series of water-soluble metalloporphyrins used under US and light exposure (for reference 
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purposes) have on ROS generation, in an attempt to identify the relationship between porphyrin-

mediated ROS generation efficiency and sonodynamic activity. The investigation characterised the 

generation of ROS by the various metalloporphyrins under US and light exposure, monitored 

sonoluminescence occurrence and evaluated the anticancer activity of the metalloporphyrins on the 

colorectal cancer cell line, HT-29, under US and light exposure. Experiments were also carried out 

on the human dermal fibroblast cell line, HDF, in order to evaluate the effects that the treatment had 

on non-cancerous cells. 
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MATERIALS AND METHODS 

 

Synthesis  

Reagents were purchased from Sigma-Aldrich (UK), Fisher Scientific (UK) and Fluorochem (UK). 

Solvents were obtained from Fisher (UK). All reagents and solvents were used as supplied without 

further purification. Porphyrins 1-4 (Fig. 1) were synthesized according to methods previously 

reported in the literature, with some modifications [37]. NMR spectra were recorded using a Bruker 

Avance 300 spectrometer at 300.1 MHz (1H NMR) and 75.5 MHz (13C NMR) (see Supplementary 

Materials, Fig. S1). Spectra were recorded in d6-DMSO (Fluorochem, UK) and chemical shifts were 

determined relative to the residual solvent peaks at δ = 2.51 (1H NMR) and δ = 39.6 ppm (13C 

NMR). Q-TOF-MS data were acquired in positive mode by scanning from 400 to 3000 m/z without 

auto MS/MS fragmentation. Ionisation was achieved using an Agilent JetStream electrospray 

source and infused internal reference masses. Agilent 6540 Q-TOF-MS parameters were as follows: 

a gas temperature of 325 °C, a drying gas flow rate of 10 L/min and a sheath gas temperature of 

400 °C were used. UV-visible spectra were recorded on a Varian Cary 50 UV/vis 

spectrophotometer (wavelength accuracy: ± 0.24 nm). Fluorescence spectra (uncorrected) were 

recorded on a Cary Eclipse Fluorimeter. 

5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tetrachloride (1). Methyl iodide (2 mL, 

32.11 mmol) was added to a solution of 5,10,15,20-tetrakis-(4-pyridyl)porphyrin (500 mg, 0.80 

mmol) in N-methylpyrrolidinone (100 mL). The resulting solution was stirred at 40 °C for 12 h. 

Reaction mixtures were then allowed to cool to room temperature and were treated with diethyl 

ether (300 mL). The supernatant was decanted and the precipitate was washed three more times 

with diethyl ether and the supernatant was decanted each time. The solid was dissolved in water and 

the resulting solution was treated with 10% aqueous NH4PF6 (5 mL). The solid was recovered by 

centrifugation, dissolved in acetone and treated with 10% tetrabutylammonium chloride in acetone 
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(2 mL). The precipitate was collected by centrifugation and crystallised from methanol and diethyl 

ether to yield the desired compound (855 mg, 82%). Spectroscopic data were in agreement with the 

data reported in the literature. 

 

General procedure for metal insertion into compound 1  

5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrinato iron(III) pentachloride (2). The 

compound was obtained via the procedure described above, with the only difference being that the 

reaction mixture was kept at 40 °C for 10 h. Compound 2 was obtained in 76% yield. Spectroscopic 

data were in agreement with data reported in the literature [37]. ESI-MS+: [M-4Cl]4+/4, 190.78 

5,10,15,20-tetrakis-(N-methylpyridinium-4-yl)porphyrinato zinc(II) tetrachloride (3). A solution of 

1 (208 mg, 0.25 mmol) in water (240 mL) was treated with Zn(OAc)2·2H2O (280 mg, 1.27 mmol) 

at room temperature. The mixture was stirred at room temperature until complete conversion was 

achieved (monitored by UV-visible spectroscopy and MS spectrometry). It was then diluted with 

water (80 mL) and treated with 10% aqueous NH4PF6 (2 mL). The solid was recovered by 

centrifugation, dissolved in acetone (30 mL) and treated with 10% tetrabutylammonium chloride in 

acetone (2 mL). The precipitate was collected by centrifugation and crystallised from methanol and 

diethyl ether to yield the desired compound (188 mg, 84%). Spectroscopic data were in agreement 

with data reported in the literature [37]. ESI-MS+: [M-4Cl]4+/4, 185.03 

5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrinato palladium(II) tetrachloride (4). The 

compound was obtained via the procedure described above, with the only difference being that the 

reaction mixture was kept at 40 °C for 10 h. Compound 4 was obtained in 78% yield. Spectroscopic 

data were in agreement with data reported in the literature [38]. ESI-MS+: [M-4Cl]4+/4, 195.02 
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Electron spin resonance spectroscopy 

ROS generation was monitored using electron spin resonance (EPR) spectroscopy (Miniscope 100 

EPR spectrometer, Magnettech, Germany) and the spin trapping technique, which used DMPO 

(5,5-dimethyl-1-pyrroline-N-oxide, Alexis Biochemicals, USA) and 4-oxo-TMP (2,2,6,6-

tetramethyl-4-piperidone, Sigma-Aldrich) as the spin-probing agents for oxygen radicals and singlet 

oxygen, respectively. All the other reagents were obtained from Sigma-Aldrich. Ultrapure Milli-Q 

water (Millipore, Billerica, USA) was used. 

Sample preparation. 600 µL of a 0.4 mM aqueous porphyrin solution were diluted in 1.9 mL of a 

phosphate buffered saline solution (PBS) containing either DMPO (50 mM), for the 

hydroxyl/superoxide radical, or 4-oxo-TMP (50 mM) for singlet oxygen. The solution was either 

irradiated using a HgXe lamp in quartz vials for 5 min or exposed to US in a polystyrene tube for 5 

min. EPR spectra were recorded, using 50 µL of the solution, immediately after treatment. In one 

case, the experiment was also repeated after by bubbling the solution with Ar in a controlled 

atmosphere to remove dissolved oxygen for the duration of US exposure. Simulations of EPR 

experimental signals were performed using Winsim 2002 software (National Institute of 

Environmental Health Science, National Institutes of Health, USA). Hyperfine splitting constants, 

obtained from an optimization of the simulation, were compared with those reported in the literature 

(NIESH STBD database). 

Ultrasound exposure. The US field was generated using a plane wave transducer (2.54 cm 

diameter), operating in continuous wave mode at f = 1.866 MHz, that was connected to a power 

amplifier (Type AR 100A250A; Amplifier Research, Souderton, USA) and a function generator 

(Type 33250; Agilent, USA). A custom-built mechanical adaptor was connected to the 1 cm 

diameter polystyrene tube containing the solution. When filled with ultrapure water, the adaptor 

guarantees the high reproducibility of measurement conditions [39]. The distance from the 

transducer to the cell tube was set at 17 mm. US exposure was performed for 5 min under subdued 
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light at a US power of 1.5 W/cm2. The maximum temperature recorded in the US exposed sample 

was 33 °C. 

Light exposure. A 500 W Hg/Xe lamp (Oriel Instruments, USA), was used with a 400 nm cut-off 

filter and an IR water filter to avoid suspension overheating. Light irradiance in the visible region 

was measured using a Deltahom instrument (Italy) equipped with a detector operating in the UVA 

and visible/NIR ranges (400-1050 nm). An irradiance of 51.8 mW/cm2 was measured in all 

experiments. Irradiation was carried out for 5 min. 

 

Sonoluminescence measurements 

In order to collect the light emitted from the bubble cloud that was generated by the ultrasonic 

transducer, the transducer itself inserted into the bottom of a Plexiglas tube (diameter: internal 30 

mm, external 40 mm; Techno Plastic Products, Switzerland) filled with either 30 mL of 2 µM 

porphyrin in aqueous solution or with aqueous solution alone (control). The tube was inserted into a 

dark chamber at a constant temperature of 10°C (± 1°C). The emitted light was acquired by two 

quartz lenses, positioned at the top of the Plexiglas tube, that were coupled to a multicore UV-

visible optical fibre connected to a monochromator (Acton SP 300i, Princeton Instruments, USA). 

Spectra (200-700 nm) were recorded using an LN cooled CCD (XDX mode l, Princeton 

Instruments) and were acquired over 3 min at a resolution of 1 nm [40]. Since SL emission 

decreases as the temperature of the liquid rises (a frequently observed phenomenon in liquids 

exposed to high-frequency US), we measured the temperature of the solution after each SL 

acquisition. The maximum temperature measured, using a needle thermocouple, was 35 °C, which 

is consistent with the experimental conditions for cell treatment. To improve the signal to noise 

ratio (S/N) of SL, experiments were also carried out while bubbling Ar in air-equilibrated solution 

for the duration of US exposure [41]. 
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Cell proliferation assay 

The human colorectal cancer cell line, HT-29 (Interlab Cell Line Collection, Italy), was cultured in 

McCoy's 5A medium (Sigma-Aldrich) and the human dermal fibroblast cell line, HDF (ECACC, 

Salisbury, UK), was cultured in DMEM (Sigma Aldrich). All media were supplemented with 10% 

FBS (Lonza, Belgium), 2 mM L-glutamine, 100 UI/mL penicillin and 100 µg/mL streptomycin 

(Sigma-Aldrich) and maintained in a dark incubator (Thermo Fisher Scientific, USA) in a 

humidified atmosphere of 5% CO2 air at 37 °C. At 85% confluence, cells were harvested with 

0.05% trypsin-0.02% EDTA solution (Sigma-Aldrich), suspended once again in culture medium 

and seeded at the appropriate cell concentration for the experiment.  

In the exponential growth phase, cells were pre-incubated in the dark for 24 h with porphyrins. The 

cells were then normalized to 5 × 105 cells in a polystyrene tube filled with phosphate buffered 

saline (PBS), at pH 7.4, for sonodynamic and photodynamic treatment.  

The in vitro sonodynamic experiments were performed under subdued light and the temperature of 

the medium was controlled to avoid hyperthermia during the experiment. 

After treatment, 2.5 x 103 cells were seeded in 100 µL of culture medium in replicates (n=8) in 96-

well culture plates. 10 µL of WST-1 solution (Roche Applied Science, Germany) was added at 24, 

48, and 72 h and the plates were incubated at 37°C in 5% CO2 for 1.5 h for HT-29 cells and for 2 h 

for HDF cells. Well absorbance was evaluated at 450 and 620 nm using a microplate reader (Asys 

UV340; Biochrom, UK). Cell proliferation data were expressed as a percentage of untreated cells. 

 

Confocal microscopy 

The uptake of porphyrins 1-4 by HT-29 cells was investigated using confocal microscopy to 

provide qualitative evidence for their intracellular localization. 2 x 105 HT-29 cells were left to 

attach for 24 h on glass coverslips in 24-well plates and were then incubated for 24 h with 

porphyrins 1, 2 and 4 and with porphyrin 3 at 500 and 250 µM, respectively. At the end of the 
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incubation time, slides were fixed with 4% paraformaldehyde (Sigma-Aldrich) for 15 min and cell 

nuclei were then stained with TO-PRO®-3 (Thermo Fisher Scientific) for 15 min. Images were 

acquired using a Leica TCS SP5 AOBS confocal system (Leica Microsystems, Italy) equipped with 

a 405 nm diode, an Ar ion and a 633-nm HeNe laser. Fixed cells were imaged using a HCX PL 

APO 40x 1.25 NA oil immersion objective at a pixel resolution of 0.094 × 0.094 µm. 

 

In vitro sonodynamic and photodynamic treatments 

HT-29 cells in the exponential growth phase were incubated for 24 h with culture medium 

containing porphyrins (1, 2 and 4 at 500 µM; 3 at 250 µM) in a dark incubator. The porphyrin 

concentrations for the SDT and PDT treatments were set at the highest non-cytotoxic concentration 

obtained from the cell proliferation curves, which were carried out 24 h after incubation with 

various porphyrin concentrations (125, 250, 500 and 1000 µM). Moreover, in order to investigate 

the dependency that the sonodynamic cytotoxicity has on porphyrin dose, treatments were also 

carried out over increasing porphyrin concentrations. After the sonodynamic and photodynamic 

treatments, 2.5 x 103 cells were plated in a 96-well culture plates and cell proliferation was 

evaluated using the WST-1 assay 24, 48 and 72 h after treatment, as previously described.  

Sonodynamic treatment. After incubation, cells were washed with PBS, trypsinized and normalized 

to 5.0 x 105 cells in 2.5 mL PBS in polystyrene tubes for US exposure. Cells were exposed to US 

using the settings described above.  

Photodynamic treatment. After incubation, cells were washed with PBS, trypsinized and 

normalized to 5.0 x 105 cells in 2.5 mL of PBS in polystyrene tubes (Techno Plastic Products) to 

ensure light exposure. Each cell tube was then irradiated in a dark box using the settings described 

above. 

ROS scavenging assay. HT-29 cells were incubated with the ROS scavenger N-acetyl-cysteine 

(NAC; Sigma) in order to evaluate the role that ROS play in the cytotoxicity induced by the 
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exposure of porphyrin-incubated cells to US. Briefly, cells were incubated with porphyrins (either 3 

at 250 µM or 4 at 500 µM) for 24 h and 5.0 mM NAC was added for the last 3 h of porphyrin 

incubation. Cells were then trypsinized, washed with PBS and exposed to US, using the settings 

described above. Cell growth was assessed using a WST-1 assay after 24, 48 and 72 h. 

Treatment of non-cancerous cells. HDF cells were incubated with the porphyrins and exposed to 

either US or light to evaluate the effects of the treatments on cell growth. Briefly, cells were 

incubated with porphyrins (either 3 at 250 µM or 4 at 500 µM) for 24 h, washed with PBS, 

trypsinized, normalized to 1.0 x 105 cells in 2.5 mL PBS in polystyrene tubes and exposed to either 

US or light, using the settings described above. Cell growth was assessed using a WST-1 assay after 

24, 48 and 72 h. 

 

Flow cytometry 

ROS generation and cell death were assessed using flow cytometric assays on a C6 flow cytometer 

(Accuri Cytometers, USA). Sonodynamic and photodynamic ROS production was measured using 

2,7-dichlorofluorescein diacetate (DCF-DA, Molecular Probes, USA) as the intracellular probe for 

oxidative stress. DCFH-DA is a stable, non-fluorescent molecule that readily crosses the cell 

membrane and is hydrolysed by intracellular esterases to form the non-fluorescent DCFH, which is 

itself oxidized in the presence of peroxides to form the highly fluorescent 2,7-dichlorofluorescein 

(DCF) upon oxidation by ROS. Incubation with porphyrins was carried out as described above. 

Cells were then incubated with 10 µM DCFH-DA for 30 min. Following DCFH-DA incubation, 

cells were washed with PBS, trypsinized, normalized to 5 x 105 cells, collected in 2.5 mL of PBS 

and subjected to either sonodynamic or photodynamic treatment. ROS production was assessed 1, 

5, 15, 30 and 60 min after treatment. 10,000 events were considered in the analysis. ROS 

production is expressed as the integrated median fluorescence intensity (iMFI), which was 

calculated as the product of the frequency of ROS-producing cells and the median fluorescence 
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intensity of the cells. The iMFI ratio was calculated in order to provide information on the 

ratiometric variation in fluorescence per time point with respect to control cells (untreated cells). 

ROS detection was stopped when the iMFI ratio started to decrease, because of the significant 

increase in DCF fluorescence in control cells [42], in order to limit any assay artifacts that may 

influence evaluations of the real intracellular ROS content, as induced by the investigated 

treatments. 

Cell death was evaluated using the Dead Cell Apoptosis Kit, with Annexin V-Alexa Fluor® and 

propidium iodide (PI, Life Technologies, Italy) 24 h after treatment. Cells were detached with 

trypsin, washed with PBS at 1,500 rpm for 5 min and then re-suspended with 1x Annexin-binding 

buffer and stained with Annexin V-Alexa Fluor® and PI. Sample analyses were carried out at 488 

nm excitation to measure Annexin V-Alexa Fluor® and at 530 nm to measure PI. 10,000 events 

were considered in the analyses and any cell debris that displayed low forward light scatter and side 

light scatter was excluded from the analyses. The two different staining types allowed us to identify 

the presence of apoptotic (Annexin V-Alexa Fluor® positive) and necrotic cells (Annexin V-Alexa 

Fluor® and PI positive) and tell them apart from viable cells (Annexin V-Alexa Fluor® and PI 

negative). All analyses were performed using FCS Express software version 4 (BD Bioscience, 

Italy).  

 

Transmission electron microscopy  

Samples for ultrastructural evaluation were fixed in 2.5% gluteraldehyde phosphate (pH 7.3) and 

stored at 4 °C for 24 h. After the post-fixation process (1% osmium for 2 h followed by a quick 

wash out in 30% acetone), the samples were dehydrated in acetone and embedded in Spurr resin. 

Thin sections (0.90 µm) were obtained from each sample using an ultramicrotome, they were then 

stained with toluidine blue and ultrathin sections (70 nm) were contrasted with uranyl acetate and 

lead citrate. The grids were evaluated using a Philips CM10 transmission electron microscope.  
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Statistical analysis 

Data are shown as mean values ± standard deviation of three independent experiments. Statistical 

analyses were performed on Graph-Pad Prism 6.0 software (La Jolla, USA). Two-way analysis of 

variance and Bonferroni’s test were used to calculate the threshold of significance. The statistical 

significance threshold was set at p< 0.05. 
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RESULTS 

 

Identification of ROS produced by the sonodynamic or photodynamic activation of 

porphyrins 

ROS generation can be monitored using a combination of electron paramagnetic resonance (EPR) 

spectroscopy and spin trapping; a powerful technique that is able to both identify and quantify the 

presence of paramagnetic species [43]. In fact, specific spin traps were used to monitor the 

generation of superoxide radicals (O2
•-), hydroxyl radicals (HO•) and singlet oxygen (1O2) in this 

work. The EPR signals obtained using the spin traps DMPO (panel A) and 4-oxo-TMP (panel B), 

after the exposure of aqueous solutions of porphyrins 1-4 to US, are shown in Fig. 2. Whereas no 

signals were observed in the absence of porphyrins and US exposure (see Supplementary Materials, 

Fig. S2), a four line signal (aN = aH 14.4G), which corresponds to the paramagnetic adduct 

DMPO/OH•, was observed in the presence of all porphyrins. Porphyrin 3 gave the highest signal 

intensity, indicating that it has the highest hydroxyl radical generation efficiency (Fig. 2A). 

Moreover, in order to confirm that the OH originates from molecular oxygen, EPR analyses were 

carried out in an Ar-saturated solution and in a controlled atmosphere to remove dissolved oxygen 

for the duration of US exposure, and highlighted the absence of the OH (see Supplementary 

Materials, Fig. S3). 

In the presence of the singlet oxygen trap, 4-oxo-TMPO, a clear three peak EPR signal (aN 15.8 G) 

was observed in all samples following US exposure, while a marginally more intense signal was 

found in the porphyrin 4 sample (Fig. 2B). This signal indicates the presence of the radical 

TEMPONE that is formed via the reaction between singlet oxygen and the probe 4-oxo-TMP [44-

46].  

The same experiments were performed under light irradiation (Fig. 3) in order to verify whether the 

ROS obtained from US exposure are also generated by photodynamic processes, and it was found 
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that all porphyrins showed comparable singlet oxygen generation efficiency (Fig. 3B). However, a 

different, seven-line signal, which was particularly intense with porphyrin 2, was observed when 

DMPO was used (Fig. 3A). A simulation of this signal (SI) revealed two splitting constants, one 

(3.9 G) involving two nuclei of nuclear spin 1/2 and the other (7.1 G) involving a nucleus of nuclear 

spin 1 (Fig. S4). This pattern corresponds to a previously identified DMPO decomposition product 

(DMPOX) [47].  

 

Sonoluminescence occurrence during the sonodynamic activation of porphyrins 

The EPR ROS identification results, drove us to investigate the occurrence of SL during the US 

exposure of porphyrins 3 and 4, which showed the highest US-responsiveness (Fig. 2). Typical SL 

broad band emissions were observed in all the tested solutions (Fig. 4). The air-equilibrated 

solutions were flushed with Ar during US exposure to increase the SL S/N ratio (see Supplementary 

Materials, Fig. S5). Notably, an additional emission, which corresponds to OH(A2Σ+ − X2 Π[1/2,3/2]) 

radical emission from vibrational bands [41], was observed around 310-340 nm in the porphyrin 3 

solution.  

 

Cytotoxicity induced by the sonodynamic and photodynamic activation of porphyrins  

All porphyrins were taken up by HT-29 cells and principally showed cytoplasmic distribution after 

24 h of incubation (Fig. 5). 

The effects of sonodynamic and photodynamic treatment on HT-29 cell growth, at the highest non-

cytotoxic porphyrin concentrations (see Supplementary Materials, Fig. S6), were observed for up to 

72 h after the protocols had been carried out. Porphyrin 1 and 2 did not cause a significant reduction 

in HT-29 cell growth under US exposure (Fig. 6). On the other hand, porphyrin 3 lead to a 

significant HT-29 cell growth decrease under US exposure after 72 h (p < 0.01), whereas porphyrin 

4 caused an even more marked HT-29 cell growth decrease at 48 (p < 0.05) and 72 h (p < 0.001) 
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(Fig. 6). As observed in Fig. 7, all porphyrins induced a significant reduction in cell proliferation 

under light irradiation, while porphyrins 3 and 4 showed marked reductions even 48 h (p < 0.01) 

after irradiation. The key role that the sensitiser plays in the sonodynamic process is also 

highlighted by the sonodynamic effect’s dependency on porphyrin dose (see Supplementary 

Materials, Fig. S7). Moreover, a ROS scavenging assay was carried with NAC to clarify the 

correlation between intracellular ROS production and the cancer cell death induced by the 

sonodynamic treatment. Our experiments showed that NAC suppressed cytotoxicity when HT-29 

cells were treated with porphyrins and US (see Supplementary Materials, Fig. S8).  

It is also worth mentioning that no statistically significant changes in cell proliferation were 

observed in HDF cells that were incubated with porphyrins and exposed to US (see Supplementary 

Materials, Fig. S9), whereas HDF cells that were incubated with porphyrins and exposed to light 

showed the same cytotoxicity pattern as HT-29 cells (Fig. 7).  

 

Cell ROS generation by the sonodynamic and photodynamic activation of porphyrins  

A cytofluorimetric evaluation of ROS generation was performed to further confirm whether 

porphyrin-mediated sonodynamic and photodynamic treatments are able to induce intracellular 

ROS production. 

Differing ROS production patterns were obtained, depending on the porphyrin used, when HT-29 

cells underwent US exposure. As shown in Fig. 8, a significant increase in ROS production over 

time was only observed under US exposure when HT-29 cells were pre-incubated with porphyrin 3 

or porphyrin 4, with a maximum in ROS production being found 30 min after treatment (p < 0.001). 

As seen in Fig. 9, light exposure induced a maximum in ROS production, 30 min after treatment, in 

HT-29 cells that had previously been incubated with all the porphyrins under consideration (p < 

0.001). This was followed by a progressive decrease in ROS production up to 60 min after 
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treatment. In particular, a significant increase in ROS production was observed 1 min after the cells 

that had previously been incubated with porphyrin 4 were exposed to light (p < 0.01). 

Overall, it was observed that photodynamic treatment was able to induce a significant increase in 

ROS production in all the porphyrins under consideration, while sonodynamic treatment was only 

able to induce a significant increase in ROS production in cells that had previously been incubated 

with porphyrin 3 or 4. We can also highlight the fact that the results obtained in the cytofluorimetric 

ROS evaluations are in line with the effects observed in our cell growth analyses.  

 

Evaluation of cell death via the sonodynamic or photodynamic activation of porphyrins  

We decided to focus our attention on the type of cell death induced by sonodynamic porphyrin 

activation and that we focus our investigation on porphyrin 4, which showed the highest US-

responsiveness. As reported in Table 1, cytofluorimetric cell death analyses were performed 24 h 

after sonodynamic and photodynamic treatment with porphyrin 4. Results highlight that 

sonodynamic treatment induced apoptotic (19.9 ± 3.1% of cell population, p < 0.01) and necrotic 

cell death (19.7 ± 4.5% of cell population, p < 0.01), whereas photodynamic treatment mainly 

induced necrotic cell death (39.7 ± 2.5% of cell population, p < 0.001).  

Furthermore, TEM analyses were performed 12 h after sonodynamic treatment with porphyrin 4 to 

also investigate the role of autophagy in sonodynamic ROS-mediated cell death. As shown in Fig. 

10, control cells, the untreated cells, were found to be either round or oval with numerous microvilli 

on the plasma membrane, to contain large nuclei with homogeneous chromatin and to have 

regularly distributed cell organelles (Fig. 10A). Only moderate and irregular increases in the 

number of organelles or lipid droplets were observed in cells treated with US (Fig. 10B) or 

porphyrin 4. Interestingly, cells that had been pre-incubated with porphyrin 4 and exposed to US 

showed an abundance of double and single membrane-enclosed vesicles in their cytoplasm. A 

significant increase in the presence of lipid droplets and cell organelles was also evident (Fig. 10C 
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and D). This evidence indicates that porphyrin 4-mediated sonodynamic treatment causes a change 

in cell metabolism, while an increase in double and single membrane-enclosed vacuoles containing 

seemingly damaged organelles and digested material indicates the occurrence of autophagy. 
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DISCUSSION 

Porphyrins are excellent sensitisers for ROS production under light irradiation and evidence of their 

ability to behave as sonosensitisers is slowly accumulating [28, 36, 48]. The aim of this study is to 

shed light onto the mechanism of ROS formation during the sonodynamic process with porphyrin 

compounds. 5,10,15,20-tetrakis-(methylpyridinium-4-yl)porphyrin was selected as the sensitiser 

core structure because of its water solubility and three different metal complexes, namely Fe(III), 

Zn(II) and Pd(II), were prepared so that we could observe the effects that differing electronic ring 

properties had on ROS production (efficiency and/or type of ROS produced). 

The placing of metals in the porphyrin rings can dramatically alter the spectroscopic behaviour of 

the chromophore [49]. In particular, metal ions affect the ability of porphyrins to undergo 

intersystem crossing (ISC) and can also influence the lifetimes of the resulting excited triplets, 

which in turn modifies the behaviour and the efficiency of the sensitiser [50, 51]. Indeed, free-base 

porphyrin 1 is moderately efficient in generating singlet oxygen following light irradiation. The 

insertion of Zn(II) into porphyrin 3, and Pd(II) into porphyin 4 improves the efficiency of singlet 

oxygen generation by enhancing ISC and facilitating conversion to the excited triplet state. Pd(II) 

complexes, in particular, are excellent singlet oxygen generators due to their long triplet lifetime. 

Moreover, the insertion of Fe(III) into porphyrin 2, a reportedly poor generator of singlet oxygen, 

was also chosen as it is known to generate oxygen radicals via single-electron transfer [52]. EPR 

analyses performed herein confirmed that ROS production following light irradiation was affected 

by the presence/type of differing metal ion in the porphyrins. Indeed, whereas irradiation with 

visible light did not lead to the formation of the DMPO/OH• adduct (Fig. 3B) with any of the 

porphyrins investigated, a signal, which we have attributed to the DMPOX species, was actually 

observed. This species is formed via the decomposition of the DMPO/O2
•- adduct, as catalysed by 

low oxidation state metals [47]. The detection of this species suggests the occurrence of one-

electron redox reactions, which is expected to be more evident with porphyrin 2, although the 
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generation of DMPOX from a reaction between DMPO and singlet oxygen has also been proposed 

as a possible explanation [53].  

In the sonodynamic experiments, while the porphyrins showed different ROS-generating behaviour 

and efficiency after exposure to non-thermal low intensity US than they did after the light exposure, 

it must be noted that EPR analyses have demonstrated, for the first time to the best of our 

knowledge, the sonodynamic generation of hydroxyl radicals and singlet oxygen (Fig. 2A-B). The 

presence of the DMPO/OH• signal indicates the generation of hydroxyl radical, however the 

DMPO/OH• species may also results from the decomposition of the unstable adducts of DMPO 

with superoxide/hydroperoxyl radicals to diamagnetic species and DMPO/OH• [54]. It is worth 

noting that all porphyrins generate both oxygenated radicals and singlet oxygen, with porphyrin 3 

and porphyrin 4 showing the highest efficiency, respectively. Indeed, porphyrin 3 shows the highest 

signal intensity for the paramagnetic adduct DMPO/OH•, whereas porphyrin 4 displays a low 

intensity signal for the same adduct (Fig. 3A). Porphyrin 4 generates an intense signal for the 

radical TEMPONE, which is formed from the reaction between singlet oxygen and the probe 4-oxo-

TMP (Fig. 3B). Crucially, the absence of signals of oxygenated radicals in the EPR spectra obtained 

from Ar-saturated solutions of porphyrins 3 and 4 strongly suggests molecular oxygen as the source 

of US porphyrin-mediated ROS generation.  

Taken together, the EPR data show that the efficiency of ROS production is generally lower in SDT 

than in PDT, however the markedly more efficient ROS-generating behaviour observed for 

porphyrins 3 and 4 prompted us to investigate whether an US-mediated photo-activation may also 

underpins SDT. 

A number of authors have suggested a quite peculiar US phenomenon, referred to as the emission of 

light by a mechanical wave, sonoluminescence (SL), to explain the photo-activation mechanism 

that underlies the production of ROS by SDT. It was therefore decided to perform experiments to 

investigate the occurrence of SL in our experimental setup. Specifically, SL is the light emission in 
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the UV-visible range caused by the ionization of noble gases inside the cavitation bubbles, which 

induces the formation of plasma that in turn ionises the molecules present in the vapour phase 

within the bubbles, or at the gas-liquid interface of the collapsing bubble [55, 56]. SL can be 

observed as occurring after stimulation in the ultrasonic frequency range, from 20 kHz up to 3 

MHz, and is influenced by variables such as acoustic pressure, frequency, liquid proprieties, 

temperature and specific gas content [18]. SL emission from clouds of bubbles generated by an 

ultrasonic transducer is called multi-bubble sonoluminescence (MBSL) [57]. MBSL was 

investigated in water and in aqueous solutions and in the presence of porphyrins 3 and 4, which 

proved the most active in generating ROS upon US exposure in this work. The typical broad band 

SL emission was observed for all solutions confirmed the occurrence of SL. In particular, SL 

intensity was markedly more intense in Ar-flushed solution than in air-equilibrated solution. An 

intriguing feature emerging from our experiments was an emission peak around 310-340 nm 

observed in the solution of porphyrin 3, which corresponds to emission of light by hydroxyl 

radicals, namely OH(A2Σ+ − X2 Π[1/2,3/2]) hydroxyl radical emission. Although the generation of 

hydroxyl radicals via the homolytic splitting of water was described as occurring during acoustic 

cavitation several years ago [58], this reaction should be excluded in our system due to the low 

power of the applied US. Indeed, the absence of oxygenated radicals from the EPR spectra of 

simple aqueous solutions exposed to US confirms the absence of homolytic water cleavage. 

Therefore, we conclude that our US experimental setup causes SL emissions in the UV/visible 

range of the electromagnetic spectrum, both in water and in the presence of porphyrins 3 and 4. The 

hydroxyl radical emission observed in the presence of porphyrin 3, supports the hypothesis that SL 

may play a role in the sonodynamic activation of porphyrins.  

We then investigated the biological effects that the same sonodynamic and photodynamic 

experiments had in an in vitro cancer model. The uptake of our porphyrins by HT-29 cancer cells 

24 h after incubation was confirmed, as shown by confocal microscopy (Fig. 5), before analyses of 
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the anticancer effects of sonodynamic and photodynamic activation took place. Upon US exposure, 

the biological responsiveness of porphyrins 1-4 mirrors the results of EPR analyses, as significant 

cancer cell proliferation inhibition was demonstrated, but only when porphyrin 4 and, to a lesser 

extent, porphyrin 3 were used as sonosenitizers. The photodynamic activity of porphyrins 1-4 also 

followed the trend observed in the EPR experiments, showing a strong reduction in cancer cell 

proliferation with all porphyrins tested just 24 h after photodynamic treatment. The pivotal role that 

the sensitiser plays in the sonodynamic process was confirmed by the fact that the induced 

cytotoxicity was dependent on porphyrin dose (Fig. S7). In addition, it can be stated that 

sonodynamic cytotoxicity was mainly ascribable to porphyrin-mediated ROS production (Fig. S8), 

as the ROS scavenger, NAC, prevented HT-29 cell death. 

DCF fluorescence, measured after our sono- and photodynamic cell treatments, was observed as a 

redox imbalance indicator, rather than a direct measure of intracellular H2O2, since DCFH-DA is the 

most widely used probe for detecting hydroxyl radical and other highly reactive oxygen species, 

then the oxidative stress [59]. The DCFH-DA assay was therefore performed to provide an indirect 

evaluation of intracellular ROS generation after cells that had been pre-incubated with porphyrin 1-

4 where exposed to either US or light. Interestingly, common timings were observed upon 

comparing sonodynamic and photodynamic intracellular ROS production (Fig. 8 and 9); the highest 

values were observed 30 min after US and light exposure, but to differing extents depending on the 

trigger (US or light) and the intracellular porphyrin complex (1-4) used. While porphyrins 3 and 4 

were found to be the most effective at generating intracellular ROS upon US exposure, all the 

porphyrins were able to efficiently generate ROS upon light exposure. These data support the 

hypothesis that the possible mechanism of action for effective sonodynamic anticancer response 

derives from the ROS elicited by the US activation of the sensitiser, such as in the well-clinically 

established PDT technique where cancer cell killing is achieved through oxidative stress. We thus 
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feel, as do other authors [60-62], that sonodynamic treatment deserves further investigation for its 

potential as an intriguing strategy for cancer treatment.  

Another important aspect is the fact that PDT leads to cell death via multiple pathways. Indeed, 

oxidative stress mediates apoptotic and/or necrotic cell death, but also induces autophagy, which 

can cause the overconsumption of the cellular machinery necessary for maintaining cellular vitality 

when excessive. This results in type-II programmed cell death (PCD), which is better known as 

“autophagic cell death” (ACD). Apoptosis and autophagic cell death can occur simultaneously and 

excessive autophagy can also regulate the apoptotic pathway [63, 64], which underpins the 

importance of cross-talk between autophagy and apoptosis when ROS are among the main 

intracellular signal transducers that sustain cancer cell death. Moreover, antioxidant treatment 

prevents autophagy, suggesting that redox imbalance plays a pivotal role in driving the process. To 

further confirm that oxidative stress was at the basis of  sonodynamic killing of cance cells in our 

experimental considtions, we investigated the cell death as induced by the porphyrin with the 

highest US-responsiveness, porphyrin 4. Whereas the porphyrin 4 sonodynamiyc ROS-mediated 

process induced both necrotic and apoptotic cell death, light exposure was responsible for necrotic 

cell death (Table 1). These data are in agreement with the ROS analyses carried out using EPR and 

a DCF-DA assay. In fact, the higher extent of necrotic cell death that was observed upon 

photodynamic treatment may be due to the higher singlet oxygen production and redox imbalance 

that it causes, as compared to sonodynamic treatment. Moreover, TEM observation of cells under 

sonodynamic treatment with porphyrin 4 were carried out to investigate the possible occurrence of 

ACD and cells with significantly increased numbers of autophagosomes were observed, giving 

them the characteristic vacuolated appearance, that is peculiar to ACD. The extensive ROS 

production achieved upon the exposure of porphyrin 4 to US is therefore able to switch the 

autophagic defence response against oxidative stress into a lethal stimulus that leads to ACD.  
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The data reported here point out the importance of sensitiser properties when attempting to achieve 

US-induced ROS generation that can lead to cancer cell death. Indeed, the different patterns of ROS 

generation depend on the presence and type of the metal in the macrocycle; porphrin 4 is the most 

efficient in generating singlet oxygen, hydroxyl radicals and, consequently, causing cancer cell 

death under US exposure. 

It is worth noting that the sonodynamic treatment of the human dermal fibroblast cell line HDF did 

not produce any significant effect on cell proliferation, suggesting that also the different cell 

membrane properties can be crucial to the outcome and selectivity of the sonodynamic treatment, 

unlike what observed with the photodynamic treatment (Fig. S9). Indeed, it is well known that 

cancer and non-cancerous cells can display wildly different cell structure and mechanical 

properties, including membrane stiffness, membrane permeability and cellular adhesion [65-67]. 

For instance, early stage investigations have demonstrated the existence of a relathionship bewteen 

cell elastic properties and US bioeffects [68, 69]. This remark can be supported by an intriguing 

hypothesis introduced by Krasovitski and colleagues [70], in which non-thermal US induces bilayer 

membrane motion that can help elucidate the mechanisms of US interaction with biological tissue 

that are currently not fully understood. In their work, the authors presented an intracellular 

cavitation mechanism to explain some US biological effects, from delicate and reversible bioeffects 

[71], to complete membrane disruption and irreversible cellular damage [72]. Moreover, in a 

previous work, we ourselves have shown that the cavitation zone passes through a number of stages 

of evolution and SL seems to develop accordingly [27]. In this scenario, it is not unreasonable to 

assume that the intracellular cavitation mechanism might also elicit an intracellular cavitation zone 

with different stages of evolution that are able to trigger our porphyrin compounds. 

In conclusion, the present work demonstrates, for the first time, that the sonodynamic efficacy of 

porphyrins in cancer cell killing can vary according to the metal moiety present in the macrocycle, 

seemingly because it is responsible for different ROS generation patterns. Finally, we are providing 
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ex cellulo evidence suggesting that porphyrin activation by US can be mediated by photo-activation 

via sonoluminescence rather than a radical path process via homolytic splitting of water. 
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Table 1 Cell death analysis 24 h after treatment 

HT-29 cells Live cells Apoptotic cells Necrotic cells 

Untreated cells 95.2 ± 8.3 2.5 ± 0.9 2.3 ± 0.6 

Light 94.9 ± 9.2 4.1 ± 1.0 0.9 ± 0.2 

US 95.0 ± 7.3 3.2 ± 0.7 1.8 ± 0.5 

4  95.4 ± 8.4 4.0 ± 0.6 0.6 ± 0.1 

4 + Light 53.3 ± 4.5 *** 7.0 ±0.9 39.7 ± 2.5 *** 

4 + US 60.4 ± 5.8 *** 19.9 ± 3.1 ** 19.7 ± 4.5 ** 

Statistical significance vs untreated cells: ** p < 0.01, *** p < 0.001. 
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FIGURE LEGENDS 

Fig. 1 Structures of porphyrins 1-4 

 

Fig. 2 Generation of hydroxyl radicals (A) and of singlet oxygen (B) by the various porphyrins (1-

4) following activation by US power at 1.5 W/cm2 for 5 min at 1.866 MHz, as detected by EPR 

spectroscopy. Signal intensity is proportional to the amount of reactive species generated. 

 

Fig. 3 Generation of hydroxyl radicals (A) and of singlet oxygen (B) by the various porphyrins (1-

4) following activation by light power at 51.8 mW/cm2 for 5 min at 400-1050 nm, as detected by 

EPR spectroscopy. Signal intensity is proportional to the amount of reactive species generated. 

 

Fig. 4 Sonoluminescence emission spectra of porphyrin 3 (black curve) and 4 (red curve) solutions 

under air saturation during US irradiation at 1.5 W/cm2 for 5 min, at 1.866 MHz. The blue curve 

refers to multi bubble sonoluminescence (MBSL) recorded in aqueous solution, while the grey 

curve corresponds to the background of the acquiring system.  

 

Fig. 5 Representative confocal fluorescence images of HT-29 cells incubated with the various 

porphyrins. Cells were exposed to either 500 µM of porphyrin 1, 2 or 4 or 250 µM of porphyrin 3 

(green) for 24 h; TO-PRO®-3 (blue) was used a nuclear counterstain. Magnification: 40x. Scale 

bars: 15 µm. 

 

Fig. 6 Effects of sonodynamic treatment on HT-29 cell growth. HT-29 cells were incubated for 24 h 

with the various porphyrins (1, 2 and 4 at 500 µM; 3 at 250 µM) and then exposed to US power at 

1.5 W/cm2 for 5 min at 1.866 MHz. Cell proliferation was evaluated after 24, 48 and 72 h using the 

WST-1 assay. Statistically significant difference versus untreated cells: * p < 0.05, ** p < 0.01. 
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Fig. 7 Effects of photodynamic treatment on HT-29 cell growth. HT-29 cells were incubated for 24 

h with the various porphyrins (1, 2 and 4 at 500 µM; 3 at 250 µM) and then exposed to light power 

at 51.8 mW/cm2 for 5 min at 400-1050 nm. Cell proliferation was evaluated after 24, 48 and 72 h 

using the WST-1 assay. Statistically significant difference versus untreated cells: * p < 0.05, ** p < 

0.01, *** p < 0.001. 

 

Fig. 8 HT-29 reactive oxygen species production after sonodynamic treatment. HT-29 cells were 

exposed to US (1.5 W/cm2 for 5 min at 1.866 MHz) either alone or after 24 h incubation with the 

various porphyrins (1, 2 and 4 at 500 µM; 3 at 250 µM). ROS levels were determined according to 

the 2’,7’-dichlorofluorescein diacetate (DCF-DA) assay using flow cytometry and expressed as the 

integrated average fluorescence ratio (iMFI) ratio, as described in Materials and Methods. 

Statistically significant difference versus untreated cells (represented by a dashed lines): * p < 0.05, 

** p < 0.01, *** p < 0.001. 

 

Fig. 9 HT-29 reactive oxygen species production after photodynamic treatment. HT-29 cells were 

exposed to light (51.8 mW/cm2 for 5 min at 400-1050 nm), either alone or after cell incubation for 

24 h with the various porphyrins (1, 2 and 4 at 500 µM; 3 at 250 µM). ROS levels were determined 

according to the 2’,7’-dichlorofluorescein diacetate (DCF-DA) assay using flow cytometry and 

expressed as the integrated average fluorescence ratio (iMFI) ratio, as described in Materials and 

Methods. Statistically significant difference versus untreated cells (represented by a dashed lines): * 

p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Fig. 10 Representative TEM images of HT-29 cells after sonodynamic treatment with porphyrin 4. 

Untreated cells (A, 7,500x), cells only exposed to US (1.5 W/cm2 for 5 min at 1.866 MHz; B, 

7,500x) and cells 12 h after sonodynamic treatment with porhyrin 4 having been pre-incubated for 
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24 h at 500 µM (C, 6,000x; D, 12,000x) are displayed. Vesicles that contained residual digested 

material or cellular content are indicated by arrows and lipid droplets by stars. 
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SUPPLEMENTARY MATERIALS 

 

Fig. S1 NMR spectra of porphyrin 1 (A), 3 (B) and 4 (C). 

 

Fig. S2 Generation of A) hydroxyl radicals and B) of singlet oxygen by the various porphyrins (1-4) 

detected by EPR spectroscopy in the absence of activation. 

 

Fig. S3 Generation of hydroxyl radicals by porphyrin 3 in solution (A) and in the same solution by 

bubbling Ar in a controlled atmosphere to remove dissolved oxygen for the duration of US 

exposure (B).   

 

Fig. S4 Simulation of the EPR spectra 2 of Fig. 3A. Splitting constants, AH: 3.9 G¸ AH: 3.9 G; AN 

7.1 G.   

 

Fig. S5 Sonoluminescence emission spectra of air-equilibrated porphyrin 3 (black curve) and 4 (red 

curve) solutions flushed with Ar during US exposure at 1.5 W/cm2 for 5 min, at 1.866 MHz. The 

blue curve refers to multi-bubble sonoluminescence (MBSL) recorded in aqueous solution, while 

the grey curve corresponds to the background of the acquiring system. The emission around 310-

340 nm (*) overlaps somewhat with the broad continuum emission, but is still visible and 

corresponds to the OH(A2Σ+ − X2 Π[1/2,3/2]) radical emission caused by vibrational bands.  

 

Fig. S6 Effects of porphyrins on HT-29 cell growth. HT-29 cells were incubated for 24 h with 

increasing concentration of porphyrin 1, 2, 3 and 4 (125, 250, 500 and 1000 µM). Cell proliferation 

was evaluated after 24 h by WST-1 assay. Statistically significant difference versus untreated cells: 

** p < 0.01 and *** p < 0.001. 
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Fig. S7 Effects of sonodynamic treatment on HT-29 cells as a function of sonosensitiser dose. HT-

29 cells were incubated for 24 h with increasing concentration of porphyrin 3 (31.25, 62.50, 125.00 

and 250.00 µM) and 4 (62.50, 125.00, 250.00 and 500.00 µM), and then exposed to US power at 

1.5 W/cm2 for 5 min at 1.866 MHz. Cell proliferation was evaluated after 24, 48 and 72 h by WST-

1 assay. Statistically significant difference versus untreated cells: * p < 0.05, ** p < 0.01 and *** p 

< 0.001. 

 

Fig. S8 Effects of sonodynamic treatment on HT-29 cells in presence of the ROS scavenger, N-

acetyl-cysteine (NAC). HT-29 cells were incubated for 24 h with porphyrin 3 at 250 µM and 4 at 

500 µM, and 5.0 mM NAC was added for the last 3 h of porphyrins incubation. Cells were then 

exposed to US power at 1.5 W/cm2 for 5 min at 1.866 MHz. Cell proliferation was evaluated after 

24, 48 and 72 h by WST-1 assay.  

 

Fig. S9 Effects of sonodynamic and photodynamic treatment on HDF cell growth. HDF cells were 

incubated for 24 h with porphyrin 3 at 250 µM and 4 at 500 µM, and then exposed to US power at 

1.5 W/cm2 for 5 min at 1.866 MHz and light power at 51.8 mW/cm2 for 5 min at 400-1050 nm. Cell 

proliferation was evaluated after 24, 48 and 72 h by WST-1 assay. Statistically significant 

difference versus untreated cells: * p < 0.05, *** p < 0.001. 
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