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Abstract

Manufacturing makes ever-increasing demands for higher machining speeds. This is
particularly true in car and aircraft production, but also for cutting tools. Vibration is used in
various technological processes to improve the performance of the machines by intelligently
exploiting the synergy of the oscillations. Vibration provides several benefits for various
technologies, such as manufacturing, medical, communications, transport, industries, etc.
Vibration assisted machining techniques have recently become an area of interest for many
engineering applications. In machining processes, vibration can lead to improvements when
applied in a controlled manner. Vibration assisted machining is a technique in which a certain
frequency of vibration is applied to the cutting tool or the Workpiece to achieve better cutting

performance

The aim of this project is to apply vibration to the work-piece during milling process in order
to improve the machining performance. In this project, a theoretical modelling and
experimental implementation of vibratory milling process are presented and explored in
depth. The modelling focused on the control system which tracked and regulated the
vibration amplitude in the cutting zone during machining. Here, hardware and software of
advanced technology of LabVIEW applications were used to develop implement and

optimise the control system.

The machine tool static, dynamic and compliance characteristics were investigated in terms
of static analysis, natural frequencies and dynamic stiffness, using harmonic excitation,

hammer impact test and the application of external forces.

Preliminary studies were undertaken, where, the effect of cutting parameters were evaluated
and the optimal cutting conditions were determined. Series of machining tests were
undertaken, with the aim of recording process performance data in terms of cutting forces

that were used for the development of the control system.
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A closed loop PID controller was developed using advanced Field-Programming-Gate-Array
(FPGA) and Real-time Labview applications, using a non-interrupted real time target PC. An
innovative and unique combination of FPGA and target PC allow the control system to have
a very fast response in keeping the set amplitude of the vibration whilst recording
simultaneously the machining data for further analysis. Aluminium and mild Steel were using
in this investigation, along with a comparative study between conventional and vibratory

milling and between open loop and closed loop control systems.

The results of this investigation show the benefits of the superimposed vibration. The
outperformance of the vibratory machining over the conventional milling provides a very
promising outlook for the application of subsonic vibration into machining as an alternative

to ultrasonic process.
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Chapterl Introduction

1.1 Introduction

Manufacturing makes ever-increasing demands for higher machining speeds. This is
particularly true in car and aircraft production but also for cutting tools. Vibration is used in
various technological processes to improve the performance of the machines by exploiting
intelligently the synergy of the oscillations (Astashev & Babitsky 2007). Classic examples
are vibration conveyers, ultrasonic assisted turning and drilling of aerospace materials,

ultrasonic grinding and vibro-impact drilling in offshore technology.

Vibration provides several benefits for various technologies, such as manufacturing, medical,
communications, transport, etc. Vibration assisted machining techniques have recently
become an attraction for many engineering applications. In machining processes, vibration
can lead to improvements when applied in a controlled manner. Vibration assisted machining
is a technique in which a certain frequency of vibration is applied to the cutting tool or the
work-piece (besides the original relative motion between these two) to achieve better cutting
performance (Moriwaki et al. 1991). There is a number of different experiments set up to
simplify the process, but the tendency is to give a wide range of machining processes to

machine hard and brittle materials (Matsumura & Ono 2008).

However, machining technology does not generally exploit the positive aspects of
superimposed vibration. The avoidance of vibration (chatter) is a main concern due to its
effect on accuracy. However, chatter is a persisting problem regardless of the measures taken
and a list of techniques is provided in (Altintas & Weck 2004) to reduce vibration. A self-
excited vibration that leads to an undulation of the cutting force, with subsequent uneven
wear or fracture of the tool, causes regenerative chatter. A possible solution to this type of
chatter is to apply a periodic disengagement of the tool from the work-piece; and periodic
variation of the work-speed, which has been reported to increase the productivity up to 300%,
(Campa et al. 2011) (Gallemaers, 1986).

According to (Matsumura and Ono, 2008), they developed an application of vibratory
machining using micro end mill. Here, they machined a glass work-piece in ductile mode.
However, this type of vibratory machining is not suitable for mass production. Because of the
design of the holder, cutting tool and milling resulted after cutting process affected the tool
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wear and cutting angle, also led to limited profile. Moreover, the productivity in the area will

be extremely affected if this problem has not been concerned.

Nowadays, many research projects are trying machine brittle and hard materials, such as
ceramic, glass, steel alloys and stainless steel, to a mirror surface finish. These research

projects are used in different types of machining applications.

Moreover, there are several machines prepared with vibration devices for the cutting process.
However, these processes of vibration machining cannot be used efficiently for cutting hard
and brittle materials. The reason behind this is that the excessive wear of diamond cutting
tools is affected by high chemical activity with iron (Bonifacio & Diniz 1994). In addition,
for this case, many research projects have explored different ways of using ultrasonic and
vibration to improve the design, cutting tools, frequency and equipment devices. Also, these
research projects were used for improving the cutting process efficiency with some basic

experiments that were carried over from conventional machines.

Here, this thesis proposes to review many research projects that were carried out before this
project involving the ultrasonic and vibration assisted machining process. Also, the vibratory
machining is still an on ongoing investigation. The commonly established fundamentals
based on both factors of vibration, amplitude and frequency, is presented together with
applications. In this project, the capability of vibration assisted machining technology was
identified and reviewed. In addition, this thesis discusses the future direction for the
applications and researches of vibratory machining especially in the milling process.

1.2 The Current Needs in Industry

In the United States, the industries usually spend around 150 billion dollars per year just for
metal removing operations using conventional machining technology (King, R. I., Hahn
1986). However, at the current time these manufacturing costs are going to increase
significantly, because of increasing development in novel technologies and further demands

for higher quality products.

According to Liu and Cheng (2005), the development of metal removing technologies in

recent years has not only been looking for better surface finishes, but also for improvements

3|Page

X LIVERPOOL

JOHN MOORES
UNIVERSITY



Chapterl Introduction

of the applications sphere. In addition, the demand for technologies for high precision
machining will be increased with the miniaturization and increasing complexity of

audio/visual products.

In the manufacturing process, there are many conditions where some products or work-pieces
cannot be manufactured by normal or conventional machining processes. The reason behind
that is some parts need more dimensional accuracy and sometimes the materials used are too
hard or too brittle to machine. Kalpakjian and Schmid (2010) presented one of the best
known techniques called abrasive machining process for producing such a demanding

product quality.

Some industrial companies related to components of aerospace or optical parts are
considering diamond machining in order to achieve high quality and performance of the
products. One of the most commonly known of these methods is called Vibration assisted
diamond turning presented by lkawa et al. (1991). Here, the process used a precision ground
diamond cutter cable of nanometer positioning to produce nearly error free shapes (within
micrometers of those desired) with great results in surface finish roughness for the products at
nanometer scale. There are some benefits of using vibration assisted turning such as the
modules and fracture toughness of cutting tools remained uniform with sharp edges over the

extended cutting distance up to a numbers of kilometers (lkawa et al, 1991).

1.3 Novel Approach to Milling

In this project, the vibration is applied into the milling process in order to maintain process
stability and accuracy. Here, the process needs to be checked and controlled to achieve an
optimum level of the disengagement between the two parts which are the cutting tool and

work-piece.

The required periodic disengagement of the tool from the work-piece and the variation of the
work speed led to the subject of this current study.

In this current study, the subject is covered in two parts; the required periodic disengagement
of the tool from the work-piece and work speed. Recently, most of the experimental or
reported works are not using a controller or are not controlling the actual vibration amplitude

and frequency of disengagement between the cutting tool and work-piece.
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Here, the magnitude of the vibration is set at the actuator but some disturbances such as the
cutting force actions, the compliance and the damping in the system can lead to making the

vibration amplitude changeable with machining time.

Therefore, the intent of this project is to build a controller for intelligently controlling the
superimposed oscillations to machining technology more generally. To achieve this point, the
closed loop PID control system is built and used in vibration generators. Here, the set of
feedback signals, that come from the interaction between the cutting process and structure
dynamics, were used as controlling parameters during actual machining time or cutting

process.

1.4 Possible Advantages

Improved finished surface quality.

Pattern definition on finished surface.

Reduced tool wear.

Lateral oscillation induces chip breaking effect; therefore, less friction.
Improved cutting efficiency with low cutting forces.

Oscillation may reduce the load per tooth and reduce overall tool wear.

YV V. V V V V V

Oscillation may keep the cutting tip sharp thus it may increase the tool life.

1.5 Project Aim and Objectives

1.5.1 Aim of the project

The key aim of this project is to design, model, build and control a single-dimensional piezo
actuator for milling machining operation. The control of the amplitude for the oscillation in
the cutting process is the fulcrum of this investigation as it is the intrinsic parameter allowing

controlled and prescribed motion to achieve efficiency and pattern generation on the
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machined surface. This programme of work will proceed through several stages as illustrated

in the objectives.

1.5.2 Objectives

To achieve the aim of this stage of work, the investigation will progress through a series of

tasks and objectives designed to facilitate an effective delivery of the project. The key

objectives of this study are as follows:

To design the theory of control system (design of PID controller).

To design Data or Signal acquisition and processing using:

X Matlab / Simulink

X LabVIEW, Filter design

To develop a program or software using LabView Realtime and FPGA to control the
piezo actuator inside vibration system including vibration amplitude and vibration
frequency.

To embed the “soft” controller in Target PC (Compact Rio) as autonomous controller
(Closed Loop)

To investigate the optimization and control the vibration amplitude of vibratory

milling process for selected application case studies

6|Page

X LIVERPOOL

JOHN MOORES
UNIVERSITY



Chapterl Introduction

1.6 Thesis Layout

The thesis contents are planned and structured based on the research findings. Also, the work
of this project or dissertation is divided into eleven chapters as in the following illustrations:

Chapter 2 presents the critical review about related ideas for the preparation of research
finding. Also, it presents an introduction, literature review of vibration assisted machining
and machining process including one and two oscillation directions, types of milling and

cutting forces in milling process.

In chapter 3, the background of control systems is explained in detail. Including the following
topics; Objective and design of control system, control system classification, the
implementation of the control system, some information about control strategy and time
domain specifications in control system and in-depth explanation of Proportional Integral

Derivative (PID) controller with its design and types.

Chapter 4 describes all equipment and software used during the experimental work. This
includes the following equipment; CNC Machining centre, vibration system, milling cutting
tools, some sensors such as accelerometer and Eddy current sensor, piezo-actuator, power
amplifier, Kistler dynamometer, surface roughness measurement devices and data acquisition
hardware. Also, required software such as Solid Works, Matlab-Simulink and LabVIEW are

covered in this chapter.

In chapter 5, all configurations of the calibration process are presented in detail with their
results. This includes Calibration setup and the forces calibration results for three directions
X, Y and Z axis. It also covers the displacement response of the vibration system with

different applied values of voltage amplitude and frequency.

Chapter 6 focuses on the machine tool characteristics