

LJMU Research Online

Wells, DA, Cant, MA, Nichols, HJ and Hoffman, JI

A high quality pedigree and genetic markers both reveal inbreeding depression for quality but not survival in a cooperative mammal.

http://researchonline.ljmu.ac.uk/id/eprint/8441/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Wells, DA, Cant, MA, Nichols, HJ and Hoffman, JI (2018) A high quality pedigree and genetic markers both reveal inbreeding depression for quality but not survival in a cooperative mammal. Molecular Ecology. ISSN 0962-1083

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

MOLECULAR ECOLOGY

A high quality pedigree and genetic markers both reveal inbreeding depression for quality but not survival in a cooperative mammal

Journal:	Molecular Ecology
Manuscript ID	MEC-18-0035.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	05-Mar-2018
Complete List of Authors:	Wells, David; Universitat Bielefeld Fakultat fur Biologie, animal behaviour; Liverpool John Moores University, Natural sciences and psychology Cant, Michael ; University of Exeter, College of Life and Environmental Sciences Nichols, Hazel; Liverpool John Moores University, School of Natural Science and Psychology Hoffman, Joe; University of Bielefeld, Animal Behaviour
Keywords:	Inbreeding, Heterozygosity, Reproductive success, Survival, Pedigree, Banded mongoose

1	A high quality pedigree and genetic markers both reveal inbreeding depression for
2	quality but not survival in a cooperative mammal
3	
4	David A. Wells ^{1,2} , Mike A. Cant ³ , Hazel J. Nichols ^{2*} , Joseph I. Hoffman ^{1*}
5	
6	1. Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501
7	Bielefeld, Germany
8	2. School of Natural Science and Psychology, Liverpool John Moores University, Liverpool
9	L3 3AF, UK
10	3. College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
11	* Joint senior authors
12	
13	Keywords: Inbreeding depression, heterozygosity, reproductive success, survival,
14	microsatellites, cooperative breeding, banded mongoose
15	
16	Corresponding author: David A. Wells
17	Corresponding author: David A. Wells Email: <u>david.wells@uni-bielefeld.de</u> , <u>d.a.wells@2016.ljmu.ac.uk</u>
18	
19	Running title: Inbreeding depression in banded mongooses
20	

21 Abstract

22

Inbreeding depression, the reduced fitness of offspring of closely related parents, is
commonplace in both captive and wild populations and has important consequences for
conservation and mating system evolution. However, because of the difficulty of collecting
pedigree and life history data from wild populations, relatively few studies have been able to
compare inbreeding depression for traits at different points in the life cycle. Moreover,
pedigrees give the expected proportion of the genome that is identical by descent (IBDg)
whereas in theory with enough molecular markers realised IBDg can be quantified
directly. We therefore investigated inbreeding depression for multiple life-history traits in a
wild population of banded mongooses using pedigree-based inbreeding coefficients (f_{ped}) and
standardised multilocus heterozygosity (sMLH) measured at 35–43 microsatellites. Within an
information theoretic framework, we evaluated support for either f_{ped} or sMLH as inbreeding
terms and used sequential regression to determine whether the residuals of sMLH
on f_{ped} explain fitness variation above and beyond f_{ped} . We found no evidence of inbreeding
depression for survival, either before or after nutritional independence. By contrast,
inbreeding was negatively associated with two quality related traits, yearling body mass and
annual male reproductive success. Yearling body mass was associated with f_{ped} but not
sMLH, while male annual reproductive success was best explained by both f_{ped} and residual
sMLH. Thus, our study not only uncovers variation in the extent to which different traits
show inbreeding depression, but also reveals trait-specific differences in the ability of
pedigrees and molecular markers to explain fitness variation and suggests that for certain traits
genetic markers may capture variation in realised $\mathrm{IBD}_{\mathrm{g}}$ above and beyond the pedigree
expectation.

45

46 Introduction

47

48	Inbreeding depression, the reduction in offspring fitness that can result from incestuous
49	matings, occurs in a wide range of both captive and wild populations (Hedrick & Garcia-
50	Dorado, 2016; Keller & Waller, 2002). Inbreeding increases the proportion of the genome
51	that is identical by descent (IBDg), which in turn reduces fitness mainly through the increased
52	expression of deleterious recessive alleles but also due to increased homozygosity at loci
53	showing overdominance (Charlesworth & Willis, 2009). The resulting loss in fitness can be
54	substantial and is believed to have shaped the evolution of dispersal and mating behaviour in
55	many species. Consequently, quantifying the severity of inbreeding depression in natural
56	populations is essential for understanding population and evolutionary dynamics (Hedrick &
57	Garcia-Dorado, 2016; Keller & Waller, 2002; Nichols, 2017; Szulkin, Stopher, Pemberton, &
58	Reid, 2013).

59

60 Inbreeding depression is predicted to be strongest for traits that are closely related to fitness 61 such as survival and reproduction, as these will be subject to stronger directional selection and 62 therefore exhibit greater directional dominance (Falconer & Mackay, 1996). This is 63 supported by a meta-analysis of 54 animal species, although most of the studies involved were 64 of captive or experimental populations (DeRose & Roff, 1999). However, understanding how 65 inbreeding depression affects different life history traits in natural populations is more 66 challenging due to the difficulty of collecting high quality lifetime fitness measures and 67 generating deep, well resolved pedigrees. Furthermore, strong viability selection against 68 inbred offspring will result in an adult population in which inbred individuals are rare,

69	potentially making it more difficult to detect inbreeding depression for late acting traits
70	(Huisman, Kruuk, Ellis, Clutton-Brock, & Pemberton, 2016).
71	
72	Traditionally, pedigrees were considered the gold standard for measuring inbreeding in
73	natural populations (Pemberton, 2004). However, the vast majority of pedigrees are
74	incomplete and will also contain errors that can impair their ability to detect inbreeding
75	depression (Reid et al., 2014; H. R. Taylor, Kardos, Ramstad, & Allendorf, 2015).
76	Additionally, pedigrees cannot account for inbreeding caused by ancestors who are not
77	included in the pedigree. This can result in downwardly biased estimates of inbreeding,
78	particularly where the pedigree is only a few generations deep and relationships among the
79	founders are unknown (Kardos, Luikart, & Allendorf, 2015). Arguably, an even greater issue
80	is that pedigrees simply cannot be generated for the majority of wild populations, many of
81	which are large and demographically open.
82	
83	A further drawback of pedigrees is that, even when multiple generations of accurate ancestry
84	data can be collected, the pedigree inbreeding coefficient (f_{ped}) quantifies an individual's
85	<i>expected</i> IBD_g based on the known common ancestors of its parents, whereas <i>realised</i> IBD_g
86	will differ stochastically from this expectation due to Mendelian segregation and
87	recombination (Hedrick, Kardos, Peterson, & Vucetich, 2016; Hill & Weir, 2011; Knief,
88	Kempenaers, & Forstmeier, 2016). The variance in realised IBD_g among individuals with the
89	same f_{ped} will be higher for species with few chromosomes and short genetic maps (Fisher,
90	1965; Franklin, 1977; Hill & Weir, 2011; Kardos et al., 2015) and will also decrease with the
91	number of generations separating an inbred individual from its common parental ancestor(s)

92 as IBD chromosomal segments are gradually broken down by successive recombination
93 events (Hedrick et al., 2016).

94

95 As deep, high quality pedigrees are also lacking for the majority of natural populations, many 96 studies have used the heterozygosity of small panels of typically around 10–20 presumed 97 neutral markers such as microsatellites as a surrogate measure of IBD_g. The result is a large 98 and expanding literature describing heterozygosity-fitness correlations (HFCs) covering a 99 long list of traits and species (Chapman, Nakagawa, Coltman, Slate, & Sheldon, 2009). 100 However, estimates of IBD_g based on such small panels of markers will tend to have limited 101 precision due to both high sampling variance and the difficulty of distinguishing identity by 102 descent (IBD) from identity by state (IBS, Balloux, Amos, & Coulson, 2004; Slate et al., 103 2004). Recent simulation and empirical studies suggest that these issues can be overcome 104 with very large panels of markers, with around ten thousand or more single nucleotide 105 polymorphisms (SNPs) being preferable under most circumstances even to a deep pedigree 106 for quantifying inbreeding depression (Hoffman et al., 2014; Huisman et al., 2016; Kardos et 107 al., 2015; Wang, 2016). However, until SNP genotyping costs fall to the point where such 108 large datasets can be collected within the budgets of most projects, it is likely that 109 microsatellites will continue to be used to investigate inbreeding effects in wild populations. 110 111 Only a handful of studies have directly compared the ability of f_{ped} and microsatellites to

112 detect inbreeding depression (e.g. Grueber, Waters, & Jamieson, 2011; S. S. Taylor et al.,

113 2010), and these have uncovered mixed results. At one end of the spectrum, Nietlisbach et al.

114 (2017) used an unusually deep and well resolved song sparrow pedigree to show that f_{ped}

115 outperformed microsatellite heterozygosity, even when the latter could be calculated from an

116	unusually large panel of 160 markers. At the other end, both Forstmeier et al. (2012) and
117	Hammerly et al. (2013) found that smaller panels of around ten microsatellites explained more
118	fitness variation than f_{ped} . These contradictory outcomes probably reflect a multitude of
119	factors including variation among studies in pedigree depth and quality, marker number and
120	resolution, as well as factors intrinsic to a given system such as the recombination landscape.
121	Consequently, in order to obtain a more general picture of how pedigrees and genetic markers
122	can capture fitness variation, similar studies of a wider variety of taxa are needed.
123	
124	A related question is whether the heterozygosity of genetic markers can explain fitness
125	variation above and beyond that explained by f_{ped} . Some studies have approached this
126	question by testing for HFCs within individuals of the same pedigree inbreeding class
127	(Hansson, Westerdahl, Hasselquist, Åkesson, & Bensch, 2004; Hemmings, Slate, & Birkhead,
128	2012), while others have constructed statistical models of the focal traits containing both f_{ped}
129	and marker heterozygosity (e.g. Bensch et al., 2006), an approach that Nietlisbach et al.
130	(2017) recently termed 'residual heterozygosity-fitness correlation'. However, if these two
131	inbreeding measures are strongly correlated, the variance explained by either term cannot be
132	properly partitioned due to collinearity (Dormann et al., 2013). One way to account for this
133	would be to take the residuals of marker heterozygosity on f_{ped} and fit this as an explanatory
134	variable alongside f_{ped} . The variance shared by these two terms will be attributed to the
135	pedigree, while any effect of residual heterozygosity will reflect the ability of the markers to
136	detect variation in realised IBD_g that cannot be captured by the pedigree. This approach is
137	known as 'sequential regression' (Graham, 2003) or sometimes 'residual regression' and has
138	been shown to perform well in a comparison of approaches for dealing with collinearity
139	(Dormann et al., 2013).

1	4	0
T	4	υ

141	A long term study of banded mongooses (Mungos mungo) provides an excellent opportunity
142	to investigate the strength of inbreeding depression for multiple traits, as well as to explore the
143	ability of f_{ped} and marker heterozygosity to capture fitness variation in a wild vertebrate
144	population. Banded mongooses live in social groups of 10-40 adults and, unlike most
145	cooperative breeders, members of both sexes habitually breed within their natal pack despite
146	the presence of close relatives (Nichols, Cant, Hoffman, & Sanderson, 2014). As a result,
147	inbreeding appears to be common despite evidence that females attempt to avoid inbreeding
148	and that males preferentially mate guard more distant relatives (Sanderson, Wang, Vitikainen,
149	Cant, & Nichols, 2015). Furthermore, inbreeding appears to have fitness implications for
150	offspring as recent studies have uncovered inbreeding depression for both yearling body mass
151	and parasite load (Mitchell, Vitikainen, Wells, Cant, & Nichols, 2017; Sanderson et al., 2015).
152	However, although both of these studies were based on a high quality, nine-generation deep
153	pedigree, only the latter compared the ability of f_{ped} and microsatellite heterozygosity to detect
154	inbreeding depression.
155	
156	Here, we genotyped an additional 102 individuals at 35 microsatellite loci in order to enlarge

156 Here, we genotyped an additional 192 individuals at 35 microsatellite loci in order to enlarge

157 the existing banded mongoose pedigree to include 777 individuals with all four grandparents

158 known. The resulting dataset was then used to investigate inbreeding depression for a variety

159 of traits acting at different time points in the life cycle: (i) survival to nutritional

160 independence; (ii) survival beyond nutritional independence; (iii) yearling body mass; and (iv)

161 annual reproductive success. We additionally evaluated the abilities of f_{ped} , marker

162 heterozygosity and residual marker heterozygosity to detect inbreeding depression. We

163 hypothesised that viability selection against inbred individuals would reduce both the mean

and variance in inbreeding in the adult population, thereby rendering inbreeding depression

165 for late-acting traits more difficult to detect. We also hypothesised that, despite having a high

166 quality pedigree, our moderately large panel of microsatellites would allow us to explain

167 fitness variation above and beyond that explained by f_{ped} , and that the explanatory power of

168 the markers would increase with the number of loci.

169

170 Materials and methods

171

172 Study site, individual identification and sample collection

173 This study was conducted on a free-ranging population of banded mongooses in Queen 174 Elizabeth National Park, Uganda ($0^{\circ}12$ 'S, $27^{\circ}54$ 'E). The study area comprises approximately 10 km² of savannah on and around the Mweva Peninsula and a weather station near the centre 175 176 measures the amount of daily rainfall. Genetic, behavioural and life-history data were 177 collected from a total of 1,978 individuals between May 1997 and July 2016 inclusive. At 178 any one time, the population consisted of approximately 250 individuals belonging to 10–12 179 social groups. A combination of approaches were used to identify individuals in the field. 180 The majority of individuals were first captured as pups and given either a unique tattoo or a 181 subcutaneous pit tag (TAG-P-122IJ, Wyre Micro Design Ltd., UK) to allow permanent 182 identification. For genetic analysis, a 2mm tissue sample was taken from the tip of the tail 183 using surgical scissors and a dilute solution of potassium permanganate was applied to 184 minimise infection risk. To identify individual mongooses by sight, commercially available 185 hair dye (L'Oreal, UK) was used to apply unique patterns to animals up to six months of age. 186 Adults were given a unique shave pattern and, after they had stopped growing, were fitted 187 with colour-coded plastic collars. To maintain dye markings, shave patterns and collars, all 188 individuals were trapped every 3–6 months as described by Cant (2000), Hodge (2007) and 189 Jordan et al. (2010).

190

191 Life history data collection

192 Detailed behavioural and life history data were collected by visiting each pack every 2–4

193 days. All individuals in the population were habituated to human observers. Mongoose packs

194	could be reliably located because one or two adults in each pack were fitted with a 27g radio
195	collar (<2% of body mass, Sirtrack Ltd., New Zealand) with a 20cm whip antenna (Biotrack
196	Ltd., UK). Age could be determined for the majority of individuals born within the study site
197	based on their mother's parturition dates, but was unknown for immigrants. Individual lifespan
198	was calculated as the time in days between the date of birth and the date of death. Death could
199	be distinguished from dispersal because mongooses disperse in groups (Cant, Otali, &
200	Mwanguhya, 2001) and dispersal events are also generally preceded by a period of aggression
201	from the rest of the group (Thompson et al., 2016).
202	
203	Escorting is a form of care unique to banded mongooses that affects offspring fitness (Cant,
204	Vitikainen, & Nichols, 2013; Gilchrist, 2004; Hodge, 2005). Escorting begins approximately
205	27 days after birth, when pups leave the den and begin to forage with the pack (Gilchrist,
206	2004). During this time, some of the pups form an exclusive one-to-one relationship with an
207	adult who feeds, grooms, carries and protects them from predators. We therefore collected
208	detailed data on escorting behaviour so that we could incorporate escorting into our analyses
209	of early-acting fitness traits. Throughout the escorting period, which lasts approximately two
210	months, we visited packs once or twice daily. If an adult was closely associated with a pup
211	(i.e. spent more than half of a 20 minute observation period within 0.5m of the focal pup) the
212	adult was deemed to be an escort for that pup. For each pup, we quantified the amount of care
213	received as the proportion of visits during which a pup was seen with an escort.
214	
215	Ethical statement

216 Research was carried out under licence from the Uganda National Council for Science and

217 Technology and all procedures were approved by the Uganda Wildlife Authority. All research

218	procedures adhered to the ASAB Guidelines for the Treatment of Animals in Behavioural
219	Research and Teaching and were approved by the Ethical Review Committee of the
220	University of Exeter. Our trapping procedure has been used over 8000 times and tissue
221	samples have been taken from over 1900 individuals with no adverse effects.
222	
223	DNA extraction and microsatellite genotyping
224	Prior to this study, genetic data were available for 1,748 individuals that were tissue sampled
225	between 1997 and 2013 and genotyped at up to 43 microsatellite loci (Sanderson et al. 2015).
226	All of these loci are known to be in Hardy-Weinberg and linkage equilibrium in the study
227	population (Sanderson et al. 2015). To enlarge this dataset, we genotyped an additional 192
228	individuals that were sampled between 2014 and 2015 at 35 of these microsatellites. We
229	excluded 8 loci that had previously been amplified individually and visualised through
230	radioactive incorporation but which failed to amplify reliably in multiplexed PCRs using
231	fluorescent labelled primers. DNA was extracted using Qiagen® DNeasy blood and tissue kits
232	following the manufacturer's protocol. The genotyping was conducted as described in detail
233	by Sanderson et al. (2015). Briefly, fluorescently labelled microsatellite primers were
234	incorporated into seven separate multiplexes. PCR reactions were conducted using a Type It
235	kit (Qiagen) according to the manufacturer's protocol with an annealing temperature of 57°C
236	and a reaction volume of $12\mu l$. PCR products were resolved by electrophoresis on an ABI
237	3730xl capillary sequencer and allele sizes were scored using GeneMarker version 1.95
238	(SoftGenetics, Pennsylvania, USA).
239	

240 Pedigree construction

Page 12 of 57

241 The resulting microsatellite dataset was used to update an existing banded mongoose 242 pedigree, comprising 1,748 individuals genotyped at 35–43 microsatellite loci (Sanderson et 243 al., 2015). We followed the protocol of Sanderson et al. (2015) to extend the pedigree using a 244 combination of MasterBayes (Hadfield, Richardson, & Burke, 2006) and COLONY (Jones & 245 Wang, 2010). MasterBayes was used as the primary parentage assignment program because 246 of its ability to incorporate phenotypic data, which can result in larger numbers of higher 247 confidence assignments. COLONY was used both to confirm the MasterBayes assignments 248 and to assign sibships among individuals with one or both unsampled parents. The latter 249 provides putative information about the relationships among founders and immigrants rather 250 than assuming that they are unrelated. 251 252

For the MasterBayes analysis, we specified the following strict requirements for assigning 253 parentage: (i) fathers had to be alive on the estimated date of conception of the focal pup; (ii) 254 mothers had to be alive on the date of birth and present in the pack where the focal pup was 255 born; (iii) both parents had to be at least six months of age during the month of conception of 256 the focal pup; (iv) offspring could not be their own parents. To maximise confidence in 257 parentage assignments, we also incorporated the following phenotypic data: (i) age and age², 258 as reproduction increases with age before tailing off later in life (Sanderson et al., 2015); (ii) 259 whether a female was recorded as having given birth within four weeks of the month in which 260 the pup was born; (iii) whether the male was present in the offspring's pack during the month 261 of conception. MasterBayes was run for 9,772,000 iterations with a burn in of 750,000 and a 262 thinning interval of 9,022. In order to keep the Metropolis Hastings acceptance rate between 263 0.2 and 0.5, the tuning parameters were set to tunePed (beta=0.3, USdam= 0.03, 264 USsire=0.03). Successive samples from the posterior distribution had low autocorrelation (r < r

265	0.1). MasterBayes parentage assignments were accepted if they had an associated probability
266	greater than or equal to 0.8, although the average assignment probability was 0.99.
267	
268	Additionally, COLONY was used to assign individuals to full- and half-sibship groups.
269	Candidate parent and exclusion parent lists for input into COLONY were generated using the
270	same criteria as for MasterBayes. No maternal or paternal sibships were excluded. We
271	specified a sibship prior of 1.5 for both maternal and paternal average sibship size. This was
272	based on prior knowledge of the breeding system and helped to prevent COLONY from
273	incorrectly grouping offspring into large clusters of false siblings. The probability of a true
274	parent being in the candidate list was set to 0.8 and COLONY assignments were only
275	accepted if they had a probability greater than or equal to 0.8. MasterBayes parentage
276	assignments were accepted first and COLONY assignments were then added where
277	Magter Davieg foiled to confidently again parentees
211	MasterBayes failed to confidently assign parentage.
277	Master Bayes raned to confidently assign parentage.
	Derivation of pedigree f and multilocus heterozygosity
278	1
278 279	Derivation of pedigree f and multilocus heterozygosity
278 279 280	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among
278 279 280 281	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among founders as described above, pedigree inbreeding coefficients (f_{ped}) were calculated for all
278 279 280 281 282	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among founders as described above, pedigree inbreeding coefficients (f_{ped}) were calculated for all individuals using the R package pedantics (Morrissey, 2014). However, subsequent analyses
278 279 280 281 282 283	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among founders as described above, pedigree inbreeding coefficients (f_{ped}) were calculated for all individuals using the R package pedantics (Morrissey, 2014). However, subsequent analyses involving f_{ped} were based only on individuals with all four grandparents assigned. From the
278 279 280 281 282 283 283	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among founders as described above, pedigree inbreeding coefficients (f_{ped}) were calculated for all individuals using the R package pedantics (Morrissey, 2014). However, subsequent analyses involving f_{ped} were based only on individuals with all four grandparents assigned. From the microsatellite data, we also quantified each individual's standardised multilocus
278 279 280 281 282 283 283 284 285	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among founders as described above, pedigree inbreeding coefficients (f_{ped}) were calculated for all individuals using the R package pedantics (Morrissey, 2014). However, subsequent analyses involving f_{ped} were based only on individuals with all four grandparents assigned. From the microsatellite data, we also quantified each individual's standardised multilocus heterozygosity (sMLH) using inbreedR (Stoffel et al., 2016). The same program was also
278 279 280 281 282 283 284 285 286	Derivation of pedigree f and multilocus heterozygosity Based on the final pedigree, which incorporated information on putative relationships among founders as described above, pedigree inbreeding coefficients (f_{ped}) were calculated for all individuals using the R package pedantics (Morrissey, 2014). However, subsequent analyses involving f_{ped} were based only on individuals with all four grandparents assigned. From the microsatellite data, we also quantified each individual's standardised multilocus heterozygosity (sMLH) using inbreedR (Stoffel et al., 2016). The same program was also used to calculate g ₂ , a quantity that estimates identity disequilibrium (the extent to which

bootstrapping over individuals and to permute the genetic data to generate a *p*-value for the

289

290	null hypothesis of no variance in inbreeding in the sample (i.e. $g_2 = 0$) as described in detail
291	by Stoffel et al. (2016).
292	
293	Testing for parentage assignment biases in our pedigree
294	The majority of accepted parental relationships had very high confidence (89% at \geq 99%
295	confidence). Nevertheless, Wang (2010) showed that parentage analyses can potentially be
296	biased in favour of heterozygotes, which could potentially create an artefactual positive
297	relationship between sMLH and reproductive success. We evaluated whether such a bias
298	could affect our pedigree by testing for an association between parental heterozygosity and the
299	confidence with which parents were assigned in our pedigree using a generalised linear model
300	(GLM) with a binomial error structure. A slight but statistically significant bias was found in
301	the direction of homozygotes being assigned parentage with slightly greater confidence than
302	heterozygotes (Supplementary table S1). To explore this further, we simulated pedigrees
303	based on the empirical allele frequencies of our study population. Our methods and results
304	are described in detail in the supplementary information. Briefly, initial simulations assuming
305	random mating assigned 94% of parents with a probability of 1.0 and therefore no bias could
306	be detected. Hence, we simulated an arguably more realistic pedigree with close inbreeding
307	for which parentage analysis should be technically more challenging due to high relatedness
308	among the candidate parents. Consistent with results from our empirical dataset, we found
309	that homozygotes had a slightly higher probability of being assigned parentage
310	(Supplementary table S2). Taken together, these findings suggest that any bias in our

311 pedigree should be both small and in the opposite direction to that predicted, and is therefore

312 unlikely to generate a false signal of inbreeding depression.

313	
314	Statistical analyses
315	Strong inbreeding depression early in life will tend to deplete the adult population of inbred
316	individuals and thereby reduce the power to detect inbreeding effects later in life (Huisman et
317	al., 2016). To evaluate this possibility, we grouped individuals into six cohorts based on their
318	survival to a given age (< one, one, two, three, four or \geq five years old) and used Levene's test
319	to assess the equality of variances of f_{ped} and sMLH among the cohorts and Spearman's rank
320	to test for a decrease in mean inbreeding with increasing age. We then investigated
321	inbreeding depression for four main fitness components: (i) survival to nutritional
322	independence; (ii) survival beyond nutritional independence; (iii) yearling body mass; and (iv)
323	annual reproductive success (see below for further details). These fitness components were
324	used as response variables in four separate analyses conducted within R version 3.2.3 (R Core
325	Team, 2014). Beforehand, all of the explanatory variables were checked for collinearity using
326	pair plots and by calculating pairwise correlation coefficients. Graham (2003) showed that
327	correlations between explanatory variables as low as 0.28 may compromise model
328	parameterisation but collinearity in our models was well below this, except for f_{ped} and sMLH,
329	which we dealt with as described below. All of our models were also validated though visual
330	inspection of histograms of residuals and plots of residuals against fitted values for each of the
331	explanatory variables as recommend by Zuur, Ieno, & Saveliev (2009).
332	

333 For each analysis, we constructed a set of competing models, each incorporating prior

334 knowledge of the banded mongoose system, and quantified their relative support using AIC_c-

335 weights within a multi-model inference framework. As support for a model increases, its

336 AIC_c-weight tends towards 1. To quantify the contributions of individual predictor variables,

Page 16 of 57

337	we then calculated predictor-AIC _c -weights by summing the AIC _c -weights of all models
338	containing that predictor. We also followed the recommendation of Richards et al. (2011) and
339	discarded models with better supported models nested within them (i.e. models that are more
340	complicated versions of a better supported model).
341	
342	Within the above framework, f_{ped} and sMLH were used as predictor variables to quantify the
343	effects of inbreeding on fitness. Including f_{ped} and sMLH in the same models is likely to
344	cause problems due to multi-collinearity because both are estimates of IBD_g . Therefore, we
345	quantified any potential effects of sMLH above and beyond f_{ped} by constructing a set of
346	models containing both f_{ped} and the residuals of sMLH on f_{ped} (henceforth termed residual
347	sMLH). As there is no statistical collinearity between f_{ped} and residual sMLH, we were able
348	to include information from the pedigree and molecular markers simultaneously without
349	biasing the regression parameter estimates (Graham, 2003). Residual sMLH can be
350	interpreted as whether an individual is more or less heterozygous than expected given their f_{ped}
351	and its effect size can be interpreted as its effect additional to that already made through its
352	relationship with f_{ped} as any variance explained by both terms is attributed to f_{ped} . This
353	technique is called sequential regression and performs well across a range of complex
354	functional relationships and collinearity structures (Dormann et al., 2013). Additional non-
355	genetic explanatory variables were analysed based on prior knowledge of the mongoose
356	system as described below.
357	

358 *(i) Survival to nutritional independence*

359 As mortality is highest in banded mongooses prior to nutritional independence around day 90,

360 we first analysed survival to 90 days. A recent study found that offspring of extra group

361	matings, which tend to be more heterozygous, have higher survivorship to 90 days (Nichols,
362	Cant, & Sanderson, 2015), suggesting that there could be a direct link between inbreeding and
363	early survivorship. In the current study, data were available for a total of 489 individuals with
364	all four grandparents assigned. Survival was analysed as a binomial response variable (coded
365	as $1 =$ survived, $0 =$ died) within generalized linear mixed models (GLMMs) using lme4
366	(Bates, Maechler, Bolker, & Walker, 2015) with litter nested within pack as random effects.
367	A total of 19 competing models were constructed (see Table 1), each containing different
368	combinations of predictor variables representing plausible hypotheses to be evaluated within a
369	multi-model inference framework. We included rainfall during the 30 days prior to birth as a
370	predictor variable in all of the models, as this is robustly associated with early life survival
371	(Nichols et al., 2015; Sanderson et al., 2015). As escorting has a highly significant effect on
372	survival to 60 days (Gilchrist, 2004) but is only weakly associated with survival to 90 days
373	(Hodge, 2005), we also included escorting as a continuous variable (see above) in a subset of
374	the models. To further test for an interaction between inbreeding and stress, we constructed a
375	further subset of models containing interactions between rainfall and one of the inbreeding
376	terms (i.e. rain f_{ped} or
377	heterozygosity was evaluated by constructing models containing both f_{ped} and residual sMLH.
378	

379 *(ii) Survival beyond nutritional independence*

380 We investigated inbreeding depression for longevity based on all individuals that survived

beyond 90 days (n = 428 mongooses with at least all four grandparents in the pedigree).

382 Lifespan was investigated using Cox-proportional-hazard models in the survival package

383 (Therneau & Grambsch, 2000). Individuals that survived until the end of the study or that

384 emigrated from the study population were classified as right censored in the models. To

Page 18 of 57

385	account for the non-independence of individuals within social groups, we fitted pack as a
386	frailty term, equivalent to a random effect. We also verified that the proportional hazard was
387	independent of time using plots of the scaled Schoenfeld residuals. We constructed 14
388	competing models (see table 2), all of which contained sex (coded as female = 0, male =1)
389	because males tend to have a longer lifespan (Cant, Nichols, Thompson, & Vitikainen, 2016).
390	We used mean monthly rainfall in the first year of life as a predictor variable in a subset of
391	models because it is associated with prey abundance and thereby influences lifespan (Marshall
392	et al., 2017). As described above for the models of survival to nutritional independence, we
393	also tested for an interaction between inbreeding and stress by constructing models containing
394	interactions between rainfall and the inbreeding terms.
395	

396 *(iii)* Yearling body mass

397 We next investigated inbreeding depression for body mass (measured in g) at one year of age. 398 Heavier banded mongoose females breed earlier (Hodge, 2005) and may thus have higher 399 lifetime reproductive success. Also, yearling body mass exhibits inbreeding depression 400 (Sanderson et al., 2015) although the study in question did not analyse microsatellite 401 heterozygosity. Individuals were habituated to step onto a portable weighing balance for a 402 small reward of milk, which allowed us to measure body mass. Yearling body mass was 403 calculated as the average of all morning mass measurements for an individual taken between 404 350 and 380 days of age. Measurements were taken in the morning to standardise against 405 fluctuations in body mass that may occur during the day. Data on yearling body mass were 406 available for a total of 156 individuals with all four grandparents known. We constructed 53 407 competing models (See table 3) with litter nested within pack as random effects. These 408 models were run in the glmmADMB package (Fournier, Skaug, Ancheta, & Ianelli, 2012)

409	with a Gaussian error distribution. We included sex in a subset of models and rainfall in the
410	30 days prior to birth in a subset of the models as this was previously found to be positively
411	associated with body mass in one study (Nichols et al., 2015) but not in another (Sanderson et
412	al. 2015). To test for interactions between inbreeding and stress, some of these models also
413	included interactions between rainfall and the inbreeding terms. Escorting was included in a
414	further subset of models as it correlates positively with pup weight at 84 days (Hodge, 2005;
415	but see Gilchrist, 2004).
416	
417	(iv) Annual reproductive success

418 Reproductive success is closely linked to fitness but no studies of banded mongooses have 419 previously investigated inbreeding depression for this trait. We therefore used the pedigree to 420 quantify annual reproductive success, expressed as the number of pups assigned to each 421 individual, for all animals over six months of age who survived a given year. Because 422 reproductive opportunities differ between the sexes, with most females breeding regularly 423 while male reproductive success is strongly skewed towards the oldest 3–5 males in a pack 424 (Nichols, Amos, Cant, Bell, & Hodge, 2010), separate models were constructed for each sex. 425 These were based on a total of 240 annual observations of 99 females and 354 annual 426 observations of 129 males. Annual reproductive success was modelled using a negative 427 binomial error distribution with zero-inflation within the R package glmmADMB (Skaug, 428 Fournier, Nielsen, & Magnusson, 2013). To account for multiple observations of individuals 429 and packs, we fitted individual and pack as random effects. We constructed 14 competing 430 models separately for females and males (see Tables 4a and 4b respectively). As reproductive 431 success tends to increase with age before tailing off later in life (Sanderson et al., 2015), we included age and age^2 as predictor variables in all of the models. Average monthly rainfall 432

- 433 over the year was also included in a subset of models as a proxy for environmental stress,
- 434 while inbreeding–stress interactions were investigated through the inclusion of models
- 435 containing interactions between rainfall and the inbreeding terms.
- 436

to periodo on the second

437	Results
438	
439	We augmented an existing microsatellite dataset comprising 1,748 individuals genotyped at
440	35–43 microsatellite loci (Sanderson et al., 2015) by genotyping an additional 192 individuals
441	at 35 microsatellites. This allowed us to enlarge the nine-generation deep banded mongoose
442	pedigree of Sanderson et al. (2015) by increasing the number of maternal links from 1,570 to
443	1,725 and the number of paternal links from 1,476 to 1,625. The restricted dataset of
444	individuals with all four grandparents assigned, which formed the basis of all subsequent
445	analyses, increased from 672 to 777.
446	
447	Inbreeding and heterozygosity
448	Our pedigree uncovered appreciable variance in inbreeding (mean $f_{ped} = 0.058$, variance =
449	0.006), with the majority of individuals (66.4%) being to some extent inbred (Figure 1, top
450	marginal histogram). Weak inbreeding ($0 < f_{ped} < 0.125$) accounted for 46.5% of the
451	population, while 12.9% of individuals were moderately inbred ($0.125 \le f_{ped} < 0.25$) and 7.1%
452	were closely inbred ($f_{ped} \ge 0.25$). Microsatellite heterozygosity (sMLH) was approximately
453	normally distributed with a mean of 0.982 and a variance of 0.034 (Figure 1, right marginal
454	histogram) and correlated significantly with f_{ped} (R = -0.34, $p < 0.001$). Furthermore, the
455	measure g_2 , which quantifies the extent to which heterozygosity is correlated across loci, was
456	positive (0.012, 95% CI = $0.007-0.018$) indicating that the microsatellites are capturing
457	variation in inbreeding. As observed in other species (e.g. Huisman et al. 2016), appreciable
458	variation was observed in sMLH among individuals with the same f_{ped} .
459	

460 *Changes in inbreeding with age*

461 If inbred individuals experience stronger viability selection early in life, the variance in 462 inbreeding should be lower in adults, making it more difficult to detect inbreeding depression 463 for late-acting traits (Huisman et al., 2016). To investigate this possibility, we divided the 464 mongooses into six cohorts based on their survival to a given age (see Materials and methods) 465 and tested for differences in the variance of f_{ped} and sMLH among these cohorts using 466 Levene's tests. Neither of the inbreeding measures showed a decrease in variance with age 467 (table S3) and the variance in sMLH did not differ significantly among cohorts ($F_5 = 0.74$, p =468 0.59). However, the cohorts did not have equal variance in f_{ped} ($F_5 = 2.36$, p = 0.03). This 469 result appears to be driven by low sampling variance in individuals who survived between one 470 and two years as the variance in f_{ped} no longer differed significantly among cohorts after these 471 animals were excluded from the analysis. Taken together, these findings suggest that viability 472 selection against inbred individuals does not reduce the variance in inbreeding with age. In 473 line with this, we also found no evidence for a decline in the mean level of inbreeding with 474 increasing age ($f_{ped} rho = 0.043$, p = 0.23; sMLH rho = -0.01, p = 0.78; table S3). 475 476 Survival to nutritional independence

477 We found that the model of survival to nutritional independence with the greatest AIC_c

478 support included rainfall in the 30 days prior to birth and escorting as fixed effect explanatory

479 variables (Table 1, intercept = -0.5364 ± 0.4514 SE, rainfall $\beta = 0.3577 \pm 0.1348$ SE,

480 escorting $\beta = 0.8764 \pm 0.4084$ SE, random effects: pack SD = 0.000, litter nested within pack

481 SD = 1.57). The second and third most supported models included rain and escorting as well

482 as an inbreeding term (Table 1). However, as they had the best model nested within them (i.e.

they were more complex but less supported versions of the first model) we did not consider

484 them further, as recommended by Richards et al. (2011).

485	
486	Survival beyond nutritional independence
487	The results of our analysis of adult survival were equivocal (Table 2). The highest ranking
488	model included sMLH but had roughly equivalent AIC _c support ($\Delta AIC_c < 1$) to a simple
489	model that included only sex. As AIC _c tends to slightly favour complex models, especially
490	when there is uncertainty over the best model (Symonds & Moussalli, 2011), our results do
491	not provide convincing evidence of inbreeding depression for longevity.
492	
493	Yearling body mass
494	By contrast, strong support was found for inbreeding depression in yearling body mass, with
495	all of the top 12 models containing f_{ped} as a fixed effect explanatory variable (Table 3) and the
496	predictor-AIC _c -weight for f_{ped} being high at 0.96. The top ranking model contained sex and
497	f_{ped} (Table 3, Figure 2; intercept = 1162 ± 53 SE, sex β = 59 ± 19 SE f_{ped} β = -382 ± 127 SE,
498	random effects: pack SD = 125.5 , litter nested within pack SD = 37.6). As before, we
499	disregarded less supported models with this model nested within them as suggested by
500	Richards et al. (2011).
501	Richards et al. (2011).
502	Annual reproductive success
503	Focusing first on female reproductive success, the top ranking model contained age $+ age^2 +$
504	f_{ped} but the next best model had very similar AIC _c support but did not contain f_{ped} (Table 4a).
505	Because AIC _c support for these two models was so similar and AIC exhibits a slight
506	preference for overly complex models, the simpler model should be preferred. Consequently,

- 507 our data provided only limited support for inbreeding depression for female annual
- 508 reproductive success as our preferred model contained only age and age^2 (intercept = -1.2539

509	± 0.3773 SE, age $\beta = 0.7616 \pm 0.1776$ SE, age ² $\beta = -0.0480 \pm 0.0244$ SE). By contrast, the
510	best supported model for males contained both f_{ped} and residual sMLH (intercept = -2.9481 ±
511	0.4792 SE, age $\beta = 1.4452 \pm 0.1905$ SE, age ² $\beta = -0.1343 \pm 0.0209$ SE, $f_{ped} \beta = -6.2994 \pm 0.0209$ SE, $f_{ped} \beta$
512	1.7203 SE, residual sMLH β = 2.0920 ± 0.7646 SE). This not only provides evidence for
513	inbreeding depression for male annual reproductive success, but also suggests that marker
514	heterozygosity captures a significant amount of variance that is not explained by f_{ped} . This
515	model was nested within the second and third highest ranking models, which also had
516	considerable AIC _c support and respectively contained rain and an interaction between rain and
517	fped.
518	
519	Consistent with theoretical expectations, the best supported model of annual male
520	reproductive success revealed a negative association with f_{ped} (Figure 3a) and a positive
521	association with residual sMLH (Figure 3b). Inbred males with an f_{ped} value of 0.25 were
522	predicted by the model to have approximately 79% fewer offspring than fully outbred
523	individuals with an f_{ped} value of zero, while males with residual sMLH values one standard
524	deviation above zero (0.185) were predicted to have 47% more offspring than individuals with
525	residual sMLH equal to zero. This indicates that within f_{ped} classes, relatively heterozygous
526	individuals tend to have greater reproductive fitness.
527	
528	Effect sizes of the inbreeding terms
529	To provide further insights into the effect sizes of the inbreeding terms, we constructed three

alternative models separately for each fitness trait. These models contained non-inbreeding

- terms that were retained in the top ranking models described above for each trait, while in
- addition the first model contained f_{ped} , the second contained sMLH and the third contained f_{ped}

533 plus residual sMLH. To evaluate inbreeding effects, we then calculated effect sizes and their 534 corresponding 95% confidence intervals (CIs) for all of the predictor variables contained in 535 each model. The results are summarised separately for each trait in Figure 4. Consistent with 536 results from the information theoretic approach, the 95% CIs of the effect sizes of all three 537 inbreeding terms overlapped zero for survival to nutritional independence, survival beyond 538 nutritional independence and female reproductive success (Figure 4a, b and d), suggesting that there is very little evidence for inbreeding depression for these traits. Also as expected, f_{ped} 539 540 had negative point estimates whose corresponding 95% CIs did not overlap zero in models of 541 yearling body mass and annual male reproductive success (Figure 4c and e), while sMLH and 542 residual sMLH only had positive estimates and 95% CIs not overlapping zero in models of 543 male reproductive success (Figure 4e). 4.0

544

Associated p- and R^2 values 545

546 In order to evaluate the sensitivity of our results to the statistical framework employed, we 547 determined the statistical significance of f_{ped} , sMLH and residual sMLH using a frequentist 548 approach. Separately for each trait, we derived *p*-values for each of the inbreeding terms 549 using likelihood ratio tests. The significance of f_{ped} and sMLH was derived by comparing 550 models containing these terms with equivalent 'null models' containing only the relevant non-551 inbreeding terms, while *p*-values for residual sMLH were obtained through the comparison of models containing f_{ped} plus residual sMLH with equivalent models containing only f_{ped} . To 552 553 provide an indication of the proportion of variance explained by each model, we also calculated conditional R² values for GLMMs (Nakagawa & Schielzeth, 2013) and Cox and 554 Snell's pseudo R² values for Cox proportional hazard models (Cox & Snell, 1989). However, 555 556 this was not possible for zero-inflated negative binomial GLMMs so we instead report log

557	likelihood values for these models (Table 5). To allow direct comparison with other studies,
558	correlation coefficients between the two inbreeding measures and each fitness trait are also
559	provided in the supporting information (table S4). Consistent with the results of the multi-
560	model approach described above, we found a highly significant effect of f_{ped} on yearling body
561	mass, which explained almost 5% of the total variation (Table 5c), although sMLH did not
562	explain a significant amount of variance in this trait. By contrast, both f_{ped} and sMLH
563	explained significant variation in male annual reproductive success (Table 5e). Furthermore,
564	adding residual sMLH to a model containing only f_{ped} resulted in a significant improvement to
565	the model of annual male reproductive success ($p = 0.007$, Table 5e), suggesting that for some
566	traits genetic markers may capture variation in inbreeding above and beyond that explained by
567	fped.
568	
568 569	f _{ped} . Sensitivity to marker number
	Sensitivity to marker number To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly
569	
569 570	To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly
569 570 571	To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly compared three of our models of annual male reproductive success in which the inbreeding
569 570 571 572	To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly compared three of our models of annual male reproductive success in which the inbreeding terms were f_{ped} (M4 in table 4b), sMLH (M3 in table 4b) and f_{ped} plus residual sMLH (M8 in
 569 570 571 572 573 	To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly compared three of our models of annual male reproductive success in which the inbreeding terms were f_{ped} (M4 in table 4b), sMLH (M3 in table 4b) and f_{ped} plus residual sMLH (M8 in table 4b) respectively, and explored the sensitivity of model AIC _c to marker number. As
 569 570 571 572 573 574 	To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly compared three of our models of annual male reproductive success in which the inbreeding terms were f_{ped} (M4 in table 4b), sMLH (M3 in table 4b) and f_{ped} plus residual sMLH (M8 in table 4b) respectively, and explored the sensitivity of model AIC _c to marker number. As expected, AIC _c decreased steadily with increasing marker number (Figure 5). With fewer
 569 570 571 572 573 574 575 	To further investigate the explanatory power of f_{ped} and marker heterozygosity, we directly compared three of our models of annual male reproductive success in which the inbreeding terms were f_{ped} (M4 in table 4b), sMLH (M3 in table 4b) and f_{ped} plus residual sMLH (M8 in table 4b) respectively, and explored the sensitivity of model AIC _c to marker number. As expected, AIC _c decreased steadily with increasing marker number (Figure 5). With fewer than around 20 markers, sMLH did not perform as well as f_{ped} , but with 30–40 markers AIC _c

579

580 Testing for local effects

581	Finally, we tested for the possible involvement of local effects involving specific
582	microsatellite loci by adapting the approach of Szulkin, Bierne, & David (2010). Specifically,
583	we compared a model of male reproductive success containing age, age^2 , f_{ped} and residual
584	sMLH with a model in which residual sMLH was replaced by separate terms for the residual
585	heterozygosity of each of the microsatellite loci. The second model was not a significant
586	improvement over the first, although the corresponding <i>p</i> -value was close to significance (-
587	$2LL_{30} = 42.06$, $p = 0.07$). Our results are therefore more consistent with inbreeding
588	depression than with a mechanism based on one or a small number of local effects.
589	

590 **Discussion**

591

592	Although inbreeding depression is known to be important in many wild populations, relatively
593	few studies are large and detailed enough either to compare multiple traits at different stages
594	in the life cycle or to investigate the relative explanatory power of pedigree-based and
595	molecular estimates of inbreeding. We therefore used an exceptionally comprehensive long-
596	term study of banded mongooses both to quantify inbreeding depression for early and late-
597	acting traits and to evaluate the hypothesis that marker heterozygosity may capture fitness
598	variation above and beyond that explained by f_{ped} . Contrary to our initial expectations, we did
599	not find evidence for strong viability selection against inbred individuals early in life, but
600	instead detected inbreeding depression for traits relating to individual quality (i.e. yearling
601	body mass and male annual reproductive success). Furthermore, we found that fitting f_{ped} and
602	residual sMLH together in a single model explained significantly more of the variance in male
603	annual reproductive success than using f_{ped} alone. However this was not the case for yearling
604	body mass, where f_{ped} explained variation in fitness but sMLH did not.

605

606 Inbreeding depression for different traits

607 Theory predicts that inbreeding depression should be greatest for traits closely linked to

608 fitness because traits under strong directional selection will exhibit greater directional

609 dominance (Lynch & Walsh, 1998). This is supported by a meta-analysis that found stronger

610 inbreeding depression for life history traits such as survival and fecundity than for

611 morphological traits such as body weight (DeRose & Roff, 1999). Given that all of the traits

612 we analysed in banded mongooses are arguably very closely linked to fitness, we were

613 initially surprised not to find inbreeding depression for either survival to nutritional

614	independence or longevity. One potential explanation for this is that inbreeding depression
615	for early survival could be buffered by the social system of this species (Ihle, Hutter, &
616	Tschirren, 2017; Nielsen et al., 2012; Pilakouta, Jamieson, Moorad, & Smiseth, 2015)
617	especially if escorts preferentially direct care towards inbred individuals (Thünken, Bakker,
618	Baldauf, & Kullmann, 2007). However, due to the complexity of the banded mongoose
619	system, testing this hypothesis lies beyond the scope of the current study. Alternatively, as
620	the environment is relatively benign and major causes of death in our study population are
621	predation and injuries sustained during aggressive interactions between social groups (Cant et
622	al., 2013), there may be relatively little scope for strong genetic effects on survival. A further
623	possibility is that our study may have lacked the statistical power to detect inbreeding
624	depression for traits with smaller available sample sizes, such as female annual reproductive
625	success. However, this seems unlikely to account for the absence of detectable inbreeding
626	depression for early-acting traits like survival to nutritional independence as sample sizes for
627	these analyses were more than double what was available for yearling body mass, where
628	inbreeding depression was detected. Nevertheless, we cannot discount the possibility that
629	inbreeding depression might influence survival at an even earlier stage of development, for
630	instance in utero or during their first month post partum before emergence from the
631	underground den.

632

633 As several studies have shown that inbreeding depression can be magnified by stress

634 (Armbruster & Reed, 2005; Fox & Reed, 2011; Meagher, Penn, & Potts, 2000; Reed, Fox,

635 Enders, & Kristensen, 2012, Noren et al 2016), we included interactions between rainfall and

both measures of inbreeding in all of our analyses as rainfall is a proxy for food availability.

637 We found that none of the top ranking models of survival to nutritional independence,

638 longevity, yearling body mass or annual reproductive success contained interactions between 639 rainfall and either f_{ped} or sMLH. Furthermore, although rainfall has a strong effect on survival 640 to nutritional independence (Nichols et al., 2015; Sanderson et al., 2015) and was therefore 641 included as a main effect in all models of this particular trait, rainfall did not feature in any of 642 the chosen models of the other three fitness traits. Thus, our rainfall measures do not appear 643 to strongly influence most of the investigated traits, which may help to explain why 644 interactions involving rainfall were not found. 645 646 Alternatively, social stressors might be disproportionately important in this cooperative 647 breeding species. Consistent with this, strong inbreeding depression was found for male

648 annual reproductive success, with closely inbred individuals ($f_{ped} \ge 0.25$) having 79% lower

649 annual reproductive success than individuals with an f_{ped} of zero, whereas our results for

650 female reproductive success provided at best limited support for inbreeding depression.

651 Although the sample size of female observations was smaller, sex-specific inbreeding

depression would be consistent with previous studies of wild mice showing that male-male

653 competition amplifies inbreeding depression (Meagher et al., 2000). It would also be in line

with stronger reproductive skew in male versus female banded mongooses (Nichols et al.,

655 2010) as stronger directional selection is expected to increase inbreeding depression.

656

657 Detecting inbreeding depression with pedigrees and genetic markers

Pedigrees have for many years been the gold standard for quantifying inbreeding depression

in wild populations (Pemberton, 2004, 2008). However, pedigree data are often incomplete

and assignment errors can introduce significant error into the estimation of f_{ped} (Reid et al.,

661 2014) while the assumption that the founders are outbred and unrelated to one another may

663expected IBD_g of an individual based on its pedigree and cannot capture stochastic variation664in realised IBD_g resulting from Mendelian segregation (Hedrick et al., 2016; Hill & Weir,6652011; Knief et al., 2016). Consequently, there has been growing interest in the extent to666which f_{ped} and marker heterozygosity can capture inbreeding effects, either independently or667when analysed together, as well as in how the explanatory power of genetic markers varies668with the number of loci that can be genotyped.669670670Several studies have compared the ability of pedigrees and microsatellites to detect inbreeding	662	also be violated in closed or structured populations. In addition, f_{ped} is a measure of the
665 2011; Knief et al., 2016). Consequently, there has been growing interest in the extent to 666 which f_{ped} and marker heterozygosity can capture inbreeding effects, either independently or 667 when analysed together, as well as in how the explanatory power of genetic markers varies 668 with the number of loci that can be genotyped. 669	663	expected IBD_g of an individual based on its pedigree and cannot capture stochastic variation
666 which f_{ped} and marker heterozygosity can capture inbreeding effects, either independently or 667 when analysed together, as well as in how the explanatory power of genetic markers varies 668 with the number of loci that can be genotyped. 669	664	in realised IBDg resulting from Mendelian segregation (Hedrick et al., 2016; Hill & Weir,
 when analysed together, as well as in how the explanatory power of genetic markers varies with the number of loci that can be genotyped. 	665	2011; Knief et al., 2016). Consequently, there has been growing interest in the extent to
668 with the number of loci that can be genotyped.669	666	which f_{ped} and marker heterozygosity can capture inbreeding effects, either independently or
669	667	when analysed together, as well as in how the explanatory power of genetic markers varies
	668	with the number of loci that can be genotyped.
670 Several studies have compared the ability of pedigrees and microsatellites to detect inbreeding	669	
	670	Several studies have compared the ability of pedigrees and microsatellites to detect inbreeding

671 depression. These have reached the general consensus that f_{ped} usually performs better (e.g. 672 Ólafsdóttir & Kristjánsson, 2008; Slate et al., 2004; Taylor et al., 2010), even when hundreds 673 of microsatellites are used (Nietlisbach et al., 2017), although it is also to be expected that 674 tens of thousands of SNPs will outperform f_{ped} (Huisman et al., 2016; Kardos et al., 2015). 675 Nevertheless, both Forstmeier et al. (2012) and Hammerly et al. (2013) detected stronger 676 inbreeding effects with around ten microsatellites than with f_{ped} . Our results fall somewhere 677 in between these opposite ends of the spectrum, with heterozygosity based on around 40 678 microsatellites having roughly equivalent explanatory power to f_{ped} for male annual 679 reproductive success but not for yearling body mass. This probably reflects a variety of 680 factors as discussed below.

681

First, most pedigrees suffer to a greater or lesser extent from errors in the assignment of

parental relationships, which can lead to significant and often downward bias in the estimation

of inbreeding depression (Reid et al., 2014). This could partly explain the contrasting results

of Nietlisbach et al. (2017) and Hammerly et al. (2013), as the former study was able to

genotype the parents of all of the individuals used in the analysis for a very large number of microsatellites, resulting in an unusually accurate pedigree, whereas Hammerly et al. (2013) recognised that their pedigree contained a significant number of errors. Although it is difficult to directly compare different studies, our banded mongoose pedigree probably sits closer to the song sparrow end of the continuum, as our panel of microsatellites was moderately large and the majority of the adult population (all but four parents, Sanderson et al. 2015) was included.

693

694 A second factor that may influence the relative explanatory power of pedigrees and genetic 695 markers is pedigree depth. Pedigree-based inbreeding estimates become increasingly accurate 696 with increasing depth, although these estimates become only marginally more precise beyond 697 five generations in populations with certain structures (Slate et al., 2004, Kardos et al., 2015). 698 Therefore, deeper pedigrees will tend to capture more of the variance in IBD_{g} within a given 699 population and leave less 'undetected inbreeding' for the markers to capture (Nietlisbach et al., 700 2017). This could potentially help to explain why residual heterozygosity accounts for 701 additional fitness variation in one of the two traits that showed inbreeding depression in our 702 study, as 54% of individuals in the song sparrow pedigree had eight or more known ancestral 703 generations, whereas our equivalent value was only 3% and around half of all individuals in 704 our banded mongoose pedigree had fewer than five generations known.

705

Third, the information content of the genetic markers used in a study will influence how well heterozygosity measures inbreeding. Homozygosity measured at genetic markers with few alleles and/or highly skewed allele frequencies is more likely by chance to reflect IBS than IBD and so may provide relatively little information about an individual's level of inbreeding.

710	Calculating the IBD-IBS discrepancy for our dataset following Knief et al. (2016) resulted in
711	an estimate of 49%. This is higher than in zebra finches (13%, Knief et al., 2016) and may in
712	part reflect the relatively low allelic richness of our microsatellites (average number of alleles
713	= 5.2, Supplementary table S5). However, this does not appear to have been a major issue for
714	our study, probably due to the relatively large panel of available microsatellites. It might be
715	interesting to explore this further in future studies by attempting to develop 'ideal markers'
716	where there is little to no IBD-IBS discrepancy. One possible strategy would be to genotype
717	small panels of SNPs residing within known runs of homozygosity (ROH) following the
718	suggestion of Knief et al. (2016).
719	
720	In addition, factors intrinsic to a given system may also play a role, such as the frequency of
721	close inbreeding, the number of chromosomes and genetic map length. For example,
722	theoretical work by Hill & Weir (2011) and simulations by Hedrick et al. (2016) suggest that
723	the variation in realised IBD _g around that expected by f_{ped} will be greater for closer
724	inbreeding, and hence that the type and variance of inbreeding in a population will affect how
725	well f_{ped} estimates IBD _g . We know that close inbreeding is relatively common in banded
726	mongooses, not because of small population sizes but because both sexes frequently remain in
727	their natal group for their entire lives and breed with other group members (Nichols et al.,
728	2014). Hence, the relatively high frequency of close inbreeding in this species could
729	potentially help to explain our results.
730	
731	Furthermore, f_{ped} will be relatively imprecise in species with fewer chromosomes and shorter
732	genetic maps because genomes inherited in larger blocks will exhibit greater variance in
733	realised IBD _g for a given value of f_{ped} (Franklin, 1977; Hill & Weir, 2011; Kardos et al., 2015;

734	Stam, 1980). Genomes inherited in larger blocks should therefore provide greater scope to
735	detect inbreeding depression with relatively few molecular markers (Forstmeier et al., 2012).
736	The size of these blocks is partly determined by the number of chromosomes because the
737	proportion of unlinked loci will increase with chromosome number (Weir, Avery, & Hill,
738	1980), while within chromosomes both the number and distribution of crossovers will play a
739	role (Knief et al., 2016). To illustrate this point, nearly a third of the zebra finches genome
740	segregates in only four blocks because almost half of the autosomal genome comprises four
741	chromosomes that experience very little recombination (Forstmeier et al., 2012). It is
742	currently difficult for us to judge how these factors could have influenced our results as the
743	number of chromosomes in banded mongoose is neither small nor large $(2n = 36, Fredga,$
744	1972) and the recombination landscape of this species has not yet been characterised.
745	
746	Factors that influence the relative ability of f_{ped} and markers to detect inbreeding depression
747	
747	will also vary among populations and are expected to differ systematically between large
747	populations and smaller, threatened ones. Small or fragmented populations often have higher
748	populations and smaller, threatened ones. Small or fragmented populations often have higher
748 749	populations and smaller, threatened ones. Small or fragmented populations often have higher rates of inbreeding and lower genetic diversity and Grueber, Wallis, & Jamieson (2008) argue
748 749 750	populations and smaller, threatened ones. Small or fragmented populations often have higher rates of inbreeding and lower genetic diversity and Grueber, Wallis, & Jamieson (2008) argue that these and other differences make it difficult to generalise results from outbred populations
748 749 750 751	populations and smaller, threatened ones. Small or fragmented populations often have higher rates of inbreeding and lower genetic diversity and Grueber, Wallis, & Jamieson (2008) argue that these and other differences make it difficult to generalise results from outbred populations to threatened ones. It is therefore worth considering how similar systems are in the
 748 749 750 751 752 	populations and smaller, threatened ones. Small or fragmented populations often have higher rates of inbreeding and lower genetic diversity and Grueber, Wallis, & Jamieson (2008) argue that these and other differences make it difficult to generalise results from outbred populations to threatened ones. It is therefore worth considering how similar systems are in the prevalence of inbreeding before extrapolating results between them. Furthermore, historical
 748 749 750 751 752 753 	populations and smaller, threatened ones. Small or fragmented populations often have higher rates of inbreeding and lower genetic diversity and Grueber, Wallis, & Jamieson (2008) argue that these and other differences make it difficult to generalise results from outbred populations to threatened ones. It is therefore worth considering how similar systems are in the prevalence of inbreeding before extrapolating results between them. Furthermore, historical changes in the structure of a population, including bottlenecks and population admixture, may
 748 749 750 751 752 753 754 	populations and smaller, threatened ones. Small or fragmented populations often have higher rates of inbreeding and lower genetic diversity and Grueber, Wallis, & Jamieson (2008) argue that these and other differences make it difficult to generalise results from outbred populations to threatened ones. It is therefore worth considering how similar systems are in the prevalence of inbreeding before extrapolating results between them. Furthermore, historical changes in the structure of a population, including bottlenecks and population admixture, may also create variance in inbreeding <i>sensu lato</i> (Bierne, Tsitrone, & David, 2000; Grueber et al.,

758	
759	Capturing inbreeding depression with sequential regression
760	Although pedigrees clearly fail to capture variation in heterozygosity about the genome-wide
761	expectation given by f_{ped} , relatively few studies have attempted to quantify the amount of
762	fitness variation that genetic markers might capture additional to that explained by f_{ped} . Some
763	studies approached this question by fitting f_{ped} and heterozygosity as predictor variables in the
764	same statistical models of the focal traits (e.g. Bensch et al., 2006; Grueber et al., 2011,
765	Nietlisbach et al. 2017). However, this approach may be problematic because heterozygosity
766	is often correlated with f_{ped} and including collinear variables in a model can lead to inaccurate
767	parameter estimates (Graham, 2003). We therefore used sequential regression as an
768	alternative approach that attributes all of the shared variance to f_{ped} and is therefore able to
769	estimate how well marker heterozygosity explains variation in fitness after controlling for f_{ped}
770	without biasing parameter estimates. Using an information theoretic approach, we found that
771	the best model of male annual reproductive success contained residual sMLH as well as f_{ped} .
772	This was also supported by a frequentist approach, which uncovered a highly significant ($p =$
773	0.007) effect of residual sMLH. By contrast, residual sMLH did not explain significant
774	variation in yearling weight. One potential explanation for this could be that male
775	reproductive success exhibits stronger inbreeding depression, which may make residual
776	heterozygosity effects easier to detect.
777	

An alternative to controlling statistically for f_{ped} is to control for this experimentally by

579 screening genetic markers in individuals chosen to have the same f_{ped} . For example,

780 Hemmings et al. (2012) used 384 genome-wide distributed SNPs to estimate homozygosity in

781 zebra finches with the same f_{ped} , finding that the most homozygous birds were less likely to

782	survive to sexual maturity. This study echoes an earlier paper where full-sibling reed warblers
783	were compared (Hansson, Bensch, Hasselquist, & Åkesson, 2001) and where again
784	heterozygosity correlated with fitness despite identical f_{ped} . A key difference is that Hansson
785	et al. (2001) used five microsatellites, leading the authors to conclude that a local effect was
786	responsible, whereas the much larger panel used by Hemmings et al. (2012) more or less
787	precludes a dominant role for only one or two loci. Consistent with the latter study, two lines
788	of evidence are suggestive of a genome-wide mechanism in banded mongooses. First, in our
789	models of annual male reproductive success, we found that AIC _c steadily fell as the number of
790	randomly sampled microsatellite loci increased, regardless of whether sMLH or residual
791	sMLH were fitted as predictor variables. Second, we did not find that a model incorporating
792	the single-locus heterozygosities of all of the loci explained significantly more variation than a
793	model containing only sMLH. Although the second test is admittedly conservative,
794	collectively our results point towards a polygenic architecture, consistent with the widespread
795	view that the majority of inbreeding effects are caused by many loci with small effect sizes
796	distributed across the genome (Charlesworth & Willis, 2009; Szulkin et al., 2010).
797	

798 *Future perspectives*

Looking to the future, although ours and many other studies have quantified heterozygosity
using microsatellites, simulations clearly indicate that tens of thousands of markers will
outperform even very deep pedigrees at capturing inbreeding depression, particularly when
they can be mapped to a reference genome to quantify ROH (Kardos et al., 2015; Wang,
2016). This is supported by a growing number of empirical studies of wild populations using
approaches like restriction site associated DNA sequencing (Hoffman et al., 2014), high
density SNP arrays (Chen et al., 2016; Huisman et al., 2016) and whole-genome resequencing

806	(Kardos et al., 2018). As the costs of these and related methods continue to fall, they are
807	likely to become preferred approaches for studying inbreeding and its consequences in wild
808	populations.

809

810 Conclusion

811 We used a high quality pedigree together with data from up to 43 microsatellites to investigate 812 inbreeding depression in a cooperatively breeding species where mating between close 813 relatives is common. We detected inbreeding depression for yearling body weight and annual 814 male reproductive success but found no evidence for inbreeding affecting survival, either to 815 nutritional independence or beyond. Furthermore, for one out of the two traits exhibiting inbreeding depression, our panel of microsatellites had similar explanatory power to f_{ped} and 816 817 residual sMLH explained a significant proportion of fitness variation when fitted in a model together with f_{ped} . Our findings therefore suggest that, at least under some circumstances, 818 819 combining pedigree and molecular measures of inbreeding may allow us to explain more 820 fitness variation and thereby improve our understanding of the genetic variance underpinning 821 fitness variation in wild populations. 822

823 Acknowledgements

- 824 The work was supported by a Deutsche Forschungsgemeinschaft (DFG) standard grant (HO
- 825 5122/5-1) and a dual PhD studentship from Liverpool John Moores University. We are
- 826 grateful to Uganda Wildlife Authority and Uganda National Council for Science and
- 827 Technology for permission to carry out our research and the Wardens of Queen Elizabeth
- 828 National Park for logistical support. We thank F. Mwanguhya, S. Kyambulima, K. Mwesige
- 829 and R. Businge for assistance in the field and M. Galipaud and M. Stoffel for discussions on
- unenti.

 830 the analyses. Finally, the manuscript benefited greatly from the constructive comments of J.
- 831 Pemberton, M. Kardos and three anonymous reviewers.

833	References
834	Armbruster, P., & Reed, D. H. (2005). Inbreeding depression in benign and stressful
835	environments. <i>Heredity</i> , 95(3), 235–242. http://doi.org/10.1038/sj.hdy.6800721
836	Balloux, F., Amos, W., & Coulson, T. (2004). Does heterozygosity estimate inbreeding in real
837	populations? <i>Molecular Ecology</i> , <i>13</i> (10), 3021–3031. http://doi.org/10.1111/j.1365-
838	294X.2004.02318.x
839	Bates, D. M., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
840	models using lme4. Journal of Statistical Software, 67(1), 1–48.
840 841	http://doi.org/10.1177/009286150103500418
842	
842 843	Bensch, S., Andrén, H., Hansson, B., Pedersen, H. C., Sand, H., Sejberg, D., Liberg, O. (2006). Selection for heterozygosity gives hope to a wild population of inbred wolves.
843 844	
	PLoS ONE, 1(1). http://doi.org/10.1371/journal.pone.0000072
845	Bierne, N., Tsitrone, A., & David, P. (2000). An Inbreeding Model of Associative
846	Overdominance During a Population Bottleneck. <i>Genetics</i> , 155(4), 1981–1990.
847	Cant, M. A. (2000). Social control of reproduction in banded mongooses. <i>Animal Behaviour</i> ,
848	59(1), 147–158. http://doi.org/10.1006/anbe.1999.1279
849	Cant, M. A., Nichols, H. J., Thompson, F. J., & Vitikainen, E. (2016). Banded mongooses :
850	demography, life history, and social behavior. Cooperative Breeding in Vertebrates:
851	Studies of Ecology, Evolution, and Behavior, 318–337.
852	Cant, M. A., Otali, E., & Mwanguhya, F. (2001). Eviction and dispersal in co-operatively
853	breeding banded mongooses (Mungos mungo). Journal of Zoology, 254(2), 155–162.
854	http://doi.org/10.1017/S0952836901000668
855	Cant, M. A., Vitikainen, E., & Nichols, H. (2013). Demography and social evolution of
856	banded mongooses. Adv. Study Behav.
857	Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J., & Sheldon, B. C. (2009). A
858	quantitative review of heterozygosity-fitness correlations in animal populations.
859	<i>Molecular Ecology</i> , <i>18</i> (13), 2746–2765. http://doi.org/10.1111/j.1365-
860	294X.2009.04247.x
861	Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. <i>Nature</i>
862	<i>Reviews. Genetics</i> , 10(11), 783–96. http://doi.org/10.1038/nrg2664
863	Chen, N., Cosgrove, E. J., Bowman, R., Fitzpatrick, J. W., Clark, A. G., Chen, N., Clark,
864	A. G. (2016). Genomic Consequences of Population Decline in the Endangered Florida
865	Scrub-Jay. <i>Current Biology</i> , 26(21), 2974–2979.
866	http://doi.org/10.1016/j.cub.2016.08.062
867	Cox, D., & Snell, E. (1989). Analysis of binary data. London: Chapman & Hall.
868	David, P., Pujol, B., Viard, F., Castella, V., & Goudet, Jerom. (2007). Reliable selfing rate
869	estimates from imperfect population genetic data. Molecular Ecology, 16(12), 2474-
870	2487.
871	DeRose, M. A., & Roff, D. A. (1999). A Comparison of Inbreeding Depression in Life-
872	History and Morphological Traits in Animals. <i>Evolution</i> , 53(4), 1288–1292.
873	Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Lautenbach, S.
874	(2013). Collinearity: A review of methods to deal with it and a simulation study
875	evaluating their performance. <i>Ecography</i> , 36(1), 027-046. http://doi.org/10.1111/j.1600-
876	0587.2012.07348.x
877	Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics.
878	http://doi.org/10.1002/bimj.19620040211
879	Fisher, R. A. (1965). The theory of inbreeding. The theory of inbreeding. Oliver & Boyd,
880	Edinburgh and London.

881	Forstmeier, W., Schielzeth, H., Mueller, J. C., Ellegren, H., & Kempenaers, B. (2012).
882	Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better
883	than their reputation. <i>Molecular Ecology</i> , 21(13), 3237–49.
884	http://doi.org/10.1111/j.1365-294X.2012.05593.x
885	Fournier, D., Skaug, H., Ancheta, J., & Ianelli, J. (2012). AD Model Builder: using automatic
886	differentiation for statistical inference of highly parameterized complex nonlinear
887	models. Optimization Methods.
888	Fox, C. W., & Reed, D. H. (2011). Inbreeding depression increases with environmental stress:
889	An experimental study and meta-analysis. <i>Evolution</i> , 65(1), 246–258.
890	http://doi.org/10.1111/j.1558-5646.2010.01108.x
891	Franklin, I. (1977). The distribution of the proportion of the genome which is homozygous by
892	descent in inbred individuals. Theoretical Population Biology, 11(1), 60-80.
893	Fredga, K. (1972). Comparative chromosome studies in mongooses (Carnivora, Viverridae).
894	Hereditas, 71(1), 1-74. http://doi.org/10.1111/j.1601-5223.1972.tb01005.x
895	Gilchrist, J. S. (2004). Pup escorting in the communal breeding banded mongoose: behavior,
896	benefits, and maintenance. Behavioral Ecology, 15(6), 952-960.
897	http://doi.org/10.1093/beheco/arh071
898	Graham, M. H. (2003). Confronting Multicollinearity in Ecological Multiple Regression,
899	84(11), 2809–2815. http://doi.org/10.1890/02-3114
900	Grueber, C. E., Wallis, G. P., & Jamieson, I. G. (2008). Heterozygosity-fitness correlations
901	and their relevance to studies on inbreeding depression in threatened species. <i>Molecular</i>
902	<i>Ecology</i> , 17(18), 3978–3984. http://doi.org/10.1111/j.1365-294X.2008.03910.x
903	Grueber, C. E., Waters, J. M., & Jamieson, I. G. (2011). The imprecision of heterozygosity-
904	fitness correlations hinders the detection of inbreeding and inbreeding depression in a
905	threatened species. <i>Molecular Ecology</i> , 20(1), 67–79. http://doi.org/10.1111/j.1365-
906	294X.2010.04930.x
907	Hadfield, J., Richardson, D., & Burke, T. (2006). Towards unbiased parentage assignment:
908	combining genetic, behavioural and spatial data in a Bayesian framework. Molecular
909	<i>Ecology</i> , <i>15</i> (12), 3715–3730.
910	Hammerly, S. C., Morrow, M. E., & Johnson, J. A. (2013). A comparison of pedigree- and
911	DNA-based measures for identifying inbreeding depression in the critically endangered
912	Attwater's Prairie-chicken. Molecular Ecology, 22(21), 5313–5328.
913	http://doi.org/10.1111/mec.12482
914	Hansson, B., Bensch, S., Hasselquist, D., & Åkesson, M. (2001). Microsatellite diversity
915	predicts recruitment of sibling great reed warblers. Proceedings. Biological Sciences /
916	The Royal Society, 268(1473), 1287–1291. http://doi.org/10.1098/rspb.2001.1640
917	Hansson, B., Westerdahl, H., Hasselquist, D., Åkesson, M., & Bensch, S. (2004). Does
918	Linkage Disequilibrium Generate Heterozygosity-Fitness Correlations in Great Reed
919	Warblers? Evolution, 58(4), 870-879. http://doi.org/10.1111/j.0014-
920	3820.2004.tb00418.x
921	Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding Inbreeding Depression, Purging,
922	and Genetic Rescue. Trends in Ecology & Evolution, 31(12), 940–952.
923	http://doi.org/10.1016/j.tree.2016.09.005
924	Hedrick, P. W., Kardos, M., Peterson, R. O., & Vucetich, J. A. (2016). Genomic Variation of
925	Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves. Journal of Heredity,
926	108(2), 120–126. http://doi.org/10.1093/jhered/esw083
927	Hemmings, N. L., Slate, J., & Birkhead, T. R. (2012). Inbreeding causes early death in a
928	passerine bird. Nature Communications, 3, 863. http://doi.org/10.1038/ncomms1870

929	Hill, W. G., & Weir, B. S. (2011). Variation in actual relationship as a consequence of
930	Mendelian sampling and linkage. Genetics Research, 93(1), 47–64.
931	http://doi.org/10.1017/S0016672310000480
932	Hodge, S. J. (2005). Helpers benefit offspring in both the short and long-term in the
933	cooperatively breeding banded mongoose. Proceedings of the Royal Society B,
934	<i>272</i> (1580), 2479–84.
935	Hodge, S. J. (2007). Counting the costs: the evolution of male-biased care in the cooperatively
936	breeding banded mongoose. Animal Behaviour, 74(4), 911–919.
937	http://doi.org/10.1016/j.anbehav.2006.09.024
938	Hoffman, J. I., Simpson, F., David, P., Rijks, J. M., Kuiken, T., Thorne, M. A. S.,
939	Dasmahapatra, K. K. (2014). High-throughput sequencing reveals inbreeding depression
940	in a natural population. Proceedings of the National Academy of Sciences of the United
941	States of America, 111(10), 3775-80. http://doi.org/10.1073/pnas.1318945111
942	Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T., & Pemberton, J. M. (2016).
943	Inbreeding depression across the lifespan in a wild mammal population. Proceedings of
944	the National Academy of Sciences, 113(13), 3585–3590.
945	http://doi.org/10.1073/pnas.1518046113
946	Ihle, K. E., Hutter, P., & Tschirren, B. (2017). Increased prenatal maternal investment reduces
947	inbreeding depression in offspring. Proceedings of The Royal Society B, 284, 20171347.
948	http://doi.org/10.1098/rspb.2017.1347
949	Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference
950	from multilocus genotype data. <i>Molecular Ecology Resources</i> , 10(3), 551–5.
951	http://doi.org/10.1111/j.1755-0998.2009.02787.x
952	Jordan, N. R., Mwanguhya, F., Kyabulima, S., Rüedi, P., & Cant, M. A. (2010). Scent
953	marking within and between groups of wild banded mongooses. Journal of Zoology,
954	280(1), 72–83. http://doi.org/10.1111/j.1469-7998.2009.00646.x
955	Kardos, M., Åkesson, M., Fountain, T., Flagstad, Ø., Liberg, O., Olason, P., Ellegren, H.
956	(2018). Genomic consequences of intensive inbreeding in an isolated wolf population.
957	<i>Nature Ecology & Evolution</i> , 2(1), 124–131. http://doi.org/10.1038/s41559-017-0375-4
958	Kardos, M., Luikart, G., & Allendorf, F. W. (2015). Measuring individual inbreeding in the
959	age of genomics: marker-based measures are better than pedigrees. <i>Heredity</i> , 115(1), 63–
960	72. http://doi.org/10.1038/hdy.2015.17
961	Keller, L. F., & Waller, D. M. (2002). Inbreeding effects in wild populations. <i>Trends in</i>
962	<i>Ecology and Evolution</i> , <i>17</i> (5), 230–241. http://doi.org/10.1016/S0169-5347(02)02489-8
963	Knief, U., Kempenaers, B., & Forstmeier, W. (2016). Meiotic recombination shapes precision
964	of pedigree- and marker-based estimates of inbreeding. <i>Heredity</i> , (August), 1–10.
965	http://doi.org/10.1038/hdy.2016.95
966	Lynch, M., & Walsh, B. (1998). <i>Genetics and analysis of quantitative traits</i> .
967	Marshall, H. H., Vitikainen, E. I. K., Mwanguhya, F., Businge, R., Kyabulima, S., Hares, M.
968	C., Cant, M. A. (2017). Lifetime fitness consequences of early-life ecological
969 070	hardship in a wild mammal population. <i>Ecology and Evolution</i> , 7(6), 1712–1724.
970 071	http://doi.org/10.1002/ecc3.2747
971 072	Meagher, S., Penn, D. J., & Potts, W. K. (2000). Male-male competition magnifies inbreeding
972 973	depression in wild house mice. <i>Proceedings of the National Academy of Sciences of the</i>
973 974	United States of America, 97, 3324–3329. http://doi.org/10.1073/pnas.97.7.3324 Miller J. M. Malenfant P. M. David P. Davis C. S. Poissant J. Hogg J. T. Coltman
974 975	Miller, J. M., Malenfant, R. M., David, P., Davis, C. S., Poissant, J., Hogg, J. T., Coltman, D. W. (2014). Estimating genome-wide heterozygosity: effects of demographic history
975 976	and marker type. <i>Heredity</i> , 112(3), 240–247. http://doi.org/10.1038/hdy.2013.99
10	and marker type. <i>Hereany</i> , 112(5), 240–247. http://doi.org/10.1050/hdy.2015.77

977	Mitchell, J., Vitikainen, E. I. K., Wells, D. A., Cant, M. A., & Nichols, H. J. (2017).
978	Heterozygosity but not inbreeding coefficient predicts parasite burdens in the banded
979	mongoose. Journal of Zoology, 302(1), 32-39. http://doi.org/10.1111/jzo.12424
980	Morrissey, M. (2014). pedantics: Functions to facilitate power and sensitivity analyses for
981	genetic studies of natural populations.
982	Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from
983	generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–
984	142. http://doi.org/10.1111/j.2041-210x.2012.00261.x
985	Nichols, H. J. (2017). The causes and consequences of inbreeding avoidance and tolerance in
986	cooperatively breeding vertebrates. <i>Journal of Zoology</i> . http://doi.org/10.1111/jzo.12466
987	Nichols, H. J., Amos, W., Cant, M. A., Bell, M. B. V., & Hodge, S. J. (2010). Top males gain
988	high reproductive success by guarding more successful females in a cooperatively
989	breeding mongoose. Animal Behaviour, 80(4), 649–657.
990	http://doi.org/10.1016/j.anbehav.2010.06.025
991	Nichols, H. J., Cant, M. A., Hoffman, J. I., & Sanderson, J. L. (2014). Evidence for frequent
992	incest in a cooperatively breeding mammal. <i>Biology Letters</i> , 10(12).
992 993	http://doi.org/10.1098/rsbl.2014.0898
994	Nichols, H. J., Cant, M. A., & Sanderson, J. L. (2015). Adjustment of costly extra-group
995	paternity according to inbreeding risk in a cooperative mammal. <i>Behavioral Ecology</i> ,
996	26(6), 1486–1494. http://doi.org/10.1093/beheco/arv095
990 997	Nielsen, J. F., English, S., Goodall-Copestake, W. P., Wang, J., Walling, C. A., Bateman, A.
997 998	W., Pemberton, J. M. (2012). Inbreeding and inbreeding depression of early life traits
999 999	
1000	in a cooperative mammal. <i>Molecular Ecology</i> , $21(11)$, 2788–2804.
1000	http://doi.org/10.1111/j.1365-294X.2012.05565.x
	Nietlisbach, P., Keller, L. F., Camenisch, G., Arcese, P., Reid, J. M., & Postma, E. (2017).
1002 1003	Pedigree-based inbreeding coefficient explains more variation in fitness than hotoromycosity at 160 microsofallites in a wild hird population. <i>Proceedings of the Popula</i>
	heterozygosity at 160 microsatellites in a wild bird population. <i>Proceedings of the Royal</i>
1004	Society B: Biological Sciences, 284(1850).
1005 1006	O'Quigley, J., Xu, R., & Stare, J. (2005). Explained randomness in proportional hazards
	models. <i>Statistics in Medicine</i> , 24(3), 479–489. http://doi.org/10.1002/sim.1946
1007	Olafsdóttir, G. A., & Kristjánsson, T. (2008). Correlated pedigree and molecular estimates of
1008	inbreeding and their ability to detect inbreeding depression in the Icelandic sheepdog, a
1009	recently bottlenecked population of domestic dogs. <i>Conservation Genetics</i> , 9(6), 1639–
1010	1641. http://doi.org/10.1007/s10592-008-9526-0
1011	Pemberton, J. M. (2004). Measuring inbreeding depression in the wild: The old ways are the
1012	best. <i>Trends in Ecology and Evolution</i> , <i>19</i> (12), 613–615.
1013	http://doi.org/10.1016/j.tree.2004.09.010
1014	Pemberton, J. M. (2008). Wild pedigrees: the way forward. <i>Proceedings of the Royal Society</i>
1015	<i>B: Biological Sciences</i> , <i>275</i> (1635), 613–621. http://doi.org/10.1098/rspb.2007.1531
1016	Pilakouta, N., Jamieson, S., Moorad, J. A., & Smiseth, P. T. (2015). Parental care buffers
1017	against inbreeding depression in burying beetles. Proceedings of the National Academy
1018	of Sciences of the United States of America, 112(26), 8031–5.
1019	http://doi.org/10.1073/pnas.1500658112
1020	R Core Team. (2014). R: A language and environment for statistical computing. <i>R Foundation</i>
1021	for Statistical Computing, Vienna, Austria, 2012.
1022	Reed, D. H., Fox, C. W., Enders, L. S., & Kristensen, T. N. (2012). Inbreeding-stress
1023	interactions: Evolutionary and conservation consequences. Annals of the New York
1024	Academy of Sciences, 1256(1), 33-48. http://doi.org/10.1111/j.1749-6632.2012.06548.x

1025	Reid, J. M., Keller, L. F., Marr, A. B., Nietlisbach, P., Sardell, R. J., & Arcese, P. (2014).
1026	Pedigree error due to extra-pair reproduction substantially biases estimates of inbreeding
1027	depression. Evolution, 68(3), 802-815. http://doi.org/10.1111/evo.12305
1028	Richards, S. A., Whittingham, M. J., & Stephens, P. A. (2011). Model selection and model
1029	averaging in behavioural ecology: The utility of the IT-AIC framework. Behavioral
1030	Ecology and Sociobiology, 65(1), 77–89. http://doi.org/10.1007/s00265-010-1035-8
1031	Sanderson, J. L., Wang, J., Vitikainen, E. I. K., Cant, M. A., & Nichols, H. J. (2015). Banded
1032	mongooses avoid inbreeding when mating with members of the same natal group.
1033	Molecular Ecology, 24(14), 3738–3751. http://doi.org/10.1111/mec.13253
1034	Skaug, H., Fournier, D., Nielsen, A., & Magnusson, A. (2013). Generalized linear mixed
1035	models using AD model builder. <i>R Package Version</i> 0.7.
1036	Slate, J., David, P., Dodds, K. G., Veenvliet, B. a, Glass, B. C., Broad, T. E., & McEwan, J.
1037	C. (2004). Understanding the relationship between the inbreeding coefficient and
1038	multilocus heterozygosity: theoretical expectations and empirical data. <i>Heredity</i> , $93(3)$,
1039	255–265. http://doi.org/10.1038/sj.hdy.6800485
1040	Stam, P. (1980). The distribution of the fraction of the genome identical by descent in finite
1041	random mating populations. <i>Genetical Research</i> , 35(2), 131.
1042	http://doi.org/10.1017/S0016672300014002
1043	Stoffel, M. A., Esser, M., Kardos, M., Humble, E., Nichols, H., David, P., Poisot, T.
1044	(2016). inbreedR: an R package for the analysis of inbreeding based on genetic markers.
1045	Methods in Ecology and Evolution, 7(11), 1331–1339. http://doi.org/10.1111/2041-
1046	210X.12588
1047	Symonds, M. R. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel
1048	inference and model averaging in behavioural ecology using Akaike's information
1049	criterion. Behavioral Ecology and Sociobiology, 65(1), 13–21.
1050	http://doi.org/10.1007/s00265-010-1037-6
1050	Szulkin, M., Bierne, N., & David, P. (2010). Heterozygosity-fitness correlations: a time for
1051	reappraisal. Evolution; International Journal of Organic Evolution, 64(5), 1202–17.
1053	http://doi.org/10.1111/j.1558-5646.2010.00966.x
1054	Szulkin, M., Stopher, K. V., Pemberton, J. M., & Reid, J. M. (2013). Inbreeding avoidance,
1055	tolerance, or preference in animals? <i>Trends in Ecology and Evolution</i> , 28(4), 205–211.
1056	http://doi.org/10.1016/j.tree.2012.10.016
1057	Taylor, H. R., Kardos, M. D., Ramstad, K. M., & Allendorf, F. W. (2015). Valid estimates of
1058	individual inbreeding coefficients from marker-based pedigrees are not feasible in wild
1059	populations with low allelic diversity. <i>Conservation Genetics</i> , 16(4), 901–913.
1060	http://doi.org/10.1007/s10592-015-0709-1
1061	Taylor, S. S., Sardell, R. J., Reid, J. M., Bucher, T., Taylor, N. G., Arcese, P., & Keller, L. F.
1062	(2010). Inbreeding coefficient and heterozygosity-fitness correlations in unhatched and
1062	hatched song sparrow nestmates. <i>Molecular Ecology</i> , 19(20), 4454–4461.
1064	http://doi.org/10.1111/j.1365-294X.2010.04824.x
1065	Therneau, T., & Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model.
1066	Thompson, F. J., Marshall, H. H., Sanderson, J. L., Vitikainen, I. K., Nichols, H. J., Gilchrist,
1067	J. S., Thompson, F. J. (2016). Reproductive competition triggers mass eviction in
1068	cooperative banded mongooses. <i>Proceedings of Royal Society B</i> , 283(1826).
1069	Thünken, T., Bakker, T. C. M., Baldauf, S. A., & Kullmann, H. (2007). Active Inbreeding in a
1009	Cichlid Fish and Its Adaptive Significance. <i>Current Biology</i> , 17(3), 225–229.
1070	http://doi.org/10.1016/j.cub.2006.11.053
1071	Wang, J. (2010). Do marker-based paternity assignments favour heterozygous and unrelated
1014	, and, v. (2010). Do marker oused paternity assignments ravour neterozygous and amenated

- 1073males? Molecular Ecology, 19(9), 1898–1913. http://doi.org/10.1111/j.1365-1074294X.2010.04601.x
- 1075 Wang, J. (2016). Pedigrees or markers: Which are better in estimating relatedness and
 1076 inbreeding coefficient? *Theoretical Population Biology*, *107*, 4–13.
 1077 http://doi.org/10.1016/j.tpb.2015.08.006
- 1078 Weir, B. S., Avery, P. J., & Hill, W. G. (1980). Effect of mating structure on variation in 1079 inbreeding. *Theoretical Population Biology*, *18*(3), 396–429.
 1080 http://doi.org/10.1016/0040-5809(80)90061-1
- Zuur, A. F. ., Ieno, E. N. ., & Saveliev, A. (2009). *Mixed Effects Models and Extensions in Ecology with R.* (R. M. Gail, K. Krickeberg, S. JM, T. A, & W. Wong, Eds.). New York,
 NY: Spring Science and Bussiness Media.
- 1084

ail, a Bussin.

1085 **Data Accessibility**

- 1086 Microsatellite genotypes, pedigree inbreeding coefficients, and lifetime and annual data
- 1087 records are available via Dryad doi:10.5061/dryad.bg868sh. All of the computer code used to
- 1088 analyse the data are provided as R script files.

1089

1090 **Author Contributions**

- 1091 J.I.H. and H.J.N. designed the research; D.A.W. genotyped individuals and assigned
- 1092 parentage and sibships; D.A.W conducted data analyses with assistance from J.I.H.; J.I.H. and
- 1093 D.A.W. wrote the manuscript with comments from H.J.N.; field data were collected by H.J.N
- 1094 and M.A.C. All of the authors read and commented upon the final manuscript.

1096 Tables

1097

1098 **Table 1.** Alternative models of survival to nutritional independence ranked in order of their

1099 AIC_c support. See the Materials and Methods section for further details.

	Model	Structure	k logLikelihood	AIC _c	ΔAIC _c	AIC _c -weight
	M5	Rain + escorting	5 -271.954	554.033	0.000	0.348
	M7	Rain + escorting + sMLH	6 -271.944	556.061	2.029	0.126
	M6	Rain + escorting + f_{ped}	6 -271.953	556.081	2.048	0.125
	M1	Rain	4 -274.286	556.655	2.623	0.094
	M15	Rain * sMLH + escorting	7 -271.866	557.965	3.932	0.049
	M11 M11	Rain * f_{ped} + escorting	7 -271.917	558.066	4.034	0.046
	M8	Rain + escorting + f_{ped} + residual sMLH	7 -271.939	558.110	4.078	0.045
	M3	Rain + sMLH	5 -274.263	558.651	4.618	0.035
	M2	Rain + f_{ped}	5 -274.282	558.688	4.655	0.034
	M16	Rain * residual sMLH + escorting + f_{ped}	8 -271.811	559.923	5.890	0.018
	M12	Rain * f_{ped} + escorting + residual sMLH	8 -271.902	560.103	6.071	0.017
	M13	Rain * sMLH	6 -274.182	560.539	6.506	0.013
	M9	Rain * f _{ped}	6 -274.203	560.580	6.547	0.013
	M4	Rain + f _{ped} + residual sMLH	6 -274.248	560.669	6.637	0.013
	M18	Rain * (f _{ped} + residual sMLH) + escorting	9 -271.781	561.937	7.905	0.007
	M19	(Intercept only)	3 -278.019	562.087	8.054	0.006
	M14	Rain * residual sMLH + f_{ped}	7 -274.091	562.415	8.382	0.005
	M10	Rain * f_{ped} + residual sMLH	7 -274.168	562.568	8.536	0.005
	M17	Rain * (f_{ped} + residual sMLH)	8 -274.022	564.345	10.312	0.002
)						

1101 **Table 2.** Alternative models of survival beyond nutritional independence ranked in order of

1102 their AIC_c support. See the Materials and Methods section for further details.

1103

Model	Structure	k	LogLikelihood	AIC _c	ΔAIC _c	AIC _c -weight
M7	Sex + rain + sMLH	8.5	-1645.576	3297.209	0.000	0.261
M11	Sex + rain * sMLH	9.4	-1644.911	3297.916	0.707	0.183
M1	Sex	6.9	-1647.964	3297.938	0.728	0.181
M3	Sex + sMLH	8.1	-1647.174	3298.376	1.167	0.145
M5	Sex + rain	6.3	-1647.560	3299.149	1.939	0.099
M8	Sex + rain + f_{ped} + residual sMLH	7.9	-1646.837	3301.768	4.559	0.027
M2	Sex + f_{ped}	6.6	-1649.023	3302.074	4.865	0.023
M4	Sex + f_{ped} + residual sMLH	7.8	-1648.015	3302.086	4.876	0.023
M6	Sex + rain + f_{ped}	6.6	-1648.164	3302.385	5.176	0.020
M12	Sex + rain * residual sMLH + f _{ped}	8.6	-1646.418	3302.979	5.769	0.015
M10	Sex + rain * f_{ped} + residual sMLH	9.0	-1646.708	3303.559	6.350	0.011
M9	Sex + rain * f_{ped}	7.7	-1648.083	3304.261	7.052	0.008
M13	Sex + rain * (f_{ped} + residual sMLH)	9.7	-1646.283	3304.765	7.555	0.006
M14	(Intercept only)	4.9	-1650.698	3322.777	25.568	0.000
1105						

1106	Table 3. Alternative models of yearling body mass ranked in order of their AIC _c support. See
1107	the Materials and Methods section for further details. Only models with AIC _c -weights greater
1108	than 0.01 are shown.

1109

Model	Structure	k	logLikelihood	AIC _c	ΔAIC _c	AIC _c -weight
M28	Sex + f_{ped}	6	-930.982	1874.551	0.000	0.325
M32	Sex + rain + f_{ped}	7	-930.896	1876.581	2.029	0.118
M36	Sex + index + f_{ped}	7	-930.935	1876.659	2.107	0.113
M30	Sex + f_{ped} + residual sMLH	7	-930.955	1876.699	2.147	0.111
M43	Sex + rain * f_{ped}	8	-930.509	1878.039	3.488	0.057
M34	Sex + rain + f_{ped} + residual sMLH	8	-930.849	1878.719	4.168	0.040
M40	Sex + rain + index + f_{ped}	8	-930.849	1878.719	4.168	0.040
M38	Sex + index + f_{ped} + residual sMLH	8	-930.910	1878.841	4.290	0.038
M44	Sex + rain * f_{ped} + residual sMLH	9	-930.436	1880.158	5.606	0.020
M45	Sex + escorting + rain f_{ped}	9	-930.448	1880.182	5.630	0.019
M48	Sex + rain * residual sMLH + f_{ped}	9	-930.644	1880.574	6.022	0.016
M42	Sex + rain + index + f_{ped} + residual sMLH	9	-930.804	1880.894	6.342	0.014
M27	Sex	5	-935.417	1881.251	6.699	0.011
M2	fped	5	-935.495	1881.407	6.855	0.011

Table 4. Alternative models of annual reproductive success in (a) females, and (b) males, ranked in order of their AIC_c support. The models of female annual reproductive success which included inbreeding–stress interactions failed to converge and so were omitted. See the Materials and Methods section for further details. 1111

1112

1113

1114

1115

1116	(a)							
_	Model	Structure	k	lo	gLikelihood	AIC _c	ΔAIC_{c}	AIC _c -weight
	M4	Age + age ² + f_{ped}	8	-3	29.679	675.981	0.000	0.286
	M1	Age + age^2	7	-3	30.848	676.179	0.197	0.259
	M5	Age + age ² + rain + f_{ped}	9	-3	29.642	678.067	2.085	0.101
	M8	Age + age ² + f_{ped} + residual sMLH	9	-3	29.652	678.087	2.105	0.100
	M3	Age + age^2 + sMLH	8	-3	30.790	678.203	2.222	0.094
	M2	Age + age ² + rain	8	-3	30.808	678.239	2.258	0.092
	M7	Age + age ² + rain + f_{ped} + residual sMLH	10	-3	29.625	680.211	4.229	0.034
	M6	Age + age^2 + rain + sMLH	9	-3	30.733	680.249	4.267	0.034
	M14	(Intercept only)	5	-3	69.474	749.204	73.223	0.000
1117	(1)							
1118					1 1 1 11			
-	Model	Structure		k	logLikeliho			
	M8	Age + age ² + f_{ped} + residual sMLH		9	-300.139	618.8		
	M7	Age + age ² + rain + f_{ped} + residual sMLH		10	-300.133	620.9		
	M12	Age + age ² + rain * residual sMLH + f_{ped}		11	-299.697	622.1		
	M10	Age + age ² + rain * f_{ped} + residual sMLH		11	-300.051	622.8		
	M3	Age + age ² + sMLH		8	-303.333	623.08		
	M4	Age + age ² + f_{ped}		8	-303.792	624.00		
	M13	Age + age ² + rain * (f_{ped} + residual sMLH)		12	-299.663	624.24		
	M6	Age + age ² + rain + sMLH		9	-303.332	625.18	6.386	5 0.020
	M5	Age + age ² + rain + f_{ped}		9	-303.779	626.08	31 7.280	0.013
	M11	Age + age ² + rain * smlh		10	-302.895	626.43	31 7.630	0.011
	M9	Age + age ² + rain * f_{ped}		10	-303.725	628.0	91 9.290	0.005
	M1	Age + age^2		7	-309.393	633.1	10 14.30	000.0 80
	M2	Age + age ² + rain		8	-309.390	635.19	97 16.39	96 0.000
	M14	(Intercept only)		5	-343.651	697.4	74 78.67	73 0.000
1119								

1120	Table 5. Statistical significance and variance explained by inbreeding terms in models of five
1121	fitness traits. The significance of f_{ped} and sMLH was derived by comparing models containing
1122	these terms with equivalent 'null models' containing only the relevant non-inbreeding terms,
1123	while <i>p</i> -values for residual sMLH were obtained through the comparison of models
1124	containing f_{ped} + residual sMLH with equivalent models containing only f_{ped} . For each trait,
1125	the models that we constructed are listed in the first column of the table, with the null model
1126	shown first. Conditional R ² _{glmm} was calculated following Nakagawa & Schielzeth (2013) and
1127	Cox and Snells's pseudo R^2 was calculated using the number of uncensored observations
1128	rather than the total number of observations as recommended by O'Quigley et al. (2005). As
1129	R ² values cannot be calculated for zero-inflated negative binomial GLMMs, log likelihood
1130	values are presented as a measure of the fit of models of annual male reproductive success.
1101	

1131

a) Survival to nutritional independence

Binomial GLMM, *n* = 489

Structure	Likelihood ratio	<i>p</i> -value	Conditional R ² _{glmm}
Rain + escorting			0.4701
Rain + escorting + f_{ped}	0.0017	0.9671	0.4702
Rain + escorting + sMLH	0.0213	0.8839	0.4703

b) Survival beyond nutritional independence

Cox proportional hazard model, *n* = 428

Structure	Likelihood ratio	<i>p</i> -value	Cox and Snell's pseudo R ²
Sex		1	0.0817
Sex + f_{ped}	2.1178	0.1456	0.0755
Sex + sMLH	1.5803	0.2087	0.0863

c) Yearling body mass

Gaussian GLMM, n = 150			
Structure	Likelihood ratio	<i>p</i> -value	Conditional R ² _{glmm}
Sex			0.5734
Sex + f_{ped}	8.87	0.0029	0.6221
Sex + sMLH	0.674	0.4117	0.5766

d) Female annual reproductive success

Zero-inflated, negative binomial GLMM, n = 240

Structure	Likelihood ratio	<i>p</i> -value	Log Likelihood
Age + age^2			-330.848
Age + age ² + f_{ped}	2.338	0.1263	-329.679
Age + age^2 + sMLH	0.116	0.7334	-330.790

e) Male annual reproductive success

Zero-inflated,	negative	binomial	GLMM, r	ז = 354

Structure	Likelihood ratio	<i>p</i> -value	Log Likelihood
Age + age^2			-309.393
Age + age ² + f_{ped}	11.202	0.0008	-303.792
Age + age^2 + sMLH	12.12	0.0005	-303.333
Age + age ² + f_{ped} + residual sMLH	7.306	0.0069	-300.139

1132

to Review Only

1134 Figure legends

1135

Figure 1. The relationship between the pedigree-based inbreeding coefficient, f_{ped} and sMLH for 777 banded mongoose individuals with all four grandparents assigned (R = 0.34, p <0.001). Scatter on the y-axis for a given f_{ped} value represents variation in microsatellite heterozygosity among individuals with the same pedigree inbreeding coefficient. Marginal histograms show the distributions of f_{ped} (top) and sMLH (right axis).

1142Figure 2. The relationship between f_{ped} and yearling body mass. The trend line shows the1143expected body mass of a female yearling and the shaded region shows the 95% confidence1144interval.

1145

1141

Figure 3. The relationship between annual male reproductive success and a) f_{ped} , and b) residual sMLH derived from a single model (M8 in table 4b) where both inbreeding measures are fitted together. The trend line shows expected values based on average age and the shaded region shows associated 95% confidence intervals. Data points in plot a) were given a small amount of jitter to avoid over plotting.

1151

Figure 4. Estimated regression coefficients of the three inbreeding terms in models of five

1153 different fitness traits, showing point estimates and associated 95% confidence intervals.

1154 Each panel shows three different models—one containing f_{ped} (shown in black), one containing

sMLH (shown in dark orange) and one containing f_{ped} + residual sMLH (shown in light

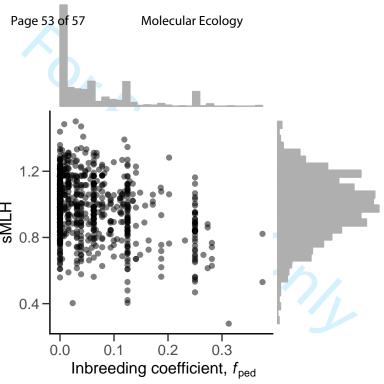
1156 turquoise) as described in the Results section. In addition to these inbreeding terms, all of the

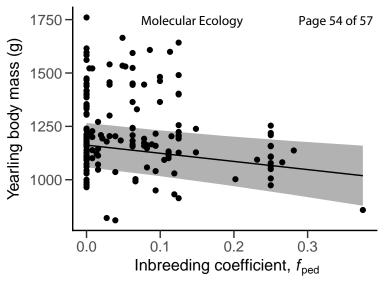
1157 models contained other fixed effects but these are not shown for ease of interpretation. The

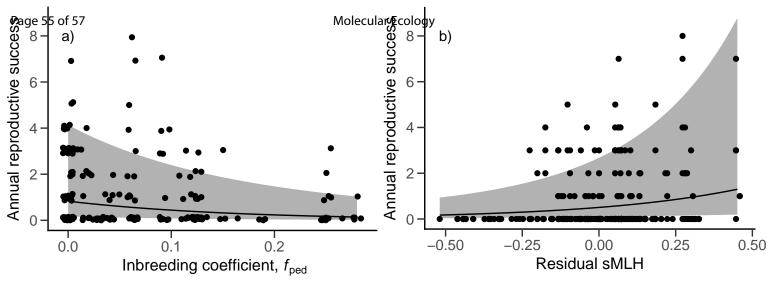
1158 larger confidence intervals of f_{ped} relative to sMLH result from its smaller range (Figure 1).

1159

1160 **Figure 5.** The relationship between AIC_c of models of annual male reproductive success and

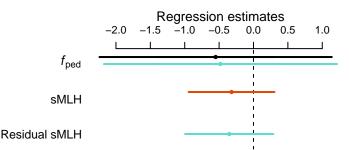

1161 the number of microsatellites used to calculate standardised multilocus heterozygosity. Open 1162 points represent models with the structure: $age + age^2 + sMLH$; closed points represent

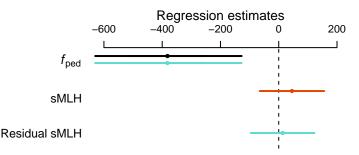

models with the structure: $age + age^2 + f_{ped} + residual sMLH$. The horizontal line represents a

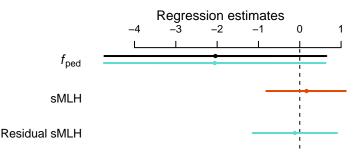

1164 model with the structure: $age + age^2 + f_{ped}$. We selected *n* different microsatellite loci at

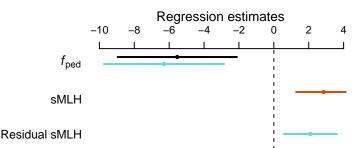
random and calculated heterozygosity as sMLH 100 times for each value of n. Points

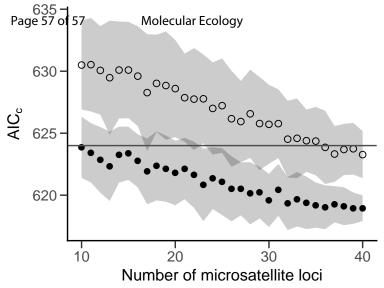
1166 represent mean values and the shaded regions indicate ± 1 sd.






b) Survival beyond nutritional independence


c) Yearling body mass



d) Female annual reproductive success

e) Male annual reproductive success

