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ABSTRACT 

Decreased cerebrovascular blood flow and function are associated with lower cognitive 

functioning and increased risk of neurodegenerative diseases. Prolonged sitting impairs 

peripheral blood flow and function, but its effects on the cerebrovasculature are unknown. This 

study explored the effect of uninterrupted sitting and breaking up sitting time on 

cerebrovascular blood flow and function of healthy desk workers. Fifteen participants (10 male, 

35.8±10.2 years, BMI: 25.5±3.2 kg∙m-2) completed, on separate days, three 4-hr conditions in 

a randomised order: a) uninterrupted sitting (SIT), b) sitting with 2-min light intensity walking 

breaks every 30-min (2WALK) or c) sitting with 8-min light intensity walking breaks every 2-

hrs (8WALK). At baseline and 4-hrs, middle cerebral artery blood flow velocity (MCAv), 

carbon dioxide reactivity (CVR) of the MCA and carotid artery were measured using 

transcranial Doppler (TCD) and duplex ultrasound respectively. Cerebral autoregulation (CA) 

was assessed with TCD using a squat-stand protocol and analysed to generate values of gain 

and phase in the very low, low, and high frequencies. There was a significant decline in SIT 

MCAv (-3.2±1.2 cm.s-1) compared to 2WALK (0.6±1.5 cm.s-1, p=0.02), but not between SIT 

and 8WALK (-1.2±1.0 cm.s-1, p=0.14). For CA, the change in 2WALK very low frequency 

phase (4.47±4.07 degrees) was significantly greater than SIT (-3.38±2.82 degrees, p=0.02). 

There was no significant change in MCA or carotid artery CVR (p>0.05). Results indicate that 

prolonged, uninterrupted sitting in healthy desk workers reduces cerebral blood flow, however 

this is offset when frequent, short-duration walking breaks are incorporated.  

 

Keywords sedentary behaviour, middle cerebral artery, cerebrovascular carbon dioxide 

reactivity, cerebral autoregulation, transfer function analysis   
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NEW & NOTEWORTHY 

Prolonged, uninterrupted sitting in healthy desk workers reduces cerebral blood flow. However, 

this reduction in cerebral blood flow is offset when frequent, short-duration walking breaks are 

incorporated into this sitting period. For those who engage in long periods of sedentary 

behaviour, chronically breaking up these sitting periods with frequent active break strategies 

may have important implications for cerebrovascular health, however further research should 

explore this hypothesis.   



4 

 

INTRODUCTION  

Sedentary behaviour (SB), defined as any waking behaviour in a sitting, reclining or lying 

posture (51), is an independent risk factor for multiple preventable diseases including 

cardiovascular disease and stroke (8, 11, 24, 57) and both cardiovascular and all-cause mortality 

(8, 57). Greater SB is also linked to impaired brain structure and function, which may contribute 

to cognitive decline and the development of neurodegenerative diseases such as dementia (53). 

Indeed, increased SB is associated with lower cognitive function (17). Understanding how SB 

affects the brain is therefore of great importance to delineate the association between cognition 

and SB.  

 

The delivery and regulation of cerebral blood flow (CBF) is vital for normal brain function and 

survival (54). Cerebrovascular function describes the mechanisms regulating CBF to maintain 

constant cerebral perfusion (56), preventing the risk of ischemic brain injury and damage (52, 

53, 56). Acute reductions in CBF are linked to impaired cognitive functioning (6, 23), whilst in 

the longer term impaired cerebrovascular function is implicit in neurodegenerative diseases 

including dementia, Alzheimer’s disease and stroke (19, 22, 58). SB impairs peripheral blood 

flow, vascular function (36, 48) and glycemic control (15, 31). Whether a similar reduction 

occurs in cerebrovascular blood flow and function is unknown.  

 

Alternatively, breaking up sitting with short bouts of low-intensity physical activity (PA) can 

prevent these detriments to vascular health and metabolic control (15, 31, 48). Furthermore, the 

frequency of these PA breaks appears to be an important modulator of these responses, as 

regularly breaking prolonged sitting with short PA bouts is more effective than a single PA bout 

at lowering postprandial glucose and insulin concentrations (31). Cerebrovascular function 

increases during exercise or following chronic exercise training (26, 28, 33), additionally short 
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duration low-intensity walking bouts can also elevate CBF (20, 27). Accordingly, regularly 

breaking up sitting with PA breaks may have beneficial effects on CBF and cerebrovascular 

function; however this is unknown. 

 

This study explored the acute CBF and cerebrovascular function responses to prolonged, 

uninterrupted sitting, and assessed the cerebrovascular effects of breaking up prolonged sitting 

with short bouts of light intensity PA. We hypothesised that prolonged sitting would reduce 

CBF and impair cerebrovascular function, but this would be attenuated with light intensity PA 

breaks and that, in line with previous work, a more frequent PA break strategy would be more 

effective at preventing any impairment in cerebrovascular function.   
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MATERIAL AND METHODS 

Participants 

Fifteen (10 male) healthy desk workers employed in office and administrative jobs volunteered 

and written informed consent was obtained. Participants were recruited via advertising emails 

and posters which were distributed to University mailing lists, and by using newspaper 

advertisements. Participants were screened for exclusion criteria including: taking medication, 

smoker, BMI >35 or <18 kg∙m-2, use of hormone-based contraception and diagnosis of 

cerebrovascular, cardiovascular or metabolic disease. Study procedures were approved by 

Liverpool John Moores University Ethics Committee and adhered to the Declaration of 

Helsinki. 

 

Study design 

Participants attended the temperature controlled (20-22 °C) laboratory at the same time of day 

(7.00-9.00 am) on three separate occasions. Testing procedures were the same across each test 

day (Figure 1). After arrival and 20-min supine rest, middle cerebral artery blood flow velocity 

(MCAv) and cerebrovascular carbon dioxide reactivity (CVR) were assessed. Participants were 

then seated and underwent measures of seated MCAv and cerebral autoregulation (CA). 

Following baseline measurements participants completed, in a randomised order: a) 4-hr 

uninterrupted sitting (SIT), b) 4-hr sitting+2-min light-intensity treadmill walking breaks every 

30-min (2WALK) or, c) 4-hr sitting+8-min light intensity treadmill walking breaks every 120-

min (8WALK). The measurement of seated MCAv was repeated immediately after each 4-hr 

intervention. MCAv was assessed while seated to assess the posture of interest, sitting, and to 

prevent the effects of moving to a supine posture altering hemodynamics. Participants then 

returned to a supine posture and supine MCAv and CVR were assessed, followed by CA. Heart 

rate (HR) and MCAv were recorded immediately prior to and during each walking break.  
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Study procedures 

Prior to each visit participants were instructed to avoid strenuous exercise for 24-hr, to complete 

an overnight fast and abstinence from caffeine and alcohol. Women were assessed in the 

follicular phase of the menstrual cycle (days 1-7). Participants completed the International 

Physical Activity Questionnaire (Long form, IPAQ) (9) to determine habitual PA (14) and SB 

(39). Given the duration of testing, participants were given low calorie, low fat, standardised 

snacks at specified time points (Figure 1). Following baseline tests, participants were given a 

breakfast cereal bar (Belvita Milk and Cereal Breakfast Biscuits, 220kcal, 33.6g carbohydrate, 

7.2g fat, 3.6g protein) and a banana after 2-hr (~100kcal, ~27.0g carbohydrate, ~0.3g fat, ~1.0g 

protein). Water was available to drink ad libitum.  

 

Interventions 

Uninterrupted sitting (SIT). Participants remained seated at a desk for 4-hr and were permitted 

to perform low cognitively demanding desk-based activities such as reading, watching TV, 

surfing the internet or completing simple work tasks on a computer. Participants were prevented 

from standing or walking, with the exception of visiting the toilet (walking distance of ~7.5 m; 

on average participants visited the toilet once during each intervention), and from making 

vigorous movements. Participants were supervised at all times to ensure these conditions were 

adhered to.  

2-min walking breaks (2WALK). Sitting was interrupted every 30-min with a 2-min light 

intensity treadmill walking break. Consequently, eight breaks were completed, totalling 16-min 

of activity. This break strategy was selected based on recommendations from the The Sedentary 

Behaviour and Obesity Expert Working Group (7) which advises taking a break from sitting 

every 30-min. Walking was performed on a treadmill with no gradient (Run XT, Technogym, 
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Italy) at a self-selected, habitual walking speed to represent an ecologically valid PA break that 

could be performed in a working environment. Walking speed was determined during a 

familiarisation session prior to the first experimental trial began and this speed was kept 

consistent for all walking breaks. Walking intensity was assessed during each PA bout using 

the rating of perceived exertion (RPE) and HR.  

8-min walking breaks (8WALK). Sitting was interrupted every 120-min with an 8-min light 

intensity walk, using the same walking speed as previously described. Consequently, two 

breaks were completed, totalling 16-min of activity. Therefore, the total duration of PA 

performed in both walking break conditions was identical. This less frequent break strategy was 

based on recommendations that interventions to break up sitting must be feasible (5), which a 

high frequency breaks strategy may not be when translated into practise.  

 

Measurements 

All physiological data measurements were continuously acquired at 50 Hz using an analog-to-

digital convertor (PowerLab ML880, ADInstruments, Colorado Springs, Colorado, USA) and 

displayed in real time on a computer with commercially available software (LabChart Version 

7.0, ADInstruments).  

 

Middle cerebral artery blood flow velocity (MCAv). MCAv was used as a surrogate measure 

for CBF as the MCA accounts for 70-80% of the brain’s total perfusion (46). Continuous 

bilateral transcranial Doppler ultrasound (TCD) (ST3, Spencer Technologies, Redmond, WA, 

USA) was used to measure the left and right MCAv. A 2-MHz Doppler probe was positioned 

over the temporal window, located above the zygomatic arch and was secured using an 

adjustable headband (Marc 600 Headframe, Spencer Technologies). Each MCA was identified 

based on the signal depth, peak and mean blood flow velocity as previously described (54). 
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Once optimal signals had been obtained, the transducers were secured into position and the 

signal parameters were recorded to ensure within-subject consistency between tests. 

Additionally, photographs were taken of the probe positions as a reference for the acoustic 

window for subsequent visits. The sonographer had a between-day coefficient of variation of 

7.8% for the MCAv.   

Mean MCAv was calculated from the envelope of the velocity tracing using a weighted mean 

(1/3 maximum + 2/3 minimum) to account for the relative time spent in systolic and diastolic 

pressures (46). Supine and seated MCAv were acquired for 1-min. During the 1-min prior to 

each walking break (pre-walk) and throughout each subsequent walk, MCAv was continuously 

measured. Cerebrovascular conductance (CVC) was calculated by dividing MCAv by mean 

arterial pressure (MAP).  

 

Cerebrovascular carbon dioxide reactivity (CVR). Maintenance of adequate CBF is influenced 

by the brain’s ability to alter blood flow in response to changes in partial pressure of arterial 

carbon dioxide, termed CVR (56). Participants were instrumented with a face mask with a two-

way non-rebreathing valve (MLA1028, ADInstruments, Colorado Springs, Colorado, USA). A 

Douglas bag filled with a 5% carbon dioxide (CO2) mixture and fitted with a three-way valve, 

enabled the breathing circuit to be alternated between ambient air and the contents of the 

Douglas bag. Breath-by-breath CO2 was sampled using a calibrated gas analyser (Ml206, 

ADInstruments) and the pressure of end-tidal carbon dioxide (PETCO2) was calculated in 

LabChart with correction for the daily barometric pressure. After a 1-min baseline, participants 

were coached through a voluntary hyperventilation for 3-min or until PETCO2 was reduced to 

20 mmHg (whichever was achieved first). Immediately afterwards the valve on the Douglas 

bag was switched so participants inhaled the 5% CO2 mixture. Simultaneously, participants 

were instructed to return their respiratory rate to normal whilst breathing the 5% CO2 mixture 
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for 3-min. Baseline PETCO2 and MCAv were calculated as the mean of the 1-min prior to 

hyperventilation, while MCAv and PETCO2 data during 5% CO2 breathing was collected as 10-

sec averages for the entire 3-min period. Absolute and relative MCAv were then plotted against 

PETCO2 for each 10-sec of 5% CO2 breathing and CVR was subsequently quantified by linear 

regression (R2 value). Relative MCAv was calculated as the difference between baseline and 

5% CO2 MCAv divided by baseline MCAv (([5% CO2 MCAv-baseline MCAv]/ baseline 

MCAv) x 100%).  

Simultaneously, during the baseline and CO2 breathing measurements, arterial diameter and 

blood flow of the left common carotid artery (CCA) were acquired using a 10-MHz multi-

frequency linear array probe, attached to high resolution ultrasound machine (T3000; Terason, 

Burlington, MA, USA). Using ultrasound to assess the dilation of larger extracranial neck 

vessels during CO2 alterations provides another means to monitor reactivity and vessel dilation 

not assessable using TCD (3, 55). The extracranial arteries supplying the brain are also sensitive 

to changes in CO2 levels and therefore contribute to cerebrovascular CO2 regulation. Images 

were acquired in accordance with methodological guidelines (47) and data analysed as 

previously reported (21). To reduce any influence of turbulent flow on vascular responsiveness, 

the CCA was imaged at least two centimetres below the point of bifurcation. Data were used to 

determine the response of the CCA to elevations in PETCO2 by averaging 30-sec of baseline 

diameter and blood flow data and comparing that to the diameter and blood flow during the last 

30-sec of 5% CO2 breathing. All ultrasound measurements were completed by the same 

sonographer, who has a between-day intraobserver coefficient of variation of 3.5% for the CCA, 

in line with methodological guidelines (47).  

 

Cerebral autoregulation (CA). A second key factor determining adequate CBF is effective CA, 

which maintains CBF over a range of perfusion pressures (56). Participants completed a squat-
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stand test, involving repeated cycles of 5-sec of standing and 5-sec of squatting (0.1 Hz) for 5-

min to induce oscillations in blood pressure (BP) (12). MCAv and BP were continuously 

assessed. Data was analysed using transfer function analysis (TFA). TFA views CA as a linear 

control system where sinusoids at the input are transformed into sinusoids at output of the same 

frequency, however with a different amplitude (termed gain) and shifted in time (termed phase) 

(13). In the case of CA, BP is the input and MCAv the output, with CA as the regulator between 

the two (4). To ensure the statistical reliability of gain and phase values a coherence function is 

used (13). Coherence tests the linearity of the relationship between input and output and can be 

used to indicate whether data is reliable (4, 13). Data was processed and analysed in accordance 

with standardised TFA guidelines to produce values of gain, phase and coherence for three 

frequency domains: very low frequency (VLF: 0.02-0.07 Hz), low frequency (LF: 0.07-0.2 Hz) 

and high frequency (HF: 0.2-0.5 Hz) (13). TFA is a frequency-dependent phenomenon and 

these domains are within the frequency range CA is thought to operate. CA is viewed as a high-

pass filter as the regulation of CBF is effective in the low frequency range of BP oscillations, 

but not in the high frequency range due to the time delay in initiating cerebrovascular 

adaptations to the changes in perfusion pressure (4). CA therefore allows rapid BP changes to 

be transmitted to CBF, whereas slow BP changes are filtered (4). As a consequence, the three 

frequency ranges have different responses and are likely controlled by different mechanisms 

(60).  

Gain is a measure of how changes in BP are transmitted into MCAv (12). A low gain indicates  

efficient CA, with increases in gain consequently corresponding to reduced efficiency as for a 

given change in BP there are greater changes in MCAv (4). Phase describes the temporal 

relationship between changes in BP and MCAv (12). Waveforms that are in sync are referred 

to as ‘in phase’, while if these waveforms are displaced from each other it describes a phase 

shift. Phase shift is considered a surrogate measure for the time delay of the autoregulatory 
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response, with an increase in phase indicating a more efficient CA (4). Coherence describes the 

linearity of the relationship between the changes in MCAv and BP, with a coherence value 

approaching one indicating a linear relationship (4, 12). Coherence values were used to accept 

the validity of gain and phase estimates, with cut-off values for inclusion set at 0.4 in accordance 

with published guidelines (13). Analyses yielding coherence values lower than this cut-off 

value were excluded. As recommended, gain was normalised to control for possible baseline 

differences in BP and MCAv between conditions, therefore normalised gain was used during 

the interpretation of data (4, 13).  

 

Hemodynamics. Participants were fitted with a photoplethysmographic cuff on the index or 

middle finger of the right hand (Finometer model 1, Finapres Medical Systems BV, Amsterdam, 

The Netherlands) and a 3-lead electrocardiogram to continuously assess MAP and HR 

throughout measurements.  

 

Statistical analyses 

Data was analysed using statistical software (SPSS Version 22.0, IBM Corporation, Somers, 

NY, USA), with significance accepted as p≤0.05. Results are presented as means±standard error 

(SE). For each condition, the change in all outcomes parameters was calculated (4-hr–baseline, 

Δ). To assess differences between conditions, parameters were analysed using one-factor 

general linear mixed model with baseline values as a covariate. Differences in MCAv and HR 

between pre-walk and during each walk were analysed using paired samples t-tests. Post-hoc 

analyses were performed using the least significant difference (LSD) method.   
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RESULTS 

Descriptive statistics are shown in Table 1.  

 

Intervention effects  

Cardiorespiratory and haemodynamic measures. 

There were no significant main effects for the change in supine (p=0.78) or seated (p=0.33) 

MAP or the change in supine (p=0.90) or seated (p=0.82) HR (Table 2). Additionally, no 

differences in the change in supine (p=0.30) or seated (p=0.61) PETCO2 were observed (Table 

2).  

 

Cerebral blood flow. 

Values for MCAv are presented in Table 2. A significant main effect was observed for the 

change in supine MCAv (p=0.048), with post hoc analysis revealing a greater change in MCAv 

during SIT compared to 2WALK (p=0.02; Figure 2a), but not between SIT and 8WALK 

(p=0.14). Supine CVC however showed no significant main effect (p=0.09; Figure 2c). Seated 

MCAv showed a significant main effect (p=0.01), with significantly reduced MCAv observed 

in both SIT (p=0.01) and 8WALK (p=0.047) compared to 2WALK (Figure 2b). Seated CVC 

also differed significantly between conditions (p=0.01), with post hoc analysis revealing the 

change in 2WALK was significantly different compared to SIT (p=0.03; Figure 2d). 

 

Cerebrovascular carbon dioxide reactivity.  

Values of linear regression for MCA CVR are presented in Table 3. No significant main effect 

(p=0.30) was observed for the change in CVR. There was also no significant main effect 

(p=0.88) for the change in CCA diameter between baseline or during 5% CO2 breathing for 

each condition (SIT Baseline: -0.00±0.01 mm, 4hrs: -0.01±0.01 mm; 2WALK Baseline: 
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0.01±0.01 mm, 4hrs: -0.00±0.02 mm; 8WALK Baseline: -0.01±0.01 mm, 4hrs: -0.02±0.01 

mm). Similarly, there was no significant main effect (p=0.28) for the change in CCA blood 

flow between baseline or during 5% CO2 breathing for each condition (SIT Baseline: 1.22±0.95 

ml.s-1, 4hrs: -0.39±0.48 ml.s-1; 2WALK Baseline: 1.24±0.48 ml.s-1, 4hrs: -1.25±1.26 ml.s-1; 

8WALK Baseline: -0.51±0.82 ml.s-1, 4hrs: -0.10±1.14 ml.s-1). 

 

Cerebral Autoregulation.  

Mean values for coherence for each of the frequency domains were: VLF 0.5; LF 0.6; HF 0.4. 

Table 4 presents values for phase, gain and normalised gain for each domain. A significant main 

effect was observed in the VLF for the change in phase (p=0.047) and gain (p=0.001). For 

phase, post hoc analyses showed the change in SIT was significantly lower than the change in 

2WALK (p=0.02). For gain, the change in 8WALK was significantly less compared to the 

change in 2WALK (p=0.01). In the LF the main effect for normalised gain approached 

significance (p=0.05). No significant main effect was observed in the HF for any parameters 

(p>0.05). 

 

Physiological responses during walking breaks 

Mean treadmill speed for each condition and every walking break was 3.6 km/h at an RPE of 

8.6.  

 

2WALK. 

Walking breaks increased MCAv in seven out of the eight breaks. The increased MCAv was 

only significant at 60-min, with MCAv during walking 1.91 cm.s-1 higher than prior to the 

walking bout (Pre Walk: 55.7±2.4 cm.s-1; Walking: 57.8±2.3 cm.s-1, p=0.02). HR also 
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significantly increased during each walking break, with an average increase of 33 bpm (Pre 

Walk: 61±2 bpm; Walking: 94±2 bpm, p<0.001).  

 

8WALK. 

Both walking breaks significantly increased MCAv. At 120-min MCAv increased by 1.96 cm.s-

1 (p=0.02) while at 240-min a larger increase of 2.23 cm.s-1 was observed (p=0.004). Each break 

also significantly increased HR, with an average increase of 37 bpm (Pre Walk: 69±3 bpm; 

Walking: 96±6 bpm, p<0.001).   
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DISCUSSION 

This study demonstrates that in healthy desk workers, prolonged, uninterrupted sitting causes a 

decrease in MCAv. Importantly, short duration, regular walking breaks (2WALK), rather than 

less frequent, longer duration walking breaks (8WALK), prevented the impairment of MCAv 

associated with uninterrupted sitting. Similarly, the frequent walking break strategy improved 

CA; an important factor in cerebrovascular function. In contrast, neither prolonged sitting nor 

walking breaks influenced CVR. Our results indicate that prolonged uninterrupted sitting 

impairs CBF, whilst taking regular PA breaks has positive effects on both CBF and CA. The 

promotion of active break strategies for those who engage in long periods of sitting may 

therefore have important clinical implications.  

 

Uninterrupted sitting induced a decline in MCAv of 1.4-3.2 cm.s-1. Translating this observation 

to the age-related decline in MCAv of 0.76 cm.s-1 per year (1), this suggests the reductions 

observed following a one-off bout of uninterrupted sitting may equate to 2-4 years of age-

related decline, albeit likely transient. Nonetheless, repeated exposure to this type of SB may 

have important implications for long-term cerebrovascular health. Indeed, chronically 

sedentary males (not regularly physically active) exhibit a 9.1 cm.s-1 lower mean MCAv 

compared to their endurance trained counterparts (1). Interestingly, this observation aligns with 

our finding, in that breaking up sitting with frequent, short duration walking breaks (2WALK) 

prevented the sitting-induced decline in MCAv. This benefit was not observed in the less 

frequent, longer duration walking break condition (8WALK) despite larger increases in MCAv 

during the walking breaks. Taken together this implies the frequency of the breaks may be more 

important than the magnitude of the increase in MCAv during the breaks. This finding supports 

previous work showing, when directly compared to a single activity bout, regular activity 
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breaks during sitting enhances postprandial glycaemia and insulinemia (31). The importance of 

the frequency rather than the duration of PA is therefore replicated in our results. 

 

Frequent walking breaks to interrupt sitting also enhanced markers of cerebrovascular function. 

Our results suggest the 2WALK condition significantly improved CA, as the change in VLF 

phase was greater compared to uninterrupted sitting, implying enhanced buffering capacity of 

CA with frequent activity breaks. This adds further support to the hypothesis that the frequency 

of breaking up sitting is more important than the break duration. The acute effects of PA breaks 

on CA has not been previously assessed, however some research has explored the effects of 

exercise. Static handgrip exercise for two minutes did not affect CA (30); whilst exhaustive 

cycling impairs CA (29). These findings indicate that different modalities, intensities and 

durations of exercise have varied effects on CA. Whilst the light walking breaks in our study 

are not directly comparable to exercise, our findings show that CA can be modified by low 

intensity PA and that this response is influenced by the frequency this activity.   

 

CVR did not differ across the three conditions. Previous work has shown acute improvements 

in CVR following both moderate and strenuous intensity cycling for 50-min (34). In contrast, 

in our study the walking break interventions had no effect on CVR. A potential explanation for 

our observation is that we used light intensity, short duration PA interventions rather than 

exercise per se, the stimulus may therefore not have been large enough to alter CVR. Despite 

the decrease in MCAv following uninterrupted sitting, this did not manifest into a dysfunction 

in CVR, as has been observed for peripheral vascular function (48). This suggests the 

cerebrovasculature may have a greater functional capacity to resist the deleterious vascular 

effects of sitting and that more pronounced changes in CBF are required to mediate changes in 
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response to SB. Indeed, this may be expected based on the greater importance of the brain as 

an organ compared to the periphery (32).  

 

There was no difference in the change in MAP between sitting and 2WALK, thus in line with 

MCAv, cerebrovascular conductance (CVC) was significantly higher following 2WALK 

compared to prolonged sitting, demonstrating changes in BP do not impact out findings. 

Instead, the neural stimulation of the cerebrovasculature may explain our cerebrovascular blood 

flow and function findings. The cerebral vasculature is extensively innervated by sympathetic 

fibres (28) and the progressive sympathoexcitation with ageing is suggested to contribute to 

age-associated decreases in CBF (1). Prolonged sitting elevates muscle sympathetic nerve 

activity (35), which may induce systemic vasoconstrictor effects, in turn inducing cerebral 

vasoconstriction and lower blood flow. The preservation of blood flow and function with 

frequent walking breaks may relate to cholinergic activity as cerebral blood vessels are also 

innervated by cholinergic fibres (56). In animals, cholinergic fibres are stimulated during 

walking, contributing to increased CBF (45, 50). Evidence in humans also supports that 

cholinergic vasodilation contributes to increased CBF during exercise, as acetylcholine 

blockade abolishes the exercise-induced increase in MCAv (44). It is therefore possible that in 

this study the more frequent walks led to a more sustained cholinergic activation, maintaining 

cerebral vasodilation and subsequently MCAv.   

 

An alternative explanation for the decline in MCAv after uninterrupted sitting may relate 

directly to the function of cerebrovascular endothelial cells, which contribute to the regulation 

of CBF (49). Elevated levels of tissue plasminogen activator and Von Willebrand factor, 

markers of endothelial dysfunction, are associated with reduced CBF in older adults (42). Acute  

uninterrupted sitting induces peripheral endothelial dysfunction (36, 37, 48) therefore a similar 
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process may be present in cerebral arteries. Changes in cerebral glycaemic regulation may also 

contribute to sitting-induced reductions in MCAv, as the brain is highly sensitive to 

perturbations in circulating glucose levels (53). Prolonged sitting increases postprandial 

glycemia (15, 31), which can cause microvascular damage, impair endothelial function and 

reduce CBF (53). In this study, prolonged sitting may have elevated circulating glucose levels, 

subsequently reducing MCAv; whilst the frequent walking breaks may have prevented this 

hyperglycaemia, in turn maintaining MCAv. Future studies are warranted to understand the 

underlying mechanisms of decreased CBF during prolonged sitting and how physical activity 

breaks prevent these effects.  

 

Workplace Application. As 65-75% of office workers’ hours are spent sitting, the workplace 

has been identified as a key setting to reduce SB. However, as outlined by Buckley et al. (10), 

many health promotion and PA interventions aim to reduce SB by targeting moderate to 

vigorous PA, which is unlikely to be achievable within the constraints of a workplace. The 

frequent, light intensity walking break strategy used in our study is in line with recent workplace 

guidelines advising increasing light activity during working hours and regularly breaking up 

seated work (10). Importantly, accumulating evidence suggests that light intensity PA is 

beneficially associated with biomarkers of cardiometabolic health and may reduce mortality 

risk(18). Collectively this indicates that sedentary individuals should be encouraged to engage 

in PA of low intensities to confer improvements to health; such as by using the strategy 

employed in this study by interrupting prolonged sitting with light intensity walking breaks.   

 

Limitations. Our study assessed the responses to a short sitting period, however of greater 

ecological interest would be examining the chronic responses to sitting. Whilst within an 

experimental visit we controlled the activities that participants completed during sitting so that 



20 

 

they were of a low-cognitive demand, these activities were not matched between visits. It is 

therefore possible that the activities they performed while seated differed between visits which 

may have influenced cerebrovascular responses. The use of TCD to assess MCAv and 

cerebrovascular function is associated with known limitations, including the inability to 

measure actual blood flow (54), the assumptions that measures from the MCA are 

representative of other cerebral vessels (2), and that MCA diameter is unaltered during varying 

levels of CO2 (46). By recording the signal parameters and photographically recording the TCD 

probe placement, it was ensured as closely as possible the probe was in the same location and 

at the same angle for each visit; small variations may have occurred, however our coefficient 

of variation was 7.8% indicating good reproducibility. The analysis of CA using TFA is a 

developing method and lacks references values (13). Therefore whilst current assessment and 

analysis guidelines were adhered to (13), future research is required to fully understand the 

clinical value of our results. 

 

Conclusion and implications 

For the first time this study demonstrates that in healthy desk workers prolonged, uninterrupted 

sitting impairs CBF, whilst these reductions are offset when frequent, short duration walking 

breaks are incorporated. These observations may have clinical importance for both cognition 

and disease risk. Acutely cognitive performance declines following transient carotid artery 

occlusion that decreases CBF (23), but increases following pharmacologically elevated CBF 

(16). Given that UK office workers report sitting at work for 6.3-hr (25), reductions in CBF 

may have important ramifications for workers’ productivity. More importantly, chronic 

reductions in CBF is a risk factor for cognitive impairment (40), is associated with 

cerebrovascular diseases such as Alzheimer’s disease and dementia (41, 43, 58, 59) and 

correlates with cognitive dysfunction in Alzheimer’s disease (38). Consequently, in the long 
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term the repeated exposure to sitting-induced decreases in CBF could cause chronic 

downregulation of CBF and therefore have large implications in the development of such 

diseases; which has previously been suggested (53). The high prevalence of SB in these 

cerebrovascular disease populations further highlights the relevance of our findings. The 

maintenance of CBF using frequent walking breaks to interrupt sitting therefore represents a 

protective mechanism against disease risk. Indeed, in a nondemented cohort, greater CBF was 

associated with a decreased chance of dementia development and less cognitive decline over a 

6.5 year follow-up (40). Future work is needed to better understand the potential relation 

between SB and development of cerebrovascular diseases.   
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FIGURE CAPTIONS  

 

Figure 1: Experimental design for the three test conditions, completed in a randomised order, 

on three separate days. a) 4-hr uninterrupted sitting, b) Sitting with 2-min treadmill 

walking breaks every 30-min, c) Sitting with 8-min treadmill walking breaks every 

120-min. MCAv- middle cerebral artery blood flow velocity; CVR- cerebrovascular 

carbon dioxide reactivity; CA- cerebral autoregulation.  

 

Figure 2: Change in middle cerebral artery blood flow velocity (MCAv) and cerebrovascular 

conductance (CVC) in the supine (a, c) and seated (b, d) positions measured at 

baseline and after four hours of each experimental condition with control for baseline 

blood flow and conductance. SIT- uninterrupted sitting; 2WALK- 2-min walking 

breaks; 8WALK- 8-min walking breaks. Error bars= ±SE. * Significant difference 

between conditions (p<0.05).  
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TABLES 

 

Table 1: Descriptive characteristics, self-reported physical activity scores and total sitting time 

of participants (n=15). 

 

 Mean±SD 

Age (years) 35.8±10.2 

Body Mass (kg) 74.5±11.9 

Height (cm) 170.8±8.9 

Body Mass Index (kg.m-2) 25.5±3.2 

Physical Activity Score (MET-minutes/week) 4524.3±2098.7 

Sitting Time Per Week Day (Hours) 8.2±2.2 

Sitting Time Per Weekend Day (Hours) 6.0±1.9 

Sitting Time Per Week (Hours) 53.2±12.4 
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Table 2: For each intervention, middle cerebral artery blood flow and cardiorespiratory measures at baseline, four hours and the overall change 

(∆) with statistically adjusted baseline covariate control (Mean±SE). 

 

 

SIT- uninterrupted sitting; 2WALK- 2-min walking breaks; 8WALK- 8-min walking breaks; MCAv- middle cerebral artery blood flow velocity; 

CVC- cerebral vascular conductance; MAP- mean arterial pressure; HR- heart rate; PETCO2- pressure of end-tidal carbon dioxide.  

# Delta change values expressed with statistically adjusted baseline covariate control.  

* Significantly different to 2WALK (p<0.05). 

 

 SIT 2WALK 8WALK 

Baseline 4 Hours ∆# Baseline 4 Hours ∆# Baseline 4 Hours ∆# 

Supine position    

MCAv (cm.s-1) 58.8±2.0 55.5±2.1 -3.2±1.2* 58.6±2.6 59.2±2.7 0.6±1.5 58.4±2.7 57.3±2.2 -1.2±1.0 

CVC (cm.s-1.mmHg-1) 0.72±0.03 0.67±0.03 -0.06±0.02 0.73±0.03 0.71±0.03 -0.02±0.02 0.73±0.04 0.70±0.04 -0.03±0.02 

MAP (mmHg) 83±2.8 84±2.5 2.3±1.8 80±1.9 84±2.3 2.6±1.8 81±2.3 83±2.9 1.8±2.3 

HR (bpm) 59±3.4 56±2.4 -2.2±1.7 58±2.6 55±3.4 -3.1±3.0 56±2.3 55±2.1 -2.2±2.1 

PETCO2 (mmHg) 41.6±1.3 40.7±1.6 -0.9±0.8 42.6±1.5 41.3±1.7 -1.2±1.2 41.0±1.5 41.5±1.3 0.4±0.9 

Seated position    

MCAv (cm.s-1) 55.4±2.4 53.8±1.6 -1.4±1.8* 56.4±2.0 56.3±2.4 1.1±2.4 53.7±2.5 54.3±2.6 -0.8±2.7* 

CVC (cm.s-1.mmHg-1) 0.62±0.03 0.59±0.03 -0.04±0.02* 0.65±0.03 0.64±0.04 0.01±0.03 0.61±0.03 0.62±0.04 -0.01±0.03 

MAP (mmHg) 90±2.4 92±2.8 2.8±2.0 88±2.8 89±2.7 0.9±1.7 89±2.7 90±2.6 0.7±1.8 

HR (bpm) 57±2.8 58±2.5 0.6±2.1 57±2.8 58±3.5 1.0±2.8 56±2.4 56±2.6 -0.4±2.6 

PETCO2 (mmHg) 37.6±1.3 37.8±1.4 -0.1±1.1 38.4±1.8 37.4±1.3 -0.8±0.7 38.2±1.6 37.1±1.4 -1.0±1.0 
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Table 3: R2 values of linear regression of cerebrovascular carbon dioxide reactivity (CVR) for each intervention at baseline, four hours and the 

overall change (∆) with statistically adjusted baseline covariate control (Mean±SE). 

 

Relatively high R2 values confirm the linearity of the response. 

SIT- uninterrupted sitting; 2WALK- 2-min walking breaks; 8WALK- 8-min walking breaks. 

# Delta change values expressed with statistically adjusted baseline covariate control. 

  

 SIT 2WALK 8WALK 

Baseline 4 Hours ∆# Baseline 4 Hours ∆# Baseline 4 Hours ∆# 

CVR 0.83±0.03 0.83±0.03 0.00 0.80±0.04 0.79±0.04 -0.02 0.81±0.03 0.84±0.03 -0.03 
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Table 4: For each intervention, cerebral autoregulation (CA) estimates of phase, gain and normalised gain (Gainn) at baseline, four hours and 

the overall change (∆) with statistically adjusted baseline covariate control (Mean±SE). 

 

SIT- uninterrupted sitting; 2WALK- 2-min walking breaks; 8WALK- 8-min walking breaks; VLF- very low frequency; LF- low frequency; HF- 

high frequency  

# Delta change values expressed with statistically adjusted baseline covariate control. 

* Significantly different to SIT (p<0.05).  

$ Significantly different to 2WALK (p<0.05). 

 

SIT 2WALK 8WALK 

Baseline 4 Hours ∆# Baseline 4 Hours ∆# Baseline 4 Hours ∆# 

VLF Phase (degrees) 
 

39.16±4.64 35.83±5.70 -3.38±2.82 41.93±6.19 46.91±7.49 4.47±4.07* 48.40±5.03 42.82±5.21 -2.03±8.20 

VLF Gain (cm.s-1.mmHg-1) 0.52±0.04 0.49±0.02 -0.04±0.03 0.54±0.05 0.47±0.04 -0.10±0.05 0.47±0.03 0.49±0.03 -0.02±0.04$ 

VLF Gainn (%.mmHg-1) 0.91±0.09 0.88±0.05 -0.02±0.07 1.04±0.10 0.86±0.09 -0.23±0.08 0.86±0.07 0.91±0.05 -0.04±0.06 

LF Phase (degrees) 24.34±2.49 24.94±3.46 -1.18±2.74 23.52±3.28 22.78±4.49 -2.67±3.75 25.26±2.54 28.66±4.76 1.37±3.27 

LF Gain (cm.s-1.mmHg-1) 0.69±0.04 0.66±0.03 -0.05±0.03 0.78±0.06 0.76±0.07 0.04±0.05 0.71±0.06 0.86±0.10 0.17±0.11 

LF Gainn (%.mmHg-1) 1.21±0.09 1.20±0.07 -0.12±0.10 1.43±0.10 1.36±0.13 0.04±0.10 1.27±0.09 1.52±0.22 0.30±0.19 

HF Phase (degrees) 12.58±5.07 8.22±6.15 -2.39±6.80 5.95±3.73 9.52±6.69 6.58±6.14 8.04±3.42 10.15±5.04 -0.69±5.79 

HF Gain (cm.s-1.mmHg-1) 0.70±0.04 0.69±0.03 0.01±0.04 0.78±0.06 0.72±0.06 0.02±0.04 0.68±0.08 0.86±0.10 0.13±0.06 

HF Gainn (%.mmHg-1) 1.20±0.06 1.24±0.06 0.05±0.07 1.44±0.11 1.29±0.10 -0.03±0.07 1.22±0.12 1.53±0.18 0.27±0.16 


