HIGH PERFORMANCE DECENTRALISED
COMMUNITY DETECTION ALGORITHMS FOR
BIG DATA FROM SMART COMMUNICATION
APPLICATIONS

AMHMED ABDULSALAM BHIH

A thesis submitted in partial fulfilment of the requirements of
Liverpool John Moores University for the degree of
Doctor of Philosophy

January 2018

ABSTRACT

Many systems in the world can be represented as models of complex networks and
subsequently be analysed fruitfully. One fundamental property of the real-world networks is
that they usually exhibit inhomogeneity in which the network tends to organise according to
an underlying modular structure, commonly referred to as community structure or clustering.
Analysing such communities in large networks can help people better understand the structural
makeup of the networks. For example, it can be used in mobile ad-hoc and sensor networks to
improve the energy consumption and communication tasks. Thus, community detection in
networks has become an important research area within many application fields such as
computer science, physical sciences, mathematics and biology.

Driven by the recent emergence of big data, clustering of real-world networks using traditional
methods and algorithms is almost impossible to be processed in a single machine. The existing
methods are limited by their computational requirements and most of them cannot be directly
parallelised. Furthermore, in many cases the data set is very big and does not fit into the main
memory of a single machine, therefore needs to be distributed among several machines.

The main topic of this thesis is about network community detection within these big data
networks. More specifically, in this thesis, a novel approach, namely Decentralized Iterative
Community Clustering Approach (DICCA) for clustering large and undirected networks is
introduced. An important property of this approach is its ability to cluster the entire network
without the global knowledge of the network topology. Moreover, an extension of the DICCA
called Parallel Decentralized Iterative Community Clustering approach (PDICCA) is proposed
for efficiently processing data distributed across several machines. PDICCA is based on
MapReduce computing platform to work efficiently in distributed and parallel fashion.

In addition, the real-world networks are usually noisy and imperfect with missing and false
edges. These imperfections are often difficult to eliminate and highly affect the quality and

accuracy of conventional methods used to find the community structure in the network.
However, in real-world networks, node attribute information is also available in addition to
topology information. Considering more than one source of information for community
detection could produce meaningful clusters and improve the robustness of the network.
Therefore, a pre-processing approach that considers attribute information, shared neighbours
and connectivity information aspects of the network for community detection is presented in
this thesis as part of my research.

Finally, a set of real-world mobile phone usage data obtained from Cambridge Laboratories
(Device Analyzer) has been analysed as an exploratory step for viability to apply the algorithms
developed in this thesis.

All the proposed approaches have been evaluated and verified for feasibility using real-world
large data set. The evaluation results of these experimentations prove very promising for the

type of large data networks considered.

Keyword: Community analysis, community detection algorithms; decentralized clustering

algorithm; networks; graph; distributed algorithms.

Acknowledgements

Praise be to Allah, the most gracious and the most merciful. Without his blessing my
accomplishment would never have been possible.

This thesis would not have been possible without the guidance and the help of several
individuals who in one way or another contributed and extended their valuable assistance in
the preparation and completion of this study. It is a pleasure to convey my gratitude to them all
in my humble acknowledgment.

First of all, I would like to thank my research supervisor, Dr. Princy Johnson for giving me the
opportunity to be part of her research group and for providing me the right balance of guidance
and independence in my research. Without her guidance, vast knowledge and persistent help
this achievement would have been faraway.

My thanks also go to my second and third supervisors Dr. Trung Nguyen and Dr. Martin
Randles for providing invaluable suggestions and necessary information regarding this
research from different views. Their constructive feedback and suggestions greatly improved
this thesis.

Special thanks to my office mates for creating a good atmosphere, interesting discussions, and

great technical chats making the Ph.D. period such a friendly environment.

Last but not least, truly on top of all, I am heartily thankful to my parents and all my family
members. Without their prayers, support, trust, and understanding I would not have been able

to seek a single word.

Amhmed

Publications
International Conferences Publications

Bhih, A.A., Johnson, P. and Randles, M., 2016, June. Diversity in Smartphone Usage.
In Proceedings of the 17th International Conference on Computer Systems and Technologies

2016, Palermo, Italy (pp. 81-88). ACM.

Eiza, M.H., Randles, M., Johnson, P., Shone, N., Pang, J. and Bhih, A., 2015, October. Rail
Internet of Things: An Architectural Platform and Assured Requirements Model. In Computer
and Information Technology, Ubiquitous Computing and Communications, Dependable,
Autonomic and Secure Computing, Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference, Liverpool, UK (pp. 364-
370). IEEE.

Bhih, A.A., Johnson, P. and Randles, M., October 2017, June. Decentralized Iterative
Community Clustering Approach (DICCA). IEEE 28™ Annual International Symposium on
Personal, Indoor and Mobile Radio Communications PIMRC, Montreal, QC, Canada (pp.1-7).
IEEE.

Journals Publications

Bhih, A.A., Johnson, P. and Randles, M., (2015), EM Clustering Approach for Multi-
Dimensional Analysis of Big Data Set. International Journal of Engineering Research &

Technology (IJERT). ISSN: 2278-0181, Vol. 4 (pp.553-557).

Contents

ABSTRACT cacueiiininensinsaissensisssissass 1
ACKNOWICAZEIMENLS ...uuuererueiesinricssnicssanicssnnissssnsssssnsssssesssssosss iii
PUDLICALIONS couueeeinniiiniiiiiiiintiiniininitnesintecssnnncssneecssssecssssesssssessssssssssssssssssssssasssssnsssssesssssssssses iv
COMLLINLS c.uueeenerineisneeisnecssnissnniseessseessnssssnsssasssseesssssssssssassssessssssssssssassssessssssssssssassssassssssssasssssssns v
LISt Of TADIES «ouueeenniiiiniiiiniiiiiiiisnticnsnnicsnnecsnnisssncssssncssssnessssssssssessssssesssssssssssssssssssssssssssssssnss X
LSt Of FIUI@S.cuciiiueiiiinriiiinnicnsnnicssnnicssnnicsssnisssanssssassnsssssnsssssssssssasssses xi
List of Symbols and ADDIeviationsceeeeeeensnensenssnnnsenssnessessssessssssssesssnssssessassssasssns xiii
CHAPTER 1 INTRODUCTION ...cuuiiiiricreisenssecssnssesssessssssssssessssssassssssssssssssssssssssssssssaes 1
L B 13 (0T L 1o 1o) USSPt 1
1.2 Impact of the Research and its IMPactccceeevieviiiiieiiiiiicceeee e 3
1.2.1 SOCIAl NEEWOTKSeeieiieiiieiieieee ettt et 3

1.2.2 Impact on WWW Lttt 4

1.2.3 Routing in Ad-hoc and Wireless Sensor Networkscccceecvveevieeniieeniieeennenn. 4

1.3 Research Challengescccceeuiiiiieiiiiiieee et 5
1.4 Aim and Research OBJECHIVEScceevuiriiriiiiiriiiieieeesiteeeeee et 7
1.5 Scope Of RESCATCHooiiiiiiiiiee et 9
1.6 Contributions of the research to state of the artcccoviiiiiiiiiiiiin 9
1.7 TRESIS STIUCLUIE.......eiiiiiiiiiiie ettt ettt st eaeeas 10
CHAPTER 2 LITERATURE REVIEWiiniininsninssissensecssissssssesssessassssessenss 12
2.1 Basic concepts of graph theoryccoevuiiiiiiiiiiiieeieeee e 12
2.2 Community Detection AIOTithmsScoooviieiiiieiiieeee e 16
2.2.1 Link-Centrality-Based AIZOTithmsccceeeiiiieiiieeiieeieeceeee e 17
2.2.2 Modularity Optimisation AIZOTTthMSccceeeiviriiriiiiiieneeeeeeeee 18
2.2.3 Spectral AIOTItRMSoeiiiiieiiecie e eaee e 21
2.2.4 Random-Walk-Based Algorithms..........ccccceeiimniiiiiiiniiiieieeee e 22
2.2.5 Information-Based AIZOTIthmScccocuiiiiiiiiieniieiieieee e 22

2.3 Parallelisation of Centrality AIGOTItRMScceeeviiiiiiiiieiieeee e 23
23,1 MAPREAUCE ..ottt ettt sttt ettt enbeenne 24

B S 1110100 F:) oy PSPPSR 26

CHAPTER3 NETWORK MODELS AND STATISTICAL METHODS FOR

COMPARISON OF NETWORIKS.....ccoiinuininsinseissenssissaissenssisssssssssssssssssssssssssssssssssssassssssss 28

3.1 Topology of Real NEtWOTKScceeiiiriiiiiieriieiieeie ettt ens 28

3.1.1 The Small-World effectcoouiiiiiiiie e 28

3.1.2 Degree DiStrIDULION.cc.eeiiieiieeiieiieeie ettt ete et eaeeteeseaeeseesabeenbeeseneenseas 29

3.1.3 Community EffECtS. ...cccuveiiiiiiieiieiiecieeee et 29

3.2 Overview of Validity Evaluationccccceeeiiiiiiiiieiiicceeeee e 31

3.2.1 Cluster QUAlity IMEIICS ...cccuieiuiieiieiieeieeiieeieeiee e eteeeve et e sereeseeseseenseeseneenneas 31

3.2.1.1 COVETAZE ..ttt ettt et 31

3.2.1.2 CONAUCLANCEoeeeviieeiiieeiie et eeiee et e et eesaeeesaeeetaeeetaeessaeessaeesaseeesaseeenes 32

3.2.1.3 MOQUIATIEY ..ottt ettt ettt e sabeesbeesnseenseennneens 33

3.2.2 External Evaluation MEtriCScccuiiiiiieiiieeciee ettt 33

3.2.2.1 RANA INACXeeiiiiiiiiiieieeeeeee et 33

3.2.2.2 Adjusted Rand INAEXcoceeeiiiiiiiiiiiieeiieceeieeee et 34

3.2.2.3 Normalized Mutual Information (NMI)cccceoiiiiiiiiniiiiiieee e, 35

3.2.3 Computational COMPIEXILYcccveieriireiiieeiiieeiieeeiee et e eareesareesree e 36

3.2.4 Visualization for Cluster Validationccoecceeriieiiiniiineiieieeeeeee e, 36

3.2 Artificial NEtWOTKS......ooiiiiiiiiiiieie ettt ettt ettt et 37

3.2.1 Girvan and Newman (GN) Benchmark Networks...........ccccceevieviveeniieencnnenne. 38

3.2.2 LFR Benchmark NetWorkscccccieiiiiiiiiiieieiiecee e 39

3.3 Research MethodOLIOZYc.ueieiiiieiiiieiieeee e 40

34 SUITIMATY cuiiieiiiieeiiee ettt e et e ettt e ettt e st e e s bt e e s bt eeeabteesabteeeabeeesaseeesabeeennseeennnes 42
CHAPTER 4 DECENTRALIZED ITERATIVE COMMUNITY CLUSTERING

APPROACH (DICCA) cuuciuicnriensnensnisrensaesssnssssssessass 44

4.1 Related Literature and Previous StUdiescceevverieniiienieniereeieneeeeeeseeeeaen 44

4.2 Description of the Proposed DICCA........cccooiiriieiieieeeee e 46

4.3 Experimentation and ReSUILS..........ccoeviiiiiiiiiiiiienieeee e 52

4.3.1 LFR Synthetic Dataset (N€tWOTK)ccceevuieriiriiieiieeiiecie et 52

4.3.2 Evaluation MEMIIC.....cccueiiiiiiiiiiiieiieee ettt 52

4.3.3 Parameter Selection StrateZycccvveeeiuiririieeiieeeiieeerieeerveeeeeeeereeesreeesvee e 53

4.3.3.1 TIME 10 LAVE c.eeiniiiiiiiiieieeeeeee ettt st 53

4.3.3.2 THIESNOLA VALUE .. e e e e e e e e e e e e e e e eaeeeaeaaaaaeaas 57

4.3.3.3 Automated Identification of Appropriate Threshold Valueccuee..... 59

4.4 Analysis of Results and DiSCUSSIONc.ceciieiiieriieiiieniieeiienieeiee st evee e 63
4.4.1 Results for Each Iteration of ClUStering..........ccccvevieeriienieiniienieeieeeie e 64
4.4.2 Clustering Results for Increasing Network Size..........ccceevvveeciieeiieeeciieeeieeen, 66
4.43 Evaluating Repeatability of the Algorithm’s Performance............c.ccccoeevurennnnns 66
4.4.4 Evaluation of Message Complexity of the DICCA Algorithm.......................... 67
4.4.5 Evaluation of Clustering Performance Using Mixing Parameter 69

4.4.6 Evaluation of Clustering Performance Using Adjacency Matrix Representations

70

4.5 SUMIMATY ..eoeiiiiiiieieeeeeeee ettt ettt et sane e eeaneesaneeanees 73

CHAPTERS PARALLEL DECENTRALIZED ITERATIVE COMMUNITY
CLUSTERING APPROACH (PDICCA) ..cuuinuernuisrensensaicsessesssnssssssesssssssssssssssssssssssssssssssns 74
5.1 TNEEOAUCTION ..ttt et ettt e et e b e e abeesseeenseesaeeens 74
5.2 Description of the Proposed PDICCA Approach...........cccoeeveriieiiieniieneenieeieeeneans 76
5.2.1 Framework of the PDICCA Approachcccoceeieniiiiniininiinicneceneceen 76
5.2.2 Partitioning of the Network Nodes Set.........ccceviriiniiiiniiininiinicnececeee, 80
5.2.3 How to Calculate the Parameters..........ccccceeueeiiiniiniiiiiiiiinceeccceeeeeen 81

5.3 Matlab Implementation of PDICCA Approach for Distributed Memory Systems...81

5.4 Parallel Algorithms Using MapReduce Modelccooviieiiiiniiiiiiieeeieeeieeeen 83
5.4.1 Description of Algorithm in MapReduce Model............ccccevviiiniieniieenienee. 84
5.5 Analysis of Results and DiSCUSSIONceeviiriiiriiiiiieiieeieeee e 85
5.5.1 ENvIronment SEUP......c..eeeiiiiriiiieiiie ettt esieeesteeerreeesereeeeeeeesaeeeaseesseeeeneeennnes 85
5.5.2 Experimental Evaluation............ccooieiiiiiiieniiieiieiieeicece et 85
5.5.2.1 Horizontal Scalability in Relation to the Number of Parallel Cores 85
5.5.2.10. 0 QUAIIEY coeeeeiee ettt st st sba e saeeesabee s 85
5.5.2.1.2 Message Complexity of the PDICCA Algorithmcccovviiiiiieiieciiee e, 86
5.5.2.2 Clustering Results for Increasing Network Size..........cccccoevvveviiniiininnnnn. 89
5.5.2.2.1 QUAIIEY coveieiee ettt st st s bt e naba e s ateesabee s 89
5.5.2.2.2 Evaluating Repeatability of the Algorithm’s Performancecccocceeevvveeeenneen. 89
5.5.2.2.3 Evaluation of Complexity of the PDICCA Approach......ccccccevccivieieeeeecececinieeennn. 90
5.5.2.3 Evaluation of Clustering Performance Using Mixing Parameter............... 91

vii

5.6 SUITIMATY .oiiiieiiieiiiee ettt e et e ettt e et e e e te e e sata e e s bt e e sssaeesaseeesabeeeanseeennseeennseeennnes 92

CHAPTER 6 A PRE-PROCESSING APPROACH FOR ROBUST COMMUNITY
CLUSTERING TECHNIQUES BASED ON COLLABORATIVE INFORMATION

SOURCES crtctntnttceistsssesssissssssesssissssssessstsssssssssstsssssssssssssssssssssssssessssssssssssssssss 94
6.1 INETOAUCTION ...ttt ettt ettt ettt e s et e e beesaeeebeesaeeens 94
6.2 Related Literature and CONtribUtiON.........cc.evveriiriieriiriieieiienieee et 96
6.3 Experimental Datasets........c..ccccuieeiiieeiiieeiiie ettt e e 97
6.4 Correlation ANALYSIS.......cieciiieiiieeiiieeciee et et eeste e ireeeeaeesaaeesbeeesreeesaeeesnseeenenes 98

6.4.1 Shared NEighDOUIS..........ccociiiiiiiiieiieeieeee ettt e e eeeas 98
6.4.2 Correlation of Communities and Attributes...........cceceeriieiieriieinienieeieneeee. 99
6.5 Description of the Proposed Approachccccvevveeciieniiiiienieeiecie e 103
6.5.1 The Parameter Learning Phaseccccoecvieviiiiiieniieiecieceece e 106
6.5.1.1 Attribute SIMilarity MEtriCcoceevuirieiiiiiniiiiiicneceecece e 107
6.5.1.2 Effect of a and B on the Quality of Community Structureccceeeevennne. 111
6.5.2 Information Aggregation Phasecocoeiiiiiiiiiiiiiiicee e 115
6.6 Experimentation and Results..........c.cooiiiiiiiiiiiiiiieeee e 115
6.6.1 Experimental SEtUPccociiiiiiiiiiiieeiie et 115
6.6.2 Experimental Results and DiSCUSSION..........ccocuevieviiniininiieniireciceececene 116
6.6.2.1 Evaluation of Attribute Weighting Method.............ccccvveiiiiniiiiniiiieeen 116
6.6.2.2 Model Performancecoooueevierieiiiiniieeie e 120
6.6.2.2.1 Number of Community CIUSTEIScuvvieieiiieeiccieee et ectee e e e ree e 120
6.6.2.2.2 MOAUIATITY .eeeureiiiiieiieeeiee ettt sttt et e st st esbe e s bt eesabeesabaeenanes 123

LTI 1311111 -) oy 2RSSR 124

CHAPTER7 A CASE STUDY IN TELECOMMUNICATION INDUSTRY OF

SMARTPHONE USAGE.cuuiiiuiinininsnennicsnnsneisscssssssesssissssssessssssssssasssssssssssssssssssssasssess 126
7.1 INEFOAUCTION ..ttt ettt et sb e st e be e e b e nae 126
7.2 Related LIteTature.........ccooeiiiiiiiiiiieiienieeieeteeteee ettt 127
7.3 Proposed MethOdOIOZYceovuiiiiiieeiiieeiee ettt ee e e e aeeesaee e 129

731 DALASELS ..eeiuiiieiiiieiiie et ettt ettt et 129
7.3.2 Characterisation MethodolOgycooiiiiieiiiiiiiinieeieie e 130
7.4 Results, Analysis and DiSCUSSION.......cccueeeruiieeriiieeiiieeiieeesieeeeieeeereeesreeesaeeesveeenes 131
741 Calls VIa TIME c..ouieiiiiiiiieieeiesee ettt sttt 131

viii

7.4.2 Text Messaging via TImMe..........cccveviieriiieiieiieeieeie et ens 132
7.4.3 Mobile Data Traffic Distribution via TimMe......ccceeeeeememmmeeeeeeeeeeeeeeeeeeeeeeeeeeennnn 132

7.4.4 Percentage of Calls, Text Messaging and Mobile Data Traffic Over the Days of
Week 132

7.4.5 Percentage of Calls, Text Messaging and Mobile Data Traffic via Different

TIME ZOMES ...ttt sttt ettt b et s at e st e bt e st esbe e bt et e saeebeennes 133

7 TN 11311141 - oy 2RSSR 133
CHAPTER 8 CONCLUSION AND FUTURE WORK........ccoteruirreisuecsnnsncssecsaecsessane 137
8.1 Summary of CONIIDULIONSeevieriiieiieiieeiiecte ettt eee e e seeeennees 137
8.2 Recommendations and Future Workscccoooveeiiiiiiiiiniiiceeeeeceee e, 140
REFERENCES.....cuuiotiniitiiinnuinsnisssisisssissssssessssssssssssssisssans 143
DN i i D1] O 153
Appendix A: Additional RESUILSc..oeviuiiiiiiiiiciie et 153
A.1 Additional Results for DICCA described in chapter 4...........ccccoeeeevieevieenneennen. 153

A.2 Additional Results for PDICCA described in chapter 5........cccccoeveeviiiiiennnnnen. 155

A.3 Additional results for pre-processing approach described in chapter6................ 156
Appendix B: Permission to Reuse IEEE Materialcccoooovieeiiiiiiiiiiiieeieeeeeeeee 168

List of Tables

Table 4.1 Comparison of the algorithms............cccieriiiiiiiiiiiiiee e 46
Table 4.2 The experimental results obtained by the DICCA algorithm on a small network of
SO MIOAES ..ttt ettt ettt h ettt s h e e bt eat e hee bt et saten 58
Table 4.3 The LFR benchmark graph parameters.ccocceevieeiiieniieniieniieieeeie e 63
Table 5.1 Comparison between DICCA and PDICCA..........cccooiiiiieiieeiieeeeeeee e 75
Table 5.2 Comparison with message exchanged locally in hosts and messages exchanged
between master ANd NOSTS.........eiiiiiiiiieeiee et 88
Table 5.3 Experimental results of the PDICCA approach for increasing number of nodes in
thE NEEWOTK ...ttt ettt ettt et e s e et eeabeebeesneeeaneas 91
Table 6.1 Results for four datasetoooiieiieiiiiiieee e 119

List of Figures

Figure 1.1 A simple graph with three communities that are represented by different colours. 3

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix................ 14
Figure 2.2 Architecture of MapReduce framework (Dean and Ghemawat, 2008)................. 25
Figure 3.1 The way of benchmarking the algorithm using a network with ground-truth
COTMIMIUINIEICS ...ttt ettt ettt ettt et eate s et et e e st e eb e e bt eabesate bt eabeeaeeebeenbesatesseenbeensesneebeennesanens 33
Figure 4.1 Illustrates the concept of the algorithmc.ccooeviiiiiiiniiinii e, 50
Figure 4.2 Performance of the DICCA algorithm using different TTL values....................... 54
Figure 4.3 Comparison between computing time and the message complexities over different
TTL VALUCS -ttt et ettt et e et e e bt e et e e ssee st e e sabeenbeesseeenseas 54
Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL
VAIUES ettt ettt ettt ettt et e e ettt e et e e bt e a et e bt e e ht e e bt e eat e e bt e enbeebeeenteenbeeenneeneas 57

Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the
proposed DICCA algorithm using TTL=3 and with different threshold values. (a) threshold
value =0, (b) threshold value =0.1, (c) threshold value =0.2, (d) threshold value =0.3, (¢)
threshold value =0.4, (f) threshold value =0.5, (g) threshold value =0.6, (h) threshold value
=0.7, (1) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via threshould value.
The values of the other parameters were fixed: ¥'=2, B=1.ccceeoiiviiiiiieieeeeeceeeeeeeeeeee, 60
Figure 4.6 The community structures of the ground truth communities and those extracted by
the proposed DICCA algorithm on the LFR benchmark networks with 50 nodes using TTL=3
and threshold value =0.223Xt1.coooiiiiiieeeee e 62
Figure 4.7 Community detection result for each iteration on a small network of 50 nodes
using the proposed DICCA algorithm with TTL=3, threshold value =0.223 *t, and V=1, =2.

.. 65
Figure 4.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis)
CRATIZES. ..ottt ettt e ettt e et e e tb e e e st e e enaaeeesseeeensaee e aaeeenaaeeenbaeeenneeeanreeenns 66
Figure 4.9 Standard deviation of final modularity/NMI with network sizes.c...ccceen.ee. 67
Figure 4.10 Total number of exchanged messages (y-axis) as number of nodes (x-axis)
CRANEES ...ttt ettt ettt e b e et e e bt e et e e ate e b e e hee et e e ateenbeennteenneas 68
Figure 4.11 Percentage of Message exchanged per each iteration. (a) number of node in the
network is 500, (b) number of node in the network is 1,000.ccceevieniiiiiiniiiieieeee, 68
Figure 4.12 Performance of the proposed algorithm using Mixing parameter. (a) Number of
node in the network is 500, (b) Number of node in the network is 1,000.c.ccceerenneee. 69
Figure 4.13 Spy plot for the connections of the NOdes............cceeviiriiniiiiniiniiieceees 72
Figure 5.1 Framework of the PDICCA approach.ccccoeviiiiiiiieniieiecceeeeeeee e 78
Figure 5.2 Examples of eight nodes with two community Clusterscccceveeverrienennennns 80
Figure 5.3 Parfor MeChaniSm.coceiiiriiiiiiniiiiiieeecee e 82
Figure 5.4 PDICCA workflow and architeCture.cocevieviiiiniininienienieeiceeeneeenns 84
Figure 5.5 NMI, Q-PDICCS and Ground truth Q scores (y-axis) as number of workers (x-
axis) changes number of nodes: (a) 500 (b) 1,000.........ccccuieeiiiieriieeiieeieeeeee e 86

Figure 5.6 Number of Message exchanged in each iterations and for each worker with
respect to the number of workers varied from 2 to 4 (a, b, ¢) for number of nodes 500 (d, e, f)

for number 0f NOAES 1,000,ooiiiiiiiiiiiieeeeee e e e e eeanes 87
Figure 5.7 Average percentage of Message exchanged per each iteration with number of
cores varied from 1 to 4 workers (a, b, ¢) network size 500 (d, e, f) network size 1,000........ 88

Xi

Figure 5.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis)

CRANIZES. ..ottt et et e ettt e et e e e stteeesaaeeetbeeesaaeesbaeeesraeeenaaeeabaeeabaeeenaeeennraaens 89
Figure 5.9 Standard deviation of final modularity/NMI with network sizes.cccccuvee.. 90
Figure 5.10 (a) Total number of exchanged messages (y-axis) as number of nodes (x-axis)
changes. (b) .Running-time scalability of proposed algorithm in seconds.cccvereunenene. 91
Figure 5.11 Performance of the proposed algorithm using Mixing parameter p. (a) Number
of node in the network is 500, (b) Number of node in the network is 1,000.......................... 92
Figure 6.1 Visualization results of node clustering coefficient for subset of four datasets
(should be VIEWEed 1N COLOUL).......ccuiiiiiiieeiee ettt et e e e st e e eaeeeeaneeenes 99

Figure 6.2 Visualization of correlations between attributes and communities for Reed

dataset. (a) Communities based on attributes: nodes are coloured the same if they have the
same value for the corresponding attribute; nodes with a missing value for an attribute are
white. (b) Communities based on community clustering algorithm: nodes are coloured the

same if they belong to the same COMMUNILY.cccueevieriierieriieiie e 101
Figure 6.3 Agreement of different community detection algorithms with each attribute, for a
SUDSEt OF fOUT AATASELS.veeientieiiisiieieeie ettt ettt sttt et st e e e e saeens 102
Figure 6.4 System architecture for the proposed approach.cccocoeviiiiiiiiiiiniiiiien, 104
Figure 6.5 (a-b) Modularity value achieved by four community clustering algorithm dataset
using different value of a and 3 on: (a) Caltech36 (b) Reed98 dataset.cccceeveiriiennenns 113
Figure 6.6 (c-d) Modularity value achieved by four community clustering algorithm dataset
using different value of a and 3 on: (c) Harvord76 (d) Vassar85 dataset...........cccccevueenneene 114
Figure 6.7 Attribute weights for four datasets.ccoccoeviiiiiiiiiiiie e, 117
Figure 6.8 Robustness of weighting method to the edge removal.c.ccccceriiniinininnnnn 118
Figure 6.9 Number of community clusters for: (a) Caltech36 university dataset, (b) Reed98
university dataset (c) Haverford76 university dataset, (d) Vassar85 dataset............cc.c....... 121
Figure 6.10 Average Community size for: (a) Caltech36 university dataset, (b) Reed98
university dataset (c) Haverford76 university dataset, (d) Vassar85 dataset............cccoc....... 122
Figure 6.11 Modularity index vis missing edges for: (a) Caltech36 university dataset, (b)
Reed98 university dataset (c) Haverford76 university dataset, (d) Vassar85 dataset............ 124
Figure 7.1 Data MINING PIOCESS ..e.vveeeruvieriuiieeiiieeeitieeetieessteesseeessseesssseeassseesssseessssesssseesssseees 131
Figure 7.2 Number of calls via hours of day..........cccecvviviiiiiiiiiececeeeee e 131
Figure 7.3 Number of text messages as a function of time of day..........cccoeeevvvriieencinennnn. 132
Figure 7.4 Mobile data traffic as a function of time of daycccoeevveeiiiieiiieeeeeee, 132

Figure 7.5 Percentage of calls, text messaging and mobile data traffic via days of week....133
Figure 7.6 Percentage of calls, text messaging and mobile data traffic via different time

xii

A
Ajj
AR
ARI

Asim(1,])

FA
GN benchmark
G=(V,E, A)

G(V, E)
GPU
H sim(, J)

=

List of Symbols and Abbreviations

Adjacency matrix

Connection weight of node pair i; j given adjacency matrix A.
Rand Index

Adjusted Rand Index

The attribute similarity between a pair of nodes (i, j) in network G =
(V,E, A).

A partition of V

Connectivity-based Decentralized Node Clustering scheme
Clustering coefficient of a given node i

Central Processing Unit

Comma separated values

The total degree of nodes in C.

Decentralized Iterative Community Clustering Approach
Distributed Diffusive Clustering algorithm
Set of edges (links)

Fraction of edges in the network that connect nodes in group 1 to those
nodes in group

Fast Modularity algorithm
Girvan and Newman benchmark

Graph/network consisted of set of nodes (V) and set of edges (E) and

each node Vi € V is associated with an attribute vector (A}, ... AY).
Where d is the attribute dimension and 1 represents the node 1D

Graph/network consisted of set of nodes (V) and set of edges (E)
Graphics Processing Unit

Hybrid similarity matrix

Jaccard similarity

The number of clusters

Mean degree of each node

Degree of node i

Maximum degree

xiii

LW}

LA
Lc
LE
Li

Na(i)
Nis(1)
Nbr(V;)
NMI
OnID

PC

Py

PCT
PDICCA
Q

RW
SN(i,j)
SNsim(1,))
SNsim(1,))
t

T

TTL

\Y%

VLSI
W(Vm, Vi)
WMsg
WSNs

The local attribute weight for cluster 1 with N nodes each with d
attributes

Louvain algorithm

The total number of edges joining nodes of cluster C
Leading eigenvector

Number of edges between neighbours of node 1
Number of edges |E| in the network.

Mixing parameter

Number of nodes |V| in the network.

Number of triangles involving node i

Number of connected triples having i as the central node.
Neighbours of node V;

Normalized mutual information

Originator node ID

Personal computer.

Degree distribution

Parallel Computing Toolbox

Parallel Decentralized Iterative Community Clustering approach
Newman-Girvan modularity.

Random Walk

The shared neighbours between node i and j.

Shared neighbours similarity between nodes 1 and j.
The shared neighbours similarity between nodes i and j
the iteration number

Transitivity

Time to Live

Set of nodes (vertices)

Very Large Scale Integration

The weight of the edge between V,,, and V;

Message Weight

Wireless Sensor Networks

Xiv

WWW World wide web network

B Exponent of community size distribution

Y Exponent of the degree distribution

o Exponent of the power-law degree distribution

I'G) Neighbourhood of node 1

o(.) Kronecker delta function, d (x; y) = 1 if and only if all variables in the
argument are equal and (x; y) = 0 otherwise.

d(Ci) The conductance of given cluster Ci

XV

CHAPTER 1

INTRODUCTION

1.1 Introduction

Many systems in the world can be represented as networks (also referred to as graphs in much
of the mathematical literature) composed of nodes (vertices) and links (edges) in which
network links represent relationships between the interrelating parts (nodes) of the systems.
Examples include technological networks such as the Internet (Faloutsos, Faloutsos and
Faloutsos, 1999) and the World Wide Web (WWW) (Albert, Jeong and Barabasi, 1999),
biological networks e.g., Neuronal networks, metabolic networks, protein-protein interaction
networks and food webs (Vocaturo and Veltri, 2017), and distribution networks (Newman,
2003) like postal delivery routes, citation networks, social networks, organisational networks

(Newman, 2003) and even political elections (Adamic and Glance, 2005) etc.

Recently, it has become common to analyse interactions in the real-world by looking at the
networks that underlie these interactions (Chen, Zaiane and Goebel, 2009). However, real-
world networks are not random networks, they usually exhibit inhomogeneity and reveal a high
level of order and organisation (Mahata and Patra, 2016). An interesting feature that real-world
networks usually present is the community structure property, under which the topology of

network is organised into modules commonly called communities or clusters (Fortunato, 2010).

The process of discovering the cohesive groups or clusters in the network is known as
community detection (Bedi and Sharma, 2016), it is also known as the graph partition problem
in modern graph theory, and as the graph clustering or dense subgraph discovery problem in

the graph mining area (Wang et al, 2015).

The problem of community or graph clustering is not well defined and the concepts of
community do not have a universally accepted definition. Highlighting the difficulties of the
problem, in his recent work, Fortuna stated that “the definition often depends on the specific
system at hand and/or application one has in mind” (Fortunato, 2010). Considering social
network as an example, community can be defined using many natural properties. Whether the
nodes representing people in a community should know each other, the community should have
a high edge density or each detectable community ought to have a unique identity (Shah and
Zaman, 2010).

Informally, a cluster is usually defined as a set of entities that are closer to each other than with
the rest of the entities in the data set (Jain, Murty and Flynn, 1999). The notion of closeness is
based on a similarity measure that is usually defined with the use of a mathematical objective
function. The task of clustering is also referred to as “unsupervised learning where the aim is
to group together similar data set without resorting to any a priori knowledge about the clusters
(Schaeffer, 2007). In the case of networks, the similarity is usually measured either based on
the structural similarity which considers the topological features or the attribute features related
to the nodes or edges of the graph, or both of them (Malliaros and Vazirgiannis, 2013).

There are several definitions of the community detection problem. In general, the community
detection algorithms aim to divide a network into sub-communities. The general principle on
which most community definitions are based is the tendency for the nodes to divide into
clusters with dense connections within clusters and only sparser connections between them
(Newman, 2004a). However, communities may overlap as nodes belong to multiple clusters
simultaneously. The overlapping community is very common in real-world networks for
example, in a social network, a person may belong to more than one social group such as friend
group and family group which are known as overlapping nodes (Amelio and Pizzuti, 2014).

More detailed definitions of community are presented in another work (Fortunato, 2010).

Figure 1.1 shows a small network of 12 nodes that illustrates this idea of network structure.
The network has three communities denoted by the circles in which a set of nodes are densely

connected internally and loosely connected to the rest of the network.

Figure 1.1 A simple graph with three communities that are represented by different colours.

1.2 Impact of the Research and its Impact

1.2.1 Social networks

Community structure is a common and important topological characteristic of many real-world
complex networks. Nodes belonging to a tight-knit community are more than likely to have
other properties in common (Danon et al, 2005). The determination of communities in the
networks can help to better understand the structural makeup of the networks, provide powerful
insights about the structure of networks, and help analyse complex phenomena at different
scales (Orman, Labatut and Cherifi, 2011; Borgatti, Everett and Johnson, 2013). Thus, this
research topic has applications in many fields such as biology, social science, physics,

computer science, business science, etc. (Schaeffer, 2007; Orman, Labatut and Cherifi, 2011).

In social networks, for example, analysis of community detection is extremely useful in the

context of many applications, including customer segmentation, vertex labelling,

recommendations and link inference (Khatoon and Banu, 2015). Also could be used to
estimating unknown features of users in social networks. If a given user does not give a certain
piece of information (like the school he/she went to), but a reasonable number in his/her

community do, the missing information can be imputed with a reasonable degree of confidence.

1.2.2 Impact on WWW

Community structure is important not only on social networks, but also on various other
networks. For the famous example of the Internet, determination of community structure can
address questions such as, how to route data as packets in an efficient way, how to reduce the
time consumption for such traffic and what is the fast and safe path to consider reaching the
destination etc. It can go further in depth, by elucidating questions like how computer viruses
are spreading through the Internet, and what mechanisms they follow to hit organisations etc.
Also in dark networks, community structure can reveal the hidden relationships between
individual terrorists and help develop effective disruptive strategies. (Warnke, 2016). Similarly,
in the case of the world wide web (WWW), pages related to the same subject are typically
organised into communities, so that the identification of these communities can help the task
of seeking for identifying the category of the network as well as understanding its dynamic

evolution and organisation (Costa et al, 2007).

1.2.3 Routing in Ad-hoc and Wireless Sensor Networks

Clustering without global knowledge is an important technique in mobile ad-hoc and sensor
networks (Gehweiler and Meyerhenke, 2010) for the improvement of certain management e.g.

energy consumption and communication tasks.

In wireless sensor networks (WSNs), nodes are usually consist with limited and non-
rechargeable energy resources. Thus in WSNs, energy consumption is the most critical problem

and large number of clustering routing protocols have been developed for WSNs to reduce

communications, efficiently optimize the energy of sensor nodes, organize messages among

the cluster head and their node members and optimize the network life-time (Liu, 2012).

In clustering routing protocols, the sensing field of sensor network is divided into number of
clusters where each cluster has a leader called cluster head. The cluster head collects the data
from its node members and transfer it to the destination (base station). Yu and Chong (2005)
reported that the cluster structure is an effective topology that could provide many benefits in
the context of wireless sensor networks (WSNs). It could be used to increase the system
capacity by spatial reuse of resources. Furthermore, it improves routing performance, since the
set of cluster-heads and cluster gateways can normally form a virtual backbone for inter-cluster
routing, and thus the generation and spreading of routing information can be restricted to this
set of nodes. Additionally, they stated that the cluster structure makes an ad hoc network appear
smaller and more stable in the view of each mobile terminal, this is because in WSNs when a
mobile node changes its attaching cluster, only mobile nodes residing in the corresponding

clusters need to update the information.

For more information, interested readers may refer to Yu and Chong’s survey (Yu and Chong,

2005).

1.3 Research Challenges

In recent years, the problem of network clustering has received growing attention as an
important analytical technique and has been actively investigated in a variety of fields, from
computer science and statistical physics (Newman, 2004b; Newman and Girvan, 2004) to data
mining (Moghaddam et al, 2010). Therefore, a rich and diverse list of methods and algorithms

has been generated.

In the current Big Data era, the amount of generated data is huge, existing in various formats,

from a continuously increasing number of sources. The real-world networks can be very large

in size, even reaching billions of nodes. However, most of the community detection algorithms
in the literature are classified as global algorithms, which require access to the entire
information of the network and are designed to work on a single machine.

As the data size is scaling up, the need for computing power is exponentially increasing. In
many such situations, it has become difficult for the stand-alone community detection
algorithms to find communities in large-scale networks (Li et al, 2015) and the required
processing power far exceeds the processing capabilities of single machines. However, most
of the existing community detection algorithms cannot be directly parallelised. Furthermore,
in many such cases the large-scale data set does not fit into the main memory of a single
machine and needs to be distributed among several machines. These demanding requirements
make existing community clustering algorithms even more limited than before, and so more
powerful and scalable clustering tools for big data analysis seem to be in urgent need.
Additionally, in many real-world networks, node attribute is also available in addition to
topology information. It is pointed out that nodes containing similar content of communication
are much likely to belong to the same community (McPherson, Smith-Lovin and Cook, 2001;
Traud et al, 2011). Traud et al (2011) show that a set of nodes’ attributes can act as the primary
organising principle of the communities. An overwhelming majority of conventional
approaches to community detection focus on topology information and largely ignore the
attribute information. However, the collected topology information for networks is usually
noisy when there are missing edges. This makes the task of community detection for
incomplete networks very challenging.

To summarise, Big data exhibits different characteristics such as ‘volume, variety, velocity,
value, thus it is very difficult to analyse Big data and obtain information with traditional

techniques (Hu et al, 2014).

Given these scenarios, there is the emergence of a new research direction to develop a powerful
and scalable community clustering method for big data analysis, which will make use of the
relationship between the attribute and link information to improve the robustness of the existing

community clustering methods in unreliable environments (incomplete or noisy networks).
1.4 Aim and Research Objectives

The main goal of this thesis is to design and implement novel techniques and algorithms for
the problem of clustering and community detection in large and undirected networks. In the
light of the above discussed research challenges, the main objectives and motivations of this
research work are summarised below:

1. To design and implement an efficient community-detection approach that could work

at the local level and does not require any global knowledge of the network.

As the networks being operated on become larger and larger, the ability to process them in
the main memory of a single machine becomes impractical due to both time and memory
constraints. Moreover, community detection algorithms are often computationally
expensive and are not scalable to large networks with hundreds of millions or even billions

of nodes and billions of edges.

The above issues motivated me to design, implement, and evaluate an efficient community-
detection solution for large-scale networks. More specifically, the proposed approach
works at the local level and does not require any global knowledge of the network. From
the heuristic point of view, it is worth noting that the optimisation of global clustering
methods, when only restricted to the local knowledge, is more difficult. That is why most

of the existing approaches and algorithms make use of global knowledge.

2. To extend the proposed approach for large-scale networks to work in parallel and in a

distributed fashion.

Being a localised algorithm, it can be run in parallel or in a distributed fashion among
clusters when the size of the input network or the computation complexity is beyond the

resources of a single computer.

3. To design and implement a community clustering approach considering both attribute
information and topological structure information to improve the performance of

existing community detection algorithms.

Since in many real-word networks, the nodes and links in the networks may contain
attribute information, this attribute information has important significance in completely
presenting the community structure of the network and could improve the robustness of

community detection algorithms in unreliable environments.

4. To analyse a set of real-world mobile phone usage data as an exploratory step for

viability to apply the algorithms developed in this thesis.

The smart phones in the telecommunication industry generate a massive amount of data.
These data usually include call details, data and network details. The amount of data is so
big that manual management and analysis of these data is almost impossible. From this
perspective to explore the viability of applying the proposed method and algorithms to
analyse the big data sets generated by smart phones. A real-life big data (Device Analyzer)

set from Cambridge Laboratories is used for this proposed objective.

5. To propose a set of broad guidelines and future design from the understanding gained.

Under this objective, the potential usage of the developed approaches proposed in this
thesis will be demonstrated. Also, recommendations, guidance information, and

suggestions to improve the effectiveness of the developed algorithm will be made.

1.5 Scope of Research

This thesis studies in the scope of community detection in big networks. In other words, the
main goal of this thesis is to design and implement novel techniques and algorithms for the
problem of clustering and community detection in large and undirected networks. The
approaches proposed in this thesis all assume that the given network structure is needed to be
divided into communities in such a way that every node belongs to one of the communities
(non-overlapping communities). Although doing some modifications of the proposed
approaches can achieve overlapping communities, the focus of this thesis is on non-overlapping

communities.

1.6 Contributions of the research to state of the art

This thesis aims to design and implement methods for the problem of extracting non-
overlapping communities in large networks. However, since the global community clustering
approaches demand shared memory to access global information, they are inappropriate for
this goal. Thus, in this work attention is given to the local community clustering as it is more

accessible for parallelization.

The following summary provides a short overview of the four key contributions of this work

that address all of the challenges introduced in the previous sections:

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to extract
an efficient community structure for large networks is proposed. An important property
of this approach is its ability to cluster the entire network without the global knowledge
of the network topology. This ability means that the entire network does not need to be
loaded into one memory and DICCA could be easily adapted to run in parallel on as
many processors as available to find community clusters in big networks. This cannot

be done in the majority of the existing community detection algorithms as they

implicitly assume that the entire structure of the big network is known and is available.
Another perspective of DICCA approach is reducing the problem size by aggregating
the nodes in the network, allowing the approach to cluster the large-scale data set
efficiently.

2. A Parallel Decentralized Iterative Community Clustering Approach (PDICCA), which
does not require any global knowledge of the graph topology is proposed. PDICCA is
a distributed memory parallel processing approach that transforms the serial steps of
DICCA approach into parallel tasks. It is scalable and will work with a range of
computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory
servers, GPUs).

3. A pre-processing approach for existing community detection algorithms is proposed to
improve the robustness of community detection algorithms in unreliable environments.
The proposed approach is applicable to the existing weighted community detection
algorithms and it seeks to improve their performance by considering attribute
information, shared neighbours information and connectivity between nodes in the
network. Therefore, if either attribute information or topological structure information
1s noisy or missing, the other could make up for it.

4. Using a set of real-life android smartphone usage datasets, the different features of

mobile phone usage is analysed.

1.7 Thesis Structure

The thesis contains eight chapters, which are organised as follows. The present chapter gives
an overall picture of the thesis, highlights the importance of the field of community detection
in the networks and states the challenges, aim, objectives and the contributions of the research.

The rest of the thesis is organised as follows:

10

Chapter 2 gives some basic definitions of graph theory, which are used in further chapters.
Furthermore, the literature review of state-of-the-art community detection algorithms and
related work in the area of parallelisation techniques for the community detection algorithms
are also discussed.

Chapter 3 presents some specific structural properties and models of real networks.
Additionally, the current work available in literature for models that generate synthetic
networks with community structures along with the most popular quality metrics for assessing
the network clustering results are discussed.

Chapter 4 addresses the first technical objective of the research. It gives a detailed description
of my proposed Decentralized Iterative Community Clustering Approach, for detecting
community and then the effectiveness and efficiency of the DICCA approach is evaluated.
Chapter 5 centres around the design and implementation of the parallel framework version of
DICCA approach named PDICCA. In this chapter, the principle and implementation of the
proposed PDICCA approach is detailed and its performance is evaluated.

Seeking to improve the robustness of existing community detection algorithms rather than
looking to identify communities in the network based just on topological structure information,
a new pre-processing approach that considers attribute information, shared neighbours
information and connectivity between nodes in the network is presented in chapter 6. Chapter

7 shows the data analysis of the datasets from the real-world telecom network.

Finally, chapter 8 concludes the research activities within this thesis by summarising the

contributions and proposing a set of possible suggestions for future work.

11

CHAPTER 2

LITERATURE REVIEW

This chapter introduces some fundamental concepts that are widely used throughout this thesis,
and reviews existing work on the community clustering and distributed techniques. It starts
with a short introduction into the basics of graph theory, including the concepts required to
understand further chapters. This is followed by a discussion of the definitions and concepts
around community clustering. Then a detailed literature survey on the state-of-the-art in
community approaches and the parallelisation techniques for extracting network clusters is

presented.
2.1 Basic concepts of graph theory

Many practical problems in various fields of study such as scientific computing, data analysis
etc, can be modelled in their essential form by graphs and solved using appropriate graph
algorithms. In graph theory, a simple graph G = (V, E) is defined as an abstract representation
of a set of nodes (or vertices) V = {1, ..., n} and a set of edges (or links) E = {(i, j)|1,] € V}
which connect pairs of nodes together. A pair (i, j) belongs to E if there is an interaction
between the nodes 1 and j and the cardinality of the set E. The number of nodes in the graph is
n = V| and the number of edges m = |E|. In some graphs it is possible to find an edge that

connects a node to itself, (i, 1) € E, it is called a self-loop (Silva and Zhao, 2016).

The edges in the graph can be assigned with a weight, which represents the strength of
connection between two nodes; in this case, the graph is called a weighted graph. If each edge
has unit weight, the graph is called an unweighted graph (Silva and Zhao, 2016). Considering
the nature of the edges, the graphs can be classified into two: undirected and directed graph. A
graph is called directed (also referred to as digraph) if the orientation of the edges is important

for the task (Silva and Zhao, 2016). A directed graph G= (V, E) consists of a non-empty set of

12

nodes V and a set of directed edges E. Each edge e:(u, v) of E is specified by an ordered pair
of nodes (u, v) and comes out from node u, namely the origin (or tail), and reaches a destination

v (or head).

Directed graphs arise in many real-world applications such as the web graph whose node
represents a web host and each directed edge represents the hyperlinks. These hyperlinks are
one-way from web pages on the source host to web pages on the destination host (Canright and
Enge-Monsen, 2008). On the other hand, in undirected graphs, the edges have no orientation
and the graph has edges that represent symmetric relationships in which whenever the edge (u,
v) exists in an undirected graph then so does the edge (v, u) (Costa et al, 2007). For example,
in friendship networks where each relationship is considered reciprocal in the sense that if you

are friends with someone, then they are friends with you.

From the mathematical point of view an undirected unweighted graph G = (V, E) can be
represented by a matrix A called adjacency matrix A € {0,1}"*".

Definition 2.1 Adjacency Matrix: The adjacency matrix A of a graph G=(V, E) is an [V|x|V]|

matrix, such that:

1 if (i,j) €E,
A; ;= 2.1
b {O otherwise 2D

The adjacency matrix for an undirected graph is symmetric, This fact implies that A¢j= Ag,p)-
However for a directed graph, the adjacency matrix may not be symmetric (Silva and Zhao,

2016).

Throughout this thesis, the terms “graph” and “network” are used interchangeably. In the same
spirit, the data relationships that make up a graph are termed structure or topology of the

network. Unless stated otherwise, a graph G = (V, E) is unweighted, undirected and consists of

13

a set of nodes V and a set of E edges. Nodes and vertices convey the same type of information

and are used interchangeably and the same principle applies to edges and links.

Labeled graph Adjacency matrix

0 01 10

[0 0 1 0 O]

=111 0 1 1

1 01 0 O

4 (3) @ 00100

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix.

Definition 2.2 Degree of a node: The degree K; of a node ‘' in undirected graph G = (V;E) is
equal to the number of edges connecting to node i (Silva and Zhao, 2016). Given an adjacency
matrix A, the degree of node i is the sum of row entries corresponding to node i, which can be

expressed as:

K =%7 oA (2.2)

ij

However, for directed graphs, the concept of degree is split into two categories: out-degree and

in-degree.

Definition 2.3 In-degree and out-degree: The out-degree of a node ‘i’ in a directed graph is
the number of edges that leave the node 1, and the in-degree is the number of edges that enter

the node 1 (Silva and Zhao, 2016).

Definition 2.4 A completely connected (fully connected) graph: In undirected graph G the
fully connected graph is a graph in which every pair of distinct nodes is connected by a unique
edge. Thus the total number of edges in a completely connected graph with n number of nodes

is equal to n(n-1)/2 (Tomassini, 2010).

Definition 2.5 A triangle: In graph G =(V, E) a triangle (A) is a three node subgraph with V

= {v1, v2, v3} € V and E = {(v1, v2), (v2, v3), (v3, vi)} C E (Schank and Wagner).

14

Definition 2.6 A triple: In graph G = (V, E) a triple N3(i) at node ‘1, is a path length of two
for which i is the centre node (Schank and Wagner). For undirected graph, the number of triples

of node 1 is defined as:

@ = () == 23)

and the number of triples in graph G is defined as the summing of triples of all nodes in the

graph:
N3 = XL, N3 (D) (2.4)

To illustrate the concept of triangle and triples, the network in Figure 2.1 has 1 triangle and 8

connected triples.

Definition 2.7 Reachability: In graph theory, reachability refers to the ability to get from one
node to another within a graph. Given a graph G(V, E), it is said that V> € V is reachable from

V1 € V if there is at least a walk that starts from Vi and ends at V3 (Silva and Zhao, 2016).

Definition 2.8 Homophily:

Apart from the previous patterns that concern network architecture, there are also some other
patterns that relate to how links depend on other characteristics of nodes. For instance, if nodes
are people, then they have some attributes such as age, gender, ethnicity, profession, political
attitudes, their hobbies and so forth. In real-world networks, it has been shown that the similar
nodes in terms of their characteristics tend to be more frequently linked to each other than to
nodes that are less similar to themselves in characteristics. This is referred to as homophily, as
originally named by Lazarsfeld and Merton (McPherson, Smith-Lovin and Cook, 2001;

Jackson, 2010).

Definition 2.9 Hierarchical structure: Another important aspect related to community

structure is the hierarchical organisation (multiscale or multilevel) exhibited in most real-world

15

networks in which communities contain smaller communities that may be further divided into

sub-communities. (Fortunato, 2010)
2.2 Community Detection Algorithms

The problem of unveiling the community structure of a network is called community detection.
Community detection is an active area of network science research and over the years, a wide
variety of community detection algorithms have been proposed to find the communities in the
network. Community detection is also named as graph partitioning in much of the literature
(Aggarwal and Wang, 2010; Wang et al, 2015). It is tempting to suggest that this community
detection and graph partitioning are really addressing the same question; in both, their aim is
to identify groups of nodes in a network that are better connected to each other than to the rest
of the network. However, it is very important to stress that the task of graph partitioning and
community detection can be distinguished from one another based on whether the experimenter
fixes the number and size of the groups or it is unspecified (Newman, 2010). Graph partitioning
is the problem of partitioning a graph into a predefined number and size of clusters. It has been
pursued particularly in computer science and related fields with applications in parallel
computing and very-large-scale integration (VLSI) design. However, in the community
detection, which has been pursued by sociologists and more recently by physicists and applied
mathematicians, with applications especially to social and biological networks the number and
size of clusters are unspecified. Furthermore, the goal in the former is usually to identify the
best division of a network regardless of whether or not a good division existed. In case there
are no good divisions exist, the least bad one will be done as a solution. On the other hand, in
community detection, the algorithm only divides the network when good divisions exist and

leave the network undivided in case there are no existing good divisions (Newman, 2010).

Community structure identification has been an important research topic in complex networks.

Given the number and range of community definitions, it is not a surprise that the number of

16

methods proposed for detecting and revealing the community structures in networks are even
larger. Furthermore, the community detection algorithms can be classified in different ways,
and depending on the selected criteria, one algorithm can belong to more than one category. A
brief summary of existing community detection algorithms is introduced in the sections below.
The algorithms are classified based on methodological principles as presented in Orman,
Labatut and Cherifi (2011) in which most of the existing community detection algorithms

mainly fall into the following categories:

2.2.1 Link-Centrality-Based Algorithms

The centrality measures such as degree centrality (Silva and Zhao, 2016) and betweenness
(Girvan and Newman, 2002) are used to rank how important an edge (or node) is in the
structure of the network. Thus, the link-centrality-based algorithms are usually hierarchical
divisive approaches that start with a single community comprising all the nodes of the network.
Then repeatedly removing/cutting edges and dividing the network progressively into smaller
and smaller disconnected subnetworks that are viewed as communities until further splitting is
no longer worthwhile. The centrality measures are used for the selection of the links to be cut,
which are links connecting the communities and not those within them (Orman, Labatut and

Cherifi, 2011).

The first and most known algorithm using this approach is the Girvan-Newman algorithm
introduced in Girvan and Newman (2002). The algorithm estimates the centrality of a link by
considering the edge betweenness measure, which is defined as the number of shortest paths
between pairs of nodes that go through an edge in a graph. The algorithm is based on the fact
that edges connecting communities are expected to have high edge betweenness. Thus, by
iteratively removing these edges, the network is separated into groups from one another and
the underlying community structure of the network is revealed. Though the algorithm obtains

good results, it is very slow and highly complex thus it is not well suited for very large networks.

17

2.2.2 Modularity Optimisation Algorithms

The most popular method widely used to find community in the network relies on the
optimisation of a quantity called modularity. Modularity (Q) is a prominent measure for the
quality of a community structure introduced by Newman and Girvan in (Newman and Girvan,

2004) and it has become a widely accepted quality of measure for community detection.

The general concept of modularity optimisation algorithms is to detect the best community
structure in terms of modularity by searching over possible divisions of a network that have

high modularity.

Definition 2.10 Modularity (Q)
Modularity is based on the idea that a random graph is not expected to have a cluster structure,
so it quantifies the community strength by comparing the fraction of edges that fail within a

community with the expected fraction value of the same quantity of edges failing at random.

Let ej be the fraction of edges in the network that connect nodes in group i to those nodes in
group j, then the modularity score Q for a clustering is given by the following equation

(Newman and Girvan, 2004):
Q = Yilei — Xjei)?] (2.5)

Formally, modularity can be defined as (Fortunato, 2010):

Q= ;Zij [Aij - %] Ocicj (2.6)

~ 2im| 2|m|

Where Aj is an element of the adjacency matrix, K; is the degree of node i. m is the total
number of edges in the network. &.; -; is the Kronecker delta symbol, which is equal to 1 if

ci=cj and 0 otherwise, and c; is the label of the community to which node 1 is assigned.

The modularity can also be equivalently defined as (Fortunato, 2010):

18

0= [()] @)

2m

Here, k is the number of clusters, L. the total number of edges joining nodes in community ¢

and d_ is the total degree of nodes in c.

The higher the value of Q in the network, the better its community strength. Networks with
high modularity have dense connections between nodes within the same communities and
sparse connections between nodes from different communities. Thus, a Q value close to 0
indicates that fraction of edges within communities is no better than for a random case. Values
other than 0 indicate deviations from randomness. However, Newman et.al reported that in real
networks the modularity values typically fall in the range from about 0.3 to 0.7, and values 0.3

or more, usually indicate good divisions (Newman and Girvan, 2004).

Fortunato and Barthélemy (2007) pointed out that the modularity measure suffers from serious
resolution limits, and claimed that the size of the detected community, by enforcing modularity
optimisation Q, depends on the size of the whole network, which may fail to identify modules
smaller than a certain size. The main reason is that the modularity index does not consider the
information of the number of nodes in a community, and the choice of partition is highly

sensitive to the total number of edges in the network.

However, despite the fact that modularity is subject to a resolution limit, it is still one of the
most popularly accepted metrics for measuring the quality of community structure as well as
an optimisation criterion used by some algorithms to identify communities in networks
(Newman, 2016). In the following paragraphs, two modularity optimisation algorithms are

considered in some detail.

Fastgreedy algorithm is an agglomerative hierarchical clustering method proposed by

Newman (Newman, 2004b). The algorithm greedily maximises the modularity function Q, and

19

starts the process by assigning a different community to each node in the network. Then at each
stage in the process, the pair of clusters that yields greatest increase of modularity or smallest
decrease is merged until only one cluster remains containing all nodes in the network. The
whole procedure can be represented by a dendrogram (hierarchical tree) that illustrates the
order of the mergers. Cuts through the dendrogram at different levels give different partitions
into communities. The optimal community cluster can be found by cutting the dendrogram at

the level of maximum Q.

Louvain algorithm is a hierarchical agglomerative optimisation method proposed by Blondel
et al and attempts to optimise the modularity of a partition of the network. The optimisation is

performed in two steps that are repeated iteratively (Blondel et al, 2008).

This algorithm starts with each node in the network belonging to its own community. Then in
the first step and for each node in the network, the algorithm uses the local moving heuristic to
obtain an improved community structure by moving each node from its own community to its
neighbours’ community and evaluating the gain of modularity associated with the moving of
the node. The node is then placed in the community for which the modularity change is the
most positive. If none of these modularity changes is positive, the node stays in its original
community. This process is applied repeatedly and sequentially for each node until all the nodes
in the network are considered, and no further improvement can be achieved. This concludes
the first step. The second step of the algorithm consists of building a new network from the
communities discovered in the first step. Therefore, the individual nodes in the new network
are the individual communities from the first step. In this new network, there will be an edge
between two nodes if there were edges between the corresponding two communities in the
previous step. The weights of those new edges are the sum of the weights of the edges between
nodes in the corresponding two communities. The edges between nodes of the same community
in the first step will lead to self-loops for this community node in the new network. Once the

20

second step is completed, it is possible to replay the first step and iterate again if necessary.
The two steps repeat iteratively and stop when there is no more change in the modularity gain

and consequently a maximum modularity is obtained.

2.2.3 Spectral Algorithms

The spectral algorithms are mostly based on the analysis of the eigenvectors of matrices derived
from the networks and designed to find the partition minimising the links lying in between the
node groups. Leading eigenvector is one of the effective spectral algorithms proposed by
Newman (2006b). The algorithm is based on the spectral optimisation of modularity. Newman
showed that the modularity could be expressed in terms of the eigenvectors of a characteristic
matrix for the network, called modularity matrix, and therefore spectral techniques for the
optimisation process could be applied. He exploits the spectral properties of the modularity
matrix by using the leading eigenvectors (associated with the largest eigenvalues) of the
modularity matrix to maximise the modularity in his proposed algorithm. The algorithm
initially divides the network by assigning all the nodes into two communities according to the
signs of the leading vector elements of the modularity matrix. The negative signs clustered in
one group and positive signs in the other. The algorithm then runs recursively on each
subnetwork to divide those parts, and so forth. At any stage when there is no division of a
subgraph that will increase the modularity of the network the algorithm leaves the
corresponding subgraph undivided. This happens when all the elements in the eigenvector of
the proposed split subgraph have the same sign, and when the entire network has been
decomposed into indivisible subgraphs the algorithm ends. For the interested readers, Newman

(2006b) discusses the algorithm in more detail.

However, there are two drawbacks in the spectral algorithm described above. First, it only takes
the leading eigenvector of the modularity matrix to generate the solution and ignores all the

information provided by the other eigenvectors. Second, it splits a network into more than two

21

communities by recursive partitioning instead of getting all the communities directly in a single

step (Chen and Hero, 2015).

2.2.4 Random-Walk-Based Algorithms

Random walk is a process of traversing nodes at random and it has been widely used to partition
the network into communities. There are several algorithms which have been proposed in
literature based on the random walk. An example includes Walktrap (WT) algorithm which
is proposed by Pons and Latapy (2006).

The walktrap algorithm is based on the principle that random walks on a network tend to get
“trapped” into densely connected parts defining the communities. In this method, the authors
propose using a node similarity measure based on short walks to capture structural similarities
between nodes instead of modularity to identify community via hierarchical agglomeration.
The algorithm starts by assigning each node to its own community and the distance for every
pair of communities is computed. Communities are merged according to the minimum of their
distances and the process iterated. After n—1 steps, the algorithm finishes and gives a
hierarchical structure of communities called a dendrogram. The best partition is then

considered to be the one that maximises modularity.

2.2.5 Information-Based Algorithms

Information-Based algorithms are also known as compression-based approaches. These
approaches use the concept of information theory to find community clusters in the network.
They basically consider the community structure as a set of regularities in the network topology,
which can be used to represent the whole network in a more compact way than the whole
adjacency matrix (Orman, Labatut and Cherifi, 2012). Infomap algorithm is an example of
information theoretic algorithms proposed by Rosvall and Bergstrom (2008). Infomap
algorithm characterises the problem of finding the optimal community clustering in the

network as the problem of finding the most compressed (shortest) description length of the

22

random walks on the network. It uses a random walk as a proxy for information flow in a
network and minimises a map equation, which measures the description length of a random
walker, over all the network clusters to reveal its community structure. To represent the
community structure, the algorithm uses a two-level nomenclature based on Huffman coding:
a level to distinguish communities in the network and the other to distinguish nodes in the

community.

In practice, the random walker is likely to stay longer inside communities, therefore in the
process of finding a community containing few inter-community links, only the second level
is needed to describe its path, leading to a compact representation. However, even though
Infomap is a competitive community detection algorithm and shows a very good performance
across several benchmarks (Fortunato, 2010), it cannot handle big networks with millions and

billions of edges that are becoming commonplace with the advent of Big Data (Bae et al, 2017).

For a more thorough discussion of community detection methods and algorithms and their
principles, please refer to the work done by Fortunato who is one of the major authorities in

the field of community detection (Fortunato, 2010) and Schaeffer (Schaeffer, 2007).

2.3 Parallelisation of Centrality Algorithms

Presently, the real-world networks are often complicated and accompanied by extremely large
sizes. Using conventional algorithms to analyse the networks is almost impossible to process
in a single machine and they usually require specialised processing methods, especially parallel
ones. Furthermore, many data parallelisation methods are proposed to extend storage
capabilities and to improve performance by distributing data and related tasks into disparate
hardware (Hu et al, 2014). MapReduce (Dean and Ghemawat, 2008) is one of the most popular
distributed computation frameworks that is being widely applied to large scale data-intensive

processing.

23

2.3.1 MapReduce

MapReduce is a distributed computing model proposed by Google in 2004 for processing
massive data sets with a parallel distributed algorithm using a large number of computers in an
efficient and fault tolerant manner (Dean and Ghemawat, 2008). Nowadays, MapReduce is
widely used as an efficient distributed computation tool in many applications e.g., search,
clustering, analysis of social networks, log analysis and matrix multiplication to name but a

few (Derbeko et al, 2016).

The computation of MapReduce takes a set of input key/value pairs, and produces a set of
output key/value pairs. The computation of MapReduce is expressed as two functions written
by the user: Map and Reduce. One iteration of map and reduce functions is called MapReduce
Job. MapReduce computation could be simply described as the following steps (Dean and

Ghemawat, 2008):

1. Input data is read from the disk and converted to Key-Value pairs.
2. The map function takes an input pair of data separately, processes it and produces a
list of intermediate key/value pairs.

(Keyl,Valuel) — list(Key2,Value2) (2.8)

3. The reduce function takes intermediate Key2 with a list of Values and processes them
to form a new list of values.

(Key2,list(Value2)) — list(Value3) (2.9

4. Once all input pairs have been processed, the output of the Reduce function is then

written to the disk as Key-Value pairs.

24

MapReduce runs in a cluster of nodes; one node acts as a master node and the others act as
workers. The master node is responsible for assigning tasks to idle workers whereas the worker
nodes are responsible for running map and reduce tasks. A block diagram of the MapReduce

framework is shown in Figure 2.2.

User
S Program N
’ N
7’
’ [}
FOﬂf’ ! Fork

/ 1

\\
’/’ . . \\
’, Assign
map J
. -~

Local write I

Interm ediate files

(On the local disks) echics phasc Output files

Input files Map phase

Figure 2.2 Architecture of MapReduce framework (Dean and Ghemawat, 2008)

There are some existing open source implementations of MapReduce such as Hadoop (Hadoop,
2016), which has been widely used by many organisations such as Facebook, Yahoo!, LinkedIn.
However, despite the popularity of MapReduce and being extensively used by both academia
and industry, the MapReduce has also been the object of severe criticism (Doulkeridis and
Norvédg, 2014; Fernadndez et al, 2014; Mohebi et al, 2016), mainly due to its performance
limitations, which arise in various complex processing tasks such as lack of loop-aware task
scheduling. MapReduce does not support multi-staging of tasks in a single run. Whenever new
MapReduce jobs are executed, the input data has to be reloaded from the disk every time during

iterations and regardless whether or not the input has changed from the previous iterations.

Recently, some researchers proposed several frameworks that support asynchronous execution,

which is not allowed in MapReduce. For example, some approaches provide support for

25

iterative algorithms that use MapReduce execution models such as: Twister (Ekanayake et al,

2010), HaLoop (Bu et al, 2010) and iMapReduce (Zhang et al, 2012).

2.4 Summary

Since the terminologies networks and graphs share the same definition, the first part of this
chapter introduces the basic concepts of graph theory that are used in further chapters. This
includes the definitions of adjacency matrix, degree of a node, completely connected graph,

triangle, triple, reachability, homophily and hierarchical structure.

This is followed by the literature review of state-of-the-art community detection algorithms
and the discussion of different categories of clustering algorithms. The field of community
detection is very rich and several algorithms to detect communities in networks are proposed.
As an overview, the community detection algorithms could be classified based on
methodological principles into five categories: link-centrality-based algorithms, modularity
optimisation algorithms, spectral algorithms, random-walk-based algorithms and information-
based algorithms. For a more thorough discussion of community detection methods and
algorithms and their principles, please refer to the work done by Fortunato who is one of the
major authorities in the field of community detection (Fortunato, 2010) and Schaeffer

(Schaeffer, 2007).

Most of the community detection algorithms in the literature are classified as global algorithms
and are designed to work on a single machine. However, in large-scale network scenarios
which will not fit within a single machine, it is impossible for such community detection
algorithms to find communities. Parallelizing the algorithms is one way to improve the
scalability of community detection. However, it is worth noting that community detection
algorithms, which use global information, are not suitable for parallelization. Hence, a

Decentralized Iterative Community Clustering approach (DICCA) is proposed in this research.

26

The last part of this chapter addresses the parallelisation techniques that have been used to
parallelise the community detection algorithms. Though there are several techniques available
for implementing parallelisation, most of the algorithms used for big data scenario employ
MapReduce scheme. This is due to its salient features that include scalability, flexibility, fault-
tolerance and simplicity. So, I have incorporated MapReduce scheme in parallelising the

Decentralized Iterative Community Clustering approach (PDICCA).

27

CHAPTER 3
NETWORK MODELS AND STATISTICAL METHODS

FOR COMPARISON OF NETWORKS

In the previous chapter, the basic concepts of community detection methods were introduced.
In this chapter, the empirical properties of real-world networks are discussed. Following this,
general metrics to evaluate the performance of community clustering algorithms and cluster
quality on the networks are presented. . Then a comprehensive study to benchmark approaches
for community detection in the networks is conducted. Finally, research methodology used in

this work is discussed.

3.1 Topology of Real Networks

As it has been noted in the first chapter of this thesis, many real-world systems can be
represented as complex networks. However, the real-world networks are non-random and they
usually present interesting patterns and properties conveying that their inherent structure is not
governed by randomness. Researchers have concentrated particularly on a few properties that
seem to be common to many networks (the small-world effect, degree distribution and

community effects), which will be discussed in the following subsections.

3.1.1 The Small-World effect

The small-world concept in simple terms describes the fact that even if the network has many
nodes, there exists a relatively small number of intermediate steps (short path) connecting any
pair of nodes within the network (Newman, 2003). It was first introduced in the 1960s by
Stanley Milgram through a series of experiments (Travers and Milgram, 1967; Travers and

Milgram, 1969).

28

The network is said to show a small-world effect if the value of the mean geodesic distance,
scales logarithmically or slower with network size for fixed mean degree (Newman, 2003).
However, nowadays, the small-world effect has been studied and verified directly in a large
number of different networks such as, the well-known “six-degrees of separation” in social

networks (Newman, 2003).

3.1.2 Degree Distribution

In real-world networks, not all the nodes in the network have the same number of edges. The
spread in the node degrees is characterised by a distribution function P, . The degree
distribution P, is defined as the fraction of nodes in the network with a degree k (Newman,
2003). Degree distribution of the network gives important information about topological
characterisation of the network. For example, many networks, such as the internet (Faloutsos,
Faloutsos and Faloutsos, 1999), citation networks (Redner, 1998), telephone call networks
(Aiello, Chung and Lu, 2000) have all been shown to display power-law degree distribution Py
~ k * where the constant a is known as the exponent of the power-law with a scaling between

2 <a <3 (Newman, 2010).

3.1.3 Community Effects.

A number of measures have been developed for testing this tendency in the network. One of
them is the clustering coefficient which measures the degree to which nodes in a network tend
to cluster together. However, there are two well-known definitions of the clustering coefficient
of an unweighted network: the local clustering coefficient and the global clustering coefficient

(also referred as transitivity) (Newman, 2001; Costa et al, 2007).

The local clustering coefficient is a local property, introduced by Watts and Strogatz (1998a)

and used to describe the network structure of nodes that are close to each other.

29

Consider a node 1 in a network G, the clustering coefficient of a node i, C;, is defined as the
ratio of the number of edges connecting the neighbours of i to the total possible number of such

edges of 1.

C; = : (3.1)

Where, L; is the number of edges between neighbours of node i, K; is the degree of node i

(Costa et al, 2007).

The clustering coefficient for the whole network is the average of the local values C;.

C=-3M,G (3.2)

Tn
Where n is the number of nodes in the network (Costa et al, 2007).

An alternative definition of the clustering coefficient of a given node 1 is:

¢, =0 (3.3)

PN ()

where Na(1) 1s the number of triangles involving node 1 and N3(i) is the number of connected

triples having i as the central node (Costa et al, 2007).

The global clustering coefficient is defined as the tendency among two nodes to be connected
if they share a mutual neighbour (if a<>b and b«<>c, then heightened probability that a<>c and
forming a triangle). The global clustering coefficient is based on the relative number of
triangles in the network, compared to total number of connected triples of nodes and can be

written as (Newman, 2001):

__ 3xN,
= N,

T 3.4)

Where: Na is the number of triangles in the network and N3 is the number of connected triples.

30

In real networks, it is shown that the small-world property is often associated with the presence

of clustering, denoted by high values of the clustering coefficient (Watts and Strogatz, 1998a).

3.2 Overview of Validity Evaluation

Since there is no universally accepted definition of what a community is, assessing the validity
of community detection algorithms is a hard task and several validity approaches have been
developed in literature to evaluate the performance of the community clustering algorithms.
However, until this day, there is no formalisation of the problem of comparing and validation
of community structure. In this section, the most commonly used cluster validity metrics are
discussed. The cluster validity metrics could be classified into two types, cluster quality metrics

and external evaluation metrics.

3.2.1 Cluster Quality Metrics
3.2.1.1 Coverage

Coverage (Emmons et al, 2016) is one of the simplest quality functions, which compares the
fraction of intra-cluster edges in the graph to the total number of edges in the graph. Coverage

is given by:

2ijAji6(SiS))

Coverage =
g XijAji

(3.5)

Where S; is the cluster to which node 1 is assigned and 6(a; b) is 1 if a =b and 0 otherwise.

Coverage values usually range between 0 and 1. Higher values of coverage mean that there are
more edges inside the clusters than edges linking different clusters. However, coverage metric
does not take into account the internal cluster density and causes a strong bias toward partitions
with a smaller number of clusters. Thus, it leads to a trivial clustering in which all nodes are

assigned to the same cluster.

31

3.2.1.2 Conductance

In contrast to coverage, which measures only the accumulated edge weight within clusters, the
conductance, which is also known as Cheeger constant (Arias-Castro, Pelletier and Pudlo, 2012)
is based on the idea that two clusters should have a small degree of connectivity between each
other and in the ideal case they are disconnected. More formally, it computes the ratio of the
number of inter-cluster edges for the cluster and either, the number of edges with an endpoint
in the cluster or the number of edges that do not have an endpoint in the cluster, whichever is

smaller (Kannan, Vempala and Vetta, 2004).

Consider a cut that divides G into C non-overlapping clusters Ci, Co,, Cx. The conductance

of any given cluster ®(Cy) is denoted by (Kannan, Vempala and Vetta, 2004):

Liecy,jecy Aij

® (€ = e acs)

(3.6)

Where: A(Cy) = Yiec,,jevAij Which determine the total degrees of Cy, Cy denotes the

complement of Cyin graph G and A is the adjacency matrix of the graph G.
The conductance of the graph G is (Kannan, Vempala and Vetta, 2004):
®(G) = min(@(Cy)) 3.7

Conductance is widely used to capture quantitatively the notion of a good network community
as a set of nodes that has better internal- than external-connectivity. The lower the conductance
the better is the clustering (Leskovec, Lang and Mahoney, 2010). However, as more clusters
in the network will probably lead to more cut-edges, it is pointed out that the conductance has

a tendency of giving better scores to partitioning with fewer clusters (Almeida et al, 2011).

32

3.2.1.3 Modularity

As presented in chapter 2, modularity is one of the most popular validation metrics for
topological clustering and it is used as an optimisation method for detecting community
structure in networks. Modularity states that a good cluster should have a bigger than expected
number of connections between the nodes within modules and a smaller than expected number
of connections between nodes in different modules. The higher the value of modularity the

better its community strength.

3.2.2 External Evaluation Metrics

When working with a network that has well-defined clusters of “ground truth”, it is possible to
evaluate a specific clustering algorithm by comparing the computed solution provided by the
algorithm with this “ground truth” solution as shown in Figure 3.1. In the following subsection,
the common indices that are used for measuring “goodness” of a clustering result comparing

to ground truth” solution are discussed.

Similarity measure

Ground Truth

Figure 3.1 The way of benchmarking the algorithm using a network with ground-truth communities

3.2.2.1 Rand Index

The Rand Index (RI) is a statistical measure developed by Rand to measure the similarity
between two clustering solutions (Rand, 1971). It is based on the relationship between pairs of

nodes and requires two labels for each node. One label is corresponding to its true community

33

and the other one is corresponding to the predicted community. If X and Y are community
clustering assignments for each node in the network, Rand Index is defined as the fraction of
pairs of nodes that are correct to all possible pairs of nodes. A pair of nodes is considered
correct either if the nodes share the same cluster in both clustering processes X and Y or if they

are in different clusters in both solutions. The Rand Index is then given by the equation:

Aoot A11 _ Qpotaiy

- n
Agotair+ +apg1+ aqg (2)

RI(X,Y) = (3.8)

Where:

ar1: 1 and j are assigned to the same cluster in both X and Y.

aoo: 1and j are assigned to different clusters in both X and Y.

aro: 1 and j are assigned to the same cluster in X but to different clusters in Y.
ao1: 1 and j are assigned to different clusters in X but to the same cluster in Y.

n: number of nodes in the network.

RI gives a measure of similarity with a value ranging from 0, when there is no pair classified
in the same way under both data clusters, to 1 when data clusters are exactly the same. In
practice, the RI often lies within the narrow range of [0.5, 1]. However, RI is highly sensitive
to the number of clusters considered in each clustering solution and has a tendency to give

higher values as the number of clusters increases (Wagner and Wagner, 2007).

3.2.2.2 Adjusted Rand Index

The Adjusted Rand Index (ARI) is the chance-corrected version of the RI proposed by Hubert
and Arabie and it is known to be less sensitive to the number of clusters (Hubert and Arabie,
1985). ARI s equal to the normalised difference of the Rand Index and its expected value under

the null hypothesis. The expression for ARI takes the general form (index - expected index)/

34

(maximum index - expected index). More formally the Hubert-Arabie’s formulation of the

adjusted Rand index is (Amodio et al, 2015):

ARI(X,Y) = 2(agp a11— o1 A10) (3.9)

(ago+ap1)(agr+ ai1)+(ago+a0)(aro+ as1)

Like the RI, the adjusted Rand Index equals to 1 when both partitions are exactly similar.
Because it is chance-corrected, a value equal to 0 represents the fact that the similarity between
X and Y is equal to expected value under the generalised hypergeometric distribution
assumption for randomness. However, negative values are possible and they indicate less
agreement than expected value. For further detailed description of ARI, the reader is referred

to Hubert and Arabie (1985).
3.2.2.3 Normalized Mutual Information (NMI)

Normalized Mutual Information (NMI) is a similarity measure for comparing two partitions
based on the information theory concept. It is introduced in the community detection domain
by Danon et al. and since then it has been widely used to evaluate the accuracy of community

detection algorithms (Danon et al, 2005).

For an n-node network with two partitions X={Xi, Xz, X3, Xk} and Y={Y1,Y2,Y3,Y¢}
where X and Y represent the real communities and found communities respectively, the

normalized mutual information NMI(X,Y) of two divisions X and Y of a network is defined as

follows (Labatut, 2015):

P(K,K))

P(K)P(K)
R - 3.10
T=1 PBILoglP(K)+ZE_ P(K)Log[P(K)] (3.10)

—25k_ 3K P(K,?)Log[
NMI(X,Y) =

XgNY+ XK

Where: (K,E) = TK’ P(K) = —= and p(?) = Y%

35

If the found partition by the algorithm is identical to the real community, then NMI takes its
maximum value of 1. If the partition found is totally independent of the real partition then

NMI=0 (Labatut, 2015).

3.2.3 Computational complexity

Computational complexity theory is the study of the scalability of algorithms. The term
scalability involves both the number of computation steps needed and the number of memory
units that need to be allocated to run the computation. In the case of a graph, the number of
nodes n and/or the number of edges m is usually used to indicate the complexity of algorithm.
Big O notation is a symbolism used in complexity theory, computer science, and mathematics
to describe the asymptotic behaviour of functions. It tells you how fast a function grows or

decreased (Fortunato, 2010).

3.2.4 Visualization for Cluster Validation

Applying metrics is one way to evaluate the quality and correctness of the detected
communities but “a picture is worth a thousand words”. Visualising networks is the most direct
way of understanding them. However, large networks, particularly dense ones are very difficult

to visualise due to inherent visual clutter caused by many edge crossings (Kang et al, 2014).

Different graphical representations for data associated with networks and their layout
algorithms to give an impression of graph layout issues and limitations with regard to
scalability have been proposed. These algorithms include Yifan Hu (Hu, 2005), ForceAtlas
(Jacomy et al, 2014), Barnes-Hut Algorithm (Barnes and Hut, 1986) and OpenOrd layout
algorithm (Martin et al, 2011). How to design appropriate graph visualization technique
depends on many factors, including the type of graph describing the data and the analytical

task at hand.

36

An alternative visualisation method is to use the adjacency matrix representations. In an
adjacency matrix, nodes are displayed twice, on the abscissa and on the ordinate. An edge
between the two corresponding nodes in the network is represented by a non-zero entry.
However, since each edge in the network is defined by itself in a non-shared space, there is no
edge-crossing problem. According to studies performed by Ghoniem et al. the adjacency matrix
outperforms the node-link diagram when the considered graph becomes large and dense

(Ghoniem, Fekete and Castagliola, 2004).

Furthermore, using adjacency matrix representations, coherent rectangular areas (blocks)
appear in ordered matrix plots whenever strongly connected nodes are present in the underlying
topology. In network analysis scenarios, these blocks would be referred to as clusters. Hence,
with these representations, clear block patterns help counting clusters and identify larger and
smaller clusters (Behrisch et al, 2016). The adjacency matrix representation has been used in
many domains including: social science, artificial intelligence, biology, supply management,

neurology and transportation (Behrisch et al, 2016).

In this research, [have used the matrix reordering visualisation technique for representing the

community clusters.

However, the research in this work focuses on the problem of community detection in the
networks and does not touch the visualization technique. For more information, interested
readers may refer to (Herman, Melancon et al. 2000) and (Von Landesberger, Kuijper et al.

2011).

3.2 Artificial Networks

When evaluating the performance of community detection algorithms, there are two

approaches that could be used. The first approach is to test against the real-world networks

37

with prior information about communities and the second approach is to test against an artificial

network whose community structure is already known, which is usually termed as ground truth.

Among the former, Zachary's karate club (Zachary, 1977) and the college football network
(Girvan and Newman, 2002) have been extensively used. However, due to the complexity of
data collection and costs, real-world benchmarks are usually small-sized networks (Yang,
Algesheimer and Tessone, 2016). Furthermore, obtaining a real network with a ground truth is
not only difficult, but also costly in economic terms and time. Moreover, since it is not possible
to control all the different features of a real network (e.g. average degree, degree distribution,
community sizes, etc.), the algorithms could only be tested with a limited set of features. On
the other hand, artificially generated networks can overcome most of these limitations. Thus,
the literature has given much attention to algorithms' performance on benchmark networks and
there are a number of models available to produce synthetic networks. The following

subsections discuss the most well-known benchmarks that generate networks with ground truth.

3.2.1 Girvan and Newman (GN) Benchmark Networks

The Girvan and Newman benchmark (GN) is one of the first benchmarks proposed for
community detection algorithms by Girvan and Newman in (Girvan and Newman, 2002). The
GN benchmark network consists of 128 nodes that are divided equally into 4 communities of
32 nodes each. The strength of the community () is given by the fraction of the edges placed
between two communities to the total number of edges in the network. The lower value of this
parameter will result in networks with clear separable communities. However, the GN
benchmark has some limitations such as: all the nodes of the network have essentially the same
degree, the communities are all of the same size and the network is small.

Since the real-world networks are characterised by heterogeneity in the distributions of node
degrees and of community sizes, which is not the case in the GN benchmark, this benchmark

is not entirely suitable for real-world network clustering (Newman, 2003).

38

3.2.2 LFR Benchmark Networks

The LFR benchmark model was proposed by Lancichinetti et al. to generate undirected and
unweighted networks that closely resemble real-world networks with community structure
(Lancichinetti, Fortunato and Radicchi, 2008). LFR model has become a popular choice for
assessing the performance of community detection algorithms and the model was subsequently
extended to generate weighted and/or directed networks, with the possibility of overlapping
communities. However, in this work, the focus is given to the undirected unweighted networks
with non-overlapping communities.

The LFR model is proposed to address most characteristics of real networks, e.g., size of the
network and heterogeneous degree distribution. In the LFR benchmark, both the node degrees
of a network and the size of each community are controlled by a power-law distribution with
exponent y and P respectively. However, it has been observed that real-world graphs have such
a power-law degree distribution (Newman, 2003) with typical values of: 2 <y <3, 1 <B <2
(Lancichinetti, Fortunato and Radicchi, 2008).

An important parameter of the LFR model is the mixing parameter p, which represents the ratio
between the external degree of each node with respect to its community and the total degree of
the node. Each node shares a fraction 1— p of its links with the other nodes of its community
and a fraction p with the other nodes of the network. Essentially this parameter can be viewed
as the amount of noise in the graph. The larger the pn value of a network is, the harder it is to
detect communities in it. If p > 0.5 then each node shares more than half of its edges with nodes
in other communities, i = 0 means all edges are within community edges and p = 1 means all
edges are between nodes in different communities. The model also allows controlling directly
the following parameters: number of nodes and maximum degrees. The code of LFR mode is

publicly made available by the authors (Fortunato).

39

3.3 Research Methodology

The aim of the research is to develop an accurate and effective community clustering
approaches for large-scale networks. This section presents research methodology for achieving
the objectives of this thesis. Figure 3.2 shows the research methodology framework used to
achieve these objectives. Each stage of the methodology for this research is explained briefly

in the following lines.

Studying the background information and a careful review of the relevant literature (presented
in chapter 2 and 3), revealed the insufficiencies of existing community detection techniques.
This provided the direction for the research and helped me to formulate the problem definition
along with the research objectives that listed in section 1.4. However, to achieve these

objectives three approaches are proposed and evaluated extensively.

Related works

Reviewing Related
. « Graph theory.
literatures » Community detection algorithms.
* Parallelisation techniques for the community
detection algorithms.

* Properties and models of real networks.

Problem Formulation

Definition of Research Design an efficient community-
Objectives detection approach that work at the
Proposed approaches local level
+DICCA —~ Extend proposed approach to work in
+PDICCA parallel/distributed fashion.

Pl’OpOSCd Models — *Pre-processing approach to improve the performance
of for existing community detection algorithms

Design optimisation tool for robust

community detection algorithms.
Used data set -

Analysm and — *Syntactic data set (LFR).

Experimental results *Real word data set (Facebook data set and smart
phones dataset).

Experimental
Evaluation Scalability Sensitivity Accuracy

Quality (Modularity)
Visualization (adjacency matrix
representations

Figure 3.2 Research methodology framework

Comparison (NMI, RI, ART)
)

40

1-

Decentralized Iterative Community Clustering Approach (DICCA)

A novel Decentralized Iterative Community Clustering Approach to extract an efficient
community structure for large social networks are proposed. The proposed approach
works at the local level and does not require any global knowledge of the network. It
based on random walk and reachability, which is done by message propagation between
neighbours.

Parallel Decentralized Iterative Community Clustering Approach (PDICCA)

PDICCA is a distributed memory parallel processing approach that transforms the serial

steps of the DICCA approach into parallelised tasks.

An optimization approach for improving the robustness of community detection in the
existing weighted community detection algorithms, especially in networks with missing
information is proposed. This is done through considering attribute information, shared
neighbours’ information and connectivity between nodes in the network, for the

detection process.

The following chapters (chapter 4, 5 and 6) explain in details about these three proposed

approaches.

For implementation of the proposed approaches, list of software were used in the process:

Matlab software

Igraph (R) software packages

In this work, the synthetic dataset is generated by the LFR benchmark model along with their

ground-truth communities in order to be able to evaluate the effectiveness of the proposed

community detection approaches on a range of network-structural properties and network sizes.

41

In addition, anonymised Facebook datasets are used to evaluate the effectiveness of the

Prepressing approach (3™ proposed approach).

Evaluating the validity of community detection algorithms based on a single measure alone can
lead to misleading conclusions. Thus, in this work, a range of performance measurements,
Normalized Mutual Information (NMI), modularity (Q) and Adjusted Rand Index (ARI) have
been applied as evaluation criteria to evaluate the quality of community clusters. These three
performance measurements are based on three different approaches. The ARI is performed on
pair counting whereas, NMI is based on the information theory approach. The third approach
is the modularity measure, which relies strictly on the network topology. This modularity
measure allows to quantify the quality of a community structure in a blind way and without the

use of a reference (ground-truth).

Going a step further, the matrix reordering visualisation is used as a visual representation for

networks by encoding visually an adjacency matrix to show community clusters in the network.

3.4 Summary

Real-word networks have specific topological features, which characterize their connectivity.
Measurements of the connectivity are essential to describe, analyse, model, validate the
networks and exploit network structure to achieve certain aims. In this chapter, the empirical
properties of real-word networks that describe the structure of the network are presented. This
specifically focuses on the statistical properties of networks that have received particular

attention, including the small-world effect, degree distribution and community effects.

Furthermore, in this chapter various performance measures for assessing the quality of
community clustering algorithms are discussed. This includes, cluster quality metrics such as

coverage, conductance and modularity, and some external evaluation metrics such as Rand

42

index, adjusted Rand index and Normalized mutual information. Also, adjacency matrix

representation is discussed.

Finally, a comprehensive benchmarking study on the approaches for community detection in
the networks is conducted. Girvan and Newman (Lancichinetti, Fortunato and Radicchi, 2008)
and LFR Benchmark models (Lancichinetti, Fortunato and Radicchi, 2008) that are proposed
to generate synthetic networks to mimic the real-world networks are discussed in more detail.
The GN benchmark has some limitations such as, all the nodes of the network have essentially
the same degree, the communities are all of the same size and the network size is small. Since
the real-world networks are characterised by heterogeneity in the distributions of node degrees
and of community sizes, this benchmark is not entirely suitable for real-world network
clustering. So in this work, the synthetic dataset is generated by the LFR benchmark model
along with their ground-truth communities is used in order to be able to evaluate the
effectiveness of the proposed community detection approaches on a range of network-structural

properties and network sizes.

43

CHAPTER 4
DECENTRALIZED ITERATIVE COMMUNITY

CLUSTERING APPROACH (DICCA)

In this chapter, a novel Decentralized Iterative Community Clustering approach (DICCA) for
detecting communities in complex networks is proposed. The DICCA approach is based on the
random walk procedure and reachability of nodes in the network. An important property of this
approach is its ability to cluster the entire network without the global knowledge of the network
topology. This ability means that this method could be easily adapted to any parallel/
distributed processing to find community clusters in big networks.

Some parts of this chapter are published in the proceedings of the IEEE 28" Annual
International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC,
Montreal, QC, Canada (pp.1-7) in October 2017. However, in reference to IEEE copyrighted
material which is used with permission in this thesis, the IEEE does not endorse any of
[Liverpool John Moores University]'s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or
redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/

rights link.html to learn how to obtain a License from RightsLink.
4.1 Related Literature and Previous Studies

The problem of network clustering has received considerable attention from researchers in
recent years and the list of proposed algorithms is rich and diverse. Among them, those based
on modularity maximization form the most prominent family of community detection

algorithms closely followed by the category of algorithms based on random walks (Fortunato,

44

2010). However, most of the research on community detection algorithms has been designed
to work on a single machine employing a form of basic random access to the entire network,

so they require access to the entire network at all times (Fortunato, 2010).

In the modern era of technology, a tremendous amount of data is generated at an incredible
speed from everywhere. As the data size is scaling up, the need for computing power is
exponentially increasing. In many such situations, the required processing power far exceeds
the processing capabilities of single machines. Furthermore, in many such cases the large-scale
data set does not fit into the main memory of a single machine and needs to be distributed
among several machines. These demanding requirements have led to the need for parallel and

distributed algorithms for big data analysis.

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) for
accurately clustering networks is presented. This scheme is completely decentralized and does
not require the global knowledge of the network. Apart from DICCA, there exist some other
algorithms that operate based on partial information. For example, the Distributed Diffusive
Clustering algorithm (DiDiC) is proposed by Joachim and Henning (Gehweiler and
Meyerhenke, 2010), based on the method of disturbed diffusion, which is designed to eliminate
all the global operations for assigning nodes to partitions. However, the nodes executing DiDiC
algorithm need to communicate with their direct neighbours and DiDiC requires knowledge of

all the neighbouring nodes.

Another algorithm somewhat similar to the proposed DICCA is Connectivity-based
Decentralized Node Clustering scheme (CDC) proposed by Ramaswamy et.al (Ramaswamy,
Gedik and Liu, 2005). The CDC algorithm adopts some ideas from the diffusion-based models,
and is particularly designed for peer-to-peer networks. Even though the algorithm assumes that

each node has a limited view of the entire network, similar to the DiDiC algorithm, CDC

45

algorithm requires knowledge about all the neighbouring nodes. Another distributed graph
partitioning algorithm, called Ja-be-Ja, proposed in (Rahimian et al, 2013) is a decentralized
local algorithm that does not require any global knowledge of the graph topology. To compute
the partitioning, the node only requires some local information about its neighbouring nodes,
and a small subset of random nodes in the graph. However, unlike the proposed DICCA
approach, the algorithm produces partitions of equal sizes. In fact, it tends to find balanced size
partitions rather than good-shaped partitions, and therefore, the number and size of yielded
partitions is controlled, and does not depend on the topology of the input graph. Therefore, the

outcome does not match the real-life scenario.

Table 4.1 Comparison of the algorithms

Algorithm Short Concepf of the Features Comments
name algorithm
Distributed Uses the concept of Requires DiDiC initially was
Diffusive DiDiC disturbed diffusion to knowledge of all implemented to balance the
Clustering identify dense graph the neighbouring loads on virtual P2P
algorithm regions nodes supercomputers
Cong:s;;qty- T}glgzn;?ﬂeﬂzai;ntéhe Requires Model is suitable for
. . . knowledge about | discovering connectivity-based
Decentralized simulate flow in .
CDC all the clusters in peer to peer
Node the network where every . . .
. . neighbouring network and handle highly
Clustering edge considered as a .
. nodes dynamic nodes
scheme road between two points
Itis a distributed edge Does not require The algorithm produces
Ja-be-Ja Ja-be-Ja partitioner that creates any global partitions of equal sizes.
balanced partitions while = knowledge of the = However, this is usually not the
reducing the vertex cut graph topology case for real networks.
The algorithm adaptable to any
Decentralized The algorithm is based = Able to cluster the parallel/ d1str1but.ed processing
. . to find community clusters in
Iterative on the random walk entire network bie networks when the size of
Community =~ DICCA procedure and without the global gthe inout network or the
Clustering reachability of nodes in = knowledge of the com ugtion complexity is
approach the network network topology P p Y

4.2 Description of the Proposed DICCA

beyond the resources of a single
computer.

DICCA is an agglomerative clustering algorithm, it starts with every node belonging to a
community cluster on its own and iteratively merging the clusters that have high similarity with
each other. DICCA is based on random walk and reachability by broadcasting messages

46

through the network to compute similarity between community clusters and identify clusters

in the network.

The pseudo code outlining the entire procedure is listed in Algorithm 4.1 below and it consists
of two phases that run in an iterative fashion. The first phase, named local clustering, is to
define originators, one for each community cluster and associate each node to the best-fit
originator. The second phase, named network reduction, is used to build a new network based

on the detected communities in the first phase.

In the local clustering phase of each round of the iteration, one node is selected randomly as
the originator. Then this originator node sends a message (Msg) to all its neighbours. The
message contains the following three fields: Originator node ID (OnID), Time to Live (TTL)
and Message Weight (WMsg). OnlD is used for uniquely identifying the originator node. TTL
is the maximum number of hops that the Msg can be recirculated before being discarded. The
message weight field (WMsg) is the weight carried by the message. The Weight represents the
estimated probability of reaching any node in the network starting from the originator node.
However, the WMsg is initialised to one and assigned to the originator itself, to avoid the
originator being assigned to any other clusters. The function used to calculate the weight of
message sent from the originator O; to its neighbouring node V; depends on the edges between

the originator O; and the node V; and is defined as:

W(0yVy)

WMsg (0, V;) = Sy jenbriop WOV))

4.1)

Each node in the network maintains a set of values, represented as Total Message Weight,
originator ID. The Total Message Weight value represents the sum of the weights of all the
messages that reached Ni and has the same Originator node ID. When the node V; receives a
message Msg, it updates the total weight function corresponding to the message originator node.

Then, the receiving node V; checks whether or not the TTL of the message is greater than zero.

47

If so, the node decrements TTL value by one, updates WMsg of the Msg and forwards the
updated message to all its neighbours. The updated weight of the new message WMsg(V;, Vi)

being re-sent from node V; to its neighbouring node Vi is defined as:

W(ViVi)
ZVjerr(Vi) WViVj)

WMsg(V; ,Vx) = WMsg x 4.2)

However, Node Vi halts the message circulation if TTL is zero or WMsg becomes
insignificantly low. When the TTL reaches zero, the message will no longer be forwarded and
the nodes join the community led by the originator node O;that has received total weight values
greater than the specified threshold. However, if the total weight values received for some

nodes lie below a predefined threshold, then those nodes will remain as outliers.

In the next step, the algorithm adds one more originator node, by randomly selecting one of the
nodes from the outliers that do not belong to any community. Then the new originator repeats
the same process that was carried out by the former originator and updates communities and
their corresponding originator as well as the outlier nodes list. The algorithm keeps iteratively
adding one more originator, and updating communities and outlier nodes until each node is
joined to a community, and there is no outlier node remaining. However, each node in the
network may receive multiple messages generated from different originator nodes. In that case,

the node joins the community led by the originator node that has the highest total weight.

The second phase of the algorithm consists of building a new network from the communities
discovered in the first phase where the individual nodes in the new network are the individual
communities from the first step. In this new network, there will be an edge between two nodes
if there were edges between the corresponding two communities in the previous step. The
weights of those new edges are the sum of the weights of the edges between nodes in the
corresponding two communities. The edges between nodes of the same community in the first

step will lead to self-loops for this community node in the new network.

48

The two phases mentioned above are repeated with the rebuilt network iteratively and the
process stops when there is no more change in the communities and consequently optimised

community clusters are obtained.

Although the exact computational complexity of DICCA is harder to formalize, this algorithm
behaves as 0(m log((n.m)?)), in which n is the total number of nodes in the network and m

the number of edges. However, the most effort is in the first phase of the algorithm.

The proposed concept is shown in Figure 4.1. The figure illustrates how the proposed algorithm
works at different stages of execution of the algorithm with 11 nodes labelled from 1 to 11 and
17 unweighted edges. The algorithm process is initiated by choosing node 4 as originator in
the first iteration and threshold value is set to 0.25. Messages in the figure are defined by three
fields that provide information about the messages representing the originator, TTL and current
weight of the message respectively. For example, if the field value of the message received by
node 5 is {4:2: 0.25}, it means that the message data was originated by node 4 and the weight

of current message is 0.25 with TTL=2.

By compiling the notions above, a community cluster in the proposed algorithm can be
described as:

1. The nodes and only these nodes which are mutually densely-connected, belong to the same
cluster.

2. Ifnode V does not have many neighbours and it is reachable from one or several nodes, then
V belongs to the cluster that is more densely connected.

3. If V does not have any neighbours, then V does not belong to any cluster.

4. The obtained communities are not overlapping and consequently, they define a partition C

of n such that V= U{-‘zl Ci and Ci N Cj =0 for any i#].

49

Stepl: Initialisation
Node 4 chosen as originator. TTL=3
outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

(6

Step2: The originator (Node 4) sends
messages to all its neighbours. TTL=2
outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

4:2:0.25 4:2:0.25
:1: 0. 4: 1: 0.0625
o R
(35 (9—10 /3 >3 5o
(!)
4:1: 0.0625
(l l) 4:1:0.0625(2" I
- 4:2: 01‘5 .
4:1: 0.0625
/ 4:1:0.0625
8)

o Jos

Step3: At TTL=1
outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

(9—10

[4:0:04375] [4:0:04340]

N\ 2N
B

-

(1)

4:0:0.1875

4: 0: 0.0278
-
!

~[4: 1: 0.0837
4:0: 0.0208
4:0:0.0278

7
4:2:0.25
4:0: 0.0208

(o

Step 4: At TTL=0.
Outlier nodes ={1,2,3,4,5,6,7,8,9,10,11}

b

2)
=

Step 5: Total weighted message received
by the nodes from originator (Node 4) ,
threshold value =0.25, outlier nodes
{1,7,8,9,10,11}

4:0: 0.4340

3—5)

(1)

[0:0.1875 |

ey
4:0:0.4375 4:0:1.0938

0:0.2049
31

‘ 7 8 [a 001319
/'- 7:2:03333

33
Step 6: Start new round by choosing node 7
as originator and repeat the previous process.
Outlier nodes ={1, 8,9,10,11}

55—

Step7: Output for the first iteration where
nodes {4,7,10,1} are chosen as originators.

Outlier nodes ={}

N
|
"3

30 1

| — A —21>

~

A

3
=)

Step 8: Rebuild the network and start new
iteration where,V1={1,2,3}, V2={4,5},
V3={6,7,8} and V4={9,10,11}

Step 9: Final output with three optimised
community clusters

Figure 4.1 Illustrates the concept of the algorithm

50

Algorithm 4.1. The proposed method

Input: underlying network graph G, time to live and threshold value
Output: C communities as a final division of G.

Repeat
Outlier list <« all nodes // local clustering phase
While outlier list #{}

Oi « Rand select (outlier list) // choose a node randomly to be an originator.
//creat new message (Msg)
Onld <« O1 // originator ID
TTL « time to live
WMsg « 1
Msg «—{ Onld, TTL, WMsg }
While TTL >0
Total weight (Oi, Vi) = sendmessages(G, Oi ,Onld, TTL, Msg) // Total
//weight between Oi and its neighbout nodes (Vi)
TTL « TTL-1
Oi < Vi
Msg < { Onld, TTL, Total weight (O1, Vi) }
end while
for each Node Vi € G

if Total weight(Vi, onID) > threshould then
C(Vi) <« Join the cluster lead by max onlD
else
Remain outlier
end if
L end
L end while

G=Aggregate (G,C) // Network reduction phase “Compact each community to one
// new node and build new network”
if (C_current=C_ previous) // no membership change
break;
| return C // return the final division of G
end Algorithm

Function sendmessages (G, Oi,Onld, TTL, Msg)
for each Node Vi € Nbr (Oi) do
Send WMsg to Vi «— WMsg(0i,Vi)=WMsg(O1i,Vi) *W(Oi,
Vi) Xy envrery W (Vi Vj)
If Ni have seen message from onID before then
Total weight(Vi, O1) «— Total weight (Vi, O1) + WMsg
else
Total weight(Vi,01) «— WDMsg
end if
L end
Return Total weight(Vi,01)
end function

51

4.3 Experimentation and Results

4.3.1 LFR Synthetic Dataset (network)

Many real-world complex networks such as the Internet, social networks, biological networks,
infrastructure networks etc. are heterogeneous and show a power-law degree distribution
(Newman, 2003). In such networks not all their components such as nodes, links and subgraphs
carry the same role or importance in the network, which has crucial effects on the resulting
performance of the algorithms deployed. Consequently, the performance of any community
detection algorithm varies depending on the network’s characteristics. Furthermore, to analyse
the efficiency of the community detection algorithm, one needs to apply it to networks which
have ground truth communities (the actual partitions), and then the performance of the

algorithm needs to be measured as the accuracy in recognising the ground truth communities.

Due to the scarce availability of real networks that have ground truth communities, and in order
to measure the performance of the proposed community detection algorithm on both network-
structural properties and network size, the synthetic dataset is generated by the LFR benchmark
model along with their ground-truth communities and used to test the proposed algorithm in

this work.

4.3.2 Evaluation Metric

Since the true community structure is known for the benchmark network, the proposed
algorithm is evaluated by comparing the obtained partition in the experiments with the ground
truth provided by the LFR benchmark. Normalized mutual information (NMI) metric is used
to quantify the accuracy of community detection methods by evaluating the level of
correspondence between detected and ground-truth communities. In addition, modularity
measurement is used to evaluate how effective the algorithm is in terms of modularity

optimisation.

52

4.3.3 Parameter Selection Strategy

The proposed algorithm uses two parameters, which are ‘time to live’ and ‘threshold value’; if
these two parameters are optimally set, then, it will highly improve the performance of the
algorithm. So some strategies about the choice of these two initial parameters are discussed in

this section.

4.3.3.1 Time to Live

TTL is a parameter used by the algorithm to control the number of nodes visited in the network.
TTL value must be a positive integer greater than zero. In reality, choosing an appropriate TTL
value is not an obvious task. On one hand, small time-to-live may expire before reaching many
relevant nodes which are further away. On the other hand, high time to live means more nodes
than needed are visited, thus increasing both the message load on the network and the running
time of the algorithm. Therefore, in the proposed algorithm, rebuilding the network before
starting a new iteration is considered as a solution for this issue. For example, with a small
value of TTL, some nodes (V) that are densely connected with the neighbours of the originator
(intermediate nodes between them and the originator node) cannot receive messages from the
originator Oi as the TTL value might have expired in the current iteration. Then in the following
iteration, the intermediate nodes will be merged with the originator node making them as one
node. Then in the next iteration these Venodes will be reached by the originator Oi with a small

value of TTL.

In order to determine the effect of TTL value on the community clustering accuracy, the TTL
value ranging from 1 to 4 has been used in this evaluation. Figure 4.2 indicates the accuracy
values of synthetic networks with 500 and 1000 nodes. In this work, modularity and NMI have

been used to evaluate the quality of community detection. In order to give a condensed picture

53

of the results, the computing time in seconds and the message complexity results as a function

of the TTL are presented in Figure 4.3.

From the figure, it is clear that there is a correlation between TTL and both computing time

and message complexity. The smaller the TTL, the faster the algorithm. This can be qualified

n=500 n=1000
1 1
> . >
g 08 A/‘_’_‘_ﬁ g 0.8
=
Q
::5’; 0.6 2 06
o0 04 2 04
B 5
g 02 Z 02
Z =
= O
o o0 0
1 2 3 4 1 2 4
TTL TTL

—l— NMI —&— Modularity =% Ground Modularity —l— NMI —&— Modularity == Ground Modularity

(a) (b)
Figure 4.2 Performance of the DICCA algorithm using different TTL values

n=500 n=500
1
2000 —&—Time » 5 —#— Number of Messages
_ 0
2 10000 28y
2 2 520
2 =3
£ 5000 P é 10
g N
0 = = 2 0m -—
1 2 3 4 1 2 3 4
TTL TTL
(a) (b)
n=1000 n=1000
40000 —B—Ti 100
Time 8 —&— Number of Message
330000 g _ 80
Z s 2
2 20000 > £ 60
= o E 40
10000 5s
E 20
0 = = Z.
1 2 3 4 0O m —
TTL 1 2 TTL 3 4

(c) (d)

Figure 4.3 Comparison between computing time and the message complexities over different TTL values

54

by the fact that the run time of the DICCA algorithm depends on the total number of exchanged

messages which in turn is affected by the total number of hops that a message is permitted to

travel before being discarded (TTL).

However, the proposed algorithm in this work is implemented in Matlab from scratch, which

is not optimised for speed. Therefore, the total number of exchanged messages (Message

Complexity) will be computed as a score for running time in this work.

The graphs in Figure 4.2 demonstrate that the algorithm yields good community clusters when
the TTL is set to be 3. Furthermore, recall from chapter 3 that big networks from real-world
applications are often small-world networks (Watts and Strogatz, 1998b) (Silva and Zhao,
2016), so increasing the TTL value does not have significant impact on the quality of
community detection but may result in a very high communication load. However, selecting a
small TTL value can reduce the broadcast overhead but will compromise the accuracy. For
example, when TTL=1 is used, the WMsg message is only being propagated once from
originator to its neighbour, which means only the direct originator’s neighbour nodes could be
merged in that iteration. For this scenario, the NMI and total number of messages generated
by the algorithm for N € {500; 1000} were {0.661;0.769} and {4832; 9019} and respectively.
On the other hand when a value of TTL=3 was used for n € {500; 1000}, the NMI results were
{0.918; 0.946} and the total number of messages were {1,347,024; 3,735,475}. Furthermore,
when TTL = 4, the NMI scores were {0.922; 0.956} which are almost same as the NMI yielded
by the algorithm when TTL is 3. On the contrary, the total number of messages generated were
{29,680,547; 87,794,210} which are significantly higher than that generated when TTL was 3.
Based on the above discussion, it is clear that the algorithm will stabilize very fast on the

networks with small value of TTL, but quality is worse in most cases. On the contrary, using a

55

large value of TTL can ensure that all nodes will receive the message, but introduces

unnecessary broadcast messages for nodes beyond the target-clustering region.

The number of messages sent during an iteration clearly depends on the number of nodes in

the network and on the size of the n-neighbourhoods of the nodes (network structure). This

means high communication load is required for extracting clusters and may result in a

scalability problem in large and dense network environments. This scalability issue greatly

hinders the application of module extraction to network analysis where most of the networks

consist of high number of nodes. However, in big networks, the message weight becomes

extremely low compared to a threshold value. A node’s decision to join a cluster is based on

the total weight of the messages from the originator to the node exceeding the threshold value.

Consequently, extremely low message weight does not affect the accuracy of clusters and the

process could be halted.

To avoid an excessive number of messages being forwarded, adaptive termination technique

has been implemented in the DICCA approach. When the message weight becomes

insignificantly low, the message is discarded by the received node even though the TTL may

still be greater than zero. In this work the minimum value of message weight (Min VALUE)

is specified to be three hundred less than threshold value.

By comparing Figures 4.2-4.3 with Figure 4.4, it can be observed that there are negligible

differences between the performance of the algorithm in terms of NMI and Modularity scores.

56

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280845/figure/f12-sensors-09-01012/

Considering message complexity and running time, the performance of the algorithm when the

Min_VALUE is applied is by far better than its performance when Min_VALUE is not applied.

n=500 n=500
1 4
> ©n
2 og ./._’—-—l 5
83506 $ 4
= 82
fDZ 0.4 E =
£ = °E
5202 8 g
2 < E
2 0 E 0
@) 1 2 3 4 z 1 2 3 4
TTL TTL
—— NMI —&— Modularity —#— Number of Messages
(a) (b)
n=1000 n=1000
8
> 1 —= a %
<= S 4
on % 0.4 E =
Bz ° g
520.2 5 o 2
Z ' <
65 0 5 0
I 2 3 4 = 1 2 3 4
TTL TTL
——NMI —&— Modularity —#—Number of Messages

() (d)

Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL values

4.3.3.2 Threshold Value

The threshold is a numerical value ranging between 0 and 1, which defines the minimum weight
of the message required to join a cluster. It is defined by the user at the beginning of the process.
The node is allowed to join the community cluster led by originator O;, if the total weight of
the message received by the node from O;j is equal to or greater than the threshold value. As
the threshold value increases, the difficulty of merging communities also increases. Thus, the
size of the community clusters depends on the threshold value. If a high threshold is set, more
small-size communities are detected. On the contrary, setting a lower threshold leads to fewer
but large size detected clusters. Therefore, the size of the community clusters produced by the

proposed algorithm could be controlled using the threshold parameter. The threshold value is

57

in the range of {0; 1}, 0 yielding a single community and 1 producing clusters of singleton
nodes. Tuning this parameter could be seen as a possible practical remedy to control the desired

size and the number of communities.

In order to understand how the threshold value affects the accuracy, size and the number of
community clusters, the effect of different threshold values has been studied on a small network
with 50 nodes and 83 edges. The results presented in Table 4.2 show that when the threshold
value increases, more small-sized communities are detected. In contrast, lower threshold value
leads to larger detected clusters. For example, when the threshold value is 0.1, three clusters
have been detected and the biggest detected cluster has 21 members. That number of clusters
becomes 5 when the threshold parameter is changed to 0.7. That is because larger threshold
value means more strict requirements in community intra-connectivity and only strongly

connected nodes can belong to the same cluster.

Table 4.2 The experimental results obtained by the DICCA algorithm on a small network of 50 nodes

Threshold Number Modularity = Min N.of Max N.of Avg N.of
value NMI of clusters Q) members members members
0 0 1 0 50 50 50
0.1 0.664672 3 0.623675 14 21 16.66667
0.2 0.810166 5 0.674046 5 21 10
0.3 0.88515 6 0.717521 5 16 8.333333
0.4 0.85165 9 0.658151 1 10 5.555556
0.5 0.900606 12 0.622587 1 9 4.166667
0.6 0.900606 16 0.622587 1 9 3.125
0.7 0.723512 39 0.18682 1 5 1.282051
0.8 0.670295 50 -0.02584 1 1 1
0.9 0.670295 50 -0.02584 1 1 1
1 0.670295 50 -0.02584 1 1 1
0.223xt! 0.950701 9 0.68907 2 10 5.555556

Figure 4.5 shows the visualization of synthetic network with 50 nodes and the detected clusters

when the threshold parameter is varied from 0 to 1 in steps of 0.1. The layout for all the different

58

visualizations of the network is kept constant to be able to draw conclusions easily by looking

at the figures. Members in the same community are represented with the same colour.

Using the proposed DICCA algorithm the maximum modularity is obtained when the threshold
value is 0.3 by the partition in 6 communities achieving Q=0.71 (graph d). However, the ground
truth partitioning is 8 communities with Q=0.717. DICCA merged three communities into one.
Beside this, there are 5 communities classified correctly with the exception of one node (node

23) which is misclassified.

Clearly, the success of the algorithm is heavily dependent on the proper tuning of the threshold
value. However, there is no standard prescription for threshold value for all type of data sets
and applications. The most appropriate threshold value for a given data set is usually derived
experimentally, defined by the user according to their knowledge or estimated on the basis of

data from previously completed similar projects.

4.3.3.3 Automated Identification of Appropriate Threshold Value

Although the threshold value controls the number and the size of clusters that will be extracted,
which could be considered as an advantage of the algorithm, choosing the right threshold
without a priori knowledge of the network structure is a challenging task. Furthermore,
generating a priori knowledge requires human expertise and is time consuming since real
networks are usually big and contain huge amounts of information (De, 2016). In this work,
based on the above observation, a mathematical model is proposed to automatically calculate
the threshold value. The model calculates the optimal threshold value based on the size, density
and layout structure of the network. Equations 4.3 to 4.5 present the threshold calculation

model for undirected networks designed by the author to help calculate the threshold value

59

0.8
0.7 e=gr=\l0dUlarity
0.6
_4? 0.5
E’ 0.4
.§ 0.3
s 02
0.1
0 “&
o 0.\, 0.9 0.\9 0.70.\90.6\0.)0.&0\9\’
Threshould Value
0) (k)

Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the proposed DICCA
algorithm using TTL=3 and with different threshold values. (a) threshold value =0, (b) threshold value =0.1, (c)
threshold value =0.2, (d) threshold value =0.3, (e) threshold value =0.4, (f) threshold value =0.5, (g) threshold
value =0.6, (h) threshold value =0.7, (i) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via
threshould value. The values of the other parameters were fixed: ¥'=2, p=1.

60

when the users have no knowledge of the community properties of the network. Threshold
value calculation for specific networks and applications may require specific concepts and

considerations.

In undirected network, the threshold value is defined as follows:

Threshold value = avg_t + (t —1)x(1— C) x avg_t (4.3)

_ 1ogogm) g 1| Kim1 | Ki=2
avg t = =~ LisGpt iz 52 (4.4)
Ki = Y704 (4.5)

where, t is the iteration number, K; is the degree of node i, n is the total number of nodes in the

network, A is the adjacency matrix and C is network clustering coefficient which is defined as:

c=21yn _2Li
n &=l g [Kk;-1]

(4.6)

where L; is the number of edges between neighbours of node i (Costa et al, 2007).

Given a network with n nodes, a complete network (fully connected network) is a simple
undirected graph in which every pair of distinct nodes is connected by a unique edge. Based
on the graph theory the network clustering coefficient for a fully connected network is 1 and

the degree of each node is defined as:
Ki=n-1 (4.7)
Thus, the total edges of the network having n nodes will be:
toKi=nn—-1) (4.8)

Using equation (4.3) to calculate the threshold value:

K

i—1 Ki—2
Kiz

SONNCL)

+

__log(log(n) n i
Threshold Value = “log(n) Zl=1(,{i +

61

Here, the value of Z{Ll(% + KI:Zl + KI;Z) represents the maximum weight of messages
received by node i when the TTL=3 and since % is always less than 1, if the proposed

algorithm with adapted equation (4.3) for threshold parameter is used to extract clusters in the
complete network, the algorithm will merge all nodes in one cluster from the first iteration.
This result is acceptable since there is no obvious cluster structure in a fully connected network.
It is worthwhile mentioning that, in each iteration, the threshold value is stepwise increased by
(t-1)x(1- C) x avg t as seen in equation (4.3), so that it becomes progressively difficult for
clusters that are not so densely connected to join with each other. Only the strongly connected
ones will be able to merge. Additionally, the maximum threshold value cannot be larger than
1. By using the proposed model, the threshold value at the first iteration for a small network of

50 nodes as considered in Table 4.2 is derived as 0.223 x t!, where t* refers to the first iteration.

(a) Communities detected with proposed algorithm. (b) Ground truth communities

Figure 4.6 The community structures of the ground truth communities and those extracted by the proposed
DICCA algorithm on the LFR benchmark networks with 50 nodes using TTL=3 and threshold value =0.223xt!.

Figure 4.6 shows the visualization of the ground-truth community structure of 50 nodes and
the detected clusters result using the DICCA algorithm when the threshold value parameter
was calculated using equation (4.3). The DICCA algorithm gives a near optimal partitioning.
It identifies nine clusters, one more than the ground truth partition, which has difficulty in

extracting the cluster containing nodes 33, 23 and 16.

62

Based on the above argument, in all the experimentations performed in this work as discussed
below, threshold value is defined using equation (4.3) and to achieve good trade-off between

high modularity and low message complexity (running time), TTL is set to a value of 3.

4.4 Analysis of Results and Discussion

In this section, the results from the experiments conducted using synthetic networks are
presented, analysed and discussed in detail. The proposed DICCA approach was implemented
using Matlab, which is not optimised for speed on the windows system with ® Core™ 17 6700K
CPU 4.00GHz and 16 RAM available memory.

A set of undirected networks were generated using the LFR benchmark graph. The default
benchmark parameter values are used as the benchmark parameters for the exponents of the
degree distribution and community size, viz. y =2, f =1. The mixing parameter is varied from
0.1 to 0.75 and the number of nodes is varied from 500 to 5000. The average degree and the

maximal degree are 25 and 50, respectively. Table 4.3 outlines the parameters used to generate

the LFR benchmark graph.
Table 4.3 The LFR benchmark graph parameters.
Variable Value Description

n n € {500, 1000, ,,,,5000} number of nodes in the network
K 25 mean degree of each node

kmax 50 maximum degree
p p € {0.1,0.15,...,0.75}, mixing parameter
B 1 exponent of community size distribution

(typically 1 < B <2 in real-world networks)

Y 2 exponent of degree distribution

(typically 2 <y < 3 in real-world networks)
For each combination of parameter values, five instances of network were generated to check
for consistency. Furthermore, to eliminate the effect of randomness of choosing originators in
the proposed DICCA method, the algorithm was run 20 times on the five instances of network

datasets, so, the experimental results presented are the average of 100 simulation runs.

63

4.4.1 Results for Each Iteration of Clustering

Figure 4.7 shows iteration results of the algorithm for a small network with 50 nodes. Nodes
in the same community are labelled in the same colour. In the first iteration, originator nodes
are represented by rectangular shape. It is worth mentioning that due to the reduction phase of
DICCA, which consists of merging nodes in the same community into one node to create a
new graph, nodes in the figure that are shaded together with the same colour represent one node
in the following iteration process of the algorithm. Each iteration results in a network with a
different number of community clusters, and the number of communities becomes smaller and
smaller until the convergence of clusters is achieved. For example, in the initialisation stage,
each node is a cluster on its own, therefore there are as many clusters as the number of nodes
in the network. After initialisation, in the first iteration, 15 communities are identified followed
by 14 and 11 communities during the second and third iterations respectively. The random
initial originator nodes are transferred into meaningful clustering in iteration 5. Graph (g) in
Figure 4.7, illustrates the convergence of the clusters, where there is no change in cluster
membership of clusters with subsequent iterations (iteration 5). To be able to analyse the
intermediate results of the algorithm the value of modularity and NMI via the iteration are
calculated and shown in graph (h) in Figure 4.7, which reveals that at each iteration, the
measure of both Modularity and NMI are improved progressively until the convergence is

reached.

64

(e) Iteration#4 (f) Iteration#5

1
0 ./.___.——.—-._.

0.6 /‘#_‘
) === \odularity

NMI/Modularity
o
D

i N M|
0.2
0
1 2 3 4 5 6
Iteration
(g) Convergence (h) Performance via iteration

Figure 4.7 Community detection result for each iteration on a small network of 50 nodes using the proposed
DICCA algorithm with TTL=3, threshold value =0.223 *t, and V=1, p=2.

65

4.4.2 Clustering Results for Increasing Network Size

To check how the performance of the proposed algorithm is affected by the network size, the
algorithm was evaluated using the previously discussed synthetic network with varying number
of nodes, viz. n € {500, 1000, ... 5000}. The obtained community structure is compared with

the ground truth communities using the previously discussed NMI and modularity measures.

>

2 09

5 -

3508

Sz

S ~07 NMI

£50.

2= Q-DICCA

6: 0.6 Ground-truth Q

0.5
N 7 7z < < N N 7 <, J
) () J, [@) J) C, J, @) J) C,
(7 00 00 00 00 00 00 00 00 OO
Number of Nodes

Figure 4.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis) changes.

Figure 4.8 shows the clustering accuracy of the proposed DICCA algorithm when the network
size 1s varied from 500 nodes to 5,000 nodes. The algorithm performs very well and the
communities detected are very close to the reference (value of 1) with an average NMI value
of above 0.9. However, the modularity index (Q) of clustering results obtained by the DICCA

algorithm is slightly lower compared to that of the ground truth network.

4.4.3 Evaluating Repeatability of the Algorithm’s Performance

It is important to mention that several clustering methods are sensitive to random starts of
algorithm (Weber and Robinson, 2016) and the resulting clusters depend on the initial random
starts where the algorithm does not yield the same result with each run. However, to further
investigate the ability of the DICCA clustering algorithm to produce consistent results across
random starts, the standard deviation of the clustering results is measured where the algorithm

is run 100 times each time with different random initialisation. The lower values of standard

66

deviation indicate lower output changes and are always preferable. Results of the standard
deviation value of both NMI and modularity are displayed in Figure 4.9. As an overview, the
most notable phenomenon that can be observed from the results is that the overall value of
standard deviation is negligible, indicating that the DICCA algorithm does not have stability

issues and is able to successfully reproduce stable output when the experiment is repeated.

0.1

£ 0.08

s

% 0.06

)

T 0.04 Std-NMI

o

=)

= Std-

0.0 Q

0

J, 7 7 < <2, N> N b ¢ 5
()) J, [7) J, (#) J,) J, ()
(7 00 00 00 00 00 OO 00 00 00

Number of Nodes

Figure 4.9 Standard deviation of final modularity/NMI with network sizes.
4.4.4 Evaluation of Message Complexity of the DICCA Algorithm
Performance of the proposed algorithm was evaluated in terms of the total number of
exchanged messages for different network size, as an indirect measure of processing capability
required for increasing network size. At the outset, the curve in Figure 4.10 shows a linear

increase in the number of exchanged messages with increasing size of the network.

However, more in-depth analysis as shown in Figure 4.11, which shows the average percentage
of exchanged messages in each iteration tells a different story. It can be observed from the
figure that data exchange for the DICCA algorithm is much greater at the first stage of iteration
when each node is in its own cluster. Just after 2 to 3 initial iterations, most nodes have their
cluster labels and the algorithm has merged the nodes belonging to the same cluster to be one
node. In fact, on average more than 90% of the data exchange happens in the first iteration for

a network size of 1,000 nodes. As seen in Figure 4.11, the percentages of total exchanged

67

messages in the first three iterations are 99.59 % and 98.66% for network size of 500 and 1,000
nodes respectively. Hence, it can be safely concluded that though the proposed approach may
tend to have an increasing number of generated messages for increasing network size, it does
not require more iterations before the clusters converge. Most of the data exchange is in the
first 2 or 3 iterations due to the sheer number of nodes exchanging data with each other. The
average number of iterations is slightly increased from 5 to 7 as the number of nodes increased

from 500 to 5,000 (See table A.1.1 in Appendix A.1).

16000000
14000000
12000000
10000000
8000000
6000000
4000000
2000000
0

J, 7 7z < < N N 7
C, () J, @) Jy () J) C,
(7 % 9 % Y ‘9 1

—#— Number of
Messages

Number of Messages

Number of Nodes

Figure 4.10 Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes

1.19%

s82% - 1.34%

® |st Iteration = 2nd Iteration m [st Iteration = 2nd Iteration

= 3rd Iteration The rest = 3rd Iteration The rest

(a) (b)
Figure 4.11 Percentage of Message exchanged per each iteration. (a) number of node in the network is 500, (b)
number of node in the network is 1,000.

68

4.4.5 Evaluation of Clustering Performance Using Mixing Parameter

The DICCA algorithm was evaluated with varying values of mixing parameter between 0.1
and 0.75, u € {0.1, 0.15, . . ., 0.75}, and keeping the number of nodes constant, n € {500,
1000}. Figure 4.12 shows the mean values of all the obtained results for NMI and Q.

n=500 n=1000

—@—NMI-DICCA —#— NMI-DICCA

—&— Q-DICCA

—4—Q-DICCA 1 .
0 (1) Ground Modularity '~ (9 Ground Modularity
o 0.8 —— NMI-Fast Greedy 2 03 —— NMI-Fast Greedy
=R 3 E .
3 S 0.6 < g 0.6
<205 205
2204 5204
5203 Z 03
2 02 S 02
O 0.l 0.1
0
Soooocoo0000000 ! Soo0o0000000O00O0
—ateratrhracaTa —ateratLcaca YA
Mixing parameter Mixing parameter

(a) (b)
Figure 4.12 Performance of the proposed algorithm using Mixing parameter. (a) Number of node in the network
is 500, (b) Number of node in the network is 1,000.

In Figure 4.12, the mean modularity score and the NMI of the partitions compared with the
ground truth communities as a function of the mixing parameter are shown. As can be seen,
the proposed algorithm has a similar performance for both networks of size 500 and 1,000.
However, on a closer look, the algorithm performs very well for the mixing parameter value <
0.5 and provides a good match to the ground truth. In contrast, for mixing parameter values
>0.5, its performance drops with respect to both NMI and the modularity scores of its network
partitions.

Also, it should be noticed that with increasing value of mixing parameter, the modularity of
both the DICCA algorithm and ground truth network is decreasing. This can be justified by the
fact that when the mixing parameter becomes more than 0.5 many of the edges will fall outside
the communities and so the communities become rather indistinguishable. In other words, for

smaller p the network exhibits a clear community structure, as per the definition of a

69

community in a strong sense that each node should have more connections within the
community than with the rest of the graph (Silva and Zhao, 2016). Therefore, for higher p, the
network starts to show a multipartite structure and it most closely resembles the network that
does not display any community structure. However, the modularity index of clustering results
obtained by the proposed algorithm is gradually lowering compared to the ground truth network

modularity index.

Furthermore, the modularity of both the ground-truth clustering network and the results
achieved by the proposed DICCA algorithm are shown along with the clustering obtained using
the fast greedy modularity optimisation proposed by Clauset, Newman and Moor (Clauset,
Newman and Moore, 2004). This comparison reveals that the poor performance of the proposed
DICCA algorithm for mixing parameter value >0.5 is not due to the failure of the algorithm

but rather due to the network structure.

4.4.6 Evaluation of Clustering Performance Using Adjacency Matrix

Representations

To further investigate the quality of the clustering performance of the DICCA algorithm, the
spy plot of the input networks and the community clusters obtained by the DICCA algorithm
are shown as examples in Figure 4.13 for network size of 500, 2,500 and 5,000 nodes
respectively. Graphs (a, d, g) in Figure 4.13 show the spy plot for the connections of the input
networks where the graph structure is hardly visible. Graphs (b, e, h) in Figure 4.13 show the
spy plot obtained after rearranging the network according to ground truth community structure
and graphs (c, f, 1) in Figure 4.13 present the spy plot obtained after rearranging the network
according to the clusters that they were assigned to by the proposed DICCA algorithm. Note
that the clusters are ordered based on the number of nodes in the community cluster where the

cluster with the most nodes is located on the top.

70

In the Figure 4.13, each blue dot corresponds to an element of the adjacency matrix that has
the value one, the white areas correspond to elements with the value zero. It can be easily
observed from the plot that the adjacency matrix visualizes strong clusters as solid rectangles
and the DICCA algorithm performs quite well in arranging the nodes into different clusters.
The algorithm discovered 13, 74 and 150 cluster structures with modularity values of 0.776,
0.857 and 0.864 for the final clustering result of 500, 2,500 and 5,000 network size respectively,
which corresponds to a very good community structure between the nodes. The number of
clusters in the actual partitions for the corresponding networks (500, 2,500 and 5,000) are 13,

91 and 171 respectively.

To further assess the similarity of the solutions, another metric called ARI was considered. ARI
is based on pair counting. Although this metric has different bias compared to NMI, which is
based on information theory, in general, the results show the same trend as NMI. The results
are included in the appendix A.l along with the exact values of the NMI and Q performance

measures.

71

Reordered matrix based on ground Reordered matrix based on
Initial matrix truth community structure DICCA
EEm T ENERRRERE .'_'

400 7

o

500 5001 L 500

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
(a) (b) ()
Reordered matrix based on ground Reordered matrix based on
Initial matrix 0 truth community structure q DICCA
500 500
1000 1000
1500 1500
2000 2000
2500 P 2500 :
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
(d) (e) (f)
Reordered matrix based on ground Reordered matrix based on

Initial matrix

truth community structure

£yl

T o]
i L 1 4y w Vs, "l

1000 §

Figure 4.13 Spy plot for the connections of the nodes.

72

4.5 Summary

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) to
extract an efficient community structure for large social networks has been presented. DICCA
is based on random walk and reachability, which is done by message propagation between
neighbours. The algorithm consists of two phases that are run in an iterative fashion. First, it
must determine all originators in the network, which could be seen as cluster centres, and assign
each node to the community whose originator is densely connected. The second phase is to
build new networks based on the detected communities in the first phase where each
community becomes a node and the edges in the new network are representing the sum of the
edges between two communities. The DICCA algorithm uses two parameters named threshold
value and time to live (TTL). The threshold value should be ideally specified by the expert
according to domain knowledge. However, when this knowledge is not available, optimum
parameter values should be estimated. In this work, the mathematical model to obtain optimal
threshold value based on the characters of the networks is presented. In addition, the optimal
value of the TTL parameter is discussed. The DICCA algorithm is demonstrated with an
artificial network and the output shows very promising results.

Regardless of the threshold calculation method, the algorithm is simple and its concept does
not require any global knowledge. Being a localised algorithm, it can be run in parallel or in a
distributed fashion among clusters when the size of the input network or the computation
complexity is beyond the resources of a single computer. In the following chapter the main
challenges to be addressed when designing and implementing the distributed framework

version of the algorithm is discussed.

73

CHAPTER 5
PARALLEL DECENTRALIZED ITERATIVE

COMMUNITY CLUSTERING APPROACH (PDICCA)

In the previous chapter, a standalone approach named DICCA has been proposed for
identifying community clusters, which is self-organised and does not require any global
information of the network. In this chapter, an extended version of the DICCA called Parallel
Decentralized Iterative Community Clustering approach (PDICCA) is proposed. The PDICCA
approach is parallel in that it does not require any global knowledge of network structure when
the data is distributed across several machines and strict synchronization between the

distributed datasets is not required.

5.1 Introduction

Faced with the challenge of a big dataset, many researchers pay great attention to parallel and
distributed clustering algorithms that would improve the bottleneck of traditional clustering
methods on a single machine. To cope with this scenario, a distributed and parallel computing
model is needed to process a large dataset by scaling the dataset out to multiple machines across
a cluster and process it. Some novel parallel computing frameworks shine, of which
MapReduce is one of the most popular (Dean and Ghemawat, 2008).

In this chapter, a Parallel Decentralized Iterative Community Clustering approach (PDICCA)
is proposed. The design of the PDICCA approach follows master/worker configuration, with
one master serving as coordinator of many workers. In this case, of master/worker
configuration, the master is not required to do the job allocations nor does it need to have the
overview of the data itself. The purpose of the master in this configuration is to purely compile

the results from the slave workers at the end of each iteration. These features allow PDICCA

74

to be easily adapted to a distributed graph processing system from data centres to fully
distributed networks.

The PDICCA transforms the operations of the DICCA approach which is a serial process, into
a parallelised approach. The PDICCA is a pipelined parallel implementation and maintains the
overall structure of the serial method (DICCA) presented in the previous chapter. The novelty
of the design comes from the following fact: even though the PDICCA solves the same problem
and maintains the overall structure as does the serial method, the proposed approach is
distinguished due to the features of exploiting the use of distributed memory and extracting
parallelism under the MapReduce framework. The proposed algorithm does not require any
global knowledge of the network topology, and is scalable and will work with a range of
computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory servers,
GPUs), where, the master and slave workers could represent either different threads in a single
machine or different machines in a computing cluster. Also, one of the main contributions of
this chapter is to take advantage of the graph partitioning when performing parallel community
clustering in order to speed up the process by minimizing the communication between slave-
workers. Furthermore, a parallel implementation of PDICCA based on the most popular

MapReduce model to accelerate processing in large-scale networks is proposed.

Table 5.1 Comparison between DICCA and PDICCA

Algorithm DICCA PDICCA
Process Serial process approach Parallelised process approach
approach
Concept of Based on the random walk procedure = Based on the random walk procedure and
the algorithm and reachability of nodes in the reachability of nodes in the network
network
Framework Consists of two phases: local Consists of three phases: clustering, re-
clustering and network reduction clustering and rebuilding phase that run
phase that run in an iterative fashion in an iterative fashion
worker Work in one single machine The approach consists of two worker
schemes schemes: master and slave-clustering
workers
Mismatching Not applicable Use cluster strength to find best result for
node mismatching node
Parameters Uses two parameters, Time To Live Uses two parameters, Time To Live and
and threshold value threshold value

75

5.2 Description of the Proposed PDICCA Approach.

The core idea of my proposed approach is to divide the dataset into blocks, and then iteratively
repeat the following three phases: clustering, re-clustering and rebuilding phase: the clustering
phase is responsible for finding local community clusters for each block independently and in
parallel. In the second phase, the local clusters thus extracted from the individual blocks are
aggregated to find the initial community clustering for the entire network. The third phase
involves building a new, but smaller network for each block of data based on the initial
community clustering. Each cycle of this process through all the three phases is referred to as
an iteration. The three phases iterate until the old and the new community-clustering list does

not converge anymore.

5.2.1 Framework of the PDICCA Approach

The PDICCA approach consists of two worker schemes: master and slave-clustering workers.
The master worker creates the blocks as it reads the dataset, and passes them to slave-clustering
workers. The master worker is also responsible for receiving and aggregating the cluster
assignment results from all the slave-clustering workers, perform some computation, assign the
overlapped nodes into the best community and return the final solution. On the other hand
slave-clustering worker’s functionality is to identify local communities by going through its
own data set and applying the first phase of the DICCA approach proposed in chapter 4, named

local clustering phase. The overview of PDICCA approach is shown in Figure 5.1.

Slave-clustering worker runs in parallel and stores the community clustering lists in its local
memory. However, since each slave-clustering worker has some part of the data and does not
have a global knowledge of the network, consequently, different slave-clustering workers could

cluster the same node into different communities. Thereby, when all the blocks are clustered

76

and the local communities have been identified, the master worker loads the local community-

clustering lists to aggregate.

Since the PDCCA approach is proposed to find non-overlapping clusters then the partition C
of n nodes should form a partition such that n=U¥_; Ci and Ci N Cj =@ for any i# j. So, the
master worker is responsible for finding the set of overlapping nodes. The overlapping node
list is then sent back to the slave workers to calculate the strength of clustering solutions for
each overlapped node among different machines. This is then sent back to the master worker
for the re-clustering phase. In the re-clustering phase, the master worker finds out the best
solution for overlapped nodes, the solution corresponding to the highest strength of clustering,
and updates the community-clustering list. At the end of the re-clustering phase, the network
is partitioned into a number of communities.

Next step is the re-build phase, which involves building a new network by each of slave-
clustering workers. Using the same method presented in section 4.2 where the nodes in the new
network are the communities from the re-clustering phase. The weight of the link between two
nodes in this new network is the total weight of the links between the nodes of the two
corresponding communities in the original network. The links between the nodes of the same

community become self-loops of the corresponding node in the new network.

The iteration is then repeated until a stable set of community clusters (fulfilling the
convergence condition) is obtained.

It is to be noted that each slave-clustering worker has its own private non-shareable memory

and there are no communications between the workers in the clustering phase. Thus, each
slave-clustering worker operation is independent of the others and each of the slave-clustering

worker’s operations can be performed in parallel.

77

Convergence? ¢
Run next iteration No
Yes
\/ End
Slave Slave s
ave
Split 1 Yarker Worker worker
Split 2 J — !
. - -
X Slave Master Slave Master Slave Master
“—» Split3 worker worker worker worker worker worker
Split N J 1
Slave Slave Slave
orker orker orker
Data
records
I : It : L IL I}
Find the local Clustering Find strcfngth of Find ou't the best Updated community Convergence
i R clustering for solution for -
communities aggregation and overlappin overlapped clustering list and test
find overlapped pping Pp Rebuild the network
nodes nodes

nodes

One Iteration

Figure 5.1 Framework of the PDICCA approach.

To calculate the strength of overlapped nodes, the clustering strength of overlapped node V,,

is formalised in the following definition:
Definition 5.1 Cluster strength

Given a network set G = (V, E), with n = |V| nodes and m = |E| edges is presented. During the
clustering phase, each slave-clustering worker clusters these nodes into C clusters and assigns
V, node to different communities. To find the best community that fits Vi, node, the proposed
scheme carries out the following two steps:
First, the node V,;, obtains two sets of information from each of its neighbours, namely, the
degree of the neighbour node and the cluster to which it belongs to, and then calculates the

neighbour attraction between V,,, and its neighbour V;, which is defined as:

W(Vm,Vi)

Nbr Attraction V,,, (V;) = WViVi)
iVk

(5.1)

ZVkENbr(Vi)

78

Where W(V,,,, V;) represents the weight of the edge between V,,, and V;.

Then the strength value of Vi, for all the clusters (C) where V,, belongs to is calculated by
computing the sum of the attractions for V,,, towards its neighbours (Nbr Attraction) within
these C clusters.

The pseudocode for the cluster strength of V,, to the cluster C; is shown in Algorithm 5.1 and
it is calculated as follows:

Cluster strength (Vip, C1) = Xv,e c,&v,enbr(v,,) NbT Attraction Vi, (V;) (5.2)

Algorithm 5.1 The Cluster strength

Function Cluster strength

Input: underlying network graph G, Vm (overlapped node)

Output: Cluster Id community as a final division of Vm.

Function Cluster strength (G, V)

for each Node Vi € Nbr (V,,,) do

Nbr Attraction Vi (Vi) <= W, Vi) / 2y, . — W, V)

end

for each C do // C is the Community clusters
Cluster strength (Vim, Ci) <~ W Xy e ¢,&v,enpr(v,,) Nbr Attraction Vy, (V;)
end

Cluster Id=Max {Cluster strength (Nm, C;)}
Return Cluster Id
end function

The proposed scheme calculates how strongly the mismatching node Vy, is connected to each
of the existing clustering solutions and then Vi joins the cluster with the highest cluster strength
value.

Refer to Figure 5.2, node ‘V‘ has neighbour nodes (‘V2’ and ‘V3’), and belongs to the cluster
‘C1’ and has one node ‘Vi’ that belongs to cluster ‘Cz’ then the neighbour attraction between

node’Vy’ and its neighbour is:

W(VerZ)

Nbr Attraction Vi (V2) = W(VaV i)
2VEk

= § ; where Vi={ V1, V4 ,Vs}

ZVkerr(VZ)

79

(s —0 4

-

Figure 5.2 Examples of eight nodes with two community clusters

. W(V1,V3)
Nbr Attraction Vi (V3) = = - ; where Vi={V1, V
r Attraction Vi (V3) ST where Vi={V1, Vs}
. W (Vy,Ve) 1
Nbr Attraction Vi (Ve) = = - ; where Vi={V1,V7,V
r Attraction Vi (Vo) S enprwe W VeVK) 3 where Vi={Vi,V7, Vs

The cluster strength of V1 to the cluster C; is calculated as follows:

Cluster strength (V1, C1) = Xy, ¢, avensr(vy) NDF Attraction V; (V;)= % + > =0.8333
The cluster strength of V1 to the cluster C: is calculated as follows:

Cluster strength (V1, C2) = X ¢, e ensr(vy) NbT Attraction V (V;) = =0.3333

Based on the cluster strength value, the node V1 chooses to join the cluster with higher strength,

which is cluster Cj in this example.
5.2.2 Partitioning of the Network Nodes Set

It is worth mentioning that in this work, for the purpose of computation, network nodes are
partitioned with the same size and they are assigned to different workers. This enables the
workers to serve a similar size of network.

It would be beneficial for the nodes close to each other to be processed on the same worker,
since this will increase the local computing and decrease network transfer (cost of bandwidth)

caused by overlapped nodes (Kajdanowicz, Kazienko and Indyk, 2014). Unfortunately, the

80

network partitioning requires a priori knowledge of the global picture of network structure,
which is a resource-consuming task, especially for large network structures. For this reason,
in this work the partitioning aspect of the network is done randomly with the consideration that

the number of edges in each partition should be the same.

5.2.3 How to Calculate the Parameters

As mentioned in the previous chapter, DICCA approach uses two parameters to be defined.
The first parameter ‘Time To Live’ (TTL) is defined as the number of hops that a message is
permitted to travel before being discarded. The next parameter is threshold value that
determines the difficulty of merging communities and is defined by the equation presented in
the previous chapter. However, in the PDICCA approach, TTL is set to be 3 (optimal value
obtained from chapter 4) and the threshold value for each worker is calculated based on its

local view of data and using the equation 4.3 presented in chapter 4.

5.3 Matlab Implementation of PDICCA Approach for

Distributed Memory Systems

To implement the PDICCA approach in a parallel manner, the Parallel Computing Toolbox
(PCT) available in the Matlab software platform is used (MATLAB, Release 2017a). PCT
enables computational solution of data intensive problems using multicore CPUs, GPUs and
computer clusters. In PCT to start a parallel processing, the MATLAB pool is opened to reserve
a collection of MATLAB worker sessions that run separately on the local machine or on a
remote cluster. In the PCT toolbox the loop command “parfor” is included. By using parfor,
for each worker a separate process is created with its own memory and own CPU usage. The
workers are headed by a client process which creates and manages them. When parfor is

executed, the MATLAB client coordinates with the MATLAB workers which form a parallel

81

pool. The code within the parfor loop is distributed to workers and it executes in parallel in the
pool. The required data needed by workers to do the computations is sent from the client to all
the workers and the results from all the workers are collected back by the client as shown in

Figure 5.3.

Client

e Code
distributed to
workers

Parfor i=1:n

end

: Workers
: returning the
| results to client

Worker 1 Worker 2 Worker n

Figure 5.3 Parfor mechanism.

In this work, the algorithm is implemented on a multi-core machine to which two or more
independent processors are attached. The client divides the work among multiple processors
by allocating different data to the different processors (called workers). The processors run
their job independently of each other and no communication can occur between workers during
the execution of the loop. Each processor executes the same program but working on different
sets of data, so each worker maintains its own memory stack. Furthermore, since the
implementation relies on partitioning data into a number of blocks, the number of data blocks
equals the number of available workers (processors) in which each worker has only one block

of data to process and does not have access to the whole data.

82

The client loads the outputs from each worker and aggregates the outputs to do some processing,
submits new instructions to workers and makes final clustering when stable condition has been

reached.

5.4 Parallel Algorithms Using MapReduce Model

Since in MapReduce model it is not possible to share any information among different slave
machines while running map or reduce functions, not all of graph clustering based algorithms
can be fitted into the MapReduce model. However, since the idea of the PDICCA approach
follows master/worker configuration, with one master serving as the coordinator of many
workers, this algorithm can be directly applied to work on top of the MapReduce computing
framework. As shown in Figure 5.1, the PDICCA approach is an iterative process, where each
iteration can be expressed in three step MapReduce jobs. To begin with, the client submits the
job to the master node of a machine cluster where the master machine will partition the input
data into several parts and arrange a number of slave machines to process these input data
partitions in map functions. The output of each map function will be sorted, shuffled and then
routed to the proper reducer. During the iterative process, the reducer’s output is directly sent
to the map function for the next round of the iteration. The process is repeated until the
termination condition is met and the final output is obtained. However, each Map function

needs to get the same data split during each iteration.

The different stages of computation are shown in Figure 5.4 and the description of each stage
follows:

83

output E
{ Input file data) o !
SR oo Singleiteration .______________________________ -
I] |
| y " i Yes
| > Mapper ﬂ" Reducer =P \apper ﬂ-} Reducer == Mapper P Reducer . i
| | N i
i [) [) | J 0,
i 1 * Map-Reduce stage 2" Map-Reduce stage 3" Map-Reduce stage

Figure 5.4 PDICCA workflow and architecture.

5.4.1 Description of Algorithm in MapReduce Model

* Input
* Dataset (network) —Large
* First Map Stage
» Step 1: Select one node at random (originator)
* Step 2: apply the first phase of the DICCA approach to find the local community
clusters
* QOutput <node, cluster ID>
* First Reduce Stage
* Step 3: Find overlapped node clustering
* QOutput: <mismatched clustering nodes>
* Second Map Stage
» Step 4: For each overlapped clustering node, re-compute the strength of answers
* Qutput: <mismatched clustering nodes, strength>
* Second Reduce Stage
» Step 5: Find the best answer for each mismatched node
* Qutput: <mismatched clustering nodes, best answer>
* Third Map Stage
* Step 6: Assign mismatched node to the best answer.
* Step 7: Rebuild the network
* QOutput: <Nodes, Cluster ID>
* Third Reduce Stage
* Step 8: Compare the new discovered community and the old one (communities from
previous iteration)
* If similar = Stop
* Else = Go to Step 1 to start another MapReduce Iteration
* Use of Single Reducer
* The size of the dataset sent to the reducers is very small
» Single reducer can tell whether any of the node is mismatched or not
* Creates a single output file

84

It is worth mentioning that although the PDICCA approach is presented here using a
MapReduce model, the approach can be implemented in a range of iterative MapReduce
implementation frameworks such as Twister programming model that are built for iterative

graph algorithms (Ekanayake et al, 2010).
5.5 Analysis of Results and Discussion

5.5.1 Environment Setup

The PDICCA approach is implemented in Matlab, a discrete event simulator for building P2P
protocols. Using the LFR networks mentioned in chapter 3, several experiments have been
conducted to evaluate the scalability and quality of the proposed algorithm. The experiments
are performed on a system configured with 4® Core™ 17 6700K CPU 4.00GHz and 16 RAM
available memory running windows. Because the approach initializes the originator randomly
and in order to neglect the effect of randomness in our method each result is averaged over 100

runs.

5.5.2 Experimental Evaluation

5.5.2.1 Horizontal Scalability in Relation to the Number of Parallel Cores

To demonstrate how well the PDICCA approach handles datasets when more workers are
available, the number of nodes in the network used in this evaluation is kept constant and the
number of workers is varied from 1 to 4. Figure 5.5 shows the results of different cores when

the number of nodes is constant, n € {500, 1000}.

5.5.2.1.1 Quality

From Figure 5.5, the PDICCA shows a good scalability close to the optimal value, which is
indicated by average modularity and NMI values. In addition, it is clear that using more than
one worker to parallelise the algorithm does not adversely affect the accuracy of the result.

85

Consequently, the results prove that the algorithm is effective and able to achieve very high-
quality results in a parallel manner. More especially, PDICCA is capable of exploiting multi-

core architecture efficiently.

n= 500 n= 1000
1 1 O— — i i
—a—8—3 >
) e g 08
E_ 07 5o
855 06 2506
<2 05 o Z
e 0.4 2204
£o 03 52
832 02 202
3 ol 5
O 0 0
! 2 3 4 ! 2 3 4
Number of workers Number of workers
—B—NMI Q-PDICCA Ground-truth Q ——NMI Q-PDICCA Ground-truth Q
(b) (b)

Figure 5.5 NMI, Q-PDICCS and Ground truth Q scores (y-axis) as number of workers (x-axis) changes number
of nodes: (a) 500 (b) 1,000.

5.5.2.1.2 Message Complexity of the PDICCA Algorithm

Considering the number of exchanged messages for each worker, Figure 5.6 shows the
percentage of exchanged messages at each iteration by each worker processor. As can be
observed in each iteration, each worker generates almost the same number of messages, this
can be clarified by the fact that the data has been partitioned equally among the workers so
each worker has to process the same size of data. Hence, at each iteration, the master worker
must wait until all workers have completed their processes. So, splitting the data equally over
workers, can significantly reduce the expected time needed to wait until the slowest machine

worker returned data.

86

n=500, 2 workers n=500, 3 workers n=500, 4 workers

800000 400000 ., 250000
% 700000 £350000 g
2600000 $300000 s 200000
2500000 $250000 8
= 400000 >500000 < 150000
5300000 5150000 S 100000
& 200000 $100000 5
£ 100008 m "§ 50000 1 "2 50000
> L 2o asallIF m
Z A U R 2 Z 0 m
S S, Yy Y4 VAEC SN
1%(\ o'f@O’f@ o{\% &[f(& ’?o}f fo'% ’50f0 %y %O)O}O, 7,30
%, %, %, o, Yy, Y %, %, %, ‘&,
o o o
O 0 O O’) 0 /}OO(?/}OO [}Oo
H | worker M2 workers m | worker ®m2 workers
m | worker M2 workers
m 3 workers m 3 workers 4 workers
(@) (b) (c)
n=1000, 2 workers n=1000, 3 workers n=1000, 4 workers
1400000 2 700000 2 450000
£ 1200000 & 600000 £400000
) 3 $ 350000
2 1000000 g 500000 © 300000
S 800000 400000 = 250000
P> 600000 “ 4= 200000
s o 300000 © 150000
5 400000 2 200000 2100000
‘g 200000 il £ 100000 ||| £ 50000 Ml i
E 0 - m= Z 0 [[[][] Z VA) 7
PARCIIT I &, 0, o
Ny 7, B % G G G e
%, % %, % % %w . Yy T
,‘90' ﬁ‘?o]éf}' * . %,. ’o,) %, ’o(>
% % % %, %, °
| worker ™2 workers | worker ™2 workers
®] worker M2 workers m 3 workers m 3 workers m4 workers
(d) (e) (

Figure 5.6 Number of Message exchanged in each iterations and for each worker with respect to the number of
workers varied from 2 to 4 (a, b, ¢) for number of nodes 500 (d, e, f) for number of nodes 1,000.

For more in-depth analysis, Figure 5.7 shows the average percentage of exchanged messages

in each iteration. It can be easily observed from the figure that data exchange for the algorithm

is much greater at the first stage of iteration when each node is in its own cluster. Just after 2

to 3 initial iterations, most nodes have their cluster labels and the algorithm has merged the

nodes belonging to the same cluster to be one node. It also becomes clear from the Table 5.2

that the percentage of exchanged messages between master and slaves, the communication cost,

87

is negligible. In comparison to the information exchanged locally in slaves which is very costly

and constitutes the main body of the time consumption of the algorithm.

n=500, 2 workers

1% 1%
\

m 1st Iteration = 2nd Iteration
= The rest

(a)

n=1000,2 workers

~ 2%

= 3rd Iteration

2%

= 2nd Iteration

m 1st Iteration

= 3rd Iteration = The rest

(d)

n=500, 3 workers

3% 2%
/

|

= Ist Iteration = 2nd Iteration

= 3rd Iteration = The rest

(b)
n=1000, 3 workers
5% 4%

‘“

= 1st Iteration = 2nd Iteration

= 3rd Iteration = The rest

(e)

n=500 4, workers
4% -

= st Iteration = 2nd Iteration

= 3rd Iteration = The rest
(c)

n=1000,4 workers

="

= 1st Iteration = 2nd Iteration

= 3rd Iteration = The rest

(f)

Figure 5.7 Average percentage of Message exchanged per each iteration with number of cores varied from 1 to
4 workers (a, b, ¢) network size 500 (d, e, f) network size 1,000.

Table 5.2 Comparison with message exchanged locally in hosts and messages exchanged between master and

hosts
Number of nodes 500 1000
0,
?X}?:;aizs % messages %Messages % messages
No. of Workers £ exchanged between = exchanged locally = exchanged between
locally among
slaves master and slaves among slaves master and slaves

2 99.9767 0.0233 99.9760 0.0240
3 99.9636 0.0364 99.9631 0.0369
4 99.9599 0.0401 99.9629 0.0371

88

5.5.2.2 Clustering Results for Increasing Network Size

To demonstrate the performance influenced by scalability, the number of nodes is increased
linearly from 500 to 5,000 and the number of workers is kept constant at 3. All other parameters

and factors remain the same as previous evaluations.

5.5.2.2.1 Quality
The modularity values of the solutions obtained by the PDICCA approach are presented in
Figure 5.8. It can be observed from the figure that the performance of the PDICCA is

consistently good and close to the optimal value with NMI 0.96 and modularity 0.84 on average.

~0.65

Clustering Accuracy
N
S
~
(9]

Number of Nodes
NMI Q-PDICCA Ground-truth Q

Figure 5.8 NMI, Q-DICCS and Ground truth Q scores (y-axis) as number of nodes (x-axis) changes.

5.5.2.2.2 Evaluating Repeatability of the Algorithm’s Performance

To further investigate the ability of the PDICCA approach to produce consistent results across
random starts across random data partitioning and initialisation, the standard deviation of the
clustering results is measured where the algorithm is run 100 times each time with different
random data partitioning and algorithm initialisation. The standard deviation value of both NMI
and modularity for the data sets with different network size are displayed in Figure 5.9, which

is relatively very small and in some cases around zero variation.

89

0.05
0.045
0.04
0.035
0.03
R 0.025
B 0.02
S 0.015
0.01
0.005 T

viation

a

Stan

S < 7 < < N RY 7 . Ry
(@) (@) S [@) S (@)) (@) Sy (@)
© % % Q@ 9 9@ 9 9@ 9 Y
Number of Nodes
—l— Std-NMI Std-Q

Figure 5.9 Standard deviation of final modularity/NMI with network sizes.

5.5.2.2.3 Evaluation of Complexity of the PDICCA Approach

To investigate the relationship between the number of nodes and complexity of approach, both
the computing time and the total number of exchanged messages as a function of the network
size are presented in Figure 5.10 (a and b). Since PDICCA requires a large number of
exchanged messages between nodes, which is the most time consuming part during execution,
the performance of PDICCA highly depended on the total number of exchanged messages.
Therefore in this approach, the running time increases with the network size as a consequence
of increasing the number of exchanged messages. For example, the computing time and total
number of messages exchanged by PDICCA for n€{500; 5,000} are {8.6; 3,763} and

{1,344,282; 15,633,691} respectively.

The average number of iterations and number of clustering solutions achieved are summarized
in Table 5.3. As can be seen, the PDICCA usually tends to detect fewer communities than the
ground truth solution. Another observation is that the number of iterations seems to depend

more on the network structure than the size of network.

90

18 4000

. 16 3500
5]
@ 14 3000
gz 12 '3 2500
=20 g
SE 8 2 2000
}éé 6 = 1500
5 1000
Z 4
2 500
0 0
T 4 L) Oy 0y D T T Ty T Oy L O Oy O Ty T Ty
O, 0,5, 0,~5,," 0,9, O, "I, 0, </~
Y %, 0, %, 0, %, 0, %, 5, %, Y %, 0,%,°0,%,"0, %, 9, %,
Number of Nodes Number of Nodes
—#— Number of Messages (in millions) —#— Execution Time
(b) (b)

Figure 5.10 (a) Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes.
(b) .Running-time scalability of proposed algorithm in seconds.

Table 5.3 Experimental results of the PDICCA approach for increasing number of nodes in the network

Number G.No. No

of nodes cluster NMI clust.er Iteration
500 16.4 0.9487652 14.9 4.65
1000 32 0.9497669 28.24 4.88
1500 514 0.9596985 45.79 5.01
2000 69 0.9660799 61.85 5.22
2500 87.6 0.9664238 77.84 5.11
3000 103.6 0.9675385 92.34 5.31
3500 122.6 0.9698933 108.89 5.29
4000 133.6 0.9674534 118.71 5.41
4500 154.8 0.9703297 137.01 5.35
5000 173 0.9695852 151.99 5.34

5.5.2.3 Evaluation of Clustering Performance Using Mixing Parameter

The PDICCA approach is evaluated with varying values of mixing parameter between 0.1 and
0.75, ue{0.1, 0.15, . . ., 0.75}, and keeping the number of nodes constant, n€{500, 1000}.
Figure 5.11 shows the results obtained for both modularity and NMI accuracy as a function of
the mixing parameter using the PDICCA for network sizes 500 and 1,000 nodes. As can be
clearly seen, the natural partitions of the network are always found (in principle) for the mixing

parameter value of up to 0.5, after which the method starts to fail where the quality of PDICCA

91

was rather poor. However, fast greedy modularity optimisation algorithm does not have
impressive performances either, and displays a similar pattern. Furthermore, the performance
of PDICCA is expected to decrease as p increases because higher values of p indicates that the
community clusters in the network are not well defined.

More results including the exact values of the Q and NMI performance measures along with

ARI metric values can be found in the appendix A.2.

n= 500 n=1000
1 1
>
%‘ 0.8 § 0.8
3 o=
85 06 2= 06
< = on Z
2= 04 £ 04
52 £e
Z 02 2 02
=]
S @)
0 0
cCoocococococooooooO CoocoCocOoo0o0oOoo0
——RDbLLrbruLoaon 9 == INNNWWERERROVOULONOY I
(%] (%] (%) (%) W W W (9] (94} W W (9] W (9]
Mixing parameter Mixing parameter
—#—NMI-PDICCA —4—Q-PDICCA —=— NMI-PDICCA —a— Q-PDICCA
Ground-truth Q —@—NMI-Fast greedy Ground-truth Q —0— NMI-Fast greedy
(a) (b)

Figure 5.11 Performance of the proposed algorithm using Mixing parameter p. (a) Number of node in the
network is 500, (b) Number of node in the network is 1,000.

5.6 Summary

In this chapter, the distributed-memory parallel version of the DICCA approach, named
PDICCA, to extract an efficient community structure for large networks, is proposed. PDICCA
builds around the idea of splitting data instances into blocks and then clusters each block
independently and in parallel fashion across multiple cores/machines. The clusters extracted
from blocks are then aggregated at the final stage using the re-clustering stage. The PDICCA
approach provides several features simultaneously. Since it does not require a global

knowledge of the network topology, it is effective to process massive datasets that are too large

92

to fit in memory. In addition, PDICCA addresses the computationally intensive issues and
utilizes maximum hardware capabilities of modern multi-core systems for faster execution by
processing multiple blocks in a parallel manner. Furthermore, when scalability issues occur as
the data size grows beyond the processing power of a single machine, the proposed distributed
approach based on the MapReduce computing platform will help address this. Finally, in this
chapter the effectiveness and complexity of the PDICCA approach is tested and analysed using
synthetic networks with ground truth communities. The experimental results of the PDICCA

approach prove promising.

Since the nodes in the network contain a large amount of attribute information, this attribute
information has important significance in completely presenting the community structure of
the network. For example, in a social network, members of the same organisation are not only
friends but also they are more likely to have common interests or common individual attributes.
Therefore, in the following chapter, the approach which utilizes attribute information, shared
neighbours’ information and connectivity between nodes in the network to extract communities,

1s proposed.

93

CHAPTER 6
A PRE-PROCESSING APPROACH FOR ROBUST
COMMUNITY CLUSTERING TECHNIQUES BASED

ON COLLABORATIVE INFORMATION SOURCES

In this chapter, a pre-processing approach for improving the robustness of community detection
in the existing weighted community detection algorithms, especially in networks with missing
information is proposed. This is done through considering attribute information, shared
neighbours’ information and connectivity between nodes in the network, for the detection
process. Empirical results demonstrate that the proposed approach is robust and can detect
more meaningful community structures within incomplete information networks than the state-

of-the-art methods that consider only topology information.

6.1 Introduction

In many real-world network structures such as social networks and the World Wide Web, in
addition to the link information, nodes are accompanied with their attribute values referred to
as attribute/content information. For example, in a social network, the nodes’ properties could
describe the roles of a person while the topological structure represents relationships among a

group of people.

A fundamental property in network is the community structure. Another property of similar
interest is transitivity or global coefficient clustering, which is defined as the tendency among
two nodes to be connected if they share a mutual neighbour (Newman, 2001). In terms of

network topology, recall from chapter 3 equation 3.4 transitivity defined as the presence of a

94

heightened number of sets of three vertices with edges between each pair of nodes (triangles)

in the network.

Empirical studies have found that the concept of transitivity applies in about 70—-80% of all
cases across a variety of small group situations (Davis, 1970; Louch, 2000). Huijuan and
Shixuan (2013) proposed a graph clustering algorithm called SNGC that considers both
connectivity between nodes and shared neighbours. Their experimental results show that the
proposed algorithm provides promising results and could be applied to the analysis of social
networks, computer networks, bioinformatics, etc.

Another common occurrence in networks is that similar nodes associate with each other more
often than with others (e.g. in social networks, people choose to be friends with people who
share their beliefs). This property in known as Homophily (McPherson, Smith-Lovin and Cook,
2001). Traud et al (2011) show that a set of nodes’ attributes can act as the primary organising
principle of the communities. Several studies have been performed to investigate this
phenomenon of Homophily, which is summarized in McPherson, Smith-Lovin and Cook

(2001).

Most of the existing approaches found in the literature make use of either link information or
attribute information analysis alone for community detection. However, in real-world networks
neither piece of information on its own is sufficient in determining good clusters of the network.
The link information is usually sparse and noisy. On the other hand, relying on the attribute
information alone could mislead the process of community detection. For example, the process
may not identify the strength of a node’s relationship with its neighbours correctly.
Consequently, by taking into account only one source of information, the algorithm may fail
to detect accurately the entire community memberships. However, considering more than one
source of information for community detection could produce meaningful clusters and improve
the robustness of the network. For instance, in the case of attribute information, shared

95

neighbours and connectivity information are considered, then if either one source of
information is noisy or missing, the other could make up for it. Therefore, the proposed
approach will consider attribute information, shared neighbours and connectivity information
aspects of the network for community detection. It should be noted that this work does not
attempt to introduce a new community detection algorithm; rather proposes a pre-processing
step to improve existing community detection algorithms and make them execute with better

results in unreliable data network environments.

In this chapter, a network is represented as an undirected network G = (V, E, A), where V is
the set of nodes, E is set of edges between nodes. Each node Vi € V is associated with an

attribute vector (A7, ... A?). Where d is the attribute dimension and i represents the node ID.

The main goal of this work is to find K non-overlapping communities in the network where the
community (C) is defined as a list of non-empty node subsets: C ={C4, C,,,,Cx } ,= and V=

UK, C; that satisfy C; N C; = O for any i# .

6.2 Related Literature and Contribution

During the past decade, the problem of community detection in networks has drawn a great
deal of attention and several algorithms have been proposed. However, most of these existing
methods use either link information or attribute information alone for detecting communities
in the networks. Recently, there have been several studies (Dang and Viennet; Yang et al, 2009;
Zhou, Cheng and Yu, 2009; Lin et al, 2012; Ruan, Fuhry and Parthasarathy, 2013; Salem and
Ozcaglar, 2014) showing that the combination of attribute and link information to detect
communities in a network can improve the clustering quality. Most of these studies propose
new algorithms that aim to use both sources of information; however, their success relies on
the completeness of the dataset. Moreover, most methods use all attributes the same way

without considering which ones may influence the community structure more, and lack the

96

flexibility of balancing the information coming from network adjacency matrix and its node
attributes. Additionally, none of the studies examines the quality and the number of community
structures that could be identified in the network when some of the links are missing i.e. noisy
network environment. So, to the best of our knowledge, this is the first study on the community

structure that seeks to:

1. Design a unique pre-processing approach for the state of the art community detection
algorithms by tightly integrating the attribute information, shared neighbours and
connectivity information aspects of the network to produce a new matrix.

2. Study the correlation between communities and attributes in the network and introduce
weight detection attribute model to learn the degree of contributions of different
attributes based on the impact of attribute on the community structure.

3. Evaluate the performance of pre-processing approach within incomplete, noisy,

networks.

6.3 Experimental Datasets

In order to investigate the correlations between attributes and community structure and to
evaluate the proposed approach, anonymised Facebook datasets as introduced by Traud et al
(Traud, Mucha and Porter, 2012) and (Traud et al, 2011) are used. The Facebook datasets are
undirected and unweighted. The datasets were recorded on a particular day in September 2005
and contain Facebook networks from 100 different American university networks whose nodes
represent users and the links represent friendships between users. Attribute information about
each user is also provided. Each user has seven node attributes: a student/faculty status flag,
gender, major, second major/minor (if applicable), dormitory (house), year and high school. In
this work four networks from 100 Facebook datasets are used. In particular, the Caltech36,

Reed98, Haverford76 and Vassar85 datasets, which contain 769, 962, 1,446 and 3,068 nodes

97

and 16,656, 18,812, 59,589 and 119,161 edges respectively are used. However, the proposed
approach in this work is not limited to the social networks but can be applied to many kind of

graph structures.

6.4 Correlation Analysis

6.4.1 Shared Neighbours

In order to measure how likely any two nodes with a common neighbour are themselves

connected, the clustering coefficient of each node in the network is calculated.

Recall from chapter 3, the node clustering coefficient C;, of a node i is defined as the ratio of
the number of edges connecting the neighbours of i to the total possible number of such edges

of I, K; is the degree of node i.

Where, L; is the number of edges between neighbours of node 1 (Costa et al, 2007).

The clustering coefficient for the whole network is the average of the local values C;.

C=-3n,¢ (6.2)

n
Where n is the number of nodes in the network (Costa et al, 2007).

Figure 6.1 shows the visualization results of the cluster coefficient for each node in the four
datasets. In this figure, colours of nodes correspond to values of their corresponding clustering
coefficients. As can be seen, there are some nodes that have high clustering coefficients, which
indicates strong connectivity between each other. In the other words, they are more prone to be
in the same cluster. Furthermore, the clustering coefficient for the considered networks are
0.4288,0.3304, 0.3268 and 0.2487 for Caltech36, Reed98, Haverford76 and Vassar85 datasets
respectively.

98

(a) Caltech36 (b) Reed98
1 1
’ 09 09
]
— . 08 ¢ 0.8
L]
07 07

. 0.5 N 0.5
0.4 0 0.4
0.3 . 0.3
’ 0.2 0.2
. 0.1 . 0.1

0 0

(c) Haverford76 (d) Vassar85
Figure 6.1 Visualization results of node clustering coefficient for subset of four datasets (should be viewed in
colour).

Therefore it is clear from the above discussion that the shared neighbours’ information can be
used to describe the nature of connections between nodes in the network. This should motivate

the use of shared neighbours’ information in detecting community clusters in the network.

6.4.2 Correlation of Communities and Attributes

For the sake of computing the correlation between connectivity of nodes and their attributes,
the nodes are clustered based on their attributes in which, the nodes whose attributes are similar
are grouped together to form a cluster. Also, four different community clustering algorithms,

99

which are FastModularity (Clauset, Newman and Moore, 2004), Louvain (Blondel et al, 2008),
leading eigenvector algorithm (Newman, 2006a) and WalkTrap (Pons and Latapy, 2005) are
applied on the datasets to find the communities. Then the correlations between the resulting
communities from these algorithms and the attributes are measured using Jaccard similarity

index.

Figure 6.2 shows the correlations between attribute and communities clustering for Reed
dataset. The visualization is done using R with the help of the Igraph package (Csardi and
Nepusz, 2006). From this figure some of the correlations between attributes (colours) and the

community structure can be observed.

Figure 6.3 presents the Jaccard similarity index for four different community detection
algorithms with each attribute over the four networks in the Facebook dataset. It is interesting
to notice that for the same dataset, the order of the correlation strength across different attributes
is not the same and varies from one community clustering algorithm to another. For example
in Reed98 dataset, if the agreement with the fast modularity algorithm is considered, the most
agreement is observed with the attribute ‘student faculty’. On the other hand, Louvain
algorithm performs the best if the agreement with the “year’ is considered. This is due to the
fact that each algorithm differs on how they treat the nodes and assign them to different

communities with different size and number of communities.

Even though there exists a difference in attribute ranking across different algorithms and
datasets, as an overview, the most agreements are observed with student faculty, gender, year
and dormitory attributes. However, in computing the correlation between attributes and
community structure, Traud et al (2011) reported that the order of correlation strength is

significantly dependent on the agreement index used and not consistent across different indices.

100

Fastgreedy Louvain Leading eigenvector Walktrap
(©)

Figure 6.2 Visualization of correlations between attributes and communities for Reed dataset. (a) Communities
based on attributes: nodes are coloured the same if they have the same value for the corresponding attribute;
nodes with a missing value for an attribute are white. (b) Communities based on community clustering
algorithm: nodes are coloured the same if they belong to the same community.

101

Caltech36

0.5
x 0.4
(]
<
=03
b=
502 I I
g I
S ([| il »
. [LI T T — i
Student/ Gender Major Second Dormitory Year High school
faculty major/ minor (house)
Attribute
m Fast Modularity ® Louvain m [eading eigenvector = walktrap
Reed98
0.5
x 0.4
(]
o
=03
=
8 0.2
g
0 | [1 1| I - -
Student/ Gender Major Second Dormitory Year High school
faculty major/ minor (house)
Attribute
m Fast Modularity ® Louvain m leading eigenvector = walktrap
Haverford76
0.5
w 0.4
Q
o
=03
=
s 0.2
Q
<
= 0.1 II
0 [T 1 | I— IIII
Student/ Gender Major Second Dormitory Year High school
faculty major/ minor (house)
Attribute
® Fast Modularity ®Louvain ® leading eigenvector = walktrap
Vassar85
0.5
w 0.4
Q
o
= 0.3
=
s 0.2
Q
<
= 0.1 I I I
Student/ Gender Major Second Dormitory Year High school
faculty major/ minor (house)
Attribute
B Fast Modularity E Louvain H |eading eigenvector = walktrap

Figure 6.3 Agreement of different community detection algorithms with each attribute, for a subset of four
datasets.

102

Observing a correlation between the attributes and the communities in the network, indicates
the attribute information is a source of data that can be used to perform the community
clustering task. Furthermore, based on the homophily property of a network as shown above it
is clear that the linked nodes are more likely to share similar attributes. However, the attributes
do not have the same influence as the community structure and some attributes weigh more
than others in their influence. Thus the impact of different attributes on communities needs to
be known and properly weighted according to their influence on the community structure. This

will balance the role of network information and node attributes.

6.5 Description of the Proposed Approach

The proposed approach could be defined as a pre-processing phase for conventional
community clustering algorithms, which takes a graph G = (V, E, A), the weight of attributes
(W) and two more weighting factors (o and P) as inputs. a is used to weight the contribution
between connectivity information, and both attribute and shared neighbours’ information. B is
used to weight attribute information to the number of common neighbours. However, these
weighting factors (W, a, B) can be either provided as part of the input if they are known a priori

or calculated from the dataset.

The proposed approach returns a hybrid similarity matrix. The hybrid similarity matrix is a
weighted combination of attribute information, shared neighbours’ information and
connectivity information between the nodes. Once the proposed approach constructs the hybrid
similarity matrix, it can be supplied to any of the state-of-the-art clustering algorithms proposed
for weighted graph (e.g. Newman fast Greedy algorithm, Louvain algorithm, Newman
algorithm based on leading eigenvector of a modularity matrix or Walktrap algorithm) to

extract community clusters.

103

The general architecture of proposed approach is shown in Figure 6.4. As can be seen in the

figure, the approach has two phases named the parameter-learning phase and information

aggregation phase. The first phase aims is to extract optimal parameters whereas the second

one is used to build a hybrid similarity matrix.

Our proposed approach

)) Local clustering stage
Content information

Calculate attribute similarity
matrix

Attribute weighting

| stage

¥

¥

Topology information W
- (o,)

Weighted contribution

paramet&is (0, B) » » »

Calculate shared neighbours
similarity matrix

¥

Mapping attribute similarity,
shared neighbours similarity and
adjacency matrix to build a
hybrid similarity matrix

’ Optional input parameter ‘ ’ Network dataset ‘

’ Parameter learning ‘ ’

Information aggregation

=

Mapping
hybrid
similarity
matrix to
community
detection
algorithm

.C l. :i%%
.&- C2

C3

state of the art
community
detection
algorithm

Figure 6.4 System architecture for the proposed approach.

Communities

Output

We formally describe the generative process of hybrid similarity matrix as following:

Hsim(i:j) =& -A(i:j) + (1_“)[.3- Wasim(irj) + (1 - ,B)-SNsim(i'j)] (6-3)

Wasim(ifj) =W. Asim(irj)

Where:

Hgim (i,j): Hybrid similarity matrix

A: adjacency matrix

Wagim (i, j): The weighted attribute similarity between a pair of nodes (i, j)

(6.4)

a: The weighting factor used for the contribution of connectivity information to the attribute

information and shared neighbours information.

104

B: The weighting factor used for the contribution of attribute information to the number of

common neighbours information.

SNgim(i,j): Shared neighbours similarity between nodes i and j.

Agim (1,7): The attribute similarity between a pair of nodes (i, j) in network G = (V,E,A)
W: A matrix containing the weights of each attribute of the node in the network.
Definition 6.1 Shared neighbours

Given a graph G = (V, E), for a node 1 € V, the neighbours of node 1 are nodes that directly

connect to node i and is denoted by I'(i).

The shared neighbours of node i and j are the nodes that both directly connect to nodes i and j.

It is defined as:

SN(,j) ={r@® n rg} (6.5)
The shared neighbours similarity between nodes i1 and j is calculated by dividing the number
of shared neighbours between them by the maximum degree of 1 and j nodes. It is defined as:

SN(i,j)
max[K;K;]

SNgim (1,)) = (6.6)

Where:
SN (i, j): Shared neighbours between nodes i and j.
K;: Degree of node i

In the hybrid similarity matrix, as it is defined in equation 6.3, the strength of relationship
between nodes is determined by attribute information, connectivity information and shared
neighbours and controlled by two weighting parameters (o and). The a and B weighting

parameters can be given as part of the input values by the human agent based on his knowledge

105

of the data structure and his perception of the importance of each attribute. However, choosing
the right weighting values of attributes without a priori knowledge of the network is a
challenging task. Furthermore, the proposed approach has attribute weighting factors (W), the
values of which need to be set carefully. Thus, in the following sections, the two phases of the
proposed approach (the parameter-learning phase and information aggregation phase) will be

discussed in detail to provide guidelines on how to set these parameters.

6.5.1 The Parameter Learning Phase

Since the goal of utilizing details on attribute information, shared neighbours and connectivity
information in this work, is to get the best community clusters for the network, the attributes
of the nodes should be weighted in such a way that greater weight is given to the more
influential attributes, and smaller weights for the less influential. Determining the influence
and thus the weights of the attributes correctly, will enhance the community structure algorithm
and improve the detection of communities in the networks. The main purpose of the proposed
attribute weighting technique is to search for small groups of nodes (initial clusters) that contain
more internal connections (links between nodes in the group) than external connections
(between nodes of the group and nodes in other groups) and then find the attribute similarity

between nodes in the same groups to get the influence factor for each attribute.

To accomplish this, the parameter-learning phase, as shown in Figure 6.4, is subdivided into
two stages, local clustering stage and attribute weighting stage. Local clustering phase is to
extract dense nodes from the network to form the initial clusters. These initial clusters are local
small ones, far from being the optimal result and are only used in the second stage to weight

the attributes of each node in the network as well as estimate the o and B parameter values.

In the local clustering phase, the initial clusters are obtained by applying the first phase of the

DICCA approach proposed in chapter 4, named local clustering phase. The basic idea of the

106

local clustering phase in DICCA consists of picking up m nodes to be originators in which the
m nodes should be spread out in all regions of the network and assigning each node to the

closest originator to form a cluster.

The attribute weighting stage is then applied to find the strength of the weighting for each
attribute based on the structures of current clustering results. During the attribute weighting
stage, the set of attributes for each node are weighted according to its influence in the
community in which the highly influential attributes are assigned with high strength weights;

meanwhile the less influential attributes are assigned with low strength weights.

In more detail, to find the attribute weighting, it is necessary to measure the proximity between
each pair of nodes in the initial clusters based on their attributes. To do so, the attribute

similarity metric needs to be defined first.

6.5.1.1 Attribute Similarity Metric

The attribute similarity between nodes Vi and V; within the same cluster is determined by
examining each of d set of attributes on the two nodes and reflect on the strength of the

relationship between them in terms of their attribute values.

Without loss of generality, regardless of the similarity metric considered to find the weight of
attributes, first, the similarity between the attribute values of each pair of nodes belonging to

the same local cluster is calculated as follows:

let X'n.q be the similarity matrix for cluster i with N nodes each with d attributes, the local
attribute weight for cluster 1 is obtained by adding the appropriate dimension attribute of each

node in the cluster to form a vector of 1xd size and determined as:

LW =3 (Xy.a) (6.7)

107

The weighting for the entire network is then calculated by adding the corresponding attribute
of each local attribute weight (sum of the vectors) to form another vector in 1xd size. It is

formally defined as:
W= —(3m, LW§) (6.8)

It is worth mentioning that the weights assigned to the attributes in the parameter learning

phase LW = {Lw,, Lw, Lwy, } ranges between 0 and 1.

Whether or not a certain subset is optimal depends on the similarity metric employed. The
question about what are the best similarity measures between nodes to choose for different
types of attribute data is beyond the scope of this work. In this work, a Jaccard similarity
coefficient is used to define the attribute similarity between nodes in the same cluster and to
find the weight of attributes (W) during the parameter-learning phase. For an overview of the
research work on determining the most meaningful similarity measures in various fields and

for different types of data, see (Choi, Cha and Tappert, 2010; Arif and Basalamah, 2012).

Definition 6.2 Jaccard similarity. Given a network G = (V,E,A), for any pair of nodes Vi, V;
€ V, the Jaccard similarity between nodes Vi and V; with respect to attribute is indicated as
J(A1,A)) and is defined as the size of the intersection divided by the size union of the data sets,

as given below:

|AiNAj|
|AiUAJ|

J(Ai, 4)) = (6.9)

J(Ai, Aj) returns a value between 0 and 1, with 0 denoting no similarity, and 1 denoting identical

sets.

108

Furthermore, since in this work Jaccard similarity is used to measure attribute similarity
between nodes, the X} 4 could be defined as the Jaccard similarity matrix for cluster i and the

weighted attribute similarity Wag;,, (i, j), between any nodes i and j is defined as follows:

Y& (WilAtt_inAtt_ji])
Y4 (W[Att_iy VALt_ji])

Wagim(i,)) = (6.10)

Where each node has d attributes and Att_i is the attribute vector of node 1.

The pseudo code outlining the entire procedure with Jaccard similarity is listed in Algorithm

6.1.

109

Algorithm 6.1: The proposed approach

Input:

adj: adjacency matrix.
Att: An attribute nodes matrix.
Optional input parameter:

W: a matrix containing the weights of each attribute for each node in the network.
oc: The weighted Contribution of connectivity information to the attribute information
//and shared neighbours information.
p: The weighted contribution of attribute information to the number of shared
//neighbour information.
Output:
K: A set of communities in the network.
for each Node i € adj
Asim (1)) = S8 [Atti, nAttj 1)/ S8 [Atti, U Att_j]) /get attribute
//similarity matrix between i &j where i#
['(i) < get the neighbours of node (i)
k; < get the degree of node (i)
end
SN(@i,j) = { '(G)) N T(G))} //getthe number of shared neighbours between each nodes
SNgim(,j) = SN(,j) / maX[Ki, K]-] // shared neighbours similarity between nodes i
// 'and j where i#j
C=local clustering phase (adj) // run the first phase of DICCA algorithm
for each cluster Ic€ C
For each pairs of nodes 1,j € Ic
\\X%\?'d —|Att_; N Att_;|/|Att_; U Att_j| // Jaccard similarity matrix for cluster Ic

end
N« get number of nodes in Ic

1 .
LW = 158 (Xigea)
End

m<«— get number of initial clusters inc

if (W not provided as an input parameter)
W=—(Zm, LW})

— end

if (< not provided as an input parameter))

x= avg(W)

L end

if (B not provided as an input parameter))

p =0.5

_ end

d d
Wasim(lr]) = ZLzl(WL * [AttiL N Atth])/szl(WL * [AttiL V] Atth])

Hsim(irj) « X Ad](b]) + (1_°C) [B-Wasim(i;j) + (1 - B) SNsim(i:j)]
K « community cluster (Hg;,(i,j))
Return K return the final division of adj.

110

6.5.1.2 Effect of a and f on the Quality of Community Structure

When considering the values to select for the two weighting factors (o and), the type of
emphasis on one of the network parameters needs to be considered. For example, emphasis on
the connectivity information source means that the parameter o should be greater than 0.5. On
the other hand, emphasis on attribute and shared neighbours information means that o should
be less than 0.5. The same argument holds good for the parameter B, i.e., p greater than 0.5
indicates that attribute node information source has more contribution than the information
related to the number of common neighbours. In the networks, the weighted combination of
attribute information, shared neighbours and connectivity information are not the same and the
values of a and B need to be selected carefully. However, in practice without any prior domain

knowledge, it is quite difficult to scale the contribution of each source of information.

In order to determine the effects of varying o and parameters on the quality of community
clustering and thereby to determine the parameters’ selection range, four different datasets are
used to track how the community clustering changes when the values of o and P are varied
from 0.1 to 1 with a step size of 0.1. Also, modularity index is used to evaluate the quality of

community detection.

Figure 6.5 and 6.6 show how the two parameters influence the community clustering quality.
The X-axis and Y-axis in the figures represent the values of o and B respectively, while the Z-
axis represents the modularity score. As can be clearly seen from Figure 6.5 (a-d), the
modularity is remarkably robust to the choice of parameter values. When a =p=0, the
modularity of community detection is > 0.25 for most of the algorithms for all the datasets.
However, it is worth mentioning that oo =B=0 indicates that the information used to find the

community clustering is just based on the number of common neighbours Hg;,(i,j) =

SNsim(i:])

111

As an overview, with an increasing value of 3, the quality of community clustering decreases
for a constant value of a. On the contrary, with an increasing value of a, the quality of
community clustering increases slightly for a constant 3 value. It is also noticed that, for values
of a < 0.6 the modularity is dramatically affected by varying the value of . The modularity
fluctuates between 0.01 and 0.4 and it becomes relatively stable when a value ranges between
0.6 and 0.7. However, the Modularity becomes almost stable for the vast majority of values

when o > 0.7.

Experimental results also demonstrate that the connectivity information is more useful than the
shared neighbours’ information and attribute information. Therefore the value selected for a
should be greater than or equal to 0.5. For the datasets considered in this work, high modularity

values are obtained when o > 0.7.

With regard to these two parameters a and B, there is no straightforward way to fit them to
datasets and different datasets may require different parameter values. However, based on the
above argument, in order to better exploit the sources of information and obtain optimum
robustness in the detection of community clusters in the presence of noise, the value of a 1s set

based on the weights of attributes (w) as follows:

a = avg(w) (6.11)

In this work, to avoid a cumbersome decision process, equal importance is given to shared
neighbours and attribute information in which B=0.5 is set in all the following performed

experimentations.

112

FastModularity Louvain

0.4

0.35

0.3

0.25

0.2

0.35

0.3

0.25

0.2

0.3

0.25

0.2

0.15

0.1

0.25

(b)

Figure 6.5 (a-b) Modularity value achieved by four community clustering algorithm dataset using different
value of o and B on: (a) Caltech36 (b) Reed98 dataset.

113

FastModularity

kY
A s
)
i Ay

0.3
0.25

leading eigenvector

«
[=}

0.25

0.3
0.25

Louvain

©

FastModularity

0
@
o

0.25

walktrap

leading eigenvector

0
@
o

0.3
0.25

0.35
0.25

(d)

Figure 6.6 (c-d) Modularity value achieved by four community clustering algorithm dataset using different

value of a and B on: (¢) Harvord76 (d) Vassar85 dataset.

114

6.5.2 Information Aggregation Phase

The information aggregation phase aims to build a weighted matrix, named hybrid matrix,
based on the knowledge learned from the parameter learning phase. These weighted attributes
w, o and P values are used to build a hybrid similarity matrix as defined in equation 6.3. In the
hybrid matrix, the edges that link nodes do not have similar attributes or do not have shared
neighbours, will be punished and assigned with low strength weights; while the edges
connecting similar nodes or having shared neighbours will be assigned with high strength
weights. Also, there are some edges which will be added between the nodes to represent the

attribute and shared neighbour similarity.

6.6 Experimentation and Results

6.6.1 Experimental Setup

In order to assess the effectiveness of the proposed approach to detect communities under an
unreliable network structure, an experimentation has been conducted using four different
Facebook dataset networks when some edges are missing while the node attributes are fully
available. Furthermore, for the sake of evaluation, edges are removed from the network at
random and the number of removed links is increased from zero to half the number of edges in

the network in steps of 5% of network edges.

In each experiment, the performance is computed using the results obtained by applying each
of the four algorithms with and without applying the proposed approach as a pre-processing
step. Each algorithm has been applied more than once on the data and the experimental results

presented are the average of ten simulation runs.

To quantify the performance of the proposed approach, the quality of the obtained community

structures is evaluated based on the modularity, number and size of detected communities.

115

Moreover, for simplification, in the following sections when the proposed approach is
combined with Fast Modularity algorithm (FA) is referred to as Hybrid-FA; when combined
with Louvain algorithm (LA) as Hybrid-LA; when combined with leading eigenvector (LE) as
Hybrid-LE and Hybrid-WA when combined with Walktrap algorithm (WA). Additionally, to
facilitate comparison of results in line charts, the results obtained using the proposed approach

are denoted by dashed line style with “x” marker points.

6.6.2 Experimental Results and Discussion

In this subsection, the effectiveness and efficiency of the algorithm is assessed from two aspects.
One is to evaluate the attribute weighted method proposed in this work along with the
methodology used to set the parameter value. The other aspect is to integrate the proposed
approach with well-known community clustering algorithms and make a comparison of the
results achieved without the integration to show how the proposed approach can be used to

improve the robustness and quality of well-known community clustering algorithms.

6.6.2.1 Evaluation of Attribute Weighting Method

As highlighted in section 6.4, different attributes have different significance for assessing the
similarity between the nodes in the same community clusters, therefore the attribute weighting
method is proposed. In this section, the performance of the proposed attribute weighting

method is experimentally evaluated.

The evaluation is done by checking how well the weight of the attributes obtained by the

weighting method match with the actual important attributes presented in Figure 6.3.

Figure 6.7 shows the attribute weights obtained by the weighting method for the four datasets
under consideration. It is obvious that the attributes have different weight strengths and order
of importance for different datasets. However, looking at the attribute weights of the four data

sets, it is clear that four specific attributes (student, gender, dormitory and year attribute) have

116

the highest weighting values across all four data sets. Anyway, the remaining attributes (high
school and major/minor attribute) do not have strong influence on the community structure,

hence weighted with a very small value, if not dropped, in the attribute weighting stage.

0.3

i I

0.1

. in B [.

Student/ Gender Major Second Dormitory Year High school
faculty major/ minor (house)
Attribute

H Caltech36 mReed98 Haverford76 Vassar85

Figure 6.7 Attribute weights for four datasets.

Moreover, the comparison between Figure 6.3 and Figure 6.7 shows that the parameter learning
phase achieves almost the same results in most cases. Whereas, the attribute importance order
is either the same or only slightly different due to small differences in the attribute correlation.
For example in Caltech36 dataset, the order of importance attributes are student, gender, year
and house with attribute weight values 0.4695, 0.3102, 0.2195 and 0.2193 respectively. In
comparison to Figure 6.3 and for the case of the fast modularity algorithm as an example, the
order is changed to student, gender, house and year attribute, achieving Jaccard index values

0f 0.2772,0.2412, 0.1746 and 0.1239 respectively.

Furthermore, to evaluate the performance of the proposed weighting method in handling noisy
data, Figure 6.8 shows the values of attribute weight for the four largest weighted attributes
obtained by the weighting method when the percentage of removed edges varied from 0 to 50%.

From the figure, it is worth noting that the ordering of weights is remarkably stable and the

117

attribute weighting method shows an effective performance by getting rid of the noisy datasets

and correctly weights attributes according to their importance.

Caltech36 university dataset Reed98 university dataset

0 10 20 30 40 50 0 10 20 30 40 50

% Missing Edges % Missing Edges
Haverford76 university dataset Vassar85 university dataset
0.6 0.6 ‘
05 05 }
=04 =04
- y 'En
o 0.3 © 0.3
=
0.2. 1 0.2
H—V.-".\.-—-"—._.\"
0.1 1 0.1
0 0
0 10 20 30 40 50 0 10 20 30 40 50
% Missing Edges % Missing Edges
‘ Student/faculty —®—Gender —=— Dormitory (house) Year|

Figure 6.8 Robustness of weighting method to the edge removal.

To further assess the parameters analysis phase, the number of initial clusters identified at local

clustering stage along with the value of a via percent of removed edges for four datasets are

reported in Table 6.1.

The results in the Table 6.1 indicate that the noise has no significant influence on the value of
a. In other words, the method used to define a value (see equation 6.11) is somewhat stable. In
addition, it is clear that local crusting tends to partition data to a larger number of initial clusters.
Considering Reed98 dataset for example, when the missing edges varied from 0% to 50%, the

values of a and the number of obtained initial clusters were {0.8084, 382} and {0.8231, 446}

respectively.

118

It is also worth noting from Table 6.1 that the value of a is not related to the number of initial
clusters found by the local clustering stage. In some cases, higher value of « is obtained when
more initial clusters are found. For others however, the value of a increases when fewer initial
clusters are found. Considering Reed98 dataset, for instance, when the missing edges increased
from 15% to 20%, both a value and the number of initial clusters increased from {0.8139, 399}
to {0.8162, 405} respectively. On the other hand and for the same dataset, when the missing
edges increased from 5% to 10% the value of a increased from 0.8123 to 0.8130 meanwhile
the number of initial clusters decreased by 3. However, the value of a for the four considered
datasets is always higher than 0.75. This value is in agreement with what was observed in
section 6.5.1.2, where the connectivity information contains more useful information than the
shared neighbours or attribute information (o > 0.5) and to get high modularity the value of a

should be higher than 0.7.

Overall, the results clearly demonstrate that the parameter learning method has the ability to
extract essential and informative attributes and to weight them to reflect the relative importance

of attribute in community clustering tasks.

Table 6.1 Results for four dataset

Dataset Caltech36 Reed98 Haverford76 Vassar85
% Missing Nt{rr{b.er Nu'm'b'er of Nu'rn'b.er of Nu.rn.b'er of
d of initial o initial o initial o initial o
edges clusters clusters clusters clusters
0 384 0.8127 382 0.8084 412 0.7792 824 0.7673
5 381 0.8156 392 0.8123 427 0.7811 835 0.7671
10 392 0.8177 389 0.8130 436 0.7822 844 0.7684
15 388 0.8161 399 0.8139 419 0.7823 873 0.7694
20 392 0.8161 405 0.8162 443 0.7827 898 0.7709
25 391 0.8159 397 0.8153 463 0.7827 921 0.7712
30 390 0.8156 409 0.8170 467 0.7843 927 0.7722
35 394 0.8168 402 0.8180 476 0.7834 948 0.7731
40 398 0.8152 418 0.8193 489 0.7861 953 0.7738
45 390 0.8171 432 0.8241 487 0.7879 1003 0.7763
50 387 0.8110 446 0.8231 514 0.7884 1036 0.7784

119

6.6.2.2 Model Performance

In this subsection, using the optimal parameters determined using the parameter-learning phase

(as discussed in section 6.5.1), the performance of the pre-processing approach is evaluated.

6.6.2.2.1 Number of Community Clusters
Since the number of communities in the networks is unspecified, the algorithms try to
automatically detect the most appropriate number of communities by maximizing the

modularity.

The variation in number of community clusters when different numbers of edges are removed
is given in Figure 6.9. It is observed that the conventional algorithms are adversely affected by
noise so fail to account for appropriate community structures. Moreover, most cases result in
an increasing number of communities with an increasing % of missing edges. The only
exception is the LEA algorithm, which results in almost the same number of communities even

without applying the pre-processing approach.

Considering Caltech36 dataset, for example, increasing proportions of edges are randomly
removed from the network (from 0% to 50%), the number of communities detected by all
conventional algorithms are changed from {10,10,12,72} to {39,39,10,104} for {FA, LA, LEA,
WA} algorithms respectively. Such behaviour can be explained by the fact that the
conventional algorithms consider only topology information. On the other hand, the proposed
approach considers attribute, shared neighbours and connectivity information. Since the nodes
in the same community usually are not just highly connected but also have similar attributes
and transitivity coefficient, the proposed approach uses attribute information to make up for
the missing link information and to identify the community membership. Consequently,

integrating the proposed approach with a conventional algorithm is more advantageous for

120

discovering the most appropriate number of community structures than using the conventional

algorithm on its own.

Caltech36 university dataset Reed98 university dataset
120 120
» 100 1 » 100
2 2
5 80 5 80
[&] [&]
B 60 S 60
g g
£ 40 e 40
- =
pd =z
20 20 Mt
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
% Missing Edges % Missing Edges
Haverford76 university dataset Vassar85 university dataset
120
60
100
2] w
55 k5
%) w 80
340 2
230 g 60
0 e
E 20 E 40
3 =
z =
10 20 M} HL
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
% Missing Edges % Missing Edges

\E FA IlHybrid-FA LA [|Hybrid-LA EBLEA [lHybrid-LEA WA IR Hybrid-WA|

Figure 6.9 Number of community clusters for: (a) Caltech36 university dataset, (b) Reed98 university dataset
(c) Haverford76 university dataset, (d) Vassar85 dataset.

Walktrap algorithm when run on the dataset on its own failed to detect the appropriate number
of communities, and compared to the other algorithms the number of communities returned by
Walktrap are extremely high for all considered datasets. However, applying the proposed
approach as a pre-processing step to build the hybrid similarity matrix before applying the
Walktrap community detection algorithm has significantly improved the performance to obtain

just 8 clusters.

Furthermore, when the percentage of removed edges is increased from 0% to 50%, the number
of clusters formed using the proposed approach is more similar to the original partition network

when there is no noise applied. For example in the case of Caltech36 dataset when 50% of

121

edges are missing, the number of obtained communities are {8,8,4} for {Hybrid-FA, Hybrid-
LA, Hybrid LEA, Hybrid-WA} algorithms respectively. This demonstrates that the proposed
approach has the capability to extract relevant information from highly noisy datasets and make
these algorithms quite robust to edge removal. The complete tables showing the cluster

performance for four datasets are included in appendix A.3.

To take a closer look at the sensitivity of obtained communities to the noise, the average size
of the obtained communities, when percentage of removed edges is increased from 0% to 50%,

is investigated and shown in Figure 6.10.

Caltech36 university dataset Reed98 university dataset
200 | — 1 400
ﬁ "-x_‘.x-—x’d)! hx.,_‘_x‘h x” ﬁ i x
o == o~ e am = = T~ LA PR
2,150 2,300 fe LRI T
£ £
3 3
E - = * *® E - TN
™ g e = M= e M= =W o mw = K
£ 100 | E 2001 &
[&] o g
@ @
o o
T 50 T 100
7] 7]
> >
< <
Ul . . L . | 0" . L .
0 10 20 30 40 50 0 10 20 30 40 50
% Missing Edges % Missing Edges
Haverford76 university dataset Vassar85 university dataset
600 1200
@ @ i
-g500(._.x__.x_-x--—x..__’(,..)(-——x-—-x.__. g 1000 -,(‘-x'"")'-,_, .rx"- —"—'
2 %l Z Rl il
‘c 400 ‘c 800
= o e M =M e K SR R e o = = = = =
E £ \ T
£ 3004 E BOOF-H-T LT
o o y
[&] Q
2001 & 400
o o
o 7]
> >
z 100 z 200 .
N . o
0 10 20 30 40 50 0 10 20 30 40 50
% Missing Edges % Missing Edges

|—*—FA - - Hybrid-FA —=—LA - * - Hybrid-LA ——LEA - * ~Hybrid-LEA WA - = - Hybrid-WA|

Figure 6.10 Average Community size for: (a) Caltech36 university dataset, (b) Reed98 university dataset (c)
Haverford76 university dataset, (d) Vassar85 dataset.

Considering Vasser85 dataset, for example, increasing proportions of edges are randomly
removed from network (from 0% to 50%), the average community size detected by all

conventional algorithms dropped from {614, 511, 438, 51} to {94, 95, 583,28} for {FA,

122

LA,LEA, WA} algorithms respectively. In contrast, combining the proposed pre-processing
approach with the community-clustering algorithms considered in this work results in
community clusters with almost constant average size. This effect comes from the fact that
since the conventional community identification is based only on the adjacency matrix, the
number of community clusters obtained are heavily dependent on the number of links in the
network, so as the percentage of missing edges increases, the clustering algorithm becomes
less stable and the clusters become smaller. In contrast, this is not the case for the hybrid
similarity matrix, which is based on different considerations (attribute information, shared

neighbours information and connectivity between nodes in the network).

6.6.2.2.2 Modularity

Regarding the quality of community clusters, the modularity metric is used as a scoring
function to assess the quality of detected community clusters with and without applying the
proposed pre-processing phase. Figure 6.11 shows the averaged Q values, plotted for each
community detection algorithm. As shown in this figure, in most cases using the proposed pre-
processing approach has resulted in a slightly lower modularity than the conventional
community detection methods. However, the difference is negligible and the results suggest
that the proposed approach is a promising and powerful tool to assist in the fine tuning of

different sources of information in community clustering area.

Moreover, the comparison between Figure 6.9, Figure 6.10 and Figure 6.11 shows that while
the approach achieves a good modularity quality that is comparable with the conventional
methods, the approach is significantly more effective in terms of both number and size of
communities detected where the network structure is found to have some unreliable or missing

information.

123

Caltech36 university dataset

Reed98 university dataset

0.5 0.5
(1R e ——
’ -
o e T oy
=03
©
E
g 0.2
S0
0.1 0.1
0 : : ‘ ‘ 0 : ‘ : ‘
0 10 20 30 40 50 0 10 20 30 40 50
% Missing Edges % Missing Edges
05 Haverford76 university dataset 05 Vassar85 university dataset
0.4 Odg—p_—p- T b
> A= o s 5 EEmo I, :-_:-T -: : a4
=03y o :EO'ST o RES X S —
& == =S SR T — —¥ T
= =]
8 0.2 3 0.2
= =
0.1 0.1
0 0
0 10 20 30 40 50 0 10 20 30 40 50

% Missing Edges
WA - -~ Hybrid-WA|

% Missing Edges

|—=—FA - * - Hybrid-FA —#—LA - x ~Hybrid-LA —#—LEA - * - Hybrid-IEA

Figure 6.11 Modularity index vis missing edges for: (a) Caltech36 university dataset, (b) Reed98 university
dataset (c) Haverford76 university dataset, (d) Vassar85 dataset.

It is worth noting that in the present context, using community clusters matching (e.g. NMI) to
evaluate the quality of proposed approach might be particularly problematic, as the ground
truth structures of four considered networks are not provided and both numbers and sizes of
the obtained community clusters are not the same across the different community clustering
algorithms. The exact values of results presented in this chapter are included as tables in

appendix A.3.

6.7 Summary

In this chapter, a pre-processing approach that makes use of attribute information, shared
neighbours and connectivity information aspects of the network to build a hybrid similarity
matrix is proposed. Because the attributes in a network usually do not play equally important

roles in clustering tasks, the proposed approach assigns a weighting value to each attribute

124

during the process of building Hybrid similarity matrix to reflect the relative importance of

each attribute.

Besides the attribute weighting parameter, the approach required the specification of two more
parameters o and [, these control the degree of contribution of connectivity information,
attribute similarity and shared neighbours information for a good balance between them. The
sensitivity of the pre-processing approach to a and parameters is analysed. Also, a simple but
effective model for determining attribute weighting value, a and values of the approach to

achieve an optimal result is provided.

In this work, a Jaccard similarity coefficient is used to denote attribute similarity between nodes.
The proposed approach is tested in conjunction with four state-of-the-art algorithms (Fast
Modularity algorithm, Louvain, leading eigenvector and Walktrap algorithm) popular in the
literature by applying to four real-life Facebook data networks. The experimental results clearly
demonstrate that the approach has the ability to incorporate attribute, structure and shared
neighbours’ information into meaningful information used to build a hybrid similarity matrix.
Besides, the community clustering algorithms employed on the hybrid similarity matrix pre-
processed by the proposed approach have shown a better effectiveness and robustness over
noisy networks than the state-of-the-art algorithms without applying the pre-processing

approach.

The approach proposed here could be used as well in conjunction with other community

clustering algorithms and with other data sets.

125

CHAPTER 7

A CASE STUDY IN TELECOMMUNICATION

INDUSTRY OF SMARTPHONE USAGE.

In this chapter, a set of real-life android smartphone usage data has been skimmed and the
different features of real-life Android smartphone usage are presented. With these results,
community clustering and data mining techniques will be carried out as future work in order to
develop a more profound understanding of the telecom network usage and users’ characteristics.
This chapter is published in the proceedings of the 17 International Conference on Computer

Systems and Technologies 2016, Palermo, Italy (pp. 81-88), ACM.

7.1 Introduction

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

126

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

127

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIJMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

128

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

129

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

130

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

131

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

132

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

133

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIJMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

134

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp. 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

135

https://dl.acm.org/citation.cfm?id=2983496

The material originally presented here (Chapter 7) cannot be made freely available via
LIMU E-Theses Collection because of copyright. The material was published at 7th
International Conference on Computer Systems and Technologies 2016, Palermo, Italy
(pp- 81-88), ACM- available at: https://dl.acm.org/citation.cfm?id=2983496.

136

https://dl.acm.org/citation.cfm?id=2983496

CHAPTER 8

CONCLUSION AND FUTURE WORK

This chapter concludes the research activities within this thesis. The first section summarises
the original contribution and the main findings of the thesis. In the second section, the
limitations of the work are discussed, and a number of further research directions that have

been opened up by this thesis are presented.

8.1 Summary of Contributions

Many systems in the world can be represented as models of complex networks which are
structures consisting of nodes or vertices connected by links or edges. Detecting and
characterizing such community structures is one of the fundamental topics in network systems’
analysis and it has many important applications in different branches of science including
computer science, physics, mathematics and biology ranging from visualization, exploratory
and data mining to building prediction models.

In this thesis, the major focus is given to the community analysis in networks which has been
one of the active research topics for quite some time. However, based on a substantial
background and literature review presented in chapter 2 and the properties of real-world
networks presented in chapter 3, I argue that current community clustering techniques are no
longer able to deal with the large real-world networks as the network size has increased beyond
the capabilities of a single machine.

Hence, the focus in chapter 4 and 5 has been given to design the community clustering
approaches to be able to handle massive datasets by efficiently utilizing the computing
resources in a parallel processing topology. Following this, I propose an approach that uses

both structural and attribute information to extract communities. Finally, I have studied the

137

real-world community structure of a large telecom dataset network. In the following, I

summarize the contributions for each technical chapter (chapter 4, 5, 6 and 7) separately.

Chapter 4:

In chapter 4, a novel Decentralized Iterative Community Clustering Approach (DICCA) to
extract an efficient community structure for large networks is presented. An important property
of this approach is its ability to cluster the entire network without the global knowledge of the
network topology. This ability means that the entire network does not need to be loaded into a
single memory, and DICCA could be easily adapted to run in parallel on as many processors
as available to find community clusters in big networks. This cannot be done in the majority of
existing community detection algorithms that implicitly assume that the entire structure of the
network is known and is available.

The DICCA approach is based on the random walk procedure and reachability of nodes in the
network. The approach is run in an iterative fashion and uses two parameters, named threshold
value and time to live (TTL). The question about what value of TTL to choose is discussed in
this chapter along with the mathematical model to obtain optimal threshold value. Furthermore,
the obtained results support the conclusion that the community clusters found by DICCA are
meaningful and very close to the ground truth solution.

Chapter S:

In chapter 5, a parallel decentralized iterative community clustering approach (PDICCA),
which does not require any global knowledge of the graph topology is proposed. PDICCA is
a distributed memory parallel processing approach that transforms the serial steps of the
DICCA approach into parallelised tasks. It is scalable and will work with a range of computer
architecture platforms (e.g. cluster of PCs, multi-core distributed memory servers, GPUs). The

core idea of PDICCA is to split the data into blocks and cluster each block in a separate worker.

138

Then, the clusters extracted from blocks are aggregated at the final stage using re-clustering
phase. PDICCA provides several features simultaneously; the PDICCA does not need to store
the whole dataset in the one main memory so it is suitable for systems with limited memory
and works well for massive datasets. Furthermore, PDICCA optimally utilizes the hardware
capabilities of the parallel processors and minimizes the communication between workers
during processing to reduce the bandwidth, memory and storage cost. Experimental results on
a 4-core computer demonstrate that the proposed approach is quite effective, provides a
consistent performance over time and has a great scaling characteristic without any noticeable
loss in the performance.

Chapter 6:

Another problem in practical applications is that the network is usually noisy and imperfect
with missing and false edges. These imperfections are often difficult to eliminate and highly
affect the quality and accuracy of conventional methods that are used to find the community
structure in the network. In this work, the pre-processing approach proposed in chapter 6 has
the ability to incorporate attribute information, shared neighbours and connectivity information
aspects of the network to build a hybrid similarity matrix. The matrix is built by assigning
weights to the edges according to the strength of the connectivity, attribute similarity and
number of shared neighbours. To accurately model, the proposed approach uses two weighting
factors to identify the optimum trade-off between the information sources through a weighted
matrix.

Extensive experiments with real Facebook data sets show that the results obtained by using the
proposed approach in conjunction with the state-of-the-art community clustering algorithms
have been demonstrated to be greatly improved. More specifically, while the approach achieves

a good modularity quality that is comparable with the conventional methods, the approach is

139

significantly more effective in terms of both number and size of the communities detected

where the network structure is found to have some unreliable or missing information.

Chapter 7:

Using a real-life android smartphone usage dataset, the different features of mobile phone
usage is analysed in chapter 7. Furthermore, my plan was to apply the proposed community
detection approaches to the smartphone usage dataset so that I can identify a community of
users that often communicate with each other based on communication information between
users along with other information present in the dataset. The community clustering might
reveal interesting information about users, which then could be used by mobile server providers
to design suitable marketing strategies for each group and thereby enhance business
profitability. However, the fact that different phones pick a different hash for the same phone
number, made it hard to detect the user communities. Thus, a data skimming technique is used

to extract abstract information and trends from the given big dataset.

8.2 Recommendations and Future Works

Many lines of research remain open for future works, such as:

First, although the DICCA and PDICCA approaches for detecting community clusters in large
networks (in chapter 4 and 5 respectively) have been extensively investigated and studied, there
are still some issues that need further investigation. In particular, I intend to extend the studies
and analysis on three specific points:

e Real-world networks often do not contain perfect communities where each node does
not have only one possible clustering and nodes can belong to multiple communities at
once. Identifying such overlapping communities (also known as fuzzy) is crucial for
understanding the structure as well as the function of real-world networks. A further

direction is to extend the DICCA approach to be able to detect such fuzzy communities.

140

e In this work, only the undirected networks have been taken into consideration.
Therefore, I consider the directed network case as an interesting direction for further
research.

e In PDICCA, in order to cluster networks in parallel, these networks need to be
partitioned and distributed across different workers. How to generate and manage
partitions is an important issue. Another interesting guideline for further work is to
propose an effective method to partition the network into sub-networks to optimize the
distribution of the network across a cluster so that clustering approaches can run with
minimal communication effort and at the highest level of parallelism.

Secondly, considering the research line related to the novel pre-processing approach proposed
in chapter 6, the approach has two aspects, which are worth investigating further:

e The proposed pre-processing approach utilizes a similarity function for comparing
attributes. In a wide range of real-life applications, data contains a mixed type of
attributes (e.g. numerical, categorical). Therefore, it is important to use appropriate
similarity metrics to correctly measure the attribute proximity between two nodes in the
network. However, the appropriate choice of the similarity measure depends on the
attribute type of network to study. The natural extension of work in chapter 6 is to use
a more sophisticated approach that supports datasets with mixed attribute types.

e Combining the proposed pre-processing approach with DDICA and PDDICA
approaches (Algorithms proposed in chapter 4 and 5) for identifying more realistic
communities.

Finally, for the smartphone usage dataset, although in chapter 7 of this thesis, data skimming
type of analysis was carried out on real-life big dataset (Device Analyzer) from Cambridge
Laboratories to understand the behavioural patterns of different mobile users, in the future, I

intend to extend the analysis and studies to test the proposed community clustering approaches

141

DICCA/PDICCA on big telecom datasets to extract community clusters and find hidden trends

and behavioural patterns. This could help CSPs improve profitability in many ways:

e Optimizing network routing and quality of service by analysing network traffic in real

time.

e Improving security by analysing call data records in real time to identify fraudulent

behaviour immediately.

¢ Enhancing customer experience by using insights into customer behaviour and usage

to develop new products and services.

142

REFERENCES

Adamic, L.A. and Glance, N. (2005) The political blogosphere and the 2004 US election:
divided they blog. Proceedings of the 3rd international workshop on Link discoveryof
Conference.

Aggarwal, C.C. and Wang, H. (2010) A survey of clustering algorithms for graph data.
Managing and mining graph data, 275-301.

Aiello, W., Chung, F. and Lu, L. (2000) A random graph model for massive graphs.
Proceedings of the thirty-second annual ACM symposium on Theory of computingof
Conference.

Albert, R., Jeong, H. and Barabasi, A.-L. (1999) The diameter of the world wide web. arXiv
preprint cond-mat/9907038.

Almeida, H., Guedes, D., Meira, W. and Zaki, M.J. (2011) Is there a best quality metric for
graph clusters? Joint European Conference on Machine Learning and Knowledge Discovery
in Databasesof Conference.

Amelio, A. and Pizzuti, C. (2014) Overlapping community discovery methods: a survey. In:
(ed.) Social Networks: Analysis and Case Studies. Springer. pp. 105-125.

Amodio, S., D'Ambrosio, A., lorio, C. and Siciliano, R. (2015) Adjusted Concordance Index,
an extension of the Adjusted Rand index to fuzzy partitions. arXiv preprint
arXiv:1509.00803.

Arias-Castro, E., Pelletier, B. and Pudlo, P. (2012) The normalized graph cut and Cheeger
constant: from discrete to continuous. Advances in Applied Probability, 44 (4), 907-937.

Arif, M. and Basalamah, S. (2012) Similarity-dissimilarity plot for high dimensional data of
different attribute types in biomedical datasets. International Journal of Innovative
Computing, Information and Control, 8 (2), 1275-1297.

Bae, S.-H., Halperin, D., West, J.D., Rosvall, M. and Howe, B. (2017) Scalable and Efficient
Flow-Based Community Detection for Large-Scale Graph Analysis. ACM Transactions on
Knowledge Discovery from Data (TKDD), 11 (3), 32.

Barkhuus, L. and Polichar, V.E. (2011) Empowerment through seamfulness: smart phones in
everyday life. Personal and Ubiquitous Computing, 15 (6), 629-639.

143

Barnes, J. and Hut, P. (1986) A hierarchical O (N log N) force-calculation algorithm. nature,
324 (6096), 446.

Bedi, P. and Sharma, C. (2016) Community detection in social networks. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6 (3), 115-135.

Behrisch, M., Bach, B., Henry Riche, N., Schreck, T. and Fekete, J.D. (2016) Matrix
reordering methods for table and network visualization. Computer Graphics Forumof
Conference.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008) Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment,

2008 (10), P10008.

Borgatti, S.P., Everett, M.G. and Johnson, J.C. (2013) Analyzing social networks. SAGE
Publications Limited.

Bu, Y., Howe, B., Balazinska, M. and Ernst, M.D. (2010) HaLoop: Efficient iterative data
processing on large clusters. Proceedings of the VLDB Endowment, 3 (1-2), 285-296.

Cambridge, U.o. (2014) Device Analyzer [online]

Available at: http://deviceanalyzer.cl.cam.ac.uk

[Accessed: september]

Canright, G.S. and Enge-Monsen, K. (2008) Introducing network analysis. Telektronikk. vI.

Chen, J., Zaiane, O.R. and Goebel, R. (2009) Detecting communities in large networks by
iterative local expansion. Computational Aspects of Social Networks, 2009. CASON'09.
International Conference onof Conference.

Chen, P.-Y. and Hero, A.O. (2015) Deep community detection. /EEE Transactions on Signal
Processing, 63 (21), 5706-5719.

Choi, S.-S., Cha, S.-H. and Tappert, C.C. (2010) A survey of binary similarity and distance
measures. Journal of Systemics, Cybernetics and Informatics, 8 (1), 43-48.

Clauset, A., Newman, M.E. and Moore, C. (2004) Finding community structure in very large
networks. Physical review E, 70 (6), 066111.

Costa, L.d.F., Rodrigues, F.A., Travieso, G. and Villas Boas, P.R. (2007) Characterization of
complex networks: A survey of measurements. Advances in physics, 56 (1), 167-242.

144

http://deviceanalyzer.cl.cam.ac.uk/

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research.
InterJournal, Complex Systems, 1695 (5), 1-9.

Dang, T.A. and Viennet, E. Community detection based on structural and attribute
similarities, 2012 of Conference.

Danon, L., Diaz-Guilera, A., Duch, J. and Arenas, A. (2005) Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment, 2005 (09), P09008S.

Davis, J.A. (1970) Clustering and hierarchy in interpersonal relations: Testing two graph
theoretical models on 742 sociomatrices. American Sociological Review, 843-851.

De, D. (2016) Mobile cloud computing: architectures, algorithms and applications. CRC
Press.

Dean, J. and Ghemawat, S. (2008) MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51 (1), 107-113.

Derbeko, P., Dolev, S., Gudes, E. and Sharma, S. (2016) Security and Privacy aspects in
MapReduce on clouds: A survey. Computer Science Review, 20, 1-28.

Do, T.M.T., Blom, J. and Gatica-Perez, D. (2011) Smartphone usage in the wild: a large-
scale analysis of applications and context. Proceedings of the 13th international conference
on multimodal interfacesof Conference.

Doulkeridis, C. and Nervag, K. (2014) A survey of large-scale analytical query processing in
MapReduce. The VLDB Journal, 23 (3), 355-380.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J. and Fox, G. (2010)
Twister: a runtime for iterative mapreduce. Proceedings of the 19th ACM international
symposium on high performance distributed computingof Conference.

eMarketer (November 23, 2016) eMarketer: Mobile Phone, Smartphone Usage Varies
Globally. [online], eMarketer

Available at: https://www.emarketer.com/Article/Mobile-Phone-Smartphone-Usage-Varies-
Globally/1014738]

Emmons, S., Kobourov, S., Gallant, M. and Borner, K. (2016) Analysis of network clustering
algorithms and cluster quality metrics at scale. PloS one, 11 (7), e0159161.

145

https://www.emarketer.com/Article/Mobile-Phone-Smartphone-Usage-Varies-Globally/1014738
https://www.emarketer.com/Article/Mobile-Phone-Smartphone-Usage-Varies-Globally/1014738

Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R. and Estrin, D. (2010)
Diversity in smartphone usage. Proceedings of the 8th international conference on Mobile
systems, applications, and servicesof Conference.

Faloutsos, M., Faloutsos, P. and Faloutsos, C. (1999) On power-law relationships of the
internet topology. ACM SIGCOMM computer communication reviewof Conference.

Fernandez, A., del Rio, S., Lopez, V., Bawakid, A., del Jesus, M.J., Benitez, J.M. and
Herrera, F. (2014) Big Data with Cloud Computing: an insight on the computing
environment, MapReduce, and programming frameworks. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 4 (5), 380-409.

Fortunato, S. Benchmark graphs for testing community detection algorithms [online]

Available at: www.santo.fortunato.googlepages.com/benchmark.tgz

Fortunato, S. (2010) Community detection in graphs. Physics reports, 486 (3), 75-174.

Fortunato, S. and Barthélemy, M. (2007) Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104 (1), 36-41.

Gehweiler, J. and Meyerhenke, H. (2010) A distributed diffusive heuristic for clustering a
virtual P2P supercomputer. Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium onof Conference.

Ghoniem, M., Fekete, J.-D. and Castagliola, P. (2004) A comparison of the readability of
graphs using node-link and matrix-based representations. Information Visualization, 2004.
INFOVIS 2004. IEEE Symposium onof Conference.

Girvan, M. and Newman, M.E. (2002) Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99 (12), 7821-7826.

Grinter, R.E. and Eldridge, M.A. (2001) y do tngrs luv 2 txt msg? ECSCW 2001of
Conference.

Hadoop, A. (2016) Welcome to apache hadoop.

Herman, 1., Melancon, G. and Marshall, M.S. (2000) Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on visualization and computer
graphics, 6 (1), 24-43.

146

www.santo.fortunato.googlepages.com/benchmark.tgz

Hu, H., Wen, Y., Chua, T.-S. and Li, X. (2014) Toward scalable systems for big data
analytics: A technology tutorial. IEEE access, 2, 652-687.

Hu, Y. (2005) Efficient, high-quality force-directed graph drawing. Mathematica Journal, 10
(1), 37-71.

Hubert, L. and Arabie, P. (1985) Comparing partitions. Journal of classification, 2 (1), 193-
218.

Huijuan, Z. and Shixuan, S. (2013) A Graph Clustering algorithm based on shared neighbors
and connectivity. Computer Science & Education (ICCSE), 2013 8th International
Conference onof Conference.

Jackson, M.O. (2010) An overview of social networks and economic applications. The
handbook of social economics, 1, 511-585.

Jacomy, M., Venturini, T., Heymann, S. and Bastian, M. (2014) ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the Gephi software.
PloS one, 9 (6), €98679.

Jain, A K., Murty, M.N. and Flynn, P.J. (1999) Data clustering: a review. ACM computing
surveys (CSUR), 31 (3), 264-323.

Kajdanowicz, T., Kazienko, P. and Indyk, W. (2014) Parallel processing of large graphs.
Future Generation Computer Systems, 32, 324-337.

Kang, U., Lee, J.-Y., Koutra, D. and Faloutsos, C. (2014) Net-ray: Visualizing and mining
billion-scale graphs. Pacific-Asia Conference on Knowledge Discovery and Data Miningof
Conference.

Kannan, R., Vempala, S. and Vetta, A. (2004) On clusterings: Good, bad and spectral.
Journal of the ACM (JACM), 51 (3), 497-515.

Khatoon, M. and Banu, W.A. (2015) A survey on community detection methods in social
networks. International Journal of Education and Management Engineering (IJEME), 5 (1),
8.

Labatut, V. (2015) Generalised measures for the evaluation of community detection methods.
International Journal of Social Network Mining, 2 (1), 44-63.

Lancichinetti, A., Fortunato, S. and Radicchi, F. (2008) Benchmark graphs for testing
community detection algorithms. Physical review E, 78 (4), 046110.

147

Leskovec, J., Lang, K.J. and Mahoney, M. (2010) Empirical comparison of algorithms for
network community detection. Proceedings of the 19th international conference on World
wide webof Conference.

Li, R., Guo, W., Guo, K. and Qiu, Q. (2015) Parallel multi-label propagation for overlapping
community detection in large-scale networks. International Workshop on Multi-disciplinary
Trends in Artificial Intelligenceof Conference.

Lin, W., Kong, X., Yu, P.S., Wu, Q., Jia, Y. and Li, C. (2012) Community detection in
incomplete information networks. Proceedings of the 21st international conference on World
Wide Webof Conference.

Liu, X. (2012) A survey on clustering routing protocols in wireless sensor networks. sensors,
12 (8), 11113-11153.

Louch, H. (2000) Personal network integration: transitivity and homophily in strong-tie
relations. Social networks, 22 (1), 45-64.

Mabhata, D. and Patra, C. (2016) Detecting and analyzing invariant groups in complex
networks. In: (ed.) Computational Intelligence in Data Mining—Volume 1. Springer. pp. 85-
93.

Malliaros, F.D. and Vazirgiannis, M. (2013) Clustering and community detection in directed
networks: A survey. Physics Reports, 533 (4), 95-142.

Martin, S., Brown, W.M., Klavans, R. and Boyack, K.W. (2011) OpenOrd: an open-source
toolbox for large graph layout. Visualization and Data Analysis 201 1of Conference.

MATLAB (Release 2017a) Parallel Computing Toolbox, The MathWorks. Inc., Natick,
Massachusetts, United State

[online],

Available at: https://uk.mathworks.com/products/parallel-computing.html?s_tid=srchtitle]

McPherson, M., Smith-Lovin, L. and Cook, J.M. (2001) Birds of a feather: Homophily in
social networks. Annual review of sociology, 27 (1), 415-444.

Moghaddam, S., Helmy, A., Ranka, S. and Somaiya, M. (2010) Data-driven co-clustering
model of internet usage in large mobile societies. Proceedings of the 13th ACM international
conference on Modeling, analysis, and simulation of wireless and mobile systemsof
Conference.

Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan, T. and Yahyapour, R. (2016) Iterative
big data clustering algorithms: a review. Software: Practice and Experience, 46 (1), 107-129.

148

https://uk.mathworks.com/products/parallel-computing.html?s_tid=srchtitle

Mutchler, L.A., Shim, J. and Ormond, D. (2011) Exploratory Study on Users' Behavior:
Smartphone Usage. AMCISof Conference.

Newman, M. (2010) Networks: an introduction. Oxford university press.

Newman, M. (2016) Community detection in networks: Modularity optimization and
maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319.

Newman, M.E. (2001) Scientific collaboration networks. I. Network construction and
fundamental results. Physical review E, 64 (1), 016131.

Newman, M.E. (2003) The structure and function of complex networks. SIAM review, 45 (2),
167-256.

Newman, M.E. (2004a) Detecting community structure in networks. The European Physical
Journal B-Condensed Matter and Complex Systems, 38 (2), 321-330.

Newman, M.E. (2004b) Fast algorithm for detecting community structure in networks.
Physical review E, 69 (6), 066133.

Newman, M.E. (2006a) Finding community structure in networks using the eigenvectors of
matrices. Physical review E, 74 (3), 036104.

Newman, M.E. (2006b) Modularity and community structure in networks. Proceedings of the
national academy of sciences, 103 (23), 8577-8582.

Newman, M.E. and Girvan, M. (2004) Finding and evaluating community structure in
networks. Physical review E, 69 (2), 026113.

Orman, G.K., Labatut, V. and Cherifi, H. (2011) On accuracy of community structure
discovery algorithms. arXiv preprint arXiv:1112.4134.

Orman, G.K., Labatut, V. and Cherifi, H. (2012) Comparative evaluation of community
detection algorithms: a topological approach. Journal of Statistical Mechanics: Theory and
Experiment, 2012 (08), PO80O01.

Parslow, R., Hepworth, S. and McKinney, P. (2003) Recall of past use of mobile phone
handsets. Radiation protection dosimetry, 106 (3), 233-240.

Pons, P. and Latapy, M. (2005) Computing communities in large networks using random
walks. International Symposium on Computer and Information Sciencesof Conference.

149

Pons, P. and Latapy, M. (2006) Computing communities in large networks using random
walks. J. Graph Algorithms Appl., 10 (2), 191-218.

Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M. and Haridi, S. (2013) Ja-be-ja:
A distributed algorithm for balanced graph partitioning. Self-Adaptive and Self-Organizing
Systems (SASO), 2013 IEEE 7th International Conference onof Conference.

Rahmati, A. and Zhong, L. (2013) Studying smartphone usage: lessons from a four-month
field study. Mobile Computing, IEEE Transactions on, 12 (7), 1417-1427.

Ramaswamy, L., Gedik, B. and Liu, L. (2005) A distributed approach to node clustering in
decentralized peer-to-peer networks. IEEE Transactions on Parallel and Distributed Systems,
16 (9), 814-829.

Rand, W.M. (1971) Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 66 (336), 846-850.

Redner, S. (1998) How popular is your paper? An empirical study of the citation distribution.
The European Physical Journal B-Condensed Matter and Complex Systems, 4 (2), 131-134.

Reid, D. and Reid, F. (2004) Insights into the social and psychological effects of SMS text
messaging.

Rosvall, M. and Bergstrom, C.T. (2008) Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105 (4), 1118-1123.

Ruan, Y., Fuhry, D. and Parthasarathy, S. (2013) Efficient community detection in large
networks using content and links. Proceedings of the 22nd international conference on World
Wide Webof Conference.

Salem, S. and Ozcaglar, C. (2014) Hybrid coexpression link similarity graph clustering for
mining biological modules from multiple gene expression datasets. BioData mining, 7 (1),
16.

Schaefter, S.E. (2007) Graph clustering. Computer science review, 1 (1), 27-64.
Schank, T. and Wagner, D. Approximating Clustering-Coefficient and Transitivity.
Shah, D. and Zaman, T. (2010) Community detection in networks: The leader-follower

algorithm. arXiv preprint arXiv:1011.0774.

150

Shye, A., Scholbrock, B., Memik, G. and Dinda, P.A. (2010) Characterizing and modeling
user activity on smartphones: summary. ACM SIGMETRICS Performance Evaluation
Reviewof Conference.

Silva, T.C. and Zhao, L. (2016) Machine learning in complex networks. Springer.

Sumathi, S. and Esakkirajan, S. (2007) Fundamentals of relational database management
systems. Springer.

Tomassini, M. (2010) Introduction to graphs and networks. Information Systems Department,
HEC, University of Lausanne, Switzerland.

Traud, A.L., Kelsic, E.D., Mucha, P.J. and Porter, M.A. (2011) Comparing community
structure to characteristics in online collegiate social networks. SIAM review, 53 (3), 526-543.

Traud, A.L., Mucha, P.J. and Porter, M.A. (2012) Social structure of Facebook networks.
Physica A: Statistical Mechanics and its Applications, 391 (16), 4165-4180.

Travers, J. and Milgram, S. (1967) The small world problem. Phychology Today, 1, 61-67.

Travers, J. and Milgram, S. (1969) An experimental study of the small world problem.
Sociometry, 425-443.

Verkasalo, H. and Himmainen, H. (2007) A handset-based platform for measuring mobile
service usage. info, 9 (1), 80-96.

Vocaturo, E. and Veltri, P. (2017) On the use of Networks in Biomedicine. Procedia
Computer Science, 110, 498-503.

Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J., Fekete, J.D.
and Fellner, D.W. (2011) Visual analysis of large graphs: state - of - the - art and future
research challenges. Computer graphics forumof Conference.

Wagner, S. and Wagner, D. (2007) Comparing clusterings: an overview. Universitit
Karlsruhe, Fakultit fiir Informatik Karlsruhe.

Wang, M., Wang, C., Yu, J.X. and Zhang, J. (2015) Community detection in social networks:
an in-depth benchmarking study with a procedure-oriented framework. Proceedings of the
VLDB Endowment, 8 (10), 998-1009.

Warnke, S.D. (2016) Partial information community detection in a multilayer network. Naval
Postgraduate School Monterey United States.

151

Watts, D.J. and Strogatz, S.H. (1998a) Collective dynamics of'small-world'networks. nature,
393 (6684), 440.

Watts, D.J. and Strogatz, S.H. (1998b) Collective dynamics of ‘small-world’networks.
nature, 393 (6684), 440-442.

Weber, L.M. and Robinson, M.D. (2016) Comparison of clustering methods for high -

dimensional single - cell flow and mass cytometry data. Cytometry Part A, 89 (12), 1084-
1096.

Wehmeier, T. (2012) Understanding today’s smartphone user: Demystifying data usage
trends on cellular & Wi-Fi networks. Informa Telecoms and Media.

Xavier, F.H.Z., Silveira, L.M., Almeida, J.M.d., Ziviani, A., Malab, C.H.S. and Marques-
Neto, H.T. (2012) Analyzing the workload dynamics of a mobile phone network in large
scale events. Proceedings of the first workshop on Urban networkingof Conference.

Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J. and Venkataraman, S. (2011) Identifying
diverse usage behaviors of smartphone apps. Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conferenceof Conference.

Yang, T., Jin, R., Chi, Y. and Zhu, S. (2009) Combining link and content for community
detection: a discriminative approach. Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data miningof Conference.

Yang, Z., Algesheimer, R. and Tessone, C.J. (2016) A comparative analysis of community
detection algorithms on artificial networks. Scientific reports, 6, 30750.

Yu, J.Y. and Chong, P.H.J. (2005) A survey of clustering schemes for mobile ad hoc
networks. IEEE Communications Surveys & Tutorials, 7 (1), 32-48.

Zachary, W.W. (1977) An information flow model for conflict and fission in small groups.
Journal of anthropological research, 33 (4), 452-473.

Zhang, Y., Gao, Q., Gao, L. and Wang, C. (2012) imapreduce: A distributed computing
framework for iterative computation. Journal of Grid Computing, 10 (1), 47-68.

Zhou, Y., Cheng, H. and Yu, J.X. (2009) Graph clustering based on structural/attribute
similarities. Proceedings of the VLDB Endowment, 2 (1), 718-729.

152

APPENDIX

Appendix A: Additional Results
A.1 Additional Results for DICCA described in chapter 4

Table A.1.1 Scalability of the proposed algorithm performance

No. Of
size (t}rrli’t‘flng Gilf’;id' NMI Moig;‘rity EX;fr‘Ilfe‘(’n Nﬁsgf 31]35 t(;f Iteration | ARI
clusters

500 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751
1000 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785
1500 0.873 51 0.937 0.839 33.846 4093201 41 6 0.758
2000 0.880 69 0.943 0.851 65.918 5484550 55 6 0.761
2500 0.884 88 0.948 0.857 109.672 6803586 70 7 0.769
3000 0.887 104 0.947 0.858 177.191 8404026 82 7 0.754
3500 0.889 123 0.950 0.861 254.517 9705058 98 7 0.758
4000 0.890 134 0.950 0.860 397.839 11814798 107 7 0.769
4500 0.891 155 0.953 0.864 524.625 13060131 124 7 0.766
5000 0.892 173 0.954 0.866 665.021 14664776 138 7 0.771

Table A.1.2 Summary of the performance of the proposed algorithm using Mixing parameter for n=500
pifai;ilgir Modﬁfari ty Ng”lg)f NMI Modularity | Time Nh(;fsgf IC\IICsl ng Iteration ARI
Cluster

0.1 0.819 16 0.914 0.765 3.355 1401045 13 5 0.751
0.15 0.768 16 0.791 0.624 3.364 1549821 11 7 0.557
0.2 0.721 16 0.742 0.551 3.435 1539140 10 7 0.498
0.25 0.670 17 0.708 0.493 3.699 | 2001578 10 8 0.468
0.3 0.628 17 0.692 0.451 3.960 | 2232687 11 8 0.455
0.35 0.576 16 0.645 0.383 3.935 | 2752697 11 8 0.454
0.4 0.528 16 0.591 0.321 4.035 | 3590013 12 9 0.403
0.45 0.481 18 0.555 0.266 3.988 | 4556827 15 10 0.361
0.5 0.427 16 0.540 0.216 4322 | 6348157 24 8 0.333
0.55 0.382 17 0.484 0.159 4.489 | 8247020 34 7 0.232
0.6 0.341 16 0.436 0.123 4.999 | 10387158 43 7 0.157
0.65 0.286 17 0.388 0.095 5.534 | 14135123 52 7 0.087
0.7 0.233 17 0.348 0.083 6.199 | 16151336 56 7 0.048
0.75 0.181 17 0.313 0.079 5.931 | 16231281 57 7 0.028

153

Table A.1.3 Summary of the performance of the proposed algorithm using Mixing parameter for =1000

pgfailﬁgtge . Modcl};lrarity Ng”l?f NMI Modularity Time Nl\(/)['SgOf (I;Iﬁl ng Iteration ARI
Cluster
0.1 0.859 32 0.934 0.822 13.919 2681195 27 5 0.785
0.15 0.811 34 0.901 0.753 13.249 2973750 26 6 0.698
0.2 0.760 33 0.875 0.681 13.277 3370322 26 6 0.680
0.25 0.712 33 0.837 0.609 14.029 4271018 26 7 0.615
0.3 0.663 34 0.820 0.546 14.864 5350932 28 7 0.617
0.35 0.614 34 0.780 0.476 14.726 7064995 29 7 0.565
0.4 0.566 35 0.753 0.409 14.556 9379372 32 8 0.557
0.45 0.515 33 0.699 0.331 14.052 | 13770905 36 9 0.505
0.5 0.465 33 0.643 0.242 14.861 | 21328634 57 8 0.392
0.55 0.415 33 0.587 0.166 15.997 | 35480627 89 7 0.261
0.6 0.367 34 0.549 0.119 16.890 | 45995466 114 6 0.167
0.65 0.316 34 0.500 0.091 17.343 | 53388924 133 5 0.095
0.7 0.266 35 0.475 0.080 18.744 | 57209564 144 5 0.060
0.75 0.219 36 0.450 0.074 17.433 | 54101108 147 4 0.039

Table A.1.4 Performance of DICCA algorithm using different TTL values for n=500 without using Min_VALUE condition

No. Of

TTL GT . GT NMI Modularity Time No. Of Msg No. Of Iteration | ARI
Modularity Cluster
Cluster
1 0.819 16 0.661 0.583 0.296 4832 8 11 0.398
2 0.819 16 0.875 0.734 0.853 62990 12 6 0.669
3 0.819 16 0.918 0.764 24.873 1347024 13 5 0.763
4 0.819 16 0.922 0.765 10407.076 29680547 13 5 0.751

Table A.1.5 Performance of DICCA algorithm using different TTL values for n=500 when using Min_VALUE condition

GT No. Of No. Of
TTL . GT NMI Modularity Time No. Of Msg) Iteration | ARI

Modularity Cluster

Cluster

1 0.819 16 0.689 0.608 0.289 4928 8 11 0.421
2 0.819 16 0.872 0.726 0.804 63881 12 6 0.648
3 0.819 16 0914 0.765 3.355 1401045 13 5 0.751
4 0.819 16 0.915 0.766 5.039 3388457 13 5 0.754

Table A.1.6 Performance of DICCA algorithm using different TTL values for n=1000 without using Min_VALUE condition

No. Of

TTL GT GT | NMI | Modularity | Time | No.Of Msg | N 9T | jteration | ARI
Modularity Cluster

Cluster
1 0.859 32 0.769 0.695 0.890 9019 17 10 0.475
2 0.859 32 0.926 0.819 3.498 166525 26 6 0.760
3 0.859 32 0.946 0.831 98.738 3735475 27 5 0.810
4 0.859 32 0.956 0.838 34333.526 | 87794210 28 5 0.837

154

Table A.1.7 Performance of DICCA algorithm using different TTL values for n=1000 when using Min_VALUE condition

GT No. Of No. Of
TTL . GT NMI Modularity Time No. Of Msg) Iteration | ARI
Modularity Cluster
Cluster
1 0.859 32 0.764 0.693 0.899 9031 17 10 0.477
2 0.859 32 0.930 0.820 3.078 162377 26 6 0.780
3 0.859 32 0.934 0.822 13919 2681195 27 5 0.785
4 0.859 32 0.933 0.821 19.617 6963794 26 5 0.785
A.2 Additional Results for PDICCA described in chapter 5
Table A.2.1 Summary of the performance of the proposed algorithm using Mixing parameter for n=500
No.
.. GT of NMI- Q- No. Of.
x:;gtge . | Modular | GT | PDICC | PDICC | Time N&SOf gl?is?ef Ittl‘(’)r; Swappe | ARI
p ity Clus A A & d Msg
ter
0.1 0.8189 | 164 | 0.9488 0.7824 8.5995 1344282 15 5 489 0.8708
0.15 0.7678 | 164 | 0.8953 0.6950 8.5076 1773968 14 5 504 0.7506
0.2 0.7207 | 164 | 0.8677 0.6265 7.9940 2222215 14 5 518 0.7089
0.25 0.6705 | 16.8 | 0.8118 0.5376 8.8348 3561679 14 6 527 0.6312
0.3 0.6278 | 174 | 0.7747 0.4771 8.8118 4511721 14 6 536 0.5878
0.35 0.5759 | 16.2 | 0.7038 0.3867 8.6034 7490749 16 7 552 0.5165
0.4 0.5282 | 16.2 | 0.6427 0.2924 9.1207 | 12045080 23 7 550 0.4387
0.45 0.4811 17.6 | 0.6004 0.2235 9.5374 | 18467793 35 6 544 0.3330
0.5 0.4267 16 0.5159 0.1429 | 10.4627 | 31859841 54 6 534 0.2034
0.55 0.3817 | 16.6 | 0.4777 0.1140 | 10.8221 | 36917671 59 6 530 0.1467
0.6 03414 | 164 | 0.4384 0.0928 | 11.1384 | 43860527 68 5 524 0.0976
0.65 0.2858 | 17.2 | 0.4129 0.0769 | 12.6901 | 54613811 81 5 517 0.0593
0.7 02332 | 174 | 0.3710 0.0729 | 12.5550 | 55755527 78 5 518 0.0369
0.75 0.1813 | 17.2 | 0.3426 0.0702 | 13.2440 | 59511312 80 6 519 0.0216
Table A.2.2 Summary of the performance of the proposed algorithm using Mixing parameter for n=1000
No. No
Mixing GT of NMI- Q- Of. Tteratio No. Of.
paramet | Modularit GT PDICC | PDICC Time No. Of Msg Swappe ARI
Cluste n
er y Cluste A A c d Msg
r
0.1 0.8592 32 0.9498 | 0.8231 | 37.1294 2657238 28 5 981 0.8413
0.15 0.8106 342 0.9315 0.7550 | 36.3261 3726253 30 5 1001 0.8051
0.2 0.7603 332 0.8936 | 0.6723 | 33.5093 5571812 28 5 1038 0.7383
0.25 0.7121 334 0.8644 0.5997 | 35.1898 8534686 29 6 1061 0.6925
0.3 0.6629 344 0.8312 | 0.5158 | 31.5680 | 13850086 32 6 1077 0.6506
0.35 0.6145 342 0.7879 0.4373 | 32.1823 21098526 34 7 1098 0.5882
0.4 0.5656 35 0.7413 0.3418 | 28.8428 36494619 48 7 1102 0.5041
0.45 0.5152 332 0.6776 | 0.2355 | 31.6455 | 70023087 77 6 1092 0.3749
0.5 0.4654 334 0.6222 0.1625 | 31.7654 | 115217719 111 6 1068 0.2484
0.55 0.4154 32.8 0.5696 | 0.1158 | 37.2374 | 155653645 142 5 1045 0.1529
0.6 0.3668 34 0.5388 0.0906 | 38.5380 | 189698826 164 5 1036 0.1021
0.65 0.3160 33.6 0.5010 | 0.0779 | 39.8445 | 200467611 179 5 1024 0.0657
0.7 0.2664 35 0.4765 | 0.0707 | 42.6053 | 215485993 191 5 1017 0.0421
0.75 0.2186 36 0.4576 | 0.0678 | 42.8690 | 222938148 196 5 1015 0.0291

155

Table A.2.3 Number of messages exchanged in each iterations for each worker when the number of workers is two for

n=500 and 1000

No. Of Exchanged Msg

Number of
nodes 500 1000
st worker 2nd worker 1st worker 2nd worker
1st Iteration 717661 733163 1295619 1297506
2nd Iteration 66842 63418 163026 166334.5
3rd Iteration 8909 8651 36774.34 37814.39
The rest 5777 5873 36194 369267

Table A.2.4 Number of messages in each iterations when the number of workers is three for n=500 and 1000

Number of 500 1000
nodes 1st worker 2nd worker 3rd worker 1st worker 2nd worker 3rd worker
Ist Iteration 347991 349277 360717 628164 648158 626507
2nd Iteration 73781 72508 76838 166452 170013 166283
3rd Iteration 12626 12920 13475 44852 45586 46264
The rest 8411 8390 8673 36746 38581 39632

Table A.2.5 Number of messages exchanged in each iterations when the number of workers is four for n=500 and 1000

500 1000
Number of 2nd 3rd 4th 1 2nd 3rd 4th
nodes n I t st n I t]
Ist worker worker worker worker worker worker worker worker
st Iteration 213942 206759 209541 209940 398284 385951 394337 372525
2n(_i 101267 91984 97896 96235 210895 209678 208015 206202
Iteration

3rd Iteration 25039 23514 25520 25239 79371 78650 78701 78636
The rest 14665 14991 15895 15376 74467 68562 71947 70707

A.3 Additional results for pre-processing approach described in chapter6

Table A.3.1 Agreement of different community detection algorithms with each attribute for Caltech36 and Reed9 datasets

using Jaccard index similarity.

Data set Caltech36 Reed98
= =
o '5 E 8 o .g g S (=9
g =2 £ s g = £ g @8 g
< 9 = > = > § 9 = > g > E
j= o 8 =3 '8 o — <} S = '8 = =1
= = & 2 S B < = &0 ° S 9 g
Z =2 A = & 3 == = = .8 =
S o 4 5}
&9 =~
student/ faculty 0.2772 0.1629 0.1539 0.0989 0.4023 02106 | 02189 | 0.1866
Gender 0.2412 0.1478 0.1461 0.0898 0.2761 0.1692 | 0.1660 | 0.1543
major 0.0573 0.0530 0.0519 0.0473 0.0364 0.0344 | 0.0333 | 0.0360
Sec"r’r‘l‘iinr(‘)‘ral"r/ 0.0034 0.0036 0.0037 0.0042 0.0059 0.0056 | 0.0061 0.0054
dormitory 0.1746 0.3220 0.2537 0.3720 0.0231 0.0210 | 0.0199 | 0.0181
year 0.1239 0.0973 0.0917 0.0840 0.2432 03060 | 02683 | 0.2482
High school 0.0009 0.0010 0.0011 0.0012 0.0005 0.0005 | 0.0007 | 0.0005

156

Table A.3.2 Agreement of different community detection algorithms with each attribute for Haverford76 and Aassar85
datasets. Using Jaccard index similarity.

Data set Haverford76 Aassar85
) s > 5
2 = £ g o0 5 g £ £ = o0 5 g
B %8 = s g 0 £ B S s g 0 E
= S B % g = > avl S B E ; = 2 4
B ~ 3 2 o S 5 < - 9 =) < 5 <
e S Lo 2 2 & = S Lo 3 2 & =
S T S <)

student/ faculty 0.3214 0.2559 0.2156 0.3012 0.3585 0.2317 | 0.2647 | 0.2177

Gender 0.2443 0.1644 0.1697 0.2235 0.2643 0.1788 | 0.1912 | 0.1614

major 0.0346 0.0334 0.0348 0.0388 0.0301 0.0306 | 0.0313 | 0.0313

second major/

minor 0.0091 0.0093 0.0096 0.0104 0.0072 0.0074 | 0.0076 | 0.0077

dormitory 0.0958 0.1024 0.0945 0.0992 0.0741 0.0732 | 0.0671 0.0703

year 0.2862 0.4739 0.3369 0.3979 0.2896 0.4409 | 0.3455 | 0.4315

High school 0.0008 0.0009 0.0009 0.0008 0.0008 0.0009 | 0.0008 | 0.0008

Table A.3.3 The influence of the parameters a and B on the quality of clustering solutions for Caltech36 and Reed98 datasets

Data set Caltech36 Reed98
> — b St
Qo o
= g = &0 5 g = E g o B g
Z=E S £ 2 £ 7S g £ 0 5
3 (=¥ = % = 2 =< < B 5 % = > =~
— 3 9 3 < £ = — 9 9 3 * & =
S < _ < 5 = S S g S
2“ = E«s =
() o

0 0.3212 0.3837 0.3181 0.2600 0.2534 0.3011 0.2279 0.0945

0.1 0.3230 0.3825 0.2720 0.1563 0.2420 0.2932 0.1786 0.2103

0.2 0.1981 0.2972 0.1547 0.0787 0.2358 0.2330 0.1746 0.1399

0.3 0.1242 0.0840 0.1003 0.0770 0.0744 0.1266 0.0085 0.0421

0.4 0.0867 0.0806 0.0896 0.0744 0.0843 0.0593 0.0778 0.0681

0.5 0.0847 0.1023 0.0898 0.0746 0.0841 0.0557 0.0721 0.0735

0.6 0.0821 0.0804 0.0828 0.0771 0.0655 0.0636 0.0735 0.0678

0.7 0.0821 0.0803 0.0856 0.0768 0.0655 0.0550 0.0081 0.0411

0.8 0.0821 0.0805 0.0812 0.0617 0.0655 0.0547 0.0659 0.0427

0.9 0.0847 0.0806 0.0853 0.0592 0.0655 0.0552 0.0546 0.0414

0.0821 0.0806 0.0860 0.0778 0.0655 0.0547 0.0373 0.0384

0 0.3213 0.3872 0.3272 0.3144 0.2859 0.3200 0.2619 0.2304

0.1 0.3212 0.3743 0.2480 0.2034 0.1946 0.2965 0.1716 0.1864

0.2 0.3148 0.3603 0.1767 0.0787 0.1745 0.2945 0.1670 0.1357

0.3 0.1025 0.2655 0.1040 0.0625 0.0551 0.2705 0.0112 0.0429

0.4 0.0883 0.2789 0.0993 0.0768 0.1146 0.2566 0.1235 0.0681

0.5 0.0863 0.0822 0.1664 0.0746 0.0945 0.0625 0.0813 0.0849

0.6 0.0868 0.0819 0.0871 0.0746 0.0835 0.0550 0.0311 0.0490

0.7 0.0848 0.0576 0.0693 0.0632 0.0824 0.1485 0.0755 0.0407

0.8 0.0847 0.0805 0.0863 0.0778 0.0655 0.0545 0.0082 0.0411

0.9 0.0821 0.0805 0.0856 0.0617 0.0824 0.0630 0.0659 0.0426

Cle|IeeeleeeffCliolololoclolololololalo
O S I [S [e I S [y Suy [y Giay RS

1 0.0847 0.1484 0.0874 0.0592 0.0655 0.0555 0.0961 0.0412

157

0.2 0 0.3199 0.3868 0.3347 0.3301 0.2869 0.3263 0.2736 0.2486
0.2 | 0.1 0.3247 0.3931 0.2570 0.2357 0.2184 0.2832 0.1729 0.2307
02 | 02 0.3246 0.3097 0.2102 0.0806 0.1801 0.2871 0.1923 0.1407
02| 03 0.2365 0.2922 0.1150 0.0626 0.1846 0.2511 0.0108 0.0576
02 | 04 0.1743 0.2844 0.1087 0.0780 0.0638 0.2991 0.1030 0.0585
02 | 05 0.0867 0.0828 0.0967 0.0749 0.0903 0.0610 0.0965 0.0681
02 | 0.6 0.0833 0.1927 0.1722 0.0800 0.1076 0.2610 0.0831 0.0897
02 | 0.7 0.0920 0.0822 0.0894 0.0746 0.0893 0.2628 0.0863 0.0842
02 | 0.8 0.0887 0.0589 0.0613 0.0632 0.0688 0.0631 0.0550 0.0393
02 | 09 0.0833 0.0806 0.0885 0.0800 0.0831 0.0553 0.0085 0.0414
0.2 0.0821 0.0806 0.0865 0.0619 0.0655 0.0617 0.0694 0.0419
0.3 0 0.3014 0.3876 0.3435 0.3169 0.2871 0.3275 0.2831 0.2679
03 | 0.1 0.3006 0.3936 0.2629 0.2932 0.2656 0.3307 0.2869 0.2571
03 | 0.2 0.2566 0.3915 0.2745 0.2337 0.1897 0.2815 0.1926 0.1507
03 | 03 0.2338 0.3186 0.1343 0.0820 0.2323 0.2978 0.1902 0.1782
03 | 04 0.1690 0.2851 0.1182 0.0637 0.2001 0.2720 0.0140 0.0441
03 | 05 0.1561 0.2665 0.1114 0.0752 0.1823 0.2699 0.1612 0.0678
03 | 0.6 0.1443 0.0825 0.0887 0.0745 0.1003 0.0655 0.0939 0.05%96
03 | 0.7 0.0914 0.0851 0.1855 0.0800 0.0921 0.0629 0.0795 0.0563
03 | 0.8 0.1158 0.1586 0.1631 0.0800 0.0902 0.2642 0.0817 0.0619
03 | 09 0.0863 0.0804 0.0601 0.0632 0.0918 0.0659 0.0935 0.0678
0.3 1 0.0897 0.2050 0.0963 0.0757 0.0708 0.0550 0.0108 0.0424
0.4 0 0.3246 0.3918 0.3464 0.3471 0.2889 0.3285 0.2822 0.2760
04 | 0.1 0.3235 0.3966 0.3388 0.3213 0.2630 0.3299 0.2948 0.2272
04 | 02 0.3218 0.3947 0.2715 0.2322 0.2094 0.2671 0.1896 0.1416
04 | 03 0.3160 0.3203 0.2006 0.0806 0.1948 0.3008 0.1926 0.1797
04 | 04 0.2823 0.3160 0.1245 0.0629 0.2267 0.2799 0.0150 0.0445
04 | 05 0.1029 0.2992 0.1259 0.0780 0.2648 0.2757 0.0288 0.0430
04 | 0.6 0.1561 0.2926 0.1204 0.0750 0.1559 0.2726 0.1615 0.0693
04 | 0.7 0.1429 0.0861 0.0966 0.0734 0.0956 0.2583 0.0951 0.0634
04 | 0.8 0.0833 0.1945 0.1725 0.0800 0.1113 0.0695 0.0968 0.0573
04 | 09 0.0833 0.1947 0.1859 0.0778 0.0908 0.0550 0.0399 0.0404
0.4 1 0.0899 0.0822 0.0848 0.0578 0.0924 0.2548 0.0741 0.0678
0.5 0 0.3219 0.3952 0.3470 0.3311 0.2830 0.3161 0.2852 0.2661
0.5 | 0.1 0.3267 0.3950 0.3395 0.3017 0.2903 0.3319 0.2962 0.2590
05| 02 0.3236 0.3899 0.2692 0.2034 0.1958 0.3170 0.2411 0.2201
05| 03 0.3165 0.3659 0.2327 0.0816 0.1563 0.2840 0.2017 0.1539
05| 04 0.3285 0.3764 0.2040 0.0808 0.2015 0.3019 0.2013 0.1641
05 | 05 0.2653 0.3189 0.1244 0.0622 0.2502 0.2823 0.0158 0.0574
0.5 | 0.6 0.2260 0.3146 0.1230 0.0780 0.2643 0.2648 0.0160 0.0457
0.5 | 0.7 0.1711 0.2966 0.1761 0.0775 0.2360 0.2800 0.2437 0.0748
05 | 0.8 0.2715 0.3041 0.1176 0.0807 0.2436 0.2610 0.0979 0.0691
05 | 09 0.0924 0.2190 0.0952 0.0800 0.2392 0.2589 0.0974 0.0805
0.5 1 0.0926 0.1957 0.1902 0.0778 0.1708 0.2276 0.0960 0.0854

158

0.6 0 0.3309 0.3950 0.3544 0.3366 0.2883 0.3299 0.2839 0.2708
0.6 | 0.1 0.3264 0.3764 0.3447 0.3487 0.2820 0.3319 0.2925 0.2560
06 | 0.2 0.3282 0.3953 0.3330 0.2472 0.2244 0.3143 0.2529 0.2115
0.6 | 03 0.3179 0.3914 0.2868 0.2081 0.1577 0.2691 0.1970 0.1246
06 | 04 0.2768 0.3754 0.2506 0.2035 0.1806 0.2917 0.2083 0.1605
0.6 | 05 0.2420 0.3862 0.2180 0.1496 0.1030 0.3053 0.2123 0.1931
0.6 | 0.6 0.2439 0.3338 0.2049 0.0634 0.2348 0.1405 0.0158 0.0447
0.6 | 0.7 0.1952 0.3082 0.1461 0.0627 0.2474 0.2770 0.0175 0.0581
0.6 | 0.8 0.1069 0.3002 0.1426 0.0778 0.2454 0.2752 0.0869 0.0450
06 | 09 0.1915 0.3115 0.1888 0.0777 0.2534 0.2808 0.2496 0.1593
0.6 0.1550 0.2983 0.1821 0.0768 0.2448 0.2802 0.1078 0.0678
0.7 0 0.3379 0.3999 0.3721 0.3362 0.2555 0.3246 0.2825 0.2602
0.7 | 0.1 0.3308 0.4005 0.3634 0.3312 0.2673 0.3232 0.2888 0.2733
0.7 | 0.2 0.2879 0.3976 0.3436 0.3234 0.2612 0.3295 0.2970 0.2434
0.7 | 03 0.2194 0.3909 0.2991 0.2254 0.1719 0.3193 0.2704 0.2147
0.7 | 04 0.2452 0.3950 0.2838 0.2236 0.1770 0.2755 0.1982 0.1511
0.7 | 05 0.2382 0.3807 0.2421 0.0814 0.2000 0.2869 0.2015 0.1471
0.7 | 0.6 0.2417 0.3870 0.2430 0.1955 0.1984 0.3051 0.2142 0.1729
0.7 | 0.7 0.3233 0.3804 0.2209 0.2220 0.1842 0.2987 0.2131 0.1635
0.7 | 0.8 0.2661 0.3424 0.2590 0.1617 0.2685 0.2752 0.2071 0.0456
0.7 | 09 0.2634 0.3101 0.0874 0.0641 0.2818 0.2865 0.2122 0.0610
0.7 1 0.2154 0.3029 0.1593 0.0777 0.2687 0.2747 0.0784 0.0717
0.8 0 0.3378 0.3994 0.3733 0.3336 0.2885 0.3185 0.2759 0.2581
0.8 | 0.1 0.3441 0.3996 0.3731 0.3403 0.2577 0.3176 0.2791 0.2611
0.8 | 0.2 0.3201 0.3960 0.3651 0.3782 0.2914 0.3169 0.2882 0.2629
0.8 | 03 0.3230 0.3991 0.3598 0.3246 0.2736 0.3269 0.2907 0.2797
0.8 | 04 0.3226 0.3726 0.3499 0.2820 0.1534 0.3199 0.2769 0.1659
0.8 | 0.5 0.3286 0.3930 0.2844 0.2144 0.2132 0.3039 0.2725 0.2135
0.8 | 0.6 0.2476 0.3969 0.2919 0.2080 0.1950 0.2811 0.2009 0.1269
0.8 | 0.7 0.3276 0.3830 0.2503 0.1529 0.2088 0.3008 0.2009 0.1269
0.8 | 0.8 0.2430 0.3636 0.2209 0.1501 0.2163 0.2797 0.2031 0.1227
0.8 | 0.9 0.2185 0.3702 0.2157 0.0783 0.2768 0.2941 0.2345 0.1304
0.8 1 0.1898 0.3915 0.2544 0.0783 0.2777 0.2944 0.2345 0.1455
0.9 0 0.3171 0.3976 0.3630 0.3304 0.2885 0.3244 0.2824 0.2683
09 | 0.1 0.3037 0.3998 0.3636 0.3367 0.2881 0.3229 0.2851 0.2540
09 | 02 0.3058 0.3962 0.3636 0.3436 0.2865 0.3225 0.2816 0.2694
09 | 03 0.3253 0.3943 0.3653 0.3451 0.2832 0.3249 0.2836 0.2688
09 | 04 0.3313 0.3998 0.3666 0.3394 0.2888 0.3217 0.2865 0.2686
09 | 05 0.3325 0.3958 0.3676 0.3629 0.2939 0.3219 0.2838 0.2788
09 | 0.6 0.3461 0.3986 0.3640 0.3569 0.2955 0.3247 0.2928 0.2831
09 | 0.7 0.3284 0.3734 0.3649 0.3396 0.2974 0.3246 0.2938 0.2893
09 | 0.8 0.3256 0.3957 0.3480 0.3328 0.2810 0.3157 0.2812 0.1607
09 | 09 0.2453 0.3834 0.3312 0.2314 0.2545 0.3163 0.2812 0.1374
0.9 1 0.2241 0.3915 0.2536 0.2340 0.2583 0.3149 0.2815 0.1451

159

1 0 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.1 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.2 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.3 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.4 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.5 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.6 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.7 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.8 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 0.9 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
1 1 0.3120 0.3764 0.3623 0.3459 0.2776 0.3288 0.2823 0.2621
Table A.3.4 The influence of the parameters o and B on the quality of clustering solutions for Haverford76 and
Aassar85datasets.
Data set Haverford76 Vassar85
0 0 0.3007 0.2911 0.2871 0.2403 0.3246 0.3891 0.3454 0.3351
0 0.1 0.2689 0.3274 0.2419 0.2154 0.2747 0.3617 0.2236 0.2700
0 0.2 0.2525 0.3230 0.2066 0.2071 0.2606 0.3693 0.3208 0.1291
0 0.3 0.2437 0.3185 0.2455 0.0724 0.2655 0.3719 0.1108 0.0672
0 0.4 0.1453 0.3122 0.1025 0.0943 0.1537 0.3459 0.2600 0.1277
0 0.5 0.2433 0.2032 0.1034 0.1077 0.2667 0.1040 0.1100 0.1277
0 0.6 0.2068 0.0943 0.1026 0.0714 0.1105 0.0957 0.1105 0.0679
0 0.7 0.1022 0.0934 0.0990 0.0670 0.1564 0.1453 0.1063 0.1270
0 0.8 0.1025 0.0948 0.1007 0.0670 0.1101 0.0957 0.1051 0.0678
0 0.9 0.0938 0.0956 0.0953 0.0689 0.1101 0.0962 0.1053 0.1268
0 1 0.1023 0.0938 0.1008 0.0689 0.1101 0.1008 0.1056 0.1276
0.1 0 0.3035 0.3298 0.2920 0.2448 0.3499 0.3716 0.3622 0.3010
0.1 0.1 0.2683 0.3289 0.2483 0.2749 0.3512 0.3477 0.2095 0.2685
0.1 0.2 0.2391 0.3222 0.2357 0.2190 0.2554 0.3690 0.3114 0.1303
0.1 0.3 0.2540 0.3202 0.2402 0.0756 0.1607 0.3717 0.1338 0.0669
0.1 0.4 0.2427 0.3205 0.2399 0.2143 0.2683 0.3556 0.2524 0.0674
0.1 0.5 0.2206 0.2073 0.1053 0.0974 0.2670 0.3670 0.1084 0.1277
0.1 0.6 0.1468 0.0954 0.1055 0.0677 0.3153 0.3684 0.1104 0.1277
0.1 0.7 0.2057 0.0961 0.1137 0.0648 0.1105 0.0957 0.1106 0.0721
0.1 0.8 0.1018 0.0960 0.0971 0.0671 0.3214 0.3615 0.1093 0.1270
0.1 0.9 0.1025 0.1224 0.1008 0.0704 0.1101 0.1046 0.1051 0.0679
0.1 0.0949 0.0956 0.0982 0.0689 0.3470 0.3523 0.1089 0.0665
0.2 0 0.2662 0.3305 0.2955 0.2858 0.2911 0.3913 0.3610 0.3600
0.2 | 0.1 0.2691 0.3293 0.2542 0.2799 0.3518 0.3506 0.3563 0.3208
02 | 02 0.2641 0.3237 0.2340 0.2168 0.2445 0.3669 0.2017 0.1296
02 | 03 0.2394 0.3238 0.1094 0.0914 0.2700 0.3559 0.2736 0.1281

160

02 | 04 0.2424 0.3213 0.2659 0.0744 0.3295 0.3722 0.1181 0.0683
02 | 05 0.1461 0.3184 0.1056 0.0943 0.1477 0.3452 0.2661 0.1277
02 | 0.6 0.2215 0.0994 0.1094 0.0943 0.1565 0.3588 0.1091 0.1277
02 | 0.7 0.1478 0.0954 0.1070 0.0657 0.3155 0.3686 0.1101 0.1276
02 | 0.8 0.3035 0.2061 0.1021 0.0660 0.1110 0.0972 0.1106 0.1289
02 | 09 0.0984 0.0960 0.0987 0.0659 0.1834 0.3659 0.1103 0.1271
0.2 1 0.3135 0.2981 0.1025 0.0704 0.1481 0.0972 0.1067 0.0679
0.3 0 0.3034 0.3305 0.2958 0.2920 0.3227 0.3898 0.3592 0.3221
03 | 0.1 0.2708 0.3296 0.2674 0.2375 0.3511 0.3661 0.3590 0.3364
03 | 02 0.2170 0.3218 0.2083 0.2368 0.2258 0.3190 0.1999 0.1294
03 | 03 0.2881 0.3247 0.2873 0.2191 0.2634 0.3716 0.2622 0.1281
03 | 04 0.2462 0.3232 0.2501 0.0688 0.2906 0.3729 0.1179 0.0682
03 | 05 0.2779 0.3216 0.2585 0.0743 0.3207 0.3731 0.1194 0.0681
03 | 0.6 0.2209 0.3134 0.1090 0.0943 0.1564 0.3710 0.1097 0.1277
03 | 0.7 0.1476 0.2418 0.1097 0.0975 0.1569 0.2092 0.1102 0.1272
03 | 0.8 0.1470 0.3137 0.1072 0.0642 0.3438 0.3703 0.2649 0.1277
03 | 09 0.2409 0.2047 0.0911 0.0664 0.2894 0.3616 0.1106 0.1271
0.3 1 0.3046 0.3145 0.1042 0.0659 0.1479 0.3458 0.1107 0.1271
0.4 0 0.3052 0.3380 0.2984 0.2900 0.3253 0.3876 0.3556 0.3534
04 | 0.1 0.2708 0.3308 0.2744 0.3002 0.3551 0.3823 0.3341 0.3471
04 | 0.2 0.2762 0.3290 0.2701 0.2445 0.2715 0.3647 0.2836 0.2598
04 | 03 0.2655 0.3256 0.2498 0.2161 0.2532 0.3731 0.2945 0.1294
04 | 04 0.2391 0.3234 0.2323 0.0914 0.3170 0.3720 0.2755 0.1281
04 | 05 0.2453 0.3242 0.2673 0.0721 0.1581 0.3720 0.1284 0.0710
04 | 0.6 0.2832 0.3216 0.2590 0.1219 0.3210 0.3731 0.1369 0.0676
04 | 0.7 0.2165 0.3200 0.1093 0.0974 0.2670 0.3469 0.1106 0.1272
04 | 0.8 0.1477 0.3140 0.1094 0.0974 0.2671 0.3705 0.1111 0.1272
04 | 09 0.1459 0.3178 0.1095 0.0974 0.1565 0.3480 0.1117 0.1277
0.4 0.3156 0.3163 0.1061 0.0962 0.3469 0.3715 0.1102 0.0703
0.5 0 0.2827 0.3379 0.2976 0.2937 0.3266 0.3884 0.3570 0.3577
0.5 | 0.1 0.2711 0.3313 0.2824 0.3030 0.3468 0.3845 0.3618 0.3567
05 | 02 0.2707 0.3293 0.2958 0.2431 0.3526 0.3651 0.2497 0.2548
0.5 | 03 0.2953 0.3253 0.2737 0.2387 0.2256 0.3326 0.2609 0.1294
05| 04 0.2653 0.3242 0.2663 0.2190 0.2613 0.3748 0.2626 0.2515
0.5 | 05 0.2492 0.3238 0.2520 0.0880 0.2395 0.3730 0.1239 0.0710
0.5 | 0.6 0.2660 0.3200 0.2643 0.0667 0.3487 0.3728 0.1302 0.0692
0.5 | 0.7 0.2797 0.3243 0.2768 0.0729 0.3355 0.3731 0.1364 0.0707
0.5 | 08 0.2316 0.3198 0.1240 0.0981 0.2304 0.3713 0.2752 0.1280
0.5 | 09 0.2170 0.3202 0.3028 0.0981 0.1834 0.3717 0.1118 0.1272
0.5 1 0.2155 0.3191 0.2300 0.0981 0.1830 0.3688 0.1120 0.1272
0.6 0 0.3023 0.3375 0.3027 0.3014 0.3009 0.3856 0.3535 0.3396
0.6 | 0.1 0.2877 0.3296 0.2956 0.2999 0.3496 0.3877 0.3673 0.3710
06 | 0.2 0.3031 0.3283 0.2605 0.2198 0.3500 0.3813 0.3480 0.3274
0.6 | 03 0.2697 0.3296 0.2747 0.2333 0.3046 0.3647 0.3052 0.1301

161

06 | 04 0.2793 0.3263 0.2600 0.2266 0.2292 0.3723 0.2709 0.1294
0.6 | 0.5 0.2654 0.3255 0.2826 0.2565 0.3376 0.3755 0.2892 0.1294
0.6 | 0.6 0.2815 0.3236 0.2564 0.0885 0.3195 0.3737 0.2911 0.1282
0.6 | 0.7 0.2910 0.3200 0.2757 0.0874 0.2500 0.3734 0.1283 0.0700
06 | 0.8 0.2889 0.3198 0.2856 0.0755 0.3186 0.3735 0.1360 0.0716
06 | 09 0.2976 0.3201 0.2562 0.1428 0.3497 0.3735 0.1456 0.0703
0.6 1 0.1394 0.1036 0.1142 0.0974 0.1489 0.3726 0.1507 0.1289
0.7 0 0.2715 0.3334 0.3006 0.3015 0.3007 0.3810 0.3505 0.3444
0.7 | 0.1 0.2979 0.3376 0.3055 0.3091 0.3412 0.3941 0.3699 0.3540
0.7 | 0.2 0.2983 0.3307 0.2860 0.3045 0.3572 0.3825 0.3704 0.3685
0.7 | 03 0.2704 0.3277 0.2632 0.2173 0.3472 0.3801 0.2489 0.2649
0.7 | 04 0.2701 0.3297 0.2772 0.2290 0.3246 0.3655 0.3111 0.2598
0.7 | 05 0.2480 0.3265 0.2980 0.2009 0.2092 0.3193 0.2665 0.1302
0.7 | 0.6 0.2485 0.3222 0.2678 0.2438 0.2423 0.3764 0.2893 0.1294
0.7 | 0.7 0.2661 0.3268 0.2620 0.2812 0.2639 0.3770 0.2928 0.2409
0.7 | 0.8 0.2849 0.3250 0.2750 0.1062 0.3427 0.3748 0.2913 0.2503
0.7 | 09 0.2893 0.3244 0.2892 0.1058 0.3152 0.3739 0.1354 0.0684
0.7 1 0.3013 0.3249 0.3006 0.0921 0.3508 0.3732 0.1447 0.0694
0.8 0 0.2707 0.3280 0.2932 0.3101 0.3043 0.3866 0.3481 0.3532
0.8 | 0.1 0.2708 0.3360 0.3001 0.3025 0.3047 0.3866 0.3512 0.3563
0.8 | 0.2 0.2996 0.3362 0.3058 0.3079 0.3439 0.3933 0.3700 0.3621
0.8 | 03 0.2950 0.3289 0.2981 0.3024 0.3516 0.3826 0.3798 0.3600
0.8 | 04 0.3010 0.3286 0.2701 0.2731 0.3545 0.3806 0.3688 0.3374
0.8 | 0.5 0.2702 0.3285 0.2717 0.2454 0.3204 0.3795 0.2205 0.2162
0.8 | 0.6 0.2711 0.3274 0.2696 0.2511 0.3315 0.3825 0.2998 0.2234
0.8 | 0.7 0.2557 0.3050 0.2927 0.0991 0.1339 0.3167 0.2700 0.1294
0.8 | 0.8 0.2579 0.3270 0.2974 0.1838 0.1713 0.3421 0.2694 0.1305
0.8 | 09 0.2798 0.3266 0.3093 0.2384 0.2567 0.3753 0.2845 0.1305
0.8 0.3053 0.3266 0.3098 0.2293 0.2552 0.3759 0.2853 0.1302
0.9 0 0.2325 0.3311 0.2807 0.3031 0.3038 0.3940 0.3472 0.3575
09 | 0.1 0.2477 0.3377 0.2812 0.3031 0.3036 0.3901 0.3472 0.3445
09 | 0.2 0.2527 0.3376 0.2820 0.2957 0.3023 0.3869 0.3476 0.3445
09 | 03 0.2502 0.3322 0.2822 0.2972 0.3020 0.3929 0.3468 0.3453
09 | 04 0.2668 0.3376 0.2880 0.2993 0.3009 0.3865 0.3521 0.3672
09 | 05 0.2737 0.3306 0.2974 0.3013 0.3042 0.3882 0.3632 0.3706
09 | 0.6 0.2731 0.3292 0.3011 0.2980 0.3494 0.3828 0.3791 0.3799
09 | 0.7 0.2702 0.3303 0.2855 0.3059 0.3542 0.3822 0.3848 0.3796
09 | 0.8 0.3026 0.3279 0.2622 0.2664 0.3464 0.3818 0.3872 0.3652
09 | 09 0.3018 0.3277 0.2691 0.2308 0.3368 0.3797 0.2659 0.2594
0.9 1 0.2677 0.3276 0.2695 0.2683 0.3383 0.3788 0.2680 0.2525
1 0 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443
1 0.1 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443
1 0.2 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443
1 0.3 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

162

1 0.4 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.5 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.6 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.7 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.8 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 0.9 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

1 1 0.2769 0.3373 0.2823 0.3000 0.3138 0.3940 0.3472 0.3443

Table A.3.5 Attribute weights vs. missing edges for Caltech36 dataset
% missing student/ Gender major seconc.l major/ dormitory year High school
edges faculty minor
0 0.4695 0.3102 0.0924 0.0002 0.2193 0.2195 0.0112
5 0.4677 0.3166 0.0864 0.0008 0.2146 0.2021 0.0059
10 0.4522 0.3065 0.0864 0.0020 0.2006 0.2085 0.0050
15 0.4293 0.3166 0.0846 0.0042 0.1994 0.1820 0.0105
20 0.4564 0.3110 0.0818 0.0016 0.2027 0.1966 0.0063
25 0.4499 0.3209 0.0766 0.0007 0.1978 0.2014 0.0097
30 0.4604 0.3208 0.0843 0.0040 0.2035 0.2122 0.0098
35 0.4750 0.3325 0.0744 0.0010 0.2040 0.2312 0.0050
40 0.4523 0.3119 0.0775 0.0022 0.2260 0.2066 0.0039
45 0.4418 0.3108 0.1031 0.0057 0.2134 0.2229 0.0074
50 0.4451 0.3093 0.0892 0.0007 0.2280 0.2279 0.0078
Table A.3.6 Attribute weights vs. missing edges for Reed98 dataset

Y égl;s;ng Sft:cdliltl;/ Gender major Seco;(ijnr:fj or/ dormitory year sIc—Iliilc:l
0 0.5840 0.3180 0.0761 0.0064 0.0976 0.2698 0.0143
5 0.5808 0.2931 0.0567 0.0048 0.0894 0.2667 0.0100
10 0.5824 0.3141 0.0596 0.0061 0.0892 0.2575 0.0145
15 0.5638 0.2920 0.0619 0.0044 0.0818 0.2567 0.0142
20 0.5836 0.2997 0.0498 0.0049 0.0806 0.2875 0.0136
25 0.5670 0.3065 0.0554 0.0041 0.0836 0.2501 0.0099
30 0.5794 0.2940 0.0685 0.0028 0.0900 0.2580 0.0123
35 0.5638 0.2777 0.0615 0.0040 0.0823 0.2671 0.0045
40 0.5569 0.2928 0.0512 0.0059 0.0746 0.2600 0.0101
45 0.5208 0.2790 0.0514 0.0053 0.0761 0.2422 0.0138
50 0.5391 0.2917 0.0529 0.0062 0.0846 0.2543 0.0044

Table A.3.7 Attribute weights vs. missing edges for Haverford76 dataset

%gi::;ng szlc (if]rtl}t]/ Gender major Seco;?nr:fj or/ dormitory year sI:lE}(])l
0 0.5815 0.3794 0.0387 0.0084 0.1582 0.3077 0.0079
5 0.5995 0.3854 0.0344 0.0107 0.1541 0.3254 0.0097
10 0.5950 0.3740 0.0323 0.0098 0.1610 0.3255 0.0101
15 0.6025 0.3791 0.0423 0.0065 0.1444 0.3213 0.0051
20 0.5966 0.3660 0.0355 0.0110 0.1619 0.3124 0.0049

163

25 0.5883 0.3640 0.0376 0.0127 0.1724 0.3096 0.0062
30 0.5927 0.3716 0.0362 0.0081 0.1563 0.3202 0.0047
35 0.5839 0.3411 0.0386 0.0093 0.1692 0.3195 0.0057
40 0.6154 0.3741 0.0461 0.0117 0.1740 0.3460 0.0066
45 0.5775 0.3455 0.0450 0.0136 0.1680 0.3031 0.0056
50 0.5732 0.3594 0.0444 0.0118 0.1395 0.3150 0.0063
Table A.3.8 Attribute weights vs. missing edges for Vassar85 dataset.
e | el | entr | mar | et] domiony | e |
0 0.6188 0.3457 0.0442 0.0073 0.1964 0.3843 0.0102
5 0.6337 0.3534 0.0420 0.0090 0.2058 0.3818 0.0095
10 0.6293 0.3544 0.0438 0.0084 0.1979 0.3910 0.0094
15 0.6179 0.3441 0.0392 0.0069 0.1936 0.3882 0.0071
20 0.6264 0.3654 0.0444 0.0074 0.2066 0.3847 0.0105
25 0.6215 0.3406 0.0413 0.0093 0.2076 0.3796 0.0104
30 0.6066 0.3479 0.0433 0.0072 0.1983 0.3710 0.0090
35 0.6142 0.3463 0.0405 0.0072 0.1957 0.3709 0.0077
40 0.6105 0.3374 0.0456 0.0075 0.1934 0.3828 0.0076
45 0.6064 0.3614 0.0450 0.0082 0.1937 0.3823 0.0095
50 0.5894 0.3412 0.0408 0.0062 0.1831 0.3642 0.0089
Table A.3.9 Number of community clusters vs. Missing edges for Caltech36 and Reed98 datasets
Data set Caltech36 Reed98
g2, = ISR Y NN N I = R Y I O I
f% |Z|E|S|28|£95 |55 |E|5|518(895 |53
° E s an T E s s s
9 14 |10| 7 |12 4 72 8 5 3 6 | 4|7 3 78 6
114 |12] 8 |11 4 71 6 7 3 8 | 4] 6 3 65 6
10 124 |13] 8 |11 5 77 6 11| 3 914 1|6 3 72 5
15 164 |17] 7 |13 5 79 6 123 |11} 4 |5 3 76 6
20 201 4 | 19| 8 9 4 78 6 1513 (13| 4|6 3 78 7
25 22 (4 1221 7 |10 4 87 6 1713 |17] 4 | 4 4 71 8
30 24 1 4 1251 7 | 11 4 89 7 18| 3 |18 5 5 3 77 5
35 261 4 |26 7 |10 4 88 7 26| 4 |24 4|6 3 90 7
40 3214 |33 8 |11 5 98 8 27 | 4 |27 4 | 6 4 96 6
45 3314 (347 |10 5 103 8 28 | 4 | 28| 4 | 7 3 102 6
50 3914 {39 8 |10 4 104 8 36 |1 4 |34 4| 8 4 114 6

164

Table A.3.10 Number of community clusters vs. missing edges for Haverford76 and Vassar85datasets

Data set Haverford76 Vassar85
%D% § ﬁ < -"é«: < ~'§< § ﬁ < -'é«: < -'§<
EN an T an an
6 |3 5|47 3 28 4 3161517 3 60 4
51317417 3 37 5 3 517 3 55 4
10 6 |3 |7 4]|38 3 40 4 311015 |6 3 55 5
15 8 13191 4]|8 3 42 5 1213|1357 3 67 5
20 913 |11 4 |8 3 40 4 1313 |15]5]6 3 70 4
25 10 3 |11 4 | 8 3 43 5 163 |17] 5] 8 4 73 4
30 1213 (13| 4] 8 3 46 4 1713 |18 5| 6 4 84 4
35 1413 (14| 4 |10 3 49 5 211 3 |23 5| 5 3 89 4
40 15| 3 (15|47 3 53 5 26 | 3 |27 5| 6 4 97 4
45 18| 4 | 18] 4 |10 3 55 5 3313 (1325 8 3 102 4
50 20 3 |21 4 | 8 4 61 6 3413 (35| 5|7 3 105 4
Table A.3.11 Community size vs. missing edges for Caltech36 and Reed98 datasets
k5]
g Caltech36 Reed9s
A
- N I R R - Sl e o2
= as an am an
0 8 | 192 | 77 | 110 | 64 | 185 | 11 | 100 | 192 | 313 | 160 | 221 | 137 | 321 | 12 | 162
71 185 | 63 | 101 | 75 | 181 11 122 161 305 131 226 180 | 321 15 | 169
10 | 64 | 192 | 60 | 102 | 75 | 169 | 10 | 125 92 | 300 | 113 | 231 | 189 | 321 | 14 | 196
15 | 51| 188 | 45| 104 | 63 | 173 | 10 | 127 83 297 89 | 221 | 210 | 337 | 13 | 176
20 |40 | 182 | 40 | 102 | 89 | 185 | 10 | 121 68 | 297 | 78 | 236 | 191 | 313 | 13 | 167
25 36 | 181 | 35| 108 | 82 | 192 9 125 57 313 58 236 | 253 | 284 | 14 | 146
30 (32| 185 |31 | 105 | 82 | 182 | 9 | 118 54 | 313 54 | 212 | 213 | 305 | 13 | 199
35 30 | 191 | 31| 106 | 77 | 178 9 118 38 281 40 231 201 329 | 11 175
40 |24 | 195 | 24 | 103 | 77 | 165 | 8 | 103 36 | 292 | 36 | 241 | 174 | 306 | 10 | 182
45 24 | 195 | 23 | 106 | 78 | 172 8 98 35 273 35 236 184 | 350 | 10 | 177
50 20 | 183 | 20 | 100 | 83 | 188 7 101 27 281 29 221 158 | 287 8 164

165

Table A.3.12 Community size vs. missing edges for Haverford76 and Vassar85datasets

,§ Haverford76 Vassar85
A
< < < <
El | ;C." o < =t < B. :F'-‘ m < 2 < B‘
24 <« B 5 T ld|B8d § = = = 5 Eld| &4 ;’: =
By = | 2 Ol el e S 2 S ES 5
= T < = e T =
0 | 241 | 482 | 289 | 362 270 482 | 52| 393 | 614 1(3)2 511 | 614 483 1(3)2 51 | 736
5 | 296 | 446 | 222 | 362 211 482 | 39 | 311 | 488 122 396 | 614 408 122 56 | 752
10 | 251 | 470 | 215 | 362 158 482 | 37 | 354 | 374 122 316 | 629 576 997 | 56 | 709
15 196 | 499 | 170 | 362 109 482 | 35 | 345 | 269 1;)2 236 | 614 463 972 | 47 | 721
20 | 162 | 506 | 140 | 354 231 482 | 36 | 369 | 250 | 997 | 224 | 614 529 946 | 44 | 736
25 | 143 | 506 | 132 | 362 242 470 | 34 | 342 | 200 122 188 | 614 474 895 | 42 | 736
30 | 123 | 458 | 115 | 362 273 482 | 32 | 376 | 181 1;)2 174 | 614 579 869 | 37 | 767
35| 111 | 446 | 103 | 362 187 482 | 30 | 352 | 148 122 140 | 614 687 972 | 35| 752
40 | 99 458 98 362 228 482 | 28 | 299 | 123 122 116 | 614 527 895 | 32 | 752
45 | 83 431 81 362 271 446 | 27 | 275 96 997 97 614 464 946 | 30 | 721
50 | 74 470 72 362 204 410 | 24 | 251 90 122 89 614 535 122 30 | 782
Table A.3.13 Modularity index vs. missing edges for Caltech36 dataset
% Hybrid Hybrid Hybrid Hybrid
- ybrid- ybrid- ybrid- ybrid-
missing FA FA LA LA LEA LEA WA WA
edges

0 0.3120 0.3174 0.3764 0.3935 0.3623 0.3445 0.3459 0.3133
5 0.3224 0.3206 0.3877 0.3963 0.3602 0.3454 0.3414 0.3105
10 0.3238 0.3177 0.3952 0.3932 0.3627 0.3411 0.3446 0.3135
15 0.3246 0.3098 0.3897 0.3961 0.3573 0.3358 0.3412 0.3041
20 0.3344 0.3033 0.3900 0.3910 0.3529 0.3217 0.3473 0.2923
25 0.3134 0.3074 0.3891 0.3916 0.3562 0.3052 0.3440 0.2833
30 0.3255 0.3119 0.3912 0.3900 0.3513 0.2914 0.3403 0.2784
35 0.3233 0.2994 0.3890 0.3893 0.3507 0.2838 0.3443 0.2686
40 0.3208 0.3012 0.3889 0.3853 0.3433 0.2669 0.3445 0.2658
45 0.3207 0.3000 0.3873 0.3834 0.3451 0.2655 0.3341 0.2542
50 0.3177 0.2938 0.3805 0.3815 0.3420 0.2372 0.3362 0.2369

166

Table A.3.14 Modularity index vs. missing edges for Reed98 dataset

%
missing FA Hy;’:d' LA HyLbXd' LEA HKET‘ WA H-‘\/gid'
edges
0 0.2776 0.2423 0.3288 0.3199 0.2823 0.2785 0.2621 0.2411
5 0.2711 0.2470 0.3214 0.3170 0.2858 0.2775 0.2617 0.2358
10 0.2768 0.2473 0.3229 0.3142 0.2815 0.2739 0.2640 0.2223
15 0.2731 0.2525 0.3190 0.3134 0.2800 0.2724 0.2649 0.2145
20 0.2641 0.2532 0.3157 0.3153 0.2771 0.2662 0.2629 0.2152
25 0.2649 0.2481 0.3099 0.3156 0.2737 0.2658 0.2678 0.2131
30 0.2729 0.2430 0.3122 0.3104 0.2758 0.2583 0.2615 0.2075
35 0.2814 0.2422 0.3086 0.3060 0.2726 0.2539 0.2515 0.1990
40 0.2702 0.2457 0.3027 0.3073 0.2641 0.2443 0.2615 0.1938
45 0.2696 0.2502 0.3014 0.3044 0.2686 0.2376 0.2504 0.1830
50 0.2749 0.2439 0.2928 0.2986 0.2629 0.2400 0.2453 0.1747
Table A.3.15 Modularity index vs. missing edges for Haverford76 dataset
o Hybrid- Hybrid- Hybrid- Hybrid-
missing FA FA LA LA LEA LEA WA WA
edges
0 0.2769 0.3010 0.3373 0.3293 0.2823 0.2736 0.3000 0.2573
5 0.2706 0.2818 0.3324 0.3291 0.2811 0.2714 0.3024 0.2786
10 0.2692 0.2706 0.3324 0.3285 0.2817 0.2699 0.2994 0.2701
15 0.2651 0.2785 0.3342 0.3291 0.2814 0.2685 0.2982 0.2764
20 0.2694 0.2757 0.3325 0.3259 0.2761 0.2657 0.2991 0.2641
25 0.2709 0.2773 0.3301 0.3283 0.2772 0.2630 0.2983 0.2694
30 0.2796 0.2753 0.3291 0.3278 0.2720 0.2615 0.2965 0.2584
35 0.2811 0.2835 0.3265 0.3249 0.2756 0.2584 0.2958 0.2653
40 0.2813 0.2761 0.3262 0.3275 0.2682 0.2570 0.2965 0.2607
45 0.2794 0.2740 0.3236 0.3272 0.2692 0.2696 0.2896 0.2572
50 0.2830 0.2809 0.3214 0.3261 0.2685 0.2836 0.2951 0.2531
Table A.3.16 Modularity index vs. missing edges for Vassar85 dataset
T Hybrid- Hybrid- Hybrid- Hybrid-
missing FA FA LA LA LEA LEA WA WA
edges
0 0.3138 0.3354 0.3940 0.3809 0.3472 0.3307 0.3443 0.2688
5 0.3176 0.3405 0.3889 0.3807 0.3470 0.3292 0.3498 0.2638
10 0.3166 0.3420 0.3878 0.3786 0.3499 0.3257 0.3474 0.2580
15 0.3156 0.3458 0.3841 0.3798 0.3478 0.3220 0.3457 0.2411
20 0.3182 0.3414 0.3869 0.3795 0.3487 0.3188 0.3474 0.2650
25 0.3250 0.3432 0.3843 0.3790 0.3492 0.3146 0.3518 0.2504
30 0.3240 0.3440 0.3865 0.3784 0.3480 0.3068 0.3475 0.2379
35 0.3172 0.3449 0.3844 0.3777 0.3463 0.3081 0.3467 0.2435
40 0.3274 0.3412 0.3799 0.3773 0.3442 0.2968 0.3437 0.2447
45 0.3237 0.3455 0.3823 0.3765 0.3442 0.2921 0.3429 0.2400
50 0.3286 0.3417 0.3805 0.3762 0.3437 0.2901 0.3412 0.2231

167

Appendix B: Permission to Reuse IEEE Material

opyright . .
g s RightsLink =] & &

Center

¢IEEE Title: Decentralized Iterative m
Community Clustering .
(2 If you' ht.
Raquesting Approach (DICCA) user, you can login to
permission Conference Personal, Indoor, and Mobile RightsLink using your
:‘;;::::I'mm Proceedings: Radio Communications ':Tp“':;ght'c“mh‘:md”:'als'
Alrzady a RightsLi
an IEEE (PIMRC), 2017 IlEEE 28th warfj t; Iaea_'ng_‘_:r;:' user ar
publication Annual International S
Symposium on
Author: Amhrmed Bhih
Publisher: IEEE
Date: Qct. 2017

Copyright & 2017, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant:

Reguirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material {e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source {author, paper, publication) followed by the IEEE copyright line ©
2011 IEEE.

2} In the case of illustrations or tabular material, we reguire that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Reguirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: @ [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication]

21 Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or vour thesis
on-line.

3} In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity’'s name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.iees.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

Copyright & 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy staterment. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

168

