
Owens, A, Friston, K, Low, DA, Mathias, CJ and Critchley, HD

 Investigating the relationship between cardiac interoception and autonomic 
cardiac control using a predictive coding framework

http://researchonline.ljmu.ac.uk/id/eprint/7783/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Owens, A, Friston, K, Low, DA, Mathias, CJ and Critchley, HD (2018) 
Investigating the relationship between cardiac interoception and autonomic
cardiac control using a predictive coding framework. Autonomic 
Neuroscience: Basic and Clinical. ISSN 1566-0702 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


1 
 

Investigating the relationship between cardiac 
interoception and autonomic cardiac control using a 

predictive coding framework 
 

Andrew P Owens1,2,3*, Karl J Friston4, David A Low5, Christopher J Mathias6, Hugo D 
Critchley7,8,9 

 
1. Lab of Action & Body, Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UK 

2. Institute of Neurology, University College London, London, WC1N 3BG, UK 
3. National Hospital Neurology and Neurosurgery, UCL NHS Trust, London, WC1N 3BG UK 

4. Wellcome Trust Centre for Neuroimaging, University College London, WC1N 3BG UK 
5. School of Sport and Exercise Sciences, Liverpool John Moores University. Liverpool, L3 2AB, UK. 

6. Hospital of St John & St Elizabeth, London, NW8 9NH, UK 
7. Psychiatry, Brighton and Sussex Medical School, Brighton, BN1 9RR, UK 

8. Sussex Partnership NHS Foundation Trust, Brighton, BN1 9RRUK 
9. Sackler Centre for Consciousness Science, University of Sussex, BN1 9RR, UK 

Corresponding author: Dr Andrew Owens 
Lab of Action & Body, Department of Psychology, Royal Holloway, University of 
London, Egham, Surrey, TW20 0EXU  
Corresponding author’s phone and fax: +44 (0)1784 276551 
Corresponding author’s e-mail address: andrew.owens@rhul.ac.uk  
 
Number of words in abstract: 250 
Number of words in main text: 3383 
Number of tables: 4 
Number of figures: 1 
 
Key words: active inference, autonomic nervous system, dysautonomia, free-energy 
principle, heart rate variability, homeostasis, interoception, interoceptive (active) 
inference, predictive coding 
 
 
 

mailto:andrew.owens@rhul.ac.uk


2 
 

Abstract 

Predictive coding models, such as the ‘free-energy principle’ (FEP), have recently been discussed in 

relation to how interoceptive (afferent visceral feedback) signals update predictions about the state of 

the body, thereby driving autonomic mediation of homeostasis. . This study appealed to ‘interoceptive 

inference’, under the FEP, to seek new insights into autonomic (dys)function and brain-body integration 

by examining the relationship between cardiac interoception and autonomic cardiac control in healthy 

controls and patients with forms of orthostatic intolerance (OI); to (i) seek empirical support for 

interoceptive inference and (ii) delineate if this relationship was sensitive to increased interoceptive 

prediction error in OI patients during head-up tilt (HUT)/symptom provocation. Measures of 

interoception and heart rate variability (HRV) were recorded whilst supine and during HUT in healthy 

controls (N=20), postural tachycardia syndrome (PoTS, N=20) and vasovagal syncope (VVS, N=20) 

patients. Compared to controls, interoceptive accuracy was reduced in both OI groups. Healthy controls’ 

interoceptive sensibility positively correlated with HRV whilst supine. Conversely, both OI groups’ 

interoceptive awareness negatively correlated with HRV during HUT. Our pilot study offers initial 

support for interoceptive inference and suggests OI cohorts share a central pathophysiology underlying 

interoceptive deficits expressed across distinct cardiovascular autonomic pathophysiology. From a 

predictive coding perspective, OI patients’ data indicates a failure to attenuate/modulate ascending 

interoceptive prediction errors, reinforced by the concomitant failure to engage autonomic reflexes 

during HUT. Our findings offer a potential framework for conceptualising how the human nervous 

system maintains homeostasis and how both central and autonomic processes are ultimately implicated 

in dysautonomia. 
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1 Introduction 

An individual’s interoceptive (afferent visceral feedback) accuracy moderates the degree to which bodily 

events are linked to cognitive-affective processes (1, 2) and individuals with greater interoceptive 

accuracy experience emotions more deeply, particularly anxiety (3). In a recent study examining 

previously reported anxiety in postural tachycardia syndrome (PoTS) and vasovagal syncope (VVS) 

patients (4) (5), we described how interoceptive accuracy during head-up tilt (HUT) is anxiogenic in 

both PoTS and VVS patients compared to healthy controls (6). It has been proposed that predictions of 

experienced versus expected interoceptive signals can be a ‘bottom-up’ source of anxiety (7). 

Therefore, if one were to feel dizzy or tachycardic whilst being aware that these physical sensations 

were abnormal or symptoms of illness, anxiety would be created about one’s discordant body state (8). 

This hypothesis is supported by our finding that the insula detects discrepancies in predictions rather 

than actual changes in one’s physical state (9).  

 

In predictive coding terms, the mismatch between top-down predictions generated by the brain and 

sensory signals from the periphery constitute a ‘prediction error’ (10). Predictive coding, therefore 

suggests that top-down predictions are used to form prediction errors that are passed back up cortical 

(and subcortical) hierarchies to update or revise predictions in higher hierarchical levels. The implicit 

message passing therefore comprises a descending top-down stream of predictions that are 

reciprocated by an ascending bottom up stream of prediction errors. The influence of a prediction error’s 

signalling as it ascends the cortical hierarchy is based upon its reliability, i.e., ‘precision’ or inverse 

variance. Precision-weighting reflects the balance between prediction and prediction error, therefore a 

high confidence in prior beliefs means that sensory precision is, effectively, attenuated (11). In other 

words, if sensory input is judged to be imprecise or unreliable, such as vision in the dark, more precision 

or confidence will be placed in prior expectations – or knowledge of the environment – to ensure optimal 

perception. In predictive coding, this balance is mediated by differential weighting of prediction errors 

at different levels of the (interoceptive) hierarchy, in proportion to their estimated precision. 

Computationally, this means precision-weighted prediction errors are passed from one level to the next, 

where precise prediction errors at any particular level have more influence on other levels.  

 



4 
 

Predictive coding models, such as the ‘free-energy principle’ (FEP) (12, 13), propose that the brain 

recognises the causes of afferent sensory input using probabilistic (Bayesian) inference to support 

adaptive responses. The brain endeavours to maximise the evidence for its model of the environment 

by minimising prediction error (i.e., free-energy or surprise), because the greater the prediction error, 

the greater the deviation from homeostasis. In other words, by minimising prediction errors, states of 

the world (and the body) generating sensations must conform to predicted state of affairs. This can be 

achieved either by changing top-down predictions or by changing the sensory signals through action, a 

process termed ‘active inference’ under the FEP, e.g., moving one’s sense organs closer to an object 

that cannot initially be identified.  

 

Recently, predictive coding, and the FEP in particular, have been conceptualised in relation to 

interoception (14-18) (19), including how interoceptive afferent signals construct predictions about the 

state of the body that potentially dictate autonomic mediation of homeostasis (20, 21) (17). In this 

currently hypothetical context, descending predictions would only elicit autonomic responses if the 

ascending prediction error is not cancelled out by an attenuation of sensory precision (sensory 

attenuation) (22), otherwise prediction errors would lead to revised predictions rather than action (23). 

Prediction error in the sensory perceptual system can be modified by changing predictions only, but in 

the motor system and (potentially) autonomic nervous system (ANS), prediction error can also be 

discharged by engaging peripheral reflexes and behaviours that alter the sensory signal at its origin.  

 

Although the FEP’s potential role in interoception has only recently been considered (14-18),  we 

suggest classical conditioning could be interpreted as an early example of interoceptive inference. 

Pavlov demonstrated, not only that an unconditioned interoceptive prediction error (food) induces 

homeostatic autonomic responses (salivation), but that through the encoding of another exteroceptive 

signal (a bell), the same autonomic reflex can be induced by top-down predictions (24). Pavlov’s study 

illustrates how interoceptive signals contribute to the largely preconscious reflexive regulation of 

homeostasis and allostasis via the ANS. Moreover, during psychological stress, top-down influences 

can perturb normal baroreflex function, causing heart rate (HR) and blood pressure (BP) to increase in 

the absence of allostatic demand. This indicates that the circuitry supporting the baroreflex represents 
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an important level at which afferent interoceptive cardiac signals interact with descending central activity 

that encodes expected (predicted) or desired physiological states. Likewise, baroreceptor signalling of 

cardiovascular arousal ascends the neuraxis to influence conscious perception, cognition and emotion 

(25) (26) (2, 27).  

 

This pilot study therefore sought empirical support for interoceptive inference in healthy controls, PoTS 

and VVS patients by asking if homeostatic afferent interoceptive signals – from the viscera – related to 

autonomic mediation of homeostasis. We hypothesised that if interoceptive inference underpins 

homeostasis via the ANS, correlations between interoceptive measures and autonomic function should 

exist. Moreover, these correlations would be sensitive to dysautonomic symptom provocation in PoTS 

and VVS patients during HUT comparative to healthy controls, when interoceptive prediction error 

increases as deviation from homeostasis increases but baroreceptor dysfunction prohibits reflexive 

autonomic allostatic adaption. This should be expressed as a distinct and inverse correlative pattern in 

PoTS and VVS compared to controls at rest, based on our previous findings that, compared to control 

subjects, interoceptive accuracy during HUT inversely correlates with anxiety in PoTS and VVS(6).  

 

2 Materials and methods 

 

2.1 Ethics and participants 

All experimental procedures received national and institutional ethical approval (NRES Committee 

London - Harrow, University College London Healthcare Trust Research and Design Office, Imperial 

College London AHSC Joint Research Compliance Office) and conducted in accordance with the 

declaration of Helsinki. We recruited 20 healthy controls (13 females, mean age 35 + 7.56 years), 20 

patients with a confirmed prior diagnosis of PoTS (19 female, mean age 36 + 10.84 years) and 20 

patients with a confirmed prior diagnosis of VVS (13 female, mean age 37 + 13.00, 19 vasodepressor, 

1 cardioinhibitory). Autonomic diagnoses were made at the Autonomic Unit, National Hospital for 

Neurology and Neurosurgery (University College London Hospitals) or the Autonomic and 
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Neurovascular Medicine Unit, St Mary’s Hospital (Imperial College Healthcare Trust) prior to testing. 

Written informed consent was provided by all participants prior to participation.  

 

PoTS is defined by an abnormal increase in HR on standing or HUT in association with symptoms of 

palpitations, dizziness, functional impairment in the absence of a significant orthostatic drop in BP (28, 

29). VVS is the most common (~40%) form of syncope (30) and is caused by excessive postural 

vasodilatation and/or bradycardia, resulting in cerebral hypoperfusion and subsequent loss of 

consciousness. PoTS and VVS represent two of the most common forms of orthostatic intolerance (OI). 

These patients represent distinct forms if dysautonomia expressed through aberrant cardiovascular 

(baroreflex) control related to posture. In PoTS, this relates to aberrant cardiovascular 

sympathoexcitation and in VVS, loss of consciousness is preceded by excessive 

parasympathoexcitation and the withdrawal of sympathetically-mediated vasoconstriction. However, 

some forms of VVS are associated with preserved muscle sympathetic nerve activity.   

 

2.2 Interoception protocol 

Measures of interoception included i) interoceptive accuracy (one’s objective interoceptive ability) 

scores, which were collected using a heartbeat tracking task (3), ii) interoceptive sensibility (one’s 

subjectively reported sensitivity to interoceptive sensation) and iii) interoceptive awareness (one’s 

metacognitive awareness of one’s own interoceptive abilities) (31), i.e., if someone has good 

interoceptive awareness, the level of their (objective) interoceptive accuracy will match their (subjective) 

interoceptive sensibility (31). Interoceptive accuracy scores were obtained by counting the R-waves in 

event-marked electrocardiogram (ECG) traces and averaging the below measure over three tracking 

periods per exercise (Table 1). 

1 − (|nbeatsreal− nbeatsreported|) / ((nbeatsreal+nbeatsreported)/2). 

Interoceptive sensibility was measured from the participant’s subjective confidence score for 

performance in each heartbeat tracking task using a visual analogue scale (1 = not confident at all to 

10 = very confident indeed). Interoceptive awareness scores were quantified as the strength of 
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correlation between the measures of interoceptive accuracy and interoceptive sensibility. Importantly to 

the neurobiological model of interoceptive inference (14, 16), these dimensions of interoception, while 

originating in beat-to-beat signalling from cardiac and arterial baroreceptors (32, 33), have cortical 

representations, notably within anterior insular cortex (AIC) (26, 34), a site of descending control of 

baroreflex function (21). 

 

Using the fast fourier transformation (FFT) nonparametric method, which is typified by discrete peaks 

of the frequency bands, we continuously recorded HR and quantified cardiovascular autonomic control 

from heart rate variability (HRV) and associated high (0.15-0.4 Hz) and low (0.04 to 0.15 Hz) frequency 

components. High frequency (HF-HRV) is a sensitive measure of parasympathetic modulation of the 

RR interval and cardiac coupling to respiratory changes. Low frequency (LF-HRV) HRV was, until 

relatively recently, believed to depict sympathetic cardiac influences (35) however, this has been called 

into question (36, 37), as studies have shown that endogenous fluctuations in LF-HRV provide 

information about sympathetic regulation of BP. Moreover, recent studies have positively correlated LF-

HRV and baroreceptor sensitivity (36, 38) as well as reduced LF-HRV and baroreflex-cardiovagal failure 

(39). HRV data was collected using PowerLab 16/30, AD Instruments, Oxford, United Kingdom. Data 

was checked for erroneously detected R-peaks before analysis. The ambient temperature of the 

examination room was maintained at 19°c.  

 

The protocol was comprised of two stages (table 1): (i) supine (10 mins) and HUT (10 mins). Heartbeat 

tracking task epoch lengths (25, 35, 45 secs) for interoception tasks were taken from previous studies 

that identified optimum task timeframes (40, 41) and then randomised during the protocol. Different 

timeframes were used to prevent habituation, retain attention and discourage participants from merely 

counting seconds. Participants were asked to not take their pulse and to confirm that they could not feel 

their pulse against any clothing or apparatus. A minimum 3 mins baseline period was inserted between 

each stage of the protocol to allow haemodynamic profiles to return to baseline.  
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Tests Supine baseline Head-up tilt 

Purpose of 
test(s) 

To acquire normative hemodynamic data 
To assess orthostatic tolerance and increase prediction 

error in OI subjects 

Description of 
test 

Minimum of 10 mins supine rest during 
beat-to-beat heart rate variability collection 

10 mins 60° head-up tilt, during which the bed the 
subject is securely laying on is tilted to 60° (head 

upward) 

Autonomic 
measures 

Heart rate 
Low-frequency heart rate variability 
High- frequency heart rate variability 

Heart rate 
Low-frequency heart rate variability 
High- frequency heart rate variability 

Interoceptive 
measures 

Objective interoceptive accuracy 
Subjective interoceptive sensibility 

Metacognitive interoceptive awareness 

Objective interoceptive accuracy 
Subjective interoceptive sensibility 

Metacognitive interoceptive awareness 

Table 1. Overview of interoceptive inference protocol. This table outlines the exercises, interoceptive measures and 
autonomic variables during testing. This pilot study sought initial empirical support for interoceptive inference in 

healthy controls, postural tachycardia syndrome (PoTS) and vasovagal syncope (VVS) patients by examining if 
homeostatic afferent interoceptive signals relate to autonomic mediation of homeostasis. If interoceptive inference 

underpins autonomically mediated homeostasis, correlations between interoceptive measures and autonomic function 
should exist and these correlations should be sensitive to dysautonomic symptom provocation in forms of orthostatic 

intolerance (OI) during head-up tilt (HUT), when interoceptive prediction error increases, but baroreceptor dysfunction 
prohibits reflexive autonomic allostatic adaption. This should increases in prediction error should be expressed as a 

distinct and inverse correlative pattern in PoTS and VVS compared to controls at rest, based on our previous findings 

 

2.3 Statistical analysis 

Statistical analysis was performed online using SPSS (version 20). Descriptive statistics are presented 

as mean (± 1 SD) for normally distributed data. Quantitative variables were compared across multiple 

time points using analysis of variance and at single time points by independent t-tests for two groups. 

Data were corrected for multiple comparisons and Pearson correlation coefficients were used to study 

pairwise correlations between normally distributed variables. Spearman correlation analysis was used 

for analysis of variables or non-normally distributed variables. Preliminary analyses were carried out to 

assess if there was a violation of the assumptions of normality, linearity, and homoscedasticity. Using 

Cohen’s effect size (ES) statistic (42), a correlation coefficient of .10 represented a weak association; 

a correlation coefficient of .30 was considered a moderate correlation and a correlation coefficient of 

.50 or larger represented a strong correlation. Statistical significance was specified as a 2-tailed p-value 

of <0.05. 
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3 Results 

3.1 Interoceptive accuracy 

Compared to controls, patients with PoTS and VVS displayed lower interoceptive accuracy (Figure 1). 

This was reduction was not significant in PoTS patients but VVS patients showed significantly lower 

interoceptive accuracy at baseline and during HUT.  

 

 
Figure 1. Interoceptive accuracy scores were collected whilst supine and during head-up tilt (HUT) from patients 

with the postural tachycardia syndrome (PoTS) and vasovagal syncope (VVS) vs healthy controls. + = standard 
deviation, * = statistically significant (p=.05) 

 

3.2 Interoceptive sensibility  

There were no between-group differences in interoceptive sensibility (table 2).  

 

Interoceptive sensibility Supine HUT 

Healthy controls 5.0 + 4.5 3.7 + 7.8 
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Postural tachycardia 

syndrome 
5.2 + 1.8 5.1 + 1.7 

Vasovagal syncope 4.2 + 2.1 3.9 + 2.3 

 
Table 2. Interoceptive sensibility scores were collected whilst supine and during head-up tilt (HUT) from patients 

with the postural tachycardia syndrome (PoTS) and vasovagal syncope (VVS) vs healthy controls. + = standard 
deviation 

 

3.3 Interoceptive awareness 

There were no between-group differences in interoceptive awareness (table 3).  

Group 
Interoceptive 

Awareness 

Healthy controls .29 + .37 

Postural tachycardia syndrome .22 + .53 

Vasovagal syncope .22 + .42 

Table 3. Group interoceptive awareness scores were equated for from patients with the postural tachycardia 

syndrome and vasovagal syncope vs healthy controls. + = standard deviation 

 

3.4 Interoception and heart rate variability 

A Pearson product-moment correlation was conducted to evaluate the relationship between cardiac 

interoception (as measured by interoceptive accuracy, interoceptive sensibility and interoceptive 

awareness) and autonomic cardiac control (as measured by LF-HRV and HF-HRV). Preliminary 

analyses showed that there was no violation of the assumptions of normality, linearity, and 

homoscedasticity. There were strong, positive correlations between healthy controls’ supine LF-HRV 

(rs= .816, p=.001), HF-HRV (rs= .676, p=.002) and interoceptive sensibility (Table 4). There were 

moderate, negative correlation between PoTS patients’ HF-HRV (rs= -.457, p=.043) and interoceptive 

awareness. There was a strong negative correlation between VVS patients’ HF-HRV (rs= -.658, p=.015) 

and interoceptive awareness. Thus, the positive correlations between interoception and autonomic 

outflow in control participants was reversed in PoTS and VVS patients under orthostatic engagement 
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of the baroreflex, when interoceptive prediction error increases as deviation from homeostasis 

increases but baroreceptor dysfunction prohibits reflexive autonomic allostatic adaptions. 

 

2a 

2b 
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Figures 2a, b, c, d Give an overview of how interoceptive inference may subjugate autonomic reflexes, as 

measured by high frequency and low frequency heart rate variability  Correlations between cardiac interoceptive 
measures and autonomic cardiac control were found in healthy controls (fig 2a and 2b) whilst supine and 

orthostatic intolerance patient groups during increased interoceptive prediction error (head-up tilt) (figs 2c and 
2d). Interoceptive accuracy is an objective interoceptive measure gained from the subject’s performance during a 

heartbeat tracking task. Interoceptive sensibility represents subjective confidence in one’s own interoceptive 
accuracy. Interoceptive awareness is a metacognitive measure of the degree to which objective interoceptive 

accuracy relates to interoceptive sensibility 

2c 

2d 



13 

 

4 Discussion 

This study sought empirical support for the interoceptive inference hypothesis by examining the 

relationship between measures of cardiac interoception and autonomic cardiac control and to delineate 

if these correlations would be sensitive to autonomic symptom provocation in PoTS and VVS patients 

during HUT, when dysautonomia would increase interoceptive prediction error, comparative to healthy 

controls 

 

From the perspective of interoceptive inference, the lower interoceptive accuracy in the patient groups 

can be interpreted as a failure to appropriately ‘contextualise’ autonomic precision or gain, i.e., unlike 

healthy controls - where cardiovascular autonomic arousal normally increases interoceptive accuracy 

(43) - the opposite occurred in both OI patient groups. In other words, normal interoceptive inference 

normally adjusts the gain of sympathetic and parasympathetic drives so that they are context-sensitive 

but in PoTS and VVS, a failure of precision would present as context-sensitive failures of autonomic 

reflexes, such as a postural HR increase exceeding that necessitated for cardiac output to maintain 

organ perfusion or loss of consciousness due to cerebral hypoperfusion.  

 

If top-down regulation of precision is expressed in attentional selection of precise sensory information, 

a failure to attenuate or contextualise precision translates into a failure to attend accurately to ascending 

interoceptive signals. At a primary level of analysis, our results indicate that attention to interoceptive 

cues is ineffective in OI because the underlying neuromodulatory mechanisms that flexibly regulate 

synaptic gain within the central autonomic network (CAN) are compromised, for which there is recent 

evidence (44, 45). This argument suggests that patients may experience difficulty in withdrawing 

attention from the interoceptive domain, and is supported by observations of bodily hypervigilance in 

PoTS and VVS patients (46, 47) (6). Our data on reduced interoceptive accuracy is comparable to 

sensory attenuation in the somatosensory domain, such that the same psychophysiological phenomena 
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that underlie somatosensory attenuation produces an underestimation of self-generated internal 

sensations (see figure 1).  

 

This offers a formal explanation for the paradoxical increased bodily hypervigilance but reduced 

interoceptive accuracy we recently found in a related study (6). Under predictive coding framework, 

fluctuations in interoceptive prediction error typically go unnoticed because they are resolved by 

autonomic reflexes. Only when unresolved prediction errors are large enough to ascend to higher levels 

of the interoceptive hierarchy are they available for conscious perception. Active inference accounts 

propose that responses to prediction error depend upon how the brain selects or attends to afferent 

sensory signals (48). Both OI patient groups underestimated their HR at rest and during symptom and 

interoceptive prediction error provocation. This implicit failure to appropriately attend to interoceptive 

signals suggests that relevant (autonomic/cognitive) control networks, most-likely involving the insula 

and anterior cingulate cortex (49), are unable to select afferent inputs (50). This might contribute to the 

reported cognitive difficulties in PoTS (51-53) and explain why patients with PoTS and VVS report 

symptoms of indecisiveness and distractibility compared to healthy controls (47) (6).  

 

We hypothesised that if interoceptive signals drive autonomic mediation of homeostasis, interoceptive 

and autonomic measures would correlate. Additionally, symptom provocation in OI patients would be 

expressed as an inverse correlative pattern, based on our previous findings that interoceptive accuracy 

inversely correlates with anxiety in PoTS and VVS compared to healthy controls (6). The correlations 

between interoceptive measures and HRV could support interoceptive inference’s hypothesis. The 

strong positive correlations between supine interoceptive sensibility and LF-HRV and HF-HRV in 

healthy controls is consistent with interoception’s homeostatic role, i.e., more accurate interoception 

means better autonomic responsivity. In principle, a failure to attenuate or contextualise ascending 

interoceptive prediction error would preserve interoceptive accuracy under autonomic stress, however, 

PoTS and VVS patients cannot adequately use their interoceptive prediction errors to engage 

autonomic reflexes during HUT due to autonomic dysfunction. In this situation, these patients are less 

able to produce reactive changes in autonomic outflow, so prediction errors must be resolved through 
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central interoceptive processes rather than autonomic function, producing an inverted correlative 

pattern to controls under orthostatic challenge but leaving metacognitive autonomic awareness 

unchanged between controls and OI subjects, as observed. This may also explain why interoceptive 

awareness was the interoceptive measure that correlated with HRV amongst both PoTS and VVS 

patients. The fact that interoceptive sensibility and awareness rather than interoceptive accuracy – the 

most commonly used interoceptive measure in research – correlated with HRV, supports Garfinkel and 

colleague’s (31) proposal that most interoceptive experiments may be using the least relevant measure 

of interoception.  

  

Two recent neuroimaging studies relate to the potential aberrant central correlate for interoceptive 

disruptions in OI. The first showed left insula volume reductions in PoTS patients correlate with affective 

symptoms (44). The second reported reduced right insula volumes correlated with BP falls during HUT 

in VVS patients (45). The insula is part of the CAN (54) and vital for autonomic and interoceptive 

processes (26). The involvement of the insula in PoTS and VVS neuropathophysiology is unlikely to be 

the result of age-related neurodegeneration, as these forms of OI typically manifest in adolescence and 

early adulthood (28, 55), as reflected by the participants’ mean ages of 32 and 24 years in these studies 

respectively. The AIC is suggested to coordinate a relaying of tactile (56) and interoceptive prediction 

errors (20) and to encode interoceptive representations of self and others, as well as being implicated 

in error-based learning of affect and uncertainty (57). Therefore, insula abnormalities in OI could have 

a bearing on interoceptive inference and associated peripheral systems. We have found some support 

for this in VVS (58). Using voxel-based morphometry, we established a hierarchical predisposition for 

VVS, in which VVS subjects had reduced medulla, midbrain and left caudate volumes in comparison to 

healthy controls. Additionally, caudate volume predicted anxiety, faint frequency and HF-HRV. 

Together, these findings indicate the mapping of the interoceptive inference hierarchy, starting with 

subcortical structures, such as striatum, and homeostatic brainstem regions that channel prediction 

error as they ascend the cortical hierarchy and predictions generated by the brain that descend the 

cortical hierarchy via the peripheral cardiovascular hub of the baroreflex. 
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This study had several limitations. Neuroimaging would have allowed for more robust investigation of 

interoceptive processing of autonomic feedback, and importantly, potentially provided direct 

assessment of prediction error signatures. Physiological measures, such as cardiovascular fitness and 

body mass index were not standardized across subjects, the former having been previously positively 

correlated with interoceptive accuracy. A further limitation is the small number of subjects in the study, 

lack of respiratory measurement in relation to HF-HRV and the lack of blood pressure measurement to 

provide a robust marker of sympathetic nerve activity. Unfortunately, beat-to-beat blood pressure 

monitoring was not possible during the heartbeat tracking task, due to the possible confounding effect 

of the finger cuff used for digital photoplethysmography. It is also important to consider other 

explanations for our findings than predictive coding, such as non-cardiac mechanoreceptors in varying 

locations (e.g., thoracic or cutaneous mechanoreceptors) providing greater sensory input to OI 

phenotypes compared to controls. 

 

4.1 Conclusion 

This study appealed to interoceptive inference to offer new insights into autonomic (dys)function and 

brain-body integration in healthy subjects and in individuals for whom autonomically mediated 

homeostasis is intermittently compromised. The diminished interoceptive accuracy in PoTS and VVS 

can be interpreted as a failure to contextualise autonomic precision, as normal interoceptive inference 

adjusts the gain of sympathetic and parasympathetic reflexes so that they are context-specific and 

maintain homeostasis. Correlations between cardiac interoception and HRV are interpreted in terms of 

between-participant differences in gain afforded to interoceptive prediction errors. The negative 

correlations between interoceptive measures and HRV during HUT in PoTS and VVS can be interpreted 

as an inappropriate preservation of interoceptive precision that goes hand-in-hand with a failure to 

engage autonomic reflexes. This study considered how interoceptive afferents construct predictions 

about the state of the body, offering a new approach to studying the interactions between the central 

and autonomic nervous systems’ mediation of homeostasis.  
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