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ABSTRACT  23 

Cells in the preoptic area (POA), arcuate nucleus (ARC) and ventromedial nucleus (VMN) that possess 24 

estrogen receptor α (ERα) mediate estradiol feedback to regulate endocrine and behavioral events 25 

during the estrous cycle. A percentage of ERα cells located in the ARC and VMN express somatostatin 26 

(SST) and are activated in response to estradiol. The aims of the present study were to a) investigate 27 

the location of c-Fos, a marker for activation, in cells containing ERα or SST at various times during 28 

the follicular phase, and b) determine if lipopolysaccharide (LPS) administration, which leads to 29 

disruption of the LH surge, is accompanied by altered ERα and/or SST activation patterns. Follicular 30 

phases were synchronized with progesterone vaginal pessaries and control animals were killed at 0, 31 

16, 31 or 40 h (n=4-6/group) after progesterone withdrawal (PW; time zero). At 28 h, other animals 32 

received LPS (100 ng/kg) and were subsequently killed at 31 h or 40 h (n=5/group). Hypothalamic 33 

sections were immunostained for c-Fos and ERα or SST. LH surges occurred only in control ewes with 34 

onset at 36.7±1.3 h after PW: these animals had a marked increase in the percentage of ERα cells that 35 

co-localized c-Fos (%ERα/c-Fos) in the ARC and mPOA from 31 h after PW and throughout the LH 36 

surge. In the VMN, %ERα/c-Fos was higher in animals that expressed sexual behavior compared to 37 

those that did not. SST cell activation in the ARC and VMN was greater during the LH surge compared 38 

to other stages in the follicular phase. At 31 or 40 h after PW (i.e., 3 or 12 h after treatment, 39 

respectively), LPS decreased %ERα/c-Fos in the ARC and the mPOA but there was no change in the 40 

VMN compared to controls. The %SST/c-Fos increased in the VMN at 31 h after PW (i.e., 3 h after 41 

LPS) with no change in the ARC compared to controls. These results indicate that there is a distinct 42 

temporal pattern of ERα cell activation in the hypothalamus during the follicular phase, which begins 43 

in the ARC and mPOA at least 6-7 h before the LH surge onset, and extends to the VMN after the 44 

onset of sexual behavior and the LH surge. Furthermore, during the surge, some of these ERɑ activated 45 

cells may be SST secreting cells. This pattern is markedly altered by acute LPS administered during 46 

the late follicular phase indicating that the disruptive effects of this stressor are mediated by 47 

suppressing ERα cell activation at the level of the mPOA and ARC, and enhancing SST-cell activation 48 

in the VMN, leading to the attenuation of the LH surge. 49 

 50 

 51 

 52 
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INTRODUCTION 53 

The ovarian steroid hormone estradiol is of central importance in the control of the hypothalamic-54 

pituitary-gonadal (HPG) axis in female mammals. For the greater part of the ovarian cycle in ewes, 55 

progesterone and estradiol act synergistically to restrain GnRH/LH (gonadotropin releasing 56 

hormone/luteinizing hormone) secretion through a negative feedback. However, during the late 57 

follicular phase, minute-by-minute portal blood sampling in conscious ewes revealed a ‘switch’ from 58 

inhibition to enhancement of GnRH secretion [1, 2]. This constitutes estradiol positive feedback and 59 

triggers the onsets of GnRH/LH surge secretion. Steroid hormone signals do not impinge directly on 60 

GnRH cells as these cells do not possess progesterone receptors (PR) or estrogen alpha receptors (ERα) 61 

[3-5]. Some GnRH neurons express ERβ [6], although it is unlikely that ERβ plays a major role in the 62 

feedback regulation of GnRH/LH secretion because ERβ knock-out mice have normal fertility [7, 8].  63 

The surge generating mechanism has been well characterized in the ovariectomized (OVX) ewe [1] 64 

and consists of three phases: i) activation phase, during which estradiol concentrations reach a 65 

threshold and must remain elevated for a few hours [9, 10]. This signal is ‘perceived’ by neuronal cells 66 

that contain ERα and respond by becoming activated; ii) transmission phase, during which the 67 

activation signal is transmitted from ERα cells to GnRH neurons, either directly or via one or more 68 

interneurons; and iii) surge secretion phase, during which there is a discharge of GnRH and LH [1]. 69 

The decrease in plasma progesterone concentrations after luteolysis and the increase in estradiol are 70 

also responsible for changes in sexual behavior [11-13].  71 

To date, studies using localized implants have demonstrated that estradiol acts in the mediobasal 72 

hypothalamus (MBH; vicinity of the VMN/ARC) to induce both the surge and sexual behaviors [14, 73 

15]. However, we still don’t know the precise location and timing of cell activation within the areas 74 

involved at each stage of the surge- and behavior-generating mechanisms in response to changes in the 75 

steroid hormone milieu. These areas contain several types of neurons, sub-populations of which co-76 
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localize ERα and/or somatostatin (SST)[16]. In the ARC of the sheep, 13% of the SST neurons express 77 

ERα [17], and in the VMN, 30% SST neurons express ERα, and this accounts for 70% of the total 78 

number of ERα cells in this area [17, 18]. Furthermore, studies carried out in OVX ewes reveal an 79 

increase in SST activation after estradiol treatment [17, 19, 20]. Therefore, SST cells are potential 80 

candidates as intermediaries between ERα in the control of GnRH secretion and/or sexual behavior.  81 

There is considerable evidence that various types of stressors can disrupt the follicular phase of the 82 

ovarian cycle and block or delay the LH surge [21]. For instance, we have recently shown that a sudden 83 

activation of the hypothalamus-pituitary-adrenal axis in the late follicular phase by the immunological 84 

stressor endotoxin (i.e., lipopolysaccharide; LPS) lowered plasma estradiol concentrations and delayed 85 

the onsets of pre-copulatory behaviors, estrus and the LH surge in intact ewes [22]. Furthermore, 86 

immunohistochemical analysis of c-Fos protein expression (a marker of neuronal activation; [23]) 87 

revealed that this disruption entailed activation of unknown cell types located in the ARC, mPOA and 88 

VMN [24]. In considering potential pathways by which stressors disrupt the follicular phase and sexual 89 

behavior, four distinct mechanisms may be involved: i) suppression of steroidogenesis at ovarian level; 90 

ii) suppression of GnRH pulsatility (frequency or amplitude) from the hypothalamus [21, 25]; iii) 91 

suppression of LH pulsatile release from the pituitary [26]; and/or iv) prevention of the ability of the 92 

surge-generating mechanism to respond to the preovulatory increases in plasma estradiol 93 

concentrations [27, 28]. The first three mechanisms could potentially deprive the ovarian follicle from 94 

the necessary gonadotropin drive, thereby blocking the preovulatory estradiol increase; however, the 95 

fourth mechanism could involve inhibition of ERα cell activation at critical times. Studies carried out 96 

in rats have established that SST is one of the most potent inhibitors of electrical excitability of GnRH 97 

neurons identified thus far [29] and inhibits the LH surge when administered centrally [30]. 98 

Furthermore, hypothalamic SST release and gene expression are increased during different types of 99 

stress such as immobilization [31], hypoxia [32] and acute inflammation [33]. It is, therefore, possible 100 
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that SST cells are activated via an unknown mechanism to mediate stress-induced disruption of the LH 101 

surge. 102 

In the present study, we examined brain tissue of intact ewes sacrificed at various times during the 103 

follicular phase with or without the administration of LPS. Our aims were to map the activation patterns 104 

of cells containing ERα or SST (by measuring co-localization with c-Fos) in the ARC, VMN and 105 

mPOA of control animals, and correlate this with a) peripheral plasma progesterone and estradiol 106 

concentrations, and b) with the exhibition of sexual behavior and/or the initiation of an LH surge. 107 

Furthermore, we sought to determine whether the disruption of the surge mechanism after LPS 108 

involves alteration of ERα or SST cell activation in the ARC, mPOA and VMN as well as describing 109 

the temporal relationships between these changes and alterations in plasma steroid concentrations. 110 

MATERIALS AND METHODS 111 

Animals, study design, tissue collection, blood collection and hormone assays. 112 

All procedures were conducted in accordance with requirements of the UK Animal (Scientific 113 

Procedures) Act, 1986, and approved by the University of Liverpool Animal Welfare committee. The 114 

study was carried out on mature intact Lleyn crossbred ewes in the mid breeding season (6 groups of 115 

4-6 ewes per group). Frozen coronal sections (40 μm) were obtained from the same tissue blocks as 116 

described in an earlier study on kisspeptin and corticotropin releasing factor receptor, where full 117 

experimental details appear [24]. Briefly: after follicular phase synchronization, ewe and ram estrous 118 

behavior was monitored for a 30-min observation period before each blood sample collection at 0 h 119 

(progesterone intravaginal device withdrawal; PW), 16 h, 24 h and subsequently at 2 h intervals till 40 120 

h. It was noted when a ewe was within one meter of a ram [behavioral scan sampling; [34] . In addition, 121 

the following behavioral signs of estrus were counted: ram nosing perineal region of ewe; ewe being 122 

nudged by ram without ewe moving away; and, mounting of ewe by ram without ewe moving away. 123 

Due to the 2-hourly observation regime, the beginning/end of a period was respectively defined as the 124 
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first/last (minus/plus 1.0 h) 30-min observation period the animal exhibited a particular behavioral 125 

sign. Frequent blood sampling, as well as the administration of all substances, was facilitated by 126 

insertion of a silastic catheter (Medical grade silastic tubing, internal diameter 1.01 mm, Dow Corning, 127 

Reading, UK) into the jugular vein of each ewe under local anesthesia before progesterone withdrawal. 128 

Blood samples were collected and centrifuged immediately at 1000 g for 20 min at 40C. Plasma was 129 

stored at -200C until analysis. Duplicate samples were analyzed by Enzyme-Linked Immunosorbent 130 

Assays (ELISAs) for LH, pregnane metabolites (equivalent to, and hereafter referred to as, 131 

progesterone) or cortisol. LH results were expressed as ng equivalent of NIAMDD ovine LH 21 per 132 

ml plasma. Estradiol was measured by radioimmunoassay (RIA) using 0.5 ml plasma extracted with 3 133 

ml diethyl ether followed by evaporation to dryness. All assays had been verified for use in sheep [22]. 134 

Contemporary inter-assay and intra-assay coefficients of variation for LH, progesterone, cortisol and 135 

estradiol were all less than 12%.  The minimum detectable amounts were 0.02 ng/ml; 0.16 ng/ml, 0.8 136 

ng/ml and 0.2 pg/ml and assay precisions (in the mid-range of the standard curve) were 0.1 ng/ml, 0.01 137 

ng/ml, 0.2 ng/ml and 0.2 pg/ml, respectively. All samples from individual animals were measured in 138 

the same assay for each hormone. 139 

A group of ewes was killed at 0 h (0 h control group; n=5) and another group at 16 h after progesterone 140 

withdrawal (16 h control group; n=4). At 28 h, the remaining animals received 2 ml saline vehicle or 141 

endotoxin (lipopolysaccharides from E. coli 055:B5, LPS, Sigma-Aldrich, UK; i.v. dose of 100 ng/kg 142 

body weight). The timing of treatment was chosen in order to precede all sexual behaviors and not just 143 

mounting [22]. The dose of LPS is routinely used in our studies and evokes a robust cortisol response 144 

and delayed LH surge, with minimal clinical signs of occasional coughing. Two groups were killed at 145 

31 h (31 h control, n=6 and 31 h LPS group, n=5) and two groups at 40 h after PW (40h control, n=5 146 

and 40h LPS group, n=5). Ewes were euthanized with 20 ml 20% w/v sodium pentobarbitone 147 

(Pentobarbital, Loveridge, Southampton, UK), containing 25,000 IU heparin and the heads perfused 148 

with 2 liters 0.1 M phosphate buffer (PB; pH7.4) containing 25,000 IU per liter of heparin and 1% 149 
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sodium nitrate; then 2 liters Zamboni fixative (4% paraformaldehyde and 7.5% saturated picric acid in 150 

0.1 M PB, pH7.4); followed by 500 ml of the same fixative containing 30% sucrose. Hypothalamic 151 

blocks (17 mm in width) were obtained (extending from the optic chiasma to the mammillary bodies). 152 

Free-floating sections were stored in cryoprotectant solution and stored at -200C until processed for 153 

immunohistochemistry. 154 

ERα and c-Fos dual-label immunofluorescence 155 

For ERα/c-Fos analysis, a series of sections from the mPOA (at the level of the organum vasculosum 156 

of the lamina terminalis (OVLT) and the MBH (containing ARC and VMN) were processed for dual-157 

label immunofluorescence. All steps were performed at room temperature unless otherwise stated. 158 

Antibodies were diluted with 2.5% normal donkey serum (catalogue item S2170, Biosera, UK), 1% 159 

Triton X-100 (T9284, Sigma-Aldrich, Poole, UK) and 0.25% sodium azide (Sigma-Aldrich) in 0.1 M 160 

phosphate buffer saline, pH 7.2 (PBS). Free-floating sections were washed thoroughly in PBS for 2 h 161 

to remove the cryoprotectant solution followed by 1 h incubation in blocking solution (10% donkey 162 

serum in PBS). This was followed by 72 h incubation at 40C with a mixture of polyclonal rabbit anti-163 

c-Fos antibody (AB-5, PC38, Calbiochem, Cambridge, MA, USA) at a dilution of 1:5000 along with 164 

monoclonal mouse anti-ERα (clone ID5, M7047, Dako, Carpinteria, CA, USA) at a dilution of 1:50. 165 

The c-Fos [35] and ERα [36] antibodies had been validated for use in ovine neural tissue. After 166 

incubation with the primary antisera, sections were washed thoroughly and incubated with a mixture 167 

of donkey anti-rabbit Cy3 (711-165-152, Jackson Immunoresearch, West Grove, PA) and donkey anti-168 

mouse DyLight 488 (715-485-151, Jackson Immunoresearch, West Grove, PA), both diluted 1:500 for 169 

2 h.  Thereafter, sections were washed with PBS followed by a final wash with double-distilled water, 170 

mounted on chrome alum gelatine coated slides and cover-slipped with Vectashield anti-fading 171 

mounting medium (Vector Laboratories Ltd, UK, H-1000). Negative controls that omitted one of the 172 
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primary antibodies completely eliminated the appropriate fluorescence without noticeably affecting 173 

the intensity of the other fluorescent probe.  174 

SST and c-Fos dual-label immunofluorescence 175 

For SST/c-Fos analysis, a series of sections from the MBH (containing ARC and VMN) were 176 

processed for dual-label immunofluorescence. The protocol was similar to that described above, only 177 

this time the primary antibodies were applied sequentially. The polyclonal rabbit anti-c-Fos antibody 178 

was followed by washes and incubation for 2 h with donkey anti-rabbit Cy3, diluted 1:500. A second 179 

immunofluorescence procedure was then performed, as described above, to localize the second 180 

primary antibody: rabbit anti-somatostatin-14 serum (T-4103, Peninsula Laboratories, San Carlos, CA, 181 

at a dilution of 1:500), incubated for 72 h at 40C and then visualized using donkey-anti-rabbit Dylight 182 

488 (715-485-152, Jackson Immunoresearch, West Grove, PA) at a dilution of 1:500. Thereafter, 183 

sections were washed with PBS and mounted on chrome alum gelatin-coated slides and cover-slipped 184 

with Vectashield anti-fading mounting medium. The somatostatin-14 antibody was validated for use 185 

in ovine neural tissue in Robinson et al., [20]. Negative controls as above were included in each 186 

staining run.  187 

Sections were examined under an epi-fluorescent microscope (Zeiss Axio Imager. M1) and 188 

photographed by digital microphotography (Hamamatsu ORCA I-ER digital camera, Hamamatsu 189 

Photonics, Welwyn Garden City, Herts) using a 20× objective. Photographs were acquired with an 190 

image analysis program AxioVision (Zeiss Imaging Systems) and consisted of single ERα or SST 191 

staining and single c-Fos staining, as well as a merged image to produce a spectral combination of 192 

green (fluorescein) and red (rhodamine) that resulted in identification of dual labeled cells. The areas 193 

examined were (as defined by Welento et al., [37]): ARC (3 photographs per section, 3 sections per 194 

ewe, which consisted sections from the middle and caudal divisions of the nucleus), mPOA (at the 195 

level of the OVLT, 2 photographs per section, 3 sections per ewe) and VMN (4 photographs per 196 
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section, 3 sections per ewe). All photographs were imported into Image J version 1.42q, where counts 197 

were performed using the cell count plug-in. Initial counts were carried out on the merged images and 198 

co-localization was confirmed by flipping through images of the individual c-Fos and ERα or SST 199 

micrographs and visually identifying cells that contained both c-Fos label and ERα or SST label with 200 

respect to microscopic tissue landmarks. The observer was unaware of the animal identity and group.  201 

Data analysis 202 

The mean total number and percentage of single- or dual-labeled cells was summed from the 203 

photographs of each area/section and then averaged for each ewe and compared with GLM ANOVA, 204 

followed, where appropriate, by Tukey’s multiple comparison post hoc tests. Mean (± SEM), as 205 

presented in Figures and Results, was calculated by averaging each value for individual animals in 206 

each group. Regression analysis was used to examine the association between the percentage of change 207 

from 0 h to the two mean consecutive lowest or highest progesterone or estradiol values, respectively, 208 

and the percentage of ERα or SST cells that co-localized c-Fos in each area in control animals.  209 

RESULTS 210 

Two animals exhibited estrus and were mounted by a ram within 28 h after PW (i.e., before the 211 

predetermined time of treatment; one from each of the 31 h LPS and 40 h LPS groups). The data from 212 

these two ewes were excluded from further analyses. None of the animals showed any signs of illness, 213 

with a few exceptions of mild coughing and briefly increased respiration rate for the ewes that received 214 

LPS. 215 

 216 

Behavioral and plasma hormone profiles. 217 
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Behavior and plasma hormone profiles have been previously published; for convenience, a summary 218 

of results is presented here, however, the reader is directed to Fergani et al., [24] for the full data. In 219 

brief, there was no sexual behavior or LH surge recorded in control ewes killed at 0 and 16 h. Eight of 220 

eleven control animals, killed at 31 or 40 h, began exhibiting sexual behavior at 28.5 ± 2.4 h after 221 

progesterone withdrawal (PW), and three of five ewes in the 40 h control group had an LH surge with 222 

a mean onset at 36.7 ± 1.3 h after PW. From the 31 and 40 h LPS groups, only three of eight treated 223 

animals exhibited sexual behavior onset at 29.0 ± 2.5 h after PW, and none of the LPS treated ewes 224 

exhibited an LH surge within the 40 h of study [24]. Consequently, data were analyzed in two ways: 225 

the first consisted of only control ewe data, grouped according to time after PW, and incorporating 226 

sexual behavior status and whether an LH surge had occurred; i.e., those killed: at 0 or 16 h after PW; 227 

at 31 h after PW but before the onset of sexual behavior (Before sexual behavior, n=3); at 31 or 40 h 228 

after PW and during exhibition of sexual behavior but before an LH surge (During sexual behavior, 229 

n=5); or after the onset of sexual behavior and during the LH surge (Surge, n=3). This grouping was 230 

used to pinpoint the location of ERα cells involved in sexual behavior and/or GnRH/LH surge 231 

generating mechanisms in control animals. Secondly, control and treated animal data were grouped 232 

according to time of killing after PW, and these data were used to compare treatment effects. 233 

Plasma concentrations of estradiol, progesterone and cortisol have been previously presented [24]. In 234 

brief, control plasma estradiol concentrations increased from 28 h after PW to maximum values just 235 

before the LH surge onset; 12.2 ± 1.8 pg/ml. However, treatment with LPS decreased estradiol 236 

concentrations 8 h after LPS administration (from 11.6 ± 1.6 to 6.9 ± 1.8 pg/ml) and concentrations 237 

remained low until ewes were killed at 40 h. Plasma progesterone concentrations decreased from 0 to 238 

28 h after PW in all groups (from 33.7 ± 2.0 to 6.6 ± 0.4 ng/ml). However, LPS treatment increased 239 

progesterone concentrations from a mean of 6.9 ± 1.0 ng/ml before treatment to a maximum of 9.9 ± 240 

1.6 ng/ml 2 h after treatment. In all control animals, mean plasma cortisol concentrations remained 241 
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low throughout the study (10.5 ± 0.7 ng/ml). However, LPS treatment increased cortisol concentrations 242 

to a mean maximum of 157 ± 19.8 ng/ml 2 h after treatment.  243 

Control ewes grouped according to sexual behavior and an LH surge. 244 

ERɑ/c-Fos in the ARC, mPOA and VMN and association with estradiol and progesterone plasma 245 

concentrations. 246 

Photomicrographs of sections dual-labeled for ERα and c-Fos from the mPOA in control ewes are 247 

exemplified in Fig.1 A-F. The percentage of ERα neurons that co-localized c-Fos (% ERα/c-Fos) in 248 

the ARC increased two-fold in the ‘Before sexual behavior’, ‘During sexual behavior’ and ‘Surge’ 249 

groups compared to 0 and 16 h groups (P<0.05, for all comparisons; Fig. 2A). In the mPOA, %ERα/c-250 

Fos sequentially increased from 0 h towards ‘Before sexual behavior’, to ‘During sexual behavior’ and 251 

reached a maximum in animals in the ‘Surge’ group (P<0.05, for all significant comparisons in Fig. 252 

2B). In the VMN, %ERα/c-Fos gradually decreased from 0 h until the ‘Before sexual behavior’ group 253 

(P<0.05; Fig. 2C) and then suddenly increased ten-fold (compared to ‘Before sexual behavior’) in 254 

animals ‘During sexual behavior’ and ‘Surge’ (P<0.05; Fig. 2C).  255 

Using regression analysis, %ERα/c-Fos was variably associated with the percentage change in 256 

estradiol concentration between 0 h and the mean two consecutive highest plasma estradiol values. 257 

%ERα/c-Fos was not associated with estradiol concentrations in the ARC (P=0.7; Fig. 2D) but was 258 

positively associated in the mPOA (P=0.001, RSq=51.1%; Fig. 2E) and the VMN (P=0.02, 259 

RSq=21.1%; Fig. 2F). 260 

%ERα/c-Fos was associated with percentage change in progesterone concentration between 0 h and 261 

the mean two consecutive lowest plasma progesterone values. %ERα/c-Fos was negatively associated 262 

with progesterone concentrations in the ARC (P=0.001, RSq= 64.1 %; Fig. 2D) and the mPOA 263 

(P=0.001, RSq=51.1 %; Fig. 2E) but not the VMN (P=0.1; Fig. 2F).  264 
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SST/c-Fos in the ARC and VMN and association with estradiol and progesterone plasma 265 

concentrations. 266 

The percentage of somatostatin cells that co-localized c-Fos (%SST/c-Fos ) in the ARC and the VMN 267 

was greatest in the ‘Surge’ group compared to other stages in the follicular phase (P<0.05 for both; 268 

Fig. 3A and B).  269 

%SST/c-Fos in the ARC and VMN was positively associated with the percentage change in 270 

concentration from 0 h to the mean two consecutive highest plasma estradiol values (ARC: P<0.001, 271 

RSq=69.1%; VMN: P<0.001, RSq=77.7%, respectively; Fig. 3C and D). %SST/c-Fos in the ARC and 272 

VMN was not associated with the percentage change in concentration from 0 h to the mean two 273 

consecutive lowest plasma progesterone concentrations (ARC: P=0.08, VMN: P=0.07, respectively; 274 

Fig. 3C and D).  275 

Comparison of control and LPS treated ewes.  276 

ERɑ/c-Fos in the ARC, mPOA and VMN  277 

Photomicrographs of sections dual-labeled for ERα and c-Fos from the ARC in ewes with or without 278 

LPS treatment are exemplified in Fig. 4A-F. The mean total numbers of ERα containing cells in the 279 

ARC, mPOA and VMN during the follicular phase in control ewes and after treatment are shown in 280 

Table 1. 281 

In the ARC, %ERα/c-Fos in controls increased at 31 h and remained high at 40 h, a time when the 282 

majority of control animals were having an LH surge (P<0.001 for both; compared to 0 and 16 h 283 

control groups, Fig. 5A). However, at 31 h after PW (i.e., 3h after LPS administration), %ERα/c-Fos 284 

was markedly lower in the LPS group (P<0.001) compared to controls (Fig. 5A). The effect of LPS 285 

was still evident between the control and LPS groups at 40 h after PW, (i.e., 12 h after the initial 286 

application of saline or LPS; P<0.001 Fig. 5A).  287 
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In the mPOA, there was a gradual increase in %ERα/c-Fos, with 31 and 40 h control groups having a 288 

higher %ERα/c-Fos compared to 0 and 16 h control groups (P<0.01 for all comparisons; Fig. 5B). 289 

Again however, at 31 h after PW (i.e., 3 h after LPS administration), %ERα/c-Fos was markedly lower 290 

in LPS animals (P<0.05; Fig. 5B).  The effect of LPS was still evident between the control and LPS 291 

groups at 40 h after PW, (i.e., 12 h after the initial application of saline or LPS; P<0.001; Fig. 5B). 292 

In the VMN, %ERα/c-Fos increased in control animals at 40 h compared to the 0 and 16 h groups 293 

(P<0.02; Fig. 5C). Percentages in the 31 h control group varied considerably between animals (this 294 

group contained animals before behavior onset as well as during behavior) and, therefore, there was 295 

no difference from all other control groups. LPS administration did not affect %ERα/c-Fos in the VMN 296 

(Fig. 5C). However, when data from LPS treated ewes were re-calculated according to exhibition of 297 

sexual behaviour, there was an increase in %ERα/c-Fos in animals that had begun sexual behaviour 298 

compared to those that had not (53.1 ± 12.4% vs. 29.0 ± 6.8%, respectively; P<0.05, full data not 299 

shown). 300 

SST/c-Fos in the ARC and VMN 301 

The numbers of SST immunoreactive cells in the ARC and VMN during the follicular phase and after 302 

LPS treatment are shown in Table 2. Photomicrographs from the ARC and VMN dual-labeled with 303 

SST and c-Fos are shown in Fig. 6. 304 

%SST/c-Fos in the ARC and in the VMN were higher at 40 h compared to other times examined in 305 

the follicular phase (P<0.05; Fig. 6A and D). In the ARC, LPS did not have an effect and results were 306 

not different to controls at any time (Fig. 6A). By contrast, in the VMN, at 31 h after PW (i.e., 3 h after 307 

LPS administration), %SST/c-Fos increased in the LPS group (P<0.05; Fig. 6D). At 40 h after PW 308 

(i.e., 12 h after LPS administration), when the majority of animals were having an LH surge, LPS and 309 

control groups were not different (Fig. 6D).  310 

DISCUSSION  311 
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The present results extend our knowledge concerning the steroidal regulation of sexual behavior and 312 

the GnRH/LH surge in the ARC, VMN and mPOA of the ewe. We have demonstrated that the pattern 313 

of ERα cell activation varies with time during the follicular phase, as well as between hypothalamic 314 

regions. In particular, increased ERα cell activation begins in the ARC and mPOA between 16 h after 315 

PW and 6-7 h before the LH surge onset, and then extends to the VMN at the onset of sexual behavior 316 

and the LH surge. Furthermore, ERα cell activation in the VMN and ARC coincides with maximum 317 

activation of SST cells, indicating that at least some of the activated ERα containing cells during the 318 

LH surge may be SST in phenotype. This pattern is disturbed by acute LPS administration in the late 319 

follicular phase and is associated with failure to exhibit an LH surge.  320 

Pattern of ERα cell and SST cell activation during the follicular phase of intact control ewes.  321 

Approximately 6-7 h before the expected GnRH/LH surge onset (i.e., at 31 h after PW), there was a 322 

marked increase in the percentage of activated ERα neurons in the ARC. This coincided with decreased 323 

progesterone and increasing estradiol concentrations in plasma and, therefore, indicates they are 324 

associated with estradiol positive feedback; i.e., the activation stage of the GnRH/LH surge 325 

mechanism. Furthermore, ERα cell activation was maintained throughout the late follicular phase and 326 

during the GnRH/LH surge, indicating that ERα cells in the ARC may also be associated with the 327 

transmission and surge secretion phases of the GnRH surge mechanism. Interestingly, the cFos 328 

activation pattern of ERα cells in the ARC was correlated with circulating plasma progesterone 329 

concentrations but not estradiol. Thus, it appears ERα cells within this area are not activated by 330 

estradiol in a dose-dependent manner but may rather ‘perceive’ a threshold of estradiol, and respond 331 

by becoming active [10, 38]. Moreover, this requires low concentrations of progesterone in the 332 

peripheral circulation.  333 

Several different neurochemical phenotypes containing ERα in the ARC have been identified to date 334 

and are potential candidates for ‘perceiving’ the increased estradiol signal and activating the GnRH 335 
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surge mechanism. A most striking accumulation of ERα in the ARC of female sheep occurs in 336 

kisspeptin cells (95%; [39]). However, we and others have shown that only during the LH surge (and 337 

not other times in the follicular phase), there is a simultaneous intense activation of ARC kisspeptin 338 

neurons [24, 40] indicating that these cells may be associated with the secretory phase of the GnRH 339 

surge mechanism. Thus, it appears that there are other neuropeptide cells activated in the ARC at least 340 

6-7 h before the expected surge onset that are not kisspeptin cells, but contain ERα. In this aspect, 341 

kisspeptin neurons in this region co-localize two other neuropeptides important for the control of 342 

GnRH secretion: neurokinin B and dynorphin (termed KNDy cells; [41-43]). It is, therefore, possible 343 

that activated ERα cells predominantly contain neurokinin B or dynorphin rather than kisspeptin. Other 344 

potential cell types that may be involved contain β-endorphin, dopamine, neuropeptide Y (NPY) or 345 

SST (see later) [16] (3% to 20% of these contain ERα [17, 36, 44]). In addition, 52-61% glutamate 346 

neurons in the MBH and 50% galanin neurons across the ovine hypothalamus express ERα [45, 46]. 347 

Cells containing all the above neuropeptides have been implicated in the control of GnRH secretion in 348 

the ewe [17, 45-48] and, therefore, are potential candidates for mediating stimulatory effects of steroids 349 

on GnRH neurons.  350 

Activation of ERα cells in the mPOA increases gradually, culminating in maximum activation during 351 

the surge. Interestingly, we have previously observed a parallel gradual escalation of kisspeptin neuron 352 

activation and this could account for the pattern observed with ERα cell activation in the present study 353 

[24]. Apart from the 50% kisspeptin cells in the ovine mPOA that contain ERα, other potential 354 

candidates are GABA cells (40% co-localization with ERα [49]) and galanin expressing cells (50% 355 

co-localization with ERα [46]). In addition, nearly all dynorphin cells in the mPOA contain PR [50] 356 

and, therefore, ERα [51]. Furthermore, there was a strong correlation between circulating plasma 357 

estradiol (positive) and progesterone (negative) concentrations and the percentage of ERα neurons that 358 

were activated, indicating that the mPOA is regulated by ovarian steroids in a dose-dependent manner. 359 

However, as estradiol implants in the MBH and not the mPOA of the ewe are able to elicit an LH surge 360 
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[15], it is possible that ERɑ cells in this area are activated indirectly, via other estradiol responsive 361 

neurons that may originate in the MBH.   362 

The ventrolateral part of the VMN has been identified as the most sensitive site for estradiol action on 363 

sexual behavior in the female rat [52-54], sheep [14] and monkey [55]. To date, dopamine (DA) and 364 

noradrenaline (NA) have received most attention as major regulators of sexual behavior in the ewe by 365 

acting upon unknown cells in the VMN [13, 56]. In the present study, activation of ERα neurons in the 366 

VMN initially decreased until just before the onset of sexual behavior after which there was a ten-fold 367 

increase in animals exhibiting pre-copulatory behaviors (compared to ‘Before sexual behavior’). 368 

Furthermore, there was a positive correlation between the cFos-activation pattern in ERα cells of the 369 

VMN and circulating estradiol (but not progesterone), providing further evidence that these cells may 370 

be involved in mediating estradiol stimulation of sexual behavior. Interestingly, the above results 371 

concur with a reciprocal pattern of extracellular DA concentrations in the MBH of OVX ewes: as 372 

plasma progesterone decreased after PW, there was an increase in DA followed by an acute decrease 373 

after administration of estradiol [13]. Similarly, NA increases transiently in MBH extra-cellular fluid 374 

during estrus and following sexual interactions with a male [57]. More detailed investigations into 375 

interactions between DA, NA and ERα neurons over this period would be illuminating. As mentioned 376 

above, 70% of the total ERα immunoreactive cells in the VMN are SST in phenotype [18] and 377 

therefore, it would be of great interest to determine whether SST cells receive input from DA and/or 378 

NA cells, constituting a possible mechanism for the control of sexual behavior in the ewe. These 379 

potential interactions could also account for the delay in ERα cell activation observed in the VMN 380 

compared to the ARC and mPOA as dopaminergic input to ERɑ cells may inhibit their activation until 381 

the onset of sexual behaviour. However, these anatomical and functional studies remain to be 382 

performed. Alternatively, the delay in activation of VMN ERα neurons may be a result of their 383 

indirect/secondary activation via ERα cells located in the ARC.  Indeed, projections from the ARC 384 

towards the VMN are well documented using retrograde tracing techniques [58]. 385 
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In the present study, there was an increase in the percentage of activated SST neurons in the ARC and 386 

VMN during the LH surge compared to other stages in the follicular phase. Thus, SST neurons in the 387 

ARC and VMN appear to be directly or indirectly activated by estradiol (we found a positive 388 

correlation between activated SST cells and estradiol plasma concentrations) during the surge secretion 389 

phase of the GnRH surge mechanism. In accordance with our data, Scanlan et al., [17] report a similar 390 

magnitude increase in ARC and VMN SST activation, 18 h after a surge stimulating estradiol injection 391 

(i.e., during the surge) in anestrous ewes. By contrast, in an OVX-hormone replacement ewe model, 392 

SST mRNA [19] and c-Fos induction in SST neurons [20] was observed 4 h and 6 h after exposure to 393 

surge generating estradiol implants, respectively. The latter two reports implied that SST was activated 394 

in the early stages of the surge induction process; however, there was no information concerning the 395 

surge in those studies. The reason for this time difference in SST cell activation is not known. It is 396 

possible that SST neurons activated in the early stages of surge generation are the 30% SST neurons 397 

that contain ERα, while those activated at the time of the GnRH surge belong to the 70% non-ERα 398 

containing SST cells.   399 

The finding that SST cells are activated during LH surge secretion is particularly interesting, as central 400 

administration of SST attenuates the LH surge in rats [30] and abolishes LH pulsatility and 401 

dramatically decreases the mean basal level of LH secretion in the ewe [19]. Together, these 402 

observations lead to a hypothesis that SST neurons may be important for termination of the GnRH/LH 403 

surge. Alternatively, SST neurons may act as a disinhibiting mediator for GnRH secretion by acting 404 

on GABA cells located in the vicinity of mPOA GnRH cell bodies [59]. Indeed, microdialysis revealed 405 

lower GABA values in the mPOA prior to the GnRH/LH surge [60]. These hypotheses remain to be 406 

tested.  407 

The potential pathway via which SST neurons influence GnRH secretion in the ewe is unknown. In 408 

mice, approximately 50% of GnRH neurons have SST close contacts [29], whereas Koyoma et al., 409 
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[61] reported 35 close contacts between each GnRH neuron and SST fibers in the rat. Furthermore, 410 

mRNAs for somatostatin receptors 2, 3 and 4 have been identified in murine GnRH cells [62]. Whether 411 

SST acts directly on GnRH neurons or potentially via interneurons to influence GnRH secretion in the 412 

ewe merits further investigation.  413 

Pattern of ERα and SST cell activation during the follicular phase of intact ewes treated with LPS. 414 

Administration of the immunological stressor LPS during the follicular phase leads to a reduction in 415 

plasma estradiol concentrations and delays the LH surge onset by approximately 22 h [22]. Plasma 416 

estradiol concentrations decreased 8 h after the administration of LPS [24], whereas a decrease in the 417 

percentage of activated ERα neurons, in the ARC and mPOA, occurred sooner (3 h after treatment). 418 

These results concur with previous studies indicating that there are at least two mechanisms involved 419 

in LPS inhibition of the ovarian cycle: one involving disruption of GnRH/LH pulses and, therefore, 420 

reduced estradiol secretion from the ovaries; and the other, preventing the ability of the surge-421 

generating mechanism to respond to the preovulatory increase in estradiol [27, 63]. Here, we extend 422 

these observations by showing that the latter mechanism involves inhibition of ERα cells that fail to 423 

become activated in the ARC and mPOA. Furthermore, our results show that there is a time difference 424 

between the two disruptive mechanisms (decrease of plasma estradiol 8 h after LPS administration; 425 

decreased activation of ERα cells within 3 h after LPS), indicating that the regulating factors may be 426 

different. In support of this dual regulation, Harris et al., [64] report that prostaglandins secreted after 427 

LPS treatment have the ability to attenuate GnRH pulses, but administration of the prostaglandin 428 

synthesis inhibitor flurbiprofen did not reverse the LH surge delay observed after application of this 429 

stressor [65].  430 

In the present study, cortisol increased to maximum concentrations immediately after the 431 

administration of LPS (i.e., 2 h after treatment; [24]) and is, therefore, a potential candidate for the 432 

immediate inhibition of ERα neurons. Indeed, Pierce et al., [66] and Wagenmaker et al., [67] report 433 
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that administration of high doses of cortisol disrupt the positive feedback effect of estradiol to trigger 434 

an LH surge. One potential inhibiting pathway is via glucocorticoid receptors type II (GRII), which 435 

are present in ~ 70% of ERα cells located in the mPOA and ARC [51]. However, studies examining 436 

the effects of other types of stressors such as insulin-induced hypoglycemia or a layered psychosocial 437 

stress paradigm, both accompanied by endogenous cortisol production, report that administration of 438 

the progestin/glucorticoid receptor antagonist RU486 did not reverse the LH surge delay or the 439 

attenuation of GnRH pulses [21, 68]. It is possible, that cortisol production during insulin-induced 440 

hypoglycemia and psychosocial stress is insufficient for a hypothalamic effect. 441 

We observed an increase in plasma progesterone concentrations after LPS, possibly of adrenal origin 442 

[24], however, the timing of maximum values varied considerably between animals, from 2 to 10 h 443 

after treatment  and, therefore, we cannot determine which mechanism is affected by stress-induced 444 

increases in progesterone. But it is noteworthy that progesterone has been implicated in both inhibition 445 

of GnRH pulses [69] and blocking of the surge mechanism [70-72]. 446 

The effects of LPS were still evident 12 h after treatment, when the percentage of activated ERα 447 

neurons in the ARC and mPOA remained at low levels. Taking into consideration that these animals 448 

did not have an LH surge at the same time as controls, we conclude that the LH surge disruption in 449 

response to an immune/inflammatory challenge in the ewe is accompanied by a lack of ERα neuron 450 

activation. This compliments our recent results in which the absence of an LH surge was accompanied 451 

by the failure of highly estradiol-receptive kisspeptin neurons to be activated [24]. At the same time, 452 

co-localization of corticotropin releasing factor receptor type 2 and kisspeptin was increased (>50% 453 

co-localization), indicating that this may constitute a potential inhibitory pathway [24]. The precise 454 

mechanism by which ERα cells are inhibited following LPS administration remains to be elucidated, 455 

however, it may involve other cells of unknown phenotype located in the ARC, mPOA and VMN, as 456 

c-Fos is greatly increased in these areas after LPS administration [24].  457 
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Intriguingly, the percentage of ERα neurons that were activated in the VMN was not altered by LPS. 458 

Since the majority of ERɑ neurons in the VMN are SST in phenotype [18], we hypothesized that SST 459 

neurons would be activated in response to LPS treatment. Indeed, we observed a three-fold increase in 460 

SST activation in the VMN 3 h after LPS administration. There are several hypotheses for the role of 461 

SST during stress. First, as mentioned above, SST is a potent inhibitor of GnRH neurons in rats [29] 462 

and, therefore, it is possible that SST cells are activated through an unknown mechanism to mediate 463 

stress-induced disruption of the LH surge via direct or indirect action on GnRH cells. Second, in the 464 

rat, acute inflammation induced by LPS inhibits secretion of growth hormone (GH) from the pituitary 465 

gland and this suppression is mediated by hypothalamic SST [73]. However, in the rat and sheep, SST 466 

neurons from the periventricular region and not elsewhere, project to the ME and form a final common 467 

pathway for the regulation of GH secretion from the anterior pituitary [17]. Nonetheless, we cannot 468 

exclude the possibility that SST neurons in the VMN could be involved in GH suppression indirectly 469 

via the activation of periventricular SST neurons.  470 

Activation of SST after application of LPS is unlikely to be mediated by cortisol, as the VMN contains 471 

very few glucocorticoid receptors type 2 in sheep [51], and adrenalectomy did not prevent the increase 472 

in SST mRNA after LPS in rats [33]. In vitro evidence indicates that corticotropin releasing factor 473 

(CRF) is involved in activating rat somatostatin cells [74]. Indeed, reciprocal connections have been 474 

identified between CRF and SST cells in rats [75]. Whether the same is true in the sheep has not yet 475 

been investigated, but could constitute a potential pathway via which stressors attenuate GnRH 476 

secretion.  477 

Conclusion  478 

The present findings show that ERα cell activation patterns differ at specific times in the follicular 479 

phase, as well as between regions. Based on our observations, we hypothesize that once circulating 480 

progesterone concentrations have decreased and estradiol concentrations reach a specific ‘threshold’ 481 
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value (at least 6-7 h before the expected LH surge onset), ERα cell activation increases in the ARC 482 

and remains elevated throughout the LH surge. Activation of mPOA ERα cells increases prior to the 483 

surge onset but the pattern of activation is gradual. ERα cells in the VMN are activated later than in 484 

the ARC and mPOA, and this coincides with the exhibition of sexual behaviors implying that the VMN 485 

may be involved in regulation of behavior. Nonetheless, ERα cell activation was at a maximum during 486 

the LH surge in all these areas, indicating a role in estradiol positive feedback and GnRH surge 487 

secretion. Furthermore, we have identified some of those cells are probably SST in phenotype. The 488 

physiological role of increased SST cell activation in the ARC and VMN during the LH surge in the 489 

ewe is not known, however, based on previous anatomical and functional studies we hypothesize that 490 

this may be involved in GnRH/LH surge termination. Ewes treated with LPS (a potent activator of the 491 

stress axis) during the late follicular phase did not have an LH surge at the same time as controls and 492 

this was accompanied by a failure of ERα cell activation but an increase in VMN SST cell activity. 493 

The precise role of SST in the stress-induced disruption of the GnRH surge, as well as the phenotype 494 

identity of other attenuated ERα cells, requires further investigation.  495 
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Fig. 1 Sets of photomicrographs from the mPOA that were dual-labeled for c-Fos containing cells 706 

(A,D) and their co-localization with ERα (B, E) in control animals at 40 h after PW (during the surge; 707 

A, B, C). Panels on the bottom (C, F) are computer-generated merged images of the two top panels 708 

illustrating co-localization of c-Fos and ERα. The right panels (D, E, F) are the higher magnifications 709 

(Scale bar: 50 μm) of the boxed areas shown in the left panels (A, B, C; scale bar: 150 μm). Examples 710 

of single- and double-labeled cells are marked through the panels with arrows and arrowheads, 711 

respectively.  712 

Fig 2. A,B,C: Mean % (±SEM) ERα cells that co-localized c-Fos (%ERα/c-Fos) in the ARC, mPOA 713 

and VMN, respectively, at different stages during the follicular phase of control ewes. Animals are 714 

grouped according to time after PW as well as hormonal and behavioral status; i.e., grouped into those 715 

killed at 0 and 16 h after PW (n=4-5), those killed before the onset of sexual behavior (Before sexual 716 

behavior, n=3), those killed after the onset of sexual behavior but before exhibiting an LH surge 717 

(During sexual behavior, n=5) and those killed during sexual behavior and an LH surge (Surge, n=3). 718 

Within each panel, differences between the percentages are indicated by different letters on top of each 719 

bar (P<0.05). D,E,F: Regression graphs showing the correlation between %ERα/c-Fos in the ARC, 720 

mPOA and VMN against the % change from 0 h to the mean two consecutive highest or lowest 721 

concentrations of estradiol (o, E2; dotted line) or progesterone (■, P4; solid line), respectively. 722 

Fig 3. Mean % (±SEM) somatostatin cells that co-localized c-Fos (%SST/c-Fos) in the ARC (A) and 723 

VMN (B) at different stages during the follicular phase of control ewes as determined by dual-724 

immunofluorescence. Animal groupings are explained in Fig 2 legend. Within each panel, differences 725 

between the percentages are indicated by different letters on top of each bar (P<0.05). C and D: 726 

Regression graphs showing the correlation between %SST/c-Fos in the ARC and VMN against the % 727 

change from 0 h to the mean two consecutive highest or lowest concentrations of estradiol (o, E2; 728 

dotted line) or progesterone (■, P4; solid line), respectively. 729 
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Fig. 4 Sets of photomicrographs from the ARC that were dual-labeled for c-Fos cells (A,D) and their 730 

co-localization with ERα (B,E) in control animals at 31 h after PW (A, B, C) as well as 3 h after LPS 731 

treatment in the late follicular phase (D, E, F). Panels on the bottom (C, F) are computer-generated 732 

merged images of the two top panels illustrating co-localization of c-Fos and ERα. Examples of single 733 

and double labeled cells are marked through the panels with arrowheads and arrows, respectively. 734 

Scale bars = 50 μm. 3V = third ventricle. 735 

Fig 5. Mean % (±SEM) of activated ERα cells in the ARC, mPOA and VMN at various times during 736 

the follicular phase of control and treated ewes. Animals are grouped according to killing time after 737 

PW i.e., control ewes at 0, 16, 31 and 40 h (n=4-5 per group; black bars) as well as after LPS at 31 and 738 

40 h (n=4 for both times; white bars). Treatment with LPS was at 28 h after PW. Within each panel, 739 

differences between percentages are indicated by different letters on top of each bar (P<0.05). 740 

Fig 6. Mean (±SEM) % of activated SST cells in the ARC (A) and VMN (D) at various times during 741 

the follicular phase of control and treated ewes. Animals are grouped according to killing time after 742 

PW i.e., control ewes at 0, 16, 31 and 40 h (n=4-5 per group; black bars) as well as after LPS at 31 and 743 

40 h (n=4 for both times; white bars). Treatment with LPS was at 28 h after PW. Within each panel, 744 

differences between percentages are indicated by different letters on top of each bar (P<0.05). Also 745 

shown are photomicrographs from the ARC (B, C) and VMN (E, F) that were dual-labeled with c-Fos 746 

and somatostatin in 31 h control ewes (B, E), a 40 h control ewe (during the LH surge; C) and a 31 h 747 

LPS treated ewe (F). White arrows indicate examples of dual-labeled cells. Scale bars = 50 μm. 3V = 748 

third ventricle. 749 

 750 

Table 1 Mean (± SEM) total numbers of cells containing ERα in the ARC, mPOA and VMN at 751 

different times during the follicular phase, as well as after acute administration of LPS at 28 h during 752 

the late follicular phase. 753 
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Table 2 Mean (± SEM) total numbers of cells containing somatostatin (SST) in the ARC and VMN at 754 

different times during the follicular phase, as well as after acute administration of LPS at 28 h during 755 

the late follicular phase. 756 

 757 















 

Group 

Total number of ERα positive cells 

Region 
ARC mPOA VMN 

0 h 52.3 ± 26.9 15.2 ± 4.1   38.0 ± 8.3 
 
16 h 

 
57.9 ± 19.5 

 
17.2 ± 3.4 

 
49.8 ± 16.4 

 
31 h control 

 
96.6 ± 21.1 

 
39.5 ± 13.0 

 
49.6 ± 14.4 

 
31h LPS 

 
41.3 ± 16.6 

 
37.1 ± 22.5 

 
78.0 ± 12.9 

40h control 89.7 ± 19.3 59.0 ± 26.2 100.4 ± 20.8* 

40 h LPS 59.9 ± 18.2 26.0 ± 6.6 75.3 ± 12.7 
                                                           

                                                       * within columns, P<0.05 compared to 0h, 16h, 31h control groups.  

 
 



 

Group 

Total number of SST positive cells 

Region 
ARC VMN 

0 h 48.9 ± 15.1 29.8 ± 9.9 
 
16 h 

 
55.6 ± 16.9 

 
25.9 ± 15.9 

 
31 h control 

 
36.5 ± 10.3 

 
22.3 ± 6.0 

 
31 h LPS 

 
   32.1 ± 5.6 

 
28.0 ± 5.7 

40 h control 58.1 ± 16.0 36.5 ± 17.2 

40 h LPS 52.0 ± 21.1 58.8 ± 18.0 
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