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Abstract 
 

Water, otherwise known as the pool of life, is the very essence of all living things and 

as such is vital for survival, whether for living beings, social, economic development 

or for environmental sustainability.  However, its continuing existence is severely 

threatened for future as a result of climate change, carbon footprint, population growth, 

environmental damage, combined with natural disasters like droughts and floods.  The 

prospect of an alternative solution such as desalination of sea or brackish water to 

counter the limit on conventional water resources such as groundwater, which cannot 

meet demand, is therefore very promising, particularly in arid and semi-arid regions 

where water scarcity and impaired quality prevails. Consequently, desalination 

technology has now become a burgeoning industry in North Africa or southern 

Mediterranean countries, such as in Libya.  However, evidence suggests that as a result 

of by-products being discharged directly into the sea, particularly from coastal 

desalination plants, the physico-chemical parameters of the receiving water are 

changing and posing a threat to marine ecosystems.  As a result of studies conducted 

on these parameters to analyse the brine emitted from the Zwuarah and the West 

Tripoli distillation plants (ZWDP & WTRIS) on the Libyan coastline, evidence shows 

there is a significant positive correlation at both sites between the biological data and 

physico-chemical parameters (rs=0.673; p=0.002) and (rs=0.637; p=0.003), which is a 

clear indication of the impact of brine disposal from both plants on the marine 

environment. 

 

For most of coastal desalination plants on the Libyan coastline, the most practical and 

least expensive brine disposal option is to discharge it into the sea. It is necessary 

therefore, to effectively manage desalination reject brine in order to ensure more 

efficient disposal and reuse. Therefore, it is suggested that experimental studies are 

aimed for dual benefit of on-site generation of sodium hypochlorite through brine 

electrolysis and to recover minerals and NaCl from the brine using evaporation ponds, 

while protecting the environment.  Following the first experiment, the outcome of 

brine utilisation showed a significant production of NaOCl using graphite electrodes 

(MCCA 1.82 gr/m3). At interelectrode spacing 2 cm and 4 cm, the power consumption 

was higher, with a greater concentration of sodium hypochlorite generation varying 

between 10-25 kw/m3 (573-2140ppm) and 29-24 kwm-3 (572-2600ppm) than at 
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interelectrode spacing 6cm 17-13 kwm-3 (350-1790ppm). Consequently, the selection 

of an optimum electrical consumption level is key in establishing the best scenario in 

terms of economy and efficiency. Subsequent to the second experiment of brine 

evaporation in the ponds, results showed that the evaporation rate in August was lower 

than in September (9.06 mmday-1, 14.63 mmday-1) respectively. The results of the 

SEM/EDS test showed that due to elevated surges of Na+ and Cl-, halite (NaCl) was 

the main mineral evident during crystallisation of the salt samples. Hence, the two 

experiments reveal that brine can be recycled productively, while protecting the 

environment. 
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Chapter One : Introduction 
 

1.1. Research Overview 
 

The United Nations made a declaration in 2010 regarding the necessity of a stable 

drinking water supply as a basic human right, to highlight the major issue of 

insufficient water quantity or quality (Pinto and Marques, 2017). Existing 

watercourses have long been the source for domestic, commercial, agricultural and 

urban use (Foster, 2001). Hence, the study of water quantification has been high on 

the agenda of professionals in the field of hydrology (Milano et al., 2013). 

 

Over the past few decades, the intensity and acceleration of global warming has 

sparked serious concern (Frich et al., 2002; (Barnett et al., 2001). Following a huge 

convention of 20 research groups selected by the Intergovernmental Panel on Climate 

Change (IPCC) as part of its Fourth Assessment Report, simulations of anticipated 

scenarios using varying levels of greenhouse emissions, were set up to illustrate 

predictions in the 20th and 21st centuries.  These proved that the raised level of 

industrial activity contributed to elevated emissions leading to climate change which 

ultimately influences water resources and supply (Milano et al., 2013). 

 

According to the Council of Europe (2012), the Mediterranean basin is defined as 

being the most susceptible to climate change, due to anthropogenic activity.  It has 

been predicted that by 2050, due to climate change, the existing severe water stress 

experienced in the southern and eastern regions of the Mediterranean basis will extend 

right across the basin, due to a 30-50% drop in freshwater sources and twice the 

amount of water consumption in the area (Viola et al., 2014). As the demand for water 

significantly increases from residential, industrial and agricultural sectors globally 

(Tal, 2006), there is a lack of sustainability to match the need (Barron et al., 2015).  

which has prompted the necessity to find alternative water sources.  Hence, 

desalination has now become an option to meet this global surge of demand and will 

eventually become a solution for economic, social and environmental development 

Medeazza, 2005; Tsiourtis, 2001) while protecting water sources and maintaining 

environmental equilibrium (Bargues, 2014). 
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There are two types of commercial desalination technologies, namely thermal 

distillation, i.e. multi-stage flash distillation (MSF) or multiple-effect distillation 

(MED) or multiple-effect distillation with thermal vapour compression (MED-TVC) 

which are used in medium and large sized plants. The other technology is membrane 

separation known as reverse osmosis (RO) which is used in smaller plants (Mezher et 

al., 2011; Tsiourtis, 2001; Bargues, 2014). In addition, there are hybrid techniques 

using both technologies (Hamed, 2005). Also, there are smaller commercial 

desalination units divided into vapour compression (VC) and solar distillation. Other 

technologies include electro dialysis (ED) and electro dialysis reversal (EDR) which 

are used on a smaller scale, with minimal salinity (Khawaji et al., 2008; Schenkeveld 

et al., 2004). Further developments still under research are evolving, such as 

membrane distillation (MD) (Belessiotis et al., 2016), forward osmosis (FO), 

capacitance deionization (CDI), and gas hydrates (GH), freezing, humidification and 

dehumidification (HDH). Other supporting technologies include ultra/nano/ionic 

filtration (UF/NF/IF respectively) (Mezher et al., 2011; Cipollina et al., 2009; Krishna, 

2004). 

 

Thermal techniques are currently used in the Gulf and North Africa such as Libya 

Khordagui,2013; Elabbarb and Elmabrouka, 2005) where energy sources are 

abundant, while membrane techniques such as RO is more popular in developed 

countries for effective scale of economy (Bargues, 2014). As a sub-Saharan nation, 

over 80% of the population of Libya is located along the length of the coastline where 

agriculture and industry thrives due to arable land and favourable conditions 

(Kershman, 2001; Abufayed and El-Ghuel, 2001) There are 3,500 hours of sunlight 

annually, radiation on a horizontal plane is 7.1 kwhm-2day-1 in the coastal areas with 

8.1 kwhm-2day-1 in the southern region, causing long term drought. (Saleh, 2006). 

Owing to an exceedingly hot and dry climate with temperatures reaching 40°C, 

evaporation rates are one of the highest globally (Abufayed and El-Ghuel, 2001). 

Potable, industrial and irrigation water originates from groundwater as the main 

source. However, for more than 20 years, demands on groundwater from different 

sectors has resulted in falling water levels and impaired quality, exacerbated by an 

influx of seawater along the coast (Sadeg and Karahanoðlu, 2001). Hence the drive to 

search for alternative water sources such as water desalination, large water transfer 
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(Great Man-made River Project), and wastewater recycling and reuse (General Water 

Authority, 2004). 

 

In Libya, exploitation of oil uses desalination technology in arid regions where there 

is limited water supply, making Libya the largest user of thermal and membrane 

technology in North Africa and the Mediterranean region (Abufayed and El-Ghuel, 

2001; Kershman, 2001).  Desalination optimises the use of available resources such 

as saline or brackish natural water sources to produce freshwater (Eslamian, 2016).  It 

has become a favourable alternative method due to inflation of water production costs 

and subsequent improved cost-saving technology (Barron et al., 2015). A large 

majority of the more substantial plants are run and managed by the General Electricity 

Company of Libya (GECOL) (Kershman, 2001) and General Desalination Company 

of Libya (GDCOL) (General Desalination Company of Libya, 2013) in addition to 

smaller and high capacity plants that use membrane and thermal techniques (run by 

major oil companies. Al-Hengari et al., 2015). Plans are in place to expand the capacity 

of thermal desalination plants along the Libyan coast in addition to the installation of 

a new one to support the existing somewhat inaccessible Great Man made River 

System (Elabbar, 2008; Elabbarb and Elmabrouka, 2005; Elhassadi, 2013).  

 

There are massive implications of the desalination process in terms of environmental 

and ecological damage (Dupavillon and Gillanders, 2009), which need to be 

considered, such as energy and land usage, toxic emissions and brine discharge during 

regular operation.  The latter has the most devastating impact (Bleninger and Jirka, 

2008, Bleninger et al., 2010), coastal desalination plants continuously discharge by-

products (brine) which have a major effect on the marine environment (Frank et al., 

2017). This rejected brine is characterised by varying concentrations of salts and 

minerals including SO4 2–, Cl−, Na+, Ca2+, Mg2+, K+, Fe2− and Cu2+ depending on 

feedwater quality, type and recovery percentage of the desalination process as well as 

any chemical additives used (Abdulsalam et al., 2016; Hu, 2014). Brine waste 

generated from coastal desalination plants has double the salinity of the receiving 

environment and is very concentrated causing it to sink onto the seafloor where it 

flows as a dense stream (Bleninger et al., 2010; Arafat, 2017; Torquemada et al., 

2005). As it lengthens along the seafloor, (Frank et al., 2017) it intensifies in 

temperature, chemicals and salinity thus affecting water quality, causing damage to 
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marine biodiversity, flora and fauna and key components of coastal ecosystems 

(Lattemann and Höpner, 2008). Another problem is caused by the corrosion 

phenomenon within the desalination process where a combination of metals such as 

(copper, nickel, iron, chromium, zinc etc.) released with the brine may also pose an 

environmental threat (Giwa et al., 2017).  

 

There is a public misconception that brine waste does not affect marine life (Ahmad 

and Baddour, 2014). In fact, there is no evidence of objection from local communities 

about the effects of brine discharge (Torquemada and Lizaso, 2005). However, 

research indicates adverse impact on echinoderms and bivalves as well as seagrasses 

and macroalgae (Castriota et al., 2001). In large-scale desalination plants, it is 

frequently conveyed via diffuser systems away from the shore or by direct beach 

discharge mixed with cooling water from nearby power plants (Fritzmann et al., 2007; 

Lattemann and Höpner, 2008). 

 

Brine management techniques include brine minimization, direct disposal or reuse.  

The former applies membrane/thermal based, and emerging technologies still under 

development. Direct disposal options involve inland and offshore disposal techniques 

(Giwa et al., 2017).  Inland desalination plants tend to incur higher disposal costs of 

brine than coastal plants, depending on characteristics of brine concentration, volume 

and concentration, treatment levels prior to discharge and disposal method (Arnal et 

al., 2005). There are several options for direct disposal of desalination into the sea, 

namely the use of evaporation ponds or shallow basins that are exposed to the open 

air, decreasing the amount of discharge (Rodríguez et al., 2012). This method is 

particularly effective in dry, warm locations with high evaporation rates and low land 

costs.  Recently, there has not been much publicity about the use of brine disposal 

from desalination plants as opposed to the conventional use of seawater in salt work 

(Ahmed et al., 2000; Cipollina et al., 2012; Rodríguez et al., 2012). Thus, Libya has 

been chosen as a case study for considering the environmental impact of brine disposal 

from thermal desalination plants (MED, MED-TVC) on the Libyan coastline. 

Therefore, the following questions will be asked as outlined: 

 

 What are the physico-chemical effects of brine influx from thermal 

desalination plants on the Libyan coastline?  
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 What strategies can be put in place for Libya to capitalise brine disposal in the 

form of minerals and salt? 

 

These questions are behind the performance of this study and its results will provide 

the answers. This chapter presents research aims and objectives, novelty of research, 

the benefits and its impact, research sources and the thesis outline. 

 

1.2. Research aims and objectives 
 

The main aim of this thesis is to determine the physico-chemical effects of brine influx 

from thermal desalination plants on the receiving water in addition to evaluating the 

impact on the marine ecosystems. Further to this aim, this study is to look at the 

possibility of exploiting brine production by recycling it in the form of sodium 

hypochlorite, minerals and NaCl (halite).  

  

This leads to the following specific objectives: 

 

1. To evaluate and review existing global desalination techniques, including the 

chemicals that are used and their environmental impact.  

 

2. To identify and evaluate different brine disposal methods used globally, water 

availability and regional desalination techniques, to understand Mediterranean 

legislation and how it can be relevant to brine management in Libya.  

 

3. To assess existing water sources in Libya and ascertain suitable desalination 

technology by using one of the existing desalination plants on the Libyan 

coastline as a case study. 

 

4. To examine the environmental impact of brine disposal from desalination 

techniques, using the Libyan coastline as a case study, investigating the 

relationship between the physico-chemical parameters of brine disposed and 

marine species. 

 

5. To look at the potential of recycling brine disposed from Libyan coastal 

desalination plants using electrochemical and evaporation pond techniques to 

produce sodium hypochlorite, minerals and NaCl (halite).  
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1.3. Novelty of research 
 

The innovative aspect of the current research work project can be summarised in the 

following: 

 

 Although seawater desalination plants have been operating in various regions, 

there is very little data available about the ecological impacts of the brine on 

the marine environment (National Research Council, 2008). When any new 

project is embarked on, environmental impact assessment (EIA) study is the 

best means of recognising, evaluating and preventing ongoing damage to the 

environment, but no in-depth study has been carried out for desalination plants 

which would be very desirable (Lattemann, 2010).  Little has been done in this 

area.  The majority of analysis in Libya has focussed on the effects of 

increasing seawater salinity at the intake and their impact on the components 

of the desalination units, such as boilers and vulnerable instruments (Elabbarb 

and Elmabrouka, 2005; Brika et al., 2016).  There is yet to be any research 

done regarding the ecological impact of brine disposal from thermal 

desalination plants in Libya.  Hence, the novelty of this study and the 

knowledge gleaned from the research completed to determine the physico-

chemical composition of brine, contributes to the validity and importance of 

this study when assessing the environmental implications of brine on the 

marine ecosystems. 

 

 Most desalination plants, whether thermal distillation or reverse osmosis, are 

normally constructed with a hypochlorination unit, which produces sodium 

hypochlorite through seawater electrolysis for the purposes of injecting it at 

the seawater intake to prevent ongoing biological fouling in the desalination 

pipes and instruments while extending the longevity of the plant (Ozair and 

Al-Shangiti, 2013). A few basic experiments have been carried out to test the 

production of onsite sodium hypochlorite (NaOCl) through brine electrolysis 

(Wahab and Al-Weshahi, 2009). This paves the way for an innovative method 

to discuss various critical operating parameters for onsite sodium hypochlorite 

(NaOCl) production using an electrochemical cell in controlled conditions fed 

by the brine disposal from a thermal desalination plant.  
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 One area of concern is the high volume of concentrated brine disposed directly 

into the sea from desalination plants (Cipollina, 2012).  Hence, the use of 

evaporation ponds offers a favourable alternative for brine disposal (Rodríguez 

et al., 2012) particularly where evaporation rates are high and accessibility of 

land near the coastal area is plentiful and economic.  The integrated production 

of fresh water and recycled brine from desalinations plants could be achieved 

by utilising the brine disposal from thermal desalination plants as a feed for 

conventional salt works with the advantages of higher temperatures of brine, 

thereby speeding up the evaporation rates on the pond surfaces. Very little data 

exists about this concept other than studies completed in Tripani/Italy and 

Eilat/Israel (Ravizky, 2007; Cipollina, 2012).  As a result of a warm, dry 

climate along the Libyan coastline with an abundance of sunshine, and plenty 

of land that is not over priced, there is a real opportunity to capitalise on these 

favourable conditions. Therefore, the final contribution of this research 

advocates the use of evaporation ponds as opposed to traditional salt works to 

recover minerals and NaCl (halite) from the brine. 

 

1.4. Research benefit and its impact 
 

There is no doubt that all the research completed for this study reveals huge benefits 

to the scientific community and specialists in hydrology.  Firstly, the design 

methodology of the study on the impact of brine on the marine environment gives new 

evidence about the Libyan coastline and how it is affected by this technology, both 

locally and globally.  Secondly, as a result of the water shortage in Libya, this gives 

the Libyan government a warning about the future sustainability of this technology as 

well as other countries that suffer from water scarcity in coastal areas.  Furthermore, 

the recovery and recycling of salt and minerals from the brine will provide an excellent 

opportunity to enhance local and international infrastructures.  In turn, this will give 

rise to increased employment and ongoing commercial and industrial growth, while 

reducing costs and environmental impact as well as safeguarding the continuing use 

of desalination technology by integrating it with renewable energy sources, such as 

solar power. 

 

1.5. Research sources 
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Numerous books, academic articles and journals on the theory of the latest desalination 

plants systems and integration with the existing grid were used to gain a better 

understanding of the concepts and previously developed analysis and design methods.  

The internet is a major source of information with the most up-to-date development in 

desalination technologies, a range of reject brine management strategies and work 

related to the impact of brine disposal from desalination plants. Other sources used 

were primary data, collected from the field study at the sites to achieve the above 

mentioned aims.  

    

1.6. Thesis outline 
 

This thesis is structured in eight chapters. The introductory chapter (Chapter 1) 

presents a background of the water situation and deficit in the Mediterranean basin 

and describes commercial desalination technologies and the impact of the brine 

disposal from coastal desalination plants. In addition, it explains methods of brine 

management used to reduce the volume and the impact of the brine on the 

environment. It also defines the aims and the objectives, the novelty of the research, 

benefits and impact, resources and thesis outline. 

 

Chapter 2 presents previously published literature on desalination methods, together 

with the advantages and disadvantages, followed by a discussion of brine flow rates 

of various desalination techniques, along with the environmental and economic 

implications of this technology. 

 

Chapter 3 outlines brine disposal methods used worldwide. Additionally, the benefits 

and drawbacks of each method are discussed. One of the challenges to coastline 

desalination plants, particularly in arid regions, is the dilemma of brine disposal. This 

chapter also presents Mediterranean legislation on brine discharge from desalination 

plants into the marine environment, water availability and desalination technologies 

in the Mediterranean region. 

 

Chapter 4 assesses existing water resources in Libya and the impact of population 

growth on the available water resources in the country.  It also gives the context of the 

current water infrastructure, the supply and demand and the ongoing challenges. 

Finally, this chapter is intended to expose the water deficit across Libyan regions while 
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also comparing the cost of water produced by the Great Man-Made River Project with 

a thermal desalination plant by using the Abotraba desalination plant as a case study. 

 

Chapter 5 determines the physico-chemical effects of brine influx from thermal 

desalination plants on the receiving water and, pursuant to this, evaluates their impact 

on the marine ecosystems at the Zwuarah and West Tripoli distillation plants (ZWDP 

&WTRIS) on the Libyan coastline, where the marine environment is considered to be 

highly exposed to brine discharges. 

 

Chapter 6 investigates the production of sodium hypochlorite (NaOCl) from an 

electrochemical cell fed by brine in a controlled environment on site.  Within this 

chapter is a discussion on the effects of various critical operating parameters on this 

process, including, electrode materials, production of sodium hypochlorite (NaOCl), 

inter-electrode spacing, applied current density, energy and power consumption in 

addition to determining the price of utilizing the brine using the electrochemical 

method. 

 

Chapter 7 supports the use of evaporation ponds as opposed to traditional salt works, 

to recover minerals and NaCl (halite) from brine, with particular reference to ZWPD 

in Libya, located on the southern Mediterranean coast. The work will also pave the 

way for further development of mineral salt exploitation from the brine disposed from 

thermal distillation plants. 

 

The final chapter 8 summarises the overall conclusion of the contribution of this 

research, followed by limitations, recommendations, future work and validity of the 

research data collection and results. Thesis references and appendices are then 

presented at the end of the thesis.  

 

1.7. Summary 
 

The introductory chapter sets the scene of the research, its aims and objectives, the 

novelty of the research, benefits and its impact, resources and thesis outline. The next 

chapter will outline the methods of desalination technologies, together with the 

advantages and disadvantages followed by a discussion of brine flow rates of various 

desalination techniques along with the environmental and economic implications. 
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Chapter Two: Desalination Technologies 
 

2.1. Introduction 
 

The salinity of accessible fresh water on the earth is up to 10,000 ppm in contrast to 

seawater, which is considerably higher, ranging from 35,000–45,000 ppm in the form 

of total dissolved salts. The guidelines for appropriate salinity as recommended by the 

WHO limits it to 500 ppm, but not exceeding 1,000 ppm in special circumstances 

because of potential health and environmental hazards as well as economic 

implications (World Health Organization, 1984). Consequently, there is a need to 

provide water within the recommended limits of 500 ppm or less, which can only be 

achieved through a system of desalination and purification (Eltawil et al., 2009).  

 

Freshwater is produced by a process of extracting excess salts and other minerals from 

both brackish and seawater, known as desalination.  The largest sources of water 

reserves are oceans and seas, which are not appropriate for human consumption, so 

desalination is vital to the survival of the human race, particularly in more arid regions 

in the Middle East and North Africa where there is a ready supply of energy sources 

(Fath et al., 2008). The need for production of freshwater is therefore a priority for 

governments and industry in these and other regions with limited groundwater and 

surface water, due to increasing global urbanization and industrialisation (Fellows and 

Al-Hamzah, 2015). 

 

Traditional methods of water supply have increased, which has made desalination a 

preferred option (Khawaji et al., 2008; Einav et al., 2005; Wittholz et al., 2008). 

Around 150 countries operated 15,988 desalination plants (including some under 

construction or contract) in 2011 to produce desalinated water (Henthorne et al., 2011). 

There was a 10% increase in the total global capacity from 2010 to 70.8 Mm3/day in 

2011.  A further 632 plants were established from mid-2011 to August 2012 reaching 

a capacity of 74.8 Mm3/day (Rahimi and Chua, 2017).  According to the International 

Desalination Association, 2017 the number of desalination plants globally totalled 

18,426 with a production rate above 86.8 Mm3/day, reaching approximately 300 

million inhabitants, which is testament to the supply and demand factors of 

desalination for both production of freshwater and energy consumption.  Therefore, 

this chapter aims to present previously published literature on desalination methods, 
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together with the advantages and disadvantages followed by a discussion of brine flow 

rates of various desalination techniques along with the environmental and economic 

implications of this technology. 

 

2.2. Desalination methods 
 

There are several desalination processes that have been adopted, some are still in the 

early stages of review, but the most widely verified ones can be categorised into two 

types: phase change thermal processes and membrane processes as shown in (fig 2.1), 

both of which utilise specific methods.  There are other methods including freezing 

and ion exchange, which are less popular, but all methods share conventional or 

alternative energy sources to produce desalinated water (Shatat and Riffat, 2012). 

 

 
 

Figure 2. 1: Desalination Methods Modified from (Shatat and Riffat, 2012). 

 

The five key elements for desalination of both brackish and seawater are divided into 

the following: - 

 

I. Intakes: This is the location of the first stage of desalination where the source 

water is fed into the unit and directed to the next process. 
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II. Pre-treatment: Water is prepared by filtering and extrapolating the biological 

growth to ensure it is acceptable for the next stage. 

 

III. Desalination: This is the main process where the salt and other minerals are 

extracted from the feedwater. 

 

IV. Post-treatment: This is the stage where desalinated water is treated by 

chemical additives in order to meet the standard for human and industrial 

consumption. 

 

V. Concentrate management (Brine): This is the disposal of the final by-

product (Brine) according to appropriate methods of desalination. 

 

2.2.1. Thermal desalination technologies 
 

The definition of thermal technology is the heating of saline water and subsequent 

collection of condensed vapour (distillate) to produce fresh water.  The use of this 

technology is less common using brackish water because of costly overheads, although 

it has been used to purify seawater (Krishna, 2004) and divided into four main 

methods: - 

 

2.2.1.1. Multi-stage flash distillation (MSF) 
 

This type of distillation using flash evaporation produces water with a low salinity 

level (10 ppm or less) (Khawaji et al., 2008; Cooley et al., 2006).  The saline feed 

water is passed through several tubes prior to being boiled and then condensed in the 

chamber or stage.  Thermal energy is used to heat the brine and conveyed into a stage 

vessel which has a lower ambient pressure than the brine heater.  At this point, a drop 

of pressure leads to sudden boiling (flashing) of the saline water producing vapours 

which condense on the tubes and subsequently form a distillate solution which can be 

collected, leaving only a minimal amount of steam, according to the pressure at each 

stage.  At the next stage, the remaining water at a lower pressure continues the cycle 

before being discharged with salt concentrations ranging from 60,000 – 70,000 ppm 

TDS, at almost double the salinity of the seawater (Cooley et al., 2006). These plants 

can contain as many as 40 stages, but normally range between 18 and 25 stages (fig 

2.2) (Mezher et al., 2008). 
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Figure 2. 2: MSF process (Al-Karaghouli and Kazmerski, 2013) 

 

The advantages of this method are ease of construction and use of MSF plants, the 

effluent water (United Nations, 2001) is of a high quality at 2–10 ppm dissolved solids 

and does not need post treatment (Khawaji and Wie, 1994). This process does not need 

high purity of feed water in comparison to other methods such as Reverse Osmosis 

(RO). High temperatures of over 1150C improve overall efficiency but costs can be 

controlled by adding more stages (Buros, 1990).  

 

The disadvantages of this method are that although easy to construct, there are 

operating limits to 60% and there is a need for high energy levels  (3–5 kWh/m3) 

electricity and 233 MJ/m3–258 MJ/m3 heat is compensated by a cogeneration system 

(Hamed et al., 2001). These high temperatures can result in scaling of salts such as 

calcium sulphate precipitate, creating thermal and mechanical issues such as clogging 

of tubes. Increasing the capacity of MSF plants will incur additional cost and place 

more demands on overall operations (Buros, 1990). Overall, this technique is more 

cost effective and reliable when coupled with a  power station to produce industrial 

and potable water. 

 

2.2.1.2. Multiple-Effect Evaporation (MED) 
  

A similar process is the MED process (fig 2.3), which offers an alternative solution in 

that evaporation and heat transfer is used.  The difference between MSF and MED is 
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that in the MED process, evaporation occurs from a seawater film in contact with a 

heat transfer surface, instead of a convective heating of seawater in tubes that results 

in “flashing” which is used in the MSF process to produce vapour (Wade, 2001). The 

MED method occurs across a line of evaporators named ‘effects’ and uses the 

reduction of ambient pressure along these effects (Khawaji et al., 2008).  Water is 

heated by a boiler and converted to hot steam which heats the saline water in the first 

effect. The resultant vapour will provide the heat source for the second evaporator and 

subsequently heat the saline water.  This process repeats itself in the third evaporator 

and continues thus for 8-16 stages which is common number of effects in a large plant 

(Saidur et al., 2011; Raluy et al., 2006). 

 

Boiling the saline water in the fourth stage serves as a condenser for steam emitted 

from the previous evaporator and the same thermo-mechanical process is repeated for 

the whole unit on a reversing scale. The latent heat of vapour condensation is reused 

several times before being released outside.  The temperature of the first effect should 

be maintained below the boiler heating system.  In order to ensure an optimum heat 

flow between the heating vapour and the saline boiling water, temperature should be 

at varying degrees, i.e. the vapour pressure needs to be lower than the vapour pressure 

in the previous effect, but higher than the subsequent effect.  Restoration of the 

desalinated water at an ambient pressure requires the system to be equipped with water 

pumps, due to stages’ pressures being below the atmospheric pressure. Furthermore, 

the vapour space needs to be evacuated by the use of vacuum pumps until the desired 

pressure is reached while depleting non-condensing gases, e.g. oxygen and nitrogen 

which are normally dissolved in the feed saline water. Failure to remove these gases 

can result in preventing the water boiling and subsequently damaging the entire 

distillation operation. In the MED process, more than 1 ton of distilled water per ton 

of heating steam is produced, with an exponential increase according to the number of 

effects (Saidur et al., 2011). The MED systems can be combined with heat produced 

between stages using a range of sources, e.g. by mechanical (MVC) or thermal vapour 

compression (TVC) (Miller, 2003). 
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Figure 2. 3: MED process (Al-Karaghouli and Kazmerski, 2013) 

 

The advantages of this method are that corrosion and scale build-up can be controlled 

by lowering the temperatures to ̴ 700C (1580F) (Buros, 1990). Operational and pre-

treatment costs are cheaper than RO thereby reducing power demands (United 

Nations, 2001) in comparison to MSF. Furthermore, heat transfer and freshwater 

production costs are much more favourable than MSF plants (Darwish and El-

Dessouky, 1996). Thus, operating costs can easily be reduced by combining MED 

with thermal vapour compression, thereby increasing heat transfer co-efficiency 

within the unit (Compain, 2012). 

The disadvantages of this method are the limited operating capacity at 60%, it is 

incompatible with alternative inconsistent power sources.  Furthermore, anti-scalants 

are required to prevent scale build-up in the evaporator cells (World Bank, 2012). 

Overall, this method is reliable when it is coupled with a power station to produce 

industrial and fresh water leading to a reduction in overall costs. 

 

2.2.1.3. Vapour Compression Evaporation (VC)  
 

This method of distillation (VC) can be used independently for small to medium scale 

desalination applications or in combination with other processes (such as the MED) 

(Buros, 1990; Mezher et al., 2008). Some of the uncondensed vapour remaining in the 

final stage of MED plants is compressed by mechanical vapour compression (VC) or 

thermal vapour compression (TVC) and used as the prime heating source for seawater 
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evaporation (Belessiotis et al., 2016). These processes are used in the compression 

cycle to run the unit. The mechanical compressor is normally powered by electricity 

or diesel to produce distilled water (Buros, 1990). VC distillate with one stage is 

equally effective as a 15-20 MED effect (Spiegler, 1977).  VC units tend to range in 

size up to approximately 3000 m3/day with a single stage (fig 2.4) while TVC systems 

may range in size to 20,000 m3/day and operate multiple stages solely designed to 

increase efficiency and productivity of MED plants (Miller, 2003). VC units have been 

designed across a range of different specifications to optimise heat exchange for the 

purposes of evaporating seawater (Khawaji et al., 2008).  

 

Feed saline water is preheated in a horizontal heat exchanger situated outside of the 

unit where distilled and brine water has collected. Non-condensing vapours such as 

nitrogen, oxygen and carbon dioxide are evacuated from the evaporator and condenser 

space using a vacuum pump or ejector at the start-up of the evaporator operation 

procedure (Saidur et al., 2011) in order to balance pressure and temperature of vapour 

and the feed water brine.  A vacuum in the vessel is created by the mechanical 

compressor (VC) and then compressed and condensed inside a tube bundle, which is 

sprayed externally by seawater, producing more water after boiling and partially 

evaporating (Aly and El-Fiqi, 2003). 

 

 
 

Figure 2. 4: MED process with mechanical vapour compression (Cipollina et al., 2009) 
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The advantages of this technique are that it works well with smaller desalination units 

because of basic but reliable procedures (Buros, 1990), requiring minimal power and 

lower temperatures, making it an easy process. Scale formation and tube corrosion is 

less due to operating temperatures below 700C (Shatat and Riffat, 2012). The only 

disadvantage is its low design capacity. Overall, the recent improvement in installation 

of the mechanical compressor (VC), particularly in thermal desalination plants,  is to 

increase efficiency. 

 

2.2.1.4. Solar Distillation 
 

Solar distillation as a desalination process has long been practised, mainly for small 

plant operations (Schenkeveld et al., 2004), which can be divided into two categories, 

direct and indirect systems. 

 

 Direct Systems: Solar still 

 

The direct system is the method of heat accumulation, which powers the desalination 

process simultaneously in the same device naturally, known as a solar still (fig 2.5) 

(Shatat and Riffat, 2012). This comprises a blackened basin containing brackish or 

saline water to a specific depth, covered by a sloping glass panel to enable exchange 

of solar radiation and condensation (Sharon and Reddy, 2015). The panel is heated by 

solar energy, which heats the basin of saline water, which has been blackened to 

promote higher absorption of energy. Once water starts to evaporate, it produces 

condensation which cascades down the cooled glass panels forming droplets ready for 

collection as potable water (Eltawil et al., 2009).  

 

 Although the quality of water is high, the yield of water is low in the range of 2-3 

l/m2/day which is why the solar still incorporates coupling of stills with flat plate 

collectors, evacuated tube collectors, concentrating dish type collectors, wind turbines, 

booster mirrors and air conditioning units. Further enhancements to improve yield, 

have been the use of phase change material (PCM) and reuse of latent heat from MED 

units (Sharon and Reddy, 2015).  Further efforts have been made to improve efficiency 

in the solar still, but there are common limitations of this technique for large-scale 

production due to the following: 

 

 Need for extended solar collection areas 
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 High overheads 

 Vulnerability to vicissitude of climate (Buros, 1990). 

 

 
 

Figure 2. 5: Solar still unit (Shatat and Riffat, 2012) 

 

 Solar humidification and dehumidification 

 

The use of solar desalination humidification and dehumidification is a powerful and 

potential way of producing fresh water, particularly in rural and arid areas. Using an 

eco-friendly alternative energy source makes it a favourable one in providing fresh 

water (Fath and Ghazy, 2002). The process relies on water evaporation and 

condensation of vapour from humid air, which flows in a clockwise direction caused 

by an automatic exchange between the condenser and the evaporator (fig 2.6). The 

evaporator and condensation unit is placed in a thermally insulated unit.  Evaporated 

seawater cascades slowly downwards in the evaporator where the air moves anti-

clockwise against the brine becoming saturated with humidity.  A residue of partially 

evaporated cooled brine remains in the evaporation unit with an increased saline level, 

while the saturated air condenses on a flat-plate heat exchanger.  The basin acts as a 

receiver for the cascading distillate.  Meanwhile, the heat of condensation passes to 

the cold seawater flowing upwards inside the flat-plate heat exchanger, causing the 

temperature of the brine to rise from 400C to 750C. Subsequently, the temperature of 

the brine increases to match the inlet temperature, which is between 80 and 900C.  The 

brine salinity, including the condenser inlet temperature, rises in response to a partial 
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reflux from the evaporator outlet to the brine storage tank.  This enables the distillate 

to be collected in a vessel while the brine is discharged to the saline water tank to 

recover a portion of the heat (Shatat and Riffat, 2012). 

 

 
 

Figure 2. 6: Solar humidification and dehumidification (Shatat and Riffat, 2012) 

 

  Indirect systems 

 

This system can be divided into two sub subsystems 

 

 A solar collector and a desalination unit.  The former can be in the form of a 

flat plate, evacuated tube or solar concentrator which can be coupled with 

either of the distillation unit types previously mentioned, using evaporation 

and condensation principles, including MSF, VC, MED and membrane 

distillation (MD) for potential combinations of thermal desalination with solar 

energy. 

 

 Reverse Osmosis (RO) and Electrodialysis (ED) are systems that PV devices 

use to generate electricity to power these types of desalination plants (Miller, 

2003). 

 

Large-scale solar desalination plants are yet to become actively operative although 

concern over global warming has provoked discussion for the use of solar energy for 

desalination plants (Clayton, 2006).  Nonetheless, a recent move towards this has been 
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the proposal of the world’s first large-scale solar-powered desalination plant with total 

capacity of 60,000m³ per day in Saudia Arabia (www.water-technology.net). 

 

The advantages of this technique are that in areas that thrive on solar energy and 

minimal labour costs, this makes this method feasible for domestic use in less 

populous areas (Buros, 1990; Samee et al., 2007).  In addition, thermal desalination 

methods can be powered by indirect systems such as those that rely on evaporation 

and condensation principle, i.e. MSF, VOC, MED and MD (Miller, 2003). 

 

The disadvantages are that this technology is not feasible in urbanised populous areas 

as it requires considerable land area that would be in short supply and costly.  Also, 

high costs of remedial work and ongoing maintenance together with installation makes 

this expensive.  Selection of the best solar desalination technology is determined by 

several criteria such as plant capacity, location, supply of grid electricity, technical 

infrastructure; feed water salinity (Buros, 1990; Miller, 2003). Overall this method is 

suitable for remote areas where solar energy is available, such as in the Middle East 

and North Africa.  

 

2.2.2. Membrane desalination technologies  
 

Membrane desalination technology processes can be classified according to their 

driving force(s) as following: - 

 

 Pressure-driven membrane methods, such as Reverse osmosis (RO), 

Ultrafiltration (UF), Microfiltration (MF) and Nano filtration (NF).   

 

 Electrically powered membrane methods, e.g. Electrodialysis (ED) and 

Electrodialysis Reversal (ER) 

 

 Temperature-driven membrane methods, such as Membrane Distillation (MD) 

and Membrane Crystallisation (MCr) (Cipollina et al., 2009; Krishna, 2004). 

 

There are three major commercial desalination processes of membranes (Buros, 1990; 

Tsiourtis, 2001) described into the next sections: - 

 

http://www.water-technology.net/
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2.2.2.1. Reverse osmosis (RO) 
 

Reverse Osmosis is a membrane separation technique where water is extracted from 

the saline solution by forcing greater pressure than the osmotic pressure of the solution 

(Miller, 2003). This technique is currently considered the most ideal for dealing with 

brackish water and seawater (Wang et al., 2011). In this process, saline water is driven 

by centrifugal pumps into a membrane within a closed vessel at a pressure of 15 to 25 

bar for brackish water, and from 54 to 80 bar for seawater, allowing pure water to filter 

through the membrane while the high concentration solution (brine) is disposed of (fig 

2.7). Two of the most effective RO membranes are designed in a spiral, wound or 

consist of hollow fine fibre (HFF) to deal with the feed water. 

 

The RO applications are normally linked in a row of two or more, contained in the 

pressure vessel (fig 2.8) (Shatat and Riffat, 2012).  The salt concentration of the brine 

effluent depends on the salinity of the feed water ranging from 20% to 70%.  Some of 

the energy of the outgoing brine can be recovered by pressure exchangers. The main 

components of the RO system are a pre-treatment process, high-pressure pump, 

membrane assembly and post treatment process. This is the most widely used method, 

having a 53% global share in desalination technology production (Mezher et al., 2008). 

 

 
 

Figure 2. 7: Principle of desalination by reverse osmosis (RO) (Zander et al., 2008) 
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Figure 2. 8: A pressure vessel with three membranes (Lenntech, 1998) 

 

The advantages of this technique are that the potential for corrosion is considerably 

reduced because of ambient temperature, in comparison with MED and MSF, and 

polymeric materials are favoured over metal alloys (Khawaji et al., 2008).  There are 

two recent breakthroughs that have identified the potential to lower costs; using 

operational membranes that are durable and cost effective; using mechanical devices 

composed of turbines or pressure pumps that are connected to the concentrated steam 

emitted from the pressure vessel. There is a slight loss of ̴1–4 bar from the level of 

pressure within the pump. The conversion of pressure into rotating energy makes this 

an economical method (Shatat and Riffat, 2012). In contrast to MSF, membrane 

scaling resulting from precipitated salts is considered less of a problem.  Furthermore, 

the use of a 5-10 mm cartage micro-filter can prevent the fouling of membranes caused 

by large particles (United Nations, 2001). 

 

The disadvantages of this method are that intensive pre-treatment is necessary for high 

salinity conditions which cause membrane fouling.  Also, there is a need for highly 

trained staff to operate and maintain high-level design specifications.  Biological 

fouling occurs from the entrapment of dead and live organisms and growth of micro-

organism colonies causing a build-up of aluminium silicate and clays from caustic and 

organic materials, resulting in colloidal fouling on membrane surfaces of colloids 

(United Nations, 2001). A high volume of water is required in RO units, as only 5-

15% is recovered from the filtered water.  Typically, in SWRO plants, 40-90 gallons 

are disposed of for every 5 gallons of raw water (Buros, 1990). Overall, this method 

is widely used in EU countries because of low energy consumption due to the recent 

improvement in membrane technologies. 
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2.2.2.2. Electrodialysis (ED) and Electrodialysis Reversal (EDR) 
 

Electrodialysis (ED) and Electrodialysis Reversal (EDR) are unique in being powered 

by electricity (Schenkeveld et al., 2004). ED is power-driven by a direct current source 

together with flow channels that are divided into alternating anion and cation selective 

membranes for the purposes of expunging dissolved salts from the feed water. In this 

process, saline feed water is forced into each of the separate parallel tubes, which are 

linked to cation and anion voltage surges, which migrate in opposite directions. The 

ion concentration rises and falls in alternating channels of the equipment in response 

to the charge selectivity of the membranes.  The distillate water is forced out under the 

membrane for collection, while the brine is discharged out of the unit (fig 2.9). Each  

membrane stack consists of numerous alternative channels, so as the resistance 

constantly changes from top to bottom, separation is conducted gradually, making it 

more user-friendly and cost effective (Miller, 2003).  Consequently, it has become the 

more popular method for brackish water despite ED originally being conceived to deal 

with seawater (Krishna, 2004) because higher salinity and TDS tend to increase the 

cost.  EDR was designed to deal with membrane fouling elimination (Zander et al., 

2008) and involves frequent reversal of membrane polarity thereby switching brine 

and freshwater within the channels, breaking up and expelling any residue (Miller, 

2003).  Both these techniques produce very high quality distillate water that can be 

used in pharmaceuticals, the food industry and any other operation that uses high 

purity water (Valero et al., 2011; Belessiotis et al., 2016). 

 

 
 

Figure 2. 9: Electrodialysis (ED) method (Al-Karaghouli and Kazmerski, 2013). 
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The advantages of ED method are a higher volume of fresh water being produced with 

reduced amount of brine (Burros 1990).  Also, it can be used with brackish water with 

salinity of ˂ 6 g/l of dissolved solids.  It can purify feedwater with a higher 

concentration of suspended solids than RO with minimal pre-treatment requirement 

(Buros, 1990).  Likewise, with EDR, there is a high recovery rate reaching 94% and 

there is membrane longevity (potentially 15 years in accordance with correct 

application).  Furthermore, there is a potential for coupling with RO for improved 

recovery of water, reaching 98% (World Bank, 2012). 

The disadvantages of ED is that it is inappropriate for water with dissolved solids of 

˂ 0.4 g/l. and use of energy is pro rota to salt removal (Shatat and Riffat, 2012). For 

salinity levels greater than 30 g/l, as in the case of seawater, desalination comes at a 

high price and is therefore not feasible (Kalogirou, 2005).  The only disadvantages of 

using EDR is the high overhead costs compared to RO (World Bank, 2012). 

 

2.2.2.3. Membrane Distillation (MD) 

 
This method works on the graduation of varying temperatures with one side of the 

membrane being warmer and gradually cooling towards the other side.  As vapour 

rises from the warmed liquid, it filters through the membrane towards the cooler area 

where a purified form of freshwater is produced from the condensation (fig 2.10) 

(Belessiotis et al., 2016). Unable to pass back through the hydrophobic membrane 

which is permeable by vapour only, then it is trapped for collection as the output of 

the unit (Miller, 2003). This eliminates the transition of the liquid stage and any 

dissolved residue (Shatat and Riffat, 2012).  Although this method was initiated for 

small scale operations, it has not proved to be viable, possibly due to problems of 

maintaining the saturation level of the membranes over prolonged periods together 

with fouling and membrane degradation.  In addition, a large enthalpy of vaporization 

is required through each transition while volatile feed stream contaminants cannot 

always be eliminated. The possible benefits of MD is the relatively small carbon 

footprint it leaves compared to other methods, lower capital overheads and relatively 

simple power sources (Zander et al., 2008). 
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Figure 2. 10: Principle of membrane distillation (MD) (SolarSpring, 2016) 

 

The advantages of MD are that only low temperatures are required, it is a relatively 

simple technology, plus the utilisation of solar energy makes this a favourable method 

(Buros, 1990; United Nations, 2001).  In contrast to conventional desalination 

methods, this operates on lower pressures than membrane processes and there is less 

demand on vapour space. (Tomaszewska, 2000). Similar energy usage to MSF and 

MED plants (Buros, 1990; United Nations, 2001). 

 

The disadvantages are a reater need for physical space, compared to other membrane 

processes (Buros, 1990).  Also, this method is restricted because of stringent 

regulations on levels of organic pollutants in the feed water (United Nations, 2001). 

 

2.2.3. Alternative processes 
 

The other desalination methods are classified as the following: 

 

2.2.3.1. Freezing 
 

The method of freezing is used across a range of applications, such as fruit juice 

concentration, dairy products, wastewater sludge and desalination.  It can also be used as 

a pre-treatment method for desalting of brackish and saline water which can subsequently 

be used in ED and RO (Mahdavi et al., 2011). This process is the method of separation 

of water from the solid form. As the temperature of low concentration salt water 

reaches freezing point, ice crystals of pure water emerge within the solution and are 
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mechanically separated.  They are then allowed to melt back into liquid to be collected 

as pure water (Spiegler and Laird, 1980).  The benefits of this method of freeze 

desalination is less energy demand and also less corrosivity of the salt solutions at 

lower temperatures.  Therefore, cheaper materials can be used such as carbon steel 

fibreglass, PVC and type 304 stainless steel (Johnson et al., 1976). Freezing processes 

can be classified into two groups, which are outlined below: 

 

 Direct refrigeration 
 

This is the practice of using water as a refrigerant and compressing the resulting water 

vapour mechanically, also referred to as vacuum freezing vapour compression. A heat 

exchanger reduces the temperature of the salt water, which is then sprayed by a nozzle 

into a freezing stage.  The resulting mix of brine and ice is directed into a wash column 

where separation takes place.  Following this is the melting stage where the ice is 

transferred to a melting unit from which the water vapour is compressed, heated and 

discharged.  The compressed vapour is used to heat the ice crystals to melt them and 

is then condensed to produce pure distillate. Finally, the pure water is collected and 

then pumped to a storage tank (Spiegler and Laird, 1980). 

 

 Indirect refrigeration 
 

As with direct refrigeration, the temperature of seawater is reduced when pumped 

through a heat exchange and passed to the freezing stage, where further cooling takes 

place at which stage ice crystals are formed.  Likewise, the ice and brine slurry is 

transferred to a wash column where separation takes place.  The ice is conveyed to the 

melter where it starts to melt from heat produced from condensation of the compressed 

refrigerant. Some of the freshwater output is used to wash the ice crystals in the wash 

column, but most of it is directed through the heat exchange for the purposes of cooling 

the feed seawater before being discharged for collection and distribution. The 

remaining brine from the wash column is recycled back into the heat exchanger to cool 

the temperature of the feed sweater before being expelled (Spiegler and Laird, 1980).  

 

This method of freezing desalination was used in an experimental solar-powered unit 

built in Saudia Arabia in the late 1980s, which has since been decommissioned. 

Currently, this type of technology is better used in the treatment of industrial waste 

rather than for the production of potable water (Shatat and Riffat, 2012) 
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The advantages of freezing method are minimal power consumption, less likelihood 

of corrosion and negligible amounts of salt scaling. Also, production of very high 

quality drinking water, which can also be used for irrigation (Rice and Chau, 1997). 

 

The disadavantge of this method is only elaborate techniques are needed to move and 

process ice and freezing water (Buros, 1990). 

 

2.2.3.2. Ion Exchange 
 

Ion exchange is used primarily for water softening and demineralization and its 

application is currently quite restricted.  This method involves desalination of water, 

which is directed through a column of cation exchanger beads in the form of hydrogen 

(H+) which eventually replace the cations in the solution that have attached themselves 

to the exchanger. The water is then directed through a column of anion exchange beads 

in the form of hydroxyl (OH–) which is replaced by the anions that eventually combine 

with the hydrogen ions in the water thereby producing deionised water. Thus, this 

method is used for the final purification of water that has been previously treated by 

other desalination techniques.  However, as this practice is normally coupled with 

other desalination techniques, is not economically feasible as a means of water 

purification for seawater or brackish water on its own (Zander et al., 2008). 

 

The advantages of this method is prevalent in both industrial and commercial sectors 

as a method of water treatment (Tripathi, 2016), in particular when coupled with RO 

for the purpose of mixing RO by-product with ion exchange to augment water 

production (Younos and Tulou, 2005). 

 

The disadvantage of this method is that it is not economically viable for application 

with brackish or seawater because of extortionate expense (Shatat and Riffat, 2012). 

Overall this technology can be coupled with thermal desalination plants to feed the 

power station in order to increase  industrial water purity. 

 

2.3. Chemical treatment procedures for desalination techniques 
 

The description of desalination treatment processes offered (fig 2.11) follows the 

treatment procedure sequence of typical desalination techniques such as MED, MED-
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TVC, MSF, and RO. Prior to any desalination technique, raw water (feedwater) needs 

to be chemically pre-treated to avoid scaling, foaming, corrosion, biological growth, 

or fouling in addition to further chemical post-treatment (Gálvez et al., 2010).   

 

The purpose of this treatment is to ensure plant efficiency, maintain plant equipment 

while protecting public health and the safeguarding of the overall water distribution 

system (Masnoon and Glucina, 2011; Cotruvo et al., 2010).  Chemical treatment 

procedures in desalination plants are described in the next sections: 

 

 

 
 

Figure 2. 11: Typical sequence of treatment procedures in desalination plants Modified from 

(WHO, 2007) 

 

2.3.1. Pre-treatment of feed water to desalination plants 
 

Prior to seawater and brackish water reaching membrane desalination systems that 

treat feed water from surface water sources, pre-treatment is vital to eliminate 

suspended and colloidal particles, organisms and natural organic matter.  In the case 

of treatment of brackish groundwater, very little pre-treatment is necessary due to low 

concentrations of suspended solids and any organic matter. Nonetheless, some pre-

treatment will be required to eradicate certain constituents, e.g. dissolved iron, 

manganese and sulphides, which can become a fouling hazard to the membranes if 

oxidised.  Normally, feedwater is conveyed through 5 μm-size cartridge filters as a 

final barrier, before entering the RO units.  These filters are used both with 
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conventional and membrane pre-treatment systems. Any remaining particles on these 

filters are regularly scaled off over a two-month period and disposed of in a sanitary 

landfill (Darwish et al., 2013).  The chemicals which are most frequently applied in 

RO technique are presented in (Table 2.1). 

 
Table 2. 1: Chemical used in pre-treatment processes for RO technique (Darwish et al., 2013; 

WHO, 2007) 

Chemical 

additives name 
Dosing level and location 

Purpose of use and 

application 

Oxidizing Agent or 

Bio-fouling 

(chlorine) 

 

 Normal dosage 3.7 mg/L for 30-120 

minutes repeated over 1-5 days for  

seawater intake. Oxidation not necessary 

for small RO plants that use bleach. 

 

 To restrict 

emergence of 

marine organism 

at the seawater 

intake as well as 

the pre-treatment 

process. Also to 

reduce suspended 

material. This 

chemical additive 

is applied for 

SWRO large-

scale plants. 

Coagulant (usually 

ferric 

chloride or ferric 

sulphate). 

 

 The amount of dosage of this additive is 

in proportion to the level of suspended 

material at the intake ranging between < 

1 and 30 mg/L for coagulants and 

between 0.2 and 4 mg/L for 

polyelectrolytes. When ferric sulphate is 

injected, the dosage level for open intake 

of both SWRO or RO systems is f 5–15 

mg/L. 

 

 To deplete any 

unwanted 

materials from 

feedwater of the 

RO intake. This 

chemical additive 

is applied for 

SWRO and large-

scale plants. 

Flocculant Aid 

(usually 

cationic polymer). 

 

 For expansive surface water in RO 

systems, and open seawater intake, 

common dosage ranges from 1-5 mg/l. 

 

 To expedite 

suspended solids 

removal from the 

feedwater. This 

chemical additive 

is applied for 

SWRO and large-

scale plants. 

Anti-scalants (Acid 

addition or 

Sulphuric acid) 

 

 The injection level normally varies 

between 40–50 mg/L depending on 

conditions to achieve a level of 6-7 pH 

in the feedwater. 

 

 To enhance 

coagulation by 

lowering the pH 

to avoid further 

scaling. This is 

mainly applied in 

SWRO and is not 

always 

appropriate in 

other conditions. 
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In thermal processes, pre-treatment is necessary for the purposes of controlling scaling 

and corrosive elements of the source water.  It may also be necessary to remove sand 

or grit-like suspended solids to protect pipes in the plants. Thermal desalination 

processes are favoured over SWRO because of their tolerance to seawater quality 

needing only basic screening at the intake, unlike the mechanical process of filtration 

necessary for SWRO. The main function of screening in the pre-treatment stage is to 

check levels of turbidity/suspended solids and that the amount of organic and 

inorganic foulants are within the acceptable range for the desalination equipment 

(Darwish et al., 2013; WHO, 2007). The chemicals, which are most frequently used 

in seawater pre-treatment for thermal desalination are presented in (Table 2.2). 

 
Table 2. 2: Chemical used in pre-treatment processes for thermal desalination techniques 

(Darwish et al., 2013; WHO, 2007) 

 

Chemical 

additives name 
Dosing level and location 

Purpose of use and 

application 

Oxidizing Agent or 

Bio-fouling 

(chlorine) 

 

 Regular and sporadic dosages of 

active chlorine at 0.5-2 mg/L 

depending on site conditions. 3.7 

mg/L for 30–120 minutes is injected 

at 1-5 day intervals  (≈1.0 mg/L) in 

expansive surface areas of seawater 

intake. 

 

 To restrict 

emergence of 

marine organism at 

the seawater intake 

for all thermal 

desalination 

methods. 

Anti-scalants 

(phosphonates, 

polyphosphate, 

polymaleic, 

polycarboxylic acids, 

or a blend of several 

of these) 

 

 The point of make-up water line is 

where dosages of 1–8 mg/L of anti-

scalants are injected while ≈100 

mg/L of anti-scalants is normally 

injected into feedwater. To prevent 

growth of Mg (OH)2  and  CaCO3 

scaling, sulphuric acid (H2SO4) is 

injected to reduce the pH although it 

is not often used. 

 

 To control the 

growth of 

(Mg(OH)2     and 

(CaCO3) deposits 

for all thermal 

desalination units 

 

 

Antifoams (Poly 

Othelyne 

Ethylene Oxide or 

similar 

Surfactant) 

 Make-up water is dosed with 0.1 

mg/L antifoam. 

 

 

 To prevent foaming 

within the 

evaporator cells, 

applied 

sporadically in all 

thermal processes, 

but mostly in MSF. 

Sodium bisulphite 
 Make-up water is injected with 

≈0.5 mg/L of sodium bisulphite. 

 

 To control 

corrosion by 

removing amounts 

of residual oxygen 

or chlorine in saline 

water circulation, 
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used in MSF plants 

as well as MED. 

 

2.3.2. Post treatment of the produced desalinated water  
 

The constitution of desalinated water that has been directly produced from either 

thermal or membrane processes, tends to be low in mineral content, alkalinity, and pH.  

Therefore, post-treatment is important to reduce corrosion which can damage pipeline 

materials, metals and concrete and could potentially change metal levels in potable 

water, thus limiting the longevity of the overall water-system infrastructure. The post-

treatment of product water involves the use of certain additives, which are described 

below: - 

 

 Calcium hydroxide (slaked lime) to increase the hardness and alkalinity. 

 Sodium hydroxide (caustic soda) to adjust the pH. 

 Carbon dioxide is commonly used to normalise the pH. 

 Disinfection (Zander etal.,2008;Cotruvo etal., 2010)

 

2.4. Brine discharge flow rates for desalination methods and its 

impact on marine environment 
 

The volume of brine discharged from desalination is greater than the volume of freshwater.  

The effluent is normally mixed with cooling water prior to being discharged and has high 

salinity combined with chemical contaminants which pose the greatest threat to the marine 

environment. In general, seawater or brackish water when passed via desalination process 

produces about 40% of fresh water and 60% of brine (fig 2.12).  The composition of the 

chemical additives used during desalination process is outlined below: 
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Figure 2. 12:  Mass balance in desalination process Modified from (Trieb, 2007) 

 

2.4.1. Bio-fouling agents 
 

Chlorination, namely Chlorine (Cl2) and sodium hypochlorite (NaOCl) is normally 

used to prevent bio-fouling at seawater intake with typical doses of 0.5-1.5 mg/l (Al-

Dousari et al., 2012; Darwish et al., 2013). In thermal desalination plants, levels of 

residual chlorine concentrations of 200 and 500 μg/l are indicated for the effluent, 

equalling 10-25% of the dosing concentration. This dosing level guarantees protection 

against bio-fouling from intake to discharge but it also results in residual chlorine 

reaching surface waters which constitutes a hazard to marine life. In RO plants, 

membranes are protected by de-chlorination using polyamide membranes although 

there is still the possibility of residual chlorine levels existing in the effluent which 

exacerbates the issue of toxic halogenated organic compounds (Lattemann and 

Höpner, 2008). In addition to this, sodium bisulphite (NaHSO3), widely used for de-

chlorination, can have adverse reactions with harmless products while depleting 

oxygen levels to a critical level if overdosed.  In addition, there are serious 

repercussions of the chlorine and its by-products due to carcinogenic and 

environmentally damaging properties, which raises concern for public health. 

 

Seawater consists of approximately 6.5 mg/L of bromide (Br-) which when oxidated 

during the chlorination process, forms bromine (Br2) producing organobromine 

compounds. Consequently, trihalomethanes (THM) in chlorinated seawater mainly 



33 

 

consist of bromoform (CHBr3) and dibromo-chloro-methane (CHBr2Cl).  The end 

product in the oxidation of organic substances is bromoform which develops 

gradually, so these two compounds have become subjects of identification and 

research.  The resulting residual oxidant in the coolant water normally ranges from 

0.1–0.2 mg/l. Despite the low level of organo-chlorinated by-products present in the 

chlorine, they tend to be more prevalent than residual chlorine, thereby constituting 

further hazards to the marine environment (Darwish et al., 2013). 

 

2.4.2. Coagulants 

 
Ferric chloride (FeCl3) or ferric sulphate (FeSO4) is used as a primary coagulant or 

flocculant in the pre-treatment system of existing SWRO plants to deal with media 

filtration of suspended material. Following sporadic backwashing of the media filters, 

the suspended debris and coagulants are expelled into the ocean without treatment.  

The toxicity of the chemicals is minor although there may be coloration of the reject 

stream when ferric salts are used (“red brines”).  This can cause increased turbidity 

while limiting light penetration, which could have a harmful effect on marine 

organisms in the location of discharge (Lattemann and Höpner, 2008). 

 

2.4.3. Antifoams 
 

These are organic (acylated polyglycols, fatty acids and fatty acid eaters) or silicon-based 

compounds (composition undisclosed by manufacturers but certified as being non-toxic), 

which are added to the feedwater. It is currently unknown what damage they can cause to the 

marine environment, or their level of toxicity (Darwish et al., 2013), but it could be 

widespread due to low rate of biodegradation (Lattemann and Höpner, 2008). 

 

2.4.4. Oxygen scavengers 
 

There are two methods normally used to extract oxygen from the feedwater of the 

boiler in thermal desalination plans.  The first method is known as mechanical de-

aearation, which is normally used in the feedwater of the boiler, by means of a 

mechanical tower, which causes reduction of the oxygen level in the feedwater, prior 

to entrance to the boiler. The second is the addition of chemical oxygen scavengers 

such as Sodium sulphite (Na2SO3) or Hydrazine (N2H4) for the principal purpose of 

corrosion inhibition.  In order to increase the pH level and to reduce the risk of acid 
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corrosion, hydrazine, is widely used in the feedwater of the boiler at high temperatures 

and pressure, but it has been classified as being highly hazardous, thereby posing 

serious repercussions for the environment (Plumley, 2005; Darwish et al., 2013).  The 

other oxygen scavenger is sodium bisulphite which is commonly used to prevent 

membrane damage in RO plants by removing residual chlorine from RO feedwater 

but in cases of overdosing, oxygen levels be may depleted (Abuzinada et al., 2008).  

Overall, a low level of oxygen in the seawater may cause harm or damage to marine 

life. 

 

2.4.5. Acids and alkalis 
 

The Sulphuric acid (H2SO4) is injected to the feedwater to make calcium carbonate 

(CaCO3) and magnesium hydroxide (MgOH) more soluble calcium and magnesium 

sulphate salts and in order to shift the pH above 9.0, sodium hydroxide (NaOH) is 

added to seawater feed.  The ionic composition of the brine discharged is barely 

affected by sulphuric acid or sodium hydroxide, therefore not constituting any kind of 

threat to the environment (Darwish et al., 2013). 

 

2.4.6. Heavy metal (corrosion products) 
 

Heat exchanger materials are normally made of copper-nickel alloys which presents 

problems to thermal plant reject streams because of potential brine contamination from 

the corrosive copper.  A combination of various metals such as iron, nickel, chromium 

and molybdenum are present in the brine discharged from RO plants, but the use of 

non-metal equipment and stainless steels ensures that contamination is kept to a 

minimum.  However, a higher level of heavy metals can be produced as a result of 

antiscaling and use of acids. This increased concentration of copper in the sediment 

poses cause for concern at the discharge point because it is understood that any toxic 

spills can occur at molecular/cellular levels and have organismic effects. Copper, 

nickel, chromium and other metals that could be released can have harmful effects on 

marine flora and fauna (Lattemann and Höpner, 2008; Hoepner, 1999). 

 

2.4.7. Scale inhibitors 
 

The prevention of scale formation in the feedwater in both thermal and RO plants is 

achieved by the use of antiscalants (Lattemann and Höpner, 2008). One of these is 
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known as polyphosphate, which hydrolyzes to orthophosphate at a temperature of 

approximately 90°C. Primary production is enhanced by the nutrient of 

orthophosphate resulting in the growth of algal blooms at the discharge point so the 

BELGARD EV2000, a polymer of maleic acid is used as a replacement to the 

polyphosphate. It is not considered toxic in potable water and is widely recognised 

although its reputed eco-toxicity is still undecided; even though the BELGARD EV is 

considered user-friendly (Dweiri and Badran, 2002), research is still inconclusive as 

to the degradation of these anti-scalants and their impact on the marine environment 

(Darwish et al., 2013). 

 

2.4.8. Salinity and temperature 
 

The discharged brine from RO plants normally has a salinity of 60-70 psu but this 

level is influenced by the salinity concentrate of the intake feedwater.  In thermal 

desalination plants, the brine blowdown could have a similar level of salinity of 70 

psu but is less concentrated when it is mixed with three times the volume of cooling 

water (seawater) which dilutes it to a level of around 50 psu prior to discharge. In 

thermal desalination plants, the temperature of the discharge ranges 5-15 0C above 

ambient temperatures whereas temperatures of RO discharge tend to be similar to 

ambient seawater temperature (Abuzinada et al., 2008).  The outcome of these high 

levels of salinity and temperatures can have a devastating effect on marine life. 

(Lattemann and Höpner, 2008). 

 

2.4.9. Cleaning chemicals 
 

The type of fouling dictates the method of cleaning, in RO plants the removal of silt 

deposits and biofilms from membranes is achieved by alkaline solutions (pH 11-12) 

while metal oxides or scales are dissolved by the application of acidic solutions (pH 

2-3). Other chemicals may be added to these chemical solutions to improve their 

efficacy such as detergents (e.g. dodecyl benzene sulphonate, dodecyl sulphate) or 

oxidants (e.g. sodium hypochlorite, sodium perborate).  On completion of cleaning 

and prior to storage, it is normal practice to disinfect membranes by the application of 

oxidizing biocides (e.g. hydrogen peroxide and chlorine) or non-oxidizing biocides 

(e.g. isothiazole, glutaraldehyde or formaldehyde). Heated acidic seawater is used to 

cleanse the distillation plant in removing alkaline scales from heat exchanges surfaces 
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where corrosion inhibitors may have built-up (e.g. benzotriazole derivates).  When 

these chemical solutions are expunged after cleaning in a raw form, there is potential 

threat to marine life (Lattemann and Höpner, 2008). 

 

2.5. Air emission   
 

Due to temperatures up to 120°C required in distillation plants such as MSF stations, 

there is heavy demand on thermal and/or electrical energy from desalination plants: 

for every cubic metre of fresh water produced, 12 kW h of thermal energy and 3.5 Kw 

h of electrical energy are required.  In MED plants, the temperature is considerably 

less at (<70°C) requiring only 6 kW h of thermal and 1.5 kW h of electrical energy per 

cubic metre.  For the RO plants, only 4-7 kW h/m3 is needed according to the capacity 

of the plant and power recovery installations (Lattemann and Höpner, 2008).  Thus, it 

can be seen that all these methods require substantial levels of energy resulting in 

release of toxic gases e.g. CO2, CO, NO, NO2, and SO2. The level of the former is 

approximately 25kg/m3 of produced water.  In addition, the use of traditional power 

sources such as fossil fuels to generate the energy, also has serious implications for 

the air quality, therefore alternative sustainable energy sources should be considered 

in the future to overcome the effect of these noxious gases (Darwish et al., 2013; Al-

Karaghouli and Kazmerski, 2013). 

 

2.6. Economic cost of desalination technologies  
 

Although the cost of desalination processing has dropped due to developments in the 

technology, the actual overheads incurred in sourcing and treating water from 

conventional reserves have risen due to required compliance with health and safety 

regulations regarding water quality control. In fact, the cost of desalinated water 

remains more than double the cost of water from traditional water sources.  These 

costs vary regionally and globally.  For large-scale freshwater production from the 

seas, the options to use either thermal processes (MSF, MED, MED-TVC) or 

membrane (RO) will influence the ultimate expense dependent on plant capacity and 

output, together with environmental factors (Khawaji at el., 2008). These include 

seawater properties, quality of produced water, energy source and utilisation, plant 

size and efficiency, levels of concentration of discharge, staffing, area required and 

overall maintenance. The direct costs are factored into the economic calculations, e.g. 

http://www.sciencedirect.com/science/article/pii/S1364032113000208
http://www.sciencedirect.com/science/article/pii/S1364032113000208
http://www.sciencedirect.com/science/article/pii/S1364032113000208
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capital, energy, manpower, chemical additives, consumables and raw materials 

(Darwish, 1989; Wade, 1993; A1-Sahlawi, 1999). 

 

Desalination economics is determined by an assessment of life cycle costs using an 

equal uniform annual cost method where capital costs are at a fixed annual rate in 

contrast to a variable rate for operation and maintenance overheads.  An average figure 

for water production based on both capital and operation and maintenance costs, is 

determined in $/ m3 by the division of total costs by total water volume produced 

(Khawaji et al., 2008). In the case of thermal desalination plants with large-scale 

operations of MSF, where water production ranges between 23,000 and 528,000 

m3/day, the estimated costs are from 0.52 to 1.75$/m3. In contrast to MED plants 

producing over 90,000 m3/day, the estimated costs range between 0.52 and 1.01$/m3.   

For medium sized MED plants, costs are lower, ranging between 0.95 and 1.95$/m3   

for production of 12,000 to 55,000 m3/day.   The cost of Vapour Compression in small-

scale operations with capacity of approximately 1000 m3/day ranges between 2.0 and 

2.60 $/m3. In contrast, the costs of RO water production have fallen due to advances 

in membrane technology. For large-scale SWRO plants utilizing between 100,000 and 

320,000 m3/day, the estimated cost of water production ranged between 0.45 and 0.66 

$/m3. For medium-sized SWRO plants processing between 15,000 and 60,000 m3/day, 

the water production cost was estimated from 0.48-1.62 $/m3. In the smaller SWRO 

plants with a capacity ranging from 1000 to 4800 m3/day, prices were reported 

between 0.7 and 1.72 $/m3. While for brackish water, the most cost effective methods 

of water desalination are RO and ED, the former can be used with TDS greater than 

500 ppm, whereas ED is more economically viable for lower concentration of TDS. 

The cost of water production for BWRO with a capacity of 40,000 to 46,000 m3/day 

is estimated at 0.26- 0.54$/m3, in contrast to smaller ED plants estimated at 0.6 

to1.05$/m3, according to salinity concentration of the feedwater (Karagiannis and 

Soldatos, 2008; Mezher et al., 2008). 

 

A favourable alternative is the use of solar distillation for the purposes of water 

desalination because it is a simple method with low overheads without any need for 

fossil fuel to heat the water.  Nonetheless, low productivity of the still means reduced 

economy of scale making it a less viable option.  With production rates from 4 to 6 

l/m2, the estimated cost ranges between 1.3 and 6.5$/m3 (Al-Karaghouli and 

http://www.sciencedirect.com/science/article/pii/S1364032113000208
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Kazmerski, 2013).  Other methods using freezing and melting processes have been 

reviewed by Youssef et al., 2014 and Johnson et al., 1976 confirming costs between 

(0.34 to 2.45$/m3) using a capacity from 1 to 3.8m3. 

 

In terms of capacity and water volume, it has been reported by Voutchkov (2010) that 

costs are influenced by economies of scale.  This was also conceded by Colley and 

Ajami (2012) who verified that the difference in desalination capacity between 50 

MGD and 10 MGD can influence an upward change in final costs estimated between 

2.17$/m3 and 7.96$/m3. A study of varying costs of desalination methods including 

SWRO, BWRO, MSF and MED has been completed by Wittholz et al., 2008 dealing 

with a range of capacities are presented in (Table 2.3). 

 
Table 2. 3: Cost of desalinated water for commercial desalination technologies with different 

capacity (Wittholz et al., 2008) 

 

Methods Capacity (m3/day) Capital cost ($× 106) Cost of water ($/m3) 

SWRO 

10,000 20.1 0.95 

50,000 74 0.70 

275,000 293 0.50 

500,000 476.7 0.45 

BWRO 

10,000 8.1 0.38 

50,000 26.5 0.25 

275,000 93.5 0.16 

500,000 145.4 0.14 

MSF 

10,000 48 1.97 

50,000 149.5 1.23 

275,000 498.1 0.74 

500,000 759.6 0.62 

MED 

10,000 28.5 1.17 

50,000 108.4 0.89 

275,000 446.7 0.67 

500,000 734 0.60 

 

2.7. Summary  
 

As ready supply of water become diminishes in many parts of the globe, the demand 

for desalination is constantly rising as population, industry and commerce burgeon. 

This chapter has reviewed different methods of water desalination that have emerged 

over the past years while also reporting on operating costs and evaluating the various 

methods. Membrane desalination processes are seen to be more sophisticated in terms 

of recent technological development, energy recovery and pre-treatment making it a 

preferred option over thermal processes. SWRO is shown to be more cost competitive 

http://www.sciencedirect.com/science/article/pii/S1364032113000208
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for seawater, compared to thermal distillation processes such as MSF and MED 

because of streamlined operations requiring less use of chemicals, higher operating 

efficiency and overall control of scaling and anti-fouling.  Meanwhile, the use of 

membrane technology for brackish water incurs less cost than seawater membrane 

desalination due to low salinity.  On the other hand, for large-scale plants such as MED 

and SWRO, costs are lower than MSF because of economy of scale and efficiency 

under most local conditions.  

 

Clearly, there is a need to consider environmentally friendly alternatives to avoid 

further depletion of water sources and climate change.  The concept of combining 

desalination plants with eco-friendly renewable power sources has become a pressing 

and controversial topic due to ever increasing fossil fuel costs and the deleterious 

effects of combustion of traditional fuels on the environment. This dilemma is 

influenced by factors including the plant size, type of feed water and geographical 

location.  

 

As the search for a solution to deal with water scarcity continues in assessing the best 

method of desalination, there is concern about the brine discarded from desalination 

plants, particularly huge capacity stations, which are constructed on the coastline.  This 

effluent contains chemical additives, which are normally added in the pre-treatment 

process, so compounded with high salinity and temperature, this could have several 

knock-on effects on the surrounding environment.  The next chapter will present the 

methods of brine disposal from desalination plants. 
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Chapter Three: Brine Disposal Management Options for 

Desalination Technologies 

 

3.1. Introduction 
 

The management of brine disposal has long been a topic of concern due to certain 

factors such as the increasing number and size of desalination plants, particularly in 

arid and semi-arid areas, that impacts on disposal options, the regulations governing 

disposal and environmental implications (Mickley, 2006). Several techniques for 

disposal and volume reduction of the brine waste have been tested and pioneered 

without which the production of brine and treatment of produced concentrate could 

not be achieved.  This is a key component of the operation of desalination plants and 

its handling of concentrate, so is critical to effective operation.  The location of 

desalination plants dictates the type of process used, whether distillation or membrane 

technology and the best method of brine disposal (Masnoon and Glucina, 2011; 

Ahmed et al., 2009; Jirka, 2008).  

 

The option of brine disposal in inland and coastal areas varies according to discharge. 

The simplest and cheapest method is into the ocean, hence its practice by coastal 

desalination plants, the rapid mixing dilution makes it the safest disposal option 

(Ahmed et al., 2001).   For inland areas, this is not a feasible option, as the disposal 

costs of inland desalination plants such as RO plants are higher than those of plants 

disposing reject brine in nearby seas or lakes. Consequently, alternative methods have 

to be adopted that do not pose economic or environmental threats (Svensson, 2005). 

The waste cannot be used for agricultural or commercial purposes, so this presents 

challenges of exploiting brackish water sources for any other purpose (Glueckstern 

and Priel, 1996).  In this case, the waste cannot be recycled or disposed of safely, 

which has an ongoing impact on the environment (Sethi et al., 2007). There are certain 

options for disposal of reject brine from inland areas such as discharge to surface water 

or wastewater treatment plants, deep well injection, land application, evaporation 

ponds and zero liquid discharge in addition to some brine volume minimization 

techniques currently being explored and used (Sethi et al., 2006; Masnoon and 

Glucina, 2011). 
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Awareness of the need for environmental regulations varies hugely around the world. 

In the Middle East, where about two thirds of desalination plants and oilfields are 

located, monitoring is less regulated, with inadequate brine disposal systems (Einav et 

al., 2002).  The same applies to other countries, for example, Libya where, despite the 

current environmental legislation law no 14/1989 being in place, there is little regard 

for maintaining the required standards of safe disposal (Nait, 2015).  In other countries 

nonetheless, the regulations are adhered to (Ahmad and Baddour, 2014). 

 

At the outset of establishing desalination plants, brine disposal processes dominate the 

decision-making in terms of their economic feasibility (Abdul and Weshahi, 2009). 

Clearly, the cost factor determines the proposed method, ranging from 5% - 33% of 

the total cost of desalination.  It is influenced by reject brine characteristics, the 

required level of treatment prior to disposal, the means of disposal, volume of brine 

and the receiving environment (Ahmed et al., 2001). 

 

Overall, this chapter, therefore, aims to outline what kind of brine disposal methods 

are being used worldwide. Additionally, the advantages and disadvantages of each 

method will be discussed. As one of the challenges to coastline desalination plants, 

particularly in arid regions, is the dilemma of the brine disposal, this chapter also 

presents Mediterranean legislation of brine discharge from desalination plants into the 

marine environment and the water availability and desalination technologies in 

Mediterranean region. 

 

3.2. Brine Discharge Management Methods  

 

3.2.1. Surface Water Disposal 

 
There are several methods of surface water disposal into water bodies such as ponds, 

streams, lakes and coastal waters such as estuaries, bays and oceans (Younos, 2005). 

These involve the installation of various controls, such as outfall diffusion devices and 

the dilution of brine by mixing it with less concentrated streams, in order to reduce the 

impact on the environment (Sarté et al., 2006). There is a more in-depth explanation 

in the next sections. 

 

3.2.1.1. Direct discharge 
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This technique is the most favoured with over 90% of desalination plants using it for 

discharge directly to the sea (WHO, 2007). However, this intensifies the salinity along 

the coastline which compromises the quality of coastal and groundwater aquifers due 

to salinity intrusion (Purnalna et al., 2003). Brine can be mixed through tidal 

movements or it can be discharged outside the tidal zones using outfall diffusers in the 

mixing zone to enhance the process (WHO, 2007).  This method may be a feasible 

option for smaller desalination plants but would not be environmentally viable for 

discharge into freshwater bodies such as rivers and lakes (Masnoon and Glucina, 

2011). 

  

3.2.1.2. Discharge to outlet of the power plant 
 

The technique of dilution of concentrated brines using hot water discharged from the 

power station is commonly practised. This is achieved by a hybrid installation, which 

is a desalination plant co-located to a power station. The brine is mixed with power 

plant cooling water within the outfall line from the power station, using a discharge 

line outfall, before going to the sea (Einav et al., 2002). This option is environmentally 

friendly because of reduced salinity concentration (Abdul-Wahab and Al-Weshahi, 

2009).  

 

3.2.1.3. Discharge via wastewater treatment plant 
 

This technique is used where a desalination plant is situated close to a wastewater 

treatment plant.  A positive outcome of combining the brine discharge with wastewater 

is dual dilation, which reduces the density of concentrate (WHO, 2007). However, this 

can result in the production of calcium carbonate on filters which impacts on the 

efficiency of wastewater treatment plants (Squire, 2000).  The main considerations 

therefore are availability and cost of wastewater outfall capacity and the potential for 

whole effluent toxicity resulting from an ion imbalance of the blended discharge 

(Mickley, 2006).  

 

3.2.1.4. Discharge to sewage system 

 
This option involves discharge of brine into a nearby sewage system from small 

brackish water and seawater desalination plants into large-capacity wastewater 

treatment facilities (WHO, 2007). The result of this mixed blend would not be 
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appropriate for use in irrigation, so consideration needs to be given to the capacity of 

the sewage system (Ahmed et al., 2000).  

 

3.2.2. Deep well injection 
 

The disposal of industrial, commercial and liquid hazardous waste is currently done 

by deep well injection (Saripallia et al., 2000). This method has been considered for 

land brine disposal, which involves injection of brine from desalination plants into 

compatible deep underground aquifers that do not use potable water. The design 

ensures that potable water sources are kept separate from the aquifers to avoid 

contamination (Glater and Cohen, 2003; Masnoon and Glucina, 2011).  This is an 

expensive process and is widely used in Florida, which has beneficial hydrogeological 

conditions (Reimold et al., 1996; Mickley, 2001). According to a study by Skehan and 

Kwiatkowski (2000) who looked at design criteria, deep well injection is the optimum 

method compared with other systems in practice for inland desalination plants. 

Mickley (2009) has also affirmed these benefits, but stresses the need for maintenance 

of a long-term operation to effectively dispose of large amounts of process fluid.  

 

3.2.3. Land application/Spray irrigation 
 

Land application and spray irrigation is an alternative method of brine disposal, used 

for landscape and irrigation purposes (Masnoon and Glucina, 2011). Methods used are 

spray irrigation, rapid infiltration, percolation ponds and overflow application 

(Younos, 2005). Areas that benefit from spray irrigation need to be salt tolerant, such 

as grasses and vegetation in lawns, parks, golf courses or cropland (WHO, 2007). A 

lesser concentrated brine of reduced volume is used in land application in order to 

meet groundwater criteria. The target vegetation must be salt tolerant and comply with 

ground water quality standards. Other factors to be considered are availability and cost 

of land, percolation rates and irrigation needs (Mickley, 2009), and during heavy rainy 

seasons, there needs to be an alternative disposal method (Squire, 2000). Currently 

according to a study, Florida is the only state that uses land application for this disposal 

method (Younos, 2005). A study in the UAE revealed that discharge of brine resulted 

in groundwater contamination and a hardness of groundwater due to inappropriate 

design standards (Mohamed et al., 2005).  
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3.2.4. Landfill disposal 

 
An alternative option of brine disposal methods is conversion of brine from liquid to 

a solid mass, to be disposed in landfill.   This is used as a final disposal mechanism of 

brine, e.g. brine concentrators. There is a risk of leakage from landfills into nearby 

groundwater, so site selection needs careful consideration (Masnoon and Glucina, 

2011).  Normally, landfill must consist of a minimum of 50% of solid masses, so the 

liquid remainder would need to be contained in drums, involving costly transportation 

and permit fees, which vary across landfill facilities (Kepke et al., 2008).  

 

3.2.5. Zero liquid discharge 

 
Zero liquid discharge methods are commonly practised in industrial zones that do not 

permit discharge (Davis, 2006). This involves a sequence of brine evaporation, 

crystallisation or spray drying to produce a resultant solid mass consisting of solidified 

salts and mineral slurries that are later taken to landfill, or used for commercial 

purposes (Masnoon and Glucina, 2011). 

  

3.2.5.1. Evaporation ponds 

 
Evaporation ponds are commonly used to dispose of brine from inland RO 

desalination plants in desert-type terrain such as in North Africa and the Middle East 

(El-Naas, 2011).  It is done by a gradual evaporation of water in large ponds through 

solar energy, leaving wet salt residues (Leong et al., 2014). This is a less common 

method with only 6% being used in the USA in 1993, which later fell to 2% after 1993 

(Abdul-Wahab and Al-Weshahi, 2009).  This may be attributed to the large amount of 

land needed and the fact that very few desalination plants are based inland.  

Furthermore, there are potential environmental issues such as strict design 

requirements and pond leakage causing contamination of groundwater in the area. The 

most recent models are lined with polyvinyl chloride, high-density polyethylene, butyl 

rubber and hypalon to prevent leakage and seepage of contaminants into the nearby 

groundwater (Morillo et al., 2014). The effectiveness of evaporation ponds is 

dependent on the evaporation rate, which is influenced by the climate, including 

humidity and temperature so wind-aided intensified evaporation options have been 

tested to improve the evaporation rates.  However, this is still unpredictable and is 
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only 50% effective in dry conditions (Gilron et al., 2003). Another contributory 

technique to speed up the process, is having a greater water surface for optimised 

exposure, using spraying or misting movements of water, in addition to use of 

saturated textiles to increase exposure. However, the downside to these methods is the 

dispersal of mist and dry salt particles although they would reduce the amount of land 

required and the capital costs (Mickley, 2009). Consequently, the use of evaporation 

ponds is more cost effective for smaller brine flows and coupled with high recovery 

desalination process (Masnoon and Glucina, 2011). Further costs are alleviated by the 

introduction of particular synergies that provide income in combination with these 

ponds, as described below: - 

 

A. Aquaculture 

 

A new cutting-edge industry is aquaculture, which can be used to culture fish. Several 

species are reported to thrive in high salinity in Australia, namely Barramundi (lates 

calcarifer), Red Snapper (Pagrus auratus), Black Bream (Acanthopagrux butcheri), 

Milk fish (Chanos chanos),), Mullet (Mugil cephulux), Tilapia (Oreochromis 

mossambicus) and brine shrimp (Artemia salina).  There is a mutual relationship 

between fish and shrimp production where each can benefit.  In addition, the brine 

shrimp act as ‘cleaner’ of waste organic matter removing calcium ions, which 

propagates healthy salt production.  Evaporation ponds also create a zone for algae 

growth (Dunaliella salina) which results in commercial grades of beta-carotene at 

salinities greater than 200g/L (Ahmed et al., 2001). Therefore, this scenario is highly 

beneficial and can be applied to reducing costs and enhancing the evaporation ponds.  

 

B. Salinity Gradient Solar ponds 

 

Another potential synergy project is salinity gradient solar ponds, which combine solar 

energy to produce thermal energy at temperatures from 50 to 900C or electricity 

(Svensson, 2005). A normal salinity gradient solar pond comprises three regions; the 

top one is the surface or upper convective zone (UCZ) that has ambient temperatures 

and low salt content.  The middle section is the main gradient zone (MGZ) or non-

convective zone (NCZ) which is made up of a layer of thermal insulation and salinity 

gradient. The lower section is the storage zone or lower convective zone (LCZ) which 

is a homogenous concentrated salt solution that can be heated or remain at a stable 

temperature (Masnoon and Glucina, 2011). The solar energy reached at the lower zone 
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is released through conduction.  Heat conductivity in the water is low so if the 

insulating layer is thick enough, heat loss will be minimal. The high volume of water 

in the solar pond has a corresponding high heat capacity making it ideal for energy 

collection and long-term storage. The temperature required to run the generation of 

electricity efficiently is above 85 0C. Moreover, the clarity of the brine, the thicknesses 

of the zones, the salt gradient and the maintenance of the vertical salt gradient and the 

pond area all determine the thermal efficiency of the solar pond (Svensson, 2005). A 

salinity-gradient solar pond can be an effective and environmentally friendly 

heat/cooling source for thermal desalination and brine concentration processes (Lu et 

al., 2002).  

 

3.2.5.2. Crystallisers 
 

The final phase of brine disposal in zero liquid discharge systems is the brine 

crystalliser method.  In this process, the rejected brine is converted to a high purity 

water for further use in the plant while the solid masses are disposed of in landfills.  

The volume of brine prior to being fed to the crystalliser is minimised and is then fed 

to the crystalliser with a TDS concentration of approximately 200,000 – 300,000 

mg/L.  The first stage of crystallisation is the feeding of brine into the crystalliser, 

which is combined with the recirculating brine and then pumped into a heat exchanger 

where compression and saturated steam heats brine above boiling point at atmospheric 

pressure while steam condensation occurs outside the tubes of the heat exchanger.  

 

The heated brine is then fed to a separator chamber (flash tank), at reduced pressure 

causing flash evaporation of the liquid and creation of insoluble salt crystals in the 

brine.  The majority of the brine is pumped back to the heater leaving a trickle (1-5% 

of brine) from the recirculating loop which is sent to the centrifuge where it is filtered 

separating the water from the crystals enabling it to be returned to the feed tank while 

the solid mass is disposed of.  The steam from evaporation is filtered through a mist 

eliminator before going into a vapour compressor where it is heated with a hot 

distillate and fed to a heat exchanger that heats the internal recirculating solution 

within the heat transfer tubes.  The final process is the collection or mixing of 

condensed water with RO product water.  
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This method is the most expensive compared to other methods of brine management 

although has an excellent recovery rate of 95-99%, (Masnoon and Glucina, 2011; 

Carollo, 2009). However, a study by Mickley (2006) reveals that although costly in 

terms of construction, it is the most feasible method in regions that cannot support 

deep well injection treatment but have low solar evaporation rates. This method 

requires high levels of energy (200-250 kwh/1000gal) and is also commonly used with 

RO plants (Mackey and Seacord, 2008). 

 

3.2.5.3. Spray dryers 
 

An alternative method of crystallisation is the use of spray dryers, which are operated 

alongside a brine concentrator evaporator in desalination plants.  A large cylindrical 

drying chamber with a dried brine separator is used to accommodate the dried solids.  

Meanwhile, the brine is pumped into this chamber in the form of a droplet through 

brine atomiser, which comprises a shaft and rotating disc protruding into the heated 

gas stream.  In addition, hot air produced by gas, oil or electric power heater flows to 

the top of the drying chamber.  It is then drawn into the chamber via filtration from an 

exhaust fan.  The dry powder residue from the drying chamber is separated from the 

hot air stream and then prepared for disposal while the air is expelled from the 

atmosphere. This method is considered to be labour intensive and costly, and tends to 

be more effective for smaller volumes of brine (1-10 gpm) (Spellman, 2016; Masnoon 

and Glucina, 2011). 

 

3.2.5.4. Wind Aided Intensified Evaporation 

 
A more recent technology for brine treatment is Wind Aided Intensified Evaporation 

(WAIV), which is used to improve evaporation rates and to minimise the surface area 

required (Katzir et al, 2010; Masnoon and Glucina, 2011).  Vertically mounted 

structures are erected that have wetted surfaces packed in high density footprints, 

which are designed to react against air movement, are placed in rows to optimise the 

process of using wind power.  The hydrophilised ‘sails’ are made of woven netting, or 

other geo-textiles, or volcanic rock.  Water is pumped from a nearby small storage 

tank to reach the vertical surface before gravity causes it to trickle down while dry air 

causes evaporation thereby depositing salts on the surfaces.  The excess recirculates 

to the pond, while the salt deposits flurry and are collected in a trough below the fabric. 
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This method is a favourable option in terms of minimal energy requirements and 

reduced land area requirements, as proved in a study by Girlon et al., (2003) 

confirming it 20 times more effective than conventional evaporation ponds.  

 

 3.2.5.5. Dewvaporation 
 

Another approach in dealing with small-scale applications is a cheaper option of 

dewvaporation which involves a thermal distillation process of desalination where 

dew is formed after evaporation using combustible fuel, solar or waste.  The effluent 

disposed from this system can be almost eliminated (90%) while producing high purity 

distillate.  A compartmentalised tower is separated by a heat transfer wall, one for dew 

formation and one for evaporation.  Air used as a gas to evaporate the water from brine 

feeds forms condensation at atmospheric pressure.  This air is forced at an ambient 

temperature to the bottom wall of the evaporation vessel while the heat transfer wall 

is soaked with brine by pumping it to the top of the evaporation vessel.  The rise of 

upward-flowing heating air results in evaporation of water from the brine.  

Subsequently, the residue water or salt concentrate is expelled while the warm 

saturated air continues to rise and then goes to the condenser side of the heat transfer 

wall.   The cooling downward air starts to condense which releases further heat via the 

heat transfer surface.  High purity water flows out while the concentrate is collected 

and sent for further treatment.  An advantage of this process is a lack of any scaling 

problems, low operating capital costs and small footprint. The downside is the large 

heat transfer area requirement. Although extensive piloting has been carried out, there 

is no full-scale application of this process for desalination and RO concentrate 

treatment in existence (Masnoon and Glucina, 2011; Hamieh et al., 2001). 

 

3.2.5.6. Salt Recovery Salt Solidification and Sequestration (SAL-

PROC) 
 

Geo-Processors are responsible for a new emerging technology called SAL-PROC, 

which achieves ZLD by merging sequential reaction and evapo-cooling stages in a 

closed loop to precipitate and crystallise valuable minerals contained in brine avoiding 

use of any toxic elements in the process (Neilly et al., 2009). The end product of this 

method is a purified chemical salt of commercial value, such as magnesium carbonate, 

calcium carbonate and gypsum, depending on the elements contained therein 
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(Masnoon and Glucina, 2011). This method is used in conjunction with RO techniques 

and other volume reduction technologies to capitalise on the reduced need for brine 

disposal while producing greater amounts of potable water. Having access to 

inexpensive energy sources will bring costs down (Svensson, 2005). Another 

advantage of implementing this process is that it can recoup profits from commercial 

products. The downsides are that one of the main considerations of SAL-PROC 

systems is a requirement for sophisticated infrastructure criteria in addition to leaving 

a footprint to accommodate chemical reagent and product salt storage (U.S. 

Department of the Interior Bureau of Reclamation, 2009). The advantages and 

disadvantages of the aforementioned methods are summarised in (Table 3.1) 
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Table 3. 1: Advantages and disadvantages of common brine treatment and disposal methods 

 

Disposal method Advantages Disadvantages 

 

Surface Water Disposal / 

Direct Discharge,  

including tidal rivers, 

streams, lakes, ponds and 

coastal waters, such as 

oceans, estuaries, and bays 

 

 No restriction on scale requirements, economically 

viable and widely used for disposal from high capacity 

desalination plans (Xu et al., 2013; Balasubramanian, 

2013 ; Masnoon and Glucina, 2011 ) 

 

 

 

 Bureaucratic and costly regulations, thermal contamination, 

loss of oxygen in ambient water, eutrophication, rise in levels 

of pH, impact on marine life,  and its low tolerance to this 

increase. 

 Training and awareness raising needed to educate on disposal 

methods and their knock-on effect (Xu et al., 2013; 

Balasubramanian , 2013) 

 

Discharge to outlet of the 

power plant 

 

 Minimal energy use when brine is disposed from brine 

station alongside power plant, also reducing 

environmental damage (Masnoon and Glucina, 2011) 

 

 Requires close proximity to thermal power plant (Masnoon and 

Glucina, 2011) 

 Salinity levels of ambient seawater rise as a result of continuous 

discharge from both plants (Uddin, 2014). 

 

Discharge via wastewater 

treatment plant 

 

 Widely recognised methods that are uncomplicated 

without incurring unnecessary expense or power  

(WHO, 2007; Masnoon and Glucina, 2011) 

 

 

 

 Recycling of treated water for irrigation of crops with a high 

TDS tolerance are restricted (Masnoon and Glucina, 2011; 

WHO, 2007). 

 Feasibility subject to smaller amounts and minimal levels of 

TDS, currently limiting this option (Abdul-Wahab and Al-

Weshahi, 2009; Voutchkov, 2014 ) 

 

Discharge to sewage 

system 

 

 Currently operational across well established plants 

with minimal overheads and power demand, used 

for both brackish water and wastewater (Xu et al., 

2013; Masnoon and Glucina, 2011; 

Balasubramanian , 2013)  

 

 Restricted to small-scale plants because of demands of 

hydraulic waste infrastructure and subsequent control of 

receiving seawater collection system, thus affecting onward 

irrigation use as a result of increased TDS and salinity levels 

(Masnoon and Glucina, 2011). 

 

Deep Well injection 

  

 Groundwater and subterranean earth can lead to increased 

salinity (Balasubramanian , 2013) 
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 Can be used on mainland without any damage to the 

marine environment (Xu et al., 2013; Balasubramanian , 

2013) 

 Restricted to localised conditions and not economically feasible 

for small plants because of potential maintenance expense 

(WHO, 2007). 

 

Land Application/Spray 

irrigation 

 

 User friendly, low operating costs with optimum 

concentrate usage, providing excellent option for 

municipal use without any environmental implications, 

particularly on the marine biota (Xu et al., 2013; 

Balasubramanian , 2013). 

 

 Inapplicable for high volumes of brine, high physical demand, 

harmful to vegetation, impact on salinity levels of groundwater 

and subterranean soil, susceptible to climate and agricultural 

demands (Xu et al., 2013; WHO, 2007; Balasubramanian , 

2013 ) 

 

Landfill Disposal 

 

 Environmentally friendly option as a method of 

industrial waste disposal (U.S. Department of the 

Interior Bureau of Reclamation, 2009). 

 

 Potential problems of disposing liquid waste and increased 

charges of storing liquid waste in drums. 

 Landfill sites are bound to store a minimum of 50% solid 

material which restricts amounts of liquid they can accept. 

 Cost of logistics and bureaucracy are high. 

 Wide variation of landfill charges (U.S. Department of the 

Interior Bureau of Reclamation, 2009). 

 Potential leakage into groundwater, subject to landfill design 

(Younos, 2005). 

Zero liquid Discharge   
 

Evaporation ponds:- 

 Aquaculture 

 Salinity Gradient 

Solar ponds 

 

 Easy and versatile with low set-up costs and 

maintenance, economically feasible depending on land 

charges. When Aquaculture or Salinity Gradient Solar 

ponds are used in tandem with evaporation ponds, costs 

are reduced with improved output and potential salt 

production without any deleterious effects to the marine 

environment (Morillo et al., 2014; Xu et al., 2013; 

Svensson, 2005; Balasubramanian, 2013) 

 

 Only feasible in dry, arid conditions with high evaporation rates 

and expansive land space, requiring stringent procedures to 

prevent erosion, seepage and wildlife damage. Prevention of 

seepage needs lines which are not always reliable and need 

constant maintenance (Xu et al., 2013; U.S. Department of the 

Interior Bureau of Reclamation, 2009; Balasubramanian , 

2013 ). 

 

 

Crystallisers 

 

 Widely collaborated method in industrial sector 

producing high-quality water with minimal 

 

 Protracted maintenance and operating costs because of 

mechanical complexity, large overheads, need for regular 



53 

 

environmental damage (U.S. Department of the Interior 

Bureau of Reclamation, 2009; Masnoon and Glucina, 

2011 ) 

cleaning  in complex salt waste streams (Masnoon and Glucina, 

2011; U.S. Department of the Interior Bureau of Reclamation, 

2009). 

 

Spray Dryers 

 

 Solidification of slurry to solids makes this more feasible 

and versatile over a wider range of areas, with added 

benefit of recycling of recovered product water 

(Masnoon and Glucina, 2011). 

 

 Prohibitive overhead costs combined with high energy 

demand  (> 200 kWh/1000 gal) (Masnoon and Glucina, 2011) 

 

Wind Aided intensified 

Evaporation 

 

 Intensified evaporation rates make this option 

favourable with lower running and maintenance costs, 

using sustainable energy sources, together with minimal 

land requirement (U.S. Department of the Interior 

Bureau of Reclamation, 2009; Masnoon and Glucina, 

2011). 

 

 On-going research, susceptible to climate variations, needs high 

evaporation rates and regular cleansing of woven surfaces with 

residuals needing to be removed to landfills. Currently 

inconclusive data on this option (U.S. Department of the 

Interior Bureau of Reclamation, 2009; Masnoon and Glucina, 

2011). 

 

Dewvaporation 

 

 A simpler form of distillation producing high quality 

water, easier than thermal and RO plants with 

reasonable operating costs due to low operating 

temperature and atmospheric pressure. Transfer of heat 

from plastic walls reduces corrosion and capital 

overheads (U.S. Department of the Interior Bureau of 

Reclamation, 2009; Masnoon and Glucina, 2011). 

 

 Not currently in use, inconclusive evidence of output and 

operating costs.  Water recovery is reduced 30-40% (U.S. 

Department of the Interior Bureau of Reclamation, 2009; 

Masnoon and Glucina, 2011). 

 

Salt Recovery Salt 

Solidification and 

Sequestration (SAL-

PROC) 

 

 Effortless method based on chemical scaling to recover 

commercial salts that makes it a good option for brackish 

inland waters when coupled with RO techniques 

(Morillo et al., 2014; Svensson, 2005; U.S. Department 

of the Interior Bureau of Reclamation, 2009; Masnoon 

and Glucina, 2011 ) 

 

 Yet to be tested on an industrial scale or evaluated in terms of 

operating costs, can be used well with brine consisting of high 

levels of dissolved sulphlate , potassium and magnesium salts 

(U.S. Department of the Interior Bureau of Reclamation, 2009; 

Morillo et al., 2014) 
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3.2.6. Other Brine Minimization Options used for Membrane 

process 
 

In addition to the techniques previously discussed, there are others that can be used to 

reduce brine discharge from RO plants, as outlined below: 

 

 Brine concentrators 

 Forward osmosis 

 Precipitative softening/RO 

 High Efficiency reverse 

osmosis  (HEROTM) 

 Electrodialysis and 

Electrodialysis Reversal 

Process 

 Electrodialysis metathesis 

(EDM) 

 Capacitive deionization (CD) 

 Vibratory shear enhanced processing 

 Seeded Slurry Precipitation and 

Recycle 

 Two-Pass Nanofiltration 

 Membrane distillation 

 Two-Phase Reverse Osmosis with 

Intermediate Chemical Precipitation 

 Two-Phase Reverse Osmosis with 

Intermediate Biological Reduction 

(Masnoon and Glucina, 2011; Sethi et 

al., 2006) 

 

3.3. Mediterranean Legislation of brine discharge from desalination 

plant into the marine environment 
 

The process of desalination across the Mediterranean region is regulated by European 

Union water policy directives as well as Water Framework Directives (WFD).  The 

focus of the latter is to monitor and maintain “good” water quality standards but there 

is a lack of regulation and guidelines to manage brine disposal into seawater on the 

coastal shores.  The European Union knowledge that there is a certain element of 

damage caused by changes in salinity levels but it is not considered to be any major 

threat.  Their only specific guidelines are for safe disposal of brine in underground 

aquifers, which limits their control to underground freshwater resources.  It is not 

permitted to inject brine directly into underground aquifers, although indirect injection 

is allowed, provided the brine is filtered through the ground prior to reaching the 

aquifers (Gibbons et al., 2008). 

 

Following the Barcelona Convention protocol in 1976 on the Protection of the 

Mediterranean Sea against Pollution from Land Based sources (LBS Protocol), it was 

revised in March 1996 by the UNEP. This protocol issues legal guidelines over the 

handling of marine contamination, with the purpose of limiting the effects of land-

based activities in the Mediterranean, consisting of 16 sections. In Article 6 and 7 it 
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notes that any discharges from desalination plants should be within the confines of the 

restrictions contained within annex III to this protocol (Saliba, 1996). It was revealed 

in 2004 that according to the ratification status, only two countries out of the thirteen 

listed had joined the protocol yet, many of which host the most prominent desalination 

plants including Libya, Algeria, Bosnia and Herzegovina, Croatia, Egypt, Israel, 

Lebanon, Serbia and Montenegro, and Syria (UNEP, 2014).  

 

A centre of research named the Marine Biology Research Centre was set up in Libya 

in 1981 to collaborate with an international organisation specialising in fisheries 

research (Food and Agricultural Organisation FAO-COPEMED), to ascertain the 

extent of pollution on the Libyan coastline, while researching the marine life and 

coastal ecosystems. Under the Strategic Action Programme for the Conservation of 

Marine and Coastal Biodiversity in the Mediterranean (SAP BIO) within the 

Barcelona Convention, three National Action Plans have been established by the 

Libyan government, which are: - 

 

 National Action Plan for the Conservation of marine and coastal birds. 

 National Action Plan on proposed new marine and coastal conservation areas 

and national parks. 

 National Action Plan for the protection of Marine turtles and their habitats. 

 

Although the Libyan Government acknowledges the need to focus on conservation of 

coastal lagoons and bays, to date no official policies have been agreed regarding the 

effects of brine disposal from coastal desalination plants (Haddoud, 2010). Thus it is 

imperative that WFD now recognise this important issue and put in practice specific 

guidelines for brine disposal (Palomar and Losada, 2011). 

. 

3.4. Water availability and desalination technologies in 

Mediterranean region 
 

Several climatic factors along with water stress in the Mediterranean coastal areas (fig 

3.1) have prompted the search to find alternative water resources, such as desalination 

and water reclamation for the future of water supply in the region (Xevgenos et al., 

2015). Supply of conventional water resources (fresh surface water and groundwater 

resources) is threatened for the following reasons: (1) fall in levels of precipitation (2) 
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decline in river run-off - 20% drop between 1960 and 2000; (3) over exploitation of 

groundwater and (4) a surge in water consumption, tourism being one of the causes. 

In fact, tourism has brought almost 306 million annually-1 tourists which represents 

37% of the global figure of tourists. This number is predicted to reach 500 million 

tourists by 2030, which will increase the annual water demand by 20% (UNEP, 2014). 

 

 
 

Figure 3. 1: Water Stress in Mediterranean Region (UNEP, 2014) 

 

It has been forecast by the International panel on Climate Change that in areas like the 

Mediterranean, water supply will be severely affected due to climate change and 

global warming.  As a result, there is an increase in the number of countries in the 

region looking for alternatives for the provision of safe water supply such as 

desalination (Xevgenos et al., 2015). Currently, the capacity of desalination in the 

Mediterranean is 11,650,047 m3/d, representing about 16% of the total installed 

capacity around the world. The most prominent producers include Libya, Israel, 

Algeria and Spain in contrast to small countries such as Malta and Cyprus. The most 

common technology used within the region is RO, representing about 82.37%, MSF 

at 5.71% and MED at 5.60%.  Electrodialysis and Electrodialysis Reversal (EDR) 

constituted only 4.98% and 0.09% respectively while other desalination techniques 

had a 2.25% share of the total (fig.3.5) (Cuence, 2012). 

 



57 

 

 
 

Figure 3. 2: Water desalting production capacity in selected Mediterranean countries (Cuence, 

2012; Xevgenos et al., 2015). 

 

3.5. Summary  
 

Reject brine management poses a major environmental and financial challenge for 

many desalination plants so this chapter highlights the current brine management 

strategies, which are practised globally. The advantages and disadvantages of each 

technique were discussed, with considerations of potentially unviable brine disposal 

options such as direct discharge, discharge via wastewater treatment plants, discharge 

to the sewage systems, deep well injection, land application/spray irrigation and 

landfill disposal. They are deemed unfeasible because they can only be practised on a 

small scale not to mention their effects on the receiving environment.  

 

Co-discharge of concentrate with power plant cooling water was deemed a feasible 

option due to cost advantages and environmental benefits of this disposal method, but 

the continuous brine disposal, particularly for coastal desalination plants, may increase 

the salinity of the ambient seawater that will affect the marine environment.  

 

Zero liquid discharge such as crystallisers, wind aided intensified evaporation, 

dewvaporation, salt recovery salt solidification and sequestration (SAL-PROC) and 

other brine minimization options used for membrane techniques are not deemed 

feasible because of high costs and intensive energy demand. These technologies are 

still under development and are currently used to treat only small volumes of brine. 
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Evaporation ponds have been identified as a feasible application for concentrate 

disposal in arid or semi-arid places subject to land availability, such as in Libya.  

Furthermore, the cost of this method can be reduced by coupling aquaculture or 

salinity gradient solar ponds. Nonetheless, this method is ineffective in damp climates 

because the evaporation rate is very low. Therefore, there is still need for research of 

feasible solutions that can fulfil the technical, environmental and cost requirements of 

desalination technologies, particularly in arid or semi-arid regions, such as those 

countries sited in the southern Mediterranean region particularly in Libya, classified 

as the fourth largest user of desalination technologies. EU legislation for 

Mediterranean countries about the brine disposal from desalination plants into the 

marine environment does not contain specific regulations about the impacts of brine 

on the marine environment. Hence, the next chapter will evaluate the water resources 

availability in Libya.  
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Chapter Four: Available Water Resources in Libya 
 

4.1. Introduction 
 

The earth’s surface comprises 71% water (510 × 106 km2) and 29% land, 

(Shiklomanov and Rodda, 2003) but only 3% of that water is potable, the remainder 

being saltwater (Cooley et al., 2006). Furthermore, a huge 70% of that potable water 

is made up of glaciers with the remaining 30% being underground from which a mere 

0.25% reaches rivers and lakes. (Kalogirou, 2005). This poses the dilemma of only 

having a small amount of freshwater available globally (Khawaji et al., 2008). 

 

In fact, in 1996 the World Water Council announced that the lack of freshwater posed 

a very real threat to existence unless steps were taken to replenish much needed 

supplies for continuing economic and social development while protecting the 

ecosystems (Bindra et al., 2014). 

 

Between 1955 to 1990, the population of North Africa rose dramatically from 49.5 

million to 118.1 million.  By 2025, this figure is predicted to rise above 188 million.  

The annual water volume per capita was 2,285 m3 in 1955 and declined to 958 m3 in 

1990.  It is predicted that this figure will reach 602 m3 over the following 35 years. 

Availability of potable water in this area is estimated at 113.1 km3/year, so a 

significant ongoing depletion of water supplies is expected in the future (Alghariani, 

2007). 

 

Across the continent of Africa, there are substantial sedimentary aquifers storing 0.66 

million km3 of water, the majority of the contents (0.44 M km3) exist over eight 

Saharan nations including the Nubian Sandstone, which supports Libya, Sudan, Egypt 

and Chad. Owing to the depth of the aquifers in Libya at 2.5km thick, the cost of 

deploying required processes is high. (MacDonald et al., 2012).  

 

Libya has been classified as one of the ten most inadequate water source suppliers and 

since 1970, the country has suffered severe water scarcity (Abughlelesha and Lateh, 

2013) Thus, the provision of water has been high on the agenda to meet increased 

population, not to mention other demands from all sectors (Wheida and Verhoeven, 

2007). As a consequence of these demands, several coastal groundwater aquifers have 

become contaminated with seawater, causing water in the aquifers to become brackish.  
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This has posed serious concerns, particularly in agriculture, where a combination of 

low rainfall (Bindra et al., 2010; Wheida and Verhoeven, 2007) and gradual 

penetration of saltwater into coastal aquifers has contributed to damaging natural 

groundwater sources. Thus, it has become incumbent on the Libyan government to 

focus on various projects that can resolve the increased demand for water in different 

sectors, such as desalination technology (Elabbar and Elmabrouk, 2005). 

 

As a result of water scarcity and the imbalance between water resources in Libya and 

demand, this chapter aims to assess the existing water resources in Libya and the 

impact of population growth on the available water resources in the country.  It will 

also give the context of current water infrastructure, the supply and demand and the 

ongoing challenges. Finally, this chapter is intended to expose the water deficit across 

Libyan regions while also comparing the cost of water produced by the Great Man-

Made River Project with a thermal desalination plant by using the Abotraba 

desalination plant as a case study. 

 

4.2. Study site 
 

Libya is situated in the heart of North Africa between 17 longitude east and 26 latitude 

north; It’s on the southern shores of the Mediterranean Sea (fig 4.1) which has a 

coastline of approximately 2,000 kilometres (Hamad et al., 2014).  It borders Sudan 

and Egypt to the east, Chad, Sudan and Niger to the south and Tunisia and Algeria to 

the west. Its total land mass is 1.8 million square kilometres, it is classified as being 

the seventeenth largest nation in the world and the fourth largest African country.  In 

terms of overall size, it is seven times the size of the United Kingdom (Tamatm et al., 

2011) having 94.5% of its land area as desert (Bindra et al., 2013). 

 

Its gross domestic product is comprised mainly of oil and gas, and it is the fifth most 

important supplier globally, giving it an important strategic position as a trading 

supplier across Europe (Mohamed et al., 2015; Khalil and Asheibi, 2015). 
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Figure 4. 1: Location of Libya (Google earth, 2016) (With permission from ASCE: 

https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

4.2.1. Population growth rate in Libya 
 

The Libyan Bureau of Statistics and Census (LBSC) is responsible for measuring 

changes in population in Libya by undertaking population surveys every decade as 

conducted between 1972 and 2012 (Table 4.1) (Bureau of Statistics and Census Libya, 

2013). The population growth rate equation was applied as written by (Sujay, 2012) 

to evaluate changes occurring over time. 

 

𝐏𝐆𝐑 = (
𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒑𝒓𝒆𝒔𝒆𝒏𝒕

𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 𝒑𝒂𝒔𝒕
)

𝟏

𝒏
 − 𝟏 ………………………………………………………………………..… (4.1) 

 

Where 𝑃𝐺𝑅 is population growth rate, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑟𝑒𝑠𝑒𝑛𝑡    is the population 

number in the second census, 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑎𝑠𝑡 is the population number in the first 

census and n is the period of time between 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑟𝑒𝑠𝑒𝑛𝑡   and 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑃𝑎𝑠𝑡 

 

Table 4. 1: Population growth rate in Libya between 1972-2012 

 

Year Population Million Growth Rates % 

1972 2.272  

1982 3.304 3.82 

1992 3.674 1.07 

2002 4.320 1.63 

2012 5.190 1.85 
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4.2.2. Water resource management in Libya  
 

Government policies regulating water supply are formulated at different levels.  Each 

body has a responsibility to stipulate conditions relating to public and national water 

supply, considering implications of waste and subsequent damage to the environment 

as well as protecting and managing the water sources across the country. There are six 

such authorities across different sectors that are responsible for managing water 

resources in Libya. 

 

4.2.2.1. General Water Authority (GWA) 
 

In 1972, the General Water Authority was set up as a major independent body to 

oversee all matters pertaining to water, but was subsequently established as the 

Ministry of Dams and Water Resources, specialising in agriculture in 1979. Later, in 

1991, it was run by an appointed committee as a Ministry of Agriculture.  In the early 

90’s the government focussed on a range of projects relating to water supply pipe 

networks, sewage systems and other necessary infrastructure developments which 

ultimately led to the establishment of the General Water and Sanitation Company 

(GWSCo) in 1997, supervised by the Municipal Secretary. Within this organisation 

are five offices covering whole cities across the country, such as Benghazi, Sirte, 

Tripoli, Sabha and Gharyan. After the establishment of the GMMR network project, 

this authority extended their responsibilities by employing specialists to deal with 

hydrogeology sciences, civil engineering applications, agriculture and other water-

related matters. The duties of these specialists included authorising, managing and 

regulating any water-related projects, provision of wells drilling licences, maintenance 

of groundwater wells, design and construction of dams, water-soil investigation 

studies, and supervision of RO practices inland and on the coastline. They regulated 

changes in quantitative and qualitative conditions of water resources while ultimately 

influencing government policy on national water resources (General Water Authority, 

2011). 

 

 Challenges 
 

Since the revolution in Libya, there have been several challenges posed that have 

threatened the ongoing projects that had been established prior to 2011.  Several of the 

existing water pumping stations and desalination and waste water treatment plants had 
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gone into decline due to lack of maintenance or skilled operators, combined with loss 

of investment and finance.  Following sanctions, import of specific parts required was 

stopped, causing plants to become neglected and dilapidated, resulting in a loss of 

credibility with economic partners (Senoussi, 2012). 

 

4.2.2.2. Great Man-Made River Authority (GMMRP) 
 

The Great Man-Made River Authority was established in 1983 for the purpose of 

extracting water from deep aquifers located in the South and conveying it to the North 

in the most practical and economically viable way, for consumption in the Libyan 

coastal areas. This authority is in charge of five phases of implementation that include 

establishing plans.  In addition, they are involved with all technical research and data 

required for operation.  In order to deal with large volumes of water to be consumed 

by different sectors such as municipal and industrial but mainly for agricultural needs, 

it was necessary to liaise with other relevant stakeholders to distribute water from the 

project to all concerned (Great Man-made River Authority, 2012).  

 

 Challenges 
 

Following the revolution in Libya, lack of spare parts, financial deficits and delays in 

completion of work orders have been some of the challenges facing the authority.  

Other problems such as poor condition of pipe networks, disinfection and water 

pumping stations combined with lack of maintenance of deep aquifers, have added to 

these issues (Alhabishe, 2012). 

 

4.2.2.3. Electricity and Renewable Energy Authority (GECOL) 
 

This was a government authority created in 1984 as an independent body known as 

General Electric Company of Libya (GECOL), responsible for constructing the 

national grid in the form of major steam and gas power stations, electric control 

centres, feed plants, and provision of electricity for national consumption. This 

authority was responsible for the provision of industrial water by the construction of 

desalination plants in cooperation with steam power stations, due to higher 

consumption by certain sectors such as industry, agriculture and domestic use.  Before 

2010, the majority of such desalination plants had been under the control of this 

government authority, which was in charge of design, signing contracts with the main 
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construction companies and subsequent management of these stations.  However, after 

2010, a resolution decreed that GECOL were to be only responsible for their own 

desalination plants for provision of potable water for residential and industrial 

consumption, leading to the establishment of the General Desalination Company of 

Libya (General Electric Company of Libya, 2015). 

  

 Challenges 
 

Prior to the revolution, there had been regular maintenance of power stations, but since 

2011, there have been major challenges affecting regular supply of electricity with 

frequent blackouts impacting on continuing maintenance and re-building of further 

desalination plants that work with power plants.  As mentioned earlier, shortages of 

spare parts, combined with financial restrictions and trading partners has resulted in 

compromised operating standards of desalination plants (Abulqasem, 2012). 

4.2.2.4. General Desalination Company of Libya (GDCOL) 
 

This authority took over the previous responsibilities of GECOL to regulate the larger 

capacity coastline desalination plants for the provision of freshwater.  Its main function 

was to produce non-conventional water sources and deliver potable water to all Libyan 

cities located close to the coastline.  They were also responsible for signing any new 

contracts, designing network piping, and managing coastline desalination plants while 

maintaining full compliance with legal, health and safety and environmental criteria 

(General Desalination Company of Libya, 2013). 

 

 Challenges 

 
Following the revolution, several international companies that had previously been 

involved in installation, expansion and maintenance of desalination plants were forced 

to relinquish their responsibilities due to the situation in Libya. Furthermore, the local 

authorities faced challenges due to lack of spare parts, finance, skilled labour and 

cessation of capacity building of existing plants (Sidon, 2013). 

 

4.2.2.5. National Oil Corporation Authority (NOC) 
 

In 1970 the Libyan General Petroleum Corporation Authority was replaced by the 

National Oil Corporation, which had been established in 1968. Their function was to 
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continue the exploitation of oil reserves for the purposes of providing and optimising 

the main source of power to the country to support the national economy (National Oil 

Corporation, 2014). Due to lack of water in the country, their role was to provide 

potable water for residential consumption and industrial water to service the oil fields 

by constructing desalination plants as a water supply. This authority was also 

responsible for the design and construction of seawater and brackish water 

desalination plants working in the oilfields (Al-Hengari et al., 2015). 

  

 Challenges 
 

Following political turmoil after the Libyan revolution, this authority has been unable 

to continue at the same capacity because of loss of skilled workforce, lack of 

maintenance and safety procedures that have all contributed to a decline in the 

operation of desalination plants working within the oilfields (Al-Hengari et al., 2015). 

4.2.2.6. General Environment Authority (GEA) 
 

Following environmental laws established in 1982 to protect the environment, this 

authority was established in 2000 as an independent body by monitoring and 

regulating industrial, agricultural and domestic activities (General environment 

Authority, 2011).  They were responsible for monitoring the operations of the five 

organisations (fig 4.2). 

 

In addition, they put in place awareness raising initiatives that educated the public 

about the consequences of pollution of the ecosystem while ensuring sustainable 

development. This involved regular inspections to prevent any activity that could be 

deemed damaging or toxic to the environment (General environment Authority, 2011). 

 

 Challenges 
 

After the revolution, the challenges facing this authority included reduced monitoring 

and inspection due to reduced workforce, financial problems and overall management 

of authorities (Mohamed, 2013). 
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Figure 4. 2: The administrative structure of water resources management in Libya 

 

4.3. Water resources available in Libya 
 

According to a geographical survey, water resources in Libya are divided into five 

different water regions (fig 4.3). 

 

 
 

Figure 4. 3: Water regions in Libya (With permission from ASCE: 

https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

4.3.1. Groundwater 
 

Groundwater is found in two types of aquifers, namely shallow aquifers with 

approximately 600 million m³/year water production (Abdudayem and Scott, 2014), 
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and deep aquifers (artesian aquifers) containing unsustainable fossil water. Water 

production and the types of groundwater reservoirs differ according to regions. 

 

4.3.1.1. Jabal Nafusah and Jifarah Plain water region 
 

Cultivation in this more densely populated northwest region thrives due to good 

quality soil. In this location, aquifers are of Cretaceous/Triassic formation. 

Approximately 350 m3/hr is discharged from artesian aquifers in contrast to 2-3 m3/sec 

from shallow wells (El Asswad, 1995). An estimated annual amount of 250 million 

m3/year constitutes total water production (Abdudayem and Scott, 2014) with an 

annual deficit of approximately 1,450 million m3 (El Asswad, 1995). Due to seawater 

incursion in this region, the amount of dissolved solid varies between 1,000-5,000 ppm 

(Wheida & Verhoeven, 2006; Abdudayem and Scott, 2014). 

 

4.3.1.2. Middle zone 
 

The middle zone lies between Fezzan and Alharuj Asward to the south, Jifarah Plain 

to the west and Aljabal Alakhdar to the east (El Asswad, 1995; Abdudayem and Scott, 

2014), where water consumption is approximately 400 million m3/year (Abdudayem 

and Scott, 2014) with an estimated deficit of 250 million m3 /year. The reservoirs are 

shown to be of tertiary quaternary formation, drilling has been carried out along the 

coastline on the shallow aquifers (El Asswad, 1995), According to Wheida & 

Verhoeven, 2006; Abdudayem and Scott, 2014 dissolved solids in the deep wells total 

anything between 1,000-5,000 ppm. 

 

4.3.1.3. Aljabal Alakhdar region 
 

This area borders Egypt to the east and constitutes the coastal belt and north eastern 

regions, including Benghazi Plain across to the Aljabal Alakhdar zone. The water 

deficit in this location is approximately 60 million m3/year (El Asswad, 1995; Wheida 

& Verhoeven, 2006) with an estimated water supply of 250 million m3/year 

(Abdudayem and Scott, 2014). In this location, reservoirs are of tertiary limestone 

formation above an impermeable line of late Cretaceous rock formation (El Asswad, 

1995), with dissolved solids ranging from 1,000-5,000 ppm (Wheida & Verhoeven, 

2006; Abdudayem and Scott, 2014). 
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4.3.1.4. Fezzan region 
 

In this region situated in the southwest of the country, ground water is collected from 

two aquifers, one which is of Devonion and Cabro-Ordovician extract, the other is 

formed from the early Cretaceous/Triassic period, made of Nubian sandstone. No 

water supplements the existing groundwater due to scarcity of rainfall, although 

according to water balance indicators, there is some existing ground water in the area 

of approximately 515 million m3 (El Asswad, 1995; Wheida & Verhoeven, 2006) 

Research has revealed that there is a huge quantity of underlying ground water situated 

in a deep layer beneath. The artesian aquifers produce approximately 1,800 million 

m3/year with total dissolved solid ranging from 200-1,500 ppm (Wheida & 

Verhoeven, 2006; Abdudayem and Scott, 2014). 

 

4.3.1.5. Al Kufrah and Assarir region 
 

This region is located in southern and eastern Libya, the amount of dissolved solids 

ranges from 0.5-3.5 ppm (Wheida and Verhoeven, 2006; El Asswad, 1995).  There are 

two aquifers in this area; one of tertiary sandstone formation close to Assarir, the other 

is situated in the centre of Al Kufrah basin, made of Nubian sandstone. Annual water 

consumption is estimated at 1,500 million m3/year with a surplus of approximately 

1,110 million m3.  The Great Man-Made River project (GMMRP) conveys 6.18 

million m3/day of all the fossil water through a network of pipes to the northern region 

(fig 4.4) (El Asswad, 1995).  

 
 

Figure 4. 4: Great Man-Made River Project in Libya (Kuwairi, 2006) (With permission from 

ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 
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This five-stranded project was initiated in the mid-1980’s and is an ongoing 

development (Al habashi, 2012). Part one set out plans to distribute 2 million m3/day 

of fresh water from south eastern basins in Tazerbo and Sarir across to the north 

eastern cities of Benghazi and Sirte through pre-stressed concrete 4m diameter 

concrete pipe lines (Kuwairi, 2006) with an annual discharged constant flow of 700 

million m3 (Wheida and Verhoeven, 2006). Out of the anticipated water production 

from this stage, 410,170 m3/day was destined for municipal use, 1,506,030 m3/day for 

agriculture and 83,800 m3/day allocated for industry (Middle East business 

intelligence, 2010). 

 

In the second stage, it was planned that 2.5 million m3/day of fresh water would reach 

Tarhouna and Tripoli (Abdelrhem et al., 2008) from East Jabal Hasouna and North 

East Jabal Hasaouna well fields. Similarly, water was passed through pipe lines 

originating from the well field, split into two parts for the purpose of reinforcing the 

first phase that was prone to collapsing wells and affected by the reduced number of 

coastal aquifers on the coastal belt. In this second phase, 1,316,090 m3/day was 

allocated for municipal use, 1,175,660 m3/day for agriculture and 8,250 m3/day 

directed to industry (Middle East business intelligence, 2010). 

 

While the third phase was still in progress, there was a plan to build a pump station at 

Kufra well field with 380 km of pipeline connecting Tazerbo to Sarir for the purpose 

of distributing a further 1.68 million m3/day of fresh water of which 253,000 m3/day 

was destined for municipal use and 1,427,000 m3/day for agricultural use, excluding 

the industrial sector (Middle East business intelligence, 2010). The last two phases are 

still ongoing and will focus on the construction of a pipeline from Gadammes to 

connect northwards towards the coastal areas of Zwuarah and Azzawiya. 

 

The fifth phase proposes to construct a pipe network from Jagboub oasis going 

eastward to Tubruk (Wheida and Verhoeven, 2006). A total of 5,000 kilometres of 

network pipes was used by GGMR, originating from 1,261 wells that had been drilled 

from 450 m up to 800 m with reservoir storage capacity reaching 54.9 million m3 

(Middle East business intelligence, 2010; Salem, 2007) (Table 4.2). 
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Table 4. 2: Location of wellfields and reservoirs of GMMRP (Middle East business intelligence, 

2010) 

 

Location of wellfields  Number of wells 

Ghadames system 106 

Northeast Jabal Hassouna system 60 

East Jabal Hassouna system 479 

West Jabal Hassouna system 47 

Brega pipe manufacturing plant, water system 7 

Sarir pipe manufacturing plant, water system 3 

Sarir wellfield system 126 

Tazerbo wellfield 108 

Kufra system 285 

Jaghboub 40 

Location of reservoirs Design capacity 

Ajdabiya holding reservoir 4 

Al-Gardabiya reservoir 6.8 

Omar Mukhtar reservoir 4.7 

Grand Al-Gardabiya reservoir 15.4 

Grand Omar Mukhtar reservoir 24 

 

4.3.2. Surface water  
 

Climate conditions in Libya are typically Mediterranean along the coastline whilst 

inland temperatures can reach 500C in the heat of summer but it is more likely to be 

around 400C elsewhere.  The average rainfall ranges from 200-500mm in Jabal Akhdar 

known as the Eastern Highlands to 750-800mm in the western area of Jabal Nafusah 

known as the Western Highlands (Zeleňáková et al., 2014). In the southern regions 

such as Kufra, Murzek and Sarir, these levels fall dramatically with barely any rainfall 

(Abdudayem and Scott, 2014). Over a period of a year, the average temperature is 

20.50C (Hamad et al., 2014). 

 

The annual rainfall in Jifarah Plain and Jabal Nafusah, the Middle Zone, 

AljabalAlakhdar and Fezzan area was approximately 197 million m3 in contrast to 

natural springs yearly flow at 184 million m3 (Dimkic et al., 2008). This reduces the 

productivity of the shallow aquifers, which rely on rainfall and trickled water.  

Following the construction of dams with a capacity up to 389.89 million m3/year, 

surface water resources have flourished. 

 

However, due to lack of maintenance and scarcity of rain, the existing storage capacity 

was reduced to approximately 61.35 million m3/year (Table 4.3) (Abdudayem and 

Scott, 2014). 
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Table 4. 3: Dam capacity in Libya (Abdudayem and Scott, 2014) 

 

Water Region Dame name Location 

Designed 

storage capacity     

(𝟏𝟎𝟔𝒎𝟑) 

Existing storage 

capacity 

(𝟏𝟎𝟔𝒎𝟑) 

Jabal Nafusah 

and Jifarah Plain 

Wadi Mejnean Ben-Gashir 58 10 

Wadi Ghan North Gharyan 30 11 

Wadi Zart Rabta 8.6 4.5 

Middle zone 

Wadi Ekaamm Zliten 111 13 

Wadi libda Homes 5.20 3.4 

Wadi Tibreat Zliten 1.60 0.5 

Wadi Edkaar Zliten 1.60 0.5 

Aljabal Alakhdar 

Wadi Qattara Benghazia 135 12 

Wadi Qattara-2 Bengazia 1.50 0.50 

Mrks Ras-hlal 0.15 0.15 

Zara Aloqurea 2 0.80 

Derna Derna 1.15 1 

Abomansour Derna 22.30 2 

Kufra/as-Sarir 

Garif Sirt 2.40 0.30 

Zhawia Sirt 2.80 0.70 

Ziud Sirt 2.60 0.50 

Benjuid Benjuid 0.34 0.30 

Wadi Zgar Jufarh 3.65 0.20 

Total storage capacity (million m3) 389.89 61.35 

 

4.3.3. Wastewater treatment plant 

 
There has been mixed reactions to the construction of wastewater treatment plants in 

Libya since the 1970’s (Abdudayem and Scott, 2014) due to a huge growth in the 

population along with urbanisation particularly on the Libyan coastline. Consequently, 

there has been a need to improve the infrastructure to support the growing population, 

including the development of highways, waterworks and sewage plants in both central 

and outlying areas. The latter was prioritised as a matter of public safety and for 

environmental impact. Furthermore, it necessitated investment in non-conventional 

water resources for other sectors, such as in agriculture (Wheida & Verhoeven, 2006). 

Indeed, in 1998, 6,000 hectares of agricultural land was irrigated by treated wastewater 

in Benghazi and Tripoli (Table 4.4) (Abdudayem and Scott, 2014). 

 
Table 4. 4: Agricultural areas irrigated by wastewater treatment plants (Abdudayem and Scott, 

2014). 

 

Project location Stage Discharge capacity, m3/day Irrigated area, hectare 

Tripoli 1st stage 27,000 2500 
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2nd stage 110,000 1500 

Benghazi 

1st stage 27,000 360 

2nd stage 27,000 658 

3rd stage 27,000 1000 

 

Over 30 wastewater treatment plants (WWTPs) (fig 4.5) were constructed along with 

approximately 6,000 kilometres of sewage collection and transport pipelines.  

Currently, several plants are in the process of being constructed to serve about 400 

inner cities and semi-urban areas (Cedare, 2014). Less than half the population (45%) 

consumes water from secondary/tertiary wastewater treatment plants in contrast to 

54% from rural and urban areas who are served with septic tanks and on-site 

decentralised units that are not regulated by the water authority (General Water 

Authority, 2011). 

 

 
 

Figure 4. 5: Location of WWTPs in Libya 

 

According to the Bureau of Statistics and Census Libya 2012, there are only 9 

WWTPS that run to optimum standards. Between the years of 1963 and 2009 across 

major cities, the design capacity of established larger plants reached 677,735 m3/day 

in contrast to existing levels of 66,233 m3/day (General Water Authority, 2011) (Table 

4.5). This is a result of reduced monitoring, checking and evaluation of plants some of 

which were not checked at all. In 2007, a plan was put in place for the development of 

a wastewater treatment plant but no mention was made as to whether it was for 

domestic and/or agricultural purposes. 

 
Table 4. 5: Design and Existing wastewater treatment plants in Libya between 1963-2009 

(Abdudayem and Scott, 2014). 
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Treatment 

Plant 

Installation 

Year 

Design 

Capacity 

(m3/day) 

Existing 

Capacity 

(m3/day) 

Remarks 

Ejdabya 1988 15,600 5,000 - 

Benghazi A 1965 27,300 - Out of order 

Benghazi B 1977 54,000 - Provisional test 

Al-merg A 1964 1,800 - Out of order 

Al-merg B 1972 1,800 - Out of order 

Al-beada 1973 9,000 - Under construction 

Tubruk A 1963 1,350 - Out of order 

Tubruk B 1982 33,000 - Out of order 

Derna 1965 4,550 - Out of order 

Derna 1982 8,300 - Under construction 

Sirt 1995 26,400 - Under construction 

Abo-hadi 1981 1,000 600 - 

Al-brega 1988 3,500 2700 - 

Zwuarah 1980 41,550 - Out of order 

Sebrata 1976 6,000 - Out of order 

Sorman 1977 20,800 - Under construction 

Azzawiya 1976 6,800 - Under construction 

Zenzour 1977 6000 - Not used 

Tripoli A 1966 27,000 - Out of order 

Tripoli B 1977 110,000 20,000 - 

Tripoli C 1981 110,000 - - 

Tajoura 1984 1,500 500 - 

Tarhouna 1985 3,200 1,260 - 

Gharyan 1975 3,000 - - 

Yefren 1980 1,725 173 - 

Meslata 1980 3,400 - - 

Homes 1990 8,000 - - 

Ziliten 1976 6,000 - Out of order 

Misrata A 1967 1,350 - Out of order 

Misrata B 1982 24,000 12,000 - 

East Garyat 1978 500 - Out of order 

West Garyat 1978 150 - Out of order 

Topga 1978 300 - Out of order 

Shourif 1978 500 - Out of order 

Sabha A 1964 1,360 - Out of order 

Sabha B 1980 47,000 24,000 Out of order 

Ghadames -

Hospital 
1980 8,000 - Out of order 

Ghadames-B 2007/2009 6,0000 - Under construction 
Total Design Capacity (m3/day) 677,735 66,233  

 

4.3.4. Water Desalination  
 

Water desalination technology is a vital tool in Libya to fulfil the demands of potable 

and industrial consumption, particularly in view of its extended coastline and a scarcity 

of water sources, which the GMMRP project cannot achieve in its own right (Elabbar 

and Elmabrouk, 2005). By the mid 1960’s desalination units were gradually 

established by petroleum organisations (Al-Hengari et al., 2015). Since then, Libya 

has embraced the use of two types of technology, thermal and membrane desalination 

making it one of the major users in the Mediterranean region. Due to a lack of ground 
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water and high contamination levels, different water authorities in the country are 

involved in desalination technology, such as General Desalination company of Libya 

(GDCOL), General Electric Company of Libya (GECOL), General Water and 

Sanitation Company (GWSCo), National Oil Corporation Authority (NOC), Libyan 

Iron and Steel company (LISCo), Industrial Research Centre of Tajoura (IRC). 

 

The total design capacity of all desalination plants in Libya was estimated to be 

847,600 m3/day. However, the total existing water production from desalination 

technology has fallen to a level of  493,647 m3/day due to low maintenance and certain 

desalination plants falling into decline (Table 4.6). 
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Table 4. 6: Design capacity of desalination plants in Libya 

 

Location of station 
Year of 

operation 

Method of 

Desalination 

Number 

of Unit 

Capacity/ 

Unit (m3/day) 

Design 

Capacity 

(m3/day) 

Existing 

Capacity 

(m3/day) 

Water 

authority 

Zwuarah 2006 MED 6 13,333.33 80,000 40,000 GDCOL 

Azzawiya 2009 MED 6 13,333.33 80,000 40,000 GDCOL 

Zeltin 1992 MSF 3 10,000 30,000 20,000 GDCOL 

Abutraba 2006/2007 MED 3 13,333.33 40,000 40,000 GDCOL 

Soussa 2009 MED 3 13,333.33 40,000 40,000 GDCOL 

Derna 2009 MED 3 13,333.33 40,000 40,000 GDCOL 

Khaleg Albomba 1989 MSF 3 10,000 30,000 10,000 GDCOL 

Tubruk-1 2001 MED-TVC 3 13,333.33 40,000 40,000 GDCOL 

Total Existing Capacity (m3/day)      270,000  

Zwuarah 1975/1978 MSF 3+1 13,500+4,500 45000 O/S GECOL 

Azzawiya power station  1999 RO 2 5000 10,000 8,000 GECOL 

Tripoli west-old 1978 MSF 8 6000 48,000 O/S GECOL 

Tripoli west-new 1999 MED 2 5000 10,000 7,000 GECOL 

Komas 1982 MSF 4 10,500 42,000 25,000 GECOL 

Zeltin-2 1978 MSF 3+1 13,500+4,500 18,000 O/S GECOL 

Zuitina-1 1983 MSF 3 10,000 30000 20,000 GECOL 

Zeltin-old 1964 EDR - - - O/S GECOL 

Misrata 1984 RO 5 10,000 50000 O/S GECOL 

Sirt-1 1976 MSF 1 9000 9000 O/S GECOL 

Sirt-2 1986 MSF 1 10,000 10,000 8000 GECOL 

Benjawad 1978 - - - 6000 O/S GECOL 

Ras-lnof 1983 MSF 3 24000 72000 O/S GECOL 

Al-Brega 1982 MSF 2 4,800 9,600 O/S GECOL 

Benghazi north 1978 MSF 8 6,000 48,000 10,000 GECOL 

Soussa 2001 MED 2 5,000 10,000 8,000 GECOL 

Total Existing Capacity (m3/day)      86,000  

Ajeelat 2000/2003 RO - 500  O/S GWSCo 

Sabratha-theatre 2000/2003 RO - 500  O/S GWSCo 

Sabratha- Talil 2000/2003 RO - 500  O/S GWSCo 

Sabratha- Al- hensher 1999 RO - 500  O/S GWSCo 

Sorman 2003/2003 RO - 500  O/S GWSCo 
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Total Existing Capacity (m3/day)      0  

Sirte Oil Company 1964/1989 MSF/MED/RO 9/3/7 - - 22,708 NOC 

Ras-Lanuf chemical complex 1983/1997 MSF 5 6000 - 30,000 NOC 

The Arabian Gulf Oil Company 1999 MED/RO 2/1 - - 750 NOC 

Azzawiya Oil Refining Company 1974/2004 MSF/MED 5/2 - - 5,500 NOC 

Mersa Brega petrochemical complex 1964/1989 MSF/MED 9/3 - - 21,387 NOC 

Mellitah Oil & Gas B.V 1982/2004/2005 RO/MSF/MED&ED 5/3/11 - - 20,340 NOC 

Zueitina Oil Company 1964/2004 RO/MED/ED 7/5   532 NOC 

Harouge Oil Operations 1986/2005 RO/MED/RO 7/1   680 NOC 

Tubruk oil refinery  MED 2 375  750 NOC 

Total Existing Capacity (m3/day)      102,647  

Libyan Iron and Steel company 1987 MSF 3 1,0000 3,0000 25,000 LISCo 

Total Existing Capacity (m3/day)      25,000  

Abu Kammash chemical complex 1981 MSF 1 2,400 2,400 O/S GCCI 

Industrial Research Centre- Tajoura 1983 RO 2 5000 1,0000 5,000 IRC 

Total Existing Capacity (m3/day)      5,000  

 
                              Reverse Osmosis (RO), Electro-dialysis Reversal vapour (EDR) Multi-Effect Distillation (MED),  

                              Multistage Flash Desalination (MSF), (O/S) Out of service
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The daily water production from the two main water sources including the first two 

stages of GMMER project and desalination plants in Libya are summarised in 

(Table 4.7). 

 
Table 4. 7: Daily water production from different water sources in Libya 

 

Supplier Name 
Potable water 

(m3/day) 

Industrial water 

(m3/day) 

Agriculture water 

(m3/day) 

Total 

(m3/day) 

GMMR 1,726,260 92,050 2,681,690 4,500,000 

Desalination Plants 382,029.4 123,871.6 0 505,901 

 

4.4. Cost of different water sources in Libya 
 

The main water sources in Libya are the Great Man-Made River project (GMMRP) 

and desalination plants so costs were examined analysing the cost of a cubic metre 

of water produced by GMMR against the cost of a cubic metre from a thermal 

desalination plant. The figures for GMMRP were dependent on previous 

publications, whereas those for thermal technology were based on a case study 

carried out at a thermal desalination plant located on the Libyan coastline. 

 

4.4.1. Cost of a cubic metre transferred by the GMMRP 
 

The predicted cost of the GMMRP is approximately $27.08 billion spread over 

three phrases, comprising an investment of $19.58 with a remaining amount of $7.5 

billion allocated for investment in the fourth and fifth phases ready for completion 

in 2025. (Bunta, 2010). Following completion of the first phase of the Great Man-

Made River project in 1991, the cost of a cubic metre was analysed to include a 

fixed capital cost of 7% at a price of $0.83. However, on close economic analysis 

during the formation of the GMMRP, it was found that the cost of a cubic metre of 

water conveyed from the southern area to the coastal belt was set at $0.25 

(Alghariani, 2007). 

 

4.4.2. Cost of a cubic metre Produced by thermal desalination 

technique (MED-TVC) 
 

4.4.2.1. Case study 
 

This study was conducted in September 2012 on the Libyan coastline around the 

Abotraba distillation plant (fig 4.6), which was built by a French company called 
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SIDEM. Abotraba was first commissioned in 2006/2007, situated in the district of 

Aljabal Alakhdar in the North-eastern region (N 32.648742°, E 20.824107°). 

Freshwater in this plant was obtained by the application of thermal energy to the 

seawater feed in multi effect stages with thermal vapour compression (MED-TVC) 

creating a distillate of fresh water while the brine stream is returned to the sea. 

Abotraba plant produces around 40,000 m3day-1 of effluent to the marine 

environment of which 26,666.7 m3day-1 is brine water. The main purpose of this 

station is to provide the cities such as El Marj, Al-Abiar, and Alakorah with fresh 

water. 

 

 
 

Figure 4. 6: Case study - Abotraba desalination plant (Google earth, 2016) (With permission 

from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

4.4.2.2. Data collection 
 

During the field study, data was collected from the control room and efficiency 

department of Abotraba desalination station in Libya. 

 

4.4.2.2.1. Chemical additives costs 
  

During the course of chemical treatment on MED-TVC units, a range of chemical 

additives are used including bio-fouling (chlorine), anti-scale, anti-foam, pH 

adjustment additives, sodium  bisulphite and acid for cleaning as required. The 

estimated annual expenditure is $736,620.54 with annual water production of 
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12,277,009 m3 over 2010.  Therefore, the calculated cost of chemical additives per 

m3 of desalted water for Abotraba distillation plant is $0.06. 

 

4.4.2.2.2. The cost of labour 
 

Labour costs comprise permanent staff for operation, routine maintenance and 

administration as well as desalination plant operators and members of management. 

These figures vary according to staff background and skillset. The Abotraba 

distillation plant employed 53 members of staff with annual salary overheads in 

2010 of $98,216.1 with annual water production of 12,277,009 m3 making the cost 

of labour per m3 of desalted water for Abotraba distillation plant $0.008. 

 

4.4.2.2.3. Fuel costs 
 

Fuel is the largest overhead in terms of total production costs of water.  The price 

of fuel against product water is directly influenced by fuel costs and likewise with 

product. Low productivity incurs high-steam consumption causing high-fuel 

consumption. Despite relatively constant prices of fuel in Libya, international 

prices can fluctuate, e.g. fuel oil ≈ $28/ton (Al-Hengari et al., 2015). Different types 

of fuel are used in MED-TVC units such as natural gas (propane gas), light and 

heavy fuel.  The price of the former has been set at $0.007/m3 by GDCOL.  

However, the total estimated annual expenditure of light and heavy fuel during 

2010 was $620,122.1 and $2,823,712.07 respectively with annual water production 

of 12,277,009 m3. Therefore, the calculated cost of light and heavy fuel per m3 of 

desalted water for Abotraba distillation plant is $0.005 and $0.23 respectively. 

 

4.4.2.2.4. Power consumption cost 
 

Consumption of power is dictated by plant capacity and distillation method. MED 

units consume more power than MED-TVC plants because they have high power 

consumption demands.  Overall, power overheads for heavy industrial operations 

in Libya are calculated at $0.52kWh (International Monetary Fund, 2013). Total 

annual expenditure in 2010 was estimated at $1,018,991.75 with annual total water 

production at 12,277,009 m3 making the cost of power consumption (kWh) per m3 

of desalted water for Abotraba distillation plant to be $0.083. 
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4.4.2.2.5. Steam consumption costs 

 

The evaporation procedure in MED-TVC units requires high-purity water for the 

purposes of generating steam.  The annual total expenditure for water consumption 

in 2010 was $98,216.1 with total annual water production of 12,277,009 m3 making 

the calculated cost of generating the steam per m3 of desalted water at $0.008. 

 

4.4.2.2.6. Maintenance costs 
 

Maintenance costs are calculated according to provision of spare parts, man-hours 

(skilled and unskilled) according to level of skills, plant size and capacity, age and 

location as an annual fixed cost.  The annual expenditure in 2010 for maintenance 

was $85,939.1 with a total annual water production of 12,277,009 m3 making the 

calculated cost of maintenance per m3 of desalted water to be $0.007.  

 

4.4.2.2.7. Cleaning costs 
 

There are daily cleaning costs alongside periodic cleaning procedures, which are 

authorised and carried out by local contracted firms to include the control room, 

internal roads, seawater pump station, chlorination unit and the management areas. 

At regular intervals, specialised cleaning is performed by the maintenance 

department at Abotraba distillation plant who focus on the cleaning of the seawater 

intake area, boiler and evaporation cells. The total annual expenditure in 2010 was 

estimated at $61,385.1 with the total annual water production 12,277,009 m3 

making the calculated cost of cleaning per m3 of desalted water $0.005.  

 

4.4.2.2.8. Cars and heavy machinery 
 

At the beginning of 2010, the General Desalination Company of Libya supplied 

four cars for the management staff and two forklift vehicles for chemical and 

maintenance departments to the Abotraba Distillation Plant.  The annual total 

expenditure was $159,601.1 with total water production of 12,277,009 m3 making 

the calculated cost of cars and heavy machinery per m3 of desalted water $ 0.013.    

 

4.5. Results and discussion  
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Libya has witnessed an increase in population and growth rate. Censuses conducted 

in Libya have revealed that the overall population has increased significantly from 

2.272 million in 1972 to 5.19 million in 2012. The population growth rate in the 

years 1982, 1992, 2002 and 2012 was equal to 3.82%, 1.07%, 1.63% and 1.85% 

respectively (fig 4.7). Such population growth usually increases demand for water 

in all sectors to satisfy its needs and the present limited water resources will 

undoubtedly become depleted over time. 

 

 
 

Figure 4. 7:  Libyan population between 1982 and 2012 (Bureau of Statistics and Census 

Libya, 2013) 

 

There are a wide range of policies pertaining to different aspects of water use, 

development and protection practised by different water authorities in the country.  

However, there is no actual defined policy, which makes clear distinction between 

all parties involved in the practice.  This has caused confusion and lack of clear 

guidelines or line of management regarding water management. Currently, the 

water demand exceeds the conventional water resources capacities and there is a 

significant water shortage in some regions of the country; the highest annual water 

deficit is in Jabal Nafusah and Jifarah Plain region (fig 4.8) due to the population 

increases in this region following rapid increases in agricultural and industrial 

activities. In addition, some of the coastal aquifers have been depleted (Al Farrah 

et al., 2011) and some phases of the GMMR project have not yet been completed. 

Furthermore, there is a water deficit in the Middle Zone region because of an 
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increase in industrial sector activities and depletion of the council wells (General 

Water Authority, 2011). However, in Aljabal Alakhdar region, the water deficit is 

very low because it is supported by new desalination plants and dams (General 

Water Authority, 2011). In contrast, there is surplus water in Fezzan, Alkufrah and 

Assarir region because those regions are supplied by Great Man-Made River tanks; 

additionally, most studies have indicated that the lower ground layers are rich in 

fresh water in those regions (General Water Authority, 2011). 

 

 
 
Figure 4. 8: Water Supply in Libyan water regions (El Asswad, 1995) (With permission from 

ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

The Libyan government has implemented the GMMR project as an effort to tackle 

the issue of water shortage on the coastal belt, it is estimated that the total amount 

of water transferred by the GMMR project is about 6.18 million m3/day. However, 

the project is not yet completed and the amount of water transferred is less than the 

amount planned, which is about 4.5 million m3/day. The water supplied by the 

Great Man-Made River is higher in the agricultural sector (60%) than in the 

industrial sector (2%) and the goal of this is to support the agricultural sector in 

achieving agricultural self-sufficiency. Additionally, the amount of water allocated 

for the domestic use is around 38%, while the desalination stations do not contribute 

to the supply of water for agricultural purposes. The amount of water allocated to 

the domestic sector is higher (76%) than in the industrial sector (24%) (fig 4.9).  
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Figure 4. 9: Water allocated for various uses (Middle East business intelligence, 2010; General 

Desalination Company of Libya, 2013) (With permission from ASCE: 

https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

Recently, the total numbers of desalination stations operating in Libya was 

estimated to be more than 20 stations, with a total actual water production of 

493,647 m3/day (Table 4.6). Most desalination plants are located on the coastline 

belt of the country; hence, the total brine disposal from those plants is estimated to 

be 329,098 m3/day, which is likely to pose a threat to the marine environment. The 

Libyan government is planning to increase  the capacities of  some coastal 

distillation plants which are authorised by General Water Desalination Company 

of Libya and General Electricity Company of Libya   (fig 4.10). 

  

 
 

Figure 4. 10: Expanded capacities of distillation plants planned (ICRC, 2102) (With 

permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

With regard to the cost of a cubic metre produced from a thermal desalination plant, 

the total expenses include all the costs of water consumption during the desalination 
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process, fuel types, electrical energy consumption, chemical additives, fixed 

charges, labour, cleaning, cars and heavy machinery used in the plant in 2010. 

 

From the data analysis (fig 4.11), its observed that the cost of a cubic metre of 

desalinated water by the multi-effect distillation with thermal compresses was 

about $0.43. In addition the cost of a cubic metre of light fuel was lower (0.005$) 

than the heavy fuel (0.23$), because the light fuel was used only in the start-up 

operation of the boilers. 

 

In addition, the cost of power consumption was slightly higher (0.083$/m3) than 

the chemical additives (0.06$/m3) because the plant was designed with a 

hypochlorination unit which works to generate sodium hydroxide and sodium 

hypochlorite. The cost of the steam consumption used in the desalination process 

inside the plant was slightly higher (0.008$/m3) than the natural gas (0.007$/m3) 

because natural gas is used in the start-up of the operation only. 

 

Moreover, the cost of maintenance, labour, cleaning, cars and heavy machinery was 

equal to 0.007$/m3,0.005$/m3,0,0.013$/m3 respectively. This study is consistent 

with previous studies, mentioned in the earlier chapter 2 (section 2.6) on the cost 

of a cubic metre of desalinated water, which depends on factors such as energy cost, 

desalination method, labour, maintenance cost… etc.  

 

However, the previous studies estimate that the cost of desalinated water by thermal 

desalination technologies was slightly higher because the cost of desalinated water 

can be influenced by the design capacity of the plant and the exchange rate of the 

Libyan dinar versus the United States dollar. The cost of a cubic metre produced 

by thermal desalination plants in Libya was also examined with the capital cost and 

it was as low as $0.4 (Al-Hengari et al., 2015). 
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Figure 4. 11: Cost of a cubic metre of desalinated water by MED-TVC  

 

The previous studies (Alghariani, 2007) revealed that the price of a cubic metre of 

water transferred by the GMMR for the first phase was 0.83 $, although the 

economic analysis performed during the conception of the GMMR project 

estimated that the price of a cubic metre transferred via the GMMR project to be 

approximately 0.25 $.  Additionally, the water transferred during the two main 

phases is about 4.5 million m3/day while the rest of the phases are still under 

construction. Hence, it is generally thought that this figure, which was calculated 

for the first stage of the GMMR project, will gradually increase during the 

remaining phases. Based on the above literature review and the results, it is 

important to explain that one of the major environmental concerns in Libya is the 

depletion of artesian aquifers water by the Great Man Made River as a result of 

overuse in the agricultural sector that may be causing a reduction in local 

groundwater wells, this will ultimately affect salinity and seawater penetration into 

the coastal aquifers. Another factor that contributes to environmental 

contamination is the use of pesticides for large-scale farming operatives which are 

supplied by the Great Man Made River. 

 

4.6. Summary 
 

Overall, it can be concluded that water resources in Libya are inadequate and 

seriously threatened by increased consumption by all sectors in response to an ever-
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increasing population.  The water management sector has a responsibility to 

safeguard the supply and provision of water in a holistic manner that ensures 

coordination from all stakeholders. This requires a seamless provision that involves 

all organisations involved in this vital service.  There is a clear need for the Libyan 

government to take stock and establish clear policies that can be adopted by all 

those involved in the sustainable use of the nations’s water resources. 

 

According to the results and literature review regarding the best desalination 

technology in Libya, it is obvious that thermal desalination, such as MED, is the 

best option due to low cost, efficacy and reliability.  

 

The next chapter will investigate the impact of thermal desalination plants on the 

Libyan coastline, which is the preferred location for future development and 

expansion.
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Chapter Five: Environmental Impact of Brine Disposed from   

Distillation Plants on the Libyan Coastline 
 

5.1. Introduction 
 

The critical shortage of water in many Mediterranean countries, has led to 

environmental issues relating to sea water desalination plants, which had not been 

of prior concern, specifically, the results of the by-products discharge involved in 

the production of freshwater (Gacia et al., 2007; Einav and Lokiec, 2003). 

Moreover, there is still scant information about the impact of desalination effluent 

on the marine ecosystem (Safrai and Zask, 2008). This primarily comes to attention 

while dealing with the largest reverse osmosis (RO) operated desalination plants 

e.g. in (Moreno et al., 2014 and Torquemada et al., 2005). In Europe, 92% of all 

new installations apply membrane technology and most of them employ the 

seawater reverse osmosis technique (SWRO) (Trancki et al., 2012) being more 

efficient, both financially and operationally in terms of cost, space and energy usage 

(Pagès et al., 2010). Alternatively, multi-effect distillation techniques (MED) and 

multi-effect distillation techniques with thermal vapour compression (MED-

TVC) are some of the most common techniques that provide a considerable 

quantity of potable and industrial water. These types of thermal desalination plants 

are preferred due to a number of advantages over other thermal desalination 

methods such as multi stage flash distillation technique (MSF). The following are 

some of the advantages: low operation costs, simple operating and maintenance 

procedures, high thermal efficiency, high heat transfer coefficient (Mazini, et al., 

2014; Andrianne and Alardin, 2002), lower energy consumption and higher 

performance ratio. More recently, multi stage flash distillation technique (MSF) 

has been used (Al-Shayji, 1998) and seawater desalination plants are therefore often 

placed in close proximity to power plants to supply them with industrial water for 

steam to generate power (Trancki et al., 2012). 

  

The most favoured brine disposal method is ocean brine disposal because of its 

efficiency and economic advantage over other methods (Torquemada et al., 2005; 

Ahmed et al., 2001). This option was generally acceptable for economic reasons 

but the vulnerability of the marine ecosystem towards changes in physico-chemical 

factors is making this method unsustainable, requiring more modern methods for 



88 

 

brine disposal (Einva and Lokiec, 2003). Therefore, economic reasons should not 

be the only factor to be considered when considering brine disposal techniques in 

order to safeguard the sustainability of the desalination process. Moreover, the 

ecological viability of desalination technologies needs to be assessed by four 

components which are environmental, economic, social and technological (Gude, 

2016) reflecting a holistic approach to the sustainability of desalination 

technologies (Afgan et al., 1999). Indeed, desalination technologies of seawater 

offer a range of human health, socio-economic, and environmental benefits by 

providing a seemingly unlimited, constant supply of high quality water without 

impairing natural fresh water ecosystems (Lattemann and Höpner, 2008). However, 

there have been concerns about the environmental effects of high salinity 

(69,000psu), high thermal energy (at 110C temperature higher that the ambient 

seawater) and chemical additives on the marine ecosystem due to the release of 

brine by distillation plants (Pagès et al., 2010; Darwish et al., 2013). 

 

Marine environments that receive the brine are typically subject to chemical and 

physical changes that can subsequently impact benthic communities.  These 

alterations include deterioration in the quality of the seawater and sediment owing 

to harmful chemical components, which include heavy metals, antiscaling, 

antifouling, antifoaming and anticorrosion additive substances. In the same way, 

changes in physico-chemical characteristics of the seawater salinity, temperature, 

pH and dissolved oxygen might affect a considerable number of marine species 

(Naser, 2013; Lattemann and Höpner, 2002; Sadhwania et al., 2005; Torquemada 

et al., 2005). 

 

One of these marine species is seagrass meadows which have become an area of 

concern as they are widespread across global coastal ecosystems (Moreno et al., 

2014).  The recent growth of desalination plants has altered the salinity levels in 

the Mediterranean Sea which vary between 36-40 (Latteman, 2010). This in turn 

has an adverse impact on benthic organisms (Yolanda and Luis, 2006), so the 

growth and development of seagrasses will subsequently be affected by osmotic 

stress resulting in compromised photosynthesis, reproduction and synthesis of new 

solutes (Moreno et al., 2014; Torquemada et al., 2005).  

 

http://rua.ua.es/dspace/browse?type=author&value=Fern%C3%A1ndez-Torquemada%2C+Yolanda
http://www.sciencedirect.com/science/article/pii/S0025326X14001155
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According to previous studies, Posidonia oceanic, a genus of seawater grass, is 

particularly sensitive to salinity of 38 psu causing growth reduction, 45 psu causing 

mortality, and 50 psu causing 100% mortality (Latorre, 2005; Torquemada and 

Lizaso, 2005). Furthermore, according to Ruiz and Romero (2001) it was found to 

have lower tolerance to other environmental factors such as reduction of light or 

high sedimentation rates (Manzanera et al., 1998).  Consequently, this species is 

known as a stenobiotic seagrass making it very vulnerable to increased salinity 

levels of effluent from desalination plants (Hartog, 1970). Another type of seagrass 

known as Cymodocea nodosa also exists in marine environments subjected to a 

range of salinity levels ranging from 17-41 psu and according to experimental study 

it was found, with salinity levels below 17 psu and above 50 psu, causing sustained 

considerable mortality, and 56 psu causing 100% mortality (Sandoval et al., 

2012;Yolanda and Luis, 2006). While different species displayed varying reactions 

for example it was observed that in areas of salinity up to a level of 50 psu, the size 

and survival rate of fish was reduced (Ahmed and Anwar, 2012; Parry, 1960). 

  

In addition to salinity levels, other environmental factors contributed to the growth 

and diversity of seagrass such as temperature, dissolved oxygen and pH, also 

affecting the distribution and growth of several seagrass species (Torquemada et 

al., 2005; Hillman et al., 1995). Although desalination continues to be a growing 

industry in Libya, little has been done to study the environmental implications 

(Elfallah and Bosrgob, 2005).  

 

Temperature is a key factor in the health and survival of many organisms, brine 

discharge has a relatively high temperature and low pH (Torquemada et al., 2005). 

Even a minimal increase to temperature (such as 1 0C) above ambient water over 

an extended period of time can alter species’ metabolism and composition in an 

area and even result in death (Marsh et al., 1986; Hiscock et al., 2004). Some marine 

organisms can temporarily adapt to minor changes in temperature, but not for any 

length of time. For other marine life, long-term temperature change can be fatal 

(Lattemann and Höpner, 2008). For this reason, the co-location can reduce the 

impact on the marine environment through mixing the power plant’s cooling water 

with the effluent from distillation plants, so the combined emissions will dilute the 

concentration of the brine and can speed up the dissolution of thermal and saline 

http://rua.ua.es/dspace/browse?type=author&value=Fern%C3%A1ndez-Torquemada%2C+Yolanda
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effluent in the sea (Ahmad and Baddour, 2014).  As temperature and salinity levels 

rise, the solubility of gases declines resulting in reduced levels of dissolved oxygen 

in seawater (Tonner, 2006) which limits respiration in marine organisms (Ahmed 

and Anwar, 2012). In turn, photosynthesis of marine angiosperms is compromised 

because the main ion hydrogen (pH) influences the concentration and formation of 

available carbonates (Torquemada et al., 2005; Beer and Waisel 1979). The three 

types of seagrasses were examined by Invers et al., 1997 to determine the effect of 

pH on their photosynthesis, namely Posidonia oceanica, Cymodocea nodosa, and 

Zostera noltii under controlled lab conditions. The former two displayed reduced 

levels of photosynthetic rates with an increase in pH and showed a significant 

reduction in net primary productivity (NPP) rates at pH 8.8. Conversely, Z. noltii 

showed high photosynthetic rates up to pH 8.8 but a significant reduction in primary 

productivity (NPP) rates at only pH 9.0.  

 

Desalination processes require considerable heat and electrical energy which 

ultimately produces CO2 emissions.  Fossil fuels provide the source of this energy 

for thermal and RO processes (Tzen, 2014).  In Mediterranean countries such as 

Libya, most of the distillation or power plants are designed to burn crude oil, gas-

oil or heavy fuel oil (Enka, 2013). The products of combustion most commonly 

released by fossil fuel are ash particles, carbon dioxide (CO2), carbon monoxide 

(CO), water vapour, Sulphur dioxide (SO2), and nitrogen oxides (NOx) (European 

Union, 2012). Dissolved inorganic carbon (DIC) exists in seawater in three major 

forms: bicarbonate ion (HCO3
-), carbonate ion (CO3

2-), and aqueous carbon dioxide 

(CO2 (aq)), which here also includes carbonic acid (H2CO3). At a pH of 8.2, ⁓88% 

of the carbon is in the form of HCO3
-, 11% in the form of CO3

2-, and only ⁓0.5% 

of the carbon is in the form of dissolved CO2. When CO2 dissolves in seawater, 

H2CO3 is formed. Most of the H2CO3 quickly dissociates into a hydrogen ion (H+) 

and HCO3
-. A hydrogen ion can then react with a CO3

2 ion to form bicarbonate. 

Therefore, the net effect of adding CO2 to seawater is to increase the concentrations 

of H2CO3, HCO3
-, and H+, and decrease the concentration of CO3

-2 and lower pH 

(Fabry et al., 2008), which are potential factors in global warming and oceanic 

acidification.  Previous work indicates that the oceanic uptake of anthropogenic 

CO2 and the concomitant changes in seawater chemistry have adverse 

consequences for many calcifying organisms, and may result in changes to 
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biodiversity, trophic interactions, and other ecosystem processes (Royal Society, 

2005).  

 

Research on the impact of the desalination plants on the marine environment has 

been recently carried out on some regional seas with high desalination activity, 

particularly in the Mediterranean Sea e.g. in Spain (Moreno et al., 2014; 

Torquemada and Lizaso, 2005); the Arabian Gulf e.g. in Saudi Arabia, Bahrain, 

Qatar and the United Arab Emirates (Hashim and Hajjaj, 2005; Naser, 2014; Uddin, 

2014); the Red Sea e.g. in Egypt (Mabrook,1994; Qdais, 2008; Rasul and Stewart, 

2015) or the southern coast of Australia in the upper Spencer Gulf (Dupavillon and 

Gillanders 2009), However, the majority of this work was conducted with 

mesocosms experiments under controlled conditions whereas little has been done 

in situ to test the tolerance of marine species to a real brine discharge (Ruíz  et al., 

2009; Gacia et al., 2007). Robets et al., (2012) reviewed about 62 scientific articles 

on brine discharge in marine water and found that 44% are mainly general 

discussions or opinions and lacked adequate quantitative data with regard to the 

impact on the marine environment. Although plans are in place to install further 

desalination plants on the Libyan coastline (Elhassadi, 2013), no scientific research 

has been carried out to study the environmental implications and the potential threat 

to marine ecosystems, therefore this chapter aims to determine the physico-

chemical effects of brine influx from thermal desalination plants on the receiving 

water and, further to this, to evaluate their impact on the marine ecosystems at the 

Zwuarah and West Tripoli distillation plants (ZWDP &WTRIS) on the Libyan 

coastline, where the marine environment is considered to be highly exposed to brine 

discharges. 

 

5.2. Methods and Materials 
 

5.2.1. Study Sites 

 

This study was conducted in May 2013 on the Libyan coastline around the Zwuarah 

and the West Tripoli distillation plants (ZWDP & WTRIS) (fig 5.1), which were 

built by a French company called SIDEM. ZWDP was first commissioned in 2006, 

located in the north-western side of the city of Tripoli (N 32.88333°, E 12.166667°). 

Freshwater in this plant was obtained by the application of thermal energy to the 
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seawater feed in multi effect stages without thermal vapour compression (MED) 

creating a distillate of fresh water while the brine stream is returned to the sea. 

ZWDP produces around 40,000 m3day-1 of effluent to the marine environment of 

which 26,666.7 m3day-1 is brine water. WTRIS was built in 1999 located west of 

the city of Tripoli (N 32.825822° E 12.972039°). The plant operates on a dual 

purposes basis to feed the power station with industrial water and produce 

freshwater, while concentrated brine steam is injected into the sea. WTRIS 

produces around 10,000 m3.day-1 with a total brine discarded 6,666.7 m3.day-1 . 

 

 
 

Figure 5. 1: Location of the ZWDP and WTRIS on the Libyan Coastline  

 

5.2.2. Seawater Samples 

 

Thirty eight stations (nineteen per site) were orientated in the direction where the 

brine was discarded at ZWDP and WTRIS (fig 5.2). At the two selected study sites, 

seawater samples were collected in a Nansen bottle of seven litres from each of the 

stations at both sites with different depths using GPS Map 420s to assess 

physiochemical parameters of seawater. Seawater samples bottles (300 & 500 ml) 

were rinsed with seawater from the Niskin bottle and then filled with sample 

seawater through a hose in order to reduce the contact with the atmosphere and it 

was numbered according to the station number. 1 mL of the WK1 manganese and 

1 mL of WK2 alkaline-iodide reagents were added to each sample using a pre-

calibrated pipette head and then intubated in a plastic bucket. Care is taken to ensure 
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that the samples are exposed to as little air as possible in order to keep the 

concentration of dissolved oxygen constant for each sample. 

 

 

 
Figure 5. 2: Sampling location at ZWDP and WTRIS on the Libyan Coastline: (Google 

earth, 2016) 

 

Physico-chemical parameters for the two selected sites, including salinity (psu), 

conductivity (µS/cm), dissolved Oxygen (mgl-1), pH and total dissolved solids 

(mgl-1), bottom and surface temperature (C0) were measured immediately at the 

time the seawater was sampled by using a YSI 556 MPS handheld Multiparameter 

instrument (YSI Ltd, Hampshire, UK). total alkalinity (mgl-1), bicarbonate (mgl-1), 

total hardness (mgl-1), calcium and magnesium hardness (mgl-1), chloride (mgl-1), 

nitrate (mgl-1), sulphate (mgl-1), phosphorus (mgl-1), sodium (mgl-1), potassium 

(mgl-1), calcium (mgl-1), magnesium (mgl-1), nitrate (mgl-1) and iron (mgl-1) were 

analysed in the lab at ZWDP (Table 5.1 and Table 5.2). Additionally, brine 

samples disposed from each plant (ZWDP & WTRIS) were analysed (Table 5.3) 

according to Hach methods, 2013 for water, wastewater and seawater to determine 

physico-chemical parameters (see appendix 5). 
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Table 5. 1: Measurement of Physico-chemical Parameters for Zwuarah Desalination Plant near to the outfall 
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37 St 1 32.892200 12.182430 9.90 26.00 24.00  Result 8.35 43 120.1080 120.1080 10,600 900 9,700 23,581 0.10 2,805 0.10 17,440 490.00 360.360 2,355 0.07 7.86

38 St 2 32.895220 12.204580 8.40 25.00 24.00 Result 8.37 37 80.0720 80.0720 6,846 200 6,646 20,702 0.00 1,500 0.01 14,800 420.00 80.080 1,614 0.00 8.39

39 St 3 32.887240 12.201320 8.30 28.50 27.00 Result 8.36 35 88.0792 88.0792 7,090 290 6,800 19,374 0.10 1,500 0.01 15,210 430.00 116.116 1,651 0.02 5.67

40 St 4 32.885510 12.200550 1.90 29.60 27.00 Result 8.40 35 96.0864 96.0864 7,500 300 7,200 19,374 0.10 1,500 0.01 15,390 430.00 120.120 1,748 0.02 5.37

41 St 5 32.885300 12.195690 2.80 29.00 27.00 Result 8.46 36 96.0864 96.0864 10,300 300 7,700 19,651 0.10 2,000 0.01 15,420 430.00 120.120 1,870 0.02 5.7

42 St 6 32.888560 12.192220 4.80 26.00 25.00 Result 7.85 45 110.0468 110.0468 9,636 700 8,936 24,633 0.00 2,537 0.03 17,100 470.00 280.280 2,170 0.06 7.84

43 St 7 32.889007 12.187804 9.80 26.00 24.00 Result 8.04 45 116.0000 116.0000 10,031 831 9,200 24,702 0.10 2,671 0.04 17,170 480.00 287.080 2,234 0.07 7.69

44 St 8 32.902530 12.175740 2.50 26.70 24.00 Result 8.03 37 88.0792 88.0792 6,000 200 5,800 20,204 0.00 1,000 0.00 11,050 407.70 80.080 1,408 0.00 8.3

45 St 9 32.900362 12.174861 4.20 25.40 27.00 Result 7.95 36 104.0936 104.0936 9,120 565 8,555 19,927 0.10 2,000 0.02 16,430 450.00 203.600 2,077 0.04 7.96

46 St 10 32.898550 12.173006 3.60 28.10 29.10 Result 8.22 38 107.0700 107.0700 9,398 698 8,700 20,758 0.10 2,000 0.03 16,850 459.14 245.340 2,112 0.05 6.15

47 St 11 32.896554 12.171383 0.50 27.00 27.50 Result 8.02 40 108.5585 108.5585 9,500 700 8,800 21,865 0.10 2,500 0.03 16,890 469.43 280.280 2,137 0.06 7.14

48 St 12 32.895202 12.171271 0.60 28.00 28.90 Result 7.76 40 107.8100 107.8100 9,446 700 8,746 21,865 0.10 2,000 0.03 16,850 464.28 280.000 2,123 0.05 6.17

49 St 13 32.892919 12.174963 0.40 26.00 23.00 Result 8.08 37 104.0936 104.0936 9,332 632 8,700 20,204 0.10 2,000 0.03 16,675 460.00 224.470 2,112 0.04 7.49

50 St 14 32.891360 12.177020 0.40 37.00 35.50 Result 8.37 47 128.1152 128.1152 15,571 1,361 14,210 25,629 1.15 4,148 0.18 18,550 570.00 454.040 3,450 0.70 5.13

51 St 15 32.890755 12.179172 0.60 30.00 29.00 Result 8.12 45 120.1080 120.1080 14,900 1,100 13,800 25,075 0.10 3,074 0.11 17,900 490.00 440.440 3,351 0.07 5.18

52 St 16 32.896058 12.189978 6.80 28.00 25.00 Result 8.24 38 104.0936 104.0936 8,400 300 8,100 20,758 0.10 2,000 0.02 15,810 450.00 120.120 1,967 0.03 6.89

53 St 17 32.892424 12.202064 8.50 25.50 26.00 Result 8.18 37 104.0900 104.0900 8,200 300 7,900 20,647 0.10 2,000 0.01 15,738 448.85 120.120 1,918 0.02 7.96

54 St 18 32.895530 12.179240 5.50 26.00 27.00 Result 8.21 38 104.0936 104.0936 8,573 400 8,173 20,758 0.10 2,000 0.02 16,400 450.00 160.160 1,984 0.04 7.46

55 St 19 32.892700 12.187170 4.80 27.00 25.00 Result 8.19 38 104.0936 104.0936 8,400 300 8,100 21,256 0.10 2,000 0.02 16,206 450.00 120.120 1,967 0.04 6.98

Physico-chemical Parameters 
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Table 5. 2: Measurement of Physico-chemical Parameters for West Tripoli Desalination Plant near to the outfall 
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63 St 1 32.834690 12.964960 22.00 24.00 22.00 Result 7.91 36 41 41 6,500 200 6,300 21,035 0.10 1,500 0.00 15,415 435 80 1,530 0.01 8.48

64 St 2 32.832150 12.962390 19.30 25.00 23.00 Result 8.00 36 45 45 6,819 269 6,550 22,073 0.10 2,000 0.00 15,725 450 108 1,590 0.02 8.00

65 St 3 32.834623 12.979451 17.60 24.00 22.00 Result 8.20 36 44 44 6,650 250 6,400 21,334 0.10 2,000 0.00 15,518 440 100 1,554 0.01 8.30

66 St 4 32.832140 12.977600 10.00 26.00 24.00 Result 8.10 35 47 47 6,850 275 6,575 23,027 0.10 2,000 0.01 15,980 450 110 1,596 0.02 7.96

67 St 5 32.830880 12.971510 4.50 26.00 22.00 Result 7.85 37 54 54 7,300 300 7,000 22,986 0.10 2,500 0.03 16,550 480 120 1,700 0.03 7.86

68 St 6 32.830880 12.967900 3.80 26.50 24.00  Result 8.10 43 50 50 6,900 300 6,600 22,142 0.10 2,000 0.01 16,190 470 120 1,602 0.02 7.94

69 St 7 32.829670 12.961240 11.80 26.30 24.00 Result 8.30 37 52 52 7,000 300 6,700 22,634 0.10 2,000 0.01 16,270 470 120 1,627 0.02 7.90

70 St 8 32.827290 12.967090 0.50 37.00 35.00 Result 8.20 55 172 172 10,161 1,361 8,800 24,850 0.20 2,843 0.15 17,000 510 545 2,137 0.13 7.06

71 St 9 32.826820 12.965150 0.50 38.00 36.50 Result 8.13 43 368 368 11,200 2,000 9,200 24,868 0.70 4,433 0.16 17,020 560 801 2,234 0.00 6.17

72 St 10 32.826051 12.961663 0.60 31.00 29.00 Result 8.34 42 82 82 8,700 700 8,000 24,079 0.10 2,586 0.05 16,740 490 280 1,942 0.03 7.43

73 St 11 32.827919 12.969882 0.50 27.00 25.00 Result 8.40 39 136 136 9,900 1,100 8,800 24,788 0.20 2,672 0.13 16,890 491 440 2,137 0.07 7.14

74 St 12 32.828930 12.969240 2.20 26.00 24.00 Result 7.86 39 86 86 9,200 900 8,300 24,721 0.20 2,629 0.08 16,870 490 360 2,015 0.04 7.31

75 St 13 32.828874 12.972887 0.50 25.00 23.00 Result 8.40 39 84 84 8,800 700 8,100 24,671 0.10 2,607 0.06 16,830 490 280 1,967 0.04 7.37

76 St 14 32.829930 12.976570 0.50 24.00 22.00 Result 8.00 37 52 52 7,286 300 6,986 22,813 0.10 2,490 0.03 16,550 480 120 1,696 0.03 7.88

77 St 15 32.835910 12.972850 18.00 22.00 21.00 Result 8.36 36 30 30 6,200 200 6,000 20,691 0.10 1,500 0.00 14,900 430 80 1,457 0.01 8.76

78 St 16 32.833140 12.969500 12.00 23.00 21.00 Result 8.47 37 40 40 5,000 200 4,800 20,617 0.10 1,500 0.01 11,680 410 80 1,165 0.00 8.96

79 St 17 32.833960 12.975690 8.50 23.00 21.00 Result 7.85 36 44 44 6,763 263 6,500 22,031 0.10 2,000 0.00 15,312 440 105 1,578 0.01 8.11

80 St 18 32.830322 12.974870 1.00 25.00 23.00 Result 8.20 36 62 62 7,700 500 7,200 23,119 0.10 2,500 0.04 16,570 490 200 1,748 0.03 7.76

81 St 19 32.828360 12.964400 3.50 28.00 26.00 Result 8.40 36 80 80 8,200 500 7,700 23,535 0.10 2,500 0.05 16,660 490 200 1,870 0.03 7.74

Physico-chemical Parameters  
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Table 5. 3: Measurement of Physico-chemical Parameters for Zwuarah and West Tripoli Desalination Plants from Evaporators 

 

Test parameter Test Method  Result-ZWDP Result-WTRIS 

pH HQ40D metre test pro. 8.5 8.07 

Salinity (PSU) HQ40D metre test pro. 52,000-56,000 51,994 - 57,000 

Total Alkalinity as CaCO3 (mg/l) Hach Method 8203 132 128 

Carbonate  CO3
--(mg/l) Hach Method 8203 0 0 

Bicarbonate HCO3
-(mg/l) Hach Method 8203 132 128 

Total  Hardness as CaCO3 (mg/l) Hach Method  8213 10,509.50 8,347.50 

Calcium Hardness as CaCO3 (mg/l) Hach Method 8203 1641.5 1361.22 

Magnesium Hardness as CaCO3 (mg/l) Hach Method 8203 8,867.10 6,986.30 

Chloride Cl-(mg/l) Hach Method 8207 28,784 21,050 

Nitrate NO3
-(mg/l)  Lange LCK 339 1.25 0.7 

Sulphate SO4
-- (mg/l) Lange  LCK 353 8,530 4,433 

Phosphorus total PO4
--- Lange LCK349 0.174 0.158 

Sodium Na+ (mg/l) Flame photometer 12,870 11,680 

Potassium k+ (mg/l) Flame photometer 561.1 491.2 

Calcium (mg/l) ASTM D1126-1 657.3 545 

Magnesium  (mg/l) ASTM D1126-1 2,153.15 1,696.28 

Iron  (mg/l) Hach Method 8008 0.08 0.02 

Temperature (0C) Hach Method HQ 40d 41-43 38-42.5 

O2 (mg/l) Hach Method HQ 40d 4.3 3.9 
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5.2.3. Seabed Sediment Samples 

 

Thirty eight seabed sediment samples were collected from each of the stations from 

the seafloor at both sites using a Van Veen Grab and a PVC pipe with a length of 

40 cm and a diameter of 10 cm with two stoppers at each end which is also used 

for collecting the sea sediments for stations. Each sample was stored in a plastic 

bag and labelled according to the station number so that each sample could be 

identified (depths 0.4 to 9.9 m, ZWDP; 0.5 to 22 m, WTRIS; Garmin GPS Map 

420s). All sediment samples were stored in a refrigerator at < -18 C° in the 

laboratory of the Marine Biology Research Centre of Tajura, Libya, where the 

sediments experiments were conducted. Organic content of the sediments was 

assessed (Table 5.4) and grain size was analysed (Table 5.5 & 5.6) according to 

Folk 1974 method for defining sediment type and degree of sediment kurtosis 

(KG), Skewness (SKI) and Standard Deviation (δI).   
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Table 5. 4: Organic content level (%) of the sediments for Zwuarah and West Tripoli Desalination Plants 

 

Organic content level (%) for ZWDP Organic content level (%) for WTRIS 

GPS.P Station Latitude Longitude Organic content level (%) GPS.P Station Latitude Longitude Organic content level (%) 

37 St 1 32.89220 12.18243 4.50 63 St 1 32.83469 12.96496 8.47 

38 St 2 32.89522 12.20458 7.90 64 St 2 32.83215 12.96239 7.60 

39 St 3 32.88724 12.20132 5.60 65 St 3 32.83462 12.97945 8.43 

40 St 4 32.88551 12.20055 5.60 66 St 4 32.83214 12.97760 6.06 

41 St 5 32.88530 12.19569 5.10 67 St 5 32.83088 12.97151 5.22 

42 St 6 32.88856 12.19222 5.10 68 St 6 32.83088 12.96790 5.30 

43 St 7 32.88901 12.18780 4.80 69 St 7 32.82967 12.96124 4.97 

44 St 8 32.90253 12.17574 7.30 70 St 8 32.82729 12.96709 4.97 

45 St 9 32.90036 12.17486 5.90 71 St 9 32.82682 12.96515 1.04 

46 St 10 32.89855 12.17301 6.50 72 St 10 32.82605 12.96166 1.08 

47 St 11 32.89655 12.17138 4.90 73 St 11 32.82792 12.96988 2.16 

48 St 12 32.89520 12.17127 4.90 74 St 12 32.82893 12.96924 6.42 

49 St 13 32.89292 12.17496 3.40 75 St 13 32.82887 12.97289 2.57 

50 St 14 32.89136 12.17702 2.80 76 St 14 32.82993 12.97657 3.49 

51 St 15 32.89076 12.17917 4.10 77 St 15 32.83591 12.97285 9.70 

52 St 16 32.89606 12.18998 5.80 78 St 16 32.83314 12.96950 7.90 

53 St 17 32.89242 12.20206 6.60 79 St 17 32.83396 12.97569 8.03 

54 St 18 32.89553 12.17924 4.40 80 St 18 32.83032 12.97487 3.81 

55 St 19 32.89270 12.18717 5.10 81 St 19 32.82836 12.96440 2.72 
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Table 5. 5: Classification used for defining sediment type and degree of sediment kurtosis (KG), Skewness (SKI) and Standard Deviation (δI) for ZWDP. 
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37 St 1 1.43 1.15 0.3 0.97

38 St 2 2.46 0.69 -0.2 0.70

39 St 3 3.03 0.88 -0.3 0.98

40 St 4 3.13 1.07 0.0 0.42

41 St 5 3.60 1.02 0.3 0.50

42 St 6 2.93 0.76 0.1 0.42

43 St 7 2.53 0.74 -0.4 0.96

44 St 8 1.06 0.43 -0.1 0.49

45 St 9 1.03 0.60 0.0 0.49

46 St 10 2.26 1.39 -0.3 0.51

47 St 11 2.26 1.39 -0.2 0.51

48 St 12 2.03 0.94 -0.2 0.65

49 St 13 2.26 1.99 -0.3 0.91

50 St 14 1.50 0.99 0.2 1.40

51 St 15 2.40 1.54 -0.1 0.52

52 St 16 1.40 1.13 0.1 1.07

53 St 17 1.19 0.75 -0.3 0.88

54 St 18 1.50 0.79 0.4 1.19

55 St 19 1.23 1.79 0.2 0.96

Sediment Analysis - Zwuarah Station Sediment classification Graphic Kurtosis (KG) Inclusive Graphic Skewness (SKI) Inclusive Graphic Standard Deviation (δI)
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Table 5. 6: Classification used for defining sediment type and degree of sediment kurtosis (KG), Skewness (SKI) and Standard Deviation (δI) for WTRIS. 
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63 St 1 2.10 0.89 -0.04 0.40

64 St 2 2.42 2.34 -0.26 0.32

65 St 3 2.49 2.73 0.15 0.29

66 St 4 2.10 0.87 -0.34 0.53

67 St 5 1.91 0.92 -0.07 0.69

68 St 6 2.30 1.25 -0.50 0.43

69 St 7 2.57 0.86 0.03 0.75

70 St 8 2.30 1.39 -0.10 0.46

71 St 9 0.70 2.54 0.11 0.37

72 St 10 1.93 0.96 0.07 0.59

73 St 11 2.76 1.26 0.28 0.52

74 St 12 2.73 0.86 -0.14 0.89

75 St 13 1.30 1.18 -0.04 0.89

76 St 14 1.80 1.28 0.48 0.56

77 St 15 2.13 1.39 0.23 1.00

78 St 16 1.90 1.27 0.08 0.87

79 St 17 1.93 0.85 0.16 0.83

80 St 18 3.00 1.07 -0.07 0.77

81 St 19 2.06 1.38 0.26 0.49

Sediment Analysis - West TRI Plant Sediment classification Graphic Kurtosis (KG) Inclusive Graphic Skewness (SKI) Inclusive Graphic Standard Deviation (δI)
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5.2.4. Biological Sample Collection 

 

Video footage was recorded by a scuba diver at both sites along transect lines (fig 

5.2) close to the seafloor by using a Fuji finepix f500 exr camera with Fuji wp-

fxf500 housing at different depths from 0.4 to 9.9 m at ZWDP and from 0.5 to 22 

m at WTRIS measured using Garmin GPS Map 420s. From each video 138 still 

images were randomly sampled and analysed (sixty-eight images for ZWDP and 

seventy for WSTRI images) using Image J Analysis software (Random Systematic 

Sampling) (Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda, 

MD http://imagej.nih.gov/ij/, 1997-2012) to determine percentage coverage for 

each species found in the photographs. The chosen size for each photo taken was 

20.00×20.00 cm and a 100 random dots grid (= 100%) was overlayed over each 

photo. The species underneath each dot in the photo was counted and identified. 

 

5.3. Statistical Analysis 
 

PRIMER® v 6 software (Plymouth Routines In Multivariate Ecological Research 

Version Six) was used (Clarke and Gorley 2006). Mean and ± Standard Error for 

community composition between the stations at each site (ZWDP & WTRIS) were 

analysed statistically. Differences in the community composition between the 

stations at each site were assessed using multivariate techniques based on the Bray-

Curtis Similarity index ANOSIM (Clarke, 1993) which is a simple non-parametric 

permutation procedure applied to a similarity matrix underlying the ordination or 

classification. ANOSIM calculates an R values (Global test) that lies between 0 and 

1 (Chapman and Underwood, 1999). The global R is similar to a regression analysis 

to measure how well the data modelling fits to the reality (Malcolm and Lancaster, 

2013), with R values of 1 denoting complete difference existing between groups 

and zero denoting no difference is observed between groups. If R is approximately 

zero, then the null hypothesis is accepted and if R equals 1 then the null hypothesis 

is rejected. R value will usually fall between 0 and 1 indicating some degree of 

discrimination between sites and the statistical significance that was chosen for the 

test for two sites between those stations was set at p˂0.05 and the average 

similarity, dissimilarity and abundance between stations were identified by using 

the SIMPER test (Clarke,1993) for each site, which looks at the role of individual 

species in contributing to the separation between two groups of samples and to 
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determine the main species contributing to the groups identified during the cluster 

analysis. Average Bray-Curtis dissimilarity was used between all pairs of sample 

and represented within this test. The nMDS plots were produced in terms of their 

species composition at the selected sites. The nMDS analysis plots a measure of 

similarity between the stations into multi-dimensional spaces so that the distance 

between objects corresponds closely to their input similarities. Simply stated, the 

closer two dots on the nMDS plot are the more similar the samples/stations. The 

stress value indicates how precisely the high dimensional relationships among the 

samples are represented, the lower the stress value, the less distortion occurs 

(Hargrave, 2005).  

 

The physico-chemical and seabed data (organic content levels and grain size) data 

for the different stations at both sites were normalised and then characterised by the 

principal component analysis (PCA scores; Primer etc). PCA scoring is a standard 

parametric ordination technique that plots the distribution of physico-chemical 

parameters and seabed data at each station in usually two dimensions based on 

linear combinations of variables. It is particularly suited for the analysis of physico-

chemical parameters and seabed sediments (organic content levels and grain size) 

data, further to summarise the statistical correlation between the physico-chemical 

parameters and seabed sediments (organic content levels and grain size) data with 

minimum loss of original information. Inspection of the correlation matrix revealed 

the presence of many coefficients of 0.3 or greater, in order to identify the important 

factor into each PCA (Pallant, 2010). Williams et al., 2010 stated that a factorability 

of 0.3 indicates that the factors account for approximately 30% relationship within 

the data. However, Hair et al., 1995 categorised these loadings using another rule 

of thumb as ± 0.30 = minimal, ± 0.40 = important, and ±.50=practically significant. 

  

Thus, as data from PCA scores did not meet ration level, linear relativity and normal 

bivariate distribution, nonparametric spearman’s rank correlation analysis was 

performed (Walls et al., 2013) using SPSS statistical software (IBM Corp. Released 

2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp) 

(see appendix 5). This was applied in order to determine the relationship between 

the physico-chemical, seabed sediments (organic content levels and grain size) 

parameters and the benthic community. If there are no repeated data values, a 
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perfect Spearman correlation of +1 or -1 occurs when each of the variables is a 

perfect monotone function of the other (Tabachnick and Fidell, 2013; Field, 2013). 

Level of significance for all tests was 5%. 

 

5.4. Results 
 

5.4.1. Differences between Stations in Community Composition at 

ZWDP 

 

Eight different species were found at ZWDP which included the seagrasses 

Posidonia oceanica and Cymodocea nodosa, unknown sea algae, the brown alga 

Taonia atomaria, the red alga Laurencia pinnatifida, the brown alga Padina 

pavonica, the brown alga Sargassum vulgare and fish Spicara flexuosa, Diplodus 

annularis and Diplodus vulgaris. Furthermore, non-living substrata such as sand 

and sea rocks were also found (fig 5.3). There was a significant difference in the 

community composition between the 10 stations (Global R: 0.6332, p<0.001; fig. 

5.4).  

 

 

 
Figure 5. 3: Community Composition at each Station for ZWDP (With permission from 

ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 
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Figure 5. 4: Two-dimensional ordination plots from multidimensional scaling analysis of 

Bray-Curtis similarity index (2D stress: 0.09; 5 replicates per station). 

 

There was a significant difference in the community composition between stations 

37, 38, 39, 44 and 53 (38: Global R: 1, p< 0.001; average dissimilarity 92.02%; 39: 

Global R: 0.912, p< 0.001; average dissimilarity 97.31%; 44: Global R: 1, p< 0.001; 

average dissimilarity 94.75%; 53: Global R: 1, p<0.001; average dissimilarity 

97.10%). P. oceanica contributed 44.61% to the average dissimilarity between 

station 37 and 38, 42.74% to the average dissimilarity between stations 37 and 44 

and 97.10% to the average dissimilarity between stations 37 and 53.  Average 

percentage cover of P. oceanica was higher at station 38 (82.11%±42.96%) than at 

station 37 where it was zero. Similarly, average percentage cover of P. oceanica 

was higher at station 44 (81%±41.72%) than at station 37 where it was zero. 

Likewise, average percentage cover of P. oceanica was a higher at station 53 

(93.70%±48.07%) than at station 37 where it was zero. Unknown sea algae 

contributed 27.12% to the average dissimilarity between stations 37 and 39 with a 

higher average percentage cover at station 39 (52.78%±33.30%) than at station 37 

where it was zero. While, Padina pavonica contributed 9.93% to the average 

dissimilarity between stations 39 and 37 with a higher average percentage cover at 

station 39 (19.28%±15.56%) than at station 37 where it was zero. There was a 

significant difference in the community composition between stations 38, 39 and 

40 (39: Global R: 0.911, p= <0.001; average dissimilarity 94.34%; 40: Global R: 
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0.709, p=<0.001; average dissimilarity 86.88%). P. oceanica contributed 43.50% 

to the average dissimilarity between stations 38 and 39 and 44.51% to the average 

dissimilarity between stations 38 and 40. Average percentage cover of P. oceanica 

was higher at station 38 (82.11%±42.96%) than at station 39 where it was zero. 

Similarly, average percentage cover of P. oceanica was higher at station 38 

(82.11%±42.96%) than at station 40 (4.78%±8.44%). Unknown sea algae 

contributed 26.43% to the average dissimilarity between station 38 and 39 and 

26.85% to the average dissimilarity between stations 38 and 40. Average 

percentage cover of unknown sea algae was lower at station 38 (5.22%±15.87%) 

than at station 39 (52.78%±33.30%). While, average percentage cover of unknown 

sea algae was higher at station 40 (49.56%±30.95%) than at station 38 

(5.22%±15.87%). The other important species at these stations was Padina 

pavonica which contributed 10.24% to the average dissimilarity with a higher 

average percentage cover at station 39 (19.28%±15.56%) than at station 38 where 

it was zero. Similarly, Sargassum vulgare contributed 4.63% to the average 

dissimilarity with a higher average percentage cover at station 39 (8.78%±23.20%) 

than at station 38 where it was zero (fig 5.5). Moreover, Laurencia pinnatifida 

contributed 7.48% to the average dissimilarity with a higher average percentage 

cover at station 40 (13%±13.24%) than at station 38 where it was zero (fig 5.6). 

There was a significant difference in the community composition between stations 

39, 44 and 53 (44: Global R: 0.943, p=<0.001; average dissimilarity 96.21%; 53: 

Global R: 0.961, p=<0.001; average dissimilarity 97.19%). P. oceanica contributed 

42.07% to the average dissimilarity between stations 44 and 39 and 48.18% to the 

average dissimilarity between stations 53 and 39. Average percentage cover of P. 

oceanica was higher at station 44 (81%±0%) than at station 39 where it was zero. 

Similarly, average percentage cover of P. oceanica was higher at station 53 

(93.7%±48.06) than at station 39 where it was zero. Unknown sea algae contributed 

26.72% to the average dissimilarity between stations and 39 and 44 and 26.19% to 

the average dissimilarity between stations 39 and 53. Average percentage cover of 

unknown sea algae was higher at station 39 (52.78%±4.38%) than at station 44 

(4.38%±19.4%). Similarly, the average percentage cover of unknown sea algae was 

higher at station 39 (52.78%±33.3%) than at station 53 (3.4%±31.01%). In 

addition, Padina pavonica contributed 10.04% to the average dissimilarity between 

station 39 and 44 and 9.94% to the average dissimilarity between stations 39 and 
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53. Average percentage cover of Padina pavonica was higher at station 39 

(19.28%±15.56%) than at station 44 where it was zero. Similarly, average 

percentage cover of Padina pavonica was higher at station 39 (19.28%±51.56%) 

than at station 53 where it was zero (fig 5.7). Moreover, C. nodosa contributed 

4.88% to the average dissimilarity between stations 39 and 44 with a lower average 

percentage cover at station 39 (0.11%±0.29%) than at station 44 (9.38%±28.9%) 

(fig 5.8). There was a significant difference in the community composition between 

stations 40, 44 and 53 (44: Global R: 0.733, p=<0.001; average dissimilarity 

89.42%; 53: Global R: 0.821, p=<0.001; average dissimilarity 91.39%). P. 

oceanica contributed 42.62% to the average dissimilarity between stations 40 and 

44 and 48.65% to the average dissimilarity between stations 40 and 53. Average 

percentage cover of P. oceanica was lower at station 40 (4.78%±8.44%) than at 

station 44 (81%±41.72%). Similarly, average percentage cover of P. oceanica was 

lower at station 40 (4.78%±8.44%) than at station 53 (93.7%±48.06%). Unknown 

sea algae contributed 26.60% to the average dissimilarity between stations 40 and 

44 and 26.20% to the average dissimilarity between stations 40 and 53. Average 

percentage cover of unknown sea algae was higher at station 40 (49.56%±30.95%) 

than at station 44 (4.38%±19.4%). Similarly, the average percentage cover of 

unknown sea algae was higher at station 40 (49.56%±30.95%) than at station 53 

(3.4%±31.01%). In addition, Laurencia pinnatifida contributed 7.27% to the 

average dissimilarity between stations 40 and 44 and 7.11% to the average 

dissimilarity between stations 40 and 53. Average percentage cover of Laurencia 

pinnatifida was higher at station 40 (13%±13.24%) than at station 44 where it was 

zero (fig 5.9). Similarly, the average percentage cover of Laurencia pinnatifida was 

higher at station 40 (13%±13.24%) than at station 53 where it was zero (fig 5.10). 
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Figure 5. 5: Species coverage [%] Mean ± SE between station 38 and 39 

 

 
 

Figure 5. 6: Species coverage [%] Mean ± SE between station 38 and 40 
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Figure 5. 7: Species coverage [%] Mean ± SE between station 39 and 53 

 

 

 
Figure 5. 8: Species coverage [%] Mean ± SE between station 39 and 44 
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Figure 5. 9: Species coverage [%] Mean ± SE between station 40 and 44 

 

 
 

Figure 5. 10: Species coverage [%] Mean ± SE between station 40 and 53 

               

5.4.2. Differences between Stations in Community Composition at 

WTRIS 

 

Four species were found at WTRIS which included the seagrasses Posidonia 

oceanica and Cymodocea nodosa, fish Xyrichtys novacula and Diplodus annularis 

and a sea anemone species Anemonia sulcate, in addition to non-living substrata 

such as sand and sea rocks (fig.11). There was a significant difference in the 
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community composition between the 10 stations (Global R: 0.31, p<0.0001; fig 

5.12). 

 

 

 
Figure 5. 11: Community Composition at each Station for WTRIS 

 

 
 

Figure 5. 12: Two-dimensional Ordination plots from multidimensional scaling analysis of 

bray-Curtis similarity index (2D stress: 0.01; 5 replicates per station) for WTRIS 

 

There was a significant difference in the community composition between stations 

63, 65, 77, 78 and 79 (65: Global R: 1, p= <0.001; average dissimilarity 42.67%; 

77: Global R: 0.536, p= <0.001, average dissimilarity 30.88%; 78: Global R: 0.628, 

p= <0.001; average dissimilarity 47.50%; 79: Global R: 0.646, p= <0.001; average 
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dissimilarity 25.81%). C. nodosa contributed 50% to the average dissimilarity 

between stations 63 and 78, 50% to the average dissimilarity between stations 65 

and 78, 40.13% to the average dissimilarity between station 77 and 78 and 50.69% 

to the average dissimilarity between station 78 and 79. Average percentage cover 

of C. nodosa was higher at station 63 (42.67%±50%) than at station 78 where it 

was zero. Similarly, average percentage cover of C. nodosa was higher at station 

65 (30.88%±50%) than at station 78 where it was zero. Likewise, average 

percentage cover of C. nodosa was higher at station 77 (38.13%±33.87%) than at 

station 78 where it was zero. In addition, average percentage cover of C. nodosa 

was higher at station 79 (25.93%±50.02%) than at station 78 where it was zero. 

 

5.4.3. Environmental parameters at ZWDP  

 

At ZWDP, PCA analysis on physico-chemical parameters resulted in five 

components (fig 5.13) and the pattern is best explained in PC1 with 67.6% of the  

total variance, however, addition of  PC2, PC3, PC4 and PC5 accounted for 81.4%, 

88.2%, 92.4% and 94.9% of the total variance respectively.  

 

 

 
Figure 5. 13: Principal components analysis (PCA) ordination of physico-chemical parameters 

for ZWDP. (With permission from ASCE: 

https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

The pattern between the stations in PC1 is best explained with Total hardness as 

CaCO3 (mgl-1) (-0.3), Ca+2 hardness as CaCO3 (mgl-1) (-0.3), Mg+2 hardness as 
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CaCO3 (mgl-1) (-0.3), SO4
-2 (mgl-1) (0.3), PO4

-3 (mgl-1) (-0.3), k+ (mgl-1) (-0.3), Ca+2 

(mgl-1) (-0.3) and Mg+2 (mgl-1) (-0.3). In PC2 the pattern between the stations is 

best explained with sea surface temperature (°C) (0.4), sea bottom temperature (°C) 

(0.3), pH (0.3), NO3- (mgl-1) (0.3), O2 (mgl-1) (-0.4). In PC3 the pattern between the 

stations is best explained with Depth (m) (0.7) and pH (0.6). In PC4 the pattern 

between the stations is best explained with pH (-0.4), NO3
- (mgl-1) (0.4), Na+ (mgl-

1) (-0.4), Fe (mgl-1) (0.4) and Dissolved oxygen DO (mgl-1) (0.5). In PC5 the pattern 

between the stations is best explained with salinity (psu) (0.4), Cl- (mgl-1) (0.4) and 

Na+ (mgl-1) (-0.5). Positive relationship between score of PC1 and seagrass 

percentage cover Posidonia oceanic was determined using Spearman rank 

correlation coefficient (rs=0.673; p=0.002) at ZWDP. 

 

Seabed sediment classification which is obtained from analysing the organic 

content levels and sieves for the mean grain size in (Table 5.4 and 5.5 for ZWDP; 

section 5.2.3) were categorised by the principal-component analysis (PCA) in order 

to determine the distribution of seabed sediment classification in area for ZWDP. 

At this site, PCA analysis on the seabed sediment resulted in two components 

representing the mean grain size and organic content levels at each station (fig 5.14) 

and the pattern is the best explained in PC1 with 53.7% of the total variance, 

however the PC2 accounted for 100% of the total variance.  

 

 
 

Figure 5. 14: Principal components analysis (PCA) ordination of sediment data for ZWDP: 

(sediment classifications: Ms= medium sand, Fs= fine sand, VFS=very fine sand). 
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The pattern between the stations in PC1 is best explained with organic material (g) 

(0.707) and mean grain size (Mz) (Ø) (-0.707). In the PC2, the pattern between the 

station is best explained with organic material (g) (-0.707) and mean grain size (Mz) 

(Ø) (0.707). The organic content levels which were reported in (Table 5.4 for 

ZWDP; section 5.2.3) for ZWDP (<10%) in all stations). Additionally, a positive 

relationship between organic content and seagrass (P. oceanica) was determined 

using Spearman rank correlation coefficient (rs=0.573; p=0.001).  

 

There was a significant positive correlation coefficient between organic content 

level in sediments and seagrass (P. oceanica) (rs=0.573; p=0.01) and non-

significant positive correlation coefficient between mean grain size and sea grass 

(P. oceanica) (rs=0.359; p=0.132).  

 

The statistical parameters of the grain size (Mz) have been a major parameter in 

delineating the influence of depositional processes. Generally, standard deviation 

and skewness are considered environmentally sensitive indicators, while the mean 

is a reflection of competence of the transport mechanism (Rabiu et al., 2011). The 

results obtained from the sieves analysis in (Table 5.5; section 5.2.3 for ZWDP) 

shows that the mean grain size (Mz), which is reflection of the overall size of the 

sediment, ranged from 1.03 Ø – 3.6 Ø (medium - fine - very fine sand) (fig.5.15), 

while the Graphic Kurtosis (KG) was between 0.66 Ø – 2.46 Ø (very platykurtic – 

platykurtic - mesokurtic - leptokurtic -very leptokurtic). Skweness (SKI) values 

ranged from -0.4 Ø to 0.4 Ø (strongly positive - positive - symmetrical - negative - 

strongly negative skewed) while the Inclusive Graphic Standard Deviation (δI) 

which is a measure of sorting varied from 0.4 Ø – 1.4 Ø (well-moderately well-

moderately-poorly sorted). The classification of the sediments at ZWDP, show that 

the percentage cover of fine sand was higher than medium and very fine sand. 
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Figure 5. 15: The classification of the sediments at ZWDP 

 

Differences in physico-chemical parameters in the seawater samples taken near the 

outfall of ZWDP indicated that all stations at this site have a wide variation in the 

level of total hardness as CaCO3 mgl-1, ranging from 6,000 to 15,571 mgl-1. The 

minimum concentration of total hardness as CaCO3 mgl-1 was observed at station 

44 at 2.5 m depth and the maximum was observed at station 50 at 0.4 m depth (fig 

5.16).  The Ca+2  hardness as CaCO3 mgl-1 in the seawater study area fluctuated 

between a minimum of 200 mgl-1 at station 38 at 8.4 m and a maximum of 1,361 

mgl-1 at station 50 at 0.4 m depth (fig 5.17). 

  

 

Figure 5. 16: Total Hardness (mgl-1) at ZWDP           Figure 5. 17:  Ca+2 Hardness (mgl-1) at ZWDP 

   (With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224)  
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The minimum concentration of Mg+2   hardness as CaCO3 was 5,800 mgl-1  recorded 

at station 44 at 2.5 m depth, while maximum value was 14,210 mgl-1 detected at 

station 50 at 0.4 m depth (fig 5.18). All stations at ZWDP showed a wide variation 

in the concentration of calcium Ca+2 ions. The highest concentration of Ca+2  was 

at station 50 (Ca+2  =454 mgl-1) at 0.4 m depth, while the lowest of Ca +2 was at 

station 38 and 44, with the same level (Ca+2=80 mgl-1) with 8.4 and 2.5 m depth 

respectively (fig 5.19).  

 

 
 
Figure 5. 18: Mg+2 Hardness (mgl-1) at ZWDP         Figure 5. 19: Ca +2 (mgl-1) at ZWDP 

(With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

All stations had a wide variation in the concentration of magnesium ions Mg+2. The 

highest concentration level was recorded at station 50 (Mg+2 =3,450 mgl-1) with 0.4 

m depth, while the lowest level of Mg+2  ion was reported at station 44 (Mg+ 2=1,408 

mgl-1) with 2.5 m depth (fig 5.20). There was a wide variation in the concentration 

of Sulphate (SO4 
-2). The maximum concentration of SO4

- 2 was observed at station 

50 (SO4 
-2 = 4,148 mgl-1) at 0.4 m depth and the minimum concentration of SO4

- 2 

was recorded at station 44 (SO4 
-2 =1,000 mgl-1) at 2.5 m depth (fig 5.21). All 

stations indicated a narrow variation in the concentration of Potassium ions K+ mgl-

1, varying from 408 to 570 mgl-1.  The lowest concentration of K+ was observed at 

station 44 (K+ =408 mgl-1) at 2.5 depth, while the highest concentration of K+ was 

found at station 50 (K+ =570 mgl-1) at 0.4 m depth (fig 5.22). All the stations at this 

site revealed a wide variation in the concentration of sodium ions (Na+). High 

concentration of Na+ was observed at station 50 at 0.4 m (Na+ =18,550 mgl-1), while 
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the lowest concentration was detected at station 44 (Na+ =11,050 mgl-1) at 2.5 m 

depth (fig 5.23).  

 

 
 
Figure 5. 20: Mg +2 (mgl-1) at ZWDP                         Figure 5. 21: SO4 - 2 (mgl-1) at ZWDP 
(With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

 
 
Figure 5. 22: K+ (mgl-1) at ZWDP                              Figure 5. 23: Na+ (mg/l-1) at ZWDP 
(With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

There was a wide variation in the concentration of Cl-, ranging from 19,374 to 

25,629 mgl-1. High concentration of Cl- was observed at station 50 (Cl- =25,629 

mgl-1), while the lowest concentration was detected at station 39 and 40 (Cl- 

=19,374 mgl-1) at 8.3 m and 1.9 m depth respectively (fig 5.24). There was a narrow 

variation in the concentration of total phosphorus PO4
 -3 (mgl-1), ranging from zero 

to 0.177 mgl-1 (fig 5.25).   
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Figure 5. 24: Cl- (mgl-1) at ZWDP                             Figure 5. 25: PO4 -3 (mgl-1) at ZWDP 
(With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 
 

All the stations at the site revealed a narrow variation in the concentration of iron 

ions.  Fe, ranging from zero at station 38 and station 44, with 8.4 m and 2.5 m depth 

respectively to 0.7 mgl-1 at station 50 at 0.4 m depth (fig 5.26). The concentration 

of nitrate NO3 
- showed narrow variation, ranging from zero at station 38, 42 and 

44 as minimum concentration at 8.4, 4.8 and 2.5 m depth respectively to 1.15 mgl-

1 at station 50 at 0.4 cm (fig 5.27). 

 

 
 
       Figure 5. 26: Fe (mgl-1) at ZWDP                        Figure 5. 27: NO3 - (mgl-1) at ZWDP  

    (With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 
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The highest temperature occurred at the surface layer, where it ranged from 25 to 

37 °C at stations 38 and 50 at depth 8.4 and 0.4 m respectively, while the lowest 

one recorded at the seabed ranged from 23 to 35.5 °C at stations 49 and 50 at depth 

0.4 m respectively (fig 5.28 and 5. 29).  

 

 
 
Figure 5. 28: Surface temperature (0C) at ZWDP     Figure 5. 29: Bottom temperature (0C) at ZWDP 

(With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

The hydrogen ion concentration (pH) values revealed wide variations ranging from 

7.76 to 8.46 during the study period. The minimum value was observed at station 

48 with 0.6 m depth (pH=7.76) and the maximum was observed at station 41 at 2.8 

m depth (pH=8.46) (fig 5.30).  There was a wide variation in the level of salinity 

ranging from 35 to 47 psu. The minimum value was observed at stations 39 and 40 

at 8.3 and 1.9 m depth (Salinity=35 psu) respectively and the maximum was 

observed at station 50 at 0.4 cm depth (Salinity=47 psu) (fig 5.31). 

 

 Dissolved oxygen (DO) fluctuated between a minimum of 5.13 mgl-1 at station 50 

at 0.4 m depth and a maximum of 8.39 mgl-1 at station 38 at a depth of 8.4 m (fig 

5.32).  The organic matter content level in collected sediments at ZWDP was less 

than 10% at each site, all the stations at these sites indicated a wide variation in the 

organic matter level ranging from a minimum 2.8 % at station 50 to a maximum 

7.9 % at station 38 (fig 5.33).  
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         Figure 5. 30: pH at ZWDP                             Figure 5. 31: Salinity (psu) at ZWDP 

 (With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

  
 
Figure 5. 32: Dissolved oxygen (DO) (mgl-1) at ZWDP   Figure 5. 33: Organic materials (%) at ZWDP 

(With permission from ASCE: https://ascelibrary.org/doi/pdf/10.1061/9780784413548.224) 

 

5.4.4. Environmental parameters at WTRIS 

 

At WTRIS, PCA analysis was employed resulting in five components (fig 5.34) 

and the pattern is best explained in PC1 with 72.5% of the total variance, however, 

addition of PC2, PC3, PC4 and PC5 accounted 82.5%,89.5%,94.3% and 96.5% 

respectively.  
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Figure 5. 34: Principal components analysis (PCA) ordination of physico-chemical parameters 

for WTRIS. 

 

In PC1, the pattern between the stations is best explained with Total Hardness as 

CaCO3 (mg/l) (-0.3), Calcium Hardness as CaCO3 (mgl-1) (-0.3), Ca+2 (mgl-1) (-

0.3) and O2 (mgl-1) (0.3). In PC2 and PC3 the pattern between the stations is best 

explained with Depth (m)(0.3), Total alkalinity CaCO3 (mgl-1)(0.3), Bicarbonate 

HCO3- ( mgl-1)(0.3), Cl- (mgl-1)(-0.3), Na+ (mg/l)(-0.3), Fe  (mgl-1)(-0.5), pH 

(0.6),salinity (0.4), Na+ (mgl-1)(-0.3) and Fe  (mgl-1)(0.4). In PC4 and PC5 the 

pattern between the stations is best explained with depth (m) (0.3), pH (-0.7), 

salinity (0.4), Fe (mgl-1) (-0.5), depth (m) (-0.8) and Na+ (mgl-1) (-0.3). A positive 

relationship between score of PC1 and seagrass percentage cover C.nodosa was 

determined using Spearman rank correlation coefficient (rs=0.637; p=0.003) at 

WTRIS.    

 

Seabed sediment classification of analysis of the organic content levels and the 

sieves for the mean grain size in (Table 5.4 and 5.5 for WTRIS; section 5.2.3) 

were categorised by the principal-component analysis (PCA) in order to determine 

the distribution of seabed sediment classification in area for WTRIS. At this site, 

PCA analysis on the Seabed sediment resulted in two components representing the 

mean grain size and organic material at each station (fig 5.35) and the pattern is 

best explained in PC1 with 65.4% of the total variance, however the PC2 accounted 

for only 34.6% of the total variance.  
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Figure 5. 35: Principal components analysis (PCA) ordination of sediment data for ZWDP: 

(sediment classifications: Ms= medium sand, Fs= fine sand, Cs= coarse sand). 

 

The pattern between the stations in PC1 is best explained with organic content (g) 

(0.707) mean grain size (Mz) (Ø) (0.707) and in PC2 the pattern between the 

stations is best explained with organic content (g) (-0.707) mean grain size (Mz) 

(Ø) (0.707). The organic content levels which were reported in (Table.8; section 

5.2.3) were for WTRIS (<10%) in all stations). Additionally, significant positive 

relationship between organic content and seagrass (C.nodosa) was determined 

using Spearman rank correlation coefficient (rs =0.61; p=0.006), however there was 

non-significant a positive association between mean grain size and seagrass 

(C.nodosa) (rs=0.405; p=0.085) at WTRIS.  

 

The statistical parameters of grain size distribution have been a major factor in 

describing the influence of depositional processes. Generally, standard deviation 

and skewness are considered environmentally sensitive indicators while the mean 

is a reflection of competence of the transport mechanism. The results which were 

obtained from the sieves analysis in (Table 5.6; section 5.2.3 for WTRIS) shows 

that the mean grain size (Mz), which is reflection of the overall size of the sediment 

ranged from 0.70 Ø – 3 Ø (coarse - Medium - fine sand) (fig 5.36), while the 

Graphic Kurtosis (KG) was between 0.89 Ø – 2.73 Ø (platykurtic- mesokurtic- 

leptokurtic-very leptokurtic). Skewness (SKI) values ranged from -0.04 Ø to 0.48 

Ø (strongly positive - positive -symmetrical - negative - strongly negative skewed) 
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while the Inclusive Graphic Standard Deviation (δI) which is a measure of sorting 

varied from 0.29 Ø – 1Ø (very well-well-moderately well-moderately sorted). The 

classification of the sediments at WTRIS show that at medium, fine and very fine 

sand percentage cover were higher than coarse sand.  

 

 

 
Figure 5. 36: The classification of the sediments at WTRIS 

 

Difference in physico-chemical parameters in the seawater samples near to the 

outfall of WTRIS revealed that all the stations at this site have a wide variation in 

the level of total Hardness as CaCO3 mgl-1, ranging from 5,000 to 11,200 mgl-1. 

The minimum concentration of total hardness as CaCO3 mgl-1 was observed at 

station 78 at a depth of 12 m (hardness as CaCO3=5,000 mgl-1) and the maximum 

was observed at station 71 at a depth of 0.5 m (hardness as CaCO3=11,200 mgl-1) 

(fig 5.37).The Ca+2 hardness as CaCO3 mgl-1 in seawater at WTRIS fluctuated 

between a minimum of 200 mgl-1 at station 63, 77 and 78 at 22 m, 18 m and 12 m 

depth, while a maximum of 1,361 mgl-1 was recorded at station 71 at 0.5 m depth 

(fig 5.38). All the stations at this site showed a wide variation in the concentration 

of calcium Ca+2 ions (fig 5.39). The highest concentration of Ca+2 was observed at 

station 71 (Ca+2=810 mgl-1) at 0.5 m depth, while the lowest concentration of Ca+2 

ions was observed at station 63,77 and 78 at the same level (Ca+2=80 mgl-1) at 22, 

18 and 12 m depth respectively. Dissolved oxygen in seawater at WTRIS fluctuated 

between a minimum of 6.17 mgl-1 at station 71 with 0.5 m depth and a maximum 

of 8.96 mgl-1 at station 78 at a depth of 12 m (fig 5.40).  
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Figure 5. 37: Total Hardness (mgl-1) at WTRIS      Figure 5. 38: Ca+2 Hardness (mgl-1) at WTRIS 

 

 
 
Figure 5. 39: Ca +2 (mgl-1) at WTRIS              Figure 5. 40: Dissolved oxygen (DO) (mgl-1) at WTRIS 

 

The total alkalinity CaCO3 (mgl-1) and Bicarbonate HCO-3 (mgl-1) value revealed 

wide variations, varying from 30 to 368 mgl-1. The minimum value was observed 

at station 77 at a depth of 18 m (concentrations of total alkalinity CaCO3 and 

Bicarbonate HCO-3 =30 mgl-1) and the maximum was observed at station 71 at 0.5 

cm depth (concentrations of total alkalinity CaCO3 (mgl-1) and Bicarbonate HCO-3 

(mgl-1) = 368 mgl-1) (fig 5.41).Chloride in seawater for WTRIS is given in (fig 

5.42).  
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Figure 5. 41: CaCO3 and HCO-3 (mgl-1) at WTRIS     Figure 5. 42: Cl- (mgl-1) at WTRIS 

 

The present data showed that all the stations revealed a wide variation in the 

concentration of Cl- , ranging from 20,617 to 24,868 mgl-1. High concentration of 

Cl- was observed at station 71 (Cl- =24,868 mgl-1) at 0.5 m depth, while the lowest 

concentration of Cl- was detected at station 78 (Cl-= 20,617 mgl-1) at 12 m depth 

and 1.9 m. The concentration of sodium ions (Na+) at WTRIS is given in (fig 5.43). 

All the stations at this site revealed a wide variation in the concentration of sodium 

ions. The lowest concentration of Na+ was observed at station 78 at 12 m (Na+ 

=11,680 mgl-1), while the highest concentration was detected at station 71 (Na+ 

=17,020 mgl-1) at a depth of 0.5 m. The concentration of Fe ions in seawater at 

WTRIS is given in (fig 5.44). All the stations at this site revealed a minor variation 

in the concentration of Fe, ranging from zero at station 71 and station 78 at depths 

of 0.5 and 12 m respectively to 0.13 mgl-1 at station 70 at 0.5 m depth. The vertical 

distribution of hydrogen ion concentration (pH) at different stations of the study 

area is shown in (fig 5.45). The pH values revealed wide variations, ranging from 

7.9 to 8.5 during the period of study. The minimum value was observed at station 

67, 74 and 79 at 4.5, 2.2 and 8.5 m depth respectively (pH=7.9) and the maximum 

was observed at station 78 at 12 m depth (pH=8.5). The salinity data showed that 

all the stations revealed a wide variation in the level of the salinity content, ranging 

from 35 to 55 psu (fig 5.46). The minimum value was observed at station 66 at a 

depth of 10 m (Salinity=35psu) and the maximum was observed at station 70 at a 

depth of 0.5 m (Salinity=55 psu).   
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Figure 5. 43: Na+ (mgl-1) at WTRIS                        Figure 5. 44: Fe (mgl-1) at WTRIS 

 

 
 
Figure 5. 45: pH at WTRIS                                     Figure 5. 46: Salinity (psu) at WTRIS 
 

The organic matter content level in collected sediment at WTRIS was less than 10% 

at each site, all the stations at these sites indicated that a wide variation in the 

organic matter level varied from a minimum 1.04% at station 71 to a maximum 

9.7% at station 77 (fig 5.47). Furthermore, at the two selected sites (ZWDP & 

WTRIS) and from the field work, it has been seen that, unhealthy seagrass was 

found next to the inlet pipes of ZWDP (fig 5.48). 
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Figure 5. 47: Organic materials (%) at WTRIS        Figure 5. 48: Unhealthy seagrass next to inlet pipes at ZWDP 

 

Additionally polluted filamentous algae at the outfall of WTRIS were found at the 

end of the intertidal zone (fig 5.49). In addition to this, the diver who took the 

underwater pictures at the two sites commented that there was an effect on the 

leaves of the seagrass as a result of the changes in the physico-chemical constitution 

of the ambient seawater in the station near to the outfall (fig 5.50; A, B and C) 

compared to the seagrass found in the station further away from the outfall at both 

plants (fig 5.50; D, F and G).  

 

 
 

Figure 5. 49: Polluted Filamentous Algae at the Outfall of WTRIS 
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Figure 5. 50: Seagrass near and further away from the outfalls for ZWDP and WTRIS 

  

Additionally, the emission of greenhouse gases and air pollutants, due to the energy 

that the desalination process required, shows clear signs of elevated levels of air 

pollution as a result of the use of light and heavy fuel in both plants (fig 5.51). 

 

 

 
Figure 5. 51: Air pollution at ZWDP and WTRIS 
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5.5. Discussion  
 

The aim of this work was to determine the physico-chemical effects of brine influx 

from thermal desalination plants on the marine environment. At ZWDP, eight 

different species were found which represented the community composition at this 

site (fig 5.3; section: 5.4.1) and included, Posidonia oceanica, Cymodocea nodosa, 

unknown sea algae, the brown alga Taonia atomaria, the red alga Laurencia 

pinnatifida, the brown alga Padina pavonica, the brown alga Sargassum vulgare 

and fish Spicara flexuosa. The community composition at stations 38, 39, 40, 42, 

44, 45, 52, 53, 54 and 55 was different from stations 37, 41, 43, 46, 47, 48, 49, 50, 

and 51. This is due to species such as Posidonia oceanica, Cymodocea nodosa, 

unknown sea algae, the brown alga Padina pavonica, Sargassum vulgare and the 

red alga Laurencia pinnatifida being more abundant at station 38, 39, 40, 42, 44, 

45, 52, 53, 54 and 55. The percentage cover of the brown alga Taonia atomaria 

was lower at those stations than at stations 37, 41, 43, 46, 47, 48, 49, 50, and 51.  

However, the community composition of those stations is represented in a high 

percentage cover of non-living things such as sand and sea rocks only. Additionally, 

the percentage cover of fish such as Spicara flexuosa, Diplodus annularis and 

Diplodus vulgaris at this site was very low and was identified only at station 45 for 

ZWDP. Whereas, at WTRIS only four species representing the community 

composition were found at this location (fig 5.11; section 5.4.2) and included, 

Posidonia oceanica, Cymodocea nodosa, fish Xyrichtys novacula and Diplodus 

annularis addition to Sea Anemone species Anemonia sulcate. The community 

composition at stations 63, 69, 77, 79 and 81 was different from stations 64, 65, 66, 

67, 68, 70, 71, 72, 73, 74, 75, 76, 78 and 80. This is due to an abundance of 

Cymodocea nodosa at stations 63, 69, 77, 79 and 81. Additionally, the percentage 

cover of the non-living things such as sand at these stations was very low compared 

with stations 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78 and 80 where the 

percentage of the sand cover at these stations was 100%. Furthermore, the 

percentage cover of fish such as Xyrichtys novacula and Diplodus annularis at this 

site was very low and was evident only at station 77 for WTRIS.  

 

At ZWDP, the most important physico-chemical  parameters that were considered 

include, total hardness as CaCO3 (mgl-1), calcium hardness as CaCO3 (mgl-1) and 
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magnesium hardness as CaCO3 (mgl-1), ions  of calcium Ca+2 (mgl-1), magnesium 

Mg+2  (mgl-1), sulphate SO4
-2 (mgl-1), phosphate PO4

- 3 (mgl-1), potassium k+ (mgl-

1), sodium Na+ (mgl-1), chloride Cl- (mgl-1), nitrate NO-3 (mgl-1)  and iron Fe+(mgl-

1) as well as sea surface and sea bed temperature , pH, dissolved oxygen DO (mgl-

1) , salinity (psu) and depth (m).  However, at WTRIS, important parameters taken 

into account were, total Hardness as CaCO3 (mgl-1), Calcium Hardness as CaCO3 

(mgl-1), Ca+2 (mgl-1), total alkalinity CaCO3 (mgl-1) bicarbonate HCO3
- (mgl-1), 

chloride Cl- (mgl-1), sodium Na+ (mgl-1), iron Fe+(mgl-1), pH, dissolved oxygen DO 

(mgl-1), salinity (psu) and depth (m). 

 

Seawater normally has a total hardness of about 6,500 mgl-1 as CaCO3, with a 

calcium hardness of about 1000 mgl-1 as CaCO3 and a magnesium hardness of 

about 500 mgl-1  as CaCO3 (Boyed and Tucker, 1998). However, at ZWDP a very 

significant difference of (- 500 to + 9,071 mgl-1), (- 800 to + 361 mgl-1) and (+ 

5,300 to + 1,370 mgl-1) respectively has been recorded. The ion concentration of 

calcium Ca+2 (mgl-1), magnesium Mg+2 (mgl-1), sulphate SO4
-2 (mgl-1) , potassium 

k+ (mgl-1), sodium Na+ (mgl-1) and chloride Cl- (mgl-1) in Mediterranean seawater 

typically ranges from (440 to 670 mgl-1), (1,371 to 1,550 mgl-1), (2,400 to 2,965 

mgl-1), (410 to 620 mgl-1), (10,105 to12, 000 mgl-1) and (21,000 to 23,000 mgl-1) 

(Ladewig and Asquith, 2011) respectively.  However, in ambient seawater at 

ZWDP, a very significant difference in the ion concentration of calcium Ca+2 (mgl-

1), Mg+2 (mgl-1), sulphate SO4
-2 (mgl-1) , potassium k+ (mgl-1), sodium Na+ (mgl-1) 

and chloride Cl- (mgl-1) has been recorded as follows; (- 306 to - 216 mgl-1) (+ 37 

to + 1,900 mgl-1), (- 1,400 to + 1,183 mgl-1), (- 408 to - 570 mgl-1), (+ 945 to + 

6,550 mgl-1) and (- 1,626 to + 2,625 mgl-1) respectively. While, at WTRIS, a very 

significant different in a total hardness as CaCO3 (mgl-1), a calcium hardness as 

CaCO3 (mgl-1) , a calcium Ca+2 (mgl-1) , sodium Na+ (mgl-1)  ions and chloride Cl- 

(mgl-1) has been recorded as follows; (- 1,500 to + 4,700 mgl-1), (- 800 to + 1,000 

mgl-1), (-360 to + 131 mgl-1), (+ 1,575 to + 5,080 mgl-1) and ( + 35 to + 1,868 mgl-

1) respectively.   

 

Water hardness CaCO3 is essentially a measure of the amount of dissolved calcium 

and magnesium in the water body and animals and plants need these minerals to 

live. Calcium is a vital component in the cell walls, shells and bones of many 



 

130 
 

aquatic organisms and magnesium is similarly essential in chlorophyll, used by 

green plants to photosynthesize. Hardness mitigates the toxicity of metals and 

calcium and magnesium ions help prevent fish absorbing metals such as lead, 

arsenic and cadmium, through their gills. The greater the hardness, the more 

difficult it is for toxins to be absorbed.  When hardness equals alkalinity, the only 

cations present in significant concentrations in water are calcium and magnesium 

(Murphy, 2014). Low calcium levels, coupled with other environmental factors that 

affect osmoregulation, can cause problems for marine organisms, for example, 

when the pH and salinity is low or high (Boyed and Tucker, 1998).  

 

Stanley (2006) also reported that the growth rates of aragonitic codiacean algae 

Penicillus and Halimeda reduced when Mg2+/Ca2+ ratio reduced. Hence, increases 

in the level of total hardness (CaCO3) close to the desalination plants (ZWDP and 

WRTIS) may be due to dosing levels of anti-scale agents and utilization of sponge-

ball cleaning used for controlling acidification of seawater (Soror, 2009). The 

solubility of inorganic salts that form scale (CaCO3, CaSO4, Mg (OH)2) decreases 

with increasing temperature. The scale formed on the surfaces reduces the overall 

heat transfer coefficient, thus decreasing the efficiency in the production of stations 

(Wildebranda et al., 2007). Addition of anti-scalants caused more CaCO3 to be 

discharged with the brine and may have an adverse effect on the marine species 

 

Further to this, it was found that the sulphate ions concentration in the marine 

environment were higher at ZWDP.  This may be due to sodium sulphite being 

injected into the feed water line for the boiler, which is necessary in thermal 

desalination plants to remove the dissolved oxygen from the steam boiler (Oil and 

Water Supplies Limited, 2006).When the sulphite oxidises into forms of sulphide, 

this could be harmful because the high concentration of sulphide in the sea sediment 

can harm seagrasses, since sulphide is a plant toxin inhibiting respiration (Borum 

et al., 2004), which may drive ecosystem level alterations in animal and plant 

distribution. Howarth and Teal (1979) reported that due to huge amounts of 

sulphates in seawater, breakdown of organic matter often is consumed by sulphate 

reducing bacteria that release free sulphide ions into the sediments. This release 

may also intoxicate marine plants and organisms. Short-term increase in sediment 

sulphide levels can affect the balance between seagrass photosynthesis and 
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respiration while long-term increase may reduce the rate of photosynthesis of sea 

grass leading to other effects and plant death (Gwada, 2004). 

 

Moreover, the results show that the concentration levels of sodium and chloride 

ions were higher at the two plants which are possibly due to the addition of sodium 

hypochlorite. This is because in most distillation plants, the intake seawater is 

chlorinated continuously by dosing with a sodium hypochlorite solution for the 

disinfection process at a certain dosing rate (Verdier, 2011). This means more 

chemical-additives and more chemicals are discharged into the sea. Chlorine is 

hazardous to the marine environment and marine resources (Hashim and Hajjaj, 

2005).  

 

Seagrasses are salt tolerant even when it exceeds the concentration in the seawater. 

Specifically, seagrasses accumulate sodium (Na+), chloride (Cl-) and Potassium 

(K+) but balance Na+ and Cl- fluxes to maintain osmotic equilibrium and prevent 

its accumulation within the cytoplasm (Morenoa et al., 2014; Exadactylos, 2015). 

A study by Khalafallah et al., 2013 shows that accumulation of Na+ under brine 

stress was accompanied by a reduction in seagrass health, leading to high mortality 

rates. High apoplastic levels of Na+ and C1- alter aqueous and ionic thermodynamic 

equilibrium, resulting in hyperosmotic stress, ionic imbalance, and toxicity. Thus, 

it is vital for the plant to re-establish cellular ion homeostasis for metabolic 

functioning and growth (Niu et al., 1995). Na+ may have adverse effects on plant 

catabolism and metabolism, whereas K+ is essential for maintaining osmotic 

balance and acts as co-enzyme in biological reactions. Hence, uptake of K+ is vital 

for the general health and growth of plants (Touchette, 2007). However, Na+ has 

been reported to compete with K+ for intracellular influx. As a result, many K+ 

transport systems tend to have high affinity for Na+ allowing them to function as 

Na+/K+ transporters (Khalafallah et al., 2013). In essence, Na+ levels may therefore 

inhibit the efficiency of K+ in marine plants (Mottaleb, 2013).  This study also 

showed a significant positive correlation between the level of N+ and Cl- at the two 

selected sites and also major positive correlation between the levels K+ and Na+ at 

ZWDP. 

  

Similarly, phosphate, iron and nitrate ions concentrations in seawater typically 

range from 0.088 mgl-1, 0.0034 mgl-1 and < 0.1 mgl-1 (Anthoni, 2006) respectively. 
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However, a difference of (+ 0.068 to + 0.1 mgl-1), (0 to + 0.6966 mgl-1) and (0 to + 

0.15 mgl-1) respectively has been recorded in ambient seawater at ZWDP. Whereas, 

at WTRIS, a very significant difference of (0 to + 0.1266 mgl-1) in iron ions has 

been recorded. 

 

Phosphates are required in pre-treatment processes as chemical additives, such as 

Tri-sodium phosphate, which is used to control pH and conductivity for the boilers 

in thermal desalination plants (Les, 2015). Increased levels of phosphate and nitrate 

ions may cause the eutrophication of the receiving seawater. It also leads to algal 

growth (fig 5.49), which, depending on the degree of eutrophication, can develop 

severe environmental effects on the marine environment (Davis, 2015). In addition 

to this, it was found that the iron ions concentration in the marine environment at 

WTRIS is slightly higher. This may be due to backwash processes which result in 

the phenomena of reddish brine at the discharge point further to the corrosion 

phenomena in thermal desalination plants which depends on the alloys present in 

the process line (Lozides, 2015). Further to its co-location with West Tripoli Power 

Plant established in 1976 (Ahwide and Aldali,2013), all the brine disposed from 

power boilers is mixed with WTRS (desalination plant), so the reddish brine near 

to the outlets of desalination plants will lead to increased turbidity of the seawater 

thereby affecting marine species.  

 

Seawater normally has a total alkalinity CaCO3 ranging from 100 to 500 mgl-1 

(Student Watershed Research Project, 2014), however at WTRIS a very significant 

difference of (- 70 to - 130 mgl-1) respectively has been recorded near to the outlet 

of the plant. Similarly, bicarbonate HCO3
- (mgl-1) ions concentration in 

Mediterranean seawater typically ranges from 120 to 161 (mgl-1) (Ladewig and 

Asquith, 2012), while in ambient seawater at WTRIS, a very significant difference 

of (- 90 to + 207 mgl-1) has been recorded. 

 

In thermal desalination plants, fouling is carried out by scaling with calcium 

carbonate or carbonate, calcium sulphate and magnesium hydroxide (Elsaid et al., 

2012). The variation in the ions released by fouling in thermal desalination plants 

is due to the evaporation process inside heat exchanger units. MED or MED-TVC 

plants usually operate at temperatures between 63 -75 °C known as top brine 

temperature (TBT) and due to solubility problems, thermal desalination plants 
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operation is generally limited to TBT. The formation of the alkaline scaling (CaCO3 

and Mg (OH)2) has been found to depend on temperature, pH, concentrations of 

HCO3
-, CO3

-2 , Ca+2 , Mg+2 ions as well as the rate at which CO2 is released (Marie, 

2010; Anezi and Hilal, 2007). Most of these substances are discharged with the 

brine into the marine environment, while CO2 is released into the air impairing air 

quality due to the vacuum process in the evaporator’s cell, thus CO2 lowers the pH 

when dissolved in seawater making the ocean more acidic. Coral reefs, calcareous 

plankton and other organisms whose skeletons or shells contain calcium carbonate 

may be particularly affected as a result of decreases in carbonate ions (Caldira and 

Wickett, 2003). Not only that, acidification of the oceans may also threaten oceanic 

food chains (Dean, 2009) affecting marine ecosystems in general. Further increases 

in the level of CO2 emissions may result from the use of heavy fuel in thermal 

desalination plants at both sites, which have been indicated at both sites (fig 5.51). 

 

Seawater temperature profiles were studied on the Libyan coastline by the Marine 

Biology Research Centre in 2006.  The sea bed and the sea surface varied from 

13.6°C to 28°C (Bonanno et al., 2006). However, at ZWDP results showing 

differences as +15.4°C to +3°C respectively above ambient seawater temperature 

near to the outlet were recorded. However, the results show that at WTRIS there is 

no significant difference in seawater temperature in the period of study. Connor et 

al., (2007) reported that seawater temperature can influence the population, 

community and species level of marine organisms due to fluctuations in seawater 

temperature around both sites. 

 

Normally, seawater pH is slightly alkaline and it ranges from 7.9 to 8.4. This range 

is created through a balance between biological activity and seawater (Owens, 

2009). However, this study results show differences as - 0.14 to + 0.06 near to the 

outlet of ZWDP, while, at WTRIS, the results show that, the pH value was at the 

same value ranging from 7.9 to 8.4, which has been recorded in ambient seawater. 

The changes in the pH value may be due to the salts which are discarded with the 

brine into the marine environment, because in most thermal desalination plants, 

alkaline scales from heat exchanger surfaces are typically removed by washing with 

warm acidic seawater. Furthermore, the use of chemical inhibitors such as 

benzotriazole derivatives (Abuzinada et al., 2008), being added to protect the plants 
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from corrosion may also be hazardous to aquatic life. A wide cross-section of 

aquatic animals thrives in an environment of pH level ranging between 6.5 and 

8.00. Outside this range, the diversity may be reduced because it damages the 

physiological system of most organisms and can reduce reproduction. Low levels 

of pH can also allow toxic elements to become more available for uptake by aquatic 

plants and animals. This can produce conditions that are toxic to aquatic life 

(Faragallah et al., 2009) and the constant of pH value at the same level at WTRIS 

may be due to the strong wave current of seawater at the period of study. The results 

also indicates that the presence of marine species was found to be at a low density 

in both sites near to the outfall of the desalination plans. This decrease could be 

attributed to a reduction of pH levels which affected their diversity and forced the 

marine species to migrate to other zones (Mabrook, 1994) which were more 

conducive to their healthy existence.   

 

Dissolved oxygen levels in seawater in the eastern coast of Libya have been studied 

by Jack et al., (2009) and found to be between 9.8- 10.5 mgl-1. However, the results 

at ZWDP show a very significant difference of - 4.67 to - 2.1 mgl-1. In contrast, at 

WTRIS, the results show a difference of - 3.65 to -1.54 mgl-1 near the outlet.  This 

is possibly due to increases in brine temperature inside the cells/ stages of the units 

as thermal desalination plants produce potable or industrial water when it reaches 

top brine temperature (TBT) (World Health Organization, 2005). In order to reduce 

the temperature, the brine is blended with cool water of the sea, but as the amount 

of salts and thermal energy increases, the amount of dissolved oxygen decreases 

which will have an impact on the physico-chemical state of the receiving seawater. 

Also, de-aeration and the use of sodium sulphate as an oxygen scavenger in the 

brine recycle line is used to control corrosion inside the units which could limit the 

amount of dissolved oxygen. (Abuzinada et al., 2008; Environmental International 

Consultants 2009). The recommended minimum concentration of DO in marine 

water is 8.0 mgl-1 and any reduction beyond this level may have lethal and sub-

lethal effects in a variety of organisms particularly in fish (Canadian Council of 

Ministers of the Environment, 1999).  

 

The seawater salinity of the Libyan coast is ≤ 37.8 psu (Placenti et al., 2013) and 

the difference of (- 2 to + 9.2 psu) and (- 2 to + 6 psu) in the ambient seawater 
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salinity near the outfall of ZWDP and WTRIS respectively was recorded. Marine 

organisms commonly are only able to cope with a narrow variation in salinity in 

their habitat (North et al., 1995).  Salinity thresholds and variations also affect the 

composition of the marine ecosystem in a mixohaline environment by constraining 

colonisation, germination and species richness (Joyce et al., 2005).  Increasing 

salinity around the ZWDP and WTRIS outlets is attributed to high temperature, 

which is due to cooling water and consequent evaporation and the high 

concentration of salts associated with the discharged water. Furthermore, during 

the study period, the depth was obvious as an indicator to the marine biodiversity 

at both sites, the lower depth stations near to the outlets of the plants were poor in 

the biodiversity level compared to the stations located forward of the discharge 

points from the plants. 

 

The sediment data analysis which is shown in the physical analysis of the two sites 

(fig.5.15 and fig. 5.36; section 5.4.3 and 5.4.4) indicate that, at both sites medium, 

fine and very fine sand percentage cover was higher than coarse sand, therefore this 

study suggests that the sediment along the coastal water has been transported by 

strong sea currents suggesting that fine sand is initially shifted, followed by 

medium sand and ultimately the heavier coarse sand. In addition to the results 

which are displayed (Table.5.4; section 5.2.3) for the organic matter levels at both 

sites reveal that the organic matter content level in the sediments was < 10%.  The 

organic matter levels can affect the aquatic ecosystem by interacting with inorganic 

matter to form complex compounds, which include in its structure several elements. 

Organic matter is initially produced by the fixation of inorganic carbon dioxide by 

marine phytoplankton in the euphotic zone, and released into the water column by 

decomposition of dead cells. The high abundance of organic content level in the 

selected area compared to other locations is probably due to the chemical additives 

used in desalination processes such as anti-scale, that are commonly added into the 

feed water (seawater) and the main components of antiscalants are organic 

(Lattemann,2005; Abdelwahab and Hamoda,2012). Sediment quality can also 

affect the growth and distribution of seagrasses (Morrision and Greening, 2015), 

and the seagrass photosynthesis can also affect sediment metabolism through the 

release of organic substrates by seagrass roots (Calleja et al., 2006). 
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The presence of seagrass beds plays a prominent ecological role and supports the 

productivity on which many communities of marine animals feed and reproduce 

further to enhance stabilization of the sediment such as P. oceanica and C.nodosa, 

which have been used as bio-indicators in the Mediterranean Sea and in Libya, as 

they are considered one of the most suitable biological indicators for water quality 

in order to assess the status of Mediterranean waters. Thus, the importance of taking 

these species as indicators of quality of the marine environment seems paramount 

(Benkhayal, et al., 2013).  

 

P. oceanica and C.nodosa were included in the red list of threatened marine species 

of the Mediterranean Sea (Montefalocne et al., 2005) as a result of increasing the 

amount of industrial pollutants into the marine environment. Thermal desalination 

stations directly impact the marine environment by returning the relatively high 

temperature concentrated brine to the sea. Although data that documents the effects 

of the brine disposal from desalination plants is very scarce, it is now clearly 

documented that, especially in the Mediterranean region, seagrass such as the P. 

oceanic, an endemic plant in the Mediterranean Sea is very sensitive to high salinity 

derived from hyper-saline desalination effluent (Laspidou et al.,2010). 

Additionally, this increases seawater salinity, water currents, turbidity and 

temperature. These in turn deteriorate the marine environment and cause fish to 

migrate (Al Mutaz, 2013).  Further to this, study in Egypt by Mabrook, 1994 shows 

that, most of the coral reefs, planktonic organisms and fish species have declined 

and even disappeared as a result of changes in the physico-chemical parameters in 

ambient seawater near to outlets of desalination plants as a result of brine discharge. 

 

Therefore, the outcome of this study suggests that at both sites that were chosen as 

selected areas of study, a significant positive correlation was observed at ZWDP 

and WTRIS between the biological data and physico-chemical parameters which 

demonstrates the impact of brine disposal from ZWDP and WTRIS on the marine 

environment.  Additionally, a significant positive correlation between the organic 

content levels in the sediments and seagrass was also detected at ZWDP and 

WTRIS and non-significant positive correlation coefficient between mean grain 

size and sea grass at both sites. The significant positive correlation indicates that a 

positive linear association and increased physico-chemical parameters of brine has 
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caused profound changes in the physico-chemical parameters of seawater and an 

effect on abundance and composition of the marine organisms. Hence, these results 

are consistent with previous studies, which found similar responses in the marine 

species exposed to the brine disposed from distillation plants.  

 

5.6. Summary 
 

To sum up, it can be said that chapter five provides the results methodology 

regarding the brine influx from thermal desalination plants into the Libyan marine 

environment, with particular references to ZWDP and WTRIS on the Libyan 

coastline. The brine influx from both distillation plants into the marine ecosystem 

releases chemical residues and thermal energy which negatively affect the marine 

ecosystem. An increase in concentration of a number of ions and compounds from 

discharged brine indicates an alteration in the physico-chemical properties of the 

seawater. Moreover, as most of the Libyan thermal desalination plants are run by 

heavy fuel, there is an indication that it is likely to cause future ocean acidity, as a 

result of CO2 emissions. Also, the brine has low pH and a high alkalinity which 

may lead to an increase in ocean acidification which is supported by the high 

amounts of hardness in terms of calcium and magnesium ions and other 

compounds. In addition, the high salinity and temperature of brine may have a 

negative effect on the marine organisms as the cell osmolarity (salinity) and enzyme 

functioning (temperature) may be compromised. Lastly, as the Libyan government 

plan to increase the production capacity of their desalination plants, this means 

more brine disposal into the sea which has the potential to degrade the physico-

chemical characteristics of the marine ecosystem. There are a number of proposals 

for solutions to the problems caused by the discharged brine, which have led to 

extending the scope of this chapter, allowing us to respond quickly to minimize any 

possible negative effects by using the solutions which are presented into the next 

chapters. 
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Chapter Six: On-site sodium hypochlorite generation from brine 

disposal of distillation plant 
 

6.1. Introduction 
 
Seawater provides the optimum source for desalination technology as an 

inexhaustible source with high motility, making it the best medium for industrial 

use.  However, its composition includes dense components, such as algae, slime 

and bacteria, which can cause biological fouling and blockage of the inlet structure 

of desalination plants and other related equipment. This is further exacerbated by a 

warm climate where microbial activity thrives in warm humid regions (Saleem, 

2011). Furthermore, operational problems are affected by biofouling of heat 

exchanger surfaces, particularly in desalination and power stations, resulting in 

compromised heat transfer efficiency, additional operating and maintenance 

expenditure and increased fluid frictional resistance in the piping system (Murthy 

et al., 2005).  

 
The majority of desalination plants, e.g. thermal distillation or reverse osmosis, 

have been designed with a hypochlorination unit to inject sodium hypochlorite at 

the seawater intake to inhibit further biological growth of potential contaminants 

such as algae, within the connecting pipeline to onshore facilities (Roux et al., 2015; 

Voutchkov, 2013). It is well documented that chlorine, which is normally 

electrochemically generated on site, is a very effective chemical widely used for a 

range of coastal applications. Once seawater is electrolysed to generate sodium 

hypochlorite, it results in a safer, more robust and cost effective option than the use 

of purchased chlorine gas, which tends to disintegrate into oxygen and chlorates 

which can form trihalomethanes (Saleem, 2011; Abdul and Weshahi, 2009; Choi, 

2013). 

 

Along with UV sterilisization, ozone or biocide, chlorine is a valuable disinfectant. 

However, it can be volatile in liquid or gas form when in transit, or during a period 

of storage, hence the need for it to be generated on site (Saleem, 2011; Xu et al, 

2010). It is expedient to electrochemically generate oxidation agents used for water 

treatment on, or as near as possible to, their application location and it needs to be 

carefully monitored because chlorine-containing oxidisers have high oxidation 

https://www.amazon.com/Nikolay-Voutchkov/e/B00AJUA1PA/ref=dp_byline_cont_book_1
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activity and are considered to be one of the most powerful disinfecting agents 

(Bashtan, 1999).  

 

As the scarcity of global water increases, particularly in warmer climes, the 

development of desalination technology can overcome this serious issue.  Although 

the production of brine expelled from desalination plants can pose a threat to the 

marine environment (Al-Barwani and Purnama, 2007), it has now been disclosed 

that this could be a valuable by-product for on-site generation of hypochlorite. 

(Abdul and Weshahi, 2009) 

 
Taking these considerations into account with the results obtained in chapter five, 

focussing on the Libyan coastline distillation plants in the Southern Mediterranean 

Sea, an integrated production scheme is needed to safeguard this technology in 

order to create a synergy between the process and further use in commercial and 

industrial sectors, while protecting the marine environment and outlying areas.  

Ultimately, this chapter aims to investigate the production of sodium hypochlorite 

(NaOCl) from an electrochemical cell fed by brine in a controlled environment on 

site.  The study will also discuss the effects of various critical operating parameters 

on this process, including, electrode materials, production of sodium hypochlorite 

(NaOCl), inter-electrode spacing, applied current density, energy and power 

consumption further to determine the price of utilizing the brine by using the 

electrochemical method.  

 

6.2. Sodium Hypochlorite Production Techniques 
  

6.2.1. Chemical Method  

 
Chloride is made to react with a solution of sodium hydroxide resulting in the 

production of sodium hypochlorite, sodium chloride and water, as illustrated in 

following equation: 

Cl2  + 2NaOH → NaOCl + NaCl + H2 O 

This method produces highly concentrated solutions, but their properties are contra-

indicative for alternative uses (Ronco and Mishkin, 2007). 
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6.2.2. Electrochemical Method: On-site generation of NaOCl 
 

Sodium hypochlorite is formed by electrolysis of sodium chloride found in 

seawater or brine solutions in a controlled environment.  Exothermic chemical 

reaction is caused by an electrical Dc current applied to the seawater that flows 

through an electrolyser, fitted with customised electrodes resulting in conversion 

to sodium hypochlorite solution (NaOCl).  Sodium chloride NaCl is broken down 

into sodium ion Na+ and Chloride ion Cl− as a result of Dc electrolysis of an 

aqueous solution of sodium chloride, as illustrated in following equation: 

 At the anode, free chlorine is generated 

 

2Cl− → Cl2 + 2e− 

 

 At the Cathode, hydrogen evolves with corresponding formation of 

hydroxide ions (OH−) 

 

2H2 O + Cl2 → NaOCl + NaCl + H2 O 

 

OH−ions, migrate from the cathode area and react with sodium (Na+) and chloride 

(Cl2) near the anode, thus producing sodium hypochlorite (NaOCl) and the overall 

reaction can be written as following: 

 

2NaOH + Cl2 → 2NaOCl + H2 

 

The composition of seawater presents a high percentage of hardness ions resulting 

in the presence of certain substances such as calcium, magnesium and other metals 

from hydroxide and carbonates.  These solidify and are removed from the 

electrolyser by seawater stream.  Meanwhile, certain cathodic deposits that remain 

on the surface need to be chemically cleaned periodically (Thangappan and 

Sampathkumaran, 2008).  

 

6.3. Study site  
 

This study was conducted in September 2015 on the Libyan coastline around the 

brine disposed from Zwuarah distillation plant (ZWDP) as presented in chapter five 

(fig 5.1). 
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6.3.1. Experimental procedure  

 
A small square basin measuring 25 cm in length, width of 20 cm and depth 15 was 

fabricated at the workshop of ZWDP to assess the sodium hypochlorite production 

capability of the prototype cell from brine disposed. The basin is made from glass 

with a thickness of 4 mm. The glass plates were pasted together by using silicon, 

then five electrode materials (Graphite, Copper, Aluminium, Titanium, Zirconium) 

were chosen for this experiment with a dimension of 10 cm long, 5 cm width and 

5mm thickness, and then weighed prior to the experiment, using sensitive electronic 

scales. 

 

The electrodes were immersed in the brine and connected to adjustable variable DC 

power supply 0-30V and 0-10A (Mastech). For each experiment applied, 0.0021 

m3 of brine was utilised for at least 100 min in the cell for each electrode material. 

The USB camera (HUE HD) was connected to a Toshiba laptop by USB cable and 

focussed on the electrochemical cell in order to monitor the reaction (fig 6.1). For 

each type of electrode material, the inter electrode spacing was altered from 2 cm, 

4 cm and 6 cm respectively in order to evaluate the efficiency production of NaOCl 

cell. The chemical characteristics of the brine used in this experiment have been 

presented in table 5.3 in chapter 5.  

 

 
 

Figure 6. 1: Electrochemical cell for brine utilizing 
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6.3.2. Sampling and data collection  
 

Brine samples were collected from the electrochemical cell every 20 minutes in 

order to measure the free chlorine, which presented NaOCl concentration using 

Hach method 8021 (see appendix 6). Additionally, a 1 μl in each batch was 

examined by using DPD Free Chlorine Reagent Powder Pillow according to Hach 

method for water, wastewater and seawater. 

 

Cost analysis of utilizing the brine converted to NaOCl is one of the most salient 

factors that influences the application of an electrochemical process. Additionally, 

the cost of electrode and other accessories of the cell needs to be considered. The 

major operation cost is the current density, energy and power consumption during 

operation in the electrochemical process. The current density was calculated by 

dividing the electric current by the effective surface area of the electrode (Eq. 6.1), 

energy and power consumption were evaluated by (Eqs. 6.2 and 6.3). The 

electrodes (anode and cathode) were weighed by using sensitive electronic balance 

in order to evaluate the deposits on each electrode after each experiment has run. 

 

  J = I/A……………………………………………….……......….….  (6.1) 

  E = [
I∗U∗T

V
] ÷ 1000…………..…………….…………...…..…….…. (6.2) 

  P = E/T………………….…………….……………………….…......(6.3) 

 

Where, E is Energy consumption needed to reuse the brine into the form of NaOCl 

(kW.h/m3), I is the total electric current (Ampere), U is the total electric voltage 

(V), T is the time in hours, V: is the volumetric of brine need to be treated into 

NaOCl (m3), J: Current density (A/cm2), P is Power consumption (kW) and T is the 

time in hours (Hsu et al., 2015; Cyprtaa et al., 2013; Joseph and Sharma, 2012). 

 

Results revealed insignificant production of NaOCl when using copper, aluminum, 

titanium and zirconium electrodes. Therefore, only graphite electrodes have been 

discussed and all the outcomes from this study are presented in (Table 6.1 and 6.2)  

 

 
Table 6. 1: Results of Using Graphite Electrodes from Electro Chemical Cell 
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2 cm 

20 573 8.00 22.0 7.00 3.00 0.060 0.33 10,476 10 31 

40 617 8.10 21.9 7.10 2.90 0.058 0.67 20,162 20 30 

60 630 8.30 21.7 7.30 2.70 0.054 1.00 27,900 28 28 

80 1860 8.40 21.6 7.50 2.50 0.050 1.33 34,286 34 26 

100 2140 8.50 21.5 7.60 2.40 0.048 1.67 40,952 41 25 

4 cm 

20 572 8.40 21.60 7.20 2.80 0.056 0.33 9,600 10 29 

40 676 8.49 21.51 7.40 2.60 0.052 0.67 17,754 18 27 

60 850 8.78 21.22 7.47 2.53 0.051 1.00 25.565 26 26 

80 2311 8.80 21.20 7.50 2.50 0.050 1.33 33,651 34 25 

100 2600 9.00 21.00 7.60 2.40 0.048 1.67 40,000 40 24 

6 cm 

20 350 9.00 21.00 8.30 1.70 0.034 0.33 5,667 6 17 

40 450 9.20 20.80 8.38 1.62 0.032 0.67 10,697 11 16 

60 532 9.30 20.70 8.50 1.50 0.030 1.00 14,786 15 15 

80 1490 9.40 20.60 8.60 1.40 0.028 1.33 18,311 18 14 

100 1790 9.50 20.50 8.70 1.30 0.026 1.67 21,151 21 13 

 
Table 6. 2: Graphite Electrode Corroded at Inter Electrode Spacing 2, 4 and 6 cm 

 

Types of electrodes 

Spacing: 2cm Spacing: 4 cm Spacing: 6 cm 

Anode 

(+) 

Cathode (-

) 

Anode 

(+) 

Cathode (-

) 

Anode 

(+) 

Cathode (-

) 

Original mass (g) 42.8982 43.0665 42.9835 42.618 43.551 43.533 

Mass after test (g) 43.0507 43.3933 43.1245 42.8442 43.661 43.7233 

Difference (g) 0.1525 0.3268 0.14 0.2262 0.11 0.19 

 

6.4. Results and discussion  

 
An electrochemical technique was applied to produce sodium hypochlorite using 

the brine disposal from ZWDP. While assessing the performance of graphite, 

copper, aluminum, titanium and zirconium electrodes, results revealed that 

production of NaOCl for graphite electrodes (MCCA 1.82 gr/m3) was significant, 

in contrast to copper and aluminum which, despite being good conductors and 

commonly used in the electrolytic industry (Saleem, 2011), were insignificant. 

 

With reference to titanium and zirconium electrodes, low process efficiency for the 

generation of NaOCl prove them to be unsuitable for brine utilisation.  Titanium is 

used as a cathode material within the electrochemical industry to produce chlorates 

and hypochlorite from seawater (Asokan and Subramanian, 2009).  According to a 
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study by Saleem et al., 2012 results show that a titanium electrode coated with a 

dimensionally stable anode (DSA) revealed excellent stability production of NaOCl 

from seawater.  However, the titanium applied for utilizing the brine was grade one 

and uncoated and the fact that the salinity of the brine was higher than seawater 

contributed to an insignificant production of NaOCl. 

 

Moreover, when using zirconium electrodes, the generation of NaOCl was minimal 

as attested by Laˇcnjevaca et al., (2013) who discovered that zirconium oxide 

decreases the hypochlorite reduction rate somewhat.  This may be due to the high 

salinity of the brine produced from ZWDP. The energy consumption for the 

electrodes such as copper, aluminium, titanium and zirconium during the 

experiment run was nil, which is due to a polarization phenomenon, which 

counteracts and lowers the efficiency of electrochemical processes (Sivasankar, 

2008).  

 

Graphite electrodes showed excellent stability after a period of 60 min, the 

production of NaOCl rose concomitantly around 2,140, 2,600 and 1790 ppm at inter 

electrode spacing 2cm, 4cm and 6cm respectively. Graphite is generally used in the 

electrochemical industry for both cathode and anode materials in electrochemical 

cells for producing NaOCl (Rivera and Matousek, 2015). Additionally, inter-

electrode spacing plays an important role in an electrochemical process with respect 

to process efficiency.  

 

The variation in NaOCl production with reaction time at different inter-electrode 

spacing ranged from 2cm, 4cm and 6cm for graphite electrodes as plotted in (fig 

6.2). Results showed that the maximum production of NaOCl was achieved at a 

spacing of 4 cm, while minimizing the electrode inter spacing at 2cm increases the 

process efficiency, compared to inter electrodes spacing at 6cm.  
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Figure 6. 2: Variation in NaOCl Production Using Graphite Electrodes 

 

According to Faraday’s initial law of electrolysis, production of sodium 

hypochlorite depends on the density and amount of electric current passed through 

a brine solution (Alagha, 2010). Therefore, the current density on the production of 

NaOCl using graphite electrodes was investigated by using mathematical equation 

(Eq. 6.1). The production of Sodium hypochlorite has been plotted against current 

density in (fig 6.3, 6.4 and 6.5) at different gaps between the electrodes.  

 

Results indicated that the production of NaOCl increased gradually, whereas the 

current density decreased steadily in electrochemical cell with variations between 

(0.060-0.048 mA/cm2), (0.056-0.048 mA/cm2) and (0.034-0.026 mA/cm2) at inter 

electrode spacing 2cm,4cm, and 6cm respectively. The reduction in the production 

of NaOCl and increase of the current density is likely due to an increase in 

temperature of the brine in the start-up of the reaction time (Alagha, 2010), 

however, the lower current at 100 min is maybe due to the increase in the oxygen 

evaluation (Nylén, 2008) as a result of a higher concentration of HOCl and OCl- 

(Burney et al., 1999).  According to results obtained using a current density of 0.048 

mA/cm2, at 4 cm, this was found to be most suitable for an efficient process of 

utilizing the brine to produce NaOCl.  
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Figure 6. 3: NaOCl Production and Current Density at 2cm 

    

 
 

Figure 6. 4: NaOCl Production and Current Density at 4cm 
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Figure 6. 5: NaOCl Production and Current Density at 6cm 

 

The results from (fig 6.6, 6.7 and 6.7) also show that as the electric current passing 

through the cell gradually weakened, there followed an increase in energy 

consumption with higher NaOCl production, because more electrolytes were 

electrolyzed over time.  This generally improves the process efficiency, as the 

performance of electrochemical cell process has been evaluated by using (Eq. 6.2), 

it was observed that a decrease in inter electrodes spacing can intensify energy 

consumption, thereby improving the production of NaOCl which is consistent with 

the literature (Hsu et al., 2015).  

 

At inter electrode spacing 2 cm and 4 cm with an electrolysis time up 100 min, the 

energy consumption was higher (ranging from 10 to 41 kw.h/m3 and from 10 to 40 

kw.h/m3 respectively with higher NaOCl production (ranging from 573 to 2140ppm 

and 572 to 2600) respectively than at inter electrode spacing 6cm which ranged 

from 6-21 kw.h/m3 with NaOCl production varying from 350 to 1790 ppm. Thus, 

widening the gap between electrodes reduces the capital and energy consumption 

cost, but may compromise the treatment efficiency for brine utilization. 
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Figure 6. 6: NaOCl Production and Energy Consumption at 2cm 

 

 
 

Figure 6. 7: NaOCl Production and Energy Consumption at 4cm                                          
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Figure 6. 8: NaOCl Production and Energy Consumption at 6cm 

 

From (Eq.6.3), it was also observed that as the reaction time increases, the power 

consumption declines in (fig 6.9), while on the other hand decreasing the cost of 

utilizing the brine. At inter electrode spacing 2 cm and 4 cm, the power 

consumption was higher, with a greater concentration of sodium hypochlorite 

generation varying between 10-25 kw/m3 (573-2140ppm) and 29-24 kw/m3 (572-

2600ppm) than at inter electrode spacing 6cm 17-13 kw/m3 (350-1790). It is 

therefore important to select an optimum level of energy consumption in order to 

achieve an economical process for utilizing the brine. 

 

 
 

Figure 6. 9: NaOCl production and contact time at different inter electrode spacing 
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The consumption of the electrode material is also directly related to the economics 

of the electrochemical process. Consumption rates of electrode materials were 

measured using the difference of the weight before and after the reaction time in 

(fig 6.10). The results reveal that the mass electrode materials accumulated during 

the reaction time for brine utilization was lower at anodes (0.15 gr, 0.14gr and 

0.11gr) than cathodes (0.33gr, 0.23gr and 0.19gr) for graphite electrodes at inter 

electrodes spacing 2cm, 4cm and 6cm respectively. This may be due to alkali 

hydroxide, which accumulates at the cathode, in addition to the evolution of 

hydrogen gas occurring at the cathode, as asserted in the literature (Thangappan 

and Sampathkumaran, 2008; Rabah et al., 1991).  Hence, the choice of electrode 

material for brine utilisation is a key factor in achieving optimum results in 

conditions of high salinity.  

 

The cost of utilizing brine disposed from distillation plant in the form of NaOCl 

can be estimated from the lab scale work. As the tariff of kilowatt hour of power 

consumption for the heavy industrial sector in Libya is $ 0.30 (General Electricity 

Company of Libya, 2014), thus the cost of sodium hypochlorite yield of 2600 ppm 

at 24 kw/ m3  is expected to be 7.2 $/m3. 

 

 
 

Figure 6. 10: Consumption Rate of Electrodes in the Cell for NaOCl Production 
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6.5. Summary   
 

According to experimental work in this chapter, it can be concluded that brine has 

many favourable properties when considering the environmental and cost factors 

pertaining to coastal desalination plants. On-site production of sodium hypochlorite 

is deemed to be advantageous for further development of distillation when 

specialised units can be connected to brine flow. 

 

After testing different types of electrodes, graphite showed high stability in 

performance, producing sodium hypochlorite to a value of approximately 

2,600ppm.  Furthermore, having a 4cm gap between electrodes with current density 

of 0.048 mA/cm was a crucial factor in terms of good process economy, in contrast 

to inter electrode spacing of 2cm and 6cm.  Consequently, use of brine fed into the 

hypochlorination unit should optimise the current input, the DC voltage and 

appropriate reaction times in order to achieve optimum results.  

 
Another by-product from electrochemical reaction is hydrogen which can be 

collected for further use, thereby reducing operating costs of hypochlorination 

units.  In addition, the performance of the electrochemical unit can be improved by 

mixing brine disposal from distillation plants and using different electrode 

materials, such as titanium electrode coated with a dimensionally stable anode 

(DSA) mesh thereby optimising cost efficiency while minimizing residual deposits 

on the electrodes. Another option for reducing the cost of brine utilisation could be 

the use of alternative power supply by the hypochlorination unit such as solar 

energy, which is widely available in Libya.  Hence, the next chapter will investigate 

the use of this in evaporation ponds. 
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Chapter Seven: Salt production by the evaporation ponds of brine 

disposed from distillation plant 

 

7.1. Introduction 
 

The production of salt has long been an established global business since the 4th 

century millennium in Europe (Olivier and Kovacik, 2006), the first century in 

China (Flad et al., 2005) and similarly in Central America (Andrews, 1983).  Libya 

experienced the introduction of salt trading routes in the 5th century (Batterson and 

Boddie, 1972). Without salt, human civilisation could never have evolved, as it is 

integral to the development of a society.  It has a huge impact on all life forms, man 

has used solar evaporation or saltmarshes to produce this valuable mineral since the 

dawn of time (Korovessis and Lekkas, 2009). 

 

Approximately 200 million tons of sodium chloride are manufactured in solar 

saltworks (marais salants, salinas, saltfields, salzgärten, solnitzi) annually 

representing one third of the total amount internationally produced (Davis, 2000).  

The solar process of evaporating brine remains the main activity in coastal regions, 

to produce salt (Akridge, 2008). This focuses on wetland areas, particularly in salt 

marshes that provide optimum conditions in terms of biodiversity and eco-systems 

(Kavakli et al., 2006; Deegan et al., 2012), that are key to environmental factors 

(Dardir, 2006). A huge range of flora and fauna exist and survive in salt marshes 

and solar saltworks areas providing bio-diversity, while enhancing the 

improvement of water management and flood prevention (Moosvi, 2006).  In the 

southern coastline of the Mediterranean Sea, especially in Libya, there are plentiful 

salt marshes bordered by sabkhas.  A prominent sabkha, located in the western part 

of the country is Abu Kammash Salt Marsh, which produces 120,000 tons of 

sodium chloride annually from its marine salt operations (El-Magsodi and Haddoud 

2010). Until now, the production of marine salt in Libya has been affected by a lack 

of technical expertise and equipment, combined with pressures of global 

competition and the need for environmental integration (Mohammed, 2003). 

 

Evaporation ponds are constructed to separate the salt from the brine waste by a 

process of natural evaporation.  They are predominantly used as a storage area of 

brine that has been rejected from desalination plants (Thomas, 2009), and offer a 
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viable solution for plants located inland, specifically reverse osmosis, where the 

costs of brine management are high (Glueckstern and Priel, 1997; Arnal et al., 

2005). These plants produce much more concentrated waste brine than thermal 

desalination plants, which reject diluted amounts because of the ambient seawater 

temperature and use of cooling water that is normally mixed with brine prior to 

disposal (World Bank, 2012; Darwish et al., 2013). 

 

In both scenarios (reverse osmosis and thermal desalination technologies), the 

water produced has a higher salinity concentration than the source water. In cases 

of reverse osmosis and thermal desalination, the brine discharged contains chemical 

residues of antiscalants, while the by-products of biocides and antifoaming agents 

are present in brine discharged from thermal desalination plants. A low 

concentration of metals results from the corrosion phenomenon at different levels 

in both reject streams (Lattemann and Höpner, 2008). The average dose of antifoam 

agent injected into the make-up seawater is 0.1mg/l (Darwish et al., 2013), while 

the maximum dose of antiscalants agent is 2 ppm in thermal desalination plants 

(Abdulgader and Mustafe, 1998). Neither of these commercial chemical additives 

pose any threat to the environment or food grade products (Cipollina et al., 2012). 

The seawater intake is also chlorinated with typical doses 0.5–2 mg/l of active Cl2 

(Darwish et al., 2013). Because of the extended process within each evaporator and 

a high temperature, any residual effects of the brine discharge are minimal due to 

high dilution following reaction within the evaporation units (Cipollina et al., 

2012). However, there is an impact on sensitive ecosystems and the marine 

environment because of high salinity and continuous disposal (Lattemann and 

Höpner, 2008; Medeazza, 2005). 

 

During the desalination process, there are various concentrations of salts and 

minerals found in brine including SO4
2–, Cl−, Na+, Ca2+, Mg2+, K+, Fe2− and Cu2+ 

(Abdulsalam et al., 2016). The exploitation of these salts and minerals has sparked 

interest among scientific communities.  Recent literature has revealed that the use 

of standard methodologies for exploiting sodium chloride NaCl (halite) can be used 

alongside brine recovery processes in thermal desalination plants, reaping 

considerable benefits (Ravizky and Nadav, 2007; Hajbi et al., 2010). 

 

http://www.tandfonline.com/author/Abdulsalam%2C+Alrowaished
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Evaporation ponds provide the optimum solution for dealing with reduction of 

potable water costs by minimising brine volumes and reducing the environmental 

impact of the desalination process (Cipollina et al., 2012; Rodríguez et al., 2012) 

due to benefits gained from processing solid waste that produces a decontaminated 

liquid flow which is easier to use than original waste (González et al., 2012). The 

construction of ponds is not labour intensive, or costly in terms of maintenance and 

operation and does not require specialist equipment, thus being the best option, 

given the location properties of high aridity, high evaporation rates, low rainfall 

and land costs (Ahmed et al., 2000). Furthermore, they offer benefits of providing 

areas for aquaculture practices, e.g. fish breeding Artemia salina or algae 

cultivation of Dunaliella salina for the production of β-carotene) as well as 

recovery of poor quality waters while producing energy through solar ponds 

(Delanuez et al., 2012; Rodríguez et al., 2012). One of the key issues regarding the 

use of evaporation ponds for brine disposal is potential seepage of brine through 

the soil, which can cause contamination while raising salinity levels.  Leakage in 

the evaporation ponds can be measured by electrical conductivity and the 

concentration of salts which can quickly detect any leak (Ahmed et al., 2001), 

consequently the installation of pond liners is crucial to prevent further soil and 

groundwater contamination, (Ladewig and Asquith, 2012), which incurs 

considerable cost (Nicot et al., 2009) 

 

Considering the parity between natural evaporation and traditional salt works, there 

is a strong argument to adopt an integrated approach for the solution of brine 

disposal management from thermal desalination plants.  Therefore, this chapter 

aims to support the use of evaporation ponds as opposed to traditional salt works, 

to recover minerals and NaCl (halite) from brine, with particular reference to 

ZWPD in Libya, located on the southern Mediterranean coast. The work will also 

pave the way for further development of mineral salt exploitation from the brine 

disposed from thermal distillation plants. 

 

7.1.1. Crystallisation of sodium chloride (Halite) in the saltern 

ponds  
 

When saline water evaporates, it produces a sequence of salt formation, the first 

being calcium carbonate (calcium aragonite) at a concentration of 100-120 gl-1 
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followed by calcium sulphate (gypsum) at concentration of 180 gl-1 and finally 

sodium chloride (halite) at salt concentration of 300–350 gl-1, resulting in a 

concentrated mixture of magnesium, potassium, chloride and sulphate ions. The 

gypsum gathers at the bottom of the pond where the halite forms crystals (Madkour 

and Gaballah, 2012; Oren et al., 2009). These ponds operate continuously and 

seasonally, both maintaining a constant salinity gradient during ongoing production 

of salt, which is produced annually by the former and only during the summer by 

the latter (Davis, 2000). 

 

7.2. Study Site and Evaporation Ponds Installation 

 
An experiment was carried out in July 2014 to construct ten evaporation ponds next 

to the outlet of the Zwuarah distillation plant.  These ponds are located in the north-

western side of the city of Tripoli (Latitude 32°53’420” N and longitude 12°10'578” 

E) (fig 7.1). They are shaped as irregular rectangles with dimensions of (5m) width, 

(4.5m) long and (0.25m) deep.  

 

Prior to installation, the pond site was cleaned up to clear away gravel and coarse 

sand to prepare a top layer of clean sand. 21,000 tons of dry and soft clay sand were 

settled and compacted at site by a wheel loader. Banks around the perimeter of the 

evaporation ponds were built using concrete bound blocks. Dry white soft sea sand 

was equalised and compacted by using a skid steer loader in each pond.  Ten black 

pond liners of high density polyethylene measuring approximately 6 × 7m with 

0.5mm thickness were installed in the top layer of the lined ponds, welded together 

by adhesive liquid. 

 

Following their installation, the outer areas of each pond were covered by concrete 

block and soil in order to prevent movement of the pond liners.  The main objective 

of choosing these durable UV-resistant black pond liners is to enhance evaporation 

by absorption of solar radiation and to avoid any environmental issues. A Davis 

wireless vantage pro 2 weather station with data logger was installed next to the 

site in order to study the weather and weather patterns. The total area of all the 

evaporation ponds is about (225m2). The depth of the brine in each pond was 

approximately (0.07-0.1m).  A volume of 15.75 m3 of brine from the evaporator of 

ZWDP for ponds was used to carry out the experiments. 
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Figure 7. 1: Site of study (Google earth, 2016) 

 

7.3. Sampling and Data Collection 
 

The bulk element concentrations of chloride (mgl-1), calcium (mgl-1), magnesium 

(mgl-1), sodium (mgl-1), potassium (mgl-1), sulphate (mgl-1) and salinity (mgl-1) 

were analysed in the Lab of ZWDP using Hach methods 2013 for water, wastewater 

and seawater and the mass of these elements (gr) was calculated for the brine 

sample collected from the evaporator of ZWDP. In addition, five brine samples 

were collected from the evaporation ponds and analysed up to the salt 

crystallisation stage (Halite) over five weeks at different salinity percentages (%). 

 

Additionally, the weight percentages (%) of element concentrations were 

calculated (Table 7.1) to be compared with the quantified results obtained from 

scanning electron microscopy equipped with energy dispersive X-ray analysis 

(SEM-EDX) which allows only quantitative determination of the total soluble salt 

content in the salt crystal (Halite). The percentage of Halite (NaCl) purity and 

moisture was also determined and the total salt harvested (fig 7.2) from the ponds 

was weighed (see appendix 7). 
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Table 7. 1: The bulk element concentrations (mgl-1) and the weight percentages (%) of list valuable elements in rejected brine up to the salt harvested NaCl stage at 

different salinity level. 

 

Observation period 

 

Sample source 
 

 

Parameters 
 

Brine of ZWDP 

 

Cl- (mgl-1) Ca2+(mgl-1) Mg2+(mgl-1) Na+ (mgl-1) K+(mgl-1) SO42−(mgl-1) Salinity (mgl-1) 

28,784 657 2,153 12,870 561 8,500 52,000 

Cl- (gr) Ca2+(gr) Mg2+ (gr) Na+ (gr) K+ (gr) SO42− (gr) Salinity (%) 

2.90 0.07 0.22 1.30 0.06 0.85 5.2% 

No. Weeks 

Brine of  Evaporation ponds 

Cl- (mgl-1) Ca2+(mgl-1) Mg2+ (mgl-1) Na+ (mgl-1) K+(mgl-1) SO42−(mgl-1) Salinity  (mgl-1) 

End of 1st week 42,600 300 2,500 15,870 652 3,700 76,959 

End of 2nd week 53,600 400 3,700 20,220 792 5,100 96,831 

End of 3rd week 106,500 600 9,800 71,580 2660 10,300 192,389 

End of 4th week 213,300 1200 28400 82500 7040 85100 385,337 

Completely Evaporated at the end of 5th week (Salt) 5,006 39 176 637 2 116 9,043 

No. Weeks 

Weight (gr) 

Cl- (gr) Ca2+(gr) Mg2+(gr) Na+ (gr) K+ (gr) SO42− (gr)  

End of 1st week 4.26 0.03 0.25 1.59 0.07 0.37 
 

End of 2nd week 5.36 0.04 0.37 2 0.08 0.51 
 

End of 3rd week 10.65 0.06 0.98 7.15 0.27 1.03 
 

End of 4th week 21.33 0.12 2.48 18.98 0.7 8.51 
 

Completely Evaporated at  the end of 5th week (Salt) 0.5 0 0.02 0.32 0 0.01  

No. Weeks 

Weight (%) 

Cl- (%) Ca2+(%) Mg2+(%) Na+ (%) K+ (%) SO42− (%) Salinity (%) 

End of 1st week 4.26 0.03 0.25 1.59 0.07 0.37 7.7 

End of 2nd week 5.36 0.25 0.37 2.02 0.08 0.51 9.7 

End of 3rd week 10.65 1.59 0.98 7.16 0.27 1.03 19.2 

End of 4th week 21.23 0.07 2.84 18.98 0.7 8.51 38.5 

Completely Evaporated at the  end of 5th week (Salt) 0.50 0 0.02 0.32 0 0.01 0.9 

Salt harvested (NaCl) 
NaCl Purity (%) NaCl Moisture (%) Extracted quantity from ponds (Kg) 

80.73 0.52 309 
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Figure 7. 2: Salt harvested from the evaporation ponds at ZWDP 

 

7.3.1. SEM and EDX Analysis (Salt Crystal Sample) 

 
Samples of dried salt crystals were attached to aluminium studs with carbon glue to a 

sputter coated with gold to overcome the problem of charging during scanning electron 

microscopy SEM analysis. It is essential to provide the optimum contact for electrons 

across the surface of the sample through careful mounting and gold coating. The stud 

was loaded into an FEI Inspect SEM with an Oxford Instrument INCA analysis 

system. Conditions were 10kV; magnified at 43x, 117x and 154x with image scale 

2mm, 1mm and 500µm respectively to determine salt shape (fig 7.3). Additionally, 

LEAD compound siedentopf Microscope with digital camera was used to visualise the 

salt crystals. 
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Figure 7. 3: Salt sample and SEM micrographs of NaCl crystals 

 

The weight percentages (wt%) of chemical elements in the salt sample were carried 

out by energy dispersion of X-Ray spectroscopy (EDX) coupled with scanning 

electron microscopy (SEM) analysis. The salt sample was uncoated to remove the gold 

from the results and 20 kV voltages were used at image scale 1mm with magnification 

117x. Data was processed with Sem Quant Software to identify and quantify the 

elemental constituents of the salt sample and five essential chemical elements were 

found in the salt sample (Table 7.2). 
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Table 7. 2: Essential chemical elements in salt sample 

 

Element Weight% Atomic% 

Oxygen  28.22 39.30 

Sodium   41.38 40.10 

Magnesium 5.06 4.64 

Silicon  0.28 0.22 

Chlorine  25.05 15.74 

Totals 100  

 

7.3.2. Meteorological Data Collection 

 
The Meteorological data was recorded over five weeks intervals between the months 

of August and September in the year 2014 using Davis Vantage Pro2 weather station 

from which subsequent daily averages were derived. The meteorological data includes 

the daily average air temperature (°C), relative humidity (%), wind speed (ms-1) and 

direction, air pressure (KPa), solar radiation (Wm-2), and precipitation (mm). All the 

data is presented in Table 7.3 to estimate the evaporation rate at the site of study. 

 
Table 7. 3: Meteorological data at site of study 
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1st   

05/08/2014 27.3 27.1 84.7 23.6 18.2 NNE 101.3 283 0 

06/08/2014 27.2 27.0 82.7 26.3 20.7 NNE 101.3 300 0 

07/08/2014 26.3 26.1 77.3 23.9 17.7 NNE 101.5 319 0 

08/08/2014 26.0 25.7 79.6 21.6 14.7 ENE 101.6 310 0 

09/08/2014 26.7 26.6 82.1 29.0 19.6 NNE 101.5 292 0 

10/08/2014 27.2 27.0 83.5 31.3 20.4 NNE 101.5 285 0 

11/08/2014 27.2 27.0 82.3 22.5 14.2 NE 101.5 302 0 

2nd  

12/08/2014 27.6 27.4 76.8 15.7 10.3 ENE 101.4 299 0 

13/08/2014 27.9 27.6 70.0 15.1 9.8 NNE 101.2 295 0 

14/08/2014 28.9 28.5 66.1 15.1 9.9 N 101.3 288 0 

15/08/2014 27.4 27.2 86.9 20.0 15.3 NNW 101.6 279 0 

16/08/2014 27.2 27.0 85.5 20.1 14.3 NNW 101.6 264 0 

17/08/2014 27.4 27.2 83.5 31.7 23.0 NNE 101.7 228 0 
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18/08/2014 27.4 27.2 82.8 26.3 18.1 ENE 101.6 228 0 

3rd  

19/08/2014 28.3 28.1 82.8 17.4 10.6 ESE 101.3 207 0 

20/08/2014 29.4 29.0 71.9 15.4 9.0 ESE 101.3 278 0 

21/08/2014 29.4 29.1 69.6 12.5 7.1 ENE 101.3 267 0 

22/08/2014 29.9 29.5 58.6 13.9 8.3 E 101.4 262 0 

23/08/2014 29.7 29.3 65.6 13.4 8.2 NNE 101.4 287 0 

24/08/2014 27.9 27.7 85.7 24.6 18.6 NNE 101.6 281 0 

25/08/2014 27.3 27.1 80.6 22.3 16.0 NNE 101.8 270 0 

4th  

26/08/2014 27.6 27.4 80.6 21.6 14.2 ENE 101.6 269 0 

27/08/2014 28.4 28.1 77.8 18.7 13.0 N 101.3 270 0 

28/08/2014 27.9 27.7 83.1 26.2 20.3 N 101.4 274 0 

29/08/2014 27.5 27.3 83.4 17.2 12.4 NE 101.6 276 0 

30/08/2014 27.0 26.7 80.9 16.1 11.3 ENE 101.6 273 0 

31/08/2014 26.1 25.8 81.8 15.3 9.6 ESE 101.5 264 0 

01/09/2014 28.3 27.8 75.8 19.7 12.7 NNE 101.2 256 0 

5th 

02/09/2014 27.3 27.0 71.0 21.0 15.0 E 101.2 262 0 

03/09/2014 25.9 25.5 69.7 16.1 11.3 E 101.3 267 0 

04/09/2014 27.1 26.8 74.3 20.7 12.3 NE 101.3 257 0 

05/09/2014 27.7 27.5 83.1 23.7 15.2 NE 101.3 251 0 

06/09/2014 27.6 27.4 75.9 25.2 17.8 ENE 101.3 250 0 

07/09/2014 27.8 27.6 76.6 22.4 13.9 NE 101.3 256 0 

08/09/2014 27.1 26.8 74.3 20.7 12.3 NE 101.3 257 0 

 

7.4. Estimation of Evaporation Rate at Site of Study 

 
There are several techniques used to calculate evaporation rates, the most common 

being the use of an evaporation pan (Class A pan) (Ahmed et al., 2000).  In this study, 

the Penman (1948) equation normally used by hydrologists to calculate evaporation 

rates from open water sources, was used in this case to quantify the evaporation rates 

from the evaporation ponds at the site of study.  The Penman formula is written thus 

(Akridge 2008): 

 

𝜆𝐸 =
𝛥

𝛥+𝛾
𝑅𝑛 +

𝛾

𝛥+𝛾
𝑓(𝑢)(𝑒𝑠 − 𝑒) ……………………….………...……...…. (7.1) 

 

Where  𝜆 is the latent heat of vaporization (MJkg-1), 𝐸 is the evaporation rate expressed 

as (mmday-1), 𝛥  is the slope of the saturation vapour pressure curve (kPa °C-1), 𝛾  is 

the psychrometric constant (KPa), 𝑅𝑛 is the net solar radiation (MJ m-2 day-1), 𝑓(𝑢) is 

wind speed (ms-1) function, 𝑒𝑠 and 𝑒 are the saturation vapour pressure of water and 

ambient water vapour pressure, respectively (kPa). The aerodynamic parameters of 

Penman formula were estimated using standard equations as recommended by 

(Shuttleworth, 1993; Allen et al, 1998; Shuttleworth, 2007; Akridge, 2008).  

 

The latent heat of evaporation 𝜆 (MJkg-1) ranges in temperature and is determined by 

the following equation: 
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𝜆 = (2.501 − 0.002361𝑇)…………………..………………….…………... (7.2) 

 
Where 𝑇   is represented in degrees celsius, it is the average of the daily maximum and 

minimum temperatures recorded at the site calculated thus: 

   

𝑇 =
𝑇max  + 𝑇min  

2
   …..………………………..……………..….……………… (7.3)   

 

The slope of saturation vapour pressure Δ  (kPa °C-1) is a function of temperature and 

can be calculated as follows: 

 

∆
        

=
 4098es

(237.3 +T)2  
 ……….……………...…………........…….……….…..…… (7.4) 

 
Where 𝑒𝑠 (KPa) shows the pressure of saturation vapour, as calculated from daily 

average temperatures, it verifies the release of water molecules that are released from 

the liquid surface, calculated as follows: 

 

  𝑒𝑠 = 0.6108𝑒( 
17.27𝑇

237.3+𝑇
)
……………………….……………...…………….…. (7.5) 

 

The psychrometric constant (kPa °C-1) can be identified as the following: 

   

𝛾 = 0.000655𝑃 ……………..………….………………….….…...….……... (7.6) 

 
Where P is the atmospheric pressure (kPa) recorded by the weather station at the site. 

 

At ground surface level, the parity between total upward and downward radiation 

fluxes is measured to give net radiation ( 𝑅𝑛), which ultimately energises the processes 

of evaporation, evapotranspiration, air and soil fluxes (Imak et al., 2003). It can be 

calculated using a range of methods including direct measurement with a radiometer, 

analysis of Earth’s orbital characteristics and published latitude tables (Akridge, 2008) 

which investigate monthly average net radiation rates (e.g. in Boxwell, 2016).  Daily 

average net radiation was measured using the following equation: 

 
𝑅𝑛 = 0.0864𝑄 …………...……..…………………....…………..….………. (7.7) 

 
Where Q  is daily average solar radiation (Wm-2). 

 
Wind speed for an open water surface is calculated by the following formula: 
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𝑓 (𝑈) = 6.43 (1 +  0.536 𝑈2)……...……………………...…...…….…………. (7.8) 
 

Where U2 is the average of the daily maximum and minimum wind speed  (ms-1) 

recorded at 5.5 m above the surface at the site of study and is calculated thus: 

 

𝑈2 =
𝑈max + 𝑈𝑚𝑖𝑛

2
   …………………...…………………….….....……….……… (7.9)   

 
The vapour pressure 𝑒 (KPa) can be determined from the relative humidity by the 

following equation:- 

 

 𝑒
        

=
   𝐻𝑟𝑒𝑠

100 
    ……………………….…………...…………….…….………….. (7.10) 

 

Where   𝐻𝑟  is the daily average of the relative humidity (%) recorded at the site of 

study by the weather station. 

 

The estimation of the daily average evaporation rates from 5th of August to 8th 

September 2014 at the study site are presented in (Table 7.4). 
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Table 7. 4: Daily average evaporation rates at the study site 
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1st  

05/08/2014 27.15 20.89 2.44 3.60 0.21 0.07 24.45 78.44 3.05 0.55 11.88 

06/08/2014 27.10 23.50 2.44 3.59 0.21 0.07 25.89 87.42 2.97 0.62 13.41 

07/08/2014 26.20 20.80 2.44 3.40 0.20 0.07 27.52 78.12 2.63 0.77 14.63 

08/08/2014 25.85 18.15 2.44 3.33 0.20 0.07 26.76 68.98 2.65 0.68 13.05 

09/08/2014 26.65 24.28 2.44 3.49 0.21 0.07 25.26 90.11 2.87 0.63 13.48 

10/08/2014 27.10 25.85 2.44 3.59 0.21 0.07 24.62 95.52 2.99 0.59 13.25 

11/08/2014 27.10 18.37 2.44 3.59 0.21 0.07 26.06 69.72 2.95 0.63 12.49 

2nd  

12/08/2014 27.50 13.00 2.44 3.67 0.21 0.07 25.85 51.23 2.82 0.85 12.34 

13/08/2014 27.75 12.47 2.44 3.73 0.22 0.07 25.52 49.39 2.61 1.12 13.33 

14/08/2014 28.70 12.51 2.43 3.94 0.23 0.07 24.86 49.54 2.60 1.33 14.04 

15/08/2014 27.30 17.63 2.44 3.63 0.21 0.07 24.14 67.17 3.15 0.48 10.67 

16/08/2014 27.10 17.21 2.44 3.59 0.21 0.07 22.77 65.76 3.07 0.52 10.47 

17/08/2014 27.30 27.34 2.44 3.63 0.21 0.07 19.69 100.64 3.03 0.60 12.06 

18/08/2014 27.30 22.21 2.44 3.63 0.21 0.07 19.69 82.98 3.00 0.62 11.22 

3rd  

19/08/2014 28.20 13.98 2.43 3.82 0.22 0.07 17.90 54.61 3.17 0.66 9.06 

20/08/2014 29.20 12.22 2.43 4.05 0.23 0.07 24.01 48.53 2.91 1.14 12.71 

21/08/2014 29.25 9.79 2.43 4.06 0.23 0.07 23.09 40.17 2.83 1.24 11.90 

22/08/2014 29.70 11.10 2.43 4.17 0.24 0.07 22.63 44.69 2.44 1.73 14.17 

23/08/2014 29.50 10.81 2.43 4.12 0.24 0.07 24.82 43.67 2.70 1.42 13.55 

24/08/2014 27.80 21.60 2.44 3.74 0.22 0.07 24.29 80.87 3.20 0.53 11.79 

25/08/2014 27.20 19.16 2.44 3.61 0.21 0.07 23.30 72.45 2.91 0.70 12.26 

4th  

26/08/2014 27.50 17.89 2.44 3.67 0.21 0.07 23.25 68.07 2.96 0.71 12.00 

27/08/2014 28.25 15.83 2.43 3.84 0.22 0.07 23.34 60.99 2.98 0.85 12.28 

28/08/2014 27.80 23.25 2.44 3.74 0.22 0.07 23.68 86.55 3.10 0.63 12.69 

29/08/2014 27.40 14.79 2.44 3.65 0.21 0.07 23.88 57.40 3.04 0.61 10.86 

30/08/2014 26.85 13.72 2.44 3.53 0.21 0.07 23.60 53.72 2.86 0.68 10.94 

31/08/2014 25.95 12.47 2.44 3.35 0.20 0.07 22.83 49.41 2.74 0.61 10.11 

01/09/2014 28.05 16.20 2.43 3.79 0.22 0.07 22.09 62.25 2.87 0.92 12.39 

5th  

02/09/2014 27.15 17.98 2.44 3.60 0.21 0.07 22.65 68.38 2.55 1.04 14.08 

03/09/2014 25.70 13.68 2.44 3.30 0.20 0.07 23.11 53.58 2.30 1.00 12.64 

04/09/2014 26.95 16.51 2.44 3.55 0.21 0.07 22.20 63.31 2.64 0.91 12.64 

05/09/2014 27.60 19.47 2.44 3.69 0.22 0.07 21.71 73.52 3.07 0.62 11.25 

06/09/2014 27.50 21.51 2.44 3.67 0.21 0.07 21.57 80.56 2.79 0.88 13.67 

07/09/2014 27.70 18.15 2.44 3.71 0.22 0.07 22.11 68.98 2.85 0.87 12.72 

08/09/2014 26.95 16.52 2.44 3.55 0.21 0.07 22.20 63.35 2.64 0.91 12.64 



 

166 
 

7.5. Pond Surface Area and Depth Required for ZWDP 
 

The design of a fully functioning evaporation pond is based on accurate evaporation 

data that needs to be carefully measured and recorded. The surface area required 

depends on volumes of brine disposal and evaporation rates. (Ladewig and Asquith, 

2012).  Optimum parameters of pond open surface area (A), minimum pond depth (D) 

recommended in design, and maintenance of evaporation ponds by (Ahmed et al., 

2000) can be estimated from the following equations. 

 

𝐴 =
𝑉 ∗ 𝐹1

0.7 ∗ 𝐸𝑎𝑣𝑒
 ……………………………...…………….……...………………. (7.11) 

 

𝑑𝑚𝑖𝑛 = (0.2 + 𝐸𝑎𝑣𝑒) ∗  𝐹2 …………………….……........…......…………...… (7.12) 

 

Where 𝐴 is the open surface area of the pond (𝑚2), 𝑉 is the volume of reject brine 

(𝑚3/𝑑𝑎𝑦),  𝐹1 is an empirical safety factor to allow for lower than average 

evaporation rates,  0.7 is the value in the area in the equation representing the 

evaporation ratio.  𝐸𝑎𝑣𝑒 is the evaporation rate (𝑚/𝑑𝑎𝑦). 𝑑𝑚𝑖𝑛 is the minimum depth 

(𝑚), the value of  0.2m in depth equation is the freeboard for rainfall intensity, 𝐹2 is 

a factor that incorporates the length of the winter season.  ZWDP produces around 

40,000 (𝑚3/𝑑𝑎𝑦) of effluent to the marine environment of which 26,666.7 

(𝑚3/𝑑𝑎𝑦)is brine water, so the pond area and depth needed for ZWDP are estimated 

for low and high evaporation rates in (Table 7.5). 

 
Table 7. 5: Pond surface area and depth needed for ZWDP 

 
Evaporation 

rates data 

(m/day) 

 

F1:Safety factor 

evaporation rate 

(𝑚/𝑑𝑎𝑦) 

F2: length of 

the winter 

season (days) 

Volume of 

reject brine 

(𝑚3/𝑑𝑎𝑦) 

Surface Area 

required 

(𝑚2) 

Depth 

(m) 

Low : 0.009   0.0045 90 26,666.70 19,047.60 1.02 

High : 0.015  0.0073 90 26,666.70 19,047.60 1.52 

 

 

7.6. Cost Estimation of Evaporation Ponds Installation in Libya 

 
The cost of installation of evaporation ponds in Libya was determined from 

communication with three Libyan local companies, namely Almsar El-Kabeer Ltd, 

Altbain Ltd and Alrqhobh ltd.  The feasibility estimation of installing the evaporation 

ponds has been set out in a schedule of works with relevant details including site 

location (Latitude 32°53’40” N and longitude 12°10'40.3” E) in the north west of 
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ZWDP and land cost. The total area proposed for implementation of the project was 

300,004 hectares, divided into six evaporation ponds, each of which has a length of 

1000 m and a 500 m width. Other factors for cost consideration include site clearing 

and preparation, earthworks incorporating outlying areas, building banks, installation 

of a pipeline system, pond liners, road and access, lighting systems and installation of 

a weather station. The project was designed to convey the brine disposed from ZWDP 

and seawater to the evaporation ponds (fig 7.4). 

 

 
 

Figure 7. 4: Proposed project of evaporation ponds to estimate the total cost (Google earth, 

2016) 

 

This has been put out to tender to local companies in Libya who have submitted their 

prices to estimate the actual cost per hectare to build evaporation ponds (Table 7.6). 

These figures were assessed against Mickley equations used to calculate the cost of 

utilizing evaporation ponds for desalination plants that are valid from a range of 

4.04686 to 40.4686 hectares. 

 
Table 7. 6: Estimated cost of hectare to build evaporation ponds 

 

 Cost factors 

Almsar El-

Kabeer Ltd 

[$/ha USA] 

Altbain Ltd 

[$/ha USA] 

Alrqhobh ltd 

[$/ha USA] 

Land Cost 6,896.5 6,896.50 6,896.5 

Site clearing and preparation 10,344.8 11,724.12 13,793.1 

Earthworks 2,206.9 2,413.8 2,758.6 

Pipeline system installation  110,344.8 128,965.5 134,827.59 

Lining the pond 48,275.9 55,172.4 58,620.69 
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Site access 88,137.95 88,275.85 93,793.11 

Lighting system installation 18,056.4 20,689.6 22,758.6 

Weather  station installation   689.7 827.6 1,034.5 

Total cost 284,953 314,965 334,483 

 

Mickley’s formulas for the total capital cost is written thus (Mickley, 2006) 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 ($) = 𝐴𝑡 × 𝐶𝐶𝑈  ……………….………...………………. (7.13) 

 

Where 𝐴𝑡 is total area required (acres) and can be calculated from the following 

formula. 

 

𝐴𝑡  (𝑝𝑙𝑢𝑠 𝑎 20% 𝑜𝑓  𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟) = (1.2𝐴𝑒) ×
1+0.155𝑑ℎ

√𝐴𝑒
  ……...…. (7.14) 

 

Where  𝐴𝑒 is evaporative area (surface area of the pond) (acres) and dh is dike height 

(ft). 

 

The total unit area capital cost 𝐶𝐶𝑈 ($/acre) can be calculated from the following 

equation.  

 

𝐶𝐶𝑈 = 5406 + 465𝑡𝑙  + 1.07𝑙𝐶 + 0.931𝐶𝑐 + 217.5𝑑h ………………....…... (7.15) 

 

Where 𝑡𝑙  is the liner thickness (mils), 𝑙𝐶 is the land cost ($/acre), 𝐶𝑐 is the land clearing 

cost ($/acre). 

 

Land cost between the three tenders is constant but there were differences between the 

three tenders in the estimated cost of land clearing and preparation.  Hence, averages 

between the three companies quotes have been calculated in order to estimate the total 

capital cost of constructing 2.5 acres (1 ha) of evaporation ponds by using Mickley’s 

equation (Table 7.7).  

 
Table 7. 7: Capital cost of installation of evaporation ponds by mickley’s equation 

 

Factors 
Dimensions 

and costs 
Unit 

Total area (𝑨𝒕) 

(acres) at 0.2 

contingency 

factor 

Total unit 

area capital 

Cost (𝑪𝑪𝑼) 

($/acre) 

Total 

capital cost 

($) 

Surface area of 

the pond  
2.47105 acres 

3.04 116, 163.3 353,136.4 Dike height  3.93701 Ft 

Liner thickness 196.85 mils 

Land Cost  6,896.50 $/acre 



 

169 
 

Land clearing 

and preparation 
11954.02 $/acre 

 

7.7. Statistical Analysis 
 

All the meteorological data include the daily average air temperature (°C), relative 

humidity (%), wind speed (ms-1), air pressure (KPa), solar net radiation (MJ m-2 day-

1). Also included is the total weight percentages (wt%) for the ions composition of the 

five brine samples up to crystallisation stage collected from the evaporation ponds 

including Cl- (mgl-1), Ca2+ (mgl-1), Mg2+ (mgl-1), Na+ (mgl-1), K+ (mgl-1), SO42− (mgl-

1) which were obtained from the field and lab work over the two months of the 

experiment. The results were transferred into PRIMER v6 software (Plymouth 

Routines In Multivariate Ecological Research version 6) (Clark and Gorley, 2006) in 

order to visualise the patterns of meteorological data which were collected daily and 

the total weight percentages (wt%) for ion compositions which were analysed at the 

end of each week over the study period. However, the daily average rainfall (mm) at 

the study site could not be included for statistical analysis, as it recorded nil during the 

period of study.  All the data was normalised and then characterised by the principal 

component analysis (PCA) to generate 3D and 2D scatterplots displaying the 

distribution of the meteorological data and the ions composition of brine samples 

during the study period (see appendix 7). A factorability of ±0.3 and greater was 

chosen because it is categorised as an important factor into each PCA (Williams et al., 

2010; Pallant, 2010).  

 

7.8. Results and Discussion 

 
The aim of this work was to study the feasibility of salt production from reject brine 

released from distillation plants (MED plant) in the south Mediterranean on the 

western part of the Libyan coastline, using evaporation ponds. In order to obtain 

optimum evaporation rate results, black liners of high-density polyethylene were used, 

which ultimately resulted in the production of concentrated brine in a shorter time 

span, compared with traditional techniques. Information has been collated to provide 

a methodological process of using evaporation ponds as a means of brine management, 

described from technological, economical and environmental aspects. 
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At the study site, PCA analysis based on meteorological parameters resulted in five 

components (fig 7.5) and the pattern during the period of study is best explained in 

PC1 with 47.6% of the total variance. In addition, PC2, PC3, PC4 and PC5 accounted 

for 69.1%, 83.6%, 94.2% and 100% of the total variance respectively. The pattern 

between meteorological parameters in PC1 is best explained with average daily 

temperature (°C) (-0.48), humidity (%) (0.57), wind speed (ms-1) (0.50), and air 

pressure (KPa) (0.44). In PC2 the pattern between the meteorological parameters is 

best explained with average daily temperature (°C) (0.3) and solar radiation (Wm-2) (-

0.93). In the PC3 the pattern between meteorological parameters is best explained with 

average daily temperature (°C) (0.35), wind speed (ms-1) (-0.41), air pressure (KPa) 

(0.84). In the PC4 the pattern between meteorological parameters is best explained 

with average daily temperature (°C) (0.74), wind speed (ms-1) (0.57) and solar 

radiation (Wm-2) (0.34). In the PC5 the pattern between the meteorological parameters 

is best explained with humidity (%) (0.79), wind speed (ms-1) (-0.47), and air pressure 

(KPa) (-0.31).   

  

 
 

Figure 7. 5: 3D (PCA) ordination of meteorological parameters at the study site 

 

Meteorological data (Table 7.3) over the period of study included daily average high 

and low temperatures (°C) (fig 7.6 and fig 7.7), humidity (%) (fig 7.8), air pressure 

(kPa) (fig 7.9), daily average high and low wind speed (ms-1) (fig 7.10 and fig 7.11), 

solar radiation (Wm-2) (fig 7.12) and daily average evaporation rate (mmday-1) (fig 

7.13) at site of study indicating that the area is generally hot, dry and semi-arid.  
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Figure 7. 6: High temperature (°C)                        Figure 7. 7: Low temperature (°C) 
 

 
 
Figure 7. 8: Humidity (%)                                        Figure 7. 9: Air pressure (kPa) 
 

 
 

Figure 7. 10: High wind speed (ms-1)                       Figure 7. 11: Low wind speed (ms-1) 
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Figure 7. 12: Solar radiation (Wm-2)                       Figure 7. 13: Evaporation rate (mmday-1) 
   

The daily average high temperature fluctuated between 25.9°C and 29.9°C, while the 

daily average low temperature varied between 25.5°C and 29.5 °C. The daily average 

relative humidity ranged between 58.6% and 86.9%. There are intermittent wind 

regimes in the site of study where direction varied considerably, mainly from north-

northeast (NNE), east-northeast (ENE), northeast (NE), north (N), north-northwest 

(NNW), east-northeast (ENE), east-southeast (ESE) and east (E) with daily average 

high wind speed alterations between 12.5 ms-1 and 31.7 ms-1, while the daily average 

low wind speed ranged between 7.1 ms-1 and 23 ms-1. The daily average air pressure 

varied between 101.2 (kPa) and 101.8 (kPa) and solar radiation from 207 Wm-2 to 319 

Wm-2. This contributed to the lowest daily evaporation rate occurring in August and 

found to be 9.06 mmday-1 while the highest daily average evaporation rate occurred 

in September, found to be 14.63 mmday-1. However, results were found by Benzaghat 

et al., 2011, who studied estimation of evaporation rates using the Penman method on 

the north coastline of Libya which ranged 4.1 to 12.1 mm/year with daily average 9 

mmday-1. The outcome of the daily average evaporation rates indicated that the 

evaporation is largely dependent on climate variables. 

 

Final lab analysis also showed that useful end-products can be generated from the 

evaporation of the brine disposed from ZWD plant at different salinity levels. Major 

concentration of salts and minerals were found in brine including Cl- , Ca2+, Mg2+, 

Na+, K+ and SO4
2− and salt in the form of NaCl. 

 

PCA analysis of the total weight percentages (wt%) for the ions composition of the 

five brine samples up to crystallisation stage resulted in four components (fig 7.14) 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0ahUKEwiisPrb_dLPAhXiAsAKHcYUBF8QFghJMAY&url=http%3A%2F%2Fforums.accuweather.com%2Findex.php%3Fshowtopic%3D23085&usg=AFQjCNFdSrRywaSIXOtmpNLm-Y9jy9Ft1A&bvm=bv.135258522,d.ZGg
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and the pattern during the period of study is best explained in PC1 with 82.1% of the 

total variance. In addition, PC2, PC3 and PC4 accounted for 99.8%, 100% and 100% 

of the total variance respectively. The pattern of the total weight percentages between 

ions composition in PC1 is best explained with Cl- (wt %) (-0.445), Mg2+ (wt %) (-

0.451), Na+ (wt %) (-0.450), K+ (wt %) (-0.450) and SO42− (wt %) (-0.439). In PC2 

the pattern of the total weight percentages between ions composition is best explained 

with Ca2+ (wt %) (-0.969). In PC3 the pattern of the total weight percentages between 

ions composition is best explained with Cl- (wt %) (0.853), Na+ (wt %) (-0.334) and 

SO42− (wt %) (-0.348). The pattern of the total weight percentages of ions composition 

in PC4 is best explained with Mg2+ (wt %) (-0.406), Na+ (wt %) (0.306), K+ (wt %) 

(0.678) and SO42− (wt %) (-0.507). 

 

 
 

Figure 7. 14: 2D (PCA) ordination of metrological parameters at the study site 

 

The outcomes of the total weight percentages (wt%) calculated from the 

concentrations of ions by titration using Hach methods for the brine and salt sampled 

during five weeks at different percentages of salinity level (Table 7.1 above) indicated 

that, the wt% of the salt is primarily influenced by Na+ and Cl- at the fifth week 

alongside other elements such as Mg2+ and SO42−. There was a significant increase in 

wt% of Cl-, Ca2+, Mg2+, Na+, K+ and SO42− up to the fourth week, followed by a 

notable decrease in wt% in the fifth week. The observed variation can be attributed to 

the gypsum crystallisation at this stage which revealed fluctuations of salinity level.  

At salinity level 7.7%, the wt% of extracted chemical elements of Cl-, Ca2+, Mg2+, 
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Na+, K+ and SO42− varied between 4.26%, 0.03%, 0.25%, 1.59%, 0.07% and 0.37% 

respectively, while at salinity level 9.7%, the wt% of extracted chemical elements of 

Cl-, Ca2+, Mg2+, Na+, K+ and SO42− varied between 5.36%, 0.04%, 0.37%, 2.02%, 

0.08% and 0.51% respectively, whereas at salinity level 19.2% the wt% of extracted 

chemical elements of Cl-, Ca2+, Mg2+, Na+, K+ and SO42− varied between 10.65%, 

0.06%, 0.98%, 7.15%, 0.27% and 1.03% respectively, while, at salinity level 38.5% 

the wt% of extracted chemical elements of Cl-, Ca2+, Mg2+, Na+, K+ and SO42− varied 

between 21.33%, 0.12%, 2.48%, 18.98%, 0.7% and 8.51% respectively.  At salinity 

level 0.9% the wt% of extracted chemical elements of Cl-, Mg2+, Na+, and SO42− 

varied between 0.5%, 0.02%, 0.32%, 0.01% respectively, however Ca2+ and K+ did 

not exist at this level of salinity, which is possibly due to crystallisation of salt (NaCl) 

of a purity reaching  80.73% with moisture 0.52%. The results of the analysed brine 

samples from the evaporation pond showed considerable variation in the ions 

composition which may be attributed to high salinity levels due to intense evaporation 

taking place in the ponds that were not detected in the analysis. 

 

SEM/EDS analysis was performed on the salt crystal samples to determine their 

crystallographic structure and to identify wt% of the chemical elements present in the 

salt crystal samples. The investigation results in (Table 7.2, fig 7.3 above) indicated 

that the EDS spectrum of the salt crystals sample exhibited two highly intense peaks 

of Na+ and Cl- at 41.38% and 25.05% of the total wt% respectively, in contrast with 

low intense peaks of Mg2+ and Si at 5.06% and 0.28% of the total wt% respectively. 

Meanwhile, O2 represented only about 28.22% of the total wt% and the absence of 

other chemical elements shows that salt crystal samples have good purity with a 

homogeneous crystallographic structure (fig 7.15). Addala et al., 2013 also supported 

the notion that the significant intensities of peaks indicate high crystalline quality. The 

crude salt produced from the evaporation ponds indicated a strong presence of Na+ 

and Cl- alongside other impurities present in small but significant quantities.  This is 

in accordance with a study by Kasedde, (2013), who recorded an average proportion 

of halite (NaCl) in grade 1 as 92%, 64% in grade 2 and 65% in grade 3 for the salt 

production from salt works. Hence from the present investigation, the result of the 

mineralogical analysis of the salt by EDS analysis indicates that the crude salt yield 

from the evaporation ponds ranged between grade 1, 2 and 3 compared to conventional 

method of salt production. On the other side, that result indicates that the concentration 
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of toxic trace metals or elements in the salt harvested from the experimental study did 

not exist. Therefore, the outcome reveals that the NaCl produced from the brine 

disposed from distillation plants can be commercialised in the food and industrial 

sectors.  

 

 

 
Figure 7. 15: EDX analysis of salt crystal harvested of evaporation ponds 

 

The calculated pond surface area and depth required for ZWDP revealed that at low 

and high evaporation rates ranging between 0.009 and 0.05 m/day, the total surface 

area of evaporation pond to accumulate the brine disposed is roughly 19,047.60 m2 

with depth varying between 1.02 to 1.52 m. In addition, the outcomes of the 

experimental fieldwork in the evaporation ponds revealed that a volume of brine of 

15.75 m3 produces about 309 kg of salt within an area of 255m2 and depth variance of 

0.07-0.1m, thus demonstrating that by increasing the outlying area and the volume of 

brine, it is likely to instigate salt production. Consequently, as ZWDP disposed about 

26,666.7 m3day-1of the brine, it is anticipated that about 523,175.261kgday-1 could be 

extracted in the form of salt.  

 

The calculated total capital cost of constructing evaporation ponds by Mickley’s 

equation was slightly higher $/ha 353,136.4 than the total capital costs estimated in 
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the quotes from Almsar El-Kabeer Ltd, Altbain Ltd and Alrqhobh Ltd at $/ha284,953, 

$/ha314,965, and $/ha334,483 respectively (fig 7.16), because 20% is assumed as a 

design contingency in the Mickley’s equation. 

 

 

 
Figure 7. 16: Installation cost of one hectare of evaporation ponds by local companies. 

 

The estimates proffered by the three companies do incorporate a contingency cost 

factor, but are not expressly identified as a percentage. The results also revealed that 

the cost factors of an evaporation pond including installation of a pipeline system, 

pond liner and site access constitute the highest expense, compared to other cost 

factors. These findings are in concordance with the results reported in literature 

concerning pond liners. The named companies claimed that the installation cost factors 

of constructing evaporation ponds, such as site access and lining the pond, can be 

reduced by using an alternative to synthetic materials, such as the finest grade of 

limestone powder produced from the white limestone quarries on the Libyan coastline 

for lining the pond and building roads. This option could reduce construction costs 

and the risk of contamination of subsoil and groundwater by hot brines, further 

improving evaporation rates at the site.  

 

More than 30% of the total global production of sodium chloride (table salt) is derived 

from solar evaporation ponds (Ahmed et al., 2009). According to the prices obtained 

from leading industrial websites, such as (www.Alibaba.com) the current market price 
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for sea salt (sodium chloride) with a purity of 99% ranges between US $ 50-100/ tonne, 

and high quality food grade pool sodium chloride ranges between US $340-360.  

Another website (www.econmist.com) was also used to investigate the current market 

price of the lowest grade of gritting salt for de-icing roads. According to this website, 

the value of salt per tonne ranges between $ 40-50 in America and Britain. Another 

study by Abdulsalam et al., 2016 was also used to investigate the price of different 

minerals showing that the price of sodium and magnesium  ranges between US $ 350 

- US $ 2,410 respectively.  

 

The recovery of such salt or minerals can generate significant revenues annually for 

Libya resulting in major investment across public and private sectors, particularly 

within the environmental and economic infrastructure.  This is because the 

geographical location is eminently suitable for the evaporation ponds as it has a mild, 

dry temperature and high annual evaporation rates, combined with minimal land costs 

and availability. 

 

The cost of land per hectare for the evaporation ponds can be offset against 

combinations of promoting synergies using aquaculture practices, such as the sale of 

Artemia salina.  This does not occur in highly saline conditions, so in order to extract 

it, the salinity level in the ponds needs to be reduced and controlled by mixing brine 

with seawater, hence the total area designed to accumulate the brine from ZWDP was 

300,004 hectares because its continuous daily brine disposal merits further investment. 

Therefore, by processing 9,733,345.5 (m3/year) of reject brine disposed from 

ZWDP, it would be possible to produce commercial salts of NaCl worth 

190,958,968.86 kg/year which is about US $ 9,547,948,442.86 annually, so this is the 

most sustainable and optimistic scenario. 

 

In terms of full pond production planning, according to Butts (2011) the actual time 

needed to reach stabilisation always takes longer than scheduled. Original predicted 

time frames are invariably not met, due to factors such as pond conditioning as well 

as brine inventories.  Aspects of brine exchange features are not adequately accounted 

for in the initial stages of the pond operation. In fact, even the most basic pond system 

such as NaCl production from ocean brine can take 3 to 4 years. The duration of the 

process could be 12 months for the brine to reach the required concentration and two 

http://www.econmist.com/
http://www.tandfonline.com/author/Abdulsalam%2C+Alrowaished
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or three years more to lay down a floor. Consequently, salt production cannot 

commence until the fourth or even the fifth year. 

 

7.9. Summary 
 

According to experimental work in this chapter, this study has revealed that the best 

way to recover salt and minerals for domestic, commercial and industrial use, an 

integrated cycle that utilises a distillation plant with evaporation ponds is undoubtedly 

the best method, in terms of production, cost and efficacy, in contrast with more 

conventional salt extraction methods.  Furthermore, the quality of the end-product 

shows a huge potential for further development and investment by building more 

desalination plants on the Libyan coastline. 

 

From the short timescales involved to obtain salt or minerals, it would appear that the 

use of evaporation ponds is clearly effective in evaporating brine. The chemical and 

mathematical analysis data obtained by Hach methods from the brine samples 

collected indicated that the wt% of chemical compositions (Cl-, Ca2+, Mg2+, Na+, K+ 

and SO42-) and salinity levels continued to increase exponentially.  In contrast, the 

wt% of Ca2+ decreased in the fourth week followed by a fall in the wt% of chemical 

compositions when reaching gypsum crystallisation stage (pure salt). Further to this, 

the wt% of Ca2+ and K+ was non-existent when the brine evaporated in the form of 

salt. However, in the SEM/EDS test, halite (NaCl) was the main mineral evident 

during crystallisation of the salt samples, due to elevated surges of  Na+ and Cl-. This 

proves the efficacy of evaporation ponds for the production of high quality products, 

at little or no environmental cost.   It also paves the way for further investment and 

development of an eco-friendly venture that will ultimately propagate further 

economic growth for Libya, while providing further work opportunities. The next 

chapter will provide the conclusion and suggestions for future work of this thesis. 
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Chapter Eight: Summary and Conclusion 
 

8.1. Introduction 
 

The aim of this work was to determine the physico-chemical effects of brine influx 

from thermal desalination plants on the marine environment. Therefore, this chapter 

aims to present the overall summary and conclusion of the contribution of this 

research, in addition to providing limitations, recommendations, future work and 

validity of the research data collection and results. 

 

8.2. Summary and conclusion of contribution 
 

Over recent decades, several thermal and membrane water desalination processes 

have emerged and evolved in a bid to incorporate the best methods, taking 

economic and safeguarding factors into consideration.  One such method that has 

been the focus of research is membrane desalination that includes design of the 

membrane module, energy recovery and pre-treatment methods as a cost-effective 

alternative to thermal processes such as MSF and MED.  This is due to a lower 

demand for chemicals, improved operational and refining processes that reduce 

scaling, corrosion and anti-fouling.  This membrane technology has also been found 

to be more cost effective for brackish water than seawater, due to low salinity.  

Conversely, larger-scale operations such as MED and SWRO tend to be more 

economical due to economy of scale and high efficiency in comparison to MSF.  

According to published literature on this topic, water costs vary based on different 

factors such as i) fuel cost, (ii) material and construction cost, (iii) feed water 

properties (salinity and turbidity), (iv) methods of cost calculation and desalination 

capacity.  Gradually, thermal desalination such as MED and MSF for large-scale 

operations is gaining more momentum, particularly in arid and semi-arid regions 

where fuel sources are plentiful such as North Africa and the Middle East where 

distillation technologies are combined with power plants for optimum efficiency 

and economy.  As CO2 emissions escalate, there is need for alternative sustainable 

power sources such as solar power, but this is not feasible due to the need for large 

areas of land and higher operating costs. As seawater desalination techniques 

produce fresh water, there is concern about the by-products (brine) and its potential 

damage to the marine environment.  During the desalination process, the use of 
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agents and chemicals to deal with the various stages of water treatment as well as 

salinity and thermal energy still remain a cause for concern in terms of 

environmental damage. 

 

Presently, in literature there are no published legal regulations regarding the 

impacts of brine disposal across the Mediterranean. The current brine management 

strategies globally practised have provided some options for the treatment of brine 

disposed from desalination plants.  Each scenario presents benefits and drawbacks, 

considering those that are not feasible such as direct discharge, discharge via 

wastewater treatment plants, discharge to the sewage systems, deep well injection, 

land application/spray irrigation and landfill disposal. None of these is viable 

because of environmental implications and poor economy of scale.  One possible 

option was a co-charge of concentrate with power plant cooling water but when 

applied in coastal desalination areas, the salinity of the ambient receiving seawater 

will increase which will affect marine life.  Other suggestions such as zero liquid 

discharge using crystallisers, wind aided intensified evaporation, dew evaporation, 

salt recovery salt solidification and sequestrations (SAL-PROC) and other brine 

management methods used for membrane techniques have proved impractical due 

to high energy demands and costs. Currently, such methods are used for small-scale 

operations and are still under development.  Recently, one of the best options has 

been found to be the use of evaporation ponds in arid or semi-arid places which 

would be very cost-effective when coupled with aquaculture or salinity gradient 

solar ponds. However, in damp and humid conditions, this would not be feasible 

due to low evaporation rates. 

 

In Libya, as water resources are rapidly being exhausted due to an increase in both 

population growth and water consumption in various sectors, the Libyan 

government has turned to integrating non-conventional water resources such as 

multi-effect distillation (MED and MED with TVC) to compensate for the water 

deficit. This research has determined that the cost of desalinated water by thermal 

desalination plants is about $0.43/m3, thus seeing this as the best option for 

providing water resources, due to unlimited seawater sources, compared with the 

cost per cubic metre produced by the Great Man-Made River Project, which is 

estimated to cost 0.83$/m3, Additionally, the water transferred during the two main 
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phases is about 4.5 million m3day-1 while the rest of the phases are still under 

construction. Moreover, the results indicate that the highest annual water deficit in 

Libyan water regions was in Jabal Nafusah and Jifarah plain, Middle Zone, and 

Aljabal Alakhdar Region in the north and middle of the country equalling 1,450 

million m3, 250 million m3, and 60 million m3 respectively, while, there is surplus 

water in Fezzan, Alkufrah and Assarir region because those regions are supplied by 

Great Man-Made River tanks; additionally, most studies have indicated that the 

lower ground layers are rich in fresh water at those regions. From data analysis, the 

total numbers of desalination stations operating in Libya was estimated to be more 

than 20, with a total actual water production of 493,647 m3day-1. Most desalination 

plants are located on the coastline belt of the country; hence, the total brine disposal 

from those plants is estimated to be 329,098 m3day-1. Hence the results of case 

studies, of determining the impact of physico-chemical effects of brine influx from 

thermal desalination plants on the Libyan coastline, as the main contribution 

within this research revealed that, the brine disposal from both thermal 

desalination plants releases chemical residues and thermal energy which negatively 

affect the marine ecosystem. An increase in concentration of a number of ions and 

compounds from discharged brine indicates an alteration in the physico-chemical 

properties of the seawater. A significant positive correlation was observed at 

ZWDP and WTRIS between the biological data and physico-chemical parameters 

(rs=0.673; p=0.002) and (rs=0.637; p=0.003) which demonstrates the impact of 

brine disposal from both sites on the marine environment. Although at both sites, 

the brine was mixed with cooling water (seawater) before being disposed into the 

marine environment, it can be said that as result of continued brine discharge it is 

most likely to effect the surrounding environment. Additionally, there is an 

indication that it’s likely that the desalination plants located on Libya coastline will 

cause future ocean acidity as result of CO2 emissions because most of those plants 

run on heavy fuel. 

 

The result obtained from the first sub contribution within the research 

revealed that, the brine can be recycled in the form of sodium hypochlorite 

(NaOCl). The laboratory experiment revealed that production of NaOCl for 

graphite electrodes (MCCA 1.82 gr/m3) was significant. It showed high stability in 

performance, producing sodium hypochlorite to a value of approximately 
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2,600ppm.  Furthermore, having a 4cm gap between electrodes with current density 

of 0.048 mA/cm was a crucial factor in terms of good process economy. Thus the 

cost of sodium hypochlorite yield of 2600 ppm at 24 kw/m3 is expected to be 7.2 

$/m3, which could be reduced by mixing the brine with the seawater to reduce the 

salinity level before utilizing it in the electrochemical cell. Hence, it can be 

concluded that brine has many favourable properties when considering the 

environmental and cost factors pertaining to coastal desalination plants in 

environmental and commercial terms. While the second sub contribution within 

this research revealed that, the brine can be recycled in the form NaCl, the 

investigation results indicated that the EDS spectrum of the salt crystals sample 

exhibited two highly intense peaks of Na+ and Cl- at 41.38% and 25.05% of the 

total wt% respectively, in contrast with low intense peaks of Mg2+ and Si at 5.06% 

and 0.28% of the total wt% respectively. Meanwhile, O2 represented only about 

28.22% of the total wt% and the absence of other chemical elements shows that salt 

crystal samples have good purity and a homogeneous crystallographic structure. 

The result of calculating the evaporation rate revealed that the lowest daily 

evaporation rate occurred in August and was found to be 9.06 mmday-1 while the 

highest daily average evaporation rate occurred in September, and was found to be 

14.63 mmday-1. The outcomes reveal that the NaCl produced from the brine 

disposed from distillation plants can be commercialised in the food and industrial 

sectors. 

 

8.3. Limitations of research 
 

There are often restrictions when doing PhD research due to limited resources or 

data, specific subject sources, or time and funding constraints (Sekaran and Bougie, 

2009).  When assessing existing water resources in Libya as a key factor within this 

research, there were very few up-to-date academic publications on the subject, or 

any type of formal reports written by Water Authorities. A further challenge was 

the fact that there had been no research previously completed to investigate the 

impact of brine influx from thermal desalination plants, especially on the Libyan 

coastline, which made it impossible to make valid comparisons on the physico-

chemical effects in other regions on the Libyan coast, which is why comparisons 

have been made with results in other countries such as Spain etc. As the Libyan 
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coastline is covered by Posidonia oceanica and Cymodocea nodosa which has been 

classified as a healthy environment for marine species, the initial plan was to 

investigate and study the effects of varying brine salinity levels on these type of 

seagrasses.  However, due to time restrictions and the situation in Libya affecting 

logistics, these factors have prevented extension of research.  Therefore, this 

objective is presented for future work.  

 

As the study of the brine impacts on the marine environment was carried out in 

May 2013, there are limits to the reliability of data due to seasonal difference. It is 

recommended that further study is conducted over different periods throughout the 

year. 

 

8.4. Recommendations 
 

Due to the ever increasing population growth, there will be a subsequent increase 

in the demand for water.  Currently, water resources are constantly being depleted 

so it is important that measures are put in place to rectify this issue. 

 

 It is recommended that an effective water-pricing system is established by 

Water Authorities across all sectors in a bid to conserve natural resources. 

 

 Further wastewater treatment plants are required, to be installed by Water 

Authorities in order to continue the recycling of wastewater from sewage 

and the brine discharged from desalination plants to satisfy the growing 

demands across different sectors such as agriculture, industrial and 

commercial. 

 

 It is advised that irrigation systems are improved and updated to control 

water usage with a robust policy in place to monitor usage. 

 

As brine disposal is continually occurring along the coastline, particularly in arid 

and semi-arid regions such as Libya, where the technology is needed, there are 

growing environmental concerns.  With raised salinity and temperatures and 

varying physico-chemical parameters of seawater, it is incumbent on the 

government to put measures in place for safe disposal options to protect marine 

ecosystems. 

 

 In benthic areas and wetlands, the habitat is particularly vulnerable to the 

effects of brine influx, so Water Authorities should consider moving away 

from such protected areas. 
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 Annual reports are to be conducted by Water Authorities that scrutinise and 

monitor impacts of brine disposal, ultimately minimizing any potential 

hazards that threaten the marine ecosystem, with frequent consultation.  

Such reports need to include results of studies that measure the impact on 

marine species, carried out under a range of climatic conditions, measuring 

seasons and inter-annual differences. 

 

 Closer liaison with the Environmental Authorities and General Desalination 

Companies in Libya is recommended to establish policies and service-level 

agreements that set out agreed operating standards and practices that can be 

replicated throughout the coastline areas. Studies are strongly encouraged 

into the use of concentrates and chemical compounds found in brine, and 

their results may warrant more conservative levels. 

 

 Environmental Authorities are advised to collaborate with industrial, 

agricultural and commercial sectors as well as oil refineries regarding 

wastewater effluent management. 

 

 All monitoring data is to be published and shared publicly, and made readily 

available on the internet at no cost. 

 

 Ongoing government legislation on environment protection to be based on 

MAP-UNEP guidelines, with continuing liaison with specialists, 

conservationists and hydrologists in the field of desalination technology. 

 

8.5. Future research 
 

In order to capitalise on full exploitation of brine disposed from thermal 

desalination plants and to protect the marine environment, future work is planned 

pursuant to this research. 

 

 There are beneficial seagrasses along the Libyan coastline such as 

Posidonia oceanica and Cymodocea nodosa which enable other marine life 

to reproduce and thrive. Therefore, further attention is required to study 

different salinity levels of brine and the long term impact on these types of 

seagrasses. 

 

 As mentioned previously, sodium hypochlorite can be produced from 

recycled brine using electrolysis by graphite electrodes. The use of titanium 

electrode coated with a dimensionally stable anode (DSA) mesh using 

electrolysis warrants further research.  
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 Regarding the use of evaporation ponds on the Libyan coastline to recycle 

the brine disposed from thermal desalination plants in the form of minerals 

and salt, there is a need for further work to ascertain the optimum conditions 

of using solar energy for salt extraction. Once salt has been extracted from 

the evaporation ponds, there is scope for further study into the possibility of 

cultivating brine shrimp in the ponds at low salinity and temperature, which 

can be controlled by the seawater flow. 

 

 Further research for longer periods of study during different seasons 

throughout the year is recommended to investigate the impact of brine on 

the marine ecosystems. 
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