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ABSTRACT
Weak gravitational lensing depends on the integrated mass along the line of sight. Baryons
contribute to the mass distribution of galaxy clusters and the resulting mass estimates from
lensing analysis. We use the cosmo-OWLS suite of hydrodynamic simulations to investigate
the impact of baryonic processes on the bias and scatter of weak lensing mass estimates of
clusters. These estimates are obtained by fitting NFW profiles to mock data using Markov
Chain Monte Carlo techniques. In particular, we examine the difference in estimates between
dark matter-only runs and those including various prescriptions for baryonic physics. We find
no significant difference in the mass bias when baryonic physics is included, though the overall
mass estimates are suppressed when feedback from active galactic nucleus is included. For
lowest-mass systems for which a reliable mass can be obtained (M200 ≈ 2 × 1014 M�), we
find a bias of ≈− 10 per cent. The magnitude of the bias tends to decrease for higher mass
clusters, consistent with no bias for the most massive clusters which have masses comparable
to those found in the CLASH and HFF samples. For the lowest mass clusters, the mass bias is
particularly sensitive to the fit radii and the limits placed on the concentration prior, rendering
reliable mass estimates difficult. The scatter in mass estimates between the dark matter-only
and the various baryonic runs is less than between different projections of individual clusters,
highlighting the importance of triaxiality.

Key words: gravitational lensing: weak – galaxies: clusters: general – dark matter.

1 IN T RO D U C T I O N

In the 1930s, Fritz Zwicky discovered that most of the mass in
galaxy clusters is in the form of dark matter (Zwicky 1937). After
the advent of X-ray telescopes, it was established that X-ray emitting
plasma comprises most of the normal luminous mass in clusters.
Our current best estimate is that typical clusters are composed of
more than 80 per cent dark matter, about 17 per cent plasma, and at
most a few per cent in the form of stars in galaxies (e.g. Allen,
Evrard & Mantz 2011).

Since their properties provide important tests of our cosmological
model and our understanding of structure formation, galaxy clusters
are targets of many ongoing and upcoming surveys. Clusters are also
test beds for investigating the large-scale properties and physics

� E-mail: bel072000@utdallas.edu (BEL); lindsay.king@utdallas.edu (LJK)

of dark matter and the more complex physics of luminous matter
(Randall et al. 2008).

Estimating cluster masses from survey observables is crucial to
using clusters as cosmological probes (for a review of cluster ob-
servations in the context of cosmology see Allen et al. 2011). The
two key steps in this are relative calibration of cluster masses and
absolute calibration of cluster masses. The former involves identi-
fying cluster observables from multiwavelength data that provide a
low-scatter proxy for cluster mass. X-ray measurements, for exam-
ple, show a scatter of 10 per cent (e.g. Kravtsov, Vikhlinin & Nagai
2006). Even if only a small fraction of clusters have associated
low-scatter mass-proxy measurements, constraints on cosmology
are improved by a factor of a few (e.g. Wu et al. 2011). For ab-
solute mass calibration, weak gravitational lensing measurements
are critical. Gravitational lensing, which uses strongly and weakly
lensed background galaxies, is well-established as a tool to map
and weigh galaxy clusters. Lensing enables masses to be estimated
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irrespective of whether the matter is luminous or dark, and without
assumptions about a cluster’s dynamical state.

Navarro, Frenk and White (1996) used computer simulations of
cosmological structure formation to determine that haloes formed
from cold dark matter (CDM) are well described by a particular
family of density profiles known as the NFW profile. Due to the
computational intensity of modelling baryons, many cosmological
simulations include only the gravitational forces between particles.
Studies of such dark matter-only clusters have shown that weak lens-
ing masses typically underestimate the true mass by ≈5–10 per cent,
with the bias improving for higher mass (Becker & Kravtsov 2011;
Oguri & Hamana 2011; Bahé, McCarthy & King 2012). Analyses
of more recent, high-resolution simulations have shown that the
Einasto profile (Einasto 1965) tends to be a better fit to simulated
clusters, particularly in the inner regions. However, given the fact
that observers typically exclude the inner, strong lensing region, the
Einasto profile only slightly improves the weak lensing mass bias
(Henson et al. 2017). More recently, simulations of structure forma-
tion have either included baryons and their more complex physics,
or they have extracted massive haloes from dark matter-only sim-
ulations and re-simulated them with baryonic processes. Although
dark matter dominates the mass of clusters, hydrodynamic simu-
lations have shown that baryons can have a significant impact on
the structure of low-mass clusters and result in fewer high-mass
clusters (Martizzi et al. 2012; Bryan et al. 2013; Cusworth et al.
2014; Velliscig et al. 2014, 2015; Henson et al. 2017; Mummery
et al. 2017). Simulations neglecting active galactic nucleus (AGN)
feedback suffer from overcooling, since in the absence of efficient
heating the central regions of such clusters have overly efficient heat
dissipation, resulting in much higher stellar fractions than observed
(e.g. Borgani & Kravtsov 2011).

Constraints on the nature and properties of dark energy may be
derived from a census of the number of clusters as a function of
mass and redshift. Often, the results of surveys are interpreted by
comparison with cosmological simulations carried out with only
dark matter. However, recent work with hydrodynamical simula-
tions has shown that cosmological parameter estimations calculated
from either the halo mass function (Cusworth et al. 2014; Vellis-
cig et al. 2014; Bocquet et al. 2016) or the matter power spectrum
(Semboloni et al. 2011; van Daalen et al. 2011) are sensitive to
the presence of baryons at the per cent level. Therefore, in the era
of precision cosmology, baryons must be accounted for. While the
presence of baryons is sub-dominant, we consider the impact they
have on the determination of cluster mass from gravitational lensing
studies.

In this paper, we assess how baryonic physics modifies the dis-
tribution and estimation of cluster mass with respect to clusters
composed of only dark matter. We consider how the impact of
baryons on cluster mass estimation compares with intrinsic factors
such as cluster shape and choices of fit radius and priors on cluster
parameters during data analysis.

In Section 2, we describe the NFW density profile and gen-
eral weak lensing formalism. In Section 3, we describe the cosmo-
OWLS (Le Brun et al. 2014) hydrodynamical simulation suite from
which our cluster sample is extracted, as well as our process for
producing mock weak lensing observations of these clusters. We
then discuss our methods of mass estimation in Section 4. We use
a Markov Chain Monte Carlo (MCMC) algorithm to compute the
posterior probability distribution for the lensing M200 of individual
clusters. These distributions then serve as input to an additional
MCMC step to calculate the bias and scatter of the mass estimates.
In Section 5, we present mass estimations of our cluster sample for

two different noise levels and three inner fit radii. We also show the
sensitivity of cluster mass estimation on the concentration prior, and
additionally the relative uncertainty of parameter estimation due to
prescriptions of baryonic physics as compared to projection effects.
We discuss the results and future work in Section 6.

2 N FW DENSI TY PROFI LE AND WEAK
LENSI NG

2.1 NFW density profile

As is common in weak lensing surveys, we obtain mass and con-
centration estimates using the spherically symmetric NFW profile
described in Navarro et al. (1996). This allows a straightforward
comparison between the true parameters of the simulated clusters
and those derived from lensing observables. The NFW profile has
analytic expressions for the convergence and shear. It is given as a
function of radius, r, as

ρNFW(r) = δcρc

(r/rs)(1 + r/rs)2
, (1)

where ρc is the critical density of the Universe, and the parameters
δc and rs are the cluster’s central overdensity and the scale radius,
respectively. We may parametrize the profile with the dimensionless
concentration parameter, c, which satisfies

δc = 200

3

c3

ln (1 + c) − c/(1 + c)
(2)

and the radius r200 = rs x c, which defines a sphere within which
the average density is 200 x ρc(z). The mass contained within this
sphere, M200, is then given by

M200 = M(r < r200) = 800π

3
ρc(z)r3

200. (3)

M500 is similarly defined as the mass contained within a sphere in
which the average density is 500 x ρc(z). In this form, the NFW
profile has two parameters. It is possible to reduce this to a one-
parameter problem by utilizing a power-law mass–concentration
(M–c) relation. However, studies have shown that M–c relations
are sensitive to baryons, since the inclusion of efficient feedback
reduces the NFW concentration and the amplitude of the M–c re-
lation (e.g. Duffy et al. 2010; Mummery et al. 2017). We therefore
allow the concentration parameter to vary freely in order to capture
the changes in concentration resulting from the inclusion of bary-
onic physics. It may also be possible to include an M–c relation
prior broad enough to capture the impact of baryons, but we do not
attempt this in this study.

2.2 Weak lensing formalism

We consider the cluster as a 2D lens, where the surface mass density
can be obtained by integrating the 3D density along the line of sight,

�(�r) =
∫ ∞

−∞
ρ(�r, z)dz , (4)

where �r is a position vector in the lens plane. In the standard
weak lensing notation, κ(�r) denotes the convergence, i.e. the di-
mensionless surface mass density of the lens. It is defined as
κ(�r) = �(�r)/�c,

�c = v2
c

4πG

Ds

DdDds
, (5)
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where �c is the critical mass density (Subramanian & Cowling
1986). Dd, Ds, and Dds are the angular diameter distances from
the observer to the lens, the observer to the source, and the lens
to the source, respectively. vc is the speed of light and G is the
gravitational constant. The convergence is related to the deflection
potential, ψ(�r), through the Poisson equation, ∇2ψ = 2 κ .

The deflection potential is also related to the complex-valued
shear, through γ = γ 1 + iγ 2 = ψ , 11 − ψ , 22 + iψ , 12 where the
indices denote the derivatives with respect to the position in the lens
plane. Noting that κ and γ are combinations of second derivatives
of the potential, the convergence and shear may easily be related to
each other by use of the Fourier transform,

γ̃ =
(

k̂2
1 − k̂2

2

k̂2
1 + k̂2

2

κ̃,
2k̂1k̂2

k̂2
1 + k̂2

2

κ̃

)
, (6)

where γ̃ and κ̃ respectively denote the shear and convergence in
Fourier space, and k̂i denotes the components of the correspond-
ing wave vector. For the case of the spherical NFW profile, the
convergence and shear may be calculated analytically (Bartelmann
1996).

In the regime κ , γ � 1, the lensing signal is found by measuring
the distortion by the deflector of the source galaxy ellipticities. We
use the complex-valued ellipticity ε with modulus |ε| = (1 − q)/(1
+ q), where q is the axis ratio. The locally linearized relationship
between the intrinsic source ellipticity, εs, and the observed image
ellipticity, ε, is

ε = εs + g

1 + g∗εs
, (7)

where g = γ /(1 − κ) is the reduced shear, and g∗ indicates the
complex conjugate of g. Since the galaxies are randomly distributed,
〈εs〉 = 0, hence the locally averaged image ellipticities are related
to the reduced shear through

〈ε〉 ≈ 〈g〉 + 〈εs〉 = 〈g〉 . (8)

3 SI M U L AT I O N S

3.1 Cosmo-OWLS

N-GENICCosmo-OWLS, described in Le Brun et al. (2014), is a suite
of large-scale hydrodynamical simulations consisting of periodic
boxes of 400 h−1 comoving Mpc on a side. The simulations use
initial conditions based on maximum likelihood parameter values
derived from either Planck (Planck Collaboration et al. 2014) or
WMAP7 data (Komatsu et al. 2011). In this work, we use runs
produced with the WMAP7 cosmology, where {
m, 
b, 
�, σ 8,
ns, and h} = {0.272, 0.0455, 0.728, 0.81, 0.967, and 0.704}. Each
run contains 2 × 10243 particles with masses ≈3.75 × 109 h−1 M�
and ≈7.54 × 108 h−1 M� for dark matter particles and baryons,
respectively. The prescription of Eisenstein & Hu (1999) was used
to compute the transfer function, and the software was used to
generate the initial conditions.

The simulations were run using a version of the Lagrangian
TreePM-SPH code GADGET3 (last described in Springel 2005). The
haloes were identified after running an on-the-fly friends-of-friends
(FOF) algorithm with a linking length of 0.2 times the mean inter-
particle separation. The spherical overdensity masses and radii for
each of the FOF haloes were calculated using spheres centred on
the halo’s most-bound particle.

We use four of the six runs produced by Le Brun et al. (2014), all
of which used identical initial conditions. The models we use are

(i) DMO: a dark matter-only run that simulates only the gravita-
tional interaction between particles.

(ii) REF: in addition to gravity, this run also implements a UV/X-
ray photoionizing background (Haardt & Madau 2001), element-
by-element radiative cooling (Wiersma, Schaye & Smith 2009a),
star formation (Schaye & Dalla Vecchia 2008), stellar evolution
and chemical enrichment (Wiersma et al. 2009b), and kinetic wind
from supernova feedback (Dalla Vecchia & Schaye 2008).

(iii) AGN 8.0 and 8.7: these runs implement all of the processes
included in REF with the addition of the growth of supermassive
black holes (BH) and AGN feedback (Springel, Di Matteo & Hern-
quist 2005; Booth & Schaye 2009). During the simulation, FOF
haloes with at least 100 dark matter particles were seeded with
a BH with an initial mass of 0.001 times the initial gas particle
mass. The BHs were allowed to grow either through mergers with
other BH particles or by scaled Eddington-limited Bondi–Hoyle–
Lyttleton accretion as described in Booth & Schaye (2009). Initially,
the BHs store this additional energy until they gain enough mass so
that they are able to increase the temperature of neighbouring gas
particles by a pre-defined temperature, Theat. This temperature is
set to Theat = 108.0 K and Theat = 108.7 K for the AGN 8.0 and
8.7 models, respectively. There is additionally an AGN 8.5 model
with Theat = 108.5 K, but we do not analyse this in this work.

In comparison with Henson et al. (2017), who studied one im-
plementation of baryonic physics in addition to the DMO run, we
consider three such implementations. This allows us to consider a
wide range of possibilities for the impact of AGN feedback and
other physical processes.

Le Brun et al. (2014) found that several observables, such as vari-
ous global hot gas properties and the density profiles of the ICM, are
bracketed by AGN 8.0 and AGN 8.5 when assuming the WMAP7
cosmology that is adopted here. 1 The AGN 8.7 run is a somewhat
extreme model, yielding significantly lower gas mass fractions than
observed. Thus, AGN 8.0 and AGN 8.7 encompass the possible
cluster observables. REF omits AGN feedback entirely, resulting in
clusters with extremely high central densities from cooling. AGN
8.7 and REF are included in this study for comparison as different
extremes of AGN feedback. The cosmo-OWLS suite has been em-
ployed to study, the alignments of baryonic components with dark
matter haloes (Velliscig et al. 2015), the effects of baryon physics
on large-scale structure (Mummery et al. 2017), the implications of
the Planck CMB best-fitting parameters on the thermal Sunyaev–
Zel’dovich (tSZ) effect power spectrum (McCarthy et al. 2014), and
the tSZ-lensing cross-correlation (Hojjati et al. 2015).

3.2 Cluster selection and matching

The haloes included in our sample were selected by first extracting
all the clusters above 1014 M� at z = 0.25 from the DMO run in
boxes 30 Mpc on a side. The size of the extracted boxes was selected
to include correlated large-scale structure (e.g. filaments connected
to the clusters). Both Becker & Kravtsov (2011) and Bahé et al.
(2012) found little variation in weak lensing mass estimates for
LOS integration lengths from 10 h−1 Mpc to 50 h−1 Mpc for the
mass range we consider here. Much longer integration lengths to
include uncorrelated large-scale structure would require the use of
ray-tracing algorithms, which is beyond the scope of this work.

1Note that in the Planck cosmology, AGN 8.0 best reproduces the observ-
ables.

MNRAS 479, 890–899 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/479/1/890/5025663 by Liverpool John M
oores U

niversity user on 01 O
ctober 2018



Impact of baryons on lensing by clusters 893

Figure 1. This figure shows the mean ratio of the projected density profiles
of all baryonic clusters to their corresponding DMO clusters as a function of
r/r200, where the r200 are from the 3D spherical overdensity mass definition.

The haloes were matched between the runs by finding clusters
located within the distance of five times the candidate cluster’s r500

in DMO and were within a factor of a third of its M500. This simple
selection criterion allowed for 95 per cent of the clusters to be
uniquely matched between the four runs. The remaining 5 per cent
mostly occurred when two clusters from a baryon run satisfied
the matching criteria for a given DMO cluster. In these cases, we
checked the positions and masses of the candidate clusters and
found that one was always much closer to the corresponding DMO
cluster’s location and mass than the other. We therefore included
these clusters in our sample. The remaining five cases were low-
mass clusters at the edge of the simulation box which failed to
match with any candidate clusters. We discarded these from our
sample. The total number of clusters in our sample for each of the
simulations is 1 157.

Fig. 1 shows the relative density profiles of the different baryon
runs with respect to DMO and Fig. 2 shows the differences in
cluster M200 and M500 as a function of the M200 of the matched
DMO clusters. Clusters from AGN 8.0 and 8.7 tend to have lower
inner densities, with some of the matter being pushed outward to
the cluster periphery. This also results in a smaller M200, with the
effect more pronounced when the AGN feedback is stronger. This
impact declines for higher mass, with little mass difference between
high-mass AGN 8.0 and DMO clusters. Clusters in REF are dense
toward the centre, though beyond r/r200 ≈ 0.1 matter tends to be
pushed out, which is due to SN feedback as determined by Le Brun
et al. (2014). The M500 of the AGN models are more suppressed
with respect to DMO, though the overall trend is similar to the
M200. This is due to the fact that M500 corresponds to a smaller
radius than M200, so this mass definition does not capture as much
of the matter cast into the periphery from AGN feedback. The REF
clusters tend to have slightly higher M500 compared to their DMO
counterparts. This is because the REF clusters tend to have higher
central densities, and because some of the regions in which REF
clusters are less dense than DMO clusters are outside of the r500.

3.3 Catalogue generation

Each of the extracted clusters were projected along three orthogonal
axes to enhance our sample size, as well as to provide information
about the scatter in mass estimations between projections. We gen-
erate convergence maps by dividing each surface mass density map
by �c calculated for a cluster redshift of zl = 0.25 and a source
redshift of zs = 1 in the WMAP7 cosmology. We then produced

shear maps by using the relationship in Fourier space described in
equation (6).

For each projection, a set of randomly placed background galax-
ies at redshift zs = 1 were generated. Following Geiger & Schneider
(1998), the ellipticity components of each galaxy were randomly
drawn from the distribution,

ps
ε(εs) = exp(−|εs |2/σ 2

ε )

πσ 2
ε (1 − exp(−1/σ 2

ε ))
, (9)

where σ ε is the dispersion of the intrinsic ellipticity distribution,
which we set to σ ε = 0.05 when studying algorithm performance
at low noise levels and σ ε = 0.25 for more realistic noise.

We use an unlensed galaxy number density of n0 = 30 gal
arcmin−2, the approximate expected number density of the LSST in
the absence of lensing magnification. The total number of galaxies
is a realization of a Poisson distribution with mean N = n0A, where
A is the area of the sky. Following Schneider, King & Erben (2000),
the galaxy number density must also be adjusted due to the effects
of lensing magnification. While equation (7) describes the distor-
tion of the source shapes, we must also numerically account for the
magnification of space around the sources as well as the change in
the lensed galaxies’ brightness. The lensed number density satisfies

n(�r) = n0μ
−0.5, (10)

where �r is again a position vector in the lens plane and μ is the mag-
nification at that position. μ is calculated for each source galaxy’s
position from the lens shear and convergence. A uniform variate η

∈ [0, 1] is drawn, and the galaxy is only included in the catalogue
if [μ]−1/2 � η; otherwise, it is discarded.

4 MASS ESTIMATION

4.1 Likelihood function

To calculate the best-fitting values and the confidence intervals for
the cluster parameters, we make use of the likelihood and log-
likelihood functions. The likelihood function is defined as the prob-
ability that a set of parameters will result in the given observables.
The likelihood and log-likelihood functions are given by

L =
Ngal∏
i=1

pε(εi |g(�xi))

� =
Ngal∑
i=1

ln pε(εi |g(�xi)), (11)

where εi and �xi are respectively the measured image ellipticity
and image position in the lens plane, and Ngal is the total number
of source galaxies for which the image ellipticities have been mea-
sured. From Geiger & Schneider (1998), the probability distribution
of the image ellipticities can then be written as

pε(ε|g) = ps
ε(εs(ε|g))

∣∣∣∣∂2εs

∂2ε

∣∣∣∣ = ps
ε(εs(ε|g))

(|g|2 − 1)2

|εg∗ − 1|4 . (12)

Substituting equations (9) and (12) into equation (11), the likeli-
hood function becomes

L =
Ngal∏
i=1

exp
(−|εs

i |2/σ 2
ε

)
πσ 2

ε (1 − exp
(−1/σ 2

ε

)
)

(|gi |2 − 1)2∣∣εig
∗
i − 1

∣∣4 , (13)
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Figure 2. The panel on the left shows the ratio of M200 of the baryonic clusters to their DMO counterparts, where the M200 are calculated using the 3D
spherical overdensity mass definition. The panel on the right shows the similarly for M500. Both are as a function of the M200 of the corresponding DMO cluster
to maintain the same bins.

where εs
i is included by inverting equation (7) for each of the galax-

ies,

εs
i = εi − gi

1 − g∗
i εi

. (14)

The log-likelihood function is then

� =
Ngal∑
i=1

ln
[
(|gi |2 − 1)2

] − |εs
i |2

σ 2
ε

− ln |εig
∗
i − 1|4, (15)

where the constant additive term has been dropped. Note that the εs
i

in the likelihood is what the ith galaxy’s intrinsic ellipticity would
be for a given set of model parameters and the observed image
ellipticity, since the true intrinsic ellipticity is unknown.

4.2 MCMC

Our method of cluster parameter estimation involves the use of
Markov Chain Monte Carlo (MCMC), which is based on Bayesian
statistics. Bayes’ theorem states that given the data, D, the proba-
bility distribution of a set of parameters, �, is

p(�|D) = p(D|�)p(�)

p(D)
, (16)

where p(�|D) is the posterior probability distribution, p(D|�) is
the likelihood, p(�) is the prior, and p(D) is the evidence.

MCMC methods involve a guided random walk through the pos-
terior probability distribution, returning a representative set of sam-
ple points. The density of sample points in a region of the posterior
is directly proportional to the probability that the region contains
the true parameter value. This sample subset approximates the full
posterior distribution, which can then be marginalized over to ob-
tain the mean most likely parameter values without making a priori
assumptions about the form of the posterior.

In general, the MCMC sampler walks through parameter space,
with steps governed by some transfer function which depends on
the particular method employed. We use EMCEE, the Python imple-
mentation of the affine-invariant MCMC ensemble sampler (Good-
man & Weare 2010; Foreman-Mackey et al. 2013). In short, rather
than producing a single MCMC chain, this method utilizes multiple
‘walkers’, each exploring parameter space from different starting
positions. Candidate samples are selected for each walker using the
‘stretch move’, wherein a point is chosen along the vector between

the current position of the walker and of another randomly selected
walker. One of the benefits of this method is that the autocorre-
lation time, an important test of convergence, tends to be much
shorter than for the generic Metropolis–Hastings method. Addi-
tionally, affine-invariant samplers perform equally well when there
is covariance between parameters. A more detailed explanation of
EMCEE and of affine-invariant ensemble samplers can be found in
Foreman-Mackey et al. (2013) and Goodman & Weare (2010), re-
spectively.

For our particular problem, we wish to obtain a representative set
of samples from p(M200, c), the posterior probability distribution
for the mass and concentration. For each individual cluster, the data
set on which we do the analysis stays constant, so we may neglect
the evidence term in equation (16). We impose flat priors for both
M200 and c such that

c ∈ U(1, 30)

M200 ∈ U(∼ 1.45 × 1011 M�, ∼ 1.81 × 1016 M�). (17)

The inner and outer limits on M200 correspond to r200 = 0.1 Mpc and
3 Mpc, respectively. We use the log-likelihood function from equa-
tion (15). Using the MCMC sampler previously described above,
we start 20 walkers centred in a tight Gaussian ball around the
best-fitting maximum likelihood mass and concentration calculated
using the previously produced mock WL catalogues. Each walker
has a 200 step burn-in period, and the following 500 samples are
combined across all walkers for a total of 10 000 samples from the
posterior distribution for each cluster projection. We then make use
of these MCMC chains to calculate the bias and scatter in M200 as
described in the next section. To ensure that parameter space has
been properly explored by the MCMC algorithm, we perform a
test by selecting ten clusters at random from our sample, each with
three projections for a sample size of 30. We place the 20 walkers
at random around parameter space within the allowed range of the
priors and verify that the mean change in the estimated masses is
less than 1 per cent.

4.3 Bias and scatter calculation

We again make use of MCMC methods to calculate the various
statistics of mass estimates for each mass bin by utilizing the MCMC
chains produced for each cluster. For a given set of data, �gi , corre-
sponding to the ith cluster in a mass bin, the probability distribution
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of the resulting mass bias is

pi (μ, σ |�gi) ∝
[∫

dMlensp(�gi |Mlens)p(Mlens|μ, σ )

]
p(μ, σ ),

(18)

where μ and σ are measures of bias and scatter in the estimated mass
(denoted here as Mlens). Applying Bayes’ theorem to p(�gi |Mlens),
we have

pi(�gi |Mlens) ∝ p(Mlens|�gi)

p(Mlens)
. (19)

Since the mass prior, p(Mlens), is constant in the range of allowed
Mlens, neglecting it yields no difference in equation (18). The distri-
bution p(Mlens|�gi) is the posterior of the estimated mass from which
we already sampled following Section 4.2. We expect p(Mlens|μ, σ )
to take the form of a log-normal distribution (see discussion in
Stanek et al. 2010) and implementation in Schrabback et al. (2016).
The probability distribution of Mlens is then

p (Mlens|μ, σ ) = 1

Mlens

√
2πσ 2

exp

(
− (ln Mlens − ln μMtrue)2

2σ 2

)
.

(20)

This equation allows us to interpret ln μ and σ 2 as respectively the
mean and variance of the normally distributed ln (Mlens/Mtrue). We
may translate these variables into the various statistical quantities
we wish for the corresponding log-normally distributed variable
Mlens/Mtrue. Its median, mean, and variance are respectively,

med = exp(ln μ) = μ

mean = exp
(
μ + σ 2/2

)
var = [

exp
(
σ 2

) − 1
]

exp
(
2μ + σ 2

)
. (21)

The remaining term in equation (18), p(μ, σ ), represents the prior
on μ and σ , which is both independent of the mass samples and is
the same for each cluster.

Again using Bayes’ theorem, the probability that all the clusters
in a bin have a particular bias and scatter satisfies

p (μ, σ |�g) ∝ p (�g|μ, σ ) p (μ, σ ) = L(μ, σ ) p (μ, σ ) , (22)

where L(μ, σ ) is the likelihood function for μ and σ given the
MCMC mass samples for all the clusters in the bin. To obtain
L(μ, σ ), we multiply the probabilities pi (�gi |μ, σ ) for all of the
clusters in the mass bin. Each of the pi (�gi |μ, σ ) may be identified
as the term in the square brackets of equation (18). Replacing the
integral with a summation and substituting in the mass samples, the
likelihood function for μ and σ is therefore

L(μ, σ ) =
Nc∏
i=1

pi (μ, σ |�gi)

=
Nc∏
i=1

⎧⎨
⎩ 1

Ns

Ns∑
j=1

[
1

Mlens,j ,i

√
2πσ 2

×

exp

(
− (ln Mlens,j ,i − ln μMtrue,i)2

2σ 2

)]}
, (23)

where Nc is the number of clusters in a given bin, Ns is the number of
samples, Mlens, j, i is the jth mass sample of the ith cluster’s MCMC
chain, and Mtrue, i is the cluster’s true spherical overdensity mass. In

practice, we use the natural logarithm of equation (23). We assume
flat priors on ln μ and ln σ such that

ln μ ∈ U(−1, 1)

ln σ ∈ U(ln 0.05, ln 10).
(24)

There are many differences between our approach and that of
Henson et al. (2017), who also investigated the impact of baryonic
matter on weak lensing mass estimates. Apart from considering
a wider range of prescriptions of baryonic physics, we directly
fit to the ellipticities of background galaxies in synthetic lensing
catalogues following the procedure of Bahé et al. (2012) rather
than fitting to ideal azimuthally averaged shear profiles. This then
includes the impact of finite sampling as well as shape noise. This
also allows us to estimate the confidence contours on parameters in
the mass model which we do using an MCMC approach.

5 R ESULTS

We calculate the bias and scatter in the MCMC fits to our cluster
sample using a variety of fit radii and two different noise levels. We
set the intrinsic source ellipticity to σ ε = 0.05 for low-noise fits and
σ ε = 0.25 for a more realistic intrinsic source ellipticity dispersion.
To test sensitivity to the inner fit radius, we perform three separate
fits for inner fit radii set to rin = 0.1, 0.25, and 0.5 Mpc with an
outer fit radius of rout = 3 Mpc. This is motivated by, for example,
Gao et al. (2008), who found that the fit radius has an impact on the
NFW concentration when fitting directly to spherically averaged
density profiles of dark matter haloes from cosmological simula-
tions. It is also motivated by Bahé et al. (2012), who demonstrated
that the extent of the data field over which lensing data analy-
sis is performed impacts on the estimated NFW parameters using
dark matter-only cosmological simulations. Since baryonic physics
impacts the concentration of mass relative to dark matter-only sim-
ulations, we examine how varying the inner fit radius changes NFW
parameter estimates.

We begin by producing MCMC chains of mass and concentra-
tion for each of the cluster projections as described in Section 4.2,
allowing mass and concentration to vary freely. Fig. 3 shows confi-
dence contours for several example clusters across the entire mass
range with varying inner fit radii and intrinsic ellipticity dispersions
(e.g. see x-axis of Fig. 2 for lowest mass cluster in each bin). At
higher masses, the MCMC fits are typically able to constrain M200

and c at realistic noise levels regardless of the selection of inner
fit radius. When σ ε is lowered to 0.05, the parameter constraints
narrow as one would expect. The distributions peak at different val-
ues since a different population of background galaxies was used
for each cluster projection. At lower masses, the parameter con-
straints significantly worsen, as illustrated in the top rows of Fig. 3.
In these examples, the confidence intervals of the parameters re-
main open for every tested value of rin when σ ε = 0.25. For these
three runs, the MCMC algorithm typically oversamples regions of
unrealistically high concentration. These samples often correspond
to lower M200 values, since for a given signal, higher concentra-
tion leads to lower mass estimates due to the degeneracy between
mass and concentration. The parameters become well-constrained
with low-noise, as we expect given the significantly higher
signal-to-noise.

We then randomly extract a subset of 2000 samples from each
of the individual cluster’s MCMC chains to serve as input for the
bias and scatter calculations on each mass bin as described in Sec-
tion 4.3, the results of which are shown in Fig. 4. Selecting 2000
samples instead of the full 10 000 from each cluster does result in
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896 B. E. Lee et al.

Figure 3. This figure shows the distribution of fit mass and concentration samples for four example clusters across the mass range. The left three panels on
each row correspond to σ ε = 0.25 and rin = 0.1, 0.25, and 0.5 Mpc for the leftmost panels, the centre-left panels, and the centre-right panels, respectively.
The rightmost panel corresponds to rin = 0.5 Mpc and σ ε = 0.05. We do not include the other low-noise distributions as they are all similar. The mass range
covered is the same along each row. The concentration range is the same except for the rightmost panels which are zoomed in. This figure was produced using
the CORNER python module (Foreman-Mackey 2016).

a significant difference in the calculated bias. The top left panel of
Fig. 4 shows the median bias and standard deviation of the log-
normally distributed mass estimates with respect to true mass using
an inner fit radius of rin = 0.1 Mpc and an intrinsic galaxy ellipticity
dispersion of σ ε = 0.25. For the same galaxy ellipticity dispersion,
the top right (bottom left) panel shows the same quantities using an
inner fit radius of rin = 0.25 Mpc (0.5 Mpc), respectively. Given the
poor constraints on mass and concentration of individual clusters
in the lowest mass bins for data of this quality, the first three bins
in these subplots can be disregarded. Note that the bias does not
significantly vary for different inner fit radii for clusters beyond the
lowest mass bins (to the right-hand side of the black vertical line in
the subplots). The bottom right panel of Fig. 4 shows the low-noise
analogue for an inner fit radius of 0.5 Mpc. Our fits underestimate
the M200 by ≈5 per cent for low masses, consistent with previous
literature (e.g. Bahé et al. 2012). The bias trends slightly upward,
closer to 0 per cent for higher masses, though the error bars are
larger since the higher mass bins contain fewer clusters. The bias
seen in Fig. 4 can be explained by the short-comings of the NFW
profile in describing cluster profiles, since realistic clusters (such
as those considered here from simulations) are often non-spherical,
contain substructure, and are embedded in correlated and uncorre-
lated large-scale structure not captured by the NFW profile (for the
factors that cause deviations in estimates of mass and concentration,
see Bahé et al. 2012). The low-noise fits for the other fit radii we

considered are not shown as they look essentially identical to the
lower right panel of Fig. 4.

Considering the fourth lowest mass bin, where individual cluster
masses are well-constrained, the right-hand panel of Fig. 5 illus-
trates that changing the upper bound of the prior on concentration
from 30 to 10 changes the bias by only a few per cent. For lower
mass bins, where the concentrations of individual clusters are poorly
constrained, the limits on the concentration prior and the selection
of the inner fit radius significantly impact the resulting bias, shown
for the first bin in the left-hand panel of Fig. 5. Lowering the upper
limit on the concentration prior may artificially improve the mass
estimates, as regions of high concentration (and correspondingly
low mass) are excluded from the allowed parameter space. There-
fore, we do not consider mass estimates below the vertical black
line to be reliable.

We then perform fits using the same catalogue of galaxies for each
projection of each cluster in each simulation run. The left-hand panel
of Fig. 6 shows the magnitude of the average relative difference in
mass estimates between projections calculated pairwise for each
cluster. The right-hand panel shows the relative difference in mass
estimates between the clusters containing only dark matter and their
corresponding baryonic clusters. These results indicate that scatter
from differences in cluster projections (and hence cluster shape)
dominate over the scatter due to the presence of baryons; we return
to this in the conclusions.
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Impact of baryons on lensing by clusters 897

Figure 4. The top left panel of this figure shows the median bias with respect to the true mass and the standard deviation of the estimated masses as a function
of true mass using an inner fit radius of rin = 0.1 Mpc and an intrinsic ellipticity dispersion of σ ε = 0.25. The top right and bottom left panels show the same
quantities using an inner fit radius of rin = 0.25 Mpc and rin = 0.5 Mpc, respectively. The lower right panel shows the low-noise analogue.

Figure 5. This figure shows the bias sensitivity to the limits placed on the concentration prior for the first (left-hand panel) and the fourth (right-hand panel)
lowest mass bins for all inner fit radii considered. By the fourth lowest mass bin, dependence on the concentration prior and inner fit radius disappears.
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Figure 6. The top left panel of this figure shows the magnitude of the average relative difference in mass estimates between projections for each cluster
calculated pairwise. The bottom left panel shows the scatter. The top right panel shows the magnitude of the average relative difference in mass estimates
between the matched DMO clusters and those including baryonic physics, and the bottom right panel shows the scatter.

6 C O N C L U S I O N S

We have studied the sensitivity of the masses of clusters derived
from weak lensing measurements to the presence of baryonic
physics in comparison with the presence of dark matter only. Our
conclusions are:

(i) There is no significant difference in WL mass bias and scat-
ter between dark matter-only and galaxy clusters with baryons in-
cluded, for clusters of mass M200 � 1014 M� . This specifically
applies to parametrized mass models of the NFW form, obtained
while allowing the concentration parameter to vary freely, since
M–c relations are sensitive to the presence of baryons.

(ii) Lower mass clusters are especially sensitive to the value of
the inner fit radius and limits on the concentration prior. Mass
and concentration parameters are poorly constrained for individual
clusters below M200 ≈ 3 × 1014 M�. Stacking or use of an M–c
relation is necessary to obtain parameter estimates for these low-
mass clusters.

(iii) We confirm the −5 to −10 per cent bias and scatter in NFW
mass estimates found in previous work (Becker & Kravtsov 2011;
Oguri & Hamana 2011; Bahé et al. 2012) and show that this holds
true for simulated clusters including baryonic processes. For higher
mass clusters, we find that this bias improves somewhat.

(iv) We confirm that the masses of clusters taken directly from the
simulations differ between DMO and the baryonic runs that include
AGN feedback, with the latter on average having lower masses.
This is consistent with Cusworth et al. (2014) and Velliscig et al.
(2014). We also demonstrate similar differences between cluster
masses derived from the synthetic weak lensing measurements.
The difference between the dark matter-only and AGN 8.0 clusters
is of order 10 per cent for the lowest mass clusters, tending to zero
per cent difference for the highest mass. This is likely a reflection of
the greater efficiency of AGN feedback for the lower mass clusters.
As discussed by e.g. Cusworth et al. (2014) this is a very important
consideration when cluster mass functions are used as cosmological
probes. This will be the topic of a future study.

(v) We find that differences in cluster projections, a result of tri-
axial, non-spherical, clusters, tend to dominate over the impact of
baryons on WL mass estimation for individual massive clusters.
However, there are two important facts to note here. First, while
scatter from cluster shape is larger, stacking many clusters together

will effectively average out their individual shapes, whereas bary-
onic processes (specifically AGN feedback), impact all clusters in
more or less the same way. Therefore stacking clusters will not
smooth out the impact of baryons. Secondly, we emphasize that
although the mass estimation bias is unchanged between simula-
tion runs of DMO and various baryonic models, the overall masses
of the haloes differ between the simulation runs. This is important
for constraints on cosmology from the cluster mass function (e.g.
Cusworth et al. 2014) and will be the topic of future work.
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