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THESIS SUMMARY 
 

Hyper-resistance at the joint is one of the most common symptoms in children with cerebral palsy 

(CP). There are both neural and non-neural factors contributing to the observed joint hyper-

resistance. Non-neural alterations to the musculoskeletal system such as a reduced muscle length, 

increased tendon length and an increase in joint stiffness are commonly treated by physiotherapy 

interventions such as stretching exercises. However, the effectiveness of these interventions in 

terms of improvements in function is of a low magnitude and the response of spastic muscles to 

stretch is poorly understood.  

Therefore, the main aim of the programme of work presented in this thesis was to increase the 

effectiveness of stretching interventions at the ankle joint. To achieve this, it is important to 

understand the behaviour of the medial gastrocnemius muscle and Achilles tendon in response to 

a stretch applied at the joint. For this first sub-goal, three experimental studies were performed. 

First, the relationship between joint rotation and muscle and tendon contribution during a single 

stretch is described. We show that a smaller Achilles tendon moment arm leads to a decrease in 

muscle lengthening during joint rotation. Additionally, we show that the relative stiffness of the 

muscle to the tendon is increased in children with CP, which further limits lengthening of the muscle 

during joint rotation. Secondly, we document the acute effect of stretching on medial gastrocnemius 

fascicle lengthening properties. It was found that medial gastrocnemius muscle stiffness cannot 

explain the increased ankle joint range of motion acutely following passive stretching. These studies 

all indicate that the lengthening stimulus to the muscle is reduced in children with CP. Therefore, to 

increase the effectiveness of stretching exercises, an intervention was designed with the aim to 

increase this stretching stimulus seen by the muscle. By performing progressive resistance training, 

we showed an increase in the stiffness of the tendon, and thus a reduction in the relative stiffness 

of the muscle to the tendon. Therefore, the amount of stretch seen by the muscle was increased. 

We have shown that due to this combined intervention a remodelling of muscle is possible, as we 

showed muscle fascicle length to increase. Even though functional benefits were limited, the proof 

of principle was demonstrated and future work should explore this model of intervention further.   



ii 
 

ACKNOWLEDGEMENTS 
 

Firstly, I would like to thank my supervisory team at Liverpool John Moores University. Tom, who 

managed to excite my interest for muscle biomechanics and for his guidance and contributions 

along the path of my PhD. Costis, for his always valuable advice and honest opinion. And Gabor, for 

letting me view the problem from a different perspective and take my focus away from one muscle 

to see the bigger picture.  

I wish to acknowledge the time and effort spent by all the children and their families who 

participated in the studies performed for this thesis. Not only from a research perspective but also 

on a personal level I have learned a lot from spending time with these children.  

Discussions as in the research meetings at Alder Hey are in my opinion essential for good research. 

The combination of talented surgeons, good researchers and involved physiotherapists already lead 

to many important research questions and will no doubt lead to many more. Thank you, Alf and Gill, 

for making me feel part of the team. Alf, I have really appreciated the enormous patience you 

showed, both in explaining your orthopaedic viewpoint as in listening to our biomechanical 

explanations. Gill, you have make me feel welcome at the hospital and I would not have been able 

to recruit all these patients without you.  Also, a massive thank you to the rest of the team, Dani, 

Paul, Hayley, Roger, David, Jenny, I will miss working with you. 

Some special words are deserved by Lynn. I was introduced to Lynn at the start of my PhD and I 

couldn’t have wished for a better collaboration. We complemented each other within our research, 

difficult experimental procedures became much easier and were performed like a well-oiled 

machine. Apart from this, I gained a very good friend and I’m sure many adventures and 

collaborations will follow from here. I also look back with much pleasure to our Liverpool-Leuven 

group meetings. Even though they were chaotic at times and they usually gave rise to more 

questions than they answered.  

As a new PhD student, I learned a lot from working in the lab in Pellenberg. Thank you Kaat for your 

fresh input and an always unique and new view on a problem we have been staring at for a while. 

Thanks to Simon and Francesco for the thoughts we shared about ultrasound experiments and the 

many experiments we performed together.  



iii 
 

I would like to thank my parents, Suzan and Martien for supporting me and believing in me from the 

moment I entered the Vrije Universiteit in Amsterdam. Last but not least a massive thanks to my 

partner, Bart thank you for your endless trust in my capabilities. It wasn’t always easy but in the 

end, you were always there to keep me with 2 feet on the ground.   



iv 
 

CONTENTS 
 

THESIS SUMMARY ......................................................................................................................i 

ACKNOWLEDGEMENTS .............................................................................................................. ii 

CONTENTS ............................................................................................................................... iv 

PUBLICATIONS AND CONFERENCE PRESENTATIONS ................................................................. vii 

Full papers ...................................................................................................................................... vii 

Abstracts in scientific conferences and meetings .......................................................................... vii 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES ......................................................................................................................... xi 

FREQUENTLY USED ABBREVIATIONS ........................................................................................ xii 

CHAPTER 1:    General Introduction ............................................................................................ 1 

Spastic cerebral palsy .......................................................................................................................2 

Joint hyper-resistance ......................................................................................................................2 

Neural contributions to hyper-resistance ....................................................................................3 

Structural contributions to hyper-resistance ...............................................................................4 

Management of spastic CP ........................................................................................................... 10 

Biomechanical response during passive stretching. ................................................................. 11 

Physiological adaptations to passive stretching ....................................................................... 11 

Summary ....................................................................................................................................... 12 

Purpose and outline of this thesis ................................................................................................ 13 

CHAPTER 2    Achilles tendon moment arm length is smaller in children with cerebral palsy than 
in typically developing children ............................................................................................... 14 

Abstract ......................................................................................................................................... 15 

Introduction .................................................................................................................................. 15 

Methods ........................................................................................................................................ 17 

Participants ............................................................................................................................... 17 

Procedure .................................................................................................................................. 17 

Data analysis ............................................................................................................................. 19 

Anthropometric measurements ............................................................................................... 21 

Statistics .................................................................................................................................... 21 

Results ........................................................................................................................................... 22 

Discussion...................................................................................................................................... 23 



v 
 

CHAPTER 3    Muscle and tendon lengthening behaviour during ankle joint rotation in children 
with cerebral palsy .................................................................................................................. 29 

Abstract ......................................................................................................................................... 30 

Introduction .................................................................................................................................. 30 

Methods ........................................................................................................................................ 32 

Participants ............................................................................................................................... 32 

Experimental protocol .............................................................................................................. 32 

Data analysis ............................................................................................................................. 34 

Statistics .................................................................................................................................... 35 

Results ........................................................................................................................................... 35 

Discussion...................................................................................................................................... 38 

CHAPTER 4    Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint 
range of motion following passive stretching in children with cerebral palsy ............................ 43 

Abstract ......................................................................................................................................... 44 

Introduction .................................................................................................................................. 44 

Methods ........................................................................................................................................ 46 

Participants ............................................................................................................................... 46 

Experimental design .................................................................................................................. 46 

Stretching intervention ............................................................................................................. 47 

Data analysis ............................................................................................................................. 47 

Statistics .................................................................................................................................... 48 

Results ........................................................................................................................................... 49 

Discussion...................................................................................................................................... 51 

CHAPTER 5    The impact of increasing tendon stiffness on the effectiveness of stretching 
interventions in children with cerebral palsy ............................................................................ 55 

Introduction .................................................................................................................................. 56 

Methods ........................................................................................................................................ 57 

Participants ............................................................................................................................... 57 

Experimental design .................................................................................................................. 58 

Training ..................................................................................................................................... 60 

Measurement protocol ............................................................................................................. 60 

Gait ............................................................................................................................................ 63 

Statistics .................................................................................................................................... 64 

Results ........................................................................................................................................... 64 



vi 
 

Muscle-tendon properties ........................................................................................................ 64 

Gait ............................................................................................................................................ 67 

Discussion...................................................................................................................................... 67 

Limitations................................................................................................................................. 70 

CHAPTER 6    General discussion .............................................................................................. 72 

Summary of experimental findings ............................................................................................... 73 

Clinical relevance .......................................................................................................................... 74 

Joint hyper resistance and underlying impairments .................................................................... 76 

Gait analysis as an outcome measure........................................................................................... 77 

Use of ultrasound to assess muscle properties ............................................................................ 79 

Future research ............................................................................................................................. 80 

Conclusions ................................................................................................................................... 81 

APPENDICES ............................................................................................................................ 82 

Appendix A: Analysis of ultrasound images .................................................................................. 82 

Appendix B: Calcaneus tracking .................................................................................................... 87 

Appendix C: The relationship between medial gastrocnemius lengthening properties and 
stretch-reflexes in cerebral palsy .................................................................................................. 90 

REFERENCES .......................................................................................................................... 106 

 

   



vii 
 

PUBLICATIONS AND CONFERENCE PRESENTATIONS 

Full papers 
- Kalkman BK, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, Barton GJ, Desloovere K, 

O’Brien TD (2017) Medial gastrocnemius muscle stiffness cannot explain the increased 

ankle joint range of motion following passive stretching in children with cerebral palsy. J 

exp physiol. DOI: 10.1113/EP086738 

- Kalkman BK, Bar-On L, Cenni F, Maganaris CN, Holmes G, Bass A, Barton GJ, Desloovere K, 

O’Brien TD (2017) Achilles tendon moment arm length is smaller in children with cerebral 

palsy than in typically developing children. J Biomech. 56, 48-54 

Abstracts in scientific conferences and meetings 
- September 2017: 26th annual meeting of the European Society for Movement analysis in 

Adults and Children (ESMAC), Trondheim, Norway: Kalkman BK, Holmes G, Maganaris CN, 

Barton GJ, Bar-On L, Bass A, Wright D, Walton R, O’Brien TD. Increasing tendon stiffness 

enhances the effectiveness of stretching interventions in children with cerebral palsy.  

- July 2017: The 26th Congress of the International Society of Biomechanics (ISB), Brisbane, 

Australia: Kalkman BK, Bar-On L, Cenni F, Holmes G, Bass A, Maganaris CN, Barton GJ, 

Desloovere K, O’Brien TD. Muscle-tendon contribution to an increased range of motion 

following passive stretching in children with cerebral palsy.  

- May 2017: The 29th Annual Meeting of the European Academy of Childhood Disability 

(EACD), Amsterdam, The Netherlands: Kalkman BK, Bar-On L, Cenni F, Maganaris CN, 

Holmes G, Bass A, Barton GJ, Desloovere K, O’Brien TD. Contribution of muscle and tendon 

to the increased range of movement following passive stretching in children with cerebral 

palsy.  

- March 2017: The BASES Biomechanics Interest Group Meeting, Porthsmouth, UK: Kalkman 

BK, Bar-On L, Cenni F, Maganaris CN, Holmes G, Bass A, Barton GJ, Desloovere K, O’Brien 



viii 
 

TD. The relationship between medial gastrocnemius lengthening properties and spasticity 

in cerebral palsy.  

- September 2016: 25th annual meeting of the European Society for Movement analysis in 

Adults and Children (ESMAC), Seville, Spain: Kalkman BK, Bar-On L, Cenni F, Maganaris CN, 

Holmes G, Bass A, Barton GJ, Desloovere K, O’Brien TD. The effect of cerebral palsy on 

Achilles tendon moment arm length. ESMAC, Seville, Spain 

- September 2016: 25th annual meeting of the European Society for Movement analysis in 

Adults and Children (ESMAC), Seville, Spain: Kalkman BK, Bar-On L, Cenni F, Maganaris CN, 

Holmes G, Bass A, Barton GJ Desloovere K, O’Brien TD. Passive muscle and tendon 

properties during ankle joint rotation in children with cerebral palsy.  

- March 2016: The BASES Biomechanics Interest Group Meeting, Liverpool, UK: Kalkman BK, 

Bar-On L, Cenni F, Maganaris CN, Holmes G, Bass A, Barton GJ, Desloovere K, O’Brien TD. 

The effect of cerebral palsy on Achilles tendon moment arm length. BASES Biomechanics 

Interest Group Annual meeting, Liverpool UK 

 

  



ix 
 

LIST OF FIGURES 
Chapter 1: 

Figure 1.1: Overview of neural and non-neural contributions to joint hyper-resistance in children 

with CP 

Figure 1.2: Schematic representation of a pennate muscle tendon unit 

Figure 1.3: Relationship between stress and strain in physiological tissue 

Figure 1.4: Schematic drawing of the internal and external moment arm around the ankle 

Figure 1.5: Schematic model of a pennate muscle to illustrate muscle lengthening 

Chapter 2: 

Figure 2.1: Experimental setup 

Figure 2.2: Absolute Achilles tendon moment arm length vs ankle angle  

Figure 2.3: Correlations between anthropometric variables and Achilles tendon moment arms 

(MAAT) 

Figure 2.4: Schematic drawing of mechanical advantage in the foot  

Figure 2.5: Schematic moment-angle and moment-angular velocity relationships 

Chapter 3: 

Figure 3.1: Experimental setup 

Figure 3.2: Muscle/tendon length versus ankle angle, muscle-tendon-unit length, and torque 

Figure 3.3: Correlations between age, muscle, tendon and fascicle lengthening 

Figure 3.4: Correlations between muscle, tendon lengthening and range of motion 

Chapter 4: 

Figure 4.1: EMG response of the lateral gastrocnemius and soleus pre- and post-stretching 

Figure 4.2: Individual data for maximal torque and fascicle length pre- and post-stretching 

Figure 4.3: Fascicle lengthening vs change in ankle angle and torque 

Chapter 5: 

Figure 5.1: Flow diagram based on consort guidelines to show the experimental design 

Figure 5.2: Time scheme showing the exercises performed by the intervention and control group 

Figure 5.3: Marker placement for gait analysis 

Figure 5.4: Tendon force and stiffness measured during a maximal voluntary contraction 

Figure 5.5: Lengthening profile of muscle fascicles vs ankle angle during passive joint rotation 



x 
 

Figure 5.6: Average gait curves for the ankle and knee and mean MDP before and after the 

intervention 

 

  



xi 
 

LIST OF TABLES 
Chapter 1: 

Table 1.1: Overview of literature assessing altered mechanical tissue properties of muscle tissue 

Chapter 2: 

Table 2.1: Participant characteristics 

Table 2.2: Minimal, maximal and average joint moments measured at each ankle angle in the 

common ROM in typically developing and cerebral palsy participants. 

Table 2.3: Definitions of anthropometric variables 

Table 2.4: predictive equations to calculate MAAT 

Chapter 3: 

Table 3.1: Participant characteristics 

Table 3.2: Muscle lengthening values in children with CP and TD children 

Chapter 4: 

Table 4.1: Participant characteristics 

Table 4.2: Lengthening values during passive ankle rotation pre- and post-stretching 

Chapter 5: 

Table 5.1: Participant characteristics 

Table 5.2: Characteristics of participants completing the intervention. 

Table 5.3: Training related measures  

Table 5.4: Gait parameters before and after the intervention 

 

  



xii 
 

FREQUENTLY USED ABBREVIATIONS 
 

CP  Cerebral Palsy 

DF  Dorsiflexion 

EMG  Electromyography 

GMFCS  Gross motor functional classification scale 

GRF  Ground reaction force 

LL   Leg length 

MAAT  Achilles tendon moment arm 

MTJ  Muscle-tendon junction 

MTU  Muscle-tendon unit 

PCSA  Physiological cross-sectional area 

ROM  Range of motion 

SEM  Standard error of measurement 

TD   Typically developing 

TL  Tibia length 

 

 

  



1 
 

 

 

CHAPTER 1:  

 

 

General Introduction 
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Spastic cerebral palsy 
Cerebral palsy (CP) is the most common cause of childhood disability, with an incidence of 1.5 to 2.5 cases 

per 1000 live births in the western world (Cans, 2000). Cerebral palsy is caused by a lesion to the immature 

brain that itself is non-progressive. While the severity of the brain lesion itself does not progress over 

time, cerebral palsy leads to a disorder of posture and movement that is permanent and can progress 

with age. Cerebral palsy has a number of different presentations, the most prevalent of which is spastic, 

affecting around 80% of all patients (Cans, 2000). Primary symptoms associated with CP are muscle 

weakness, spasticity, a reduced range of motion (ROM) and reduced coordination and an increased joint 

stiffness. When children grow, these impairments can lead to secondary musculoskeletal adaptations such 

as muscle contractures and bony-deformities.  Although spastic CP is neural in origin, it appears that 

mechanical muscle and tendon adaptations contribute to the impaired posture and movement control. 

Furthermore, treatment is often aimed at correcting muscle and tendon lengths or restoring bony 

misalignments. As a first step in the management of CP, stretching therapies are commonly used with the 

aim to increase or maintain ROM, based on the assumptions that they increase muscle length and/or 

reduce its stiffness. However, the effectiveness of these stretching therapies is uncertain (Wiart et al., 

2008; Craig et al., 2016; Eldridge & Lavin, 2016). To provide recommendations as to how to improve the 

effectiveness of stretching interventions, it is essential to understand the underlying mechanisms of the 

reduced ROM, or joint hyper-resistance, as well as the mechanisms by which stretching exercises work.  

Joint hyper-resistance 
Many of the impairments related to CP mentioned above can be captured under the term joint hyper-

resistance, which has been defined as an increased resistance perceived during passive stretch (Noort van 

den et al., 2017). The different contributions to joint hyper-resistance are captured in figure 1.1. A 

distinction can be made between neural and non-neural contributions. Since these have a different origin, 

they are also treated differently. Where neural components are often treated by Botulinum Toxin-A 

injections or selective dorsal rhizotomy, non-neural components can be treated by orthopaedic surgery 

or non-invasively with physiotherapy, including stretching exercises. The correct treatment for joint 

hyper-resistance is dependent on accurate assessment of the underlying mechanisms.  However, the 

validity and reliability of current clinical tests are low (Noort van den et al., 2010). The modified Ashworth 

scale (Bohannon & Smith, 1987) and the Tardieu scale (Tardieu et al., 1954) are commonly used in clinical 

practice to assess joint hyper-resistance. During these tests, passive muscle elongations are imposed by 
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the examiner at fast and slow velocities. Passive resistance perceived at the joint during slow movements 

is commonly prescribed to any non-neural contributions where high velocities additionally trigger a 

stretch hyperreflexia response, described by a catch. It is clear from the theoretical framework described 

in figure 1.1, that by using these tests, it is difficult to accurately distinguish between any neural and non-

neural contributions. Furthermore, alterations in mechanical tissue properties itself could change the 

perceived resistance at the joint, irrespective of what happens at the muscle. This thesis will focus on the 

non-neural contributions to joint hyper-resistance (top panel of figure 1.1), but both will be discussed 

briefly.  

 

Figure 1.1: Overview of neural and non-neural contributions to joint hyper-resistance in children with CP.  

Neural contributions to hyper-resistance 

The term spasticity is classically used to describe the neural contribution to joint hyper-resistance and has 

been described by Lance in 1980 as ‘a motor disorder characterised by a velocity dependent increase in 

tonic stretch reflexes with exaggerated tendon jerks, resulting from hyper excitability of the stretch reflex’ 

(Lance, 1980b). This definition highlights the pathophysiological mechanisms of a velocity dependent 

response. The stretch reflex of a muscle is triggered from the muscle spindles located within the muscle 

fibres. In CP, a lack of inhibition from the central nervous system leads to an over excitability of the stretch 

reflex.  The increased stretch reflex can be objectively quantified with instrumented assessments by 

quantifying the EMG bursts and the joint angle at EMG burst onset during fast joint rotations (Salm van 
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der et al., 2005; Bar-On et al., 2014a). Apart from the classic velocity dependent response, tonic 

involuntary background activation also contributes to joint hyper-resistance and this activity is non-

velocity dependent. This involuntary background activation can be quantified with instrumented 

assessment by quantifying muscle activation during slow movements. It has recently been shown that the 

EMG response to stretch is not only dependent on the stretch velocity but also on joint position (muscle 

length) (Bar-On et al., 2014b) and that these two types of neural contributions vary significantly between 

different children and muscles. It has been suggested that neural and non-neural contributions to hyper-

resistance are not independent of each other (Švehlík et al., 2013; Willerslev-Olsen et al., 2013), therefore, 

as a supplementary study to the main thesis, we investigated the relationship between medial 

gastrocnemius lengthening properties and stretch reflex (appendix C).  

Structural contributions to hyper-resistance 

As mentioned, structural adaptations to muscle tissue have also been reported frequently. Clinically these 

adaptations are referred to as contracture, which is defined as a fixed shortening of the muscle relative 

to the length of the bones. This clinical observation can be explained by numerous structural alterations 

in muscle and tendon tissue. In research settings ultrasound is commonly used to assess these structural 

alterations of the muscle and tendon in static position or during slow passive movement where neural 

contributions are minimised (figure 1.1). 

Architecture of spastic muscles 

When studying morphological muscle properties, we consider the anatomical size and shape, or 

dimension of a muscle and the arrangement of the fascicles. The morphology of a muscle can be studied 

with medical imaging techniques such as magnetic resonance imaging (MRI) and 2D or 3D ultrasound. The 

main focus of such studies in CP has been on the medial gastrocnemius muscle. This muscle is functionally 

important and often affected in children with CP. Furthermore, because the medial gastrocnemius is a 

superficial muscle, it is easy to image with ultrasound. This section will describe the main morphological 

alterations seen in spastic muscles and how they may influence its function. 

Muscle volume is a global measure that provides us with an overall indication of muscle power (O’Brien 

et al., 2009a) and growth (Herskind et al., 2016), both longitudinal and cross-sectional. Muscle volume in 

CP has been assessed both with MRI and 3D ultrasound. It has been shown that muscle volume of several 

major lower leg muscles is reduced in the paretic limb of children with CP when compared to age-matched 

TD children (Barber et al., 2011b; Noble et al., 2014; Reid et al., 2015). Furthermore, it has been shown 
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that when compared to TD children the rate at which muscle volume increases with age is decreased in 

children with CP (Barber et al., 2016).  

The volumetric shape of a muscle is determined by the physiological cross-sectional area (PCSA) and the 

length of the muscle fascicles (figure 1.2). Decreases in muscle volume as shown in CP can be caused by a 

reduction in the PCSA, which would lead to muscle weakness, or a reduction in fascicle length, which 

would reduce the range of movement over which the muscle can exert force. These distinct consequences 

of a reduced muscle volume indicate that it is important to study muscle properties in more detail.  The 

model used to describe these properties is shown in figure 1.2.  

 

 

Figure 1.2: Schematic representation of a pennate muscle tendon unit (MTU). PCSA: Physiological cross-

sectional area. 

 

First of all, the muscle-tendon-unit (MTU) consists of a muscle and a tendon working in series. In the 

medial gastrocnemius, muscle length is described as the distance between the proximal attachment of 

the muscle on the medial femoral condyle to the distal muscle-tendon junction (MTJ). Tendon length is 

described as the distance between the MTJ and the attachment of the Achilles tendon on the calcaneus. 

There is considerable evidence that the length of the medial gastrocnemius (Malaiya et al., 2007; Fry et 

al., 2007) and other muscles (Oberhofer et al., 2010) is reduced in the paretic leg of children with CP. 

Compensatory to that, is has been found that the length of the Achilles tendon in spastic muscles of 

children with CP (Gao et al., 2011; Barber et al., 2012), but also in spastic stroke patients is increased (Zhao 

et al., 2009). Secondly, as mentioned above, the length of the muscle belly is dependent on both the PCSA 

MTU 

Muscle Tendon 

Pennation 
angle 
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and the length of the muscle fascicles (figure 1.2). Therefore, the observed alterations in the muscle length 

are not necessarily accompanied by alterations in fascicle length.  

Reports on fascicle length in children with CP are inconsistent. Fascicle length is functionally an important 

parameter because it has a direct relationship with the excursion range over which the muscle can 

produce force. This is important for example during the push of phase of the gait cycle, where the calf 

muscles are lengthened but need to produce a sufficiently large force to achieve an adequate power burst. 

Shorter fascicles, with fewer sarcomeres in series have a reduced range of motion over which they can 

produce force. Several studies have reported measures of medial gastrocnemius fascicle lengths, where 

some studies report no differences (Shortland et al., 2002; Malaiya et al., 2007; Mathewson et al., 2014b) 

and other studies reported a reduction in fascicle length in children with CP (Mohagheghi et al., 2007, 

2008; Gao et al., 2011; Matthiasdottir et al., 2014). Difference in findings might be attributed to 

methodological issues such as the heterogeneity of the patient group and normalization technique. A 

proper conclusion is lacking.   

The reported deficits in muscle volume are much larger (18%-58%) than the reported decreases in fascicle 

length (0-29%) in the paretic leg of children with CP (Barrett & Lichtwark, 2010). Pennation angle in CP 

has not been found to differ from TD children (Shortland et al., 2002; Malaiya et al., 2007), therefore it is 

argued that the small and short muscles in CP are, among others, caused by  smaller PCSA and a lack of 

cross-sectional growth (Malaiya et al., 2007).  

Mechanical properties of spastic muscles 

The mechanical properties (stiffness) of the muscle determine the change in length (or joint angle) in 

response to an applied force (or torque). This will depend partly on the architectural structure of the 

muscle, as well as on the intrinsic tissue properties in the muscle. The passive mechanical properties of 

any tissue can be assessed by applying a known force to the tissue and measuring the amount of 

elongation/deformation that will occur (Maganaris, 2002). This way a force-elongation curve can be 

constructed and tissue stiffness is determined as the slope of this relationship in the linear portion (figure 

1.3). In vivo this becomes a bit more complicated as there are anatomical constraints acting on the 

structure to be studied. This makes it difficult to assess in vivo muscle (fascicle) and tendon stiffness and 

some assumptions need to be made. By combining 2D ultrasound, EMG and dynamometry we can 

approximate some of the passive mechanical properties of the medial gastrocnemius muscle. When 

applying a passive moment around the ankle joint to dorsiflex the foot, the lengthening of the medial 

gastrocnemius muscle-tendon unit is among others dependent on the muscle’s moment arm, any passive 
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structures within the joint (i.e. ligaments) and the properties of all muscles acting around the joint 

(agonists and antagonists). These factors might change as a function of ankle angle, making it difficult to 

quantify the force acting through the muscle and tendon during passive joint rotation. Alternatively, more 

invasive methods have been used to assess muscle mechanical properties in children with CP. From 

muscle biopsies, the stiffness of single fibres and fibres bundles can be studied and sarcomere length can 

be determined in vivo with intraoperative laser diffraction.  

 

 

Figure 1.3: Relationship between stress and strain in physiological tissue 

 

It is well known that in children with CP, passive joint stiffness, calculated from the joint moment-angle 

relationship during passive joint rotation is increased when compared to TD children (Alhusaini et al., 

2010). To assess the cause of this increased joint stiffness, previous studies have looked at muscle and 

fascicle lengthening when passively rotating the ankle joint in children with CP. It has been shown that 

muscle lengthening is reduced (Matthiasdottir et al., 2014; Kruse et al., 2017) in children with CP when 

compared to TD children. While some authors show that fascicle lengthening is unaltered in children with 

CP (Matthiasdottir et al., 2014), others show a reduction in fascicle lengthening (Barber et al., 2011a). 

Methodological discrepancies between studies could explain the different findings. Some authors 

compare CP and TD groups over their full ROM, whereas others compare groups over a common ROM. It 

is well known that ROM is reduced in children with CP, therefore assessing muscle lengthening properties 

over each individual’s full ROM would automatically lead to a smaller muscle lengthening in CP children. 

Strain 

St
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ss
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Failure 
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Additionally, increases in joint stiffness also need to be considered when comparisons in lengthening 

properties are made between groups. An increased joint stiffness in children with CP will cause less MTU 

lengthening when the same torque is applied at the joint. So far, a consensus on how muscle fascicles and 

the connective tissue, both within and in series with the muscle, interact to achieve ROM is lacking.  

Several studies have assessed the contribution of altered tissue properties to the increased muscle 

stiffness (table 1.1). Ex vivo stiffness of individual muscle fibres in children with CP and TD children has 

been assessed from muscle biopsies and was shown to be increased in spastic muscles (Friden & Lieber, 

2003; Lieber et al., 2003; Foran et al., 2006). An increase that could be attributed to passive connective 

tissue within the muscle cell. Titin, a large molecule spanning from the Z-disc to the M-band in a sarcomere 

has been mentioned to play a role in mediating muscle stiffness (Herzog et al., 2012). Also, passive 

collagen structures surrounding individual muscle cells which we will refer to as the extracellular matrix 

(ECM) have been suggested to play a role in mediating muscle stiffness (Smith et al., 2011). Alternatively, 

it has been suggested that the increased muscle stiffness is caused by an increased sarcomere operating 

length when compared to healthy muscles.  Combining this information with a lack of increase in muscle 

fascicle length leads to the conclusion that children with CP have fewer sarcomeres in series (Mathewson 

et al., 2014a).  

To conclude, there is some indication that muscle fascicle stiffness is increased in children with CP, which 

could originate from a decreased sarcomere number or alterations to the connective tissue surrounding 

individual muscle fibres. However, fundamental knowledge as to how muscle and tendon interact to 

achieve ROM in children with CP is still lacking. Therefore, it is also still unknown how these individual 

tissues respond to treatments that aim to alter the structural components of the muscle, but are provided 

at the level of the joint, such as stretching exercises.  

Skeletal deformations 

Additionally, to the above mentioned structural alterations, children with CP can develop deformities to 

skeletal bones, since bone grows and adapts in response to loading. Bony deformities can limit movement 

and causes lever-arm dysfunction (Theologis, 2013). Lever-arm dysfunction is caused either by a rotation, 

shortening or change in structure of the muscle’s or external moment arm. At the ankle joint (figure 1.4) 

for example, the external moment arm of the ground reaction force (GRF) relative to the axis of rotation 

of the ankle can be shortened because of a mid-foot break (flexible moment arm) or tibial torsion (rotated 
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Table 1.1: Overview of literature assessing altered mechanical tissue properties of muscle tissue in children with cerebral palsy. VL: Vastus 
Lateralis, FCU: Flexor carpi ulnaris, ECRB: Extensor Carpi Radialis Brevis, ECM: Extracellular Matrix, CSA: Cross-sectional area 
Author Methodology Muscles Outcome measure Result 
Booth et al. (2001) Biopsy VL Total collagen content Collagen I accumulation in 

endomysium 
Lieber et al. (2002) Laser diffraction FCU Sarcomere length 

Sarcomere length/joint angle curve 
Increased 
Not changed 

Friden et al. (2003) Biopsy 
Single muscle fibre dissection 

Variety  Resting sarcomere length 
Fibre elastic modulus 
Fibre CSA 
Sarcomere length at fibre failure 

Decreased 
Increased 
Decreased 
Not changed 

Lieber et al. (2003) Biopsy Variety 
 

Tangent modulus of fibre bundle 
Tangent modulus of single cells 

ECM modulus decreased in CP 

Foran et al. (2006) Biopsy 
Single fibre dissection 

VL Fibre tangent modulus 
- With titin 
- Without titin 

 
Increased 
Not changed 

Ponten et al. 
(2007) 

Laser diffraction FCU/ECRB In vivo sarcomere length Increased sarcomere length 

Smith et al. (2011) Biopsy, single muscle cell 
dissection & 
Immunohistochemistry 

Hamstring Titin isoform 
Single fibre stiffness 
Bundle stiffness 
Collagen content 

Not changed 
Not changed 
Increased  
Increased 

Smith et al. (2013) Biopsy, mononuclear cell 
isolation 

Hamstring Satellite cell percentage Decreased 

Mathewson et al. 
(2014) 

Laser diffraction and ultrasound Soleus Sarcomere length 
Fascicle length 

Increased 
Not changed 

De Bruin et al. 
(2014) 

Biopsy mechanical and 
histological properties 

FCU Sarcomere slack length 
Sarcomere length-tension relation 
Fibre type 
Fibre size 
Tertiary perimysium 

Not changed 
Not changed 
Not changed 
Reduced 
Increased 

Dayanidhi et al. 
(2015) 

Immunohistochemistry Gracilis Satellite cell number 70% reduction in satellite cells 
Distribution altered 
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of the ankle can be shortened because of a mid-foot break (flexible moment arm) or tibial torsion (rotated 

moment arm). A muscle’s internal moment arm on the other hand is important because it determines the 

muscle force needed to generate a moment around the joint according to the following equation: 

𝑀𝑀𝑗𝑗 = 𝑀𝑀𝑀𝑀 ∗ 𝐹𝐹𝑚𝑚  

Where Mj is joint moment, MA is the muscle’s moment arm and Fm is the muscle force. Furthermore, the 

internal moment arm determines the amount of MTU lengthening during a passive joint rotation: 

𝜃𝜃𝑗𝑗 = 𝑀𝑀𝑀𝑀 ∗ ∆𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀 

Where θj is the joint angle, MA is the muscle’s moment arm and ∆lMTU is the change in MTU length.  

In combination, the external moment arm and the internal moment arm determine the mechanical 

advantage of a joint. Knowledge about the mechanical advantage is important, because it determines the 

amount of muscle force that is needed to overcome an external resistance and is related to energy 

consumption (Biewener et al., 2004). Furthermore, when studying the relation between muscle properties 

and joint movement it is vital to take into account the length of the internal moment arm of a muscle. 

 

Figure 1.4: Schematic drawing of the internal and external moment arm around the ankle 

Management of spastic CP 
As outlined above, a large part of the treatment of spastic CP is typically aimed at the musculoskeletal 

system (non-neural contributions), specifically, muscle stiffness, contracture and bony deformities (Gage, 

2010). Stretching exercises, in the form of physiotherapy, orthotics, casting or any combination are 

important in the early management of joint hyper-resistance in children with spastic CP. These treatments 



11 
 

aim to maintain or improve ROM for functional movement, increase muscle extensibility and prevent or 

delay the need for orthopaedic surgery later in life (Wiart et al., 2008). Although commonly applied in 

clinical settings, recent scientific studies have shown that evidence for the effectiveness of stretching 

interventions is limited (Pin et al., 2006; Wiart et al., 2008). Also, the outcome measures reported, such as 

ROM and joint stiffness, are relatively global and do not give us any insight in the contribution of muscle, 

tendon and connective tissue. This makes it even more difficult to explain the limited effectiveness of 

stretching interventions. Clearly there is a significant gap between the clinical rationale for stretching and 

the supporting evidence. Although considered a non-invasive treatment, stretching exercises cause pain 

and discomfort to the child, they are time consuming and demanding for children and their families 

(Hadden & Von Baeyer, 2002). Therefore, stronger scientific evidence is needed to support these 

interventions.  

Biomechanical response during passive stretching.  

For any physiological changes to occur in the muscle, it is necessary that the structures we expect to 

change do receive an adequate stretching stimulus, in other words, the muscle needs to lengthen. In 

pennate muscles, such as the medial gastrocnemius, lengthening of the muscle-tendon-unit can be 

achieved in different ways. Firstly, when stretching the MTU, lengthening can come from either the muscle 

or the tendon, see figure 1.2. Here, the relative stiffness between the muscular and tendinous tissue is 

important because it will be the more compliant structure that will take up most of the stretch. Changes 

in muscle and tendon stiffness in children with CP could therefore potentially alter the response to 

stretching interventions. Secondly, lengthening of the muscle itself can be achieved in two different ways. 

Either, the muscle can lengthen by a rotation and lengthening of the fascicles, as is shown in figure 1.5B. 

Alternatively, the muscle belly can lengthen while the fascicles stay the same length and maintain the 

same pennation angle by stretching the intramuscular connective tissue. This in its turn depends on the 

relative stiffness properties of the fascicles compared to the connective tissue.  

Physiological adaptations to passive stretching 

In theory, passive stretching may stimulate an increase in the number of sarcomeres in series, this has 

been shown in multiple animal models, where prolonged positioning of muscles at increased length over 

several weeks resulted in increased fibre length and in series sarcomere number (Williams & Goldspink, 

1973). Because of the changes in muscle architecture and passive properties described above, it is not 

known if the same mechanism applies to spastic human muscles. The reduction of in-series sarcomere 
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number seen in spastic muscles (Mathewson et al., 2014b) in combination with a reduction in satellite cell 

number (Dayanidhi et al., 2015), questions whether spastic muscles are able to achieve any remodelling. 

Alternatively stretching may alter the intermuscular connective tissue and thereby reduce the stiffness of 

the muscle. This has been shown to contribute to the increase in ROM seen acutely after a single bout of 

stretching exercises in typically developing adults (Morse et al., 2008).  

 

 

Figure 1.5: A) Schematic model of a pennate muscle. B) Lengthening of the muscle belly occurs due to a 

lengthening and rotation of the muscle fascicles. C) Lengthening of the muscle belly occurs without any 

length changes in the muscle fascicles.  

Summary 
Hyper-resistance at the joint is one of the most common symptoms in children with CP. There are both 

neural and non-neural factors contributing to the observed joint hyper-resistance. Non-neural alterations 

to the musculoskeletal system such as a reduced muscle length, increased tendon length and an increase 
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in passive joint stiffness are commonly treated by physiotherapy interventions such as stretching 

exercises. However, the effectiveness of these interventions in terms of improvements in function is of a 

low magnitude and the response of spastic muscles to stretch is poorly understood.  

Purpose and outline of this thesis 
The overall purpose of this research was to increase the effectiveness of stretching interventions in 

children with spastic CP. For this purpose, four main experiments were performed. In chapter 2 and 3 we 

assess the relationship between joint rotation and muscle and tendon contribution during a single stretch. 

More specifically, in chapter 2 we describe alterations in the Achilles tendon moment arm in children with 

CP and how this affects muscle excursion relative to joint rotation. In chapter 3 we describe the material 

and mechanical properties of the medial gastrocnemius muscle relative to the Achilles tendon in children 

with CP compared to TD children. As a next step in chapter 4 we assess the acute effect of stretching on 

medial gastrocnemius fascicle lengthening properties and we describe how the increase in ROM acutely 

after stretching can be explained. Following on from the findings of these 3 experiments an intervention 

was designed with the aim to increase the stretching stimulus seen by the muscle. Consequently, in 

chapter 5 we perform a combined strengthening and stretching intervention. Strengthening exercises are 

performed with the aim to increase the stiffness of the tendon so that the relative stiffness of the muscle 

to the tendon is decreased and the muscle will see more of the stretch during stretching exercises. Chapter 

5 shows the effect of such an intervention on muscle properties and gait. The thesis is then closed with a 

general discussion of the findings and future recommendations.  
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CHAPTER 2  

 

 

Achilles tendon moment arm length is smaller in children with 

cerebral palsy than in typically developing children 
 

 

 

 

 

 

 

 

 

 

 

 

The information presented in this chapter has been reported in the paper: 

Kalkman BK, Bar-On L, Cenni F, Maganaris CN, Holmes G, Bass A, Barton GJ, Desloovere K, O’Brien TD 

(2017) Achilles tendon moment arm length is smaller in children with cerebral palsy than in typically 

developing children. J Biomech. 56, 48-54 
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Abstract 
When studying muscle and whole-body function in children with cerebral palsy (CP), knowledge about 

both internal and external moment arms is essential since they determine the mechanical advantage of a 

muscle over an external force. Here we asked if Achilles tendon moment arm (MAAT) length is different in 

children with CP and age-matched typically developing (TD) children, and if MAAT can be predicted from 

anthropometric measurements. Sixteen children with CP (age: 10y 7m ±3y, 7 hemiplegia, 12 diplegia, 

GMFCS level: I (11) and II (8)) and twenty TD children (age: 10y 6mo ±3y) participated in this case-control 

study. MAAT was calculated at 20° plantarflexion by differentiating calcaneus displacement with respect to 

ankle angle. Seven anthropometric variables were measured and related to MAAT. We found normalised 

MAAT to be 15% (~7mm) smaller in children with CP compared to TD children (p=0.003). MAAT could be 

predicted by all anthropometric measurements with tibia length explaining 79% and 72% of variance in 

children with CP and TD children, respectively. Our findings have important implications for clinical 

decision making since MAAT influences the mechanical advantage about the ankle, which contributes to 

movement function and is manipulated surgically. 

Introduction 
Cerebral palsy (CP) commonly presents with bony deformities due to increased muscle forces acting on 

the bones (Morrell et al., 2002), which can cause ‘lever-arm dysfunction’ (Novacheck & Gage, 2007). At 

the ankle joint, the external moment arm is defined as the perpendicular distance from the ground 

reaction force (GRF) to the joint centre of rotation. An altered external moment arm may be related to 

equinus (toe-walking), a midfoot break or tibial torsion, all of which shorten the external moment arm. 

Surgical interventions are recommended to increase external moment arm length. In the case of equinus, 

surgical lengthening of the Achilles tendon can improve kinematics, but weakness of the plantar flexors 

can occur as an adverse outcome of surgery (Gage et al., 2009). To understand the effects of surgical 

interventions that alter external moment arm, we need to consider how they will change the mechanical 

advantage. Mechanical advantage is defined as the ratio of internal to external moment arm length Where 

the internal moment arm is defined as the perpendicular distance from the muscle-tendon line of action 

to the joint centre of rotation. However, the length of the Achilles tendon moment arm (MAAT), its 

contribution to mechanical advantage, and the influence it has on surgical outcomes is often not 

considered in clinical decision making. 
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The mechanical advantage of a joint determines the internal muscle force needed to overcome an external 

resistance, e.g. GRF, and has been shown to influence joint and whole body function (Lee & Piazza, 2009). 

Differences in either moment arm can alter the outcome of muscle contraction, even if muscle function 

remains unaltered. In situations where movement function may be impaired and the study of muscle 

function is important, such as CP (Barber et al., 2011a), knowledge of moment arm length and mechanical 

advantage is vital if we are to understand the nature of impairment and how best to intervene.  

The internal moment arm about which a muscle operates also determines more fundamental measures 

of joint function (Lieber & Friden, 2000). The internal moment arm is proportional to maximum joint 

torque and the excursion range over which a muscle acts. Thus, differences in moment arm will affect the 

force-length properties of the muscle. Moreover, an altered muscle excursion range due to differences in 

the internal moment arm would also necessitate a different muscle shortening velocity, which influences 

the force-velocity characteristics (Lieber, 2002).  

Furthermore, moment arm length is an important feature that determines the outcomes of 

musculoskeletal modelling. When using these models in children, typically developing (TD) or with CP, 

moment arm lengths are typically scaled down from adults using a 1:1 proportionality across all structures 

and dimensions (Sloot et al., 2015), but it is not clear if this is a valid way to scale (O’Brien et al., 2009b; 

Waugh et al., 2011). Inappropriate scaling can lead to erroneous conclusions concerning muscle length 

and produced forces (Scheys et al., 2008).  

In children with CP, the plantarflexor muscles are often affected by spasticity and contracture, and the 

foot and ankle joint by deformities. Currently, the focus lies on how these deformities affect the external 

MA, but we do not know how MAAT may be altered. A previous study reported smaller muscle excursion 

over a common ROM in CP vs. TD children, which the authors hypothesised may be related to shorter MAAT 

in the CP group (Matthiasdottir et al., 2014). However, since excursion was measured at the myotendinous 

junction (MTJ) and possible alterations in Achilles tendon lengthening during ankle joint rotation are 

unknown, the smaller muscle excursion may be caused by either a shorter MAAT or greater Achilles tendon 

deformation. So far, no studies have directly measured MAAT lengths in children with CP. Therefore, the 

purpose of this study was to quantify MAAT length in children with CP and TD children using the tendon 

excursion (TE) method with tendon displacement measured at its distal attachment to the calcaneus. Also, 

we wanted to establish if MAAT in both groups can be predicted from anthropometric measurements. We 

hypothesised that MAAT is smaller in children with CP compared with TD children, and that in both groups 

MAAT is predictable from anthropometry. 
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Methods 

Participants 

Thirty-six children aged 6-16 years were recruited for participation (table 2.1). Sixteen children were 

diagnosed with spastic CP and twenty age-matched TD children served as a control group. Exclusion 

criteria were having botulinum toxin-A injection to the lower limb muscles within six months prior to 

testing, a baclofen pump or any lower limb neuro- or orthopaedic surgery. All TD children were free from 

neuromuscular or skeletal disorders. Children were recruited through the gait lab of Alder Hey Children’s 

Hospital in Liverpool and the University Hospital in Leuven. The study was approved by the Institutional as 

well as the NHS research ethics committee in the UK and the University Hospital’s ethics committee in 

Leuven. The study was conducted in accordance with the Declaration of Helsinki. Written parental consent 

was obtained from the parents, and written assent was given by children in accordance with local 

regulations.  

Procedure 

Participants lay prone on a bed with their leg in a custom-made orthosis, to lock knee angle at 20° flexion 

and control ankle movement to occur only in the sagittal plane (figure 2.1A). The axis of rotation of the 

orthosis was aligned with the lateral malleolus. The leg tested was the most affected, defined by spasticity 

scores, in the CP group and the left in the TD group. During each trial, the foot was passively rotated by an 

experimenter from maximum plantarflexion to maximum dorsiflexion (DF), taking five seconds to 

Table 2.1: Participant characteristics 
 CP (n=15) TD (n=20) 
Age (years) 11.1 (3.05) 10.4 (3.4) 
Male/female (n) 10/5 11/9 
Height (cm) 140.5 (20.6) 141.5 (16.6) 
Mass (kg) 34.6 (18) 37 (14) 
Tibia length (mm) 333 (58) 334 (43) 
GMFCS (I-IV) (n) 10 I, 5 II n/a 
Diagnosis (n) 9 Diplegia, 6 Hemiplegia n/a 
Modified Ashworth Score (n=7) and 
Average Modified Tardieu (n=7) * 

MAS:  1 (n=1), 1.5 (n=5), 3 (n=1) 
Tardieu: 2 (n=5), 3 (n=2) 

n/a 

Data are mean (SD) unless otherwise stated. CP: cerebral palsy; TD: typically developing; GMFCS: 
gross motor functional classification scale; n/a: not applicable. 
*Tardieu scores from children recruited at Alder Hey Children’s Hospital in Liverpool. MAS from 
children recruited at University Hospital in Leuven. One participant unknown. 
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complete the ROM while ankle angle, calcaneus displacement, muscle activity and joint torque were 

measured.  

 

Figure 2.1: A) Experimental setup of the ankle in the orthosis. Two clusters of markers were used to 

calculate ankle angle and a marker on the calcaneus was used to calculate calcaneus displacement. The 

load cell was used to calculate joint torque. During the experiment, the ankle was moved from plantar to 

dorsiflexion. B) Free body diagram of the foot and foot plate. dy and dz correspond to the moment arm 

distances from the point of force application, respectively Fy and Fz, of the load-cell to the lateral malleolus. 

Mx is the torque exerted on the load cell in the x direction.  Morthosis is the calculated torque caused only by 

the weight of the orthosis. The joint torque is given by: Mjoint = -Fzdz - Fydy - Mx - Morthosis 

 

This procedure was repeated six times with a minimum of 10 s of rest between each repetition. 

Participants were instructed to relax their muscles during the movements, which was checked for post-

processing by inspection of surface electromyography (sEMG) of the Triceps Surae muscles at 1600 Hz 

(Zerowire, Cometa, Milan, IT). Forces and torques applied at the ankle were measured using a six degrees 

of freedom force sensor load-cell (ATI mini45: Industrial Automation) attached to the orthosis under the 

ball of the foot. Ankle angle and calcaneus displacement along the length of the shank were calculated 

from the 3D position of two clusters of markers placed on the foot-plate of the orthosis and the shank and 
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a single marker on the most superficial part of the posterior calcaneal tuberosity (Optitrack, US). A 

separate validation was performed to assure the marker on the calcaneus moves synchronous with the 

attachment of the Achilles tendon (Appendix B). Kinematic data was sampled at 120 HZ and kinetic data 

at 200 Hz. 

Data analysis 

Data analysis was carried out using custom made software (Matlab R2015a, Python 2.7.11). Kinematic and 

kinetic data were filtered using a 2nd order low pass Butterworth filter with a cut-off frequency of 6 Hz. Net 

ankle joint torque was calculated according to equation 1: 

𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 =  −𝐹𝐹𝑧𝑧𝑑𝑑𝑧𝑧 − 𝐹𝐹𝑦𝑦𝑑𝑑𝑦𝑦 −𝑀𝑀𝑥𝑥 −𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜ℎ 

Where Fz, Fy and Mx are the forces and torques exerted on the load cell in the z, y and x direction 

respectively, dz and dy are the moment arm distances from the point of force application of the load-cell 

to the lateral malleolus (see free body diagram, figure 2.1B) and Morth is the predicted torque caused by 

gravity on the orthotic (Bar-On et al., 2013b; Schless et al., 2015).  

Calculation of MAAT 
MAAT was determined using the tendon excursion method (An et al., 1984; Ito et al., 2000), which defines 

moment arm as the ratio between linear displacement of the tendon and the change in joint angle 

(𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜃𝜃

). Here, linear displacement of the Achilles tendon was defined at its insertion on the 

calcaneus, and measured from the displacement of a marker on the calcaneus along the direction of the 

tibia (𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), corrected for marker size and skin thickness. A separate pilot experiment has shown that the 

marker on the skin was a valid representation of the distal insertion of the Achilles tendon (Supplementary 

material).  

For each participant, calcaneus displacement vs. ankle angle curves were constructed for six passive 

dorsiflexion movements. In some children, a mid-foot break or heel lift out of the orthosis was apparent 

Table 2.2: minimal, maximal and average joint torques measured at each ankle angle in the common 
ROM in typically developing (TD) and cerebral palsy (CP) participants. 
 -30° -25° -20° -15° -10° -5° 

TD CP TD CP TD CP TD CP TD CP TD CP 
Min (Nm) -1.3 -0.9 -1.4 -0.9 -1.2 -0.8 -0.9 -0.6 -0.7 -0.4 -0.5 -0.2 
Max (Nm) -0.7 -0.1 -0.6 -0.1 -0.3 0.2 0.2 1.0 1.0 2.4 2.3 4.9 
Mean (Nm) -0.9 -0.7 -0.9 -0.6 -0.7 -0.4 -0.3 0.1 0.1 0.8 0.7 2.3 
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Figure 2.2: A: Absolute Achilles tendon moment arm (MAAT) length vs ankle angle for typically developing 

children (TD, red) and children with cerebral palsy (CP, blue). Six angles common to most participants at 5° 

intervals between -30° and -5° were identified where we could record calcaneus excursion accurately. The 

boxes above each joint angle indicate the number of children in each group for which MAAT could be 

calculated at that specific angle. -20° was the angle achieved by the most children. B: Box and whisker plot 

of gradient of the MAAT vs angle curves in TD children and children with CP. * represents one outlier that 

was removed from further analysis. The edges of the box correspond to the 25th and 75th percentiles. The 

whiskers correspond to 2.7σ and cover 99.3 percent of all data 

 

towards maximum dorsiflexion, identifiable by plateauing of the displacement-angle curve. In these cases, 

curves were trimmed to a smaller ROM. The calculated joint torques were checked over this trimmed 

ROM. At angles common to most participants, passive joint torques were typically ~1 Nm (table 2.2) and 

were considered to be sufficiently low to not violate the assumptions of the tendon excursion method and 

allow us to continue the calculation of MAAT at all angles (Olszewski et al., 2015). Next, a second order 

polynomial was fitted through the six trimmed displacement-angle relationships (0.97< r2 <0.99). A second 

order polynomial allowed for the possibility for MAAT to change with ankle angle. These polynomials were 

differentiated to construct a MAAT-ankle angle relationship for each participant. These individual MAAT-

angle graphs within the trimmed ROM are plotted in figure 2.2A. As the ROM over which MAAT could be 

calculated was different for each participant, we selected MAAT at one common ankle angle that most 

participants could achieve (-20°, with negative angles expressing plantarflexed position) for further 

calculations. Valid comparison of MAAT at a single angle relies on equal slopes of the MAAT-angle  
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relationship between subjects. To test this assumption, the average gradients of the MAAT-angle relations 

were compared between groups. In the CP group, one participant was excluded because the gradient of 

the MAAT-angle relationship was determined as an outlier, i.e. exceeding ‘Q3 ± 1.5 * (Q3 - Q1)’, with Q1 

and Q3 being the 25th and 75th percentiles. Furthermore, this profile was judged to be physiologically 

implausible (4cm change over a couple degrees). After removing the outlier, within groups, all gradients 

were within 2.7 SD from the mean and considered similar within and between groups (p=0.27, 95% CI [-

0.1, 0.37]) (figure 2.2B). These lengths were then corrected for marker size (11 mm diameter) by 

subtracting 5.5 mm. Finally, the individual distance measured from the surface of the skin to the  

attachment of the Achilles tendon on the calcaneus was measured with B-mode ultrasound and subtracted 

from the MAAT.   

Anthropometric measurements 
Seven anthropometric variables (table 2.3) were measured by a trained physiotherapist: height, body 

mass, leg length (LL), tibia length (TL), foot length, distance between medial and lateral malleolus and age. 

These parameters were assessed for predictive power and normalization of MAAT. Tibial torsion was 

measured while the participant was lying prone with the knee in 90° flexion as the angle between the line 

of the longitudinal axis of the thigh and a line perpendicular to the axis connecting the most prominent 

points of the medial and lateral malleolus.  

Statistics 

All parameters were checked to be normally distributed using the Shapiro-Wilk test and by inspection of 

the q-q plots. To determine if MAAT could be predicted from anthropometric measurements, a backwards 

stepwise multiple regression analysis was performed, starting with all 7 anthropometric variables 

described above predictors are then removed based on p-value (p>0.05).  Secondly, linear regressions 

between MAAT and each anthropometric measurement separately were performed, of which Pearson r2 -

values were calculated. Based on the r2 -values of significant relationships it was decided whether, and to 

which, anthropometric dimension MAAT could be normalised. Absolute and normalised MAAT were then 

Table 2.3: definitions of anthropometric variables 
Measure Method 
Tibia length Distance from the tibiofemoral joint space to lateral malleolus 
Leg length Distance from the anterior superior iliac spine to the medial 

malleolus 
Foot length Distance from lateral malleolus to the head of metatarsal two 
Inter-malleolar distance Distance from the medial to lateral malleolus measured with 3d 

motion capture. 
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compared between groups with a 2-sample independent t-test. The level of statistical significance was set 

at p≤0.05.  

Results 
Data of fifteen children with CP and twenty TD children was used for the final MAAT calculations. No 

differences were found between the groups for any of the anthropometric measurements. In the current 

sample of children with CP, Tibial torsion was between 0°<α<20° (Median:15°, IQR:10-20°), which is similar 

to the tibial torsion range considered as “typical” (Mudge et al., 2014). 

 

Figure 2.3: Correlations between anthropometric variables and Achilles tendon moment arms (MAAT) in 

children with cerebral palsy (CP) and typically developing children (TD). TL:  tibia length, LL: leg length, FL: 

foot length and MD: inter malleolar distance.  
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Correlations between MAAT at -20° and each anthropometric measure showed mostly strong positive 

relationships (p<0.01, r2 = 0.36-0.81, figure 2.3). It was decided most appropriate to scale MAAT to TL, 

because of the high combined R2 values across CP and TD groups (figure 2.3). 

When MAAT was normalised to TL, children with CP had significantly smaller MAAT than TD children 

(p=0.001, 95% CI [1.05, 3.96]). This difference was consistent over the ROM studied (-30° to -5°) and its 

magnitude ranged from 1.4 to 2.5 %TL across the ROM. Absolute MAAT were smaller in CP but did not 

reach significant difference between groups (p=0.0544, 95% CI [-0.15, 14.91]).  

Linear regressions were performed with all anthropometric variables as separate predictors (table 2.4). 

MAAT could be significantly predicted by all variables independently in both children with CP and TD 

children. Inclusion of more variables in the regression did not improve predictive power (single regressions' 

r2 ~ 0.7, vs. multiple regression r2 ~ 0.65). 

Discussion 
The aim of this study was to quantify MAAT in children with CP and TD children, and to determine whether 

this can be predicted from anthropometrics. We found that MAAT in children with CP is 15% (~7mm) 

smaller than in TD children throughout an ankle ROM of -30° to -5°. Also, it was shown that in both groups 

MAAT scales with, and can be predicted using a range of anthropometric measurements.  

Table 2.4: predictive equations to calculate MAAT at -20°, r2 and p values for all anthropometric 
variables are shown. TL: tibia length, LL: leg length, FL: foot length, MD: distance between medial 
and lateral malleoli. 
 Formula r2 p 
CP    
TL (mm) MACP = -26.1 + 0.20 * TL  0.79 <0.01 
Height (cm) MACP = -38.7 + 0.57 * Height 0.80 <0.01 
Body mass (kg) MACP = 20.4 + 0.60  * Body mass 0.66 <0.01 
LL (cm) MACP = -26.2 + 0.93 * LL 0.81 <0.01 
FL (cm) MACP = -57.3 + 7.23 * FL 0.79 <0.01 
MD (mm) MACP = -27.9 + 1.13 * MD 0.67 <0.01 
Age (y) MACP =  2.45 + 3.52 * age 0.70 <0.01 
TD    
TL (mm) MATD = -8.2   + 0.17  * TL 0.72 <0.01 
Height (cm) MATD = -13.1 + 0.44  * Height 0.65 <0.01 
Body mass (kg) MATD = 28.9   + 0.53 * Body mass 0.68 <0.01 
LL (cm) MATD = -7.8   + 0.78  * LL 0.71 <0.01 
FL (cm) MATD = -22.1 + 5.00  * FL 0.57 <0.01 
MD (mm) MATD = -7.2   + 0.90  * MD 0.36 <0.01 
Age (y) MATD = 27.1  + 2.04  * age 0.55 <0.01 
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The MAAT found in TD children in this study was slightly large compared to literature (Waugh et al., 2011), 

which might have been caused by the inclusion of older children in this study. The profile of MAAT vs ankle 

angle is slightly different from what is reported in the literature. We report about 1mm decrease in MAAT 

per degree for both TD and CP children. Waugh et al., (2011) report a change of 4mm over 10 degrees in 

children, where bot Fath et al., (2010) and Rugg et al., (1990) report a change of 10mm over 15 degrees in 

adults. These differences might be caused by the different methodologies used. The use of the tendon 

excursion method over a large ROM in this study might lead to a larger change in moment arm with ankle 

angle when compared to an instantaneous method such as the centre of rotation method (Rugg et al., 

1990);.   

The relationship between internal and external moment arm around the joint reflects the mechanical 

advantage. This is an important feature when trying to explain ankle joint function in pathological gait. 

Considering a simplified scenario when a child is standing stationary on the forefoot, the smaller MAAT in 

children with CP, would be associated with a smaller mechanical advantage at the ankle if it was not for 

the external moment arm also being smaller, for example due to equinus or other external moment arm 

deformities. The combination may actually mean that mechanical advantage does not turn out to be very 

different to typical (figure 2.4A&B). Orthopaedic treatment, typically aiming to correct external moment 

arm length by optimizing foot shape and foot progression angle, will increase the external moment arm 

and thereby reduce the mechanical advantage. This would happen regardless of MAAT length, but our 

results indicate that the mechanical advantage would not be restored to typical as intended, but in fact be 

reduced to less than typical (figure 2.4C). This could be one of the contributing factors to the observed 

weakness of the plantar flexor muscles after equinus correcting surgery (Orendurff et al., 2002; Gage et 

al., 2009). Further research should focus on the specific influence of orthopaedic surgeries correcting lever 

arm dysfunction on the mechanical advantage of the ankle. Also, studies should seek to determine MAAT 

length during gait, and under loading conditions (Rasske et al., 2016).  

A smaller MAAT also brings about changes in the torque-angle relationship. Shorter MAAT would generate 

smaller maximal joint torques even when the same maximal muscle force is generated. Also, with a shorter 

MAAT, the same muscle excursion will cause a larger joint rotation. Consequently, torque can be produced 

over a broader ROM (figure 2.5A). As less muscle excursion during joint rotation corresponds to lower 

angular velocities, joint torque would decline less as joint velocity increases (figure 2.5B). Consequently, 

the shorter MAAT of children with CP has the effect of creating joint function similar to that associated with 

a muscle with long fascicles and small physiological cross-sectional area (Lieber & Friden, 2000).  
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Figure 2.4: Schematic drawing of the foot with the ground reaction force (GRF) and muscle force (Fm) acting 

over the external moment arm (MAext) and Achilles tendon moment arm (MAAT) respectively. a: TD child, b: 

a child with CP in equinus and c: a child with CP where surgery has lengthened the MAext but not altered 

the MAAT. For simplicity, GRF and Fm are shown to act at right angles to the horizontal. In a and b, the ratio 

between MAAT and MAext reflects the mechanical advantage and will be close to typical in the child with CP. 

c: When the MAext is lengthened the mechanical advantage will be decreased. 

 

Spasticity is a major problem in children with CP, generally defined as a ‘velocity-dependent increase in 

muscle activity’ (Lance, 1980b). Assessments of spasticity rotate the joint at high velocities to elicit a 

response (Bar-On et al., 2013b). Since a shorter moment arm leads to a smaller muscle lengthening velocity 

when rotating the joint, relating angular velocities to muscle stretch will likely underestimate the true 

sensitivity of the muscle (Bar-On et al., 2014c).  

The smaller MAAT in children with CP might be due to alterations in bony architecture or the development 

of bony deformities. Future studies should investigate possible bony deformities at the ankle that can 

cause the smaller MAAT with imaging techniques such as MRI or X-ray. Muscle thickness could also play a 

role (Maganaris et al., 1998), since this would influence the trajectory of the tendon’s action line and so 

its distance from the centre of joint rotation. Children with CP have a smaller muscle cross sectional area 

than TD children (Barber et al., 2011a), so this could contribute to the smaller MAAT. Future studies should 

aim to confirm the exact cause of the decreased MAAT in children with CP.  
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When using musculoskeletal models to study movement function, MAs are central in calculating muscle 

forces and lengths. Here we confirm that conventional scaling using a 1:1 proportionality across all 

structures and dimensions is not valid for scaling between adults and children. In addition, we show that 

applying any scaling algorithm similarly in children with CP and TD children is invalid. Therefore, we provide 

predictive equations to calculate MAAT at -20° in children aged 6-16 years. We found the profile of the MA-

angle relationship to be not significantly different within and between groups, this means that a) 

comparing MAAT at a single joint angle is valid for the ROM described, and b) we can combine the predicted 

MAAT with the known gradient (-0.9 vs -1.03 mm/deg, for CP and TD respectively) to calculate MAAT at 

angles between -30° to -5°. More research is needed to extend these relationships over a full ROM. 

 

Figure 2.5: Schematic torque-angle (a) and torque-angular velocity (b) relationships of two identical 

muscles with different moment arm lengths. Muscles of children with CP have smaller moment arms than 

TD children, all other muscle properties are considered to be identical. TD muscle will produce a larger peak 

torque for a given muscle force, however the active range of force production is larger in CP joint. Similarly, 

peak joint torque is larger in TD muscles, however, with increasing velocity the decline in joint torque is less 

in CP muscles.  

 

A multiple regression analysis was performed in this study. However, because of the large degree of 

collinearity between the anthropometric variables, it was decided to perform an independent linear 

regression for each predictor. Similar results concerning the predictability of patellar tendon moment arm 

have been shown in TD children (O’Brien et al., 2009b), where tibia length was shown to be one of the 

main predictors. On the other hand, Waugh et al. (2011) concluded that due to low r2-values, MAAT could 
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not be predicted from anthropometrics in TD children aged 5-12 years. The contrast with the present 

findings may be explained by the larger age range used in this study and thus an increased power to detect 

correlations.  

This study has a few limitations. The sample size is relatively small for a heterogeneous population like 

children with CP. However, the statistical power of our comparison of MAAT length between groups was 

0.88, which suggests the sample was adequate for our purpose (Chow et al., 2003). Normalisation of MAAT 

was performed by dividing MAAT with tibia length, to reduce the variability within the data due to the large 

range in length of the children and thus obtain a dimensionless number for MAAT (Hof, 1996). Additionally, 

from the predictive equations we can observe that the slope of MAAT vs TL is similar in TD and CP, the 

difference in intercept however indicates that there is indeed a difference in the absolute size of MAAT 

between groups.    

Different methods can be used to calculate MAAT length, and each has some limitations. In this study we 

used the tendon excursion method to define MAAT, which has been shown to correlate well with MRI based 

methods (Fath et al., 2010). To exclude deformation of the tendon as a possible source of error we 

measured tendon displacement at the distal end of the tendon instead of proximally at the MTJ (Maganaris 

et al., 2000). Even with this step, the tendon excursion method used relies on several assumptions. First, 

it is assumed that the tensile load applied to the muscle-tendon was constantly low and thus it does not 

cause any deformations (Olszewski et al., 2015). We confirmed passive net joint torques to be low (~0-1 

Nm) across the ROM studied, therefore we believe that no confounding tissue deformations have been 

introduced. Second, the tendon excursion method assumes ankle rotation to occur within the sagittal 

plane (Maganaris, 2004). However, the tibio-talar joint axis is typically externally rotated by an angle of 

15±5°, which leads to an overestimation of MAAT. In children with CP, tibial torsion can cause this angle to 

deviate from typical values. In the current study, tibial torsion, as measured by the bimalleolar angle, was 

within typical range, reducing the likelihood that it would have confounded our comparisons (Mudge et 

al., 2014). Unfortunately, this method of assessing tibial torsion has low correlation to more accurate 

radiological measures (Lee et al., 2009). To individually correct MAAT for tibial torsion, better imaging 

techniques are necessary. Furthermore, other foot deformities such as varus/valgus or an increased 

mobility in the foot could have affected our results because of the assumptions inherent to the tendon 

excursion method as discussed above. In further work it should be aimed to assess the exact relationship 

between foot deformities and moment arm measures.  
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To conclude, this study has shown for the first time that Achilles tendon moment arm (MAAT) is smaller in 

children with CP compared to TD children. This has important implications in clinical decision making since 

MAAT influences the mechanical advantage about the ankle, which contributes to movement function and 

is manipulated surgically. We also found that both in TD children and in children with CP, MAAT can be 

predicted from anthropometric measurements, which allows realistic quantification for relevant modelling 

applications without access to medical imaging facilities.  
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CHAPTER 3  

 

 

Muscle and tendon lengthening behaviour during ankle joint 

rotation in children with cerebral palsy 
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(2017) Muscle and tendon lengthening behavior during ankle joint rotation in children with cerebral 
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Abstract  
Children with cerebral palsy (CP) commonly present with reduced ankle range of motion (ROM) partly 

due to non-neural alterations of the muscle-tendon-unit (MTU). Detailed information about how muscle 

and tendon interact to contribute to joint ROM is currently lacking, but may provide essential 

information to guide treatment. The purpose of this study was to quantify which structures contribute to 

MTU lengthening and thus receive the stretch during passive ankle joint rotation. Fifteen children with 

CP (age:11.4±3y) and 16 typically developing (TD) children (age:10.2±3y) participated. Ultrasound was 

combined with motion tracking, joint torque and electromyography to record fascicle, muscle and 

tendon lengthening of the medial gastrocnemius during passive ankle joint rotations over the full and a 

common ROM. In children with CP, relative to MTU lengthening, muscle and fascicles lengthened less 

(CP: 50.4%, TD: 63% of MTU lengthening; p<0.04) and tendon lengthened more (CP: 49.6%, TD: 37% of 

MTU lengthening, p<0.01) regardless the ROM studied. Differences between groups in the amount of 

lengthening of the underlying structures during similar amount of joint and MTU displacement indicate 

possible differences in structural properties due to CP which are not evident by assessment on a joint 

level. These factors should be considered when assessing and treating muscle function in children with 

CP.    

Introduction 
Children with spastic CP usually show an increased ankle joint stiffness and reduced range of motion (ROM) 

compared to typically developing (TD) children. It has been reported that muscles of children with CP 

undergo significant morphological changes, which contribute to the reduced ROM (Mathewson & Lieber, 

2015). Previous studies of medial gastrocnemius muscle structure in CP using ultrasound consistently 

report shorter muscle bellies compared to TD subjects (Fry et al., 2004; Barrett & Lichtwark, 2010). In 

addition, longer Achilles tendon has been reported in children with CP (Wren et al., 2010; Barber et al., 

2012), which could be an adaptation to compensate for the shorter muscle belly. Furthermore, some 

studies have reported smaller resting muscle fascicle lengths in children with CP than TD children 

(Mohagheghi et al., 2008; Matthiasdottir et al., 2014), but others have not detected differences (Shortland 

et al., 2002). 

When trying to assess and treat impairments in joint function it is important to understand the mechanical 

properties of the underlying structures. The stiffness of a muscle relative to the tendon will determine how 
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these two structures interact when the joint is rotated and the whole MTU lengthened. In TD adults it has 

been shown that when stretched, muscle fascicles undergo much smaller changes in length than the whole 

muscle-tendon unit (MTU) (Herbert & Moseley, 2002; Morse et al., 2008). This can be explained by a classic 

muscle model where the fascicles (contractile element) are arranged in series with the tendon (series 

elastic element). However, this interaction of muscle and tendon, and how they contribute to achieve 

ROM has not yet been studied in CP. It has been shown that, when passively rotating the joint in children 

with CP, the medial gastrocnemius muscle belly lengthens less when compared to TD children 

(Matthiasdottir et al., 2014). Additionally, this lengthening of the muscle belly itself will depend on both 

the properties of the fascicles and the connective tissue that ties them together. Compared to TD peers, 

medial gastrocnemius fascicle lengthening has been shown to be smaller in young adults with CP (Barber 

et al., 2011a), but similar in children with CP (Matthiasdottir et al., 2014). These conflicting findings could 

possibly be explained by different ways of comparing groups. A decreased ROM in children with CP could 

confound findings when comparisons are made over the full ROM. In fact, any comparison between CP 

and controls in terms of absolute joint angles is inherently limited, because differences in the muscle’s 

moment arm (Kalkman et al., 2017) and passive joint torque (Alhusaini et al., 2010) will influence the 

relationship between angular rotation and passive tissue lengthening. Thus, care must be taken when 

interpreting data acquired from ultrasound imaging. Unquestionably, ultrasound has proved a valuable 

tool to improve understanding of in vivo behaviour of muscle and tendon during contraction and joint 

rotation. However, a calculation of the tissues’ mechanical properties during passive joint rotation is more 

difficult as several assumptions are inferred. The passive torque measured around the ankle is a 

combination of different muscles and passive structures, and the contribution of each force-bearing 

structure to the net joint torque neither can be quantified in vivo nor can it be assumed to remain constant 

throughout the range of motion. Nevertheless, measuring, with ultrasound, the resulting passive 

elongations of the muscle and the tendon in response to stretch will allow drawing conclusions about the 

relative contribution of the muscular and tendinous structures to ROM. 

The purpose of this study was to quantify which structures contribute to MTU lengthening and thus receive 

the stretch during passive ankle joint rotation. We hypothesised that the muscle and the fascicles would 

lengthen less in CP compared to TD children and that the relatively less stiff tendon would lengthen more.  
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Methods 

Participants 

Thirty-one children aged 6-16 years were recruited for participation. Patient characteristics can be found 

in table 3.1. Five of the TD children were assessed with the same protocol for a second time after a two-

hour break to determine reliability of the full measurement protocol. Exclusion criteria were having 

botulinum toxin-A injection to the lower limb muscles within six months prior to testing, a baclofen pump, 

or any lower limb neuro- or orthopaedic surgery. All TD children were free from neuromuscular or skeletal 

disorders. Children were recruited through the gait lab of Alder Hey Children’s Hospital in Liverpool and 

the University Hospital in Leuven. The study was approved by the Institutional as well as the NHS research 

ethics committee in the UK and the University Hospital’s ethics committee in Leuven. The study was 

conducted in accordance with the Declaration of Helsinki. Written parental consent was obtained from 

the parents, and written assent was given by children in accordance with local regulations.  

Experimental protocol 

Participants lay prone on a bed with the lower leg supported on an inclined cushion such that the knee 

was ~20° flexed, the leg was positioned in a custom-made orthosis, to control ankle movement in the 

sagittal plane (figure 3.1A). The axis of rotation of the orthosis was aligned with the lateral malleolus. The 

leg tested was the most affected, defined by clinical spasticity scores (Tardieu et al., 1954; Bohannon & 

Smith, 1987) in CP, and the left in TD. Each participant underwent two trials involving three cycles of ankle 

rotation by manually rotating the foot from maximal plantarflexion to maximal dorsiflexion taking 5 

Table 3.1. Participant characteristics 
 CP (n=15) TD (n=16) 
Age (years, months) 11.4 (2.9) 10.4 (3.4) 
Male/female (n) 10/5 7/9 
Height (cm) 142 (20.3) 138.1 (19.1) 
Mass (kg) 36 (18) 35 (15) 
Tibia length (mm) 339.7 (54.3) 329.4 (52.7) 
GMFCS (I-IV) (n) 9 I, 6 II n/a 
Diagnosis (n) 8 Diplegia, 7 Hemiplegia n/a 
Modified Ashworth Score (n=7) and 
Average Modified Tardieu (n=8)* 

MAS: 1.5 (n=6); 3 (n=1) 
Tardieu: 2 (n=5); 3 (n=3) 

n/a 

Data are mean (SD) unless otherwise stated. CP: cerebral palsy; TD: typically developing; GMFCS: gross 
motor functional classification scale; n/a: not applicable. 
*Tardieu scores from children recruited at Alder Hey Children’s Hospital in Liverpool. MAS from 
children recruited at University Hospital in Leuven. 
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seconds to complete with at least 10 seconds rest in between individual repetitions. This speed of 

movement is considered sufficiently slow not to elicit a stretch reflex in children with CP (Bar-On et al., 

2013a). Forces and torques around the ankle were measured at 200Hz using a six degrees-of-freedom 

force sensor load-cell (ATI mini45: Industrial Automation) attached to the orthosis under the ball of the 

foot. The point of attachment of the load-cell to the orthosis could be adjusted according to foot length. 

3D kinematics were collected with 3 cameras at 120Hz from 2 clusters of 3 markers placed on the foot-

plate of the orthosis and on the shank and a single marker placed on the most superficial part of the 

posterior calcaneal tuberosity (Optitrack, US). Surface electromyography (sEMG), placement defined with 

ultrasound, collected signals at 1600Hz from the lateral gastrocnemius and soleus muscles during all trials 

and from the medial gastrocnemius during the trials measuring muscle lengthening (Zerowire, Cometa, 

Milan, IT). When, during joint rotation the sEMG signal exceeded 10% of the maximum voluntary 

contraction value (collected prior to the stretch trials), the corresponding trial was discarded.  

 

Figure 3.1. A. Experimental design showing leg placement in a custom-made orthosis. A hand-held force 

sensor load-cell was used to measure net joint torque at the foot plate during passive stretch. Two 

clusters of reflective markers on the shank and foot were tracked with motion analysis and used to 

calculate the foot-plate angle in 3D. A single marker was placed on the most distal part of the calcaneus 

and additionally tracked in 3D using motion analysis. The ultrasound probe was placed above the medial 

gastrocnemius muscle-tendon junction (MTJ), or on the muscle belly, and the position and orientation of 

the image was tracked using motion analysis by means of a cluster of markers attached to the probe. B. 

Visualisation of muscle-tendon-junction (MTJ). C. Visualisation of fascicle length and Pennation angle.  
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Ultrasound 
A B-mode ultrasound scanner (Telemed Echoblaster, Lithuania) with a 59mm linear transducer rigidly 

fitted with a cluster of 4 markers was used to identify the location of the medial femoral condyle in a local 

reference frame defined by the shank cluster.  

To define myotendinous junction (MTJ) displacement, the probe with cluster was securely fixed over the 

MTJ using a custom-made holder. The long axis of the probe was aligned with the line of action of the 

muscle to minimise out of plane movement. The MTJ was tracked at 30Hz in the local reference frame on 

the shank during the first 3 ankle rotations.  

Then, because MTJ and fascicles could not be visualised simultaneously, the US probe was fixed over the 

muscle belly to measure fascicle lengthening at 60Hz during the second three passive movements. 

Guidance regarding probe alignment was adhered to for minimising measurement errors (Bénard et al., 

2009).  

Data analysis 

Data analysis was carried out using custom made software (Matlab R2015a, Python 2.7.11). Anatomical 

calibration of the shank and foot reference frames was applied to obtain ankle angle (Leardini et al., 

2007). During movement, displacement of the MTJ was manually tracked (figure 3.1B) and muscle and 

tendon lengths were defined as the linear distances between the medial femoral condyle and the MTJ; 

and between the MTJ and the marker on the calcaneus, respectively. The MTU length was defined as the 

summation of muscle and tendon length. A modified semi-automated tracking software (Cronin et al., 

2011; Gillett et al., 2013) was used to track the fascicle and the aponeuroses. Fascicle length (lfas) was 

calculated by extrapolating the fascicle to the intersection point with the aponeuroses. Pennation angle 

(α) was measured as the angle between the fascicle and the deep aponeurosis. Next, fascicle length 

resolved along the axis of the MTU was calculated trigonometrically: 𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓 cos𝛼𝛼⁄ . For a 

justification on the (automated) tracking mechanisms used in this study, see appendix A. The net ankle 

joint torque was calculated from the exerted torques and forces on the load-cell, measured external 

moment arms, and the predicted torque caused by gravity on the foot and orthotic (Bar-On et al., 

2013b). All kinematic and kinetic variables were filtered using a 2nd order Butterworth filter with a cut-off 

frequency of 6Hz and averaged over 3 stretches. Starting length was subtracted from absolute muscle, 

tendon and fascicle length to compare lengthening of these structures over the full ROM and over a 

common ROM that could be achieved by all participants (-5° to -25°). Furthermore, all lengthening 
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parameters were assessed over a common joint torque from 0Nm (defined as slack length) to 3Nm and 

over a common amount of MTU lengthening (20mm). For the different comparisons, muscle, fascicle and 

tendon lengthening was additionally expressed as a percentage of MTU lengthening. The curve-wise 

parameters described above were calculated for the individual data curves. For visualization purposes, 

average curves were calculated by first applying a spatial normalization to all variables relative to the full 

stretch cycle and subsequently averaging the variables. These average curves are shown in figure 3.2.  

Statistics 

All parameters were checked to be normally distributed using the Shapiro-Wilk test and by inspection of 

the q-q plots. The between session reliability of lengthening was analysed using intra-correlation 

coefficients (ICC, 3,k) and the standard error of measurement (SEM), calculated from one-way ANOVA. A 

2-sample independent t-test was used to compare lengthening between CP and TD groups. Relations 

between muscle/tendon lengthening, ROM and age were made using Pearsons r2-values. The threshold of 

significance was set at p=0.05. 

Results 
No significant differences in anthropometric measurements were found between groups (table 3.1). ICC 

values of the inter-session reliability ranged from 0.50-0.70. The SEM values are shown in table 3.2.  

At the starting position (maximal plantarflexion), joint angle was not different between TD and CP groups 

(mean (SD); CP: -38.3° (7.2), TD: -36.6° (9.4), p=0.59, CI [-7.85 4.53]). At this angle, torque (CP: -1.5Nm 

(0.9), TD: -1.8Nm (0.5), p=0.25, CI [-0.22 0.81]), absolute muscle (CP: 164.1mm (28.8), TD: 174.7mm (30.9), 

p=0.4, CI [-32.47 13.4]), tendon (CP: 166.9mm (29.6), TD: 159.6mm (24.7), p=0.54, CI [-13.74 25.85]) and 

fascicle lengths (CP: 25.0mm (6.6), TD: 28.4mm (4.1), p=0.08, CI [-7.34 0.42]) were not significantly 

different between children with CP and TD children.  
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Figure 3.2 (A) Muscle/tendon length versus ankle angle, (B) fascicle length versus ankle angle, (C) 

muscle/tendon length versus muscle-tendon-unit (MTU) length, (D) fascicle length versus MTU length, (E) 

muscle/tendon length versus ankle torque and (F) fascicle length versus ankle torque. Data are average 

curves calculated by first applying a spatial normalization to all variables relative to the full stretch cycle 

and subsequently averaging the variables. 95% Confidence Intervals are shown at 4 representative time 

points.  
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The full ROM was 13° smaller towards dorsiflexion in the CP group. Absolute muscle and fascicle 

lengthening over full ROM were on average 9mm smaller in CP. Absolute tendon lengthening was similar 

between groups. Over the common ROM that could be achieved by all participants (-25° to -5°) absolute 

muscle and fascicle lengthening was on average 3mm smaller in CP and absolute tendon lengthening did 

not differ between groups (figure 3.2A & 3.2B). At -5°, being the most dorsiflexed position all participants 

could achieve, joint torques were significantly larger in children with CP (2.34±1.77Nm) than TD children 

(0.49±0.94Nm). To account for this difference, comparisons made over a common joint torque (0Nm to 

3Nm) (figure 3.2E& 3.2F), revealed that absolute muscle and fascicle lengthening was on average 3.2mm 

smaller in CP, and absolute tendon lengthening did not differ between groups. When analysed over a 

common range of MTU lengthening (20mm), absolute muscle and fascicle lengthening were on average 

Table 3.2 Mean (SD) lengthening values in children with cerebral palsy (CP) and typically developing 
(TD) children during passive ankle rotation. 
 Absolute lengthening (mm) % of MTU lengthening 
 CP TD ES Hedge’s g  SEM CP TD 
Over the full ROM  Over the full ROM 
ROM (°) 48.0 (12.8) 60.6 (11.0) * -1.03  9.5   
Fascicle 15.9 (6.2) 26.0 (4.3) ** -1.27  2.2 40.7 (10.7) 58.1 (14.3) ** 
Muscle 18.2 (5.4) 26.5 (7.0) ** -1.87  3.9 48.1 (9.2) 62.4 (9.2) ** 
Tendon 20.7 (8.1) 16.8 (6.7) 0.51  3.3 52.5 (8.8) 37.6 (9.2) ** 
Over common ROM (-25° to -5°)   Over common ROM (-25° to -5°)  
Fascicle 7.9 (3.2) 11.1 (2.1) ** -1.32  2.0 50.6 (20.4) 59.3 (14.6) 
Muscle 8.5 (2.3) 11.4 (2.8) ** -1.20  1.8 53.9 (9.0) 64.9 (9.9) ** 
Tendon 7.6 (3.1) 6.45 (2.3) 0.32  2.0 46.1 (9.0) 35.1 (9.9) ** 
From maximum 0 to 3Nm  From maximum 0 to 3Nm 
ROM (°)  14.2(3.2)  17.4(5.6) -0.81   9.0   
Fascicle  4.1(1.6)  7.6(3.2)** -1.29  1.7 37.5 (9.6) 56.3 (14.9) ** 
Muscle  3.5(1.9)  5.7(2.5) * -0.91  1.4 50.4 (9.3) 63.4 (8.5) ** 
Tendon  3.8(2.9)  2.8(1.3) 0.38  1.7 49.6 (9.3) 36.6 (8.5) ** 
Over common MTU range (0-20mm)  Over common MTU range (0-

20mm) 
ROM (°) 17.7 (5.5) 18.7 (5.7) -0.33  3.5   
Fascicle 5.7 (2.1) 7.6 (3.9) * -0.52  1.6 25.4 (12.3) 39.1 (19.5) * 
Muscle 9.9 (2.3) 12.1 (2.5) ** -1.08  1.0 49.3 (11.5) 61.4 (12.9) ** 
Tendon 10.1 (2.2) 7.9 (2.5) ** 1.08  1.0 50.5 (11.2) 38.6 (12.8) ** 
ROM: range of motion; PF: plantar flexion; MTU: muscle-tendon unit; CI: confidence interval; SEM: 
inter-session standard error of measurement; ES: effect size (Hentschke & Stüttgen, 2011) 
* Significant difference between CP and TD at p < 0.05 (** p < 0.01) 
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2.5mm smaller in CP and absolute tendon lengthening was on average 2.6mm larger in CP (figure 3.2C & 

3.2D). Finally, when expressed as a percentage of MTU lengthening, relative muscle lengthening was 

smaller and relative tendon lengthening larger in children with CP over all the studied ROMs (table 3.2).  

Fascicle lengthening resolved along the axis of the MTU was 8.2±3.2mm and 11.5±2.0mm respectively for 

CP and TD children over the common ROM (p<0.01). Over the full ROM this was 16.3±6.3mm and 

26.5±7.0mm for CP and TD children (p<0.01).   

Muscle lengthening increased significantly with age in TD children while in CP children, tendon lengthening 

increased with age (Figure 3.3). Significant correlations were found between muscle and tendon 

lengthening with ROM in children with CP (Figure 3.4).  

Discussion 
Regardless of whether groups were compared according to common joint angle, joint torque, or relative 

to MTU lengthening, muscle and fascicle lengthening were always smaller in children with CP than TD 

children (table 3.2). This confirms previous findings of smaller muscle and fascicle lengthening during 

passive ankle dorsiflexion in children with CP when compared to TD children (Barber et al., 2011a). By 

simultaneously studying the relative contributions of the muscle and tendon to MTU lengthening, we also 

found that in TD children the muscle lengthens more than the tendon (63%-37%) while in children with CP 

they lengthen equally (50%-50%). These differences between groups in the amount of lengthening of the 

underlying structures during similar amounts of joint and MTU displacement indicate possible differences 

in structural properties due to CP which are not evident by assessment on a joint level. 

Due to differences in Achilles tendon moment arm (Kalkman et al., 2017) and joint stiffness (Alhusaini et 

al., 2010) between TD and CP participants, comparison of lengthening parameters between groups only 

in terms of joint angles should be interpreted with caution. Therefore, while previous studies analysed 

fascicle lengthening only over the full (Barber et al., 2011a) or a common ROM (Matthiasdottir et al., 2014), 

we compared our data in two additional ways. First, we used a common joint torque rather than common 

ankle angles. Children with CP develop torque earlier in their ROM. We found the torque measured at the 

limit of the common dorsiflexion range (-5°) to be higher in children with CP compared to TD children. 

Therefore, comparing the results at a common torque would circumvent these problems and assure a 

similar stretching stimulus to the MTU. However, joint torque is also affected by differences in Achilles 

tendon moment arm and intrinsic joint stiffness. Comparison of lengthening values over a common MTU 
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lengthening circumvents the influence of a smaller Achilles tendon moment arm in children with CP 

(Kalkman et al., 2017). Nevertheless, irrespective to the method used, we always found that relative to 

MTU lengthening, muscle lengthening is smaller and tendon lengthening larger in children with CP. This 

consistency confirms that these changes in mechanical behaviour of the MTU of children with CP are 

substantial. In contrast, when assessing the effect of intervention or comparing different subgroups of 

children with CP, the differences may be less pronounced and the method of analysis will likely be 

important. This is a vital consideration when decomposing the causes of a reduced ROM in the clinical 

decision-making process.   

This study, and others before us (Morse et al., 2008), observed a discrepancy between the amount of 

fascicle and muscle lengthening during a passive stretch. This decoupling of the elongation of the fascicles 

from that of the whole muscle can be explained by the deformation of the aponeurosis and connective 

tissue between the fascicles (Lieber et al., 2017). Additional analysis of the current data to explore 

fascicle:muscle lengthening showed that over a common ROM, muscle lengthening could be entirely 

explained by the resolved fascicle lengthening in both groups. This may imply that the increased resistance 

to stretch of the muscle in children with CP results from similar changes in the lengthening characteristics 

of both the fascicles and passive connective tissue. When studied over the full ROM, mean muscle 

lengthening in the CP group was 1.4mm larger than the resolved fascicle lengthening, while in the TD group 

muscle lengthening was equal to resolved fascicle lengthening. This could suggest that structures other 

than the fascicles, such as the perimysium and tissue between the fibres, deform to provide the additional 

lengthening required to achieve maximal dorsiflexion angles in children with CP, while in TD children this 

is not the case. Consistent with this interpretation, both intramuscular connective tissue (Malaiya et al., 

2007) and the expression of extracellular matrix production-related genes were found to be dramatically 

increased in spastic muscles and correlated with muscle mechanical properties, such as stiffness (Smith et 

al., 2012). 

It has been shown that muscle contractures already start developing at an early age in children with CP 

(Willerslev-Olsen et al., 2013) and that growth is an important factor contributing to the development of 

contractures (Švehlík et al., 2013). Therefore, it is important to capture the critical age at which treatment 

is most effective and consider the changes that occur in muscle/tendon properties with maturation. 

Benard et al. reported that gastrocnemius muscle length increases with age in TD children (Bénard et al., 

2011). However, in the same TD children, muscle lengthening in response to a 4Nm dorsiflexion torque, 

was not found to increase with age (Bénard et al., 2011). This is not supported by our data, since we found 
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a tendency for muscle lengthening to increase with age in TD children (figure 3.3). Interestingly, this 

increase in muscle lengthening with age was absent in children with CP. Instead, in children with CP we 

observed an increase in tendon lengthening with age. This may indicate that muscle stiffness increases 

with age in children with CP, which is consistent with the progression of disease (Graham et al., 2016). 

Additionally, it indicates a possibility that the Achilles tendon acts as a compensation mechanism to 

preserve ankle ROM, despite a shorter and stiffer muscle as children with CP grow.  

 

Figure 3.3 Correlations between age and muscle (A, B), tendon (C, D) and fascicle (E, F) lengthening 

across the ROM, for children with CP and TD children. A regression line is shown for significant 

relationships.   

 

The relative contribution of fascicle, muscle and tendon lengthening to ROM may be important in 

determining the best treatment. We show that both muscle and tendon lengthening are related to ROM 

in children with CP (figure 3.4). A lack of this relationship in TD children shows that the medial 

gastrocnemius does not play an essential role in determining ROM. Stretching is often used to increase 

ROM in children with CP and is assumed to increase muscle length and reduce muscle stiffness. 
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However, in this study, we showed that the muscle in children with CP experiences a smaller stretching 

stimulus during joint rotation than TD children which may explain the lack of effectiveness of stretching 

therapies (Wiart et al., 2008). For example, passive stretching for a period of six weeks, has been shown 

effective in increasing ROM, but an increase in muscle or fascicle length was absent (Theis et al., 2015). 

However, large variability amongst participants in the current study and those reported in literature 

suggests that patient- and muscle-specific information may be required to facilitate individualised 

treatment programs. 

 

 

Figure 3.4 Correlations between muscle (A, B), and tendon (C, D) lengthening and ROM in children with 

CP and TD children. A regression line is shown for significant relationships. 

 

This study has some limitations. Currently, it is not possible to measure muscle and tendon stiffness during 

passive rotation in an intact joint, because there are no in vivo techniques to quantify forces in the muscle-

tendon unit. Additionally, the force within a single muscle is dependent on the distribution of the joint 

torque over the different agonist and antagonist muscles. For example, an increase in the stiffness of the 
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Soleus, a muscle can show intermuscular force transmission to the medial gastrocnemius and attached 

onto the Achilles tendon could confound our measurements. To partly overcome this problem, 

measurements of fascicle and muscle excursion of different muscles should be taken at the same time.  

Nonetheless, the results of our study show less MG MTJ displacement in children with CP compared with 

TD children. Because in children with CP, the agonist calf muscles are rarely affected in isolation, it is likely 

that the reduced contribution of the MG muscular component to MTU lengthening can, at least partly, be 

explained by an increased stiffness in the MG muscle. Although the SEM values of all parameters were 

lower than the average difference between groups, reliability of the calculated parameters was lower than 

expected. Future studies could reduce possible sources of error by applying motorised instead of manual 

movements and automatic tracking algorithms for feature identification. However, we were still able to 

detect between-group differences consistently. We are therefore confident that this has not confounded 

the present findings. In the current study, muscle fascicle and tendon length were represented as straight 

lines, thus neglecting possible effect of curvature. However, the influence of curvature has been reported 

to be small for passive fascicle length measurements in the medial gastrocnemius (Muramatsu et al., 

2002). Neglecting tendon curvature leads to an overestimation of tendon lengthening in both groups 

especially at more plantarflexed ankle angles where the tendon is below slack length. Since we expect 

slack length to be at more plantarflexed angles in children with CP, an overestimation of tendon 

lengthening would be more likely in the TD children. Thus, controlling for tendon curvature would only 

amplify the between-group difference in tendon lengthening reported here. Ankle angle was measured in 

the sagittal plane as the angle between the shank and the footplate that supported the foot. To minimise 

errors, we assured the foot to be rigid to the foot plate during the whole ROM. Finally, the exclusion of 

movements that showed activation higher than a threshold helped minimise the effects of EMG-activity 

on the feature displacement. However, small effects of EMG activity below this threshold cannot be fully 

excluded.  

In summary, this study demonstrates that when passively rotating the ankle joint to stretch the calf 

muscles, the tendon lengthens less than the muscle in TD children, while in children with CP, the muscle 

lengthens as much as the tendon. This suggests altered material properties of the muscle and tendon in 

children with CP. This should be considered when assessing and treating muscle function at joint level in 

children with CP.  
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CHAPTER 4  

 

 

Medial gastrocnemius muscle stiffness cannot explain the 

increased ankle joint range of motion following passive stretching 

in children with cerebral palsy 
 

 

 

 

 

 

 

 

 

 

  

 

The information presented in this chapter has been reported in the paper: 

Kalkman BK, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, Barton GJ, Desloovere K, O’Brien TD 

(2018) Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion 

following passive stretching in children with cerebral palsy. J exp physiol. 103(3), 350-357 
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Abstract 
Stretching is often used to increase/maintain joint range of motion (ROM) in children with cerebral palsy 

(CP) but the effectiveness of these interventions is limited. Therefore, this study aimed to determine the 

acute changes in muscle-tendon lengthening properties that contribute to increased ROM after a bout of 

stretching in children with CP. Eleven children with spastic CP (age:12.1(3)y, 5/6 hemiplegia/diplegia, 7/4 

GMFCS level I/II) participated in this study.  Each child received 3 sets of 5x20s passive, manual static 

dorsiflexion stretches separated by 30s rest, and 60s rest between sets. Pre- and immediately post-

stretching, ultrasound was used to measure medial gastrocnemius fascicle lengthening continuously over 

the full ROM and a common ROM that could be achieved per individual pre- to post-stretching. 

Simultaneously, 3D motion of two marker clusters on the shank and the foot was captured to calculate 

ankle angle, and ankle joint torque was calculated from manually applied torques and forces on a 6DoF 

load cell. After stretching, ROM was increased (9.9° (12.0), p=0.005). Over a ROM common to both pre 

and post measurements, there were no changes in fascicle lengthening or torque. The maximal ankle joint 

torque tolerated by the participants increased (2.9(2.4) Nm, p=0.003) and at this highest passive torque 

maximal fascicle length was 2.8(2.4) mm greater (p=0.009) when compared to before stretching. These 

results indicate that the stiffness of the muscle fascicles in children with CP remain unaltered by an acute 

bout of stretching and the increased ROM could be due to an increased tolerance to stretch. 

Introduction 
Stretching therapies are commonly used as a non-invasive treatment in children with CP. In clinical practice 

the assumption is that repeated bouts of stretching can increase muscle length, and consequently 

decrease muscle stiffness and therefore delay the onset of muscle contractures and defer or avoid surgery 

(Odéen, 1981; Herbert, 2004; Wiart et al., 2008). However, despite an improved ankle ROM (Theis et al., 

2015), the scientific evidence does not confirm these assumptions and a significant gap exists between the 

clinical rationale for stretching and the supporting evidence (for systematic reviews see: Pin et al., 2006; 

Wiart et al., 2008). Given that stretching interventions cause discomfort to children and are demanding of 

them and their families (Hadden & Von Baeyer, 2002), stronger evidence is required to support their 

application and optimise their effectiveness.  

We have shown that altered muscle-tendon properties in CP may leads to a reduced ROM (chapter 3), but 

these alterations may also mediate the response to stretching interventions as seen in typically developing 
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individuals. For example, previous studies show that in CP, muscles are shorter (Fry et al., 2004; Malaiya 

et al., 2007; Oberhofer et al., 2010), tendon slack length is longer (Gao et al., 2011; Barber et al., 2012) 

and relative muscle to tendon stiffness is increased (Kalkman et al., 2016). It is unknown how these altered 

properties mediate the acute response of a muscle to stretching in individuals with CP. In typically 

developing adults, acutely after 5 minutes of conditioning stretches, ROM was increased and joint stiffness 

decreased (Morse et al., 2008). Based on an increase in muscle belly length in the absence of an increase 

in fascicle length and pennation angle changes, the authors attributed these changes to a reduction in the 

stiffness of the intramuscular connective tissue. The question then arises, do spastic muscles respond to 

stretch in a similar way, since changes have been shown in both the quality and amount of intramuscular 

connective tissue in children with CP (Smith et al., 2011). It has been shown that ankle ROM in children 

with CP improved immediately after stretching and this was accounted for by an increase in length at 

maximal joint angles of all three structures that make up the muscle-tendon-unit (MTU) of the medial 

gastrocnemius, i.e. muscle belly, fascicles and tendon (Theis et al., 2013). However, the gain of MTU 

lengthening after stretching reported in this study seems extremely large (18.5mm) for an increase in ankle 

ROM of only 9.8°. Also, no information was reported about any changes in joint torque and thus in the 

passive properties of the involved structures.  

Since muscle and tendon act in series, the lengthening stimulus experienced by the muscle (and thus the 

fascicles) is dependent on the relative stiffness between muscle and tendon. Higher relative stiffness in 

the muscle fascicles compared to the tendon in children with CP, would reduce muscle lengthening when 

rotating the joint compared to typically developing individuals (Kalkman et al., 2016). This reduced strain 

during ankle stretch might explain why functional improvements, such as gait kinematics, after long term 

stretching interventions in CP are inconsistent and of low magnitude (Pin et al., 2006; Wiart et al., 2008). 

Previous studies do not provide information into the relative contribution of muscle fascicles and other 

structures to the increased ROM observed acutely after stretching. Therefore, the aim of this study was to 

examine whether ankle ROM could be increased after 20 minutes of stretching and whether the 

lengthening properties of the structures within the medial gastrocnemius MTU contribute to this increased 

ROM.  
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Methods 

Participants 

Eleven children aged 6-16 years old, diagnosed with spastic CP were recruited for participation in this 

study. Patient characteristics can be found in table 4.1. Exclusion criteria were having botulinum toxin-A 

injection to the lower limb muscles within six months prior to testing, a baclofen pump, or any lower limb 

neuro- or orthopaedic surgery. Children were recruited through the gait lab of Alder Hey Children’s 

Hospital in Liverpool and the University Hospital in Leuven. The study was approved by the Institutional as 

well as the NHS research ethics committee in the UK and the University Hospital’s ethics committee in 

Leuven. The study was conducted in accordance with the Declaration of Helsinki. Written parental consent 

was obtained from the parents, and written assent was given by children in accordance with local 

regulations.  

 

Experimental design 

Participants attended the hospital on one occasion. During this visit, participants underwent an acute bout 

of passive ankle dorsiflexion stretches applied by a physiotherapist. Stretches were applied to the leg that 

was most affected as defined by spasticity scores. Before and within 10 minutes after the stretching 

session, measurements of ankle angle, passive joint torque and medial gastrocnemius muscle fascicle 

lengthening during a passive stretch were taken. During these measurements, participants lay prone on a 

Table 4.1. Participant characteristics 
 CP (n=11) 
Age (years) 12.1 (3.0) 
Male/female (n) 9/2 
Height (cm) 147.1 (21.6) 
Mass (kg) 40.9 (18.7) 
Tibia length (mm) 351.8 (57.6) 
GMFCS (I-IV) (n) 7 I, 4 II 
Diagnosis (n) 6 Diplegia, 5 Hemiplegia 
*Modified Ashworth Score (n=7) and Average Modified 
Tardieu (n=8) 

MAS: 1.5 (n=2); 3 (n=1) 
Tardieu: 2 (n=5); 3 (n=3) 

Data are mean (SD) unless otherwise stated. CP: cerebral palsy; GMFCS: gross motor function 
classification system;  
* MAS from children recruited at the University hospital in Leuven, Tardieu scores from children 
recruited at Alder Hey Children’s Hospital in Liverpool  
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bed with the lower leg supported on an inclined cushion such that the knee was ~20° flexed. The leg was 

positioned in a custom-made orthosis, to control ankle movement in the sagittal plane (figure 2.1). The 

axis of rotation of the orthosis was aligned with the lateral malleolus. Each participant underwent 3 trials 

of passive ankle dorsiflexion movements taking 5 seconds to complete one movement, which resulted in 

an average velocity of 10deg/s. At least 10 seconds rest was taken between individual repetitions. The 

maximal ROM was defined as the point where either the participant indicated the threshold or the 

examiner felt the joint reach the end of the passive movement. Forces and torques at the ankle were 

measured at 200 Hz using a six degrees-of-freedom force sensor load-cell (ATI mini45: Industrial 

Automation) attached to the orthosis under the ball of the foot. 3D kinematics were collected with 3 

cameras at 120 Hz from 2 clusters of 3 markers placed on the foot-plate of the orthosis and on the shank 

(Optitrack, US). Surface electromyography (sEMG), placement defined with ultrasound, was used to collect 

signals at 1600 Hz from the lateral gastrocnemius and soleus muscles (Zerowire, Cometa, Milan, IT). When, 

during joint rotation, the sEMG signal exceeded 10% of the maximum voluntary contraction value 

(collected with a hand-held dynamometer prior to the stretch trials), the corresponding trial was 

discarded. To measure muscle fascicle lengthening, a B-mode ultrasound probe (Telemed Echoblaster, 

Lithuania, 60 Hz) was securely fixed over the mid belly of the medial gastrocnemius muscle. Guidance 

regarding probe alignment was adhered to for minimising measurement errors (Bénard et al., 2009; 

Bolsterlee et al., 2016).  Resting fascicle length was measured with the knee flexed at ~20° and the foot 

hanging off the edge of the bed.  

Stretching intervention 

Participants lay supine on a bed with the physiotherapist positioned on the side of the bed. Initial stretch 

position was achieved by lifting the leg with the knee flexed to 90°. To initiate the stretch, the 

physiotherapist dorsiflexed the foot by applying force manually at the sole of the foot. While maintaining 

dorsiflexion, the knee was slowly guided into extension. Pressure at the ankle continued to be applied by 

the physiotherapist until the participant indicated the point of discomfort. This maximum dorsiflexed 

position was held for 20 s in total and participants received 3 sets of 5x20 s passive, static dorsiflexion 

stretches separated by 30 s rest, and 1 min rest between sets. 

Data analysis 

Data analysis was carried out using custom-made software (Matlab R2015 and Python 2.7.11). Kinematic 

and kinetic data were filtered using a 2nd order low pass Butterworth filter with a cut-off frequency of 6 Hz 
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and averaged over the 3 stretches for each individual. Anatomical calibration of the shank and foot 

reference frames were applied to obtain the ankle angle (Leardini et al., 2007). The calculation of net ankle 

joint moment is described in figure 2.1 (Bar-On et al., 2013b; Schless et al., 2015). A modified semi-

automated tracking software (Cronin et al., 2011; Gillett et al., 2013) was used to track the fascicles and 

aponeuroses. Fascicle length was calculated by extrapolating the fascicle as a straight line to the 

intersection point with the aponeuroses. Pennation angle (α) was measured as the angle between the 

fascicle and the deep aponeurosis. Next, to determine separate contribution of fascicles and the tendon-

aponeurosis to total MTU lengthening, fascicle length resolved along the axis of the MTU was calculated 

(𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓 ∗ cos𝛼𝛼). For a justification on the (automated) tracking mechanisms used in this 

study, see appendix A. Changes in fascicle lengthening were analysed over the full ROM (to maximal 

dorsiflexion angles) and over a ROM common to all subjects from -25° to -5° (with negative angles 

reflecting plantarflexion). To define ankle stiffness, a second-order polynomial was fitted for each 

individual through the 3 repetitions of the passive torque-angle curve, the slope of this polynomial was 

defined at 5 equally distributed torque values between 0 and 12 Nm that could be achieved by all 

participants. Raw EMG signals were filtered with a 6th order zero-phase Butterworth bandpass filter from 

20 to 500 Hz. The root mean square envelope of the sEMG (RMS-EMG) was extracted by applying a low-

pass 30 Hz 6th order zero-phase Butterworth filter on the squared signal. To assess any change in RMS-

EMG post stretching the RMS-EMG signal was quantified over three equal zones of the ROM. The zones 

were defined as the time windows corresponding to 10-36.6% ROM, 36.6-63.3% ROM and 63.3-90% ROM. 

Average RMS-EMG per position zone was defined as the area underneath the RMS-EMG curve divided by 

the duration of the corresponding time zone. All RMS-EMG values are expressed relative to the maximum 

voluntary contraction value (collected prior to the stretch trials). 

Statistics 

All parameters were checked for normal distribution using the Shapiro-Wilk test and by inspection of the 

q-q plots. All data except for the maximally applied torque were found to be normally distributed. Separate 

paired t-tests or Wilcoxon signed rank tests were used to compare lengthening, ROM, maximal torque and 

EMG parameters before and after the stretching intervention. A MANOVA was used to compare joint 

stiffness at different torque values before and after intervention. All statistical analyses were performed 

in Matlab (Mathworks, R2015). Alpha-level was set at 0.05 and effect sizes were expressed as Cohen’s d. 

Threshold values were 0.2, 0.5 and 0.8 for small, medium and large effects. (Cohen, 1977). 
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Results 
Eleven trials in 9 participants were excluded based on excessive RMS-EMG activity. This equates to 20% of 

the total number of trials. There were at least 2 trials per participant available for analysis. No differences 

were found pre- to post-stretching in the average RMS-EMG in any of the movement zones analysed for 

the lateral gastrocnemius (p=0.25) or the soleus (p=0.96, figure 4.1).  

 

 

Figure 4.1: (A) Average RMS-EMG response of the lateral gastrocnemius and soleus combined pre (blue) 

and post (red) intervention. (B) Individual RMS-EMG signals versus ankle angle of the lateral gastrocnemius 

and soleus pre (blue) and post (red) intervention. 

 

Resting fascicle length (figure 4.2C) or resting ankle angle did not appear to change post-stretching (table 

4.2). ROM increased significantly by 9.9° (12°) (p=0.01). This was accompanied by a 3.9(3.7) mm increase 

in MTU lengthening (p=0.01) and a 3.0(2.4) mm increase in fascicle lengthening (p=0.01) over the full ROM 

(table 4.2). There was an increase of 2.4(2.1) Nm in the maximal torque that was applied to the ankle after 

stretching (figure 4.2A). The change in pennation angle during muscle lengthening was not altered post-

stretching (p=0.230), thus fascicle length resolved along the axis of the MTU increased by 3.1(2.6) mm 

after stretching (p=0.007).  

 

 



50 
 

 

No changes were found in the amount of fascicle lengthening over a common ROM (p=0.301) pre- to post-

stretching. Ankle stiffness calculated at 5 common torque values between 0 and 12 Nm were not different 

pre- to post-stretching (p=0.63). Fascicle lengthening vs change in ankle angle and torque are visualised in 

figure 4.3. 

 

 

Figure 4.2: Individual data for (A) maximal torque applied around the ankle during a stretch, (B) fascicle 

length at end-range dorsiflexion angle and (C) resting fascicle length. Data are shown pre and post 

intervention. Individual data points (*) and group mean values (-). 

 

Table 4.2. Mean (SD) lengthening values during passive ankle rotation pre- and post-stretching. 
Variable  Pre- 

stretching 
Post- 
stretching 

Absolute 
change 

ES p CI 

Ankle joint level       
Resting ankle angle (°) -31.1 (12.6) -26.9 (16.6) 4.2 0.23 0.263 [-12.71 3.9] 
ROM (°) 47.8 (14.1) 57.8 (14.2) 10 * 0.67 0.036 [0.78 19.07] 
MTU lengthening (mm) 39.5 (12.1) 43.4 (13.0) 3.9 * 0.30 0.009 [1.21 6.55] 
Torque at max. DF (Nm) 12.6 (6.1) 14.9 (5.0) 2.3 * 0.46 0.007 [0.87 3.86] 
       
Fascicle level       
Resting fascicle length (mm) 31.1 (8.8) 32.9 (8.7) 1.8 0.21 0.113 [-3.91 0.51] 
Fascicle length at max. DF (mm) 46.6 (11.6) 49.5 (10.2) 2.9 * 0.26 0.009 [0.84 4.77] 
Fascicle lengthening full ROM (mm) 17.4 (6.7) 20.4 (7.2) 3.0 * 0.39 0.006 [0.95 4.97] 
Fascicle lengthening common ROM (mm) 8.2(3.6) 8.3(3.5) 0.1 0.22 0.301 [-0.98 2.69] 
Change in pennation angle (°) -6.5(3.1) -7.6(2.5) 1.1 0.29 0.230 [-0.72 2.55] 
Resolved Fascicle lengthening (mm) 17.6 (7.1) 20.7 (7.5) 3.1 * 0.38 0.007 [0.82 5.23] 
ES: effect size; CI: 95% Confidence interval (non-parametric test: Hodges-Lehmann estimator); ROM: range of 
motion; MTU: muscle-tendon-unit; DF: dorsiflexion; Negative ankle angles refer to a plantarflexed position  
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Figure 4.3: Data shown are mean (±95% CI calculated on normalised data (Cousineau, 2005)) values pre- 

(blue) and post- (red) stretching of (A) fascicle length versus ankle angle, (B) joint torque versus ankle angle, 

(C) fascicle length versus joint torque. 

Discussion 
The present study has shown that after an acute bout of stretching, children with CP achieve an increase 

in the ROM. However, no changes were found to occur in either joint stiffness or the lengthening 

characteristics of muscle fascicles. This indicates that the mechanical properties of the muscle and joint 

did not change after an acute bout of stretching. The increased ROM can be attributed to a higher maximal 

torque that was applied manually by the experimenter. This increase in dorsiflexion ROM resulted in an 

increase in maximal fascicle length.  

In healthy adults, the mechanical properties of the muscle could be altered after repeated stretches. 

Morse et al. (2008) concluded that elastic properties of the connective tissue elements within the muscle 

change acutely after stretching in typically developed young adults. We did not find evidence to support 

this hypothesis in children with CP, since fascicle properties over a common ROM and joint stiffness did 

not change due to repeated stretches. A lack of change in passive torque over a common ROM further 

indicates that muscle-tendon structures were not altered post-stretching. Nonetheless, ROM did increase 

acutely after stretching, and in the absence of any changes in muscle-tendon properties, this can be 

attributed to the greater maximal torque applied by the examiner.  

This study was designed to assess any changes in muscle-tendon properties in response to the clinical 

practice of a therapist manually stretching the ankle to its end ROM. As such, we did not control, or set 

out to identify, what determines the maximum joint torque that can be applied or tolerated. However, 

there are a few possible explanations for this change after stretching that may be considered. The maximal 

ROM, when determined by the examiner is clinically defined as the “end-feel” of movement due to tissue 
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stretch (Magee, 2014). The position at which this end-feel occurs will depend, among others, on pain 

tolerance, warm-up, or acquaintance between clinician and patient. These factors would all change after 

a bout of stretching and could contribute to the greater joint torque applied after stretch, as observed in 

this study. Due to practicalities in the current study design, the assessor was not blinded to the condition 

of the patient. A blinding of the assessor could tease out some of the subjective factors that influence the 

amount of torque applied to reach the end ROM, as mentioned above.  Additionally, we may hypothesise 

that the children experienced an increased stretch tolerance. It has been shown repeatedly in healthy 

adults that an increased tolerance to an uncomfortable stretch sensation is related to an increased ROM 

after stretching (Magnusson et al., 1996a; Folpp et al., 2006; Konrad & Tilp, 2014). Future work should 

evaluate whether this has practical implications in the therapy of children with CP.  

The greater ROM achieved after the bout of stretching in this study resulted in a 3.9 mm increase in MTU 

lengthening. Eighty percent of this increase in maximal MTU length was accounted for by resolved fascicle 

lengthening, which was calculated as the lengthening of the fascicles along the axis of the MTU. The 

remaining 20% thus should be due to stretching of the in series elastic component, which includes the 

Achilles tendon distal to the muscle belly and/or the connective tissue within the muscle. These results 

contradict earlier findings of Theis et al ( 2013), who showed muscle and tendon to contribute equally to 

the increase in MTU lengthening seen after an acute bout of stretching in children with CP. However, the 

gain in MTU lengthening of 18.5mm reported in this study seems extremely large for a change in ankle 

angle of only 9.8°. Such a displacement of the MTU would imply moment arm values of 11cm which are 

much larger than those previously reported in children (Waugh et al., 2011; Kalkman et al., 2017) or adults 

(Maganaris et al., 2000).   

Long-term stretching interventions are based on the assumption that they affect muscle fascicle length 

and stiffness by changing in series sarcomere number or alter the mechanical tissue properties. An 

advantage of the addition of sarcomeres in series would be to change the active excursion range of the 

muscle. Such plasticity of muscle fibres to stretch has been shown in several animal studies (Tabary et al., 

1972; Williams & Goldspink, 1973) where prolonged positioning of muscles at increased length over 

several weeks resulted in increased fibre length and in-series sarcomere number (Williams & Goldspink, 

1973). However, it is not known whether this finding applies to spastic human muscle, in particular when 

sarcomeres are already over lengthened (Mathewson et al., 2014b). Nonetheless, for any remodelling of 

the muscle to take place, the fascicles must experience sufficient stretching stimulus.  In a previous study 

we have shown that when rotating the ankle joint, this stretching stimulus to the muscle fascicles is smaller 

in children with CP than their typically developing peers (Kalkman et al., 2016). Similarly, it has been 
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showed that when stretching over the full ROM, muscle and tendon lengthen less than in TD children (Hösl 

et al., 2015). This may explain the lack of consistent and substantial functional improvements seen after 

long term stretching interventions in these patients. Here on the other hand, we show that after 20 

minutes of stretching, the stretching stimulus to the muscle fascicles can be acutely increased, thereby 

giving the potential for remodelling of the muscle to occur. Future research should assess whether the 

increase in ROM seen after long term stretching interventions in children with CP is due to an increase in 

stretch tolerance, as is shown here acutely, or if indeed any remodelling of the muscle takes place.  

A number of assumptions in the present study should be acknowledged. Muscle fascicles were treated as 

straight lines, thus neglecting possible effect of curvature. However, the influence of curvature has been 

reported to be small for passive fascicle length changes in the medial gastrocnemius (Muramatsu et al., 

2002). Ankle angle was measured in the sagittal plane as the angle between the shank and the footplate 

that supported the foot. To minimise errors, a custom-made insole assured that the foot was rigid to the 

footplate during the whole ROM. Not including a control group to check whether any changes are actually 

due to the intervention, is a limitation in this study. However, we do not expect muscle properties to 

change over the short time period that was assessed in this study. Therefore, we do not believe the study 

design has confounded our conclusions. We also chose not to include a control group of TD children in this 

study, although they might offer some further insight into the altered muscle properties of children with 

CP, they are not required to answer the primary question of this study, what is the acute effect of stretch 

in children with CP. Because of the short time-scale studied here, possible changes should be attributed 

to time-dependent mechanical properties such as creep and we do not expect any muscle remodelling to 

take place. Therefore, the comparison to a TD control group is of lesser importance.  Furthermore, In a 

separate analysis, four typically developing children were assessed for repeatability by performing the 

same protocol before and after an hour break (Cenni et al., 2018), no systematic changes were found in 

these children and the study design was found to be reliable for applications that do not require sub-mm 

accuracy. It was not possible to collect EMG recordings of the medial gastrocnemius muscle because we 

could not fit an ultrasound probe and EMG electrodes on the small surface of a child’s muscle. As an 

alternative, we measured EMG of the lateral gastrocnemius and the soleus to assure joint rotations were 

passive. Also, we need to acknowledge that even though EMG remained below 5% of the MVC values, we 

cannot ascertain that muscles were fully passive. Also, we measured only the properties of one muscle of 

the triceps surae group, however because we performed the stretching intervention with relatively more 

knee extension the influence of the soleus muscle to the increased ROM is considered small. Finally, this 

study was performed with a relatively small number of participants. Also, we had no information about 
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stretching interventions children were exposed to in their regular care. Validation of our results is needed 

in a larger cohort of children with CP.  

We conclude that ROM increased acutely after a single bout of passive stretching in children with CP, but 

the stiffness of the muscle fascicles remains unaltered. Importantly, the increased ROM is accompanied 

by a longer maximal fascicle length, which means there is a potential for long term adaptations if repeated 

over multiple weeks. 
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CHAPTER 5  

 

 

The impact of increasing tendon stiffness on the effectiveness of 

stretching interventions in children with cerebral palsy 
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Introduction 
In the treatment of cerebral palsy (CP), there are several strategies that aim to increase range of motion 

(ROM) at the ankle and thereby improve the gait pattern. Invasive treatments such as surgical lengthening 

of calf muscle contractures have been shown to improve gait characteristics and musculotendinous 

lengths during gait (Wren et al., 2004). However, surgery is invasive, there is a risk of overcorrection (Segal 

et al., 1989) and the timing of surgery is essential for its success (Borton et al., 2001). Therefore, at first 

conservative approaches are preferred. Stretching, as part of a physical therapy intervention, aims to 

increase ROM and consequently improve function, delay the development of contractures and the need 

for surgery. It is assumed that stretching leads to an increase in muscle length by promoting an increase 

in sarcomeres in series.  Although ankle ROM can be improved, it is not known whether muscle properties 

are improved after stretching, and a significant gap exists between the clinical rationale for stretching and 

the supporting evidence (Pin et al., 2006; Wiart et al., 2008). Given that stretching exercises can be painful, 

demanding and time consuming for children and their families (Hadden & Von Baeyer, 2002) and they take 

up a large amount of time in the workload of physiotherapists (Wiart et al., 2008), stronger evidence is 

needed to support their application and improve their effectiveness.  

To increase effectiveness of stretching interventions, we need to understand how a muscle responds to 

stretch. We know that in children with CP, muscles are shorter (Fry et al., 2004; Barrett & Lichtwark, 2010), 

tendon slack length is longer (Barber et al., 2012) and the relative stiffness of muscular to tendinous tissue 

is increased (Chapter 3). Therefore, during a single stretch, muscles of children with CP will lengthen less 

and the physiological stretching stimulus to the muscle will be decreased. As such, we found that, acutely 

after a single bout of stretching, there was an increase in ROM, but no changes to the muscle properties 

in children with CP (Kalkman et al., 2018). A similar mechanism may limit the effect of long term stretching 

interventions. 

To resolve this issue, alternate solutions are needed. One example would be to decrease the relative 

stiffness of the muscle to the tendon. This can be achieved in different ways. For example, intramuscular 

botulinum toxin-A injections decrease the neural component of muscle hyper-resistance (Noort van den 

et al., 2017) thus this would decrease its stiffness relative to the tendon during stretch. When botulinum 

toxin-A is combined with stretching of the muscle, either by physiotherapy or casting, the stretching 

stimulus to the muscle will be increased when compared to stretching alone (Booth et al., 2003; Love et 

al., 2010). However, the effect of botulinum toxin-A is temporary and repeated injections can cause 
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significant damage to the muscle (Fortuna et al., 2013; Barber et al., 2013). Another way to decrease the 

relative stiffness of the muscle to the tendon is to increase the stiffness of the tendon. Tendon stiffness is 

adaptable and shown to increase with resistance training in adults (Couppé et al., 2008), elderly (Reeves 

et al., 2003) and typically developing prepubertal children (Waugh et al., 2014). Resistance training has 

been shown to improve strength and muscle volume in children with CP (McNee et al., 2009; Gillett et al., 

2016), indicating that spastic muscles can adapt in response to training. Increasing tendon stiffness with 

resistance training could furthermore have the benefit to increase the stretching stimulus to the muscle 

when resistance exercises are combined with stretching exercises.  

To test this mechanistic theory, we designed a combined intervention where children performed a 

combination of resistance training and stretching. Stretching exercises of the calf muscle were performed 

for six weeks. While resistance training (heel-raises) started four weeks prior, to increase Achilles tendon 

stiffness before starting the stretching exercises. A control group performed only stretching exercises, but 

to assure the same physiological load and contact hours with the research team, this group performed 

resistance training exercises of the upper limbs. Hence, the main aim of this study was to increase the 

effectiveness of passive stretching in terms of improvements in fascicle length and functional outcomes. 

Secondly, we assessed the mechanisms by which the combined intervention was effective. We 

hypothesised that children in the intervention group, in contrast to the control group, would show an 

increase in fascicle slack length and functional improvements as assessed by gait analysis.   

Methods 

Participants 

 Twenty-two children with CP aged between 7 and 14 years old were recruited for participation in this 

study (mean age 9.9(1.9) years, 11 Diplegia and 11 Hemiplegia). Children were excluded from participation 

if they had received botulinum toxin-A injections to the lower limb muscles 6 months prior to testing, a 

baclofen pump, or any lower limb neuro- or orthopaedic surgery. Children were recruited through the gait  

 

 

Table 5.1. Participant characteristics  
Intervention (n=12) Control (n=10) 

Age (years) 10.4 (2.0) 9.3 (1.6) 
Sex 6 male, 6 female 7 male, 3 female 
Diagnosis 6 Diplegia, 6 Hemiplegia 5 Diplegia, 5 Hemiplegia 
GMFCS 7 x I, 5 x II 5 x I, 4 x II, 1 x III 
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lab of Alder Hey Children’s Hospital. The study was approved by the institutional as well as NHS ethics 

committees. The study was conducted in accordance with the declaration of Helsinki. Written parental 

consent was obtained and written assent was given by children. 

 

Figure 5.1: Flow diagram based on consort guidelines to show the experimental design.  

 

Experimental design 

Participants were recruited when scheduled for a routine clinical gait analysis. Children were randomly 

assigned to either the intervention (n=12) or a control (stretching-only) group (n=10) according to a 

computerised minimisation algorithm (Saghaei & Saghaei, 2011). When a new patient was ready for 

randomisation an imbalance score was calculated based on the balance of gender, age and GMFCS score. 
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The patient was then assigned to the group with the lowest imbalance score. When the scores were equal 

between groups, the patient was randomly assigned. At the start of the intervention there were no 

significant differences between groups in terms of age, height and body mass.  Sixteen children completed 

the programme (figure 5.1), patient characteristic of these children can be found in table 5.1.  

Children in the intervention group performed strengthening exercises of the calf muscle for 4 weeks, 

followed by 6 weeks of stretching and strengthening of the calf muscle. Children in the control group 

performed 6 weeks of stretching exercises of the calf muscles similar to the intervention group. To assure 

the same amount of contact hours with the research team, the control group performed 4 weeks of 

strengthening exercises of the upper limb prior to the stretching (figure 5.2). Exercises were performed 4 

times a week, of which one session was supervised by the principal investigator and the remaining 3 

sessions were performed at home. All participants kept an exercise diary of their progress. In both groups, 

only the most affected side in terms of ROM was trained. 

Measurements of tendon stiffness and muscle morphology were taken at all three time points: Before the 

start of the intervention (Baseline), after 4 weeks of training (4-weeks) and at 10 weeks after the 

intervention (10-weeks). A gait analysis was performed before (Baseline) and after (10-weeks) the 

intervention.  

 

Figure 5.2: Time scheme showing the exercises performed by the intervention and the control group 
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Training 

Strength training 

Standing heel raises were used to strengthen the ankle plantarflexor muscles following the American 

College of Sport Medicine guidelines for progressive resistance training (Faigenbaum & Myer, 2010). 

Exercises were performed in three to four sets of 6-12 repetitions, in which volitional fatigue was reached 

at the end of each set. When participants could achieve more than 12 repetitions, exercises were 

progressed by advancing from bilateral to uni-lateral heel raises on the most affected side, and then by 

adding weight to a rucksack worn on the participants back. The stretching-only group performed a similar 

protocol with biceps-curls as an exercise, targeting the elbow flexors. This group progressed by increasing 

the weight of the dumbbells.  

Stretching 

Stretching of the calf muscle was performed either actively by the participant (self-stretch) or passively 

applied by the parents. The method of stretching depended on capability (age and physical functioning) of 

the individual participant to perform the self-stretch. All stretches were held for 1 minute and repeated 

10 times with 30 s rest in between stretches (Wiart et al., 2008; Theis et al., 2015). For the self-stretch, to 

gain the initial stretch position children were instructed to stand facing a wall, with the hands placed 

against the wall at shoulder height and the leg to be stretched placed behind the body. The contralateral 

leg was then flexed and to perform the stretch participants were asked to lean forwards and pull their 

pelvis towards the wall while pressing the heel of the stretching leg into the floor. For the passive stretch 

children lay on their back on a mat on the floor with the parent positioned at the side of the participant. 

To gain the initial stretch position the leg was lifted with the knee flexed to 90°. To initiate a stretch the 

hand was cupped around the heel with the palms of the hand flat against the foot. The ankle was slowly 

dorsiflexed by applying pressure against the plantar surface of the foot. When in a maximal dorsiflexed 

position, the knee was slowly guided into maximal extension. This position was then held for 1 min. The 

stretch was performed 10 times with 30 s rest in between stretches.  

Measurement protocol  
Participants lay prone on a bed with the lower leg supported on an inclined cushion such that the knee 

was ~20° flexed. The foot was fixed onto the footplate of a dynamometer (Humac Norm CSMI, MA, USA) 

and stabilised by a custom-made arch support. The upper leg was fixed to the bed. The axis of rotation of 

the dynamometer was aligned with the lateral malleolus. Range of motion was determined by manually 
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rotating the ankle to the point where either the participant indicated the threshold or the examiner felt 

the joint reached the end of passive movement. Subsequently the stops of the dynamometer were set to 

this ROM. Surface electromyography (sEMG), electrode placement defined with ultrasound, was collected 

at 1600Hz from the lateral gastrocnemius and the tibialis anterior muscle during all tests (BioNomadix, 

Biopac systems, UK). Ankle torque and joint angle were collected at 200Hz by a dynamometer. The net 

joint torque was corrected for the torque caused by gravity on the weight of the footplate.  

Passive muscle structure 

Measurement of muscle and tendon length 

A B-mode ultrasound scanner was used to measure muscle and tendon lengths at 4 different ankle angles. 

Maximal plantarflexion, maximal dorsiflexion (as defined above), 10° plantarflexion and a resting angle, 

which was defined as the ankle angle when the foot hung freely off the bed, without the weight of the 

dynamometer. During all tests, the knee was fixed at 20° flexion. The most superficial point of the medial 

femoral condyle, the most distal point of the myotendinous junction (MTJ) of the medial gastrocnemius 

and the most distal point of the attachment of the Achilles tendon on the calcaneus were identified with 

ultrasound. Subsequently these anatomical landmarks were marked on the skin with help of a thin metal 

rod placed between the skin and the ultrasound probe, casting a shadow on the ultrasound image 

(Intziegianni et al., 2015). Muscle and tendon lengths were measured with a segmometer as the linear 

distances between the medial femoral condyle and the MTJ; and between the MTJ and the attachment on 

the calcaneus, respectively. Muscle-tendon-unit length was defined as the summation of muscle and 

tendon length.  

Measurement of fascicle length 

To measure fascicle lengths, the ultrasound probe was placed over the mid belly of the muscle. Guidance 

regarding probe alignment was adhered to for minimising measurement errors (Bénard et al., 2009). 

Fascicle length was assessed at resting ankle angle and during a continuous passive movement applied by 

the dynamometer, from maximal plantarflexion to maximal dorsiflexion performed at 7.5°/s. Ultrasound 

frequency ranged between 15 and 40 Hz depending on the type of acquisition. Four separate images were 

taken of resting fascicle length and the passive movement was repeated four times, after which the data 

was averaged over trials. During the passive movements, a modified semi-automated tracking software 

(Cronin et al., 2011; Gillett et al., 2013) was used to track the fascicle and both the superficial and the deep 

aponeurosis. Fascicle length was calculated by extrapolating the fascicle to the intersection point with the 
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aponeuroses. For each individual, the angle at which the fascicles started to lengthen was determined 

visually from plotted fascicle vs ankle angle relationship and from the ultrasound video.  

Achilles tendon stiffness 

Achilles tendon force  

Force was applied to the Achilles tendon by means of a maximal isometric plantarflexion contraction 

(MVC). The moment around the ankle joint was measured using an isokinetic dynamometer. During this 

movement, the maximum ankle joint torque was measured to quantify muscle strength. Children were 

asked to perform an MVC taking four seconds to reach the maximum force. Despite extensive practice, 

many of the children found it difficult to perform these slow contractions smoothly. These children were 

asked to produce their MVCs at their preferred speed. Because the rate of force development was 

markedly lower than in adults (Moreau et al., 2011), the resolution of our force elongation curves created 

with an ultrasound sampling frequency of 15-40Hz was adequate for reliable data capture. Two successful 

repetitions were performed of the MVC with at least one minute rest between them. Achilles tendon force 

was calculated by: 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴, where the Achilles tendon moment arm (MAAT) was estimated 

based on the predictive equation derived from (Kalkman et al., 2017).  

Tendon elongation  

Tendon elongation was measured as the displacement of the medial gastrocnemius MTJ from rest during 

the MVC trials. An echo-absorptive strip was placed over the skin above the muscle to confirm that the 

ultrasound probe did not move relative to the skin during the measurement. During the movement, 

absolute displacement of the MTJ was manually tracked, twice for each movement, using ImageJ imaging 

software (NIH, USA).  

Tendon stiffness 

Tendon stiffness was calculated as the gradient of each individual force-elongation curve using two 

different approaches. First, stiffness was calculated as the slope of a linear fit through the individual force-

elongation curves between 50-90% of the peak force. This measure may be considered as an average 

stiffness across the force range for each individual participant. However, because of the non-linear nature 

of the tendon force-elongation relationship, a tendon stiffness at a common force region for all 

participants was also calculated. This was done, by fitting a second order polynomial through the force-

elongation curve and differentiating at the highest force level that could be achieved by all participants 
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pre- and post-intervention. The calculated tendon stiffness was then averaged over the four repetitions 

from two trials. 

Gait 

Children underwent a 3D gait analysis according to standard clinical practice at the Gait Laboratory at Alder 

Hey Children’s Hospital 0 to 7.5 months before the start of the intervention and immediately after the 

intervention. Children were asked to walk on an 8.5-metre walkway barefoot at a self-selected walking 

speed. Twelve infrared cameras (BTS-Gaitlab, BTS Bioengineering, Milan, Italy) were used to capture the 

3D motion of reflective markers attached to the skin over anatomical landmarks at a sampling rate of 340 

Hz (figure 5.3). Marker trajectories were filtered with a second-order low-pass Butterworth filter at 5 Hz 

and gap filling was performed with a cubic b-spline function (SMARTtracker 1.10.462.0, BTS 

Bioengineering, Milan, Italy). Pelvic and hip angles in 3 planes, knee flexion/extension, ankle 

plantar/dorsiflexion and foot progression angles were reconstructed using the Davis model (Davis et al., 

1991). The mean of 3 to 5 trials of the trained leg was analysed. Parameters of interest included maximal 

knee and ankle angle and ROM during the stance and swing phase in the sagittal plane. Additionally, the 

movement deviation profile (MDP, Barton et al., 2012) was calculated based on the kinematic results from 

the hip (3DoF), knee flexion/extension, ankle plantar/dorsiflexion and foot progression angles as well as 

on a subset of three kinematic angles around the knee and the ankle. The following spatio-temporal 

parameters were extracted from the gait analysis: self-selected walking velocity, cadence and stride-

length.  

 
Figure 5.3: Marker placement following the BTS protocol based on the model by Davis et al. (1991).  
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Statistics 

Data analysis was carried out using custom made software (Matlab R2015a). Parameters were checked to 

be normally distributed using the Shapiro-Wilk test and by inspection of the q-q plots. MVC, tendon 

stiffness and resting fascicle lengths were compared within group over the three timepoints using a 

Friedman test. For the variables that showed significant changes, Conover post-hoc tests were applied. 

Baseline measures were compared between groups using a 2-sample independent t-test or a Mann-

Whitney U test.  A p-value of ≤0.05 was considered significant. All statistical analyses were performed in R 

(R Core Team, 2015). 

Results 
A total of 16 children completed the intervention and all the testing sessions. Baseline differences were 

found in patient characteristics between the intervention and the control group in age, height and mass 

(table 5.2). However, there were no significant differences in resting fascicle length (intervention: 36.9±8.2 

mm, control: 30.3±6.6 mm, p=0.11), muscle strength (intervention: 413.5±399.3 N, control: 251.8±187.9 

N, p=0.33) or tendon stiffness (intervention: 35.6±25.7 N/mm, control: 24.3±8.9 N/mm, p=0.32) between 

groups at baseline.   

Table 5.2: Characteristics of participants completing the intervention.   
Intervention (n=9) Control (n=7) 

Age (years) 11.1 (2.0) 8.8 (1.0)* 
Height (cm) 144.7 (14.1) 126.75 (10.0)* 
Mass (kg) 41.1 (14.1) 26.9 (6.9)* 
Sex 4 male, 5 female 5 male, 2 female 
Diagnosis 5 Diplegia, 4 Hemiplegia 3 Diplegia, 4 Hemiplegia 
GMFCS 5 x I, 4 x II 3 x I, 3 x II, 1 x III 
* Significant difference at p<0.05 

Muscle-tendon properties 

Strength 

Of the nine participants in the intervention group who performed calf strengthening exercises, two 

participants began training with bilateral heel raises and both progressed to uni-lateral heel raises in the 

second week. Significant increases in the number of heel raises achieved as well as the load added to the 

backpack were found between baseline and week 10 for the whole group (table 5.3). 
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Maximal ankle joint torque as measured with a dynamometer increased significantly in the intervention 

group (chi2 = 10.457, df=2, p=0.005). A Conover post hoc test revealed significant differences between 

baseline and 10-weeks (p=0.003). No differences were found between baseline and 4-weeks or 4-weeks 

and 10-weeks. No increases in MVC were found in the control group (chi2 = 2.57, df=2, p=0.277, figure 

5.4A). 

 

 

 

 

 

Tendon stiffness 

Tendon stiffness at maximal force increased significantly in the intervention group (chi2 = 11.706, df=2, 

p=0.002). A Conover post hoc test revealed significant differences between baseline and 10-weeks (p = 

0.002). No differences were found between baseline and 4-weeks or 4-weeks and 10-weeks. No changes 

in stiffness at maximal force were found in the control group (chi2 = 3, df=2, p=0.223). 

  

Figure 5.4: Tendon force during a maximal voluntary contraction (A) and tendon stiffness at a common 

force (B) at baseline, after four weeks of training and after ten weeks of training. Orange: control group, 

Green: intervention group. Significant change was found in the intervention group between baseline and 

10-weeks, which was absent in the control group. 

 

Table 5.3: Training related measures 
 Baseline Week-10 
Uni-lateral repetitions (#) 6.5 (0-10) 12 (12-12) * 
Added load (kg) 0 (0-0) 2.6 (0-6) * 
Ftendon during MVC (N) 413.5 (399.3) 648.1 (423.7) 
*Significant difference between week-10 and baseline measurements (p<0.001). For 
repetitions and load, median (range) values are shown. For maximal voluntary 
contraction (MVC), mean (SD) values are shown. 
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Tendon stiffness at a common force increased significantly in the intervention group (chi2 = 7.47, df=2, 

p=0.023). A Conover post hoc test revealed significant differences between baseline and 10-weeks (p = 

0.040). No differences were found between baseline and 4-weeks or 4-weeks and 10-weeks. No changes 

in stiffness at a common force were found in the control group (chi2 = 4, df=2, p=0.135, figure 5.4B). 

ROM 

Range of motion increased significantly in both the control group and the intervention group between 

baseline and 10-weeks (p=0.008). Maximal dorsiflexion angle increased from 10.6°±8.3 to 17.4°±9.8. 

During passive joint rotation, the angle at which muscle fascicles started to lengthen shifted towards a 

more plantarflexed position in the intervention group (Baseline to 10-weeks: -29° to -35°, p=0.03, CI [1.0 

12.5], figure 5.5) 

 
Figure 5.5: Lengthening profile of muscle fascicles vs ankle angle during a passive joint rotation.  

 

Muscle and fascicle lengths 

Muscle and tendon lengths did not change after the intervention at any ankle angles (max. dorsiflexion, 

10° plantarflexion, resting, max. plantarflexion) in both the control and the intervention group. Resting 

fascicle length increased significantly from 36.9±8.6 mm to 40.1±8.3 mm in the intervention group (chi2 = 

14.824, df=2 p=0.0006). A Conover post-hoc test revealed significant differences between baseline and 

10-weeks (p=0.010) and between 4-weeks and 10-weeks (p=0.0008). The ankle angle at which resting 

fascicle length was assessed did not change (baseline: -30.4°, 10-weeks: -29.3°). No increases in resting 

fascicle length were found in the control group (chi2 = 0.074, df=2, p=0.964). Lengthening profiles of muscle 

fascicles are visualised in figure 5.5. 
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Gait 

No significant changes were found in self-selected walking speed, stride length or cadence after the 

intervention period in both the intervention and the control group. None of the kinematic parameters 

selected around the knee and the ankle (figure 5.6 A&B) showed any significant changes (see a selection 

of the most significant parameters in table 5.4). The mean MDP calculated either with 6 angles or only 

with the ankle and knee angles did not show any significant changes after the intervention (figure 5.6C). 

 

 

 

 
Figure 5.6: Average gait curves for the ankle (A) and knee (B) angle in the sagittal plane. (C) Mean 

movement deviation profile (MDP) calculated with 6 angles at baseline (blue) and 10-weeks (red) compared 

to control values of TD children (black)  

Table 5.4: Mean (SD) gait parameters before and after the intervention. 
 Intervention Control Typically 

developing  Baseline 10-weeks Baseline 10-weeks 
Spatio-temporal parameters      
Walking velocity (m/s) 1.1(0.4) 1.1(0.2) 1.1(0.2) 1.1(0.2) 1.2(0.1) 
Cadence (step/min) 122.1(23.7) 124.1(7.9) 146.0(13.9) 148.3(10.8) 123(10.8) 
Stride length (m) 1.1(0.3) 1.0(0.2) 0.9(0.2) 0.9(0.2) 1.18(0.13) 
Kinematics      
Maximum ankle DF in stance (°) 7.0(11.1) 6.7(10.1) 0.6(13.9) -2.1(16.6) 15.4(6.6) 
Ankle ROM during the gait cycle (°) 27.9(8.4) 29.1(6.7) 27.4(10.4) 28.4(5.3) 32.4(6.1) 
MDP using 6 angles (°) 23.0(7.9) 22.1(7.7) 24.8(5.7) 29.9(7.8) 9.39(2.6) 
MDP using 3 angles (°) 8.8(7.6) 8.1(6.8) 10.9(5.3) 15.1(7.8) 3.1(1.4) 
Typically developing data are shown for comparison purposes. These data were obtained from the database 
at the Gait Laboratory of Alder Hey Children’s Hospital (N=15).  
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Discussion 
The present results show that in response to a progressive resistance training programme, tendon stiffness 

can be increased in children with CP. As a result of this, the stretching stimulus to the muscle was 

increased. Moreover, when resistance training and stretching were combined, fascicle length increased 

when measured at a constant resting ankle angle. This indicates that a remodelling of the muscle has 

occurred.  

The designed intervention aimed to increase the effectiveness of traditional stretching exercises. These 

are typically performed either passively by another person, or actively (the child performs the stretch). 

The most common reasons for using stretching techniques are to maintain or increase ROM, improve 

functional tasks and defer or avoid surgery. The use of stretching is based on the assumption that 

stretching will increase muscle extensibility (Wiart et al., 2008), but there is no scientific evidence to 

support this statement. Some studies have shown an increase in ROM after stretching (Theis et al., 2015), 

while others report no changes in flexibility after stretching interventions (Miedaner & Renander, 1988; 

Darrah et al., 1999). We have shown that after six weeks of performing only stretching exercises (control 

group), ankle ROM can be increased. However, this was not accompanied by a change in muscle 

properties. In our study design the examiner manually stretched the ankle to its end ROM, defined as the 

“end-feel” of movement. The position at which this end-feel of motion occurs, may depend on different 

factors for example pain tolerance, warm-up of the muscle or acquaintance between the patient and the 

examiner. Therefore, we may hypothesise that the children experienced an increased stretch tolerance 

after the intervention, which is the same mechanism that we identified as a factor that could play a role 

in the increased ROM acutely after a single bout of stretching (Chapter 3). Previous studies have indicated 

a similar mechanism to explain increases in ROM after stretching interventions in healthy individuals 

(Magnusson et al., 1996b). 

When stretching exercises were preceded by four weeks of resistance training to increase Achilles tendon 

stiffness, an increase in resting/slack fascicle length was observed. Both an increase in the number or in 

the length of the individual sarcomeres acting in series would lead to such an effect.  During intraoperative 

measurements of spastic muscles, it has been shown that individual sarcomeres are overstretched in 

children with CP (Ponten et al., 2007; Smith et al., 2011; Mathewson et al., 2014b). This has lead people 

to hypothesise that muscles of children with CP are unable to add sarcomeres in series in response to 

stretch (bone growth). Studies showing a reduction in the number of satellite cells in spastic muscle (Smith 
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et al., 2013; Dayanidhi et al., 2015) would support this hypothesis because satellite cells are mediators of 

muscle growth (Dayanidhi & Lieber, 2014). However, Kinney et al. showed that, at least in a mouse model, 

when muscles underwent satellite cell depletion, sarcomeres could still be added in series in response to 

stretch (Kinney et al., 2017). A clear conclusion is therefore still lacking, and it is conceivable that the 

increased fascicle length in this study was caused by an increase in the number of sarcomeres in series.   

Alternatively, the increased fascicle length can be caused by an increase in the resting length of the 

sarcomeres. The passive resting length and the passive length/tension relationship of a sarcomere is 

mainly determined by the large molecule titin (Labeit & Kolmerer, 1995). There is no definitive data to 

show that titin is altered in spastic muscles, however titin isoforms have been found to be different 

between muscles (Prado et al., 2005; Granzier & Labeit, 2006) and altered due to disease (Neagoe et al., 

2002). Investigations into the alterations that occur in titin in spastic skeletal muscle and after training are 

warranted. Nonetheless, whichever of these scenarios causes the increased fascicle length seen after a 

combined strengthening/stretching intervention in this study, both indicate that a remodelling of muscle 

structure in response to mechanical stimuli is possible in children with CP.  

A gait analysis was performed in all children before and after the intervention period. We expected to see 

improvements in dorsiflexion angle during the stance phase of gait and at initial contact, also we expected 

ankle ROM over the whole gait cycle to improve. However, no changes were found in gait kinematics after 

the intervention period. Our results are consistent with previous reports of only non-significant 

improvements in gait after strengthening or stretching interventions (McNee et al., 2009). At baseline, 

many of the children showed only mild gait deviations, while for others ankle ROM might not have been 

the main contribution to their gait deviations. A gait analysis performed in a controlled environment such 

as the gait laboratory may not be sensitive to any genuine improvements in walking function that these 

children achieved after training. Other measures aimed at testing higher level function such as fast 

walking, running, jumping or stair negotiation might better detect improvements after strengthening and 

stretching. Alternatively, structural alterations to only one muscle group, might not lead to any detectable 

changes in gait. Functional improvements might become apparent however when the same effect is 

achieved in multiple muscle groups. Further research is needed to determine the effect of a strengthening 

and stretching intervention targeting multiple muscle groups.  

We did not observe any measurable improvements in gait characteristics after the intervention. However, 

subjective reports from children and their parents told us that all participants experienced the exercises 
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as very positive. Most of the time, children enjoyed doing the exercises and were motivated to get better 

and stronger. Parents valued the one-on-one feedback they received from the lead researcher on the 

progress of the exercises. Some children reported pain in their muscles after doing the exercises, it was 

then explained to them that muscle soreness is a consequence of the training and that this is not damaging 

to the muscle, and followed up to confirm it eased within a few days. After completing the program, some 

families felt their children could walk further or they endured their regular physiotherapy sessions better. 

Even though we did not aim to quantify the subjective response of the children and their families to the 

program, we consider it valuable information that the responses were very positive.   

Limitations 

There was a significant difference in the baseline characteristics between the control and the intervention 

group. Participant recruitment was an ongoing process during the data collection of this study. Therefore, 

it was chosen to randomly assign participants to the intervention or control group based on a minimisation 

algorithm (Saghaei & Saghaei, 2011). With the aim to recruit thirty participants, it was chosen to control 

for three parameters: age, gender and GMFCS level. Only twenty-two participants started the intervention, 

this lead to a small, though non-significant, imbalance between the two groups in terms of age. 

Retrospectively, it might be better for experiments of this size to control randomization only for the one 

factor that is considered most important. Upon completion of the intervention there was a significant 

difference in patient characteristics between the groups, which was caused by the drop-outs from the 

intervention group being the 3 youngest children. To check whether a difference in age would have an 

effect on the response to the intervention we performed some additional analyses. However, no 

relationship was found between age and increases in strength (r2=0.23, p=0.08) or stiffness (r2=0.13, 

p=0.19). Therefore, we do not expect this to have influenced our results. Secondly, we did not assess the 

effect of isolated strength training on muscle structure. It has been shown that increases in fascicle length 

due to resistance training occur mostly in response to eccentric training (Franchi et al., 2014). We cannot 

exclude that due to the nature of the exercises (children putting their foot flat on the floor) a stretch was 

induced to the muscle already during the strengthening exercises. The results of an ongoing study on 

strength training for adolescents with CP (Ryan et al., 2016) will help us to tease out the relative 

contribution of strength training and stretching to an increased fascicle length. Also, some assumptions 

were made in the calculation of tendon stiffness. Co-contraction of the antagonist muscle was not 

accounted for when calculating tendon force because for most of the participants it was too difficult to 

perform a guided dorsiflexion contraction. If anything, we expect the amount of co-contraction to 
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decrease after the intervention. Therefore, our calculation of tendon stiffness will be underestimated 

more after the intervention than at baseline. As a consequence, accounting for co-contraction would only 

enlarge the increase in tendon stiffness we report. Also, because not all children were able to perform a 

slow plantarflexion contraction, we could not confirm the strain rate of the tendon to be constant during 

the MVC. It has been shown that strain rate influences the calculation of tendon stiffness (Theis et al., 

2012). However, additional analysis indicated no significant differences in strain rate at 10-weeks vs 

baseline (10-weeks: 4.43±2.3 mm/s, baseline: 4.06±1.6 mm/s, p=0.17). Therefore, we do not expect this 

to have influenced our results. We did not measure Achilles tendon moment arm for the calculation of 

tendon force but predicted this based on the results from Chapter 1. The effect of this on tendon stiffness 

will be negligible since we do not expect the moment arm to change in ten weeks. Finally, the gait analysis 

of most children did not capture reliable kinetic data. Therefore, it was only possible to interpret gait 

kinematics, even though moments and powers might have provided additional insight into the effects of 

the intervention on gait performance.  

To conclude, this study provides proof of principle that a combined resistance and stretching intervention 

can increase muscle fascicle length in children with CP. This is an important finding because it 

demonstrates that a remodelling of muscle structure after non-invasive interventions is possible in spastic 

CP. Even though we did not find any immediate functional improvements, the changes in muscle structure 

might have a long-term positive effect on mobility. Further long-term studies are required to determine 

this. Since muscle contractures develop over time as children grow, an increase in fascicle length may 

prevent the development of contractures at later age.   
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CHAPTER 6  

 

 

General discussion 
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The overall purpose of this research was to increase the effectiveness of stretching interventions in 

children with Cerebral Palsy (CP). This information can guide clinical decision making to improve motor 

function and quality of life in children with CP. 

Summary of experimental findings 
While deciphering the relationship between joint rotation and muscle extension, it was found that the 

Achilles tendon moment arm (MAAT) in children with CP is 15% (~7mm) smaller than in typically developing 

(TD) children (Chapter 2). This has numerous implications, among others for mechanical advantage which 

is functionally an important parameter (Biewener et al., 2004). But in the context of stretching the 

implications are that the expected stretch in the muscle-tendon-unit (MTU), and thus the muscle, will be 

smaller. This is important to realise when applying a stretch at the ankle joint either for treatment or to 

assess muscle function. This also means that for the same joint rotation velocity the stretch velocity of the 

muscle during dynamic tasks such as walking is decreased, which might therefore act as a protective 

mechanism against spasticity.  

Next the relationship between the stretch in the MTU and the muscle was further explored (Chapter 3). It 

was found that the relative stiffness of muscular tissue to tendon was increased in children with CP. During 

passive ankle joint rotation, in TD children the muscle contributed to ~60% of total MTU lengthening, while 

in children with CP this was only 50%. These differences, along with the effect of a smaller moment arm, 

affect the stretching stimulus seen by the muscle during joint rotation in a negative way. 

The final two experiments were designed with the goal to understand how these CP-related changes in 

muscle and tendon properties influence the way the muscle responds to stretching interventions. This 

question was investigated both acutely (Chapter 4) and after a long term stretching intervention (Chapter 

5). Also, the insights from Chapter 3 were used to design an intervention that would optimise the 

stretching stimulus to the muscle. 

In Chapter 4 it was shown that acutely, after 20 minutes of passive stretching, the muscle-tendon 

properties of the medial gastrocnemius muscle in children with CP were not altered. Importantly, range of 

motion (ROM) was found to increase significantly by 10±12°. The maximal joint torque that could be 

applied at the end-feel of movement increased by 2.9±2.4 Nm and at this highest joint torque fascicle 

length increased significantly by 2.8±2.4 mm. This indicates that even though the stiffness of the muscle 

fascicles did not change, at the end of the stretching session children were able to tolerate a higher passive 
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torque and this increased the stretching stimulus to the muscle fascicles. These results are important to 

consider when assessing the effectiveness of long term stretching interventions. This raises the question 

whether the stretch seen by the muscle is large enough to elicit any long-term adaptations. 

The new knowledge about muscle stretching (Chapter 2+3) indicates that in order to make stretching 

interventions more effective, we need to decrease the relative stiffness of muscle to tendon. In Chapter 

5, we tested this hypothesis. An intervention was designed with the aim to first increase the stiffness of 

the tendon, by means of resistance training, so that the relative stiffness of muscle to tendon would be 

decreased and the muscle would take up more of the stretch. In our intervention group, tendon stiffness 

was increased by ~30% after 10 weeks of training. Consequently, the muscle fascicles experienced stretch 

earlier in the ROM and fascicle slack length at a resting ankle angle increased by 3.2mm after the 

intervention. This indicates that the combined application of strengthening and stretching exercises can 

remodel muscle structure in children with CP. This, however, did not result in an improved gait pattern, 

which could be caused by the fact that only one muscle group was trained. Nonetheless, we proved that 

after this type of intervention muscle remodelling is possible in children with CP.  

Clinical relevance 
In addition to the advancement of our fundamental understanding of muscle and tendon function, the 

findings reported in this thesis have important clinical implications. In this section, we will discuss both the 

direct consequences of a smaller Achilles tendon moment arm and highlight the importance of our finding 

that the relative stiffness of the muscle to the tendon can be manipulated by a properly designed 

physiotherapy intervention. 

During gait the bones act as rigid lever arms, allowing muscles and the GRF to apply a torque around the 

joints. Skeletal deformities, as seen in CP, can affect the function of bones as lever arm and so lever arm 

dysfunction is a common problem in children with CP (Theologis, 2013). The most usual deformities 

causing lever arm dysfunction in CP are femoral anteversion and deformities around the foot. Femoral 

anteversion compromises the lever arm of the hip abductors as the projection of the femoral neck in the 

frontal plane is shortened. Deformities around the foot, such as tibial torsion, equino-valgus foot deformity 

and a midfoot break can all compromise the projected length of the foot in the sagittal plane. This leads 

to a shortening of the external moment arm at the ankle. The internal moment arm however (Achilles 

tendon moment arm) is not widely considered in clinical practice or in the literature. We found that the 
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Achilles tendon moment arm is shorter in children with CP (Chapter 2). This has some important 

implications when considering CP gait and the outcome of orthopaedic surgeries. Surgeries such as 

gastrocnemius recession or derotation osteotomies often aim to increase the external moment arm 

around the ankle to typical developing values. It is assumed that because of this the mechanical advantage 

around the ankle is restored to normal values as well. However, the mechanical advantage of a joint is 

influenced by both the internal and the external moment arm (mechanical advantage = MAAT/MAexternal). 

Therefore, a result of the above-mentioned surgeries is that the mechanical advantage is actually reduced 

to values below typical. So, to counteract the same ground reaction force during gait, the muscle force 

produced by the plantarflexors needs to be much larger. This could contribute to the observed relative 

muscle weakness seen after equinus correcting surgery (Orendurff et al., 2002; Gage et al., 2009). While 

research continues to fully understand the mechanics and develop clinically applicable ways to assess 

mechanical advantage, clinicians now could at least test muscle strength prior to surgery. Treatments 

should be planned taking this potential strength loss into account.   

Stretching exercises are a very common treatment modality in children with CP. Stretching aims to increase 

range of motion and consequently improve function, delay the development of contractures and the need 

for orthopaedic surgery. However, the effectiveness of these interventions is still questionable (Craig et 

al., 2016; Eldridge & Lavin, 2016). We have shown that, when applied in isolation, stretching exercises can 

improve range of motion but do not alter muscle properties or gait characteristics (Chapter 5). Therefore, 

it is unlikely that stretching exercises improve function or delay the development of contractures. The 

main aim of this thesis was to increase the effectiveness of stretching interventions. To achieve this, an 

intervention was designed where the stretching stimulus to the muscle would be increased. The amount 

of stretch in a muscle during joint rotation is dependent on the relative stiffness between the muscle and 

tendon. We found that in children with CP, this relative stiffness was increased (Chapter 3). Therefore, our 

intervention aimed to increase the stiffness of the tendon, so that the relative stiffness of muscle to tendon 

would be decreased and the muscle would receive more of the stretch during a joint rotation. To achieve 

this, strengthening exercises (to increase tendon stiffness) were performed prior to the application of 

stretching exercises (to increase fascicle length). This combination of interventions led to a remodelling of 

muscle structure in terms of increased fascicle lengths (Chapter 5). These are promising results, since it 

has been questioned whether muscle remodelling is possible in children with CP (Smith et al., 2011). 

Although these changes were small and did not yield functional gait improvements, the changes in muscle 

structure may have a long-term positive effect on mobility. Since muscle contractures develop over time 
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as children grow (Herskind et al., 2016), an increase in fascicle length may prevent the development of 

contractures at later age and therefore delay or defer the need for orthopaedic surgery.  

Joint hyper resistance and underlying impairments 
To identify the appropriate treatment for a child with CP, a first step is to determine the exact underlying 

impairment. Subjective clinical tools to assess muscle properties exist, but these lack sensitivity (Noort van 

den et al., 2010). These clinical tools assess muscle properties at the level of the joint, however, we 

observed a large variability in the amount of muscle lengthening (up to 50% difference between children) 

relative to ROM (Chapter 3). Furthermore, we have shown that passive ROM can increase in the absence 

of any changes in muscle properties (Chapter 4). During a passive test, the joint is rotated until the “end-

feel” of movement due to tissue stretch is reached. This end-feel is dependent, among others, on pain 

tolerance, warm-up and acquaintance between clinician and patient. Therefore, the outcome of a clinical 

test could be more sensitive to this end-feel of movement than on the actual underlying muscle properties. 

Additionally, in many neurological conditions, it is a big challenge to distinguish between the neural and 

mechanical contributions to altered joint motion. Instrumented spasticity assessments, combining 

kinematic, kinetic and EMG data are being developed to more objectively quantify the amount of spasticity 

and passive stiffness in a muscle. However, even with these tests it is still difficult to distinguish between 

neural and structural contributions to joint hyper-resistance. In a further analysis of the data collected for 

this PhD, ultrasound was combined with an instrumented spasticity assessment (Appendix C). We showed 

that the medial gastrocnemius exhibits a large variability in the amount of stiffness and spasticity between 

children with CP. Three behavioural patterns were established. First, muscles with a low mechanical 

stiffness allowed a high muscle lengthening velocity during fast joint rotation, eliciting a stretch reflex. 

Secondly, muscles with greater mechanical stiffness, preventing a high muscle lengthening velocity, did 

not show a velocity dependent stretch reflex but exhibit more length-dependent muscle activation at low 

velocities. In the third category, muscles had a greater mechanical stiffness, but also showed velocity 

dependent stretch reflexes.  These separate studies highlight that treatments that aim to decrease ankle 

joint hyper-resistance should ideally be based on quantification of the amount of stiffness and reflex 

activity at the muscle-tendon tissue level, rather than gross measurements of passive resistance at the 

whole joint level.  
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An increased muscle stiffness can be caused by structural changes or an increased muscle tone (figure 1.1, 

Chapter 1). In neurological conditions, the background neural drive to the muscle is thought to be 

increased, resulting in an increased muscle tone during slow movements or even at rest (Bar-On et al., 

2014b). It is important to distinguish between this altered muscle tone and the above mentioned structural 

changes, because they require different treatments. However, with routine clinical tests this distinction is 

difficult to make. In this thesis, all experimental measurements recorded during a slow stretch, were 

excluded when the EMG exceeded more that 10% of the MVC. In correspondence with others (Bénard et 

al., 2010; Haberfehlner et al., 2015), we found that 10% of the MVC in children with CP approximately 

corresponded to 1-2SD above resting EMG levels, given that baseline EMG values for children with CP are 

typically higher than control. However, a background involuntary muscle tone might still have contributed 

to the increased muscle stiffness we observed. In clinical practice before the performance of orthopaedic 

surgery, a final test of joint stiffness is often performed with the child under general anaesthetic, thus 

minimising the effect of any neural contributions (Zwick et al., 2004). However, this procedure is risky and 

impractical to perform in most children, meaning the clinical decision-making process is not fully informed 

and therefore treatment outcomes can be suboptimal. Therefore, further studies should aim to better 

measure the neural and non-neural contributions to joint hyper-resistance. Alternatively, in silico studies 

can help us to predict the contribution of neural and non-neural factors to joint hyper resistance (Sloot et 

al., 2015).  

Gait analysis as an outcome measure 
In the last few decades there has been an enormous progress in the treatment of gait problems in children 

with CP. These advancements have been attributed to the development of clinical gait analysis 

(Sutherland, 1978; Gage, 1994; DeLuca et al., 1997). Quantitative preoperative and postoperative gait 

analysis inform the clinician with valuable information by which surgical protocols can be judged. However, 

benefits of clinical gait analysis as a tool to evaluate the effectiveness of interventions has been shown 

mainly for orthopaedic surgery (Novacheck & Gage, 2007), selective dorsal rhizotomy (Boscarino et al., 

1993), intramuscular botulinum toxin injections (Sutherland et al., 1996) and casting (Hösl et al., 2015). 

The effectiveness of other non-invasive therapies to treat cerebral palsy, such as stretching or 

strengthening, seem more difficult to assess with gait analysis. Strengthening interventions have been 

assessed by clinical gait analysis but studies have reported no changes (Maeland et al., 2009; McNee et 

al., 2009), or only small improvements in kinematic variables, such as knee angle (Engsberg et al., 2006), 
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or a combination of hip, knee and ankle angle (Unger et al., 2006). To assess the effectiveness of stretching 

interventions, in research studies, often ROM is the only outcome measure used (Wiart et al., 2008). To 

the authors’ knowledge, we are the first to describe the effect of combined stretching and strengthening 

but also an only-stretching intervention on gait (Chapter 5). We did not find any changes in gait 

parameters, ankle and/or knee kinematics or more sophisticated measures of whole body kinematics such 

as the Movement Deviation Profile (Barton et al., 2012). In interpreting these findings, however, there are 

a few limitations that we need to consider. Firstly, due to methodological reasons, the pre-intervention 

gait analysis was conducted up to 7 months before children actually started with the intervention. 

Therefore, it is likely that other factors played a role when assessing the difference between the gait 

analysis before and after the intervention. Secondly, for most children it was not possible to collect reliable 

kinetic data, which may have better captured any improvements. However, it must be accepted that the 

changes in muscle properties, elicited by the intervention, did not transfer to detectably improve gait 

characteristics. Reasons for this could be that our intervention focussed only on one unilateral muscle 

group, ankle plantar flexors, whereas an altered gait pattern is caused by an interaction of impairments in 

more and possibly different muscles. Alternatively, it could be that the change in muscle structure of a few 

millimetres is not sufficient to change the gait pattern. Furthermore, it is likely that ankle ROM was not 

the main factor limiting gait in our participants, hence an intervention targeting the most affected muscle 

group might be more effective in improving the gait pattern. When gait analysis is used to assess surgical 

interventions, the interventions are targeted specifically to the individual, the magnitude of change is 

much larger and many surgeries target multiple levels. In our intervention, a random sample of patients 

was selected, within the inclusion criteria, after which they all followed the same intervention. An 

intervention better targeted at the individual patient might yield different results.   

Possibly, to assess the effectiveness of interventions such as physiotherapy treatments, we need a better 

tailored assessment method. Gait analysis is performed in a controlled environment, and might not be 

sensitive enough to reveal any genuine improvements in function after training (when gait is not 

specifically trained). Other measures aimed for example at higher levels of function, such as running, 

jumping or stair climbing, might be more suitable to detect improvements. Also, more local measures of 

for example muscle fatigue and endurance might give a better representation of the effectiveness of an 

intervention. Finally, it is worth mentioning that a lack of functional improvements after an intervention 

does not necessarily mean that the intervention is not effective. In terms of physiotherapy interventions 

that focus on changing muscle structure, the achieved change in muscle structure could have long term 

benefits that are not captured in any direct functional improvements. It is well known that muscle function 
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deteriorates over time in children with CP and muscle contractures develop as children grow (Herskind et 

al., 2016). Therefore, an increase in fascicle length, which was the primary outcome measure of the 

intervention, achieved at a young age could prevent or delay the developments of contractures at a later 

age.  

Use of ultrasound to assess muscle properties 
Ultrasound is a promising tool to be used in clinical assessment of musculoskeletal disorders. It has been 

suggested that ultrasound would be beneficial for the diagnosis of amyotrophic lateral sclerosis (Arts et 

al., 2012) and monitoring of disease progression in Duchenne muscular dystrophy (Jansen et al., 2012). 

However, in the clinical diagnosis and decision making of cerebral palsy, ultrasound is rarely used. We have 

shown that assessment at the level of the joint, as typically done in CP, is not necessarily representative of 

what happens at the muscle. Furthermore, we observed a large variability in the amount of stiffness and 

spasticity in children with CP that was not apparent from standard clinical measurements such as the 

modified Ashword or Tardieu scale (Appendix C). Therefore, we argue that it can be beneficial for 

treatment planning to include measurements of muscle architecture in the clinical assessment of CP. To 

achieve this within the routine care for every child, clinically applicable ultrasound-based muscle stiffness 

tools needs to be developed.  

Within a research setting ultrasound has been used extensively to study muscle structure and muscle-

tendon interaction (Cronin & Lichtwark, 2013) in clinical populations. Recent developments of 3D 

ultrasound techniques (Barber et al., 2009; Cenni et al., 2016b) can improve the accuracy of measurements 

of muscle architecture. Furthermore, automated feature tracking algorithms (Farris & Lichtwark, 2016; 

Cenni et al., 2017) increase the usability of these methods.  

Apart from muscle architecture, ultrasound is a great tool to study lengthening properties of muscle and 

tendon. However, to calculate the mechanical properties of the Achilles tendon and gastrocnemius muscle 

is more difficult.  The passive torque measured around the ankle is a combination of different muscles and 

passive structures, of which the gastrocnemius is just one. Changes in moment arm (Chapter 2), joint 

capsule, co-contraction and force transmission would all influence the force acting within a given muscle. 

However, we can make an approximation of the relative stiffness between muscular and tendinous tissue 

by comparing muscle and tendon lengthening because these tissues act anatomically in series. 
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Furthermore, we need to develop our understanding of the underlying mechanisms behind the muscle 

alterations that we observe with ultrasound studies in children with CP. One of the most important 

questions in this regard is how fascicle length relates to sarcomere length, and whether we can model 

fascicles simply as the product of a number of sarcomeres in series. Does the increase in fascicle length as 

observed after 10 weeks of combined resistance training and stretching (Chapter 5) relate to increases in 

sarcomere number or length? This question is relevant because an increase in sarcomere number would 

increase the range of lengths at which a muscle can produce force. An increased sarcomere length would 

not have such an effect and might have different consequences for passive force in the muscle.  

Correspondingly, we do not know what causes the increases in muscle stiffness we observe. According to 

previous studies, this could be explained by overstretched sarcomeres (Mathewson et al., 2014a), 

structural tissue alterations in the extracellular matrix (Booth et al., 2001) or differences within individual 

sarcomeres, for example remodelling of titin (Foran et al., 2005). Recently technological developments 

provide new promising techniques such as microendoscropy or resonant reflection spectroscopy, which 

are developed to assess sarcomere lengths directly in in vivo muscles. Using these techniques, it has been 

shown, at least in healthy muscle, that there is a strong relation between sarcomere length changes and 

changes in fascicle length (Chen & Delp, 2016; Lichtwark et al., 2017). It is not known whether this relation 

exist as well in spastic muscles where we know resting sarcomere lengths to be greater than typical.  

Furthermore, it is still difficult however, to predict sarcomere numbers from the passive length of muscle 

fascicles (Lichtwark et al., 2017). Which indicates that muscle fascicles length is not purely representative 

of sarcomere number. 

Future research 
In this Chapter, some directions of future research have been mentioned already. However, a few other 

issues that warrant further investigation should be stated. The present thesis, and many other studies that 

use ultrasound to study muscle structure in children with CP, focus only on the calf muscles, and aim to 

isolate the medial gastrocnemius. There are some important reasons why this is the case, the medial 

gastrocnemius muscle is important for functional tasks such as walking, it is often affected in children with 

CP and because it is a superficial and pennate muscle, easy to scan with ultrasound. However, in a 

condition as CP, there is a large heterogeneity between muscles (Bar-On et al., 2014b). Therefore, what 

we measure in the medial gastrocnemius and the calf muscles does not necessarily translate to other 

muscles groups. Further studies should additionally aim to apply the protocols that are in place to assess 
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muscle properties to other muscles such as the hamstrings, quadriceps and adductor muscles that are also 

often affected by spasticity. 

As mentioned above, further research should seek to quantify mechanical advantage during gait and 

predict the change in mechanical advantage after surgery. The moment arm of the ground reaction force 

can be estimated from basic kinematic and kinetic data obtained during gait analysis. Measurements of 

the MAAT during gait are a bit more complicated. However, there are techniques either using ultrasound 

(Rasske et al., 2016) or by placing markers (Stosic & Finni, 2011) that can quantify MAAT during dynamic 

activities. Predicting the change in mechanical advantage after surgery would allow for appropriate 

screening tools to be developed to assess whether children have enough muscle strength pre-surgery to 

overcome this decrease in mechanical advantage.  

Finally, larger trials investigating the combined effect of strengthening and stretching are needed. In these 

studies the emphasis should lie on extrapolating our results to multiple muscle groups, for example, 

hamstrings and quadriceps are also commonly affected by CP and significantly affect gait. Also, potential 

improvements need to be assessed with more appropriate outcome measures, in which the long-term 

effect of the intervention should also be investigated. 

Conclusions 
The main findings from the four experimental studies in this thesis show that fundamental knowledge of 

muscle and tendon biomechanics can be applied to a clinical setting to explain movement disorders in a 

cohort of children with CP. The findings conclude that the mechanical properties of the medial 

gastrocnemius muscle are altered, with the muscular component of the plantarflexor muscle being as stiff 

as the tendon in children with CP. These properties are not affected acutely or in the long term by 

stretching interventions. However, we showed that strengthening exercises can decrease the relative 

stiffness between muscle and tendon, by increasing tendon stiffness. Thus, when performed before the 

application of stretching exercises, the stretch seen by the muscle was increased and we established that 

a remodelling of muscle structure in children with CP is possible, a notion that has been questioned 

previously. 
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APPENDICES 

Appendix A: Analysis of ultrasound images 
For the last 20 years B-mode ultrasound has become more popular to visualise human skeletal muscles in 

various applications including, anatomy, engineering and human movement science. Knowledge about the 

length of the muscle fascicles is of great importance if we aim to understand muscle function. Fascicles, or 

bundles of muscle fibres, can be visualised with ultrasound and measured post processing. Similarly, the 

position of the muscle-tendon-junction (MTJ) can be visualised and identified in an ultrasound image. We 

can then study the change in muscle and fascicle length during dynamic tasks such as an isometric 

contraction, muscle stretch or more dynamic tasks such as walking. Typically, the digitisation process of 

the feature of interest is done manually, which makes it an extremely time-consuming procedure and 

prone to human error. Recently, different algorithms have been developed that partly or completely 

automate this digitisation process. In this section, the most significant algorithms will be evaluated and 

discussed with reference to their suitability for use in this research. The two features that we focus on are 

fascicle length and MTJ displacement.  

Fascicle length 

Fascicle analysis can be performed by placing a minimum of two points per image that represent the 

proximal and distal fascicle ends (figure A.1 A). Curvature of the fascicle can be taken into account by 

identifying more points along the line of the fascicle. However, It has been shown that when not 

contracted the influence of curvature of the fascicles on fascicle length measures is minimal (Muramatsu 

et al., 2002). Hence, in this thesis fascicles are always measured as straight lines and we acknowledge that 

we therefore slightly underestimate fascicle length in all our measurements. Pennation angle is measured 

as the angle between the fascicle and the deep aponeurosis. Manual tracking of muscle fascicles is very 

time consuming and prone to human error. Therefore, several automated or semi-automated tracking 

methods for muscle fascicles have been introduced. Since this field of work is still relatively new, there is 

no real gold standard method. Different algorithms might work better for different muscles and/or tasks.  
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Figure A.1: Definition of fascicle length (lfas), pennation angle (α) and the myotendinous junction (MTJ) 

 

One type of automated tracking of muscle fascicles is based on the Lucas-Kanade optical flow algorithm 

(Lucas & Kanade, 1981). When applied to ultrasound images, it is possible to use this algorithm to 

determine the global movement of the visible muscle from frame to frame (Cronin et al., 2011). More 

specifically, the optical flow algorithm computes the pixel velocities between each pair of successive 

frames and these are used to calculate the displacement of a specific feature. In the first frame of a 

sequence of ultrasound images a region of interest (ROI) is selected as the area between the superficial 

and deep aponeurosis and the start and end point of a fascicle are identified. The model has 6 parameters: 

vtx: optic flow at origin of the image in x direction, vty: optic flow at origin in y direction, d: rate of dilation, 

r: rate of rotation, s1: shear along the main image axis, s2: shear along the diagonal axis. These affine flow 

parameters are estimated within the whole ROI based on a least square fit. These parameters are then 

used to calculate a flow vector at points (x,y) in the image according to the following equation:   

(𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣) = [𝑥𝑥 𝑦𝑦 1] × �
𝑑𝑑 + 𝑠𝑠1 𝑠𝑠2 + 𝑟𝑟
𝑠𝑠2 − 𝑟𝑟 𝑑𝑑 − 𝑠𝑠1
𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣

� 

The change in position of the x,y coordinates of the endpoints of the fascicles as identified in the first 

image can then be calculated. 

The advantage of this method is that it takes into account global movements in a large area. An important 

assumption however with this method is that the point in the muscle that is tracked moves according the 

prescribed algorithm of translation, rotation, dilation, shear and skew. With other words, we assume that 

there are no local shape changes within the muscle. This method has been validated in ultrasound videos 

of the medial gastrocnemius during different dynamic tasks (Gillett et al., 2013), and a user-friendly, open-

source, software application (UltraTrack) was also introduced (Farris & Lichtwark, 2016). 
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In this thesis however, we study fascicle excursion from maximal plantar to maximal dorsiflexion. 

Therefore, large changes in length need to be captured by the algorithm. We found that the proposed 

algorithm did not accurately track the end points of the fascicles at these extreme lengths. The rate of 

rotation (r), was still tracked very accurately, but the rate of dilation (d) was tracked with less accuracy 

(figure A.2). For this reason, we propose an adaptation to the proposed algorithm (Cronin et al., 2011; 

Gillett et al., 2013). We propose to track the orientation of the muscle fascicles as well as the orientation 

of both the upper and the lower aponeuroses. The length of the fascicles is then calculated from the 

extrapolated intersection points of the fascicle with the lower and upper aponeurosis. This methodology 

is used throughout chapter 3-5 in this thesis 

 

Figure A.2: Example of automated tracking. A) error associated with the original version of the fascicle 

tracking software. Underestimation of fascicle length at extreme lengths. B) The fascicle and the 

aponeuroses are tracked with their own region of interest. Fascicle length is defined between the 

intersection points.  

Muscle tendon junction 

The MTJ is usually defined as a single point at the most distal point of the muscle where the upper and the 

lower aponeurosis join each other (figure A.1 B). During dynamic movements, this point can be tracked in 
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subsequent images, assuming that the probe does not move relative to the skin. For the MTJ, automated 

methods are also proposed in literature (Magnusson et al., 2003; Korstanje et al., 2010; Pearson et al., 

2013), but without a validation analysis in a pathological population and without providing a software 

application for replication the reported performances. A template matching approach has been applied to 

MTJ tracking (Pearson et al., 2013). This approach is based on finding the relevant pixel template between 

subsequent images. A normalised cross correlation function is typically used to compare these templates 

between subsequent images. First, a region of interest (ROI) is selected in the first image. In the 

subsequent image, this ROI will be shifted by one pixel at a time. For each pixel shift the correlation 

coefficient is calculated. The pixel shift that gives us the highest correlations corresponds to the movement 

between the two frames. The reliability of the pixel shift can be assessed by looking at two different 

parameters (figure A.3). Firstly, the maximal correlation coefficient tells us something about the quality of 

the fit. Secondly, the narrowness of the quadratic equation as assessed by ‘a’ in:  𝐶𝐶 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 , 

where the polynomial is an equation that fits through the pixel shift-correlation coefficient relationship 

(figure A.3). 

 

Figure A.3: relationship between pixel shift between frames and the correlation coefficient. Both a higher 

maximum correlation coefficient (r) and a narrower fit (a) indicate a better performance of the algorithm.  

 

Automated tracking of the MTJ appears to be much more challenging than tracking of the fascicles, Since 

the MTJ changes shape significantly during movement. Figure A.4 A shows an example of the manual 

tracking of the MTJ as well as the automated tracking performed with a cross-correlation algorithm. This 

analysis was performed in a custom made Matlab script. The tracking algorithm calculated a normalised 
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cross correlation coefficient of the template (figure A.4 B) with a same-sized region within a search window 

in the following frame. This was repeated until the end of the movement 

 

Figure A.4: A) Results of the manual tracking (blue stars) and the automated tracking (red line) of the 

MTJ. B) Example of the area that was selected as a template in the ultrasound image.  

 

Because of the large discrepancies that were observed in all attempts, it was decided that within the scope 

of this thesis automated tracking of the MTJ was not feasible. Since manual tracking of the MTJ is much 

less time consuming than manual tracking of the fascicles, it was decided to perform the tracking of MTJ 

displacement manually. 

Recent developments have shown promising results with regard to applying the Lucas-Kanade  Optical 

flow algorithm to MTJ tracking during passive movements (Cenni et al., 2017). However, there is still a 

need for open source software to perform MTJ tracking automatically.  

 

In conclusion, to improve the speed and accuracy of feature tracking within a sequence of ultrasound 

images, automated tracking algorithms have been developed. In this thesis, an adapted version of a 

previously validated automated tracking algorithm (Gillett et al., 2013) was used to dynamically track 

fascicle lengths. However, it was decided best to manually track MTJ displacement.  
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Appendix B: Calcaneus tracking 
Change in muscle-tendon-unit (MTU) length is an important parameter when assessing muscle/tendon 

properties of the medial gastrocnemius muscle during stretch. The location of the proximal attachment of 

the MTU is estimated as the most superficial point of the medial femoral condyle (figure B.1 A). Using the 

ultrasound probe as a spatial pointer (Cenni et al., 2018) this point is identified within a local reference 

frame of a cluster of markers attached to the shank. In all the experiments performed for this thesis, the 

knee is fixed during the movement, therefore this point will not move during a stretch and can be identified 

in a static position. The distal end of the medial gastrocnemius MTU is defined as the attachment of the 

Achilles tendon on the calcaneus. Statically, this point can be identified with ultrasound (figure B.1 B), but 

it is not feasible to track this point during the movement as the small surface on the back of a child’s 

calcaneus prohibits stable fixation of the ultrasound probe.  

 

Figure B.1: A) Identification of the most superficial point of the medial femoral condyle, B) Identification 

of the most distal insertion of the Achilles tendon onto the calcaneus. 

 

As an alternative, in the experiments performed in this thesis a reflective marker was placed on the back 

of the calcaneus. The position of this marker was tracked relative to the cluster of markers on the shank 

and the distance of the marker to the virtual marker on the medial femoral condyle was calculated 

throughout the range of movement. To assess the validity of this approach, the following experiment was 

performed. An echo reflective tape was placed over the calcaneus (figure B.2). The tape reflects the 

behaviour of the reflective marker during passive ankle movement. The aim of the experiment was to 

validate the position of the tape relative to the insertion of the Achilles tendon during movement with 

ultrasound.  



88 
 

 

Figure B.2: The two marker/tape positions. (A) Proximal placement. (B) Distal placement and the two 

corresponding ultrasound images  with the measured distance visualised (C,D).  

Method 

Data was collected from five healthy adults (age: 30.2±3.3-year, 2 Male), free from neuromuscular or 

skeletal disorders. Participants lay prone on a bed with the foot hanging freely over the edge. A strip of 

echo reflective tape was placed over the back of the calcaneus. In two separate conditions, the tape was 

placed either proximal to the insertion of the Achilles tendon on the calcaneus (figure B.2 A), or just distal 

from the insertion (figure B.2 B).  An ultrasound probe (Telemed-Echoblaster, Lithuania) was positioned 

carefully over the calcaneus and the foot was moved slowly from maximal dorsiflexion to maximal 

plantarflexion. Care was taken not to move the ultrasound probe relative to the skin.  

Data analysis 

In the sequence of ultrasound images, the perpendicular distance from the echo reflective tape, seen as a 

black shadow, to the insertion of the Achilles tendon to the calcaneus was measured in ImageJ (NIH, USA), 

see figure B.2 C and D.  

Results 

In the proximal placement of the tape, the measured distance between the tape and the insertion of the 

tendon increased by 6.1(1.5) mm (p<0.001) as the foot was moved from maximal plantar to maximal 

dorsiflexion (figure B.3 A). When the tape was placed distally on the calcaneus the average distance 

between the tape and tendon insertion does not change during the movement (p=0.427, figure B.3 B). In 
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the distal condition, the random variation due to manual tracking errors was larger than the overall 

increase or decrease in the distance between tape and insertion. 

 

Figure B.3: distance of tendon insertion to marker tape relative to ankle angle. A) proximal placement 

of tape, B) distal placement of tape 

Conclusion 

These results indicate that when assessing MTU lengthening during ankle rotation with a reflective marker 

attached on the skin, MTU lengthening would be underestimated if the marker is placed proximal on the 

calcaneus. However, a marker placed on a prominent point distally on the calcaneus is considered a valid 

representation of the underlying attachment of the Achilles tendon to the calcaneus. In chapters 2 to 4, 

this method is used to assess medial gastrocnemius MTU and Achilles tendon lengthening.  
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Appendix C: The relationship between medial gastrocnemius 

lengthening properties and stretch-reflexes in cerebral palsy 

Abstract 

Calf muscle stiffness may be more important than velocity-dependent hyperactive stretch-reflexes in 

impairing ankle movement in children with cerebral palsy (CP). We explore the interdependence of muscle 

and tendon lengthening properties with stretch-reflex hyperactivity to help explain subject variability.  

Fifteen children with CP (11±3yrs, GMFCS 9I 6II, 9 diplegia, 7 hemiplegia) and 16 typically-developing (TD) 

children participated. Children lay prone while their ankle was passively rotated over its full range of 

motion slowly and as fast as possible. Ultrasound, synchronised with motion-analysis, was used to track 

the movement of the medial gastrocnemius (MG) muscle-tendon junction. The relative lengthening of 

muscle and tendon were used to infer about the tissues’ material properties. Simultaneous measurement 

of MG surface-electromyography was used to quantify stretch-reflex hyperactivity. The effect of ankle 

rotation velocity on MG muscle lengthening and stretch-reflex hyperactivity were compared between CP 

and TD groups. Within the CP group, correlations were sought between relative MG muscle lengthening 

during slow and fast rotation and the timing and amount of stretch-reflex hyperactivity.  

Compared to slow rotation, the muscle lengthened less and stretch-reflex hyperactivity was higher during 

fast rotation. These velocity-induced changes were more marked in CP compared to TD. In the CP group, 

MG muscle lengthening velocity 30ms prior to EMG onset was higher in those muscles that showed greater 

muscle lengthening during slow rotation (r=0.57-0.70). Also in these muscles, high stretch-reflex 

hyperactivity (r=0.4) and an early catch (r=-0.45) were recorded and the latency between maximum MG 

muscle lengthening velocity and MG stretch-reflex onset was shortest (r=-0.66). In general, muscle 

lengthening velocity had higher correlations coefficients with stretch-reflex hyperactivity parameters than 

joint angular velocity.  

In conclusion, angular velocity was not representative of MG muscle lengthening velocity. Muscle 

lengthening velocity was more related to stretch-reflex parameters. Also, stiff muscles may not elongate 

fast enough to evoke a velocity-dependent stretch-reflex, which may suggest that muscle stiffness is 

protective against stretch-reflexes. 
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Introduction 

Cerebral palsy (CP), the most common childhood disability, is an umbrella diagnosis attributed to a lesion 

in the developing foetal or infant brain (Graham et al., 2016). Depending on the timing, location, type and 

extent of the lesion, the clinical manifestation is highly variable. A prevalent motor symptom directly 

attributed to the brain anomaly includes velocity-dependent stretch reflex hyperactivity, often defined as 

spasticity (Lance, 1980a).  

Stretch reflex hyperactivity in the medial gastrocnemius (MG) of children with spastic CP is commonly 

evaluated by passively rotating the ankle joint into dorsiflexion at different velocities, such as applied in 

conventional clinical spasticity assessments. However, latest research using surface electromyography 

(sEMG) from the MG during such examination reveals unexplained heterogeneity in muscle activation 

between patients (Bar-On et al., 2014b). High variability was noted both in the amplitude of the stretch 

reflex response as well as the threshold velocity at which muscle activation occurred during passive 

stretch, the so-called stretch reflex threshold (SRT). The reason why some muscles and some children have 

a lower SRT velocity is yet to be confirmed. One hypothesis is that the activation threshold is sensitive to 

muscle properties, such as its ability to lengthen when brought under stretch  (Gracies, 2005).  

Using dynamic ultrasound (US) imaging to assess muscle lengthening, it has been shown that, in 

comparison to typically developed muscles, the MG muscle belly in children with spastic CP has a reduced 

lengthening ability during slow passive ankle rotation (Barber et al., 2012; Kalkman et al., 2016). In 

addition, during the mid-stance phase of gait, muscle fascicles lengthen more in CP compared to typically 

developing children (Kalsi et al., 2016; Barber et al., 2017). These findings suggest that, in both passive and 

active conditions, muscle-tendon interaction during joint rotation is altered. Such a redistribution of the 

movement between the tendon and muscle fascicles may increase the proportion of fascicle lengthening 

thus triggering more muscle receptors (i.e. spindles), increasing afferent activity, and consequently 

increasing the stretch reflex response (Rack et al., 1983).  

Additionally, these particular alterations highlight that the muscle and tendon mutually modulate their 

behaviour when the joint is rotated. Consequently, any assessment at the joint may not represent the 

properties and behaviour of the muscle and tendon similarly across children. The wide inter-child 

variability observed in the SRT when expressed as a joint angular velocity (Jobin & Levin, 2000) may 

therefore be explained by differences in muscle tensile properties that alter muscle behaviour during 

stretch. 
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By combining dynamic US imaging with sEMG measurements during fast passive stretch, we can now 

quantify the SRT in terms of muscle lengthening velocity instead of joint angular velocity. As such, the 

mechanisms that trigger stretch reflexes at the level of the muscle, where the stretch receptors are 

located, can be directly investigated to allow better understanding of the variability in SRT sensitivity 

among different muscles and children. Such an investigation may also help establish the relationship 

between primary neural symptoms and secondary musculoskeletal alterations. Deciphering the inter-

dependence of impairments in CP can result in a shift of the treatment focus, particularly at an early stage. 

Furthermore, understanding the sources of variability in clinical symptoms may help to develop 

personalized treatment (Taft, 1995). This is particularly important since it is debatable whether stretch 

reflex hyperactivity plays a dominant role in impairing gait (Dietz & Berger, 1983; Dietz & Sinkjaer, 2007; 

Willerslev-Olsen et al., 2014).  

Therefore, the aim of this study was to establish the relationship between MG muscle and tendon 

lengthening and hyperactive stretch reflexes recorded during slow and fast passive ankle rotations in 

children with spastic CP. We hypothesized that analysis at the level of the muscle, rather than at the joint, 

will give a better understanding of the triggers of stretch reflex hyperactivity. 

 

Materials and Methods 

Participants 

Children diagnosed with spastic CP and typically developing (TD) children, aged between 6 and 16 years, 

were recruited for this multicenter study from the gait lab of Alder Hey Children’s Hospital in Liverpool 

and the University Hospital in Leuven. Children with CP were excluded when diagnosed with ataxia, 

dystonia, severe plantar flexor muscle weakness (manual muscle test <1+ (Hislop & Montgomery, 1995)), 

bony deformities or contractures resulting in less than 10 degrees of ankle range of motion in the sagittal 

plane, cognitive problems that could impede the measurements, previous orthopaedic surgery below the 

knee, an intrathecal baclofen pump, selective dorsal rhizotomy, or botulinum toxin-A injections 6 months 

prior to the measurement. All TD children were free from neuromuscular or skeletal disorders. The study 

was approved by the Institutional as well as the NHS research ethics committee in the UK and the 

University Hospital’s ethics committee in Leuven. The study was conducted in accordance with the 
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Declaration of Helsinki. Written parental consent was obtained from the parents, and written assent was 

given by children in accordance with local regulations.  

Measurement protocol 

All measurements were performed by the same trained assessor. In children with CP, assessments were 

carried out on the most affected calf muscle, defined by the highest clinical spasticity grade (MAS 

(Bohannon & Smith, 1987) and Modified Tardieu Scale (Tardieu et al., 1954)). In TD children and in children 

with CP who were equally affected in both legs, the left leg was selected. Subject body mass and height 

were measured. Children lay prone on an examination table with the examined limb placed in a custom-

made orthotic which allowed knee placement at 20 degrees and free sagittal plane movement at the ankle 

(Figure C.1). The upper leg and pelvis were fixed to the table using straps and the tibia was supported on 

an inclined cushion with the ankle over the edge of the table. The foot was secured to a rigid footplate 

with the help of an adjustable insole that ensured heel contact with the footplate during ankle rotation. A 

six DoF force/torque load-cell (ATI mini45: Industrial Automation) attached to the footplate was used to 

rotate the ankle joint and measure forces and torques at 200Hz. The point of contact of the load-cell with 

the footplate could be adjusted according to the foot size.  

The moment arms between the lateral malleolus and the point of application of the load-cell were 

measured using a tape measure. 

The angle of the footplate relative to the tibia was recorded using clusters of reflective markers attached 

to the tibia and footplate tracked by 3D motion analysis cameras (Optitrack NaturalPoint, USA) with a 

sample rate of 120Hz. Ankle joint calibration was carried out by pointing to anatomical landmarks on the 

ankle joint, thereby expressing their relative position to the cluster markers (Leardini et al., 2007).  

A B-mode ultrasound (US) scanner (Telemed EchoBlaster128, Vilnius, Lithuania) with a 59mm linear 

transducer was fitted with a cluster of reflective markers (Figure C.1 B) and used to locate and mark the 

most superficial point of the medial femoral condyle, the medial and lateral borders of the MG muscle and 

the MG muscle-tendon junction (MTJ). The MG’s mid-longitudinal plane was marked from MG origin, 

through the muscle belly to the MTJ (Bénard et al., 2009).  

Surface electromyography (sEMG) electrodes location was determined using US on the muscle belly of the 

MG with an inter-electrode distance of 2cm (Hermens et al., 2000) (Zerowire, Cometa, Milan, IT). sEMG 
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was sampled at 2000Hz. Three repetitions of isometric plantarflexion maximal voluntary contractions 

(MVC) were performed in prone for normalization purposes.  

Muscle and tendon lengthening during passive motion 

A reflective marker was placed over the distal insertion of the Achilles tendon on the most superficial part 

of the posterior calcaneal tuberosity. Using a custom-made holder, the instrumented US probe was fixed 

over the MTJ, along the mid-longitudinal plane, and secured to the orthotic to prevent it from moving. 

Muscle activity, US images, probe orientation, ankle torque and ankle kinematics were simultaneously 

recorded during passive ankle rotations manually applied across the full range of motion (ROM). Three 

passive rotations were performed, first at slow velocity (5s to complete full ROM) and then as fast as 

possible (1s). Between repeated rotations, there was at least a 7s rest interval. US images were collected 

at 30Hz during slow trials and at 60Hz during fast trials. A close-up video camera was used to 

retrospectively check heel contact with the footplate during passive rotations. 

 

 

Figure C.1 A. Experimental design of the lower-leg placed in the custom-made orthosis to standardise the 

knee position and ankle movement; B. close-up of the ultrasound probe with reflective markers; C. close-

up of the foot attached with an insole to the foot plate of the orthotic. A 6 DoF hand held load-cell was 

used to measure net ankle joint torque during passive rotation. Two clusters of reflective markers on the 

tibia and footplate were tracked with motion analysis and used to calculate the foot-plate angle in 3D. The 

ultrasound probe was placed above the muscle tendon junction, and the position and orientation of the 

image tracked by motion analysis by means of a cluster of reflective markers attached to the probe. Surface 

electromyography was collected throughout the experiments from the medial gastrocnemius. 
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Data reduction 

Visual scanning of the quality of the acquired data was performed in custom-made Matlab software. Poor 

sEMG signal quality was defined as obvious movement artifacts, or a high signal-to-noise ratio. Poor 

movement performance was defined when the foot was rotated more than 10° outside the sagittal plane 

or when the heel lost contact with the footplate. Poor imaging was defined when the probe moved 10° 

outside the movement plane or contact with the skin was lost. Measurements with incomplete data sets 

were excluded. 

Data analysis 

Muscle lengthening parameters 

The position of the MTJ in the collected US images was defined as the most distal insertion of the muscle 

into the tendon. In a pilot study, this point, defined in a 2D image, was confirmed to be a representation 

of the middle of the MTJ , when comparing its location to the location identified in a 3D reconstruction 

(Cenni et al., 2016a). The MTJ was manually tracked in consecutive US images using custom software 

(Cenni et al., 2016b) in Python (2.7). During each slow rotation, the position of the MTJ was defined every 

3 frames (on average in 25 images) and during fast rotations, in every frame (on average 60 images). The 

reliability of such manual tracking of the MTJ has been found to be satisfactory (Cenni et al., 2016a). 

Muscle and tendon lengths were defined as the linear distance between the medial femoral condyle and 

the MTJ, and between the MTJ and the calcaneus marker, respectively. Muscle tendon unit (MTU) length 

was defined as the summation of muscle and tendon length. At the start of the motion, the joint was in 

end-range plantarflexion and all lengths were equated to zero. MTU and muscle lengthening from end-

range plantarflexion to end-range dorsiflexion were calculated during slow and fast trials, and expressed 

in mm. Muscle lengthening was additionally expressed as a percentage of MTU lengthening. Maximum 

muscle lengthening velocity (MVMAX) was calculated as the first derivative of muscle lengthening 

Stretch-reflex parameters 

Data analysis and parameter calculation was carried out with custom software in Matlab (R2015a). Raw 

sEMG signals were filtered with a 6th-order zero-phase Butterworth bandpass filter from 20 to 500Hz. The 

root mean square (RMS) envelope of the sEMG signal was defined using a low-pass 30Hz 6th order zero-

phase Butterworth filter on the squared signal. Joint angle and angular velocity were calculated from the 
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marker trajectories and ankle calibration. The net ankle joint moment was calculated from the exerted 

moments and forces on the load-cell, the external moment arms, and the predicted torque caused by 

gravity on the orthotic (Bar-On et al., 2013b). All kinematic and kinetic variables were filtered using a 2nd 

order Butterworth filter with a 6Hz cut-off frequency.  

Ankle flexion-extension ROM and maximum flexion-extension angular velocity (ωMAX) were extracted from 

slow and fast trials. The hyper-activation (EMG gain) of the stretch reflex with increases in joint position 

and angular velocity was investigated in two EMG parameters following a previously validated approach 

(Bar-On et al., 2014b). First, to investigate position-dependent increase in the EMG gain during slow trials, 

each rotation was divided into three equal zones between 10-90% of the ROM. The zones were defined as 

the time windows corresponding to: 10-36.6% ROM (P1), 36.6-63.3% ROM (P2), and 63.3-90% ROM (P3). 

The time windows corresponding to the extremes of the ROM (<10% and >90%) were excluded to avoid 

moments when the child may not have been relaxed (Bar-On et al., 2013b). Average RMS-EMG per position 

zone was defined as the area underneath the RMS-EMG curve, divided by the duration of the 

corresponding position zone. Position-dependent EMG-gain during slow trials (EMGslow) was calculated as 

the change in average RMS-EMG between P1 and P3 (Bar-On et al., 2014b). Second, the time interval in 

which EMG was on (EMG  onset) during trials was automatically defined according to Staude and Wolf 

(Staude & Wolf, 1999). A manual correction was applied when automatic onset detection failed. To 

investigate velocity-dependent increase in EMG-gain, during fast trials, average RMS-EMG was calculated 

during EMG onset (EMGfast). In trials with no EMG onset, EMGfast was calculated in an interval 100ms before 

to 100ms after ΩMAX. All EMG gain values were expressed as a percentage of the peak RMS-EMG during 

MVC.  

When EMG onset was detected, the latency (in milliseconds) between ΩMAX and EMG-onset and between 

MVMAX and EMG-onset were calculated. Second, the SRT was expressed in terms of the joint angular (FESRT) 

and muscle lengthening (MVSRT) velocities measured 30ms prior to EMG-onset, which represents the 

length of the short-latency stretch reflex loop as reported in literature (Sinkjær et al., 1999). 

Work during slow and fast passive rotations was defined as the average area underneath the torque-angle 

graph from 10% until 90% ROM (Bar-On et al., 2013b). For the CP group only, during fast rotations, the 

catch angle, expressed as a percentage of the available ROM was defined according to (Bar-On et al., 

2013a). Finally, the MG muscle length corresponding to the catch angle was expressed as a percentage of 
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the maximum muscle length. More explanation on these parameters can be found in previous literature 

(Bar-On et al., 2013b, 2013a, 2014b). 

Statistical analysis 

Parameters had a non-normal distribution (Shapiro–Wilk test) and were therefore analysed with non-

parametric statics. Comparisons of muscle lengthening during slow stretches and of stretch reflex 

parameters between CP and TD groups has been previously reported (Bar-On et al., 2013b; Kalkman et al., 

2016). Therefore, here we only calculated how parameters changed between slow and fast rotations 

within each group and compared these change values between groups using Mann-Whitney U tests. Then, 

within the CP group, Spearman ranks correlation coefficients were calculated between muscle lengthening 

and stretch reflex parameters at each velocity and, using values averaged over available rotations per 

subject, between slow and fast velocity. Correlation coefficients were interpreted as poor (<0.2), fair (0.21-

0.4), moderate (0.41-0.6), good (0.61-0.8), and very good (>0.8) following the guidelines by Altman, 1999 

(Altman, 1999). Significance was set to p<0.05. 

Results 

Of the 38 children who participated in the study, 15 children with CP and 16 TD children had full data sets 

and were further analysed (Table C.1). Data were excluded from further analysis in two children due to 

incorrect synchronization of signals, in one child due to poor US image quality, in one child due to missing 

a technical cluster during calibration file, and in 3 children due to artefacts in the EMG signal. Patient 

characteristics (Table C.1) were not significantly different between groups. 

Table C.1: Subject characteristics in children with cerebral palsy and typically developing children  
 CP (n=15) TD (n=16) 
Average (SD) age (years) 11.3 (3.1) 10.29 (3.98) 
Male/female (n) 11/4 7/9 
Average (SD) Height (cm) 141 (21.3) 138.1 (19.1) 
Average (SD) Mass (kg) 36 (18) 35 (15) 
Average (SD) tibia length (mm) 339.7 (54.3) 329.4 (52.7) 
GMFCS (I-IV) (n) 9 I, 6 II n/a 
Diagnosis (n) 8 Diplegia, 7 Hemiplegia n/a 
Modified Ashworth Score (n=7) and 
Average Modified Tardieu (n=8) 

MAS: 1.5 (n=6); 3 (n=1) 
Tardieu: 2 (n=5); 3 (n=3) 

n/a 
n/a 

GMFCS: gross motor functional classification scale; MAS: modified Ashworth Scale. *Tardieu scores 
from children recruited at Alder Hey Children’s Hospital. MAS from children recruited at University 
Hospital Leuven. One participant unknown. 
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During fast rotations, EMG onset were automatically detected in 13 subjects of the CP group. In 2 subjects 

from the CP group and in 2 TD children, automatic detection of EMG onset failed since EMG gain was 

relatively low and onset was of short duration. In these cases, EMG onset was manually defined. 

 

 

Table C.2 shows median (and IQR) values of muscle lengthening and stretch reflex parameters extracted 

from slow and fast rotations in CP and TD. Maximum angular and tissue lengthening velocities were about 

30 times higher during fast rotations than slow rotations in both CP and TD. In CP, this translated to average 

EMG responses that were, on average, 26 times higher during fast than slow rotations, resulting in higher 

work values. Higher values of EMG and work in fast versus slow rotations were also found in TD, but the 

increases in EMG and in work values between slow and fast rotations were significantly lower than those 

of the CP group (p=0.001, p=0.021, respectively). The MTU lengthened by the same amount in slow and 

Table C.2. Median (and IQR) of all outcome parameters during slow and fast ankle rotations. 
  CP (n= 15) TD (n=16) 
 Parameters Slow Fast Slow Fast 

Jo
in

t ROM (deg) 40.0 (26.6) 51.9 (19.6) 61.4 (20.7) 66.7 (14.7) 

FEMAX (deg/s) 12.7 (4.2) 359.5 (178.3) 15.1 (9.8) 464.9 (168.3) 

M
us

cl
e Muscle lengthening (mm) 18.3 (9.6) 17.4 (8.8) 26.5 (6.9) 29.2 (11.3) 

Muscle lengthening (%MTU) 48.6 (9.3) 41.3 (19.8) 61.8 (11.9) 54.4 (12.3) 

MVMAX (mm/s) 7.6 (2.4) 285.1 (224.8) 9.5 (5.3) 255.8 (106.5) 

St
re

tc
h-

re
fle

x 

EMGslow (%MVC) 1.3 (2.4) Na 0.003 (0.2) Na 

EMGfast (%MVC) 0.3 (0.5) 8.1 (9.9) 0.1 (0.1) 0.5 (1.0) 

Work (J) 1.0 (0.4) 4.5 (1.6) 1.0 (0.5) 2.9 (1.7) 

Catch angle (%ROM) Na 82.24 (13.6) Na Na 

Catch muscle length (% max MTU) Na 71.74 (21.47) Na Na 

Latency time FEMAX - EMG onset (ms) Na -2.5 (72.10) Na Na 

Latency time MVMAX - EMG onset (ms) Na 40.00 (54.20) Na Na 

FESRT (deg/s) Na 212.11 (154.61) Na Na 

MVSRT (mm) Na 134.02 (186.46) Na Na 
MVMAX, maximum muscle lengthening velocity; TVMAX, maximum tendon lengthening velocity; FEMAX, 
maximum angular velocity; MTU, muscle tendon unit length; ROM, range of motion; EMGslow, average 
electromyography during slow rotation; EMGfast, average electromyography during fast rotation; MVC, 
maximum voluntary contraction; FESRT angular velocity at the stretch-reflex threshold; MVSRT muscle 
lengthening velocity at the stretch-reflex threshold Na, not applicable. 
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fast trials, resulting in a similar ROM. During fast trials, in the CP group only, tendon lengthening showed 

an increased contribution to total MTU lengthening (p=0.026). 

In the CP group, during slow rotations, fair negative correlation values were found between EMGslow and 

absolute (mm) and relative (%MTU) muscle lengthening (r=-0.33, p=0.054; r= -0.35, p=0.04, respectively) 

indicating higher amount of position-dependent EMG gain in those muscles that were unable to lengthen 

(Figure C.2 A). Also during slow rotations, work showed a moderate positive correlation to relative muscle 

lengthening (r=0.43, p=0.01), but a moderate negative correlation with ROM (r=-0.38, p=0.03).  

During fast rotations, there was a fair positive correlation of EMGfast with MVSRT (r=0.40, p=0.02), and a 

moderate negative correlation with catch muscle length (r=-0.50, p=0.002). There were moderate to good 

positive correlations between absolute and relative muscle lengthening during slow rotation and MVSRT 

and MVMAX during fast rotations (Figure C.2 B). Muscle lengthening during slow rotation also had a strong 

negative correlation with catch muscle length during fast rotation (Table C.3). 

 

Discussion  

By providing detailed experimental data on the passive lengthening behaviour of muscle and tendon tissue 

during slow and fast passive ankle rotations, this study innovatively showed that the degree of muscle 

lengthening and stretch reflex hyperactivity in medial gastrocnemius muscles of children with CP is highly 

variable and that the two do not necessarily co-exist. 

The individual forces exhibited on the tissues cannot be assessed in-vivo and therefore direct 

quantification of the stiffness of muscle or tendon tissue cannot be defined by means of conventional 

ultrasound. However, studying the relative lengthening contribution of the muscle and tendon to the 

lengthening of the muscle tendon unit, allowed us to make inferences about the muscle’s relative tensile 

behaviour during passive ankle rotation. As such, we found that muscles with relatively less muscle 

lengthening during slow passive ankle rotation showed lower maximum muscle lengthening velocities 

during fast rotation. On the other hand, muscles with high relative lengthening during slow rotations 

reached a higher muscle lengthening velocity during fast rotation and were subsequently found to have 

the largest velocity-dependent stretch reflex responses.  
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Table C.3: Spearman rank correlation coefficients between parameters collected during slow and fast rotations in the cerebral palsy group 

 
 

La
te

nc
y 

tim
e 

FE
M

AX
 

an
d 

EM
G 

on
se

t (
m

s
 

FE
M

AX
 (d

eg
/s

) 

FE
SR

T 
(d

eg
/s

) 

Ca
tc

h 
an

gl
e 

(%
RO

M
) 

La
te

nc
y 

tim
e 

M
V M

AX
 

an
d 

EM
G 

on
se

t (
m

s
 

M
V M

AX
 (m

m
/s

) 

M
V S

RT
 (m

m
/s

) 

Ca
tc

h 
m

us
cl

e 
le

ng
th

 (%
 m

ax
 

m
us

cl
e 

le
ng

th
) 

EM
G f

as
t 

M
us

cl
e 

le
ng

th
en

in
g 

slo
w

 ro
ta

tio
n 

(m
m

) 

M
us

cl
e 

le
ng

th
en

in
g 

slo
w

 ro
ta

tio
n 

(%
M

TU
) 

An
gu

la
r p

ar
am

et
er

s 
fa

st
 st

re
tc

h 

Latency time FEMAX and 
EMG onset (ms) 

 -.097 .300 .024 .471** .226 -.237 .538** -.199 .459 -.015 

FEMAX (deg/s) -.097  .247 .039 -.051 .313 .188 -.188 .239 .261 -.025 

FESRT (deg/s) .300 .247  .007 -.013 .558** .320 .083 .235 .768** .254 

Catch angle (%ROM) .024 .039 .007  .368* -.136 -.307 .356* -.173 -0.549 -.187 

M
us

cl
e 

pa
ra

m
et

er
s  

fa
st

 st
re

tc
h 

Latency time MVMAX and 
EMG onset (ms) .471** -.051 -.013 .368*  -.261 -.660** .632** -.490** -.310 -.473 

MVMAX (mm/s) .226 .313 .558** -.136 -.261  .616** -.047 .031 .857** .204 

MVSRT (mm/s) -.237 .188 .320 -.307 -.660** .616**  -.448** .400* .696** .575* 

Catch muscle length (% 
max muscle length) .538** -.188 .083 .356* .632** -.047 -.448**  -.503** -.147 -.658** 

EMGfast -.199 .239 .235 -.173 -.490** .031 .400* -.503**  .033 .446 

Sl
ow

 
st

re
tc

h Muscle lengthening slow 
rotation (mm) .459 .261 .768** -.549 -.310 .857** .696** -0.147 .033  .325 

Muscle lengthening slow 
rotation (%MTU) -.015 -.025 .254 -.187 -.473 .204 .575* -.658** .446 .325  

FEMAX, maximum angular velocity; MVMAX, maximum muscle lengthening velocity; EMGfast average electromyography during fast stretches; FESRT 

angular velocity at the stretch-reflex threshold; MVSRT muscle lengthening velocity at the stretch-reflex threshold. Correlation coefficients (Altman, 
1999): <0.2, poor (red); 0.21-0.4, fair (orange); 0.41-0.6, moderate (light green), 0.61-0.8, good (dark green).  *p<0.05 **p<0.01 
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Figure C.2: Relative muscle lengthening during slow rotations in children with cerebral palsy versus A. 

normalised rms-EMG during slow rotations and B. average MVSRT during fast rotations. A regression line 

is shown for significant relationships.  

 

The average EMG onset during fast stretch occurred around 58±43ms after maximum muscle lengthening 

velocity. This duration is slightly longer than the latency time of the short latency reflex (30ms), described 

to be involved in the pathophysiology of hyperactive stretch reflexes (Sinkjaer et al., 1996) and also 

recorded during gait in the MG of children with CP (Dietz & Berger, 1983). However, after excluding 

muscles showing an EMG response during fast rotation that was less than 10%MVC (n=4), the latency time 

decreased to 44ms±28ms. Further exploration showed that when only taking muscles (n=4) into account 

that had muscle lengthening that was greater than the tendon lengthening during slow rotation, the 

average latency time was 30±18ms. Therefore, we suggest that a pure velocity-dependent stretch reflex 

hyperactivity occurs only when the muscle is able to lengthen fast enough. In other muscles, decreased 

relative muscle lengthening may prevent a large stretch reflex response. Figure C.3 shows signals obtained 

from three individual muscles and highlights the variability in responses. 

Neither MVSRT nor MVMAX were in synch with the ωSRT or ωMAX, indicating that joint angular velocity was 

not representative of MG muscle lengthening velocity. In addition, while ωSRT showed no correlation with 

parameters of stretch reflex hyperactivity, MVSRT was predictive of EMG magnitude during fast rotations 

and an earlier catch. Another indication of the discrepancy between joint angular velocity and muscle 

lengthening velocity was seen in the latency time between EMG onset and MVMAX and ωMAX. While MVMAX 
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was closely synchronized with EMG onset, ωMAX often occurred after EMG onset. This can be explained by 

the joint continuing to accelerate in the latency period between the muscle reaching the velocity 

necessary to elicit a stretch reflex (MVSRT) and the muscle force decelerating the joint. Such disparity 

between angular velocity and muscle lengthening velocity may indicate that the tendon plays a 

compensatory role in dictating joint behaviour. In other words, in stiffer muscles, the tendon is likely to 

lengthen relatively more to achieve angular rotation. As a result, the muscle does not reach high 

lengthening velocities. This has some important clinical implications, as it is important to consider that 

any assessment carried out at a joint level does not reflect the underlying muscle and tendon interactions 

consistently across all children. For example, clinical decision making based on an assessment of the 

passive ROM as traditionally performed in a clinical exam, may result in a misdiagnosis of the underlying 

muscle length. Similarly, gait analysis data reporting only the joint kinematics, and not the underlying 

muscle-tendon interactions, may be misleading (Kalsi et al., 2016; Barber et al., 2017). Further, the 

effectiveness of treatment such as serial casting and stretching that aim to lengthen the muscle by 

applying stimulus to the joint could be questioned.  

  

  

Figure C.3: Angular velocity, medial gastrocnemius muscle lengthening velocity, and medial gastrocnemius 

rms-EMG (normalised to maximum voluntary contraction- MVC) during fast passive rotation examples of 

muscles from three different subjects in the CP group. Timing of EMG onset (black dashed line) and the 

stretch-reflex threshold, 30ms prior to EMG onset (grey vertical line), are indicated. 
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any assessment carried out at a joint level does not reflect the underlying muscle and tendon interactions 

consistently across all children. For example, clinical decision making based on an assessment of the 

passive ROM as traditionally performed in a clinical exam, may result in a misdiagnosis of the underlying 

muscle length. Similarly, gait analysis data reporting only the joint kinematics, and not the underlying 

muscle-tendon interactions, may be misleading (Kalsi et al., 2016; Barber et al., 2017). Further, the 

effectiveness of treatment such as serial casting and stretching that aim to lengthen the muscle by 

applying stimulus to the joint could be questioned.  

During fast rotations, there was a large variability in the magnitude as well as in the timing of muscle 

activation response, even when the latter was expressed in terms of muscle lengthening instead of 

angular velocity. Muscles that were found to lengthen less during slow ankle rotation, either showed very 

little muscle activation response during fast rotation, or, as in the majority of muscles, showed responses 

that occurred at latencies of more than 30ms after the maximum lengthening velocity was reached, 

indicating a response that was not purely velocity-dependent. The relationship between stretch reflex 

hyperactivity and reduced muscle lengthening is not clear, and the common belief that spasticity, as 

defined by Lance (Lance, 1980a), contributes to the development of  stiffer muscle (Morrell et al., 2002) 

could not be corroborated in this study. Therefore, early aggressive treatment of stretch reflex 

hyperactivity which has become usual care to delay and reduce the need for orthopaedic surgery 

(Molenaers et al., 2006), may not be considered beneficial in all cases.  

Interestingly, low muscle lengthening during slow rotation was associated with high levels of position-

dependent activation (EMGslow). Previous literature has also indicated the presence of length-, rather than 

velocity-dependent muscle activation during slow passive rotation in subjects with neuromuscular 

disorders (Thilman et al., 1991; Pandyan et al., 2006; Lebiedowska & Fisk, 2009; Noort van den et al., 2010; 

Bar-On et al., 2014b). Some authors have used the term spastic dystonia to describe a muscle that is over 

responsive to the degree of a tonic stretch, rather than to its velocity (Gracies, 2005). It has also been 

suggested that increased muscle stiffness, as observed in case of contractures, increases the spindle 

stimulation from, and its response to, a given amount of lengthening force (Gracies, 2005). This would 

imply that stiffer muscles show a greater activation response to muscle lengthening. In their research, 

Dietz and Berger refer to this phenomenon as a ‘pseudo stretch reflex’, suggesting that its development 

allows for better gait stability in children with CP (Dietz & Berger, 1983). Our finding that lower MVSRT 

values are associated with muscles that lengthened relatively less than their tendon, supports this 

hypothesis. However, we also established the presence of muscles with reduced lengthening that showed 
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very limited muscle response to slow or fast rotation. In such cases, muscle stiffness may actually be 

considered as a protective mechanism against spasticity. This may question treatments that aim to reduce 

stiffness in the calf muscles. Does reducing muscle stiffness encourage increased muscle lengthening 

velocity during angular rotation, and consequently increase the stretch reflex response? In general, given 

the large variability in the amount of muscle lengthening and hyperactive stretch reflex in the subject 

sample included in this study, it is clear that quantification of the amount of stretch reflex hyperactivity 

and lengthening per individual muscle, is of paramount importance to improve our insight into the 

underlying mechanisms of increased resistance against stretch and may eventually lead to improved 

patient-specific treatment. 

Some limitations of the current study need to be mentioned. Firstly, other plantarflexors that insert into 

the Achilles tendon influence the force in the tendon and the movement of the MG MTJ. However, in CP, 

we expect the MG to be the most impaired in terms of stretch reflex activation and muscle shortening 

(Gage et al., 2009). Secondly, we used a 2D imaging technique to visualize and track the movement of 3D 

structures. While this is an inherent limitation of dynamic US imaging, our results of limited muscle belly 

lengthening in children with CP are in agreement with previous literature (Matthiasdottir et al., 2014). 

Furthermore, data from a study in which 3D US imaging at different static ankle angles in children with CP 

was used to validate whether 2D tracking of the MTJ over the range of motion results in an acceptable 

description of its movement, indicated that this approach is valid for the purpose of the study (Cenni et 

al., 2016a). A third limitation is the sampling frequency of the US imaging during fast rotations. In the 

current study, during fast rotation acquisitions we sampled at 60 fps which means that tissue lengthening 

velocities at 30ms prior to EMG onset were defined in only 2 frames. This may also explain why some 

latencies were longer than expected. Fourthly, this investigation was carried out during passive joint 

rotation. The assumption that stretch reflexes as assessed during passive rotation occur when the muscle 

is activated voluntarily or in an upright posture cannot be made. Although discerning the occurrence of 

stretch reflexes during active muscle lengthening is challenging, future research should attempt to 

investigate the impact of stiffness and stretch reflexes on performance of functional activities. Fifth, it is 

also possible that muscles that were found to be less stiff were stretched at higher velocities by the 

examiner thus eliciting a stretch reflex response. Passive rotation imposed by a robotic device would have 

allowed for more controlled ankle angle manipulation. However, the velocity profile achieved with a 

manual rotation better mimics the rotation pattern of the ankle during gait (Sloot et al., 2016) and is found 

to more often elicit stretch reflexes (Ada et al., 1998). Finally, due to foot deformations in the CP group, 
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we cannot exclude the possibility that the axis of the orthotic was always perfectly aligned with the ankle 

axis. However, since a similar method was used to secure the foot to the orthosis in all measured subjects, 

we do not expect this to have influenced our results. 

 

Conclusions 

We established different patterns of tensile muscle behaviour in the tested children with CP sample: 1. 

muscles with high muscle lengthening allowing high muscle lengthening velocities that elicit a stretch 

reflex; 2. muscles with little lengthening, preventing high muscle lengthening velocities, that exhibit 

length-dependent muscle activation at low stretch velocities; and 3. muscles with little lengthening and 

little to no reflex activation at either slow or fast rotation. Given this and the large variability between 

children with CP, treatments directed at the medial gastrocnemius that aim to decrease ankle joint hyper-

resistance should ideally be based on quantification of the amount of stretch reflex hyperactivity and 

stiffness at the isolated muscle-tendon tissue level, rather than gross measurement of passive resistance 

at whole joint level.  
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