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ABSTRACT 11 

 In the ewe, steroid hormones act on the hypothalamic arcuate nucleus (ARC) to initiate the 12 

GnRH/LH surge. Within the ARC, steroid signal transduction may be mediated by dopamine, 13 

β-endorphin or neuropeptide Y (NPY) expressing cells, as well as those co-localising 14 

kisspeptin, neurokinin B (NKB), and dynorphin (termed KNDy). We investigated the time 15 

during the follicular phase when these cells become activated (i.e., co-localise c-Fos) relative 16 

to the timing of the LH surge onset and may, therefore, be involved in the surge generating 17 

mechanism. Furthermore, we aimed to elucidate whether these activation patterns are altered 18 

after lipopolysaccharide (LPS) administration, which is known to inhibit the LH surge. 19 

Follicular phases of ewes were synchronised by progesterone withdrawal and blood samples 20 

collected every 2 hours. Hypothalamic tissue was retrieved at various times during the 21 

follicular phase with or without administration of LPS (100ng/kg). The percentage of 22 

activated dopamine cells decreased before the onset of sexual behaviour, whereas activation 23 

of β-endorphin decreased and NPY activation tended to increase during the LH surge. These 24 

patterns were not disturbed by LPS administration. Maximal co-expression of c-Fos in 25 

dynorphin immunoreactive neurones was observed earlier during the follicular phase, 26 

compared to kisspeptin and NKB, which were maximally activated during the surge. This 27 

indicates a distinct role for ARC dynorphin in the LH surge generation mechanism. Acute 28 

LPS decreased the percentage of activated dynorphin and kisspeptin immunoreactive cells. 29 

Thus, in the ovary-intact ewe, KNDy neurones are activated prior to the LH surge onset and 30 

this pattern is inhibited by the administration of LPS.  31 

 32 

 33 

 34 
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INTRODUCTION 35 

During the late follicular phase of the ewe, the decrease in plasma progesterone 36 

concentrations after luteolysis, along with an increase of oestradiol from the dominant 37 

follicle(s), triggers the onset of sexual behaviour, closely followed by a sudden and massive 38 

release of gonadotrophin-releasing hormone (GnRH) and therefore, luteinising hormone (LH), 39 

leading to ovulation. By contrast, various types of stressors, such as an acute bolus injection of 40 

the E. coli endotoxin (lipopolysaccharide; LPS) during the late follicular phase decreases 41 

plasma oestradiol concentrations and abolishes both sexual behaviour and the LH surge 42 

(Fergani, et al. 2012) via mechanisms that remain largely unknown. 43 

In the ewe, oestradiol acts, at least in part, in the vicinity of the arcuate nucleus (ARC) to 44 

initiate positive feedback mechanisms (Blache, et al. 1991, Caraty, et al. 1998). In line with 45 

this hypothesis, we have recently shown that the number of ERα-containing cells that are 46 

activated in the ARC (as measured by co-localisation with c-Fos) increases dramatically at least 47 

6-7 hours prior to the surge onset and remains elevated throughout the LH surge (Fergani, et 48 

al. 2014). Furthermore, this pattern of activation is attenuated, if preceded by acute 49 

administration of LPS (Fergani, et al. 2014). Undoubtedly, kisspeptin signaling is the key 50 

pathway in mediating oestradiol positive feedback on GnRH neurones in all species studied to 51 

date (Fergani, et al. 2013, Lehman, et al. 2010, Smith 2009) and is therefore a primary candidate 52 

for initiating the GnRH/LH surge. However, ARC kisspeptin cells are activated during the LH 53 

surge but not at other times in the follicular phase (Fergani, et al. 2013, Merkley, et al. 2012). 54 

Thus, there are other cell types activated in the ARC before the expected surge onset that are 55 

not kisspeptin immunoreactive cells, but contain ERα.  56 

In this context, the ARC contains tyrosine hydroxylase (TH; a biosynthetic enzyme marker 57 

for dopamine), β-endorphin and neuropeptide Y (NPY) cells, sub-populations of which contain 58 
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ERα (Antonopoulos, et al. 1989, Lehman, et al. 1993, Lehman and Karsch 1993) and have been 59 

implicated in reproductive neuroendocrine mechanisms, and also in the pathophysiology of 60 

stress-induced reproductive disruptions (Fabre-Nys, et al. 2003, Melis and Argiolas 1995, 61 

Taylor, et al. 2007) These neuropeptides are, therefore, potential candidates for contributing to 62 

the generation of sexual behaviour and/or GnRH surge secretion. More importantly, however, 63 

nearly all kisspeptin cells in the ARC co-localise two other neuropeptides that are key in the 64 

control of GnRH secretion: neurokinin B (NKB) and dynorphin (Goodman, et al. 2007, 65 

Navarro, et al. 2011) and thus are termed KNDy cells (Kisspeptin, Neurokinin B and 66 

Dynorphin; (Cheng, et al. 2010, Navarro, et al. 2011). As 94% of kisspeptin cells co-localise 67 

dynorphin and 80% co-localise NKB, with an equally high reciprocal co-localisation 68 

(Goodman, et al. 2007), immunohistochemical detection of kisspeptin protein would 69 

potentially reflect presence of all three neuropeptides. However, in the ewe, KNDy peptide 70 

immunoreactivity and/or gene expression fluctuates depending on hormonal and gonadal status 71 

(Foradori, et al. 2006, Smith 2009). Thus, it is plausible to speculate that in ovary-intact ewes, 72 

endogenous fluctuation of the ovarian steroid hormone milieu during the follicular phase may 73 

be associated with differential protein expression within KNDy cells and, therefore, different 74 

activation patterns for each neuropeptide. 75 

Lastly, there is evidence that kisspeptin neurones mediate the effects of stressors on the 76 

reproductive neuroendocrine axis. For example, there is down-regulation of the hypothalamic 77 

kisspeptin system in rats after administration of LPS (Iwasa, et al. 2008, Kinsey-Jones, et al. 78 

2009). Furthermore, immunohistochemical analysis of kisspeptin combined with c-Fos, 79 

revealed that LPS administration is accompanied by reduced activation of kisspeptin cells in 80 

the ARC of the ewe (Fergani, et al. 2013, 2014). However, the effects of stressors on levels 81 

dynorphin and NKB immunoreactivity and activation in the ARC haven’t received as much 82 

attention. 83 
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We have shown that activation of ERα-containing cells in the ARC dramatically increases 84 

at least 6-7 hours prior to the LH surge onset and this pattern is attenuated if preceded by a 85 

bolus injection of LPS (Fergani, et al. 2014). Furthermore, at least some of these ERα-86 

containing cells are not kisspeptin cells and therefore, their phenotype remains to be elucidated 87 

(Fergani, et al. 2013, 2014). For the present study, we collected brain tissue from ewes at 88 

various times in the follicular phase and used immunohistochemistry to pinpoint the time when 89 

dopamine, β-endorphin, NPY and kisspeptin-NKB-dynorphin (KNDy) expressing cells 90 

become activated (i.e., co-express c-Fos). Furthermore, these activation patterns where 91 

correlated to peripheral plasma oestradiol and progesterone concentrations as well as the timing 92 

of different sexual behaviours and the LH surge onset. Lastly, we sought to determine whether 93 

the disruption of sexual behaviour and/or the surge after LPS administration is associated with 94 

altered activation of any or all of these cell types, adding to the evidence of their involvement 95 

in the physiological oestrus or surge generating mechanism.  96 

MATERIALS AND METHODS  97 

Animals, Study Design, Tissue Collection, Blood Collection, and Hormone Assays 98 

All procedures were conducted within requirements of the UK Animal (Scientific 99 

Procedures) Act 1986, and approved by the University of Liverpool Animal Welfare 100 

Committee. Experiments were carried out on adult, ovary-intact Lleyn crossbred ewes (6 101 

groups of 4-6 ewes per group) during the mid-breeding season. After follicular phase 102 

synchronisation, ewe and ram oestrus behaviour was monitored during 30-minute observation 103 

periods before each blood sample collection at 0 h, 16 h, 24 h and subsequently at 2 h intervals 104 

till 40 h after PW (PW; progesterone intravaginal device withdrawal). The following 105 

behaviours of oestrus were recorded: 1) ewe is within one metre of a ram [behavioural scan 106 

sampling; (Martin 1986)], 2) ram nosing perineal region of ewe, 3) ewe being nudged by ram 107 

without moving away, and 4) ewe mounted by ram without moving away. Frequent blood 108 
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sampling, as well as the administration of all substances, was facilitated by insertion of a silastic 109 

catheter (Dow Corning, Reading, UK). Duplicate blood samples were analyzed by Enzyme-110 

Linked Immunosorbent Assays (ELISAs) for LH, pregnane metabolites (equivalent to, and 111 

hereafter referred to as, progesterone) or cortisol. LH results were expressed as ng equivalent 112 

of NIAMDD ovine LH 21 per ml plasma. Oestradiol was measured in duplicate by 113 

radioimmunoassay (RIA) using 0.5 ml plasma extracted with 3 ml diethyl ether followed by 114 

evaporation to dryness. Contemporary inter-assay and intra-assay coefficients of variation for 115 

LH, progesterone, cortisol and oestradiol were all less than 12%.  The minimum detectable 116 

amounts were 0.02 ng/ml; 0.16 ng/ml, 0.8 ng/ml and 0.2 pg/ml and assay precisions (in the 117 

mid-range of the standard curve) were 0.1 ng/ml, 0.01 ng/ml, 0.2 ng/ml and 0.2 pg/ml, 118 

respectively. All samples from individual animals were measured in the same assay for each 119 

hormone. One group of ewes was killed at 0 h (0 h control group; n=5) and another group at 120 

16 h after PW (16 h control group; n=4). At 28 h, the remaining animals received 2 ml saline 121 

vehicle, or endotoxin (lipopolysaccharides from E. coli 055:B5, LPS, Sigma-Aldrich, UK; i.v. 122 

dose of 100 ng/kg body weight). The dose of LPS had been determined previously to evoke a 123 

robust increase in plasma cortisol followed by a delay of in the LH surge onset (Fergani, et al. 124 

2012). The timing of the treatments was chosen in order to precede all sexual behaviours and 125 

not just mounting. Two groups were killed at 31 h (31h control, n=6 and 31h LPS group, n=5) 126 

and two groups at 40 h after progesterone withdrawal (40h control, n=5 and 40h LPS group, 127 

n=5). Ewes were euthanised with pentobarbitone and perfused with: 2 litres 0.1M phosphate 128 

buffer (PB; pH 7.4) containing 25,000IU per litre of heparin and 1% sodium nitrate; then 2 129 

litres Zamboni fixative (4 % paraformaldehyde) and 7.5 % saturated picric acid in 0.1M PB, 130 

pH 7.4); followed by 500 ml of the same fixative containing 30 % sucrose. Hypothalamic 131 

blocks (17 mm in width) were obtained (extending from the optic chiasma to the mammillary 132 
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bodies). Free-floating sections were stored in cryoprotectant solution and stored at -20 0C until 133 

processed for immunohistochemistry. 134 

Dual-labelled immunofluorescence for c-Fos and DA, β-endorphin, NPY, dynorphin, or NKB. 135 

Dual-label immunofluorescence was carried out on 40 μm sections containing ARC. All 136 

steps were followed by washes in 0.1M phosphate buffer saline, pH 7.2 (PBS) and performed 137 

at room temperature unless otherwise stated. Antibodies were diluted with 2.5 % normal 138 

donkey serum (catalogue item S2170, Biosera, UK), 1% Triton X-100 (T9284, Sigma-Aldrich, 139 

UK) and 0.25 % sodium azide (Sigma) in 0.1M PBS. Free-floating sections were washed 140 

thoroughly in PBS for 2 h to remove the cryoprotectant solution followed by 1 h incubation in 141 

blocking solution (10% donkey serum in PBS) and a 72 h incubation at 40C with polyclonal 142 

rabbit anti-c-Fos antibody (AB-5, PC38, Calbiochem, Cambridge, MA, USA; 1:5,000). Next, 143 

sections were incubated with donkey anti-rabbit Cy3 (711-165-152, Jackson Immunoresearch, 144 

West Grove, PA; 1:500) for 2 h. A second immunofluorescent procedure was then performed, 145 

as described above, to localise the second primary antibodies: mouse anti-tyrosine hydroxylase 146 

serum (MAB318, Millipore, Billerica, MA; 1:20,000), or rabbit-anti-β-endorphin serum (T-147 

4041, Peninsula Laboratories, San Carlos, CA; 1:500), or rabbit-anti-neuropeptide Y serum 148 

(N9528, Sigma-Aldrich, UK; 1:5,000), or rabbit-anti-dynorphin serum (T-4268, Peninsula 149 

Laboratories, LLC, San Carlos, CA; 1:10,000) or rabbit-anti-NKB serum (T-4450, Peninsula 150 

Laboratories, LLC, San Carlos, CA; 1:1,000); each incubated for 72 h at 4 0C and then 151 

visualised using donkey-anti-rabbit Dylight 488 (715-485-152, Jackson Immunoresearch West 152 

Grove, PA; 1:500) or donkey-anti-mouse Dylight 488 (715-485-151, Jackson Immunoresearch 153 

West Grove, PA; 1:500), accordingly. Thereafter, sections were mounted on chrome alum 154 

gelatin-coated slides and cover-slipped with Vectashield anti-fading mounting medium (H-155 

1000, Vector Laboratories Ltd, UK). The c-Fos (Ghuman, et al. 2011), tyrosine hydroxylase 156 

(Robinson, et al. 2010), β-endorphin (Ghuman, et al. 2011), neuropeptide Y (Skinner and 157 
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Herbison 1997), kisspeptin (Franceschini, et al. 2006), dynorphin (Foradori, et al. 2006) and 158 

NKB (Goodman, et al. 2007) antibodies have been validated previously for use in ovine neural 159 

tissue. 160 

Triple-labelled immunohistochemistry for c-Fos, kisspeptin and dynorphin 161 

Interestingly, we observed a different dynorphin cell activation pattern compared to what 162 

we had previously reported for kisspeptin (Fergani, et al. 2013). In order to confirm this 163 

discrepancy we performed triple-label immunohistochemistry for c-fos, kisspeptin and 164 

dynorphin. This consisted of an immunoperoxidase protocol in which nuclear c-Fos was 165 

detected first with diaminobenzidine as chromogen (DAB; brown reaction product) followed 166 

by visualisation of kisspeptin and dynorphin with immunofluorescence. As kisspeptin and 167 

dynorphin antibodies were both derived in the rabbit, we used a previously described modified 168 

protocol (Cheng, et al. 2010, Hunyady, et al. 1996). Free-floating sections were washed 169 

thoroughly in PBS for 2 h to remove the cryoprotectant solution followed by a 15 min 170 

incubation in 40 % methanol and 1 % hydrogen peroxide (H2O2; 316989, Sigma-Aldrich, UK) 171 

in PBS to inactivate endogenous peroxidases. Sections were then incubated for 1 h in blocking 172 

solution (10 % donkey serum in PBS), followed by a 72 h incubation in rabbit anti-c-Fos 173 

antibody (1:5,000) at 4 0C. After, sections were labelled with biotinylated donkey anti-rabbit 174 

IgG (711-065-152, Jackson Immunoresearch West Grove, PA; 1:500) for 2 h, followed by 90 175 

min in Vectastain Elite ABC kit (1:250 in PBS; PK6100, Vector Laboratories Ltd, UK). Nuclear 176 

c-Fos was visualised by 5 min incubation in DAB (SK-4100, Vector Laboratories, Ltd, UK). 177 

The second immunohistochemical procedure consisted of incubation for 72 h in rabbit anti- 178 

kisspeptin (lot #564; gift from Prof. Alain Caraty, INRA Nouzilly, France; 1:150,000) at 4 0C. 179 

Following incubation, sections were labelled with biotinylated donkey anti-rabbit IgG (1:500; 180 

for 2 h) and then incubated in Vectastain Elite ABC kit (1:250; for 90 min). The signal was 181 

amplified in TSA for 10 min (1:200; New England Nuclear Life Science Products Life 182 
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Sciences, Boston, MA) diluted in PBS with 0.003 % H2O2 as substrate (Cheng, et al. 2010) and 183 

then labelled with streptavidin conjugated AlexaFluor 488 (S11223, Molecular Probes, Eugene, 184 

OR, USA; 1:100) for 2 h. A third immunohistochemical procedure was then performed with a 185 

72 h incubation with rabbit anti-Dynorphin (T-4268, Peninsula Laboratories, LLC, San Carlos, 186 

CA; 1:10,000) and subsequent labelling with donkey anti-rabbit Cy3 (711-165-152, Jackson 187 

Immunoresearch West Grove, PA; 1:500) for 2 h. Finally, sections were washed, mounted on 188 

chrome alum gelatin-coated slides, dried, and cover-slipped with Vectashield anti-fading 189 

mounting medium.  190 

Data collection and analysis 191 

Hormone and immunohistochemistry data were analysed with Minitab® 15 statistical 192 

package (MINITAB Inc, Pennsylvania, USA). Statistical significance was accepted when P < 193 

0.05.  194 

Quantitative analysis was carried out on three sections from each of the middle and caudal 195 

divisions of the ARC from each animal, where the largest numbers of cells are located 196 

(Lehman, et al. 2010). Sections were examined under an epi-fluorescent/brightfield microscope 197 

(Zeiss Axio Imager. M1) and photographed by digital microphotography (Hamamatsu ORCA 198 

I-ER digital camera, Hamamatsu Photonics, Welwyn Garden City, Herts) using a 20× objective. 199 

Photographs (three per section) were acquired with an image analysis program AxioVision 200 

(Zeiss Imaging Systems) and consisted of single c-Fos staining, single dopamine, β-endorphin, 201 

neuropeptide Y, kisspeptin, dynorphin or NKB staining as well as merged fluorescent images 202 

to produce a spectral combination of green (fluorescein) and red (rhodamine). All photographs 203 

were imported into Image J version 1.42q, and counts performed using the cell count plug-in. 204 

Triple co-localisation was determined by switching through the single-labelled 205 

brightfield/fluorescent photographs. The observer was unaware of the animal identity and 206 

group. The mean total number and percentage of single-, dual- or triple-labelled cells was 207 
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summed from the photographs of each section and then averaged for each ewe and compared 208 

using GLM ANOVA, followed, when appropriate, by Tukey’s multiple comparisons post hoc 209 

test. Mean data (±SEM), as presented in figures and results, were calculated by averaging 210 

values for each group. 211 

The data were analyzed in two ways: the first consisted of data derived from control ewes, 212 

grouped according to time as well as hormonal and sexual behaviour status; i.e., those killed at 213 

0 or 16 h after PW, those killed at 31 h after PW but before the onset of sexual behaviour 214 

(Before sexual behaviour, n=3), those killed at 31 or 40 h after PW but after the onset of sexual 215 

behaviour and before exhibiting an LH surge (During sexual behaviour, n=5) and those killed 216 

after the onset of both sexual behaviour and during the LH surge (Surge, n=3). This grouping 217 

was used to describe the timing of each neuropeptide cell activation relative to the LH surge 218 

onset. Secondly, control and treated ewes were grouped according to time of killing after PW, 219 

and these data were used to compare LPS treatment effects. 220 

Lastly, regression analysis was used to correlate plasma oestradiol and progesterone 221 

concentrations (percentage of change from 0 h) to the percentage of DA, β-endorphin, NPY, 222 

kisspeptin, dynorphin or NKB cells that co-localised c-Fos (i.e., were activated) during various 223 

times in the follicular phase of control ewes. 224 

RESULTS 225 

Animals treated with LPS did not show any signs of illness, with very few exceptions of mild 226 

coughing and increased respiration rate. 227 

Luteinising hormone (LH), sexual behaviour and plasma hormone profiles 228 

Detailed LH, sexual behaviour and plasma hormone profiles have been published previously 229 

(Fergani, et al. 2013). In brief, there was no sexual behaviour or LH surge recorded in control 230 

ewes killed at 0 or 16 h. Eight of eleven control animals, killed at 31 or 40 h, began exhibiting 231 

sexual behaviour at 28.5 ± 2.4 h after PW, and three of five (from the 40 h control group) 232 
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additionally had an LH surge with a mean onset at 36.7 ± 1.3 h after PW. None of the LPS 233 

treated ewes exhibited an LH surge within the 40 h of study and only 3 out of 8 LPS treated 234 

ewes displayed early signs of oestrus behavior (near ram and being nosed) which ceased after 235 

treatment (Fergani, et al. 2013).  236 

In control ewes, plasma oestradiol concentrations began to increase at 28 h after PW and 237 

reached maximum values just before the LH surge onset (i.e., at 32 h after PW; 12.2 ± 1.8 238 

pg/ml). However, treatment with LPS was followed by a decrease in oestradiol concentrations, 239 

which was evident 8 h after LPS administration (from 11.6 ± 1.6 pg/ml to 6.9 ± 1.8 pg/ml) and 240 

remained low until ewes were killed at 40 h. Plasma progesterone concentrations decreased 241 

from 0 to 28 h after PW in all groups (from 33.7 ± 2.0 ng/ml to 6.6 ± 0.4 ng/ml). However, LPS 242 

treatment increased progesterone concentrations from 6.9 ± 1.0 ng/ml before treatment to a 243 

mean maximum of 9.9 ± 1.6 ng/ml after treatment. In all control animals, mean plasma cortisol 244 

concentrations remained low throughout the study (10.5 ± 0.7 ng/ml). By contrast, LPS 245 

treatment increased cortisol concentrations to a mean maximum of 157 ± 19.8 ng/ml 2 h after 246 

treatment (Fergani, et al. 2012).  247 

Control Ewes Grouped According to Sexual Behaviour and the LH Surge. 248 

c-Fos co-expression with dopamine or β-endorphin or NPY: The percentage of activated 249 

dopamine cells (% dopamine/c-Fos) decreased in the ‘Before sexual behaviour’ group till the 250 

‘Surge’ (P < 0.05 for each comparison; Fig. 1A), whereas the % β-endorphin/c-Fos cells was 251 

greater in the 16 h and ‘During sexual behaviour’ groups compared to 0 h and ‘Surge’ (P < 0.05 252 

for both comparisons; Fig. 1B). In contrast, the % NPY/c-Fos cells did not fluctuate, but tended 253 

to be higher in the ‘Surge’ group (P < 0.08; Fig. 1C). The % dopamine/c-Fos cells in the ARC 254 

was positively associated with progesterone concentrations (P = 0.001; Fig. 1D), whereas, % 255 

NPY/c-Fos was positively associated with plasma oestradiol concentrations (P = 0.008; Fig. 256 

1F). 257 
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c-Fos co-expression with kisspeptin, dynorphin or NKB:  258 

The double-label immunofluorescence study (c-Fos and dynorphin) showed that the % 259 

dynorphin/c-Fos was greatest in the ‘Before behaviour’ group compared to earlier stages in the 260 

follicular phase (P < 0.05; Fig. 2). Thereafter, there was a gradual decrease until the LH surge 261 

(Fig. 2). This was a surprising result, as we have previously shown that the greatest number of 262 

kisspeptin cells express c-Fos during the surge (Fergani, et al. 2013). Therefore, we proceeded 263 

with co-staining hypothalamic sections with both proteins (kisspeptin and dynorphin) in 264 

addition to c-Fos, to confirm this novel finding. 265 

The % kisspeptin/c-Fos sequentially increased during the follicular phase, with a two-fold 266 

increase during the ‘Surge’ (P < 0.05; Fig. 3A). By contrast, a two-fold increase in the % 267 

dynorphin/c-Fos was observed earlier, in the ‘Before sexual behaviour’ group, compared to 0 268 

and 16 h (P < 0.05 for both; Fig. 3B). This increase was maintained to a lesser extent till the 269 

‘Surge’ (Fig. 3B). The % NKB/c-Fos followed a similar pattern to that of kisspeptin and 270 

sequentially increased from 0 h till the ‘Surge’ (P < 0.05 for ‘Surge’ compared to other stages; 271 

Fig. 3C). Furthermore, the % kisspeptin/c-Fos and % NKB/c-Fos were positively associated 272 

with changes in oestradiol concentration (P = 0.005, RSq = 36 % and P = 0.002, RSq = 41 % 273 

for kisspeptin and NKB, respectively; Fig 3D, 3E), whereas the activation of all three 274 

neuropeptides was negatively associated with plasma progesterone values (P = 0.002, RSq = 275 

41 %, P = 0.001 RSq = 47 % and P = 0.001, RSq = 50 % for kisspeptin, dynorphin and NKB, 276 

respectively; Fig. 3D, 3E, 3F).  277 

Kisspeptin, dynorphin and NKB cell numbers and percentage co-localisation: In order to 278 

address the differential activation of kisspeptin and dynorphin neurones we analyzed the 279 

colocalisation between these two peptides throughout the follicular phase. Kisspeptin and 280 

dynorphin cell numbers were greater ‘During sexual behaviour’ (P < 0.05; Fig. 4A, 4B) 281 

whereas, the number of NKB cells was greater during the ‘Surge’ as well (P < 0.05 for all 282 
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comparisons; Fig. 4C). However, the % co-localisation between kisspeptin and dynorphin 283 

immunoreactivity in the ARC varied during the follicular phase (Fig. 4D, 4E). The % of 284 

kisspeptin cells co-localising dynorphin was lower in the ‘Surge’ group [that is, there were 285 

more single-labelled kisspeptin cells (P < 0.05 for all comparisons; Fig. 4D)]. Furthermore, 286 

there were fewer dynorphin cells co-localising kisspeptin in the ‘Before sexual behaviour’ 287 

group (that is, there were more single-labelled dynorphin cells at those times; P < 0.05 for all 288 

comparisons; Fig. 4A-4D).  289 

Finally, the total number of activated dynorphin cells was greater in the ‘Before sexual 290 

behaviour’ group compared to the activated kisspeptin cells (P < 0.05; Fig. 4F), whereas there 291 

were more kisspeptin activated cells during the ‘Surge’ compared to activated dynorphin cells 292 

(P < 0.05; Fig. 4F). Examples of photomicrographs of sections from the ARC that have been 293 

triple-labelled for c-Fos, kisspeptin and dynorphin as well as c-Fos and NKB are shown in Fig 294 

5. 295 

Comparison of control and LPS treated ewes  296 

To determine the effects of LPS treatment, data was analysed according to time of killing after 297 

PW (irrespective of sexual behaviour and the LH surge), and compared to control animals at 298 

each time point. 299 

Dopamine or β-endorphin or NPY cell numbers and co-expression with c-Fos: The total 300 

number of immunoreactive dopamine cells increased in the 40 h controls compared to 0 h (P < 301 

0.05; Table 1), whereas, there were more β-endorphin cells in the 31 and 40 h control and LPS 302 

groups (compared to 0 h controls P < 0.05 for all; Table 1). The number of NPY cells did not 303 

vary across the follicular phase of controls and was not affected by treatment (Table 1). The % 304 

dopamine/c-Fos, % β-endorphin/c-Fos and % NPY/c-Fos was not affected by LPS treatment 305 

(Fig. 6A, 6B, 6C).  306 
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Kisspeptin, dynorphin and NKB cell numbers and co-expression with c-Fos: In controls, 307 

maximum kisspeptin and dynorphin cell numbers were recorded at 31 and 40 h after PW (Table 308 

2). Of note, there where were more dynorphin cells than kisspeptin or NKB cells in the 31 h 309 

controls (Table 2). Treatment with LPS decreased the number of immunodetectable dynorphin 310 

cells compared to controls (Table 2). The number of NKB cells did not vary during the follicular 311 

phase, or after LPS treatment (Table 2). 312 

At 40 h after PW (i.e., 12 h after LPS administration), the % kisspeptin/c-Fos was markedly 313 

lower in LPS treated animals compared to controls (P < 0.05; Fig.6D). Interestingly, the % 314 

dynorphin/c-Fos decreased earlier than kisspeptin, i.e., at 31 and 40 h (3 and 12 h after LPS 315 

administration; P < 0.05; Fig. 6E).  The % NKB/c-Fos was not affected by LPS administration 316 

within the 12 hours post treatment (Fig. 6F).  317 

DISCUSSION 318 

The present study demonstrates that various cell types within the ARC of the ovary-intact 319 

ewe are activated at different times during the follicular phase, leading up to the GnRH/LH 320 

surge.  Specifically, activation of dopamine neurones was initially high, but decreased before 321 

the onset of sexual behavior; whereas the activation of β-endorphin cells increased in the mid-322 

follicular phase, decreasing a few hours later during the surge. The percentage of activated 323 

NPY cells tended to increase in animals undergoing an LH surge. Treatment with LPS had no 324 

effect on the activation of dopamine, β-endorphin or NPY cells raising the possibility that these 325 

cell types are only permissive in the surge induction process. Our observations are also 326 

consistent with a role for KNDy cells in the GnRH/LH surge mechanism as these cells became 327 

activated prior to the LH surge onset. Interestingly, in our ovary-intact ewe model, kisspeptin, 328 

NKB and dynorphin immunoreactivity and co-localisation vary throughout the follicular phase, 329 

leading to differential activation patterns for each individual KNDy peptide. Maximum 330 

kisspeptin and NKB immunoreactive cells were maximally activated during the GnRH/LH 331 
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surge; whereas maximum activation of dynorphin positive cells occurred at least 6-7 h before 332 

that. Furthermore, LPS administration in the late follicular phase prevented kisspeptin and 333 

dynorphin positive cell activation and this was accompanied by a failure to exhibit an LH surge.  334 

Dopamine has been implicated in the control of female sexual behavior (Fabre-Nys and 335 

Gelez 2007). In the present study, dopamine neurones in the ARC were maximally activated in 336 

the early follicular phase but greatly decreased just before the ewes began exhibiting signs of 337 

estrous.  These results are consistent with a biphasic role of dopamine as described by Fabre-338 

Nys (Fabre-Nys, et al. 1994, Fabre-Nys, et al. 2003), who showed that extra-cellular 339 

concentrations of dopamine in the mediobasal hypothalamus (MBH; containing the ARC and 340 

ventromedial nucleus; VMN) are initially high, followed by a sharp decrease preceding the 341 

onset of sexual behaviour (Fabre-Nys, et al. 1994). The present data indicate that the source of 342 

dopaminergic input in the MBH could be derived, at least in part, from cells located in the 343 

ARC. Indeed, 20% of dopamine neurones in the ARC send projections towards the VMN (Qi, 344 

et al. 2008) providing a possible signaling pathway involved in the initiation of sexual 345 

behaviours. However, in the present study, ewes treated with LPS did not exhibit signs of sexual 346 

behaviour but dopamine cell activation in the ARC was not affected, indicating that this 347 

pathway may be permissive but not indispensable for the initiation of oestrus.   348 

In the ARC, 15-20 % of β-endorphin cells contain ERα (Lehman and Karsch 1993), and β-349 

endorphin or pro-opiomelanocortin (POMC) fibres directly innervate GnRH cells in the rat 350 

(Leranth, et al. 1988) and monkey (Thind and Goldsmith 1988) or form close appositions in 351 

the ewe (Dufourny, et al. 2005). In the present study, activation of β-endorphin cells slightly 352 

increased during the mid/late follicular phase, but not in animals exhibiting a GnRH/LH surge. 353 

These results are consistent with those of Domanski (Domanski, et al. 1991),  who 354 

demonstrated a decrease in β-endorphin concentrations in the ARC of ovary-intact ewes before 355 

the onset of the pre-ovulatory LH surge, but conflict with those of Taylor et al., (Taylor, et al. 356 
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2007) who observed an increase in POMC mRNA at the time of the peak of the GnRH surge 357 

in OVX ewes. The reason for this divergence between studies is not known, although it may 358 

reflect differences in the timing of brain tissue sampling, as well methods of detection (i.e., 359 

protein versus gene expression). Furthermore, various POMC gene products other than β-360 

endorphin, such as α-melanocyte stimulating hormone may have differential effects on the 361 

reproductive axis compared to β-endorphin (Gonzalez, et al. 1997, Scimonelli, et al. 2000). 362 

In the sheep, the role of NPY in the regulation of GnRH is not clear. NPY administered 363 

intracerebroventricularly (icv) suppressed release of LH in OVX and OVX oestradiol-treated 364 

sheep (Estrada, et al. 2003, Malven, et al. 1992), whereas in follicular phase ewes, icv 365 

administration of anti-NPY serum delayed the onset of the pre-ovulatory GnRH/LH surge, 366 

implying a stimulatory role in this process (Porter, et al. 1993). In addition, a stimulatory effect 367 

on GnRH release by NPY infusion into the ME was observed in ovary-intact ewes, but only in 368 

the follicular, and not in the luteal, phase (Advis, et al. 2003). In the present study, NPY 369 

activation tended to be higher in animals that were exhibiting an LH surge. Furthermore, this 370 

pattern of activation was positively correlated to plasma oestradiol concentrations. It is 371 

plausible to speculate that NPY is involved in the regulation of GnRH secretion (Kalra, et al. 372 

1991, Sahu, et al. 1995) but specific actions depend on the prevailing endocrine status. For 373 

example, in rats NPY stimulates GnRH release in the presence of oestradiol, but inhibits GnRH 374 

release during absence of sex steroids (Kalra and Crowley 1992). Interestingly, LPS had no 375 

effect on β-endorphin or NPY cell activation. Therefore, it appears that neither of these 376 

phenotypes are essential in the surge induction process, nor to mediate the LPS-induced 377 

disruption of sexual behaviour or the GnRH/LH surge.   378 

The immunoreactivity of all three KNDy peptides in the ARC was greater in the late, rather 379 

than early, follicular phase, adding to the increased evidence for the involvement of these cells 380 

in oestradiol positive feedback in the ewe. We have shown that kisspeptin cells are activated 381 
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during the LH surge in ovary-intact ewes (Fergani, et al. 2013) and a similar finding has been 382 

reported by Merkley et al., (Merkley, et al. 2012) in OVX oestrogen-treated sheep undergoing 383 

an LH surge. More recently, an important role for NKB in oestradiol positive feedback and the 384 

GnRH surge has emerged as local administration of an NKB receptor agonist (senktide) into 385 

the retrochiasmatic area stimulates surge-like LH secretion (Billings, et al. 2010) whereas an 386 

NKB receptor antagonist (SB222200) administered in the same region decreased LH surge 387 

amplitude (Porter, et al. 2014). NKB neurones located in the ARC are thought to be the source 388 

of input to this area (Grachev, et al. 2016). In the present study, NKB cells in the ARC were 389 

gradually activated, with maximum activation during the LH surge (i.e., in a similar pattern to 390 

kisspeptin cells). Furthermore, there was a positive correlation of kisspeptin and NKB cell 391 

activation with plasma oestradiol concentrations and a negative correlation with progesterone. 392 

These data provide further evidence that kisspeptin and NKB neurones in the ARC are activated 393 

during, and may therefore be involved in, oestradiol positive feedback and the surge phase of 394 

GnRH/LH secretion in the ewe.  395 

To date, dynorphin neurones in the ARC of the ewe have been implicated in the negative 396 

feedback actions of progesterone to inhibit GnRH and LH pulse frequency (Goodman, et al. 397 

2011). Interestingly, we observed maximum activation of dynorphin immunoreactive cells 398 

occurred at least 6-7 h before the expected LH surge, at a time when activation of kisspeptin 399 

and NKB were comparatively lower, suggesting that dynorphin may play a distinct role in the 400 

GnRH surge induction process. The precise physiological role of an increase in dynorphin 401 

protein within KNDy cells prior to the LH surge is not known, however, these observations are 402 

consistent with the hypothesis that endogenous opioid systems in the hypothalamus are 403 

permissive of sexual behaviour and the GnRH/LH surge (Kalra 1993, Walsh and Clarke 1996) 404 

and may, therefore, be a critical part of the oestradiol positive feedback mechanism (Smith and 405 

Gallo 1997, Zhang and Gallo 2003). Furthermore, recent evidence suggests that this dynorphin 406 
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input originates from ARC KNDy cells, as ablation of these cells leads to an abnormal increase 407 

in the amplitude of the LH surge, whereas microinjections of dynorphin in to the POA 408 

of KNDy-ablated rats restored LH surge levels (Helena, et al. 2015). We speculate that 409 

increased opioid influence during the mid-follicular phase plays a role in preventing premature 410 

activation of GnRH neurones, giving time for an increase in the releasable pool of GnRH, as 411 

well as an increase in GnRH receptor numbers in the pituitary (Clarke, et al. 1988, Walsh and 412 

Clarke 1996). 413 

Different activation patterns between kisspeptin/NKB and dynorphin is a novel finding in 414 

the present study, as all three neuropeptides co-localize in the same KNDy cell, as has been 415 

described in OVX ewes (Goodman, et al. 2007). However, this can be explained by considering 416 

the expression of individual KNDy peptides as being differentially regulated by steroid 417 

hormones and gonadal status. For example, ovariectomy increases NKB and kisspeptin, but 418 

decreases dynorphin gene and protein expression in the sheep ARC (Foradori, et al. 2005, 419 

Navarro, et al. 2009, Pillon, et al. 2003). Furthermore, recent findings in the rat, using 420 

immunoelectron microscopy, indicate that each neuropeptide is contained within separate 421 

neurosecretory vesicles, adding to the evidence that each KNDy peptide is differentially 422 

regulated within the KNDy neurone (Murakawa, et al. 2016). Therefore, we hypothesise that 423 

fluctuating endogenous steroid concentrations in ovary-intact ewes result in differential peptide 424 

content and/or immunoreactivity within the KNDy neurone, leading to increased dynorphin 425 

immunoreactivity (and subsequently, activation), 6-7 hours before the LH surge.  426 

In the present study, acute LPS administration in the late follicular phase was accompanied 427 

by suppression of dynorphin and kisspeptin activation within the KNDy cell, a decrease in 428 

plasma oestradiol concentrations, and subsequent absence of a GnRH/LH surge. Several 429 

studies report down-regulation of the ARC kisspeptin system in rats and male rhesus monkeys 430 

after metabolic or immune/inflammatory stressors, such as negative energy balance 431 
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(Castellano, et al. 2005), short term fasting (Wahab, et al. 2010) or administration of LPS 432 

(Iwasa, et al. 2008, Kinsey-Jones, et al. 2009). However, to the best of our knowledge, there 433 

are no equivalent data for the actions of stressors on dynorphin cells located in the ARC. 434 

Regarding the potential mechanisms via which LPS inhibited the activation of kisspeptin and 435 

dynorphin within KNDy cells, it must be noted that plasma oestradiol concentrations decreased 436 

8 h after administration of LPS (Fergani, et al. 2013), presumably via inhibition of GnRH/LH 437 

pulses and deprivation of mature follicle(s) gonadotrophic drive. However, the decrease in the 438 

percentage of activated dynorphin neurones occurred sooner (within 3 h after LPS treatment) 439 

and therefore, lack of an efficient oestradiol signal cannot be the cause but could be the result 440 

of lack in KNDy cell activation. 441 

Various other factors have been implicated in LPS-induced disruption of the oestrous cycle and 442 

at least some of those may be acting upon KNDy neurons. In our paradigm of an acute 443 

peripheral LPS administration, peripheral cortisol and progesterone concentrations increased 444 

within 2 h after the injection and are, therefore, potential candidates for the immediate 445 

inhibition of dynorphin neurone activity and the surge mechanism. In accordance, Pierce et al., 446 

(Pierce, et al. 2008) and Wagenmaker et al., (Wagenmaker, et al. 2009) report that cortisol 447 

disrupts the positive feedback effect of oestradiol to trigger an LH surge in the ewe, whereas 448 

progesterone has been implicated in both inhibition of GnRH pulses (Karsch, et al. 1987) and 449 

of the surge mechanism (Kasa-Vubu, et al. 1992, Richter, et al. 2005). Glucocorticoid receptors 450 

(GR) co-localize with kisspeptin neurons in mice and rats (Takumi, et al. 2012) and the tissue 451 

specific deletion of GR in kisspeptin neurons eliminates cortisol-induced suppression 452 

of kisspeptin gene expression (Grachev, et al. 2013).  However, the absence of GR in kisspeptin 453 

neurones does not prevent the suppression of the reproductive axis following traumatic stress 454 

(Whirledge and Cidlowski 2013), and thus, GR signaling in KNDy neurons cannot fully 455 

account for LH surge disruption. Similarly, we have previously presented evidence that the 456 



20 
 

20 
 

progesterone/glucocorticoid receptor antagonist, RU486, was unable to reverse delays in the 457 

GnRH/LH surge induced by a metabolic stressor (Dobson and Smith 2000). Notably, 458 

corticotrophin releasing hormone (CRH) has been demonstrated to be a powerful suppressor 459 

of the GnRH pulse generator in the rat (Li, et al. 2010), whereas acute LPS administration 460 

increased the number of immunoreactive cells within the ARC/ME that contained CRH-type 2 461 

receptors (Fergani, et al. 2013). However, icv administration of CRF in the sheep either 462 

increases (Naylor, et al. 1990, Caraty, et al. 1997) or has no effect (Clarke, et al. 1990) on LH 463 

pulse frequency. Clearly, this pathway requires further investigation.  464 

Lastly, the action of interleukin- (IL-)1 β must also be taken in to account, as this cytokine 465 

is secreted in response to LPS and is considered to be the most potent down regulator of 466 

reproductive processes during an immune/inflammatory challenge (Herman, et al. 2012). IL-1 467 

β has been described to act within the hypothalamus by inhibiting GnRH expression but also 468 

directly on pituitary gonadotropes to suppress GnRH receptor expression (Herman, et al. 2013, 469 

Herman, et al. 2012). Whether IL-1 β has any direct or indirect inhibitory effect on ARC KNDy 470 

neurones, merits further investigation.   471 

Our results indicate that the activation patterns of ARC cells containing dopamine, β-472 

endorphin, and NPY differs throughout the follicular phase of ovary-intact ewes. However, a 473 

surge-inhibiting dose of LPS had no effect on the activation of these phenotypes, suggesting 474 

that they are not essential mediators of GnRH/LH surge release. More importantly, our results 475 

confirm a critical role for KNDy cells in the GnRH/LH surge mechanism in the ewe. 476 

Furthermore, cells immunoreactive for dynorphin were activated at least 6-7 h before the 477 

expected LH surge, at a time when activation of kisspeptin and NKB positive cells was 478 

comparatively lower, suggesting that dynorphin, possibly derived from KNDy cells, may play 479 

a distinct role in the GnRH surge induction process. The physiological relevance of this finding 480 

remains to be explored.  481 
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Figure Legends 1 

FIG.  1. A, B and C: Mean % (±SEM) dopamine, β-endorphin and neuropeptide Y cells, 2 

respectively, that co-express c-Fos in the ARC at different stages during the follicular phase of 3 

control ewes as determined by dual-immunofluorescence. Animals were grouped according to 4 

time after PW as well as by hormonal and behavioural status, that is, grouped into those killed 5 

at 0 and 16 h after PW (n = 4–5), those killed before the onset of sexual behaviour (before 6 

sexual behaviour, n = 3), those killed after the onset of sexual behaviour but before exhibiting 7 

an LH surge (during sexual behaviour, n = 5), and those killed during sexual behaviour and an 8 

LH surge(surge, n = 3). Within each panel, differences between the percentages are indicated 9 

by different letters on top of each bar (P < 0.05) except * when P < 0.08. D, E and F: 10 

Regression graphs showing the association between dopamine, β-endorphin and neuropeptide 11 

Y cells, respectively, that co-express c-Fos in the ARC of control ewes against the % change in 12 

concentration from 0 h to the mean two consecutive highest or lowest concentrations for 13 

oestradiol (o, E; dashed line) or progesterone (■, P; solid line), respectively. 14 

FIG. 2. Mean % (±SEM) dynorphin cells that co-localise c-Fos in the ARC at various stages 15 

during the follicular phase of control ewes as determined by dual-labell immunohistochemistry 16 

(Dynorphin/c-Fos). Animals are grouped according to time as well as hormonal and 17 

behavioural status (for details, see Fig. 1 legend). Within each panel, differences between the 18 

percentages are indicated by different letters on top of each bar (P <0.05). 19 

 20 

 21 

 22 

FIG. 3. Panels A, B, C: Mean % (±SEM) kisspeptin, dynorphin and NKB cells, respectively, 23 

that co-localise c-Fos in the ARC at various stages during the follicular phase of control ewes 24 

as determined by triple- and dual-labell immunohistochemistry (kisspeptin/dynorphin/c-Fos 25 
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and NKB/c-Fos, respectively). Animals are grouped according to time as well as hormonal and 26 

behavioural status (for details, see Fig. 1 legend). Within each panel, differences between the 27 

percentages are indicated by different letters on top of each bar (P < 0.05). D, E and F: 28 

Regression graphs showing the association between the % kisspeptin, % dynorphin and % 29 

NKB cells, respectively, that co-localise c-Fos in the ARC against the % change in 30 

concentration from 0h to the mean two consecutive highest or lowest concentrations for 31 

oestradiol (o, E; dashed line) or progesterone (■, P; solid line), respectively. 32 

FIG. 4. A, B and C: Mean (±SEM) number of kisspeptin, dynorphin and NKB cells, 33 

respectively. D: mean % (±SEM) kisspeptin cells co-localising dynorphin, and E: mean % 34 

(±SEM) dynorphin cells co-localising kisspeptin. F: mean (±SEM) number of dynorphin (black 35 

bars) and kisspeptin (white bars) cells that co-localise c-Fos. Mean (±SEM) numbers and 36 

percentages are per section from the ARC at various stages during the follicular phase of control 37 

ewes as determined by triple- and dual-labell immunohistochemistry (kisspeptin/dynorphin/c-38 

Fos and NKB/c-Fos, respectively). Animals are grouped according to time as well as hormonal 39 

and behavioural status (for details, see Fig. 1 legend). Within each panel and type of cell, 40 

differences between numbers and percentages are indicated by different letters on top of each 41 

bar (P < 0.05). F: * P < 0.05 compared to activated dynorphin cells. 42 

 43 

FIG. 5. A, B and C: Sets of photomicrographs in the ARC that were triple-labelled for c-44 

Fos, kisspeptin and dynorphin, as well as a merged image (D) in control animals at 31 h after 45 

progesterone withdrawal (that is, before the onset of sexual behavior or the LH surge). 46 

Photomicrographs from the ARC nucleus that were dual-labellled for NKB cells and their co-47 

localisation with c-Fos in control before the LH surge, but during sexual beahviour (E) as well 48 

as in control animals at 40 h and specifically during an LH surge (F). A-D: Arrows indicate 49 
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examples of single-labelled dynorphin cells co-localising c-Fos. E-F: Arrows indicate 50 

examples of dual-labelled cells. Original magnification: ×20 (A-E), original magnification: x10 51 

(F). 3V = third ventricle. 52 

FIG. 6. A, B, C, D, E, F: Mean % (±SEM) dopamine, β-endorphin, neuropeptide Y, 53 

kisspeptin, dynorphin and NKB cells, respectively, that co-express c-Fos in the ARC across the 54 

follicular phase of control ewes as determined by immunofluorescence. Animals are grouped 55 

according to killing time after progesterone withdrawal (PW), that is, control ewes at 0, 16, 31 56 

and 40h (n=4-6 per group; black bars) as well as after LPS at 31 and 40h (n=4 for both times; 57 

white bars). Treatment with LPS was at 28h after PW. Within each panel, differences within 58 

controls are indicated by different letters on top of each bar (P < 0.05). Differences between 59 

control and LPS treated ewes, at each time point, are indicated with a star (P < 0.05). 60 

 61 
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