
Montgomery, C

 fNIRS suggests increased effort during executive access in ecstasy polydrug 
users

http://researchonline.ljmu.ac.uk/id/eprint/876/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Montgomery, C (2014) fNIRS suggests increased effort during executive 
access in ecstasy polydrug users. Psychopharmacology, 232 (9). pp. 1571-
1582. ISSN 1432-2072 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 

 

 

 

fNIRS suggests increased effort during executive access in ecstasy polydrug users 

Running Head: executive dysfunction in ecstasy users 

 

 

Roberts, C. A., & Montgomery, C. 

School of Natural Sciences and Psychology, LJMU 

 

 

 

 

Corresponding Author:  

Dr Catharine Montgomery 

School of Natural Sciences and Psychology 

LJMU,  

Tom Reilly Building,  

Byrom St,  

Liverpool. L3 3AF.  

Tel: 0044 151 904 6295 

Email: c.a.montgomery@ljmu.ac.uk  

  

mailto:c.a.montgomery@ljmu.ac.uk


2 

 

Abstract 

Background: Ecstasy use is associated with cognitive impairment, believed to result from 

damage to 5-HT axons. Neuroimaging techniques to investigate executive dysfunction in 

ecstasy users provide a more sensitive measure of cognitive impairment than behavioural 

indicators. The present study assessed executive access to semantic memory in ecstasy 

polydrug users and nonusers. Methods: Twenty ecstasy polydrug users and 20 non-user 

controls completed an oral variant of the Chicago Word Fluency Test (CWFT), whilst the 

haemodynamic response to the task was measured using functional Near Infrared 

Spectroscopy (fNIRS). Results: There were no between group differences in many 

background measures including measures of sleep and mood state (anxiety, arousal, hedonic 

tone). No behavioural differences were observed on the CWFT. However there were 

significant differences in oxy-Hb level change at several voxels relating to the left DLPFC 

and right medial PFC during the CWFT, indicating increased cognitive effort in ecstasy users 

relative to controls. Regression analyses showed that frequency of ecstasy use, total lifetime 

dose and amount used in the last 30 days were significant predictors of oxy-Hb increase at 

several voxels after controlling for alcohol and cannabis use indices. Conclusion: The results 

suggest that ecstasy users show increased activation in the PFC as a compensatory 

mechanism, to achieve equivalent performance to non-users. These findings are in agreement 

with much of the literature in the area which suggests that ecstasy may be a selective 

serotonin neurotoxin in humans. 
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Introduction 

 Ecstasy (MDMA/3,4-methylenedioxymethamphetamine) remains a popular 

recreational drug, with 3.3% of 16-24 year olds in the UK reporting use in the last year 

(Crime Survey of England and Wales, 2013), and lifetime prevalence across Europe 

remaining at around 7% for all age groups (European Monitoring Centre for Drugs and Drug 

Addiction (EMCDDA, 2013). Its popularity is of concern given the negative psychological 

and physiological consequences associated with continued use, that may have real world 

functional significance.  

 The increase in the monoamines serotonin, dopamine and norepinephrine after 

administration are the primary cause of its acute psychological and physiological effects 

(McDowell & Kleber, 1994).  After regular use, down regulation of serotonin receptors may 

be seen in humans, similar to that proposed in animal models (Reneman et al., 2002). More 

chronic continued use can cause serotonergic neurotoxicity, which may be long lasting. 

Evidence from SPECT studies reporting upregulation of 5-HT2A receptors following chronic 

use, suggests that the brain is attempting to compensate for loss of receptors due to 

neurotoxicity (Di Iorio et al., 2012; Reneman et al., 2002; Urban et al., 2012). Animal 

literature has provided evidence for MDMA related neurotoxicity (Molliver et al., 1990; 

Ricaurte et al., 1988). Furthermore, in humans, several studies suggest alterations to 

serotonergic functioning as a result of ecstasy use, for example SERT binding ratios are 

regularly observed to show alterations in ecstasy users relative to controls (Reneman, Booij et 

al., 2000; Reneman, Habraken et al., 2000). 

 Various executive tasks regularly yield little evidence for ecstasy related deficits, for 

example the Wisconsin Card Sorting Task (Fox et al., 2001; Back-Madruga et al., 2003), 

whereas others more consistently show evidence of diminished performance, such as the 
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computation span task (Fisk et al., 2004). This inconsistency was explored by Montgomery et 

al. (2005), using Miyake et al.’s (2000) conceptual framework of executive functioning, 

along with the additions made by Fisk and Sharp (2004), finding that updating and access to 

semantic memory were affected by ecstasy use. Access describes the efficiency with which 

words and semantics can be retrieved from long term memory. Damage to frontal regions 

produces significant impairment to word fluency ability (Stuss et al.,1998). In ecstasy users, 

fluency is significantly impaired using the Chicago Word Fluency Test (CWFT) 

(Montgomery et al., 2005), and this was more pronounced with increased difficulty. Ecstasy 

users have also shown deficits on a composite measure of word fluency (Montgomery et al., 

2007), verbal and semantic fluency (Heffernan et al., 2001), and access performance 

compared to cannabis users and controls after controlling for differences in sleep (Fisk & 

Montgomery, 2009). Conversely, an oral word fluency task (Controlled Oral Word 

Association Task - COWAT) has been less consistent in producing ecstasy related deficits. 

Several studies have reported no observable differences between ecstasy users and controls 

using this measure (Bedi & Redman, 2008; Halpern et al., 2004; Halpern et al., 2011; 

Morgan et al., 2002). However Bhattacharay and Powell (2001) observed ecstasy related 

deficits using the COWAT, and Croft et al. (2001) observed differences between a combined 

drug user group and controls on the semantic fluency measure of the task, whereby 

participants were asked to recall as many ‘animals’ as possible in one minute. However the 

authors suggest that the deficits may be more related to cannabis use than ecstasy use after 

covariate analysis.  

 One possible explanation as to why deficits are more consistently reported in the 

CWFT than the COWAT is that the CWFT involves production of words over 5 and 4 minute 

periods whereas the COWAT requires verbal responses over a one minute period. It could be 

that ecstasy related deficits become more apparent after long periods of sustained load on the 
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central executive. In addition, the more subtle cognitive deficits that result from chronic 

ecstasy use may not always be detectable using behavioural measures alone. Recently, 

neuroimaging measures have been combined with behavioural tasks, as an objective measure 

of performance. Roberts et al. (2013) observed ecstasy related alterations in cognitive 

processing from ERP measures during a semantic retrieval task. This study proposed that 

EEG correlates reflected evidence of cognitive reallocation/compensatory mechanisms in 

ecstasy users to perform at a similar level to controls. Furthermore this study also showed that 

these neurophysiological changes were a function of task difficulty. Similarly, in an fMRI 

study, Raj et al. (2010) observed BOLD signal change during a semantic recognition task in 

ecstasy polydrug users. There were significant correlations between ecstasy use and BOLD 

signal change in left BA9, 18 and 21/22 during recognition, but not encoding phases of the 

task. The authors suggested that these results provide evidence that semantic memory is 

affected by ecstasy use, despite ecstasy use not being correlated with performance. Studies 

such as these reflect the increased sensitivity of neuroimaging measures to detect cognitive 

alterations than behavioural measures alone. 

fNIRS is an emerging non-invasive neuroimaging tool measuring cerebral blood flow 

which can be used to assess the haemodynamic response to mental demand. More specifically 

fNIRS uses wavelengths of light in the near infrared range to assess levels of oxygenated 

(oxy) and deoxygenated haemoglobin (deoxy-Hb) in the prefrontal cortex (PFC). Due to 

fNIRS having a penetration depth of 2-3mm (Firbank et al., 1998), it images relatively 

superficial layers of the cortex. Nevertheless, areas of the PFC are easily accessed, therefore 

fNIRS is ideal for observing neurological activation during tasks that load on the 

(Dorsolateral) PFC. Increases in oxy-Hb are accepted as reflecting an increase in neuronal 

activity in certain brain regions (Leff et al., 2011). Furthermore it is hypothesised that 

although blood oxygenation is expected to increase with increased workload, this is only if 



6 

 

the participant is engaged in the task, whereas if the task becomes too difficult and attention 

shifts (as well as performance decline), a decrease in oxygenation will be observed (Izzetoglu 

et al., 2004). The distribution of the activation response is regionally specific i.e. the cortical 

regions underlying the voxels at which the activation is observed are responsible for the 

activation (Leff et al., 2011). Often an increase in oxy-Hb is coupled with a decrease in 

deoxy-Hb (Ehlis et al., 2008; Leff  et al., 2008; Leff et al., 2011). However the relationship 

between oxy and deoxy-Hb is non-linear and as such estimates of total blood volume are also 

sometimes calculated as a correlate of neuronal activation (Ayaz et al., 2012).   

The present study sought to investigate the cortical haemodynamic change when 

performing a semantic access task, in ecstasy polydrug users and non-user controls. 

Performance and haemodynamic response were measured on each level of the semantic task. 

It was hypothesized that ecstasy users would find the task more demanding than controls, 

shown by increased oxygenation relative to controls, but that behavioural differences would 

be negligible.    
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Method 

Design: 

For the CWFT, a mixed design was used with group as the between groups factor (2 levels – 

ecstasy user, nonuser), level of difficulty as the within groups factor (animals, S letter, C 

letter) and number of words produced as the dependent variables. For fNIRS analysis group 

with 2 levels (ecstasy user, nonuser) was the between groups variable and mean oxygenated 

haemoglobin change at each voxel (1-16) for each level of difficulty was the dependent 

variable.  

 Participants: 

Twenty ecstasy users (mean age = 21.85±2.76; 13 = male) and 20 non-user controls 

(mean age = 20.89±2.05; 8 = male) were recruited via email to university students. Inclusion 

criteria for the ecstasy using group were: use of ecstasy on at least 5 occasions (actual 

minimum = 11); indices of ecstasy use were as follows: total lifetime dose 431.75 tablets ± 

885.08; mean amount used in last 30 days 2.55 tablets ± 3.23, and frequency of use 0.37 

times/week ± 0.51. To be included in the nonuser group, participants must have never used 

ecstasy; the nonuser group mainly consisted of drug naïve participants. All participants were 

required to be drug free for 7 days prior to testing (confirmed via self-report), and must report 

no current or past-year diagnosis of a psychological disorder (e.g. GAD, Major Depressive 

Disorder), and no current use of medications aside from the contraceptive pill and occasional 

non-prescription painkiller use.  

Materials 

Questionnaires: 

Participants completed a number of questionnaires including:  
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Background Drug Use Questionnaire from which information about drug use (frequency of 

use, last 30 days use, first and last use, patterns of use) and other lifestyle variables, as well as 

socio-demographic variables is obtained. Using a method employed by Montgomery et al. 

(2005) estimates of total lifetime use of each drug were calculated, as well as totals for last 30 

days drug use and weekly drug use estimates. 

Measures of Sleep Quality: 

Various questionnaires assessing alertness and sleep quality were administered to participants 

to investigate any potential relationship between sleep and cognition. The Epworth Sleepiness 

Scale (ESS; Johns, 1991) which explores the likelihood of dozing or falling asleep in various 

situations was used to measure subjective daytime sleepiness (high score = sleepiness). The 

Morningness-Eveningness Questionnaire (MEQ; Termann et al., 2001) is a self-assessment 

of morningness-eveningness in human circadian rhythms. A high MEQ score indicates a 

morning type person, whereas a low score indicates and evening type person. The Karolinska 

Sleepiness Scale (KSS; Akerstedt & Gillberg, 1990) was used to assess sleepiness pre and 

post task. 

Mood State: 

State anxiety, arousal and hedonic tone were assessed using the scale devised by Fisk and 

Warr (1996). Ratings of mood on a Likert scale (1 = not at all, 5 = extremely), that relate to 

current mood at the time of testing were completed. A high score on each scale relates to 

increased hedonic tone/anxiety/arousal. 

 Raven’s Progressive Matrices (SPM; Raven, Raven, & Court, 1998) 

Ravens SPM was implemented to assess fluid intelligence. A series of problems (five sets of 

12, 60 in total), are presented as a symbolic sequence. Participants must select an appropriate 
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response to complete the sequence from a choice of 6/8 options. Each block of 12 problems 

starts with an intuitively simple problem and the difficulty of the problems increases as the 

task progresses. 

Access Task: 

The Chicago Word Fluency Task (Thurstone, 1938)    

This consisted of three blocks in which participants had to verbally produce as many words 

as they could in one minute. In the first block (semantic fluency), participants were instructed 

to name as many animals as they could. Following this they were instructed to produce as 

many words as possible beginning with the letter “S”, and in the third and final block they 

were required to name as many four letter words beginning with the letter “C” as possible. 

Participants were informed that place names, people’s names and plurals were prohibited. 

Responses were recorded on a cassette deck with a built in microphone. Scores for each of 

the fluency tasks were counted as the number of appropriate words in each case. 

Equipment 

A continuous wave fNIRS system (developed by Drexel University, Philadelphia, PA) 

supplied by Biopac systems (Goleta, CA, USA) was used for monitoring the haemodynamic 

response. A 16-channel fNIRS sensor was used with a temporal resolution of 2Hz, and a 

source-detector separation of 2.5cm allowing 1.25cm penetration depth (Ayaz et al., 2012). 

An fNIR100 control box and  COBI studio (Drexel university) were used for data acquisition 

and visualisation during data collection (as per Ayaz et al., 2011; Ayaz et al., 2012). 

Procedure 

Participants attended the lab for a single session lasting approximately 2 hours. Testing 

sessions commenced at 9am, 11am and 1pm and 3pm, with equal numbers of each group 
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tested at each session time. Upon arrival participants were given an information sheet 

explaining what was involved in the study, and written consent was obtained. Questionnaires 

were administered in the following order: background drug use questionnaire, MEQ, ESS, 

pre-test KSS, UMACL and Raven’s SPM. The fNIRS headband was then fitted to the 

participant’s forehead (See Figure 1 for voxel anatomical locations). fNIRS signals were 

displayed on a desktop computer running COBI studio (Drexel University) in an adjacent 

room to the testing room. Once fNIRS signals were stable, a 2-minute baseline of inactivity 

was recorded. Participants watched a video of planet earth accompanied by soothing music 

and the baseline was recorded during this period. Participants then completed the CWFT. 

After completing the task participants were given the post task KSS. Participants were fully 

debriefed after the testing procedure and were paid £20 in store vouchers. The study was 

approved by Liverpool John Moores University Research Ethics Committee, and was 

administered in accordance with the ethical guidelines of the British Psychological Society. 

fNIRS analysis 

fNIRS raw data from COBI studio was pre-processed using fnirSoft (Biopac systems; Goleta, 

CA, USA). Saturated channels were discarded after visual inspection. A high-pass filter 

(0.1Hz cut off) was applied for removal of noise due to respiration and a linear phase filter 

(order of 20) was used to remove high frequency noise (Ayaz et al., 2011; Ayaz et al., 2012). 

Oxy and deoxy-Hb changes from baseline for the 1-minute epochs measured were calculated 

for each of the 16 voxels using the modified Beer-Lambert law logarithm in fnirSoft (Ayaz et 

al., 2010).  

Results 

Socio-demographic information, sleep measures and scores of anxiety, hedonic tone and 

arousal are shown in Table 1. Indices of other drug and alcohol use are displayed in Table 2.  
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<<Insert Tables 1 & 2 Here>> 

t-tests on these background variables revealed there were no significant differences between 

the two groups in age t(36) = 1.21, p>.05, total scores on the ESS t(37) = -0.28, p>.05, MEQ 

t(30) = -.1.37, p>.05, Raven’s SPM t(38) = -0.41, p>.05, pre-test KSS t(38) = -0.88, p>.05, 

post-test KSS t(26) = 1.59, p>.05, or levels of arousal t(38) = -0.28, p>.05, hedonic tone t(38) 

= 0.41, p>.05 and anxiety t(38) = -0.07, p>.05. However ecstasy users did drink significantly 

more units of alcohol per week than non-users t(38) = 2.71, p<.01, and it is clear from Table 

2 that there is concomitant drug use in this cohort.  

 

Behavioural Data Analysis:  

In the behavioural data analysis and all fNIRS analyses, gender was included as a covariate 

due to uneven gender distribution between the groups in the present study, and to address 

possible gender differences in access to semantic memory performance (Loonstra et al., 

2001). Number of words produced at each level of difficulty in the CWFT is displayed in 

Table 3. A mixed ANOVA was conducted on the CWFT data with group as the between 

subjects variable and level of difficulty as the within subjects variable (in order of relative 

difficulty: animals < “S” letter < “C” letter), and gender as a covariate. There was a 

significant main effect of difficulty on the task F(1.58, 58.59) = 17.08, p<.01 (the sphericity 

assumption was violated so Greenhouse-Geisser adjusted stats are reported), however there 

was no gender by difficulty interaction F(1.58, 58.59) = 0.09, p>.05 and no group by 

difficulty interaction F(1.58, 58.59) = 0.57, p>.05. Furthermore there was no significant 

effect of group F(1,37) = 0.22, p>.05. 

    <<Insert Table 3 Here>> 
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fNIRS Analysis 

Averaged oxy and deoxy-Hb changes from baseline, over the one minute epochs for each 

level of the task can be observed in Figures 2 and 3. A series of ANOVAs1 were conducted to 

assess group differences in oxy and deoxy-Hb changes from baseline for each block of the 

task. Analysis of oxy-Hb change in block one of the CWFT (“animals”) revealed that after 

controlling for gender differences, ecstasy users displayed a significant increase in oxy-Hb 

compared to controls at V2 F(1,36) = 8.50, p<.01, V3 F(1,35) = 8.42, p<.01, V4 F(1,18) = 

4.21, p<.05, V10 F(1,30) = 6.54, p<.05, V11 F(1,23) = 12.79, p<.05 and V16 F(1,17) = 3.96, 

p<.05. Differences were approaching significance at V5 F(1,36) = 7.76, p=.06, V12 F(1,32) = 

3.82, p = .06 and V13 F(1,36) = 3.24, p = .08. All other differences were non-significant 

(p>.05). ANOVA on the deoxy-Hb data revealed that ecstasy users showed greater 

deoxygenation compared to controls at V2 F(1,36) = 5.70, p<.05 and V4 F(1,17) = 4.60, 

p<.05. No other differences were observed for any other voxel measured (p>.05 in each case).  

<<Insert Figure 2 Here>> 

After controlling for gender, naming words beginning with the letter “S” yielded significant 

increases in oxy-Hb change in ecstasy users relative to controls at V3 F(1,35) = 6.02, p<.05, 

V4 F(1,17) = 5.78, p<.05, V10 F(1,30) = 11.13, p<.01 and V12 F(1,32) = 3.65, p>.05. This 

difference was also approaching significance at V2 F(1,36) = 3.51, p = .06. There were no 

significant between group differences at any of the other voxels measured (p>.05 in each 

case). After controlling for gender, ANOVA on deoxy-Hb change revealed ecstasy users had 

significantly greater deoxy-Hb at V4 F(1,17) = 4.34, p<.05, with trends at V2 F(1,36) = 3.94, 

p = .06 and V14 F(1,36) = 3.51, p = .07. There were no significant differences at any of the 

other voxels measured (p>.05 in each case).  

                                                 
1 Due to small amounts of missing data on different optodes, MANOVA was not appropriate for this analysis.  
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<<Insert Figure 3 Here>> 

After controlling for gender, oxy-Hb change during the most demanding block (4-

letter C words) of this task revealed that ecstasy users displayed a significant increase in oxy-

Hb compared to controls at V3 F(1,35) = 4.77, p<.05, V4 F(1,17) = 5.04, p<.05, V10 F(1,30) 

= 9.64, p<.01 and V12 F(1,32) = 7.79, p<.01. Differences approached significance at V2 

F(1,37) = 3.52, p=.07. There were no significant differences at any of the other voxels 

measured (p>.05 in each case). There were no significant between group differences in 

deoxy-Hb change during this part of the task (p>.05 in all cases). However ecstasy users 

displayed greater deoxygenation compared to controls that was approaching significance at 

V2 F(1,36) = 3.09, p=.08 and V4 F(1,17) = 3.25, p=.08. There were no significant differences 

at any of the other voxels measured (p>.05 in each case). 

Overall these results show a general increase in oxy-Hb from baseline for ecstasy 

users compared to controls that is significant at several voxels in each level of the task. 

Due to the high level of cannabis and alcohol use amongst the ecstasy user group in 

the current sample, multiple regression analyses were conducted on the fNIRS data, at voxels 

showing between group differences, to observe whether ecstasy use predicted oxy-Hb level 

after controlling for cannabis use. Oxy-Hb (µmolar) change level was entered as the 

dependent variable in each case. In step one average weekly dose of alcohol use was entered, 

in step two indices of cannabis use were entered as predictors (frequency of use, total lifetime 

dose, recent use (amount taken in the last 30 days) and in step three the same indices of 

ecstasy use were entered as predictors. For brevity only regressions yielding significant 

results are reported here, and statistics associated with significant models are summarised in 

Table 4.  

<<Insert Table 4 Here>> 
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For Block 1 (animals) the regressions for V2, V10 and V16 oxy-Hb and V2 deoxy-Hb 

were non-significant so these are not discussed further. For the regression model predicting 

oxy-Hb at V3, the overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were 

non-significant, p>.05 in both cases. When indices of ecstasy use were added in step 3, the 

overall model was significant F(7,30) = 4.16, p<.01, accounting for 37.4% of the variance in 

oxy-Hb (after removing variance due to cannabis and alcohol use, ecstasy use indices 

accounted for an additional significant 18.9% of the variance). Average alcohol consumption 

and frequency of cannabis use emerged as significant predictors, and after removing variance 

due to these predictors, frequency of ecstasy use and total lifetime dose of ecstasy were 

significant individual predictors. For the regression model predicting oxy-Hb at V4, the 

overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-significant, 

p>.05 in both cases. When indices of ecstasy use were added in step 3, the overall model was 

significant F(7,19) = 6.03, p<.01., accounting for 78% of the variance in oxy-Hb (after 

removing variance due to cannabis and alcohol use, ecstasy use indices accounted for an 

additional significant 54.6% of the variance). Average alcohol consumption and total lifetime 

dose of cannabis emerged as significant predictors, and after removing variance due to these 

predictors, frequency of ecstasy use and total lifetime dose of ecstasy were significant 

individual predictors. For the regression model predicting oxy-Hb at V11, the overall models 

for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-significant, p>.05 in both 

cases. When indices of ecstasy use were added in step 3, the overall model approached 

significance F(7, 19) = 2.42, p = 0.06., accounting for 48.5% of the variance in oxy-Hb (after 

removing variance due to cannabis and alcohol use, ecstasy use indices accounted for an 

additional significant 25.1% of the variance). Total lifetime dose of ecstasy was the only 

significant individual predictor. Finally the regression model predicting deoxy-Hb at V4 the 

overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-significant, 
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p>.05 in both cases. When indices of ecstasy use were added in step 3, the overall model was 

significant F(7,19) = 7.86, p<.01, accounting for 82.1% of the variance in deoxy-Hb (after 

removing variance due to cannabis and alcohol use, ecstasy use indices accounted for an 

additional significant 74.4% of the variance). Lifetime dose of cannabis and recent cannabis 

use emerged as significant predictors and after removing variance due to alcohol and 

cannabis, lifetime dose of ecstasy was a significant individual predictor.  

For block 2 of the task (S-letter words) the regressions for V10 and V12 oxy-Hb were 

non-significant so these are not discussed further. For the regression model predicting oxy-

Hb at V3, the overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-

significant, p>.05 in both cases. When indices of ecstasy use were added in step 3, the overall 

model was significant F(7,30) = 4.24, p<.01, accounting for 49.7% of the variance in oxy-Hb 

(after removing variance due to cannabis and alcohol use, ecstasy use indices accounted for 

an additional significant 36.6% of the variance). Average alcohol consumption emerged as a 

significant predictor, and after removing variance due to this, frequency of ecstasy use and 

total lifetime dose of ecstasy were significant individual predictors. For the regression model 

predicting oxy-Hb at V4, the overall models for step 1 (alcohol) and step 2 (alcohol and 

cannabis) were non-significant, p>.05 in both cases. When indices of ecstasy use were added 

in step 3, the overall model was significant F(7,19) = 5.79, p<.01, accounting for 77.2% of 

the variance in oxy-Hb (after removing variance due to cannabis and alcohol use, ecstasy use 

indices accounted for an additional significant 45.8% of the variance). Average alcohol 

consumption and lifetime dose of cannabis emerged as significant predictors, and after 

removing variance due to this, total lifetime dose of ecstasy and current use (last 30 days) 

were significant individual predictors. For the regression model predicting deoxy-Hb at V4, 

the overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-significant, 

p>.05 in both cases. When indices of ecstasy use were added in step 3, the overall model was 
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significant F(7,19) = 9.94, p<.01, accounting for 85.3% of the variance in deoxy-Hb (after 

removing variance due to cannabis and alcohol use, ecstasy use indices accounted for an 

additional significant 73.7% of the variance). Total lifetime dose of cannabis and recent 

cannabis use emerged as significant predictors, and after removing variance due to this, total 

lifetime dose of ecstasy was a significant individual predictors. 

For Block 3 (4-letter C words) the regressions for V10 and V12 oxy-Hb were non-significant 

so these are not discussed further. For the regression model predicting oxy-Hb at V3, the 

overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-significant, 

p>.05 in both cases. When indices of ecstasy use were added in step 3, the overall model was 

significant F(7,30) = 3.98, p<.01, accounting for 48.1% of the variance in oxy-Hb (after 

removing variance due to cannabis and alcohol use, ecstasy use indices accounted for an 

additional significant 38% of the variance). Average alcohol consumption emerged as a 

significant predictor, and after removing variance due to this, frequency of ecstasy use was a 

significant individual predictor. For the regression model predicting oxy-Hb at V4, the 

overall models for step 1 (alcohol) and step 2 (alcohol and cannabis) were non-significant, 

p>.05 in both cases. When indices of ecstasy use were added in step 3, the overall model was 

significant F(7,19) = 5.60, p<.01, accounting for 76.6% of the variance in oxy-Hb (after 

removing variance due to cannabis and alcohol use, ecstasy use indices accounted for an 

additional significant 48.7% of the variance). Average alcohol consumption, lifetime dose of 

cannabis and recent cannabis use emerged as significant predictors, and after removing 

variance due to this, lifetime dose of ecstasy and recent ecstasy use were significant 

individual predictors. 

The results indicate that ecstasy users consistently show significantly increased oxy-

Hb relative to controls over several voxels pertaining to the left DLPFC and right medial PFC 

during each block of the task. Ecstasy users also displayed significant increases in deoxy-Hb 
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compared to controls at V2 and V4 relating to the left DLPFC and left medial PFC in blocks 

one (animals) and two (“s” letter words). Ecstasy use indices remained as significant 

predictors of oxy and deoxy-Hb in the regression analyses after removing variance due to 

weekly alcohol consumption and cannabis use indices, with increased ecstasy use indicating 

increased oxy and deoxy-Hb change from baseline. However, alcohol use and indices of 

cannabis use did emerge as significant predictors of Hb-change in some of the regression 

analyses with increased use associated with increased oxy-Hb and deoxy-Hb change.  

Discussion  

This study investigated ecstasy related deficits in access, using performance indices and 

measures of haemodynamic response in the PFC with fNIRS in a sample of ecstasy polydrug 

users and non-user controls. The ecstasy users in the current sample did not differ 

significantly from controls in fluid intelligence, sleep measures or levels of arousal, 

depression or anxiety. However, they did report drinking significantly more alcohol per week 

than controls and due to their concomitant use of other drugs, it may be more appropriate to 

refer to them as polydrug users. 

The two groups in this study did not show performance differences at any level of the 

CWFT. However there were several between group differences in the fNIRS data that 

warrant discussion. Ecstasy users displayed increases in oxygenated haemoglobin compared 

to controls in three voxels relating to the left DLPFC (V2, V3, V4) as well as three voxels 

relating to the right medial and dorsolateral PFC (V10, V11, V16) on what is considered to be 

the easiest level of difficulty on the task (naming animals). In this block it should be noted 

that while behavioural differences were non-significant, there was a mean difference of 3.45 

words with ecstasy users performing better than nonusers, so these increases in oxygenation 

could be facilitating better performance, albeit non-significantly. As difficulty increased, 
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ecstasy users displayed a significantly greater increase in oxygenated haemoglobin relative to 

controls at two voxels (V3, V4) relating to the left DLPFC and a further two voxels relating 

to the right medial PFC (V10, V12). This increase in oxygenation is complimented by an 

increase in deoxygenation compared to controls at V4 in the left DLPFC (and V2 that was 

approaching significance) and V14 in the right DLPFC that was approaching significance. In 

the final and most difficult phase of the task (4 letter words beginning with C) ecstasy users 

display significant increases in oxygenated haemoglobin compared to controls at four voxels 

(V3, V4, V10, V12) and a further one voxel approaching significance (V2) that pertain to the 

left DLPFC and right medial PFC. 

 Thus ecstasy users show consistently increased levels of oxygenated haemoglobin in 

the LDLPFC and RPFC regions during the access executive function. However, there was no 

observed increase in oxygenation as a function of task difficulty as shown in previous 

research (Montgomery et al., 2005). This tentatively indicates that access to semantic 

memory may be an “all or nothing” process which requires a certain amount of neural 

resources to be activated, but this does not increase with increasing difficulty. In addition, 

increases in oxy-Hb to both the left and right hemispheres may reflect the need for more 

cognitive resources to attenuate behavioural performance decline. This is in line with 

previous reports from ERP (Roberts et al., 2013) and fMRI (Raj et al., 2010) studies that 

indicate atypical cognitive processing in ecstasy users, despite equivalent behavioural 

performance during semantic retrieval. This highlights the greater sensitivity of 

neurophysiological measures to detect cognitive impairment. It is possible that compensatory 

mechanisms may explain the lack of behavioural differences observed using similar tasks in 

the literature (Bedi & Redman, 2008; Halpern et al., 2004; Morgan et al., 2002), especially if 

we consider that these studies employed simpler word fluency measures than those yielding 

performance differences (e.g. Montgomery et al., 2005). Moreover Montgomery et al. (2005) 
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used a much longer time frame for generating words than the task employed in this study 

(and those in the studies mentioned above), suggesting that longer periods of sustained load 

on the central executive produce more pronounced effects.  

The importance of measuring haemodynamic response to tasks where subjects 

perform at a similar level behaviourally has been explored previously in human operators (for 

example, air traffic control operators – Ayaz et al., 2012). Such studies highlight the 

dissociation between cognitive effort and performance output, arguing that performance can 

be maintained at necessary levels via increased mental effort or perhaps strategic alterations. 

However increased mental workload is also predictive of future performance failure (with 

increased demand or task changes). Increases in oxy-Hb are accepted as increases in 

cognitive effort despite behaviourally similar performance, and can be used as an assessment 

of operators’ ability (Ayaz et al., 2012). Thus increasing cognitive effort to maintain similar 

behavioural performance may reflect recruitment of additional cognitive resources compared 

to controls, and predict future cognitive decline. This is likely to be more pronounced in 

recent users of the drug and future research should focus on investigating performance after 

prolonged abstinence.  

It is interesting to note the consistent increase in oxy-Hb in the left DLPFC and right 

medial PFC over all three levels of the task, given these areas have been implicated in 

semantic and word fluency previously. Stuss et al. (1998) observed that patients with lesions 

to the left DLPFC showed severe impairments on letter based word fluency measures. The 

same lesion sites produced impairments in category based fluency, but so did lesions to right 

medial and DLPFC regions. Indeed the left inferior frontal gyrus, has been consistently 

associated with semantic and phonologic processing in functional neuroimaging studies 

(Costafreda et al., 2006), so it is interesting that these areas should show the greatest 

differences in the word fluency task here. These areas show increased oxygenation indicating 
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increased effort in ecstasy users compared to controls to achieve similar performance. 

Likewise, Raj et al. (2010) observed that ecstasy users displayed cognitive processing 

aberrations that relate to areas of the DLPFC during semantic recognition, despite equivalent 

task performance, in an fMRI study, that is broadly consistent with the present findings.  

The idea that this differential pattern of functioning in the (DL)PFC reflects potential 

ecstasy-related neurotoxicity warrants further discussion. These forebrain structures are 

densely innervated with 5-HT neurons (Curtis & D’Esposito, 2003), thus alterations to 

functioning in these areas would be expected after repeated use of ecstasy if it is a selective 

serotonin neurotoxin in humans, as it is in animals (Green, 2003). This is in line with the 

findings of the current study, as well as other neuroimaging studies that have observed 

alterations to prefrontal areas in ecstasy users (Jager et al., 2008; Moeller et al., 2004; 

Roberts & Garavan, 2010). Further to this point, the three aforementioned fMRI studies 

(Jager et al., 2008; Moeller et al., 2004; Roberts & Garavan, 2010) all observe that ecstasy 

users display increased neuronal activity as a compensatory mechanism to achieve similar 

performance as controls despite being less efficient at the task.  

Curiously increases in oxy-Hb were complimented by increases in deoxy-Hb in the 

ecstasy user group in the current study. Moreover, increases in deoxy-Hb from baseline were 

significantly different from controls at V4, with trends at V2 and V14 during the second 

block of the task. Previous research has suggested that increases in oxy-Hb are often 

complimented by a decrease in deoxy-Hb in the same area (Ehlis et al., 2008; Leff et al., 

2008). However oxygenated and deoxygenated haemoglobin do not necessarily have a linear 

relationship, rather they are separate sources of haemodynamic response. Several studies 

have shown increases in deoxy-Hb alongside increases in oxy-Hb (Hoshi & Tamura, 1993; 

Sakatani et al., 1999). As such deoxy-Hb appears to be a less reliable measure of neuronal 

activation than oxy-Hb in fNIRS. Nevertheless these results are better understood as an 
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increase in total haemoglobin to the areas of the prefrontal cortex that are involved in this 

executive function, given that total-Hb is understood to be the sum of oxy-Hb and deoxy-Hb 

(Steinbrink et al., 2006).  

It is worthy of note that while the participants in the present study reported that 

ecstasy was their “drug of choice”, there was co-use of other drugs in the ecstasy user group. 

The most prominently co-used substance was alcohol with cannabis also being used by many 

participants. In the regression analyses, models that used alcohol alone or alcohol and 

cannabis were non-significant. However models including indices of ecstasy use were 

significant for changes in oxy- and deoxy-Hb at 9 voxels. Indices of ecstasy use were 

significant predictors on 14 occasions after removing any variance due to alcohol and 

cannabis. Nonetheless, in the 3rd step of the model, cannabis and alcohol did emerge as 

significant predictors on a number of occasions, lifetime dose of cannabis featured 

prominently in this respect. Previous research (Kiang et al., 2013) has shown that cannabis 

users have shown ERP abnormalities during semantic memory processing. Thus future 

research should seek to elucidate fully the relative roles of ecstasy and cannabis in semantic 

memory deficits.  

Despite the significant differences between ecstasy users and controls in this study, as 

with any study investigating cognitive deficits in ecstasy users, the results require caution 

during interpretation. Due to concomitant use of other drugs, it cannot be ruled out that other 

drugs or alcohol either alone or in conjunction with ecstasy may be responsible for the effects 

observed in this study. Attempts were made to statistically control for use of the most 

prominent co-used substances – alcohol and cannabis, using regression analyses. After 

controlling for alcohol and cannabis use indices, ecstasy use indices came out as significant 

predictors of oxy-Hb increase at several voxels, suggesting that use of ecstasy is most likely 

responsible for the observed differences. However in the absence of a pure ecstasy using 
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sample such as that used in Halpern et al. (2011), it is difficult to attribute the observed 

differences in the present study solely to ecstasy so the effects is best described as an ecstasy-

polydrug effect. Attempts have also been made to control for several potential confounds 

including fluid intelligence, sleep measures and levels of anxiety, depression and arousal, 

with no between group differences reported in any of these variables; however, a diagnostic 

psychiatric interview (e.g. the SCID) was not used in screening so future research should seek 

to rule out any underlying differences in psychopathology which may contribute to the 

observed effects. We also controlled for potential gender differences via ANCOVA, but in 

future, matching groups on this basis would be preferable. Self-report measures of 

background drug use, while frequently used in this research, may not be ideal given the 

implications of memory deficits associated with illicit drug use. It is also possible that 

substance users could lie on self-reports of drug use. However, we do not believe this to be 

the case in the present study as participants were not informed that they would be penalised 

for failing to meet these criteria. In recent work from our laboratory, a very low level of 

recent use was found in participants’ urine. Exclusion of participants testing positive for 

metabolites did not change the significant effects (Roberts et al., 2013). Furthermore, self-

reports of ecstasy use  are consistent with objective analysis of hair samples in ecstasy users 

(Scholey et al., 2011), thus we believe that while objective analysis of drug metabolites is 

desirable, the lack of this in the present study does not detract from the main significant 

findings. Also, the purity of ecstasy tablets consumed, as well as cocaine purity and cannabis 

strength cannot be verified. However, Parrott (2004) reported ecstasy tablets collected from 

amnesty bins in nightclubs in the UK were approaching 100%. Nevertheless, if this is no 

longer the case and the purity of MDMA in tablets consumed by participants in this study is 

much lower, then the magnitude of cognitive effects observed is of even greater concern. In 

addition even in low content MDMA tablets, the presence of Methylenedioxyamphetamine 
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(MDA), Methylenedioxyethylamphetamine (MDEA/MDE) and other compounds usually 

found in street ecstasy has been found to lengthen and strengthen the effects of the drug 

(Bexis & Docherty, 2006).  

The present study provides evidence of altered neuronal functioning in ecstasy 

polydrug users relative to controls during a task that taps the executive function of access. 

Significant increases in oxy-Hb over areas of the left DLPFC and right medial PFC during all 

levels of the task were observed in ecstasy users relative to controls that reflect compensatory 

mechanisms/recruitment of additional resources to achieve similar performance. These results 

suggest that ecstasy users are engaged in more effortful cognition than non-users, perhaps due 

to damage to the serotonergic system.  
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 Table 1: Indices sleep quality, fluid intelligence and socio-demographic variables 

 Ecstasy users 

 

 Non-users  

Males:  n, (%) 13 (65)   8 (40) 

Age (SD) 

 

21.85 (2.76) 20.89 (2.05) 

University 

degree: n (%) 

4 (20) 5 (25) 

   

Employment 

status 

  

Student; n, (%) 17 (85) 20 (100) 

Employed; n 

(%) 

2 (10) 0 (0) 

Unemployed; n 

(%) 

1 (5) 0 (0) 

   

      Mean (SD) Mean (SD) 

   

Ravens 

Progressive 

Matrices 

(maximum 60) 

47.20 (5.64) 48.00 (6.79) 

   

ESS Score 

(maximum 24) 

 

5.00 (2.81) 5.25 (2.81) 

KSS before 4.30 (1.49) 4.75 (1.74) 

   

KSS after 5.33 (2.15) 4.06 (2.05) 

   

MEQ total 45.33 (9.31) 50.00 (9.95) 

   

UWIST anxiety 8.70 (2.56) 8.75 (2.24) 

   

UWIST 

depression  

 

9.05 (3.22) 8.70 (2.00) 

   

UWIST arousal 17.35 (5.38) 17.75 (3.29) 

 

Weekly alcohol 

use (UK units) 

 

18.68(11.91) 

 

9.75(8.63) 
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Table 2: Indices of drug use 

 Ecstasy users Nonusers 

 Mean  SD N Mean  SD N 

Cannabis       

Frequency (times/wk) 1.42  1.94 19 0.04 - 1 

Last 30 days (joints) 23.03  40.19 19 1 - 1 

Total use (joints) 1607.88  2212.54 19 2  1 

       

Cocaine       

Frequency (times/wk) 1.15  2.96 11    

Last 30 days (lines) 6.42  6.42 12    

Total use (lines) 294.64  294.64 14    

       

Ketamine       

Frequency (times/wk) 0.24  0.32 10    

Last 30 days use (grams) 0.33  0.71 9    

Total use (grams) 7.16  9.56 11    

       

Abstinence (weeks)       

Ecstasy 17.40 29.96 20    

Cannabis 21.25 71.55 19 2 - 1 

Cocaine 16.00 28.49 14    

Ketamine 27.57 31.30 11    

LSD 101.60 104.79 5    

       

Ever used (N)       

Cannabis   19    

Cocaine   14    

Ketamine   11    

LSD   5    

Poppers   10    

Viagra   2    
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Table 3: Means and SDs for CWFT scores for ecstasy users and non-users 

     Ecstasy users           Non-users 

 Mean (SD)  Mean (SD)  

     

CWFT     

Animals 42.10 (9.24)  38.55 (7.27)  

Words beginning with “S” 37.95 (11.26)  35.75 (11.49)  

4 letter words beginning with “C” 15.45 (7.12)  15.55 (8.17)  
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Table 4: Summary of Regression analyses.  

 

Dependent Model  R2% Predictor β t p 

Animals:        

V3OxyHb 1 7.2 Average alcohol 

Cannabis frequency 

Ecstasy frequency 

Lifetime dose ecstasy 

 

-0.53 

0.42 

0.55 

0.38 

-3.31 

2.46 

3.25 

2.16 

<.01 

<.05 

<.01 

<.05 

 2 18.5 

 3 37.4 

V4OxyHb 1 

2 

3 

6.1 

20.3 

78.0 

Average alcohol 

Lifetime dose cannabis 

Ecstasy frequency 

Lifetime dose ecstasy 

 

-0.88 

0.77 

0.45 

0.50 

-3.71 

3.31 

2.21 

3.53 

<.01 

<.01 

<.05 

<.01 

V11OxyHb 1 

2 

3 

5.4 

23.4 

48.5 

Lifetime dose ecstasy 

 

 

 

0.52 2.95 <.01 

V4 deoxyHb 1 

2 

3 

0 

7.7 

82.1 

Lifetime dose cannabis 

Recent Cannabis Use  

Lifetime dose ecstasy 

0.47 

-0.75 

0.90 

2.22 

-2.35 

7.02 

<.05 

<.05 

<.001 

S-Letter:       

V3OxyHb 1 

2 

3 

5.7 

13.1 

49.7 

Average alcohol 

Ecstasy frequency 

Lifetime dose ecstasy 

 

-0.54 

0.51 

0.49 

-3.38 

2.99 

2.83 

<.01 

<.01 

<.01 

V4OxyHb 1 

2 

3 

0.4 

31.4 

77.2 

Average alcohol 

Lifetime dose cannabis 

Lifetime dose ecstasy 

Recent Ecstasy Use 

 

-0.87 

1.14 

0.46 

1.14 

-3.63 

4.79 

3.16 

3.62 

<.01 

<.01 

<.01 

<.01 

V4deoxyHb 1 

2 

3 

0.1 

11.6 

85.3 

Lifetime dose cannabis 

Recent Cannabis Use 

Lifetime dose ecstasy 

0.63 

-0.72 

0.89 

3.30 

-2.53 

7.73 

<.01 

<.05 

<.001 

C-Letter       

V3OxyHb 1 

2 

3 

3.3 

7.1 

48.1 

Average alcohol 

Ecstasy frequency 

 

 

-0.57 

0.60 

-3.52 

3.49 

<.01 

<.01 

 

V4OxyHb 1 

2 

3 

0.7 

27.9 

76.6 

Average alcohol 

Lifetime dose cannabis 

Recent Cannabis Use 

Lifetime dose ecstasy 

Recent Ecstasy Use 

-0.96 

1.19 

-1.25 

0.37 

1.32 

-3.94 

4.94 

-3.44 

2.56 

4.12 

<.01 

<.001 

<.01 

<.05 

<.001 
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Figure 1: Anatomical locations of fNIRS channels in relation to prefrontal cortex.  

Reproduced from Kreplin & Fairclough (2013) with permission.  
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Figure 2: Mean oxy-Hb change (µolar) from baseline during the task.  

 

Fig 2: Depicts mean oxy-Hb change (µmolar) from baseline during the CWFT for ecstasy users and non-users, with standard error bars.   
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Figure 3: Mean deoxy-Hb change (µolar) from baseline during the task.  

 

Fig.3: Depicts mean deoxy-Hb change (µmolar) from baseline during the CWFT, with standard error bars.  
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