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Incidence of Primary Mitochondrial Disease in Children

Younger Than 2 Years Presenting With Acute Liver Failure
�yPatrick McKiernan, zSarah Ball, zSaikat Santra, §Katherine Foster, jjCarl Fratter,

�Joanna Poulton, #Kate Craig, #Robert McFarland, ��Shamima Rahman, ��Iain Hargreaves,
�yGirish Gupte, �Khalid Sharif, and #Robert W. Taylor

ABSTRACT

Background: Mitochondrial liver disease (MLD), and in particular mito-

chondrial DNA (mtDNA) depletion syndrome (MDS) is an important cause

of acute liver failure (ALF) in infancy. Early and accurate diagnosis

is important because liver transplantation (LT) is often contraindicated.

It is unclear which methods are the best to diagnose MLD in the setting

of ALF.

Objective: The aim of the study was to determine the incidence of MLD in

children younger than 2 years with ALF and the utility of routine

investigations to detect MLD.

Methods: Thirty-nine consecutive infants with ALF were admitted to a

single unit from 2009 to 2011. All were extensively investigated using an

established protocol. Genes implicated in mitochondrial DNA depletion

syndrome were sequenced in all cases and tissue mtDNA copy number

measured where available.

Results: Five infants (17%) had genetically proven MLD: DGUOK (n¼ 2),

POLG (n¼ 2), and MPV17 (1). Four of these died, whereas 1 recovered.

Two had normal muscle mtDNA copy number and 3 had normal muscle

respiratory chain enzymes. An additional 8 children had low hepatic mtDNA

copy number but pathogenic mutations were not detected. One of these

developed fatal multisystemic disease after LT, whereas 5 who survived

remain well without evidence of multisystemic disease up to 6 years later.

Magnetic resonance spectroscopy did not distinguish between those with

and without MLD.

Conclusions: Low liver mtDNA copy number may be a secondary pheno-

menon in ALF. Screening for mtDNA maintenance gene mutations may be

the most efficient way to confirm MLD in ALF in the first 2 years of life.

Key Words: acute liver failure, liver transplantation, mitochondrial

disease, mitochondrial DNA depletion syndrome, respiratory chain

deficiency

(JPGN 2016;63: 592–597)

A cute liver failure (ALF) in infancy is a rare and devastating
disease, which has a poor outcome without liver transplan-

tation (LT). In approximately 20% of cases, infantile liver failure is
caused by genetic mitochondrial liver disease (MLD) (1–3) with
the commonest single entity being mitochondrial DNA (mtDNA)
depletion syndrome (MDS).

Mitochondria contain multiple copies of mtDNA. MDS is
caused by mutations in nuclear genes involved in mtDNA replica-
tion or in the maintenance of the deoxynucleotide pools required for
de novo mtDNA replication, resulting in a quantitative loss of
mtDNA copy number (4). Pathogenic mutations causing hepato-
cerebral MDS have been described in a number of genes to date with
the commonest reported being DGUOK (5), POLG (6), MPV17 (7),
and PEO1 (encoding the Twinkle helicase) (8).

What Is Known

� Mitochondrial liver disease is an important cause of
infantile liver failure.

� The most effective way to diagnose mitochondrial
liver disease in the setting of liver failure is unclear.

What Is New

� Low hepatic mitochondrial DNA copy number may
be a consequence of liver disease rather than a cause
of liver disease.

� Screening for known mutations causing mitochon-
drial liver disease may be the best diagnostic strategy.
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Normal mitochondrial function is contingent upon the
expression of many other nuclear genes, which encode constituent
proteins of the respiratory chain, proteins needed for assembly of
the respiratory chain, or for translation of mtDNA-encoded proteins
(9). Mutations in these genes can also cause MLD and in particular
mutations in TRMU, which encodes an enzyme essential for post-
transcriptional modification of mitochondrial tRNAs, can cause
infantile ALF. Such cases are particularly important to recognize
because there is a significant chance of spontaneous recovery with
supportive treatment (10,11).

Definitive diagnosis of most nuclear-encoded mitochondrial
disorders is best established by recognizing 2 pathogenic mutations
in known disease-causing genes. In the absence of an informative
family history this is, however, time consuming. In the absence of a
genetic diagnosis, laboratory diagnosis requires demonstrating
abnormal respiratory chain function and/or loss of mtDNA copy
number in clinically relevant tissue(s) (12). The most commonly
sampled tissue is muscle as it is easily accessible with well-
established normal ranges (12), although in multisystemic presen-
tations of mitochondrial disease, muscle respiratory chain activities
and mtDNA levels may be normal and muscle biopsy will a priori
fail to detect isolated hepatic disease (6). Consequently liver biopsy
is often necessary, if feasible. Abnormalities of respiratory chain
function or of mtDNA copy number in damaged liver tissue,
however, may not be due to genetic mitochondrial disease but
may be a secondary change due to liver disease of other causes (13).

The aim of the present study was to determine the incidence
of genetic mitochondrial disease in a group of children younger than
2 years presenting with ALF and to determine the utility of routine
investigations to detect mitochondrial disease.

The present study was registered as an audit of clinical
practice at Birmingham Children’s Hospital NHS Trust. Children
were investigated and managed according to an established
in-house clinical protocol (see Supplemental Digital Content 1,
Protocol, http://links.lww.com/MPG/A753).

METHODS
Methods are available online as Supplemental Digital

Content 2 (http://links.lww.com/MPG/A754).

RESULTS
A total of 39 infants (20 girls, 19 boys) presented with ALF

during the study period. Ethnicity was white (30), Asian (5), and black
(4). Four were born prematurely and median birth weight was 2.7 kg
(range 1.8–4.1). Median age at presentation was 17 days (1–689).
There had been no affected siblings in these families before the study.
There were 2 sets of siblings included, 1 being twins. Three children
were from consanguineous families. Overall 10 infants died without
LT during the acute illness and 18 survived without LT (Table 1).
Eleven underwent LT of whom 3 died in the early postoperative
period. There were 2 later deaths after transplantation; 1 from
progressive multisystemic disease after 3 months and 1 from vascular
complications 1 year later. One child with ornithine transcarbamylase
deficiency underwent elective LT 1 year after presentation because
of metabolic instability and remains well 3 years later. One child
(subject 37) had recurrent episodes of ALF and he was subsequently
shown to have mutations in neuroblastoma amplified sequence
causing recurrent ALF syndrome (14).

The results of diagnostic investigations are summarized in
Table 1. The largest etiological group was infection, accounting for
12 cases, including proven HSV in 8 cases, enterovirus in 3, and
adenovirus in 1. Four had inborn errors of metabolism: galactose-
mia (2), ornithine transcarbamylase (1), recurrent ALF syndrome
(1); 4 had neonatal hemochromatosis phenotype; and 12 cases were
indeterminate despite an extensive diagnostic workup.S
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Five children (13%) were found to have genetically con-
firmed MLD all of whom had MDS. All were born at full term after
normal pregnancies. Three were born to consanguineous parents.
Median age at presentation was 110 days (9 days to 23 months). The
genetic causes were mutations in DGUOK (2), POLG (2), and
MPV17 (1).

Four of the 5 children with genetic MLD showed rapid
deterioration and died within 3 weeks of presentation. One child
who was homozygous for a p.(Leu304Arg) mutation in POLG
presented at 18 months old, recovered with supportive treatment
only and remains well without evidence of liver disease
6 years later.

In addition, there was 1 unexplained case (subject 24) with
some features of genetic MLD. This was a female infant who
became jaundiced and unwell on the first day of life. She developed
progressive encephalopathy and coagulopathy with peak INR of
3.5. Muscle biopsy showed steatosis and mtDNA depletion studies
were borderline in both muscle (49%) and liver (39%). Cranial
magnetic resonance imaging (MRI) showed features of cerebral
edema only. She underwent LT at the age of 23 days. She made an
initial smooth recovery but when aged 3 months developed evi-
dence of cardiomyopathy and died of progressive systemic disease
2 months after LT. No evidence of a genetic cause of MLD
was found.

Clinical and laboratory features of the infants with geneti-
cally proven MLD compared to those with other causes of ALF are
summarized in Table 2. Children with MLD tended to have lower
birth weight and presented later but these differences were not
significant. Similarly, there were no significant differences in the
presenting laboratory values between the 2 groups. Although the
median plasma lactate levels were similar between the groups, all
infants with MLD had abnormal lactate values, whereas these were
initially normal in 9 of 34 without MLD.

Results of tissue studies and radiology are listed in Table 1
and summarized in Table 3. Liver histology was available in
21 cases. The dominant lesion was hepatocyte necrosis in 13 cases,
and this was accompanied by microvesicular steatosis in 3 cases.
Including these 3 cases, significant microvesicular steatosis
was present in 8 cases overall. Three who had genetically confirmed
MLD had liver histology available and all showed microvesicular
steatosis. The remaining 4 biopsies showed established
fibrosis/cirrhosis (3) and unexplained macrophage storage material,
respectively.

Liver mtDNA copy number results were available in
17 cases, 2 of whom had genetically proven MLD due to DGUOK.
These 2 children had low (15%) and borderline (37%) liver mtDNA
copy number. In 15 children without MLD, 7 had normal mtDNA
copy number in liver and 8 had low levels of mtDNA: depletion (4)
and borderline depletion (4). The causes of ALF in these 8 children

with decreased mtDNA copy number without genetically proven
MLD were indeterminate in 6 and 1 each of neonatal hemochro-
matosis and enterovirus infection. Two of these children died,
2 recovered without LT, and 4 underwent successful LT. One child,
referred to earlier, underwent successful LT but died from apparent
multisystemic disease 2 months later. None of the 5 survivors have
shown evidence of multisystemic disease after up to 6 years of
follow-up.

Muscle biopsies were available in 12 cases. None showed
specific changes suggestive of mitochondrial involvement such as
ragged-red fibers. Increased intrafiber lipid was found in 4 of
5 children with MLD who underwent muscle biopsy but was only
found in 1 of 7 children without MLD. This latter child was the one
who died of a multisystemic disease after LT. Muscle mtDNA copy
number data were available in 11 cases, 4 of whom had MLD. Two
children with MLD had low mtDNA copy number; 1 of these had
complex IV deficiency in muscle tissue and 1 had normal enzyme
activities. Two children with MLD had normal mtDNA copy
number, and both also had normal respiratory chain activity. Six
of 7 children without MLD had normal mtDNA copy number and,
in the 4 cases in which these were measured, they also had normal
respiratory chain enzyme activities. One had an ambiguous muscle
mtDNA copy number (47%).

A total of 15 children underwent cranial MRI with diffusion-
weighted imaging and 10 had magnetic resonance spectroscopy
(MRS). All 5 children with MLD had MRI, which in 1 case (who
had POLG mutation) showed symmetrical posterior midbrain
changes similar to those reported in mitochondrial disease (4).
Three showed cerebral edema which had a cytotoxic or demyelina-
tion pattern in 2 cases and a vasogenic pattern in 1. Two children
had an initial normal MRI, but in 1 case repeat MRI showed
progression to vasogenic cerebral edema. Ten children without
MLD had an MRI, which was normal in 3 and showed cerebral
edema in 7, appearing cytotoxic in 2 and vasogenic in 5. Five
children with MLD had MRS, which showed a lactate peak in 3.
Five children without MDS had MRS, which showed a lactate peak
in 2.

DISCUSSION
Infantile ALF is a serious disorder with a variety of potential

causes. A structured, rapid approach to diagnostic investigations in
tandem with identifying and treating correctable disorders is
necessary. We have confirmed that MLD is an important cause
of infantile ALF and that genetically confirmed MDS is the
commonest entity in this group. The outlook for affected infants
is poor and early recognition is important to minimize unnecessary
invasive investigations, to prevent inappropriate LT, and to

TABLE 2. Clinical and laboratory features in infant with and without

genetically proven mitochondrial liver disease as a cause of liver failure

Genetically proven

MLD (n¼ 5)

Other causes of

ALF (n¼ 34) P

Birth weight, kg 2.6 (2.3–2.9) 2.8 (1.8–4.1) 0.76

Age at presentation, days 110 (9–503) 16 (1–689) 0.33

Prothrombin time, s 26 (23–41) 34 (18–120) 0.5

Serum bilirubin, mmol/L 113 (34–335) 146 (5–492) 0.79

ALT, IU/L 113 (42–1875) 940 (19–6000) 0.11

Lactate, mmol/L 7.2 (3.7–25) 4.3 (0.7–22.4) 0.11

ALF ¼ acute liver failure; ALT ¼ alanine aminotransferase; MLD ¼
mitochondrial liver disease.

TABLE 3. Results of tissue studies and radiology undertaken in infants

with and without genetically proven mitochondrial liver disease

Genetically proven

MLD (n¼ 5)

Other causes of ALF

(n¼ 34)

Liver mtDNA depletion 2/2 8/15

Muscle mtDNA depletion 2/4 1/7

Abnormal muscle respiratory

chain enzymes

2/5 0/4

Muscle steatosis 4/5 1/7

Hepatic steatosis 3/3 5/18

MRS lactate peak 3/5 2/5

ALF ¼ acute liver failure; MLD ¼ mitochondrial liver disease; MRS ¼
magnetic resonance spectroscopy; mtDNA ¼ mitochondrial DNA.
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facilitate family counseling. Ideally, diagnostic investigations
should be available within days of presentation. The definitive
method to diagnose MLD is by detection of 2 pathogenic mutations
in recognized genes; hence, some attempt at targeted mutation
detection should be initiated at the time of initial presentation. This
could later be reassessed if other diagnostic information
becomes available.

In the absence of pathogenic disease-causing mutations, the
diagnosis of MLD depends on tissue studies. It has been a sine qua
non in the investigation of suspected mitochondrial disease that an
affected tissue should be studied. Our findings cast doubt on this
approach in the setting of ALF. We have found that reduced
mtDNA copy number in affected liver tissue is not synonymous
with genetically proven MDS. In 3 of the 8 cases reported here
plausible alternative causes of ALF were found. In the 5 unex-
plained cases we cannot definitely exclude mitochondrial disease
because undetected genetic disorders may yet be present. For at
least 4 of these cases, primary mitochondrial disease, however,
seems unlikely; no pathogenic mutations have been detected and no
other evidence to support progressive mitochondrial disease has
appeared even after prolonged follow-up. One of these children,
who developed a multisystemic disease after LT, did have some
features of systemic mitochondrial disease but no genetic cause
was detected.

There have been few studies examining the accuracy of low
hepatic mtDNA copy number to diagnose MLD in which the
primary presentation is with clinical liver disease. In end-stage
liver disease some studies have shown that low mtDNA copy
number appeared to be specific for MDS (15), but in another study
10 of 45 unselected cases undergoing LT had low copy number (16).
Low mtDNA copy number has also been reported in Mauriac
syndrome in which the clinical findings are often reversible (17).
In ALF low copy number appears to be common irrespective of the
etiology. Helbling et al (15) found low mtDNA copy number in 29
of 44 patients with ALF and all 3 cases reported by Lane et al (16)
had decreased number. Decreased copy numbers were found even
where a plausible nonmitochondrial cause of ALF existed. In
contrast, Al-Hussaini and colleagues (1) found hepatic mtDNA
copy number to be specific for MDS, but only 4 children in whom
liver disease did not have a mitochondrial cause were studied.

Overall these reports are consistent with our findings and
suggest that liver disease, and especially ALF, may cause a sec-
ondary lowering of mtDNA copy number as a consequence of the
primary disease. We cannot exclude that as yet undetected
mutations in other genes underlie these examples of mtDNA
depletions. An important part of the present study is, however,
the length of subsequent follow-up, which makes late sequela of
unrecognized disease less likely. We also cannot comment as to
whether the low mtDNA copy number contributes to the patho-
genesis of ALF in these cases. What we can say is that clinical
management decisions, including whether to proceed with trans-
plantation, should not be influenced by hepatic mtDNA copy
number in the absence of proven mutations.

Rapid detection of pathogenic mutations in candidate genes
remains the ideal method for diagnosis of MLD. The commonest
causes of MLD are recessively-inherited mutations in DGUOK,
POLG, MPV17, PEO1, and TRMU (1,7,18). Certainly, screening
for mutations in these genes should be initiated at presentation with
infantile ALF. The prioritization of genes to screen will depend on
local experience and available facilities, while recognizing that this
approach will only recognize a proportion of defects.

Up to 1300 nuclear genes encode mitochondrial-related
proteins and the basis of many defects remain unknown (18). It
is to be hoped that next-generation screening techniques, including
custom captures of specific nuclear-mitochondrial genes or whole

exome or whole genome sequencing, will transform this situation.
For example, it is now possible to sequence the entire mitochondrial
genome and all coding exons of the nuclear genes encoding
mitochondrial proteins. Initial experience using this approach for
children with suspected mitochondrial disease achieved a firm
diagnosis in 24% of cases and a probable cause in a further 30%
(19). The major future challenge will be to ensure next-generation
screening results can be made available in a clinically relevant
timescale, that is, within days if possible, and certainly within a
fortnight, although this will vary according to local practice and
laboratory diagnostic algorithms.

Even establishing a molecular diagnosis does not absolutely
establish prognosis. Although 4 of the 5 cases showed rapid
progression and death from systemic disease, 1 child with recessive
POLG mutations recovered spontaneously; interestingly, she was
homozygous for the p.(Leu304Arg) mutation that is usually associ-
ated with a late-onset POLG phenotype of sensory ataxic neuro-
pathy with dysarthria and ophthalmoplegia rather than liver disease
(20). This mutation has been reported to cause ALF in compound
with a second (p.[Ala467Thr]) heterozygous POLG mutation (21),
which supports the observation of Tzoulis et al (22) that compound
heterozygosity often has a worse prognosis than homozygous
POLG mutations. Recent work has suggested that the pattern of
mtDNA when visualized by fluorescence microscopy in cultured
fibroblasts may also provide further prognostic information (12).
Spontaneous recovery from ALF has been previously recognized in
at least 1 other child with POLG mutations (23) and emphasizes
that, although LT is inappropriate in this group, these patients
should not be denied appropriate supportive treatment.

Recognizing and defining central nervous system involve-
ment in MLD is crucial to guide prognosis and management. In
ALF from other causes central nervous system involvement with
encephalopathy is common and is generally reversible after suc-
cessful LT. In MLD such involvement, however, may be a contra-
indication to LT. MRI abnormalities are common, but not
invariable, in MLD and range from widespread generalized white
matter changes to cortical atrophy to specific involvement of deeper
brain structures (1,4,24). These latter appear to be more specific for
MLD but were found in only 1 of our cases. We found that
generalized abnormalities were common in ALF irrespective of
cause and that there was a similar distribution between cytotoxic
and vasogenic cerebral edema whether or not liver failure was due
to MLD. Similarly, MRS detection of a lactate peak did not provide
useful discrimination between mitochondrial and nonmitochondrial
causes. We did confirm that MRI changes may develop and evolve
quickly and that serial evaluation may be necessary. In this group of
ill infants MRI, however, only helped the decision on appropriate-
ness of LT in a small proportion of cases.

In conclusion, we have shown that MLD is an important
cause of infantile ALF and that mutation detection is the most
robust diagnostic method.
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