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Genetic diversity of the African malaria 1 

vector Anopheles gambiae 2 

The Anopheles gambiae  1000 Genomes Consortium * 3 

The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in 4 

Anopheles mosquitoes that transmit the disease1. To gain a deeper understanding of how mosquito 5 

populations are evolving, we sequenced the genomes of 765 specimens of Anopheles gambiae and 6 

Anopheles coluzzii sampled from 15 locations across Africa, identifying over 50 million single 7 

nucleotide polymorphisms within the accessible genome. These data revealed complex population 8 

structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and 9 

local variation in effective population size. Strong signals of recent selection were observed in 10 

insecticide resistance genes, with multiple sweeps spreading over large geographical distances and 11 

between species. The design of novel tools for mosquito control using gene drive will need to take 12 

account of high levels of genetic diversity in natural mosquito populations.  13 

Blood-sucking mosquitoes of the Anopheles gambiae species complex are the principal vectors of 14 

Plasmodium falciparum malaria in Africa. Substantial reductions in malaria morbidity and mortality have 15 

been achieved by the use of insecticide-based interventions2, but increasing levels of insecticide 16 

resistance and other adaptive changes in mosquito populations threaten to reverse these gains1. A 17 

better understanding of the molecular, ecological and evolutionary processes driving these changes is 18 

essential to maximize the active lifespan of existing insecticides, and to accelerate the development of 19 

                                                           
* Lists of participants and their affiliations appear at the end of the paper 



new strategies and tools for vector control. The Anopheles gambiae 1000 Genomes Project* (Ag1000G) 20 

was established to provide a foundation for detailed investigation of mosquito genome variation and 21 

evolution. Here we report the first phase of the project which analysed 765 wild-caught specimens of 22 

Anopheles gambiae sensu stricto and Anopheles coluzzii. These two species account for the majority of 23 

malaria transmission in Africa, and are morphologically indistinguishable and often sympatric, but are 24 

genetically distinct3,4 and differ in geographical range5, larval ecology6, behaviour7 and strategies for 25 

surviving the dry season8. The specimens were collected at 15 locations across 8 African countries, 26 

spanning a range of ecologies including rainforest, inland savanna and coastal biomes, and thus provide 27 

a broad sample in which to explore factors shaping mosquito population variation (Extended Data Fig. 1; 28 

Supplementary Text 1). 29 

Specimens were sequenced using the Illumina HiSeq platform and single nucleotide polymorphisms 30 

(SNPs) were identified by alignment against the AgamP3 reference genome (Methods; Supplementary 31 

Text 2). A rigorous evaluation of data quality, including the use of experimental genetic crosses to 32 

quantify error rates, identified genomic regions totaling 141 Mbp (61% of the reference genome) that 33 

were accessible for analysis of population variation (Supplementary Text 3; Extended Data Fig. 2). We 34 

identified 52,525,957 high-quality SNPs, of which 21% had three or more alleles, an average of one 35 

variant allele every 2.2 bases of the accessible genome (Fig. 1a). Individual mosquitoes carried between 36 

1.7 and 2.7 million variant alleles, with no systematic difference observed between the two species 37 

(Extended Data Fig. 3a). In most populations, nucleotide diversity was 1.5% on average (Extended Data 38 

Fig. 3b) and >3% at synonymous coding sites (Extended Data Fig. 3c), confirming these are among the 39 

most genetically diverse eukaryotic species9.  40 
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High levels of natural diversity have practical implications for the development of gene drive 41 

technologies for mosquito control10. CRISPR/Cas9 gene drives can be designed to edit a specific gene 42 

and confer a phenotype such as female sterility, which could suppress mosquito populations and 43 

thereby reduce disease transmission. However, naturally occurring polymorphisms within the ~21 bp 44 

Cas9 target site could prevent target recognition, and thus undermine gene drive efficacy in the field. 45 

We found viable Cas9 targets in 11,625 protein-coding genes, but only 5,474 genes remained after 46 

excluding target sites with nucleotide variation in any of the 765 genomes sequenced here (Extended 47 

Data Fig. 3d; Supplementary Text 5). Resistance to gene drive could be countered by designing 48 

constructs that target multiple sites within the same gene, and we identified 863 genes that each 49 

contain at least 10 non-overlapping conserved target sites, including 13 putative sterility genes10 50 

(Supplementary Text 5.2). However, clearly more variants remain to be discovered (Extended Data Fig. 51 

3d) and extensive sampling of multiple populations will be needed to inform the design of gene drives 52 

that are robust to natural genetic variation. 53 

An. gambiae and An. coluzzii have a geographical range spanning sub-Saharan Africa and encompassing 54 

a variety of ecological settings5. Previous studies have found evidence that populations are locally 55 

adapted, and that migration between populations is limited both by geographical distance and major 56 

ecological discontinuities, notably the Congo Basin tropical rainforest and the East African rift system11–57 

14. As a starting point for analysis of population structure, we constructed neighbour-joining trees to 58 

explore patterns of genetic similarity between individuals (Fig. 1b; Supplementary Text 6.1). We 59 

observed four contrasting patterns of relatedness, associated with different regions of the genome. 60 

Within pericentromeric regions of chromosomes X, 3 and arm 2R, mosquitoes segregated into two 61 

highly distinct clades, largely corresponding to the two species as determined by conventional molecular 62 

diagnostics, consistent with previous studies finding that genome regions of reduced recombination are 63 

associated with stronger differentiation between closely-related species15. The large chromosomal 64 



inversions 2La and 2Rb were each associated with a distinct pattern of relatedness, as expected if 65 

recombination is reduced between inversion karyotypes. In most of the remaining genome, there was 66 

evidence of clustering by geographical region but not by species. There were also some genome regions 67 

where we found unusually short genetic distances between individuals from different populations and 68 

species, indicating the influence of recent selective sweeps and adaptive gene flow. 69 

To investigate geographical sub-divisions in more detail, we focused on euchromatic regions of 70 

Chromosome 3, which are free from polymorphic inversions and regions of reduced recombination 71 

(Supplementary Text 6). ADMIXTURE models and principal components analysis (PCA) supported five 72 

major ancestral populations, corresponding to: (i) An. gambiae from Guinea, Burkina Faso, Cameroon 73 

and Uganda; (ii) An. gambiae from Gabon; (iii) Kenya; (iv) Angola An. coluzzii; (v) Burkina Faso An. 74 

coluzzii and Guinea-Bissau (Fig. 2; Extended Data Figs. 4, 5). Within each species, we found relatively 75 

high allele frequency differentiation across the Congo Basin rainforest, exceeding differentiation 76 

between the two species at a single location (Extended Data Fig. 5b). There were also more subtle 77 

distinctions within and between populations. For example, in Cameroon mosquitoes were sampled 78 

along a cline from savanna into forest, and there was some population structure associated with these 79 

different ecologies. However, among An. gambiae populations north of the Congo Basin, differentiation 80 

was extremely weak overall, despite considerable distances between populations, suggesting substantial 81 

gene flow. 82 

Earlier studies concluded that purposeful movement of Anopheles mosquitoes is limited to short-range 83 

dispersal up to 5 km16; however, recent evidence has emerged for long-distance seasonal migration in 84 

An. gambiae8. To explore evidence for migration, we computed joint site frequency spectra for selected 85 

population pairs and fitted models of population history (Methods; Supplementary Text 8). For all pairs 86 

examined, models with migration provided a better fit than models without migration (Supplementary 87 



Table 2). The inferred rate of migration was high between An. gambiae savanna populations, but some 88 

migration was also inferred between species and across both the Congo Basin rainforest and the East 89 

African rift.  Although these analyses do not allow us to infer the timing or direction of gene flow events, 90 

they suggest that mosquito migration between different parts of the continent could impact on the 91 

spread of insecticide resistance and dynamics of disease transmission. 92 

A key question in mosquito evolution concerns the extent and impact of gene flow between species, and 93 

An. gambiae and An. coluzzii are known to undergo hybridization at a rate that varies over space and 94 

time17.  To study this phenomenon, we analyzed 506 SNPs previously found to be highly differentiated 95 

between the two species18 (Extended Data Fig. 6; Supplementary Text 6.6). These ancestry-informative 96 

markers (AIMs) showed that a genomic region on chromosome arm 2L has introgressed from An. 97 

gambiae into An. coluzzii in Burkina Faso and Angola. This region spans the Vgsc gene where 98 

introgression of insecticide resistance alleles has been reported in Ghana19 and Mali20, although this is 99 

the first evidence that introgressed alleles have spread to An. coluzzii south of the Congo Basin. AIMs 100 

also highlighted two populations with uncertain species status. In Guinea-Bissau, mosquitoes carried a 101 

mixture of alleles from both species on all chromosomes. These individuals were sampled from the 102 

coast, within a region of West Africa that is believed to be a zone of secondary contact because previous 103 

studies have found evidence for extensive introgression21,22. We also found that mosquitoes from 104 

coastal Kenya carried a mixture of both species’ alleles on all chromosomes. This was unexpected, as the 105 

geographical range of An. coluzzii is not thought to extend beyond the East African rift. There are several 106 

possible explanations for the Kenyan data, including historical admixture between species and retention 107 

of ancestral variation, and further analysis and population sampling are required. However, our data 108 

demonstrate that a simple gambiae/coluzzii dichotomy is not adequate for describing malaria vector 109 

species composition in some parts of Africa, and caution against the use of any single marker to infer 110 

species ancestry or recent hybridization. 111 



Historical fluctuations in effective population size (Ne) can be inferred from the genomes of extant 112 

individuals. Analysis of our genome variation data indicated a major expansion in all populations north 113 

of the Congo Basin and west of the East African rift (Fig. 3a; Extended Data Fig. 7; Methods; 114 

Supplementary Text 8).  Knowledge of the Anopheles mutation rate is required to date this expansion, 115 

and this has not yet been determined, but assuming it is similar to Drosophila then the onset of 116 

expansion would be within the range 7,000 to 25,000 years ago (Fig. 3a; Methods). Since An. gambiae 117 

and An. coluzzii are highly anthropophilic, mosquito population expansion could be linked to that of 118 

humans, and particularly to the expansion of agricultural Bantu-speaking groups originating from north 119 

of the Congo Basin beginning ~5,000 years ago23.  It is possible to reconcile this theory with our data if 120 

Anopheles has a higher mutation rate than Drosophila, causing us to over-estimate the age of the 121 

expansion, but it is also possible that mosquito populations benefited from earlier human population 122 

growth, or that other factors such as climate change played a role. 123 

We also observed genomic signatures of a major recent population decline of An. gambiae in coastal 124 

Kenya.  All Kenyan specimens (but no specimens from other locations) had long runs of homozygosity 125 

comprising 10-60% of the genome, indicating high levels of inbreeding consistent with a recent 126 

population bottleneck (Fig. 3b).  In Kenya, free mass distribution of insecticide-treated nets (ITNs) 127 

starting in 2006 resulted in a major increase in ITN coverage24. The specimens in this study were 128 

collected in 2012, raising the question of whether the population decline of An. gambiae can be 129 

attributed to ITN usage.  To address this question, we analysed sharing of genome regions that are 130 

identical by descent (IBD) (Methods; Extended Data Figs. 8a, 8b). We estimated that the An. gambiae 131 

population in Kenya has fallen in size by at least two orders of magnitude, to Ne <1,000 (Extended Data 132 

Fig. 8c; Supplementary Text 8.4). The beginning of this inferred decline occurred approximately 200 133 

generations before the date of sampling, which would pre-date mass ITN distributions, assuming ~11 134 

generations per year. This is consistent with other studies that have found evidence for low Ne
11 and 135 



changes in mosquito species abundance25 in the region prior to high levels of ITN coverage.  136 

Nevertheless, our data show that major demographic events leave genetic signatures that could be used 137 

to gain important information about the impact of vector control interventions. 138 

Many genes have been associated with insecticide resistance in Anopheles, but different genetic variants 139 

may be responsible for resistance in different populations, and it is not yet clear where or how 140 

resistance is spreading. Genomic data can help address these questions by identifying genes with 141 

evidence of recent evolutionary adaptation in one or more mosquito populations.  We found strong 142 

signals of recent positive selection at several genes that are known to play a role in resistance, including: 143 

Vgsc, the target site for DDT and pyrethroid insecticides26; Gste, a cluster of glutathione S-transferase 144 

genes including Gste2, previously implicated in metabolism of DDT and pyrethroids27; and Cyp6p, a 145 

cluster of genes encoding cytochrome P450 enzymes, including Cyp6p3 which is upregulated in 146 

permethrin and bendiocarb resistant mosquitoes28 (Extended Data Fig. 9; Supplementary Text 9). We 147 

also observed strong signals of selection at multiple loci with no known resistance genes, and these 148 

merit detailed investigation in future studies. 149 

Mutations in An. gambiae Vgsc codon 995 (orthologous to Musca domestica Vgsc codon 1014), known 150 

as “kdr” due to their knock-down resistance phenotype, reduce susceptibility to DDT and pyrethroids26. 151 

We found the Leucine→Phenylalanine (L995F) kdr variant at high frequency in West and Central Africa 152 

(Guinea 100%; Burkina Faso 93%; Cameroon 53%; Gabon 36%; Angola 86%). A second kdr allele, 153 

Leucine→Serine (L995S), was present in Central and East Africa (Cameroon 15%; Gabon 65%; Uganda 154 

100%; Kenya 76%). To investigate the evolution and spread of the two kdr alleles, we analyzed the 155 

genetic backgrounds on which they were carried (Fig. 4; Supplementary Text 9.3). L995F occurred within 156 

five distinct haplotype clusters (labeled F1-F5 in Fig. 4), while L995S was found in a further 5 haplotype 157 

clusters (labeled S1-S5 in Fig. 4). Cluster F1 contained individuals of both species and from 4 countries 158 



spanning the Congo Basin, proving that recent gene flow has carried resistance alleles between these 159 

populations. Three kdr haplotypes (F4, F5, S2) were found in both Cameroon and Gabon, providing 160 

multiple examples of recent gene flow between these two populations. The S3 haplotype was present in 161 

both Uganda and coastal Kenya, thus resistance alleles can reach populations on both sides of the rift 162 

system. 163 

While the evolution of resistance in the Vgsc gene is clearly driven primarily by the two kdr alleles, we 164 

also found 15 other non-synonymous variants at a frequency above 1% in our cohort (Fig. 4). 13 of these 165 

variants occurred almost exclusively on haplotypes carrying the L995F allele (D’ > 0.96). These included 166 

N1570Y, previously found on L995F haplotypes in West and Central Africa and shown to confer 167 

increased resistance29. Overall there was a highly significant enrichment for non-synonymous mutations 168 

on haplotypes carrying the L995F allele, indicating secondary selection on multiple variants that either 169 

enhance or compensate for the L995F phenotype (Supplementary Text 9.5).  170 

Resistance due to genes that enhance insecticide metabolism is also a serious concern, as it has been 171 

implicated in extreme resistance phenotypes in some Anopheles populations27,28. Although several 172 

metabolic genes have been shown to be upregulated in resistant mosquitoes, only a single molecular 173 

marker of metabolic resistance (Gste2-I114T) has previously been identified in An. gambiae or An. 174 

coluzzii27. At both Gste and Cyp6p we found evidence that resistance has emerged on multiple genetic 175 

backgrounds and is spreading between species and over considerable distances. At the Gste locus we 176 

found at least four distinct haplotypes under selection (Extended Data Fig. 10a). One of these 177 

haplotypes carried the known Gste2-I114T resistance allele, and this haplotype was found in all 178 

populations except Guinea-Bissau and Uganda, indicating a continent-wide spread. However, the other 179 

three haplotypes did not carry this allele, thus other genetic variants with a resistance phenotype must 180 

be present at this locus. At the Cyp6p locus we found at least eight distinct haplotypes under selection, 181 



but limited spread between populations (Extended Data Fig. 10b). At both loci, we found multiple SNPs 182 

associated with haplotypes under selection which could be used as markers to track the spread of 183 

resistance and characterize resistance phenotypes (Extended Data Fig. 10). 184 

In 1899 Ronald Ross proposed that malaria could be controlled by destroying breeding sites of the 185 

mosquitoes that transmit the disease30. An. gambiae, identified in the same year by Ross as a vector of 186 

malaria in Africa, has proved resilient to a century of attempts to repress it. The vector control 187 

armamentarium needs to be expanded, not only with new classes of insecticide and novel genetic 188 

control strategies, but also with tools for gathering intelligence, to enable those responsible for planning 189 

and executing interventions to stay ahead of the mosquito’s remarkable capacity for rapid evolutionary 190 

adaptation. There remain major knowledge gaps concerning the ecology and life history of Anopheles 191 

mosquitoes, such as the rate and range of migration, which are fundamental to understanding both 192 

malaria transmission and the spread of insecticide resistance, and which will require spatiotemporal 193 

analysis of mosquito populations. Most importantly, it is essential to start collecting population genomic 194 

data prospectively as an integral part of vector control interventions, to identify which strategies are 195 

causing increased insecticide resistance, or what it takes to cause a population crash of the magnitude 196 

observed in our Kenyan data. By treating each intervention as an experiment, and by analyzing its 197 

impact on both mosquito and parasite populations, we can aim to improve the efficacy and 198 

sustainability of future interventions, while at the same time learning about basic processes in ecology 199 

and evolution. 200 
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Figure legends 362 

Figure 1. Patterns of genomic variation. a, Density of nucleotide variation in 200 kbp windows over the 363 

genome. b, Variation in the pattern of relatedness between individual mosquitoes over the genome. The 364 

three chromosomes are painted using colours to represent the major pattern of relatedness found 365 

within each 100 kbp window. Below, neighbour-joining trees are shown from a selection of genomic 366 

windows that are representative of the four major patterns of relatedness found, as well as for the 367 

http://www.ebi.ac.uk/ena


window spanning the Vgsc gene. AO=Angola; BF=Burkina Faso; GW=Guinea-Bissau; GN=Guinea; 368 

CM=Cameroon; GA=Gabon; UG=Uganda; KE=Kenya. 369 

Figure 2. Geographical population structure and migration. In the upper panel, each mosquito is 370 

depicted as a vertical bar painted by the proportion of the genome inherited from each of K=8 inferred 371 

ancestral populations. Pie charts on the map depict the same ancestry proportions summed over all 372 

individuals for each population. Text in white shows average FST followed in parentheses by estimates of 373 

the population migration rate (2Nm). 374 

Figure 3. Population size history. a, Stairway Plot of changes in population size over time. Absolute 375 

values of time and Ne are shown on alternative axes as a range of values, assuming lower and upper 376 

limits for the mutation rate μ as 2.8x10-9 and 5.5x10-9 respectively and T=11 generations per year. b, 377 

Runs of homozygosity (ROH) in individual mosquitoes, highlighting recent inbreeding in Kenyan (grey) 378 

and colony mosquitoes (black; P=Pimperena, M=Mali, K=Kisumu, G=Ghana). 379 

Figure 4. Evolution and spread of insecticide resistance in the Vgsc gene. The upper panel shows a 380 

dendrogram obtained by hierarchical clustering of haplotypes from wild-caught individuals. The colour 381 

bar below shows the population of origin for each haplotype. The lower panel shows alleles carried by 382 

each haplotype at 17 non-synonymous SNPs with alternate allele frequency > 1% (white=reference 383 

allele, black=alternate allele, red=previously known resistance allele). At the lower margin, we label 10 384 

haplotype clusters carrying a kdr allele (either L995F or L995S). The inset map depicts haplotypes shared 385 

between populations, demonstrating the spread of insecticide resistance. 386 

Methods 387 

Population sampling. Mosquitoes were collected from natural populations at 15 sampling sites in 8 388 

African countries (Extended Data Fig. 1). Sampling locations, dates, specimen collection methods and 389 



DNA extraction methods are given in Supplementary Text 1.1. We also performed genetic crosses 390 

between adult mosquitoes obtained from lab colonies (Supplementary Text 1.2). Parents and progeny of 391 

four crosses were contributed to Ag1000G phase 1 (Extended Data Fig. 1). 392 

Whole genome sequencing. Sequencing was performed on the Illumina HiSeq 2000 platform at the 393 

Wellcome Trust Sanger Institute. Paired-end multiplex libraries were prepared using the manufacturer’s 394 

protocol, with the exception that genomic DNA was fragmented using Covaris Adaptive Focused 395 

Acoustics rather than nebulization. Multiplexes comprised 12 tagged individual mosquitoes and three 396 

lanes of sequencing were generated for each multiplex to even out variation in yield between 397 

sequencing runs. Cluster generation and sequencing were undertaken per the manufacturer’s protocol 398 

for paired-end 100 bp sequence reads with insert size in the range 100-200 bp. 399 

Sequence analysis and variant calling. Sequence reads were aligned to the AgamP3 reference genome31 400 

using bwa32 and SNPs were discovered using GATK following best practice recommendations33,34 401 

(Supplementary Text 3.1, 3.2). After sample quality control, we analyzed data on 765 wild-caught 402 

specimens and a further 80 specimens comprising parents and progeny from the four lab crosses 403 

(Supplementary Text 3.3). The alignments were also used to identify genome regions accessible to SNP 404 

calling, where short reads could be uniquely mapped and there was minimal evidence for structural 405 

variation (Supplementary Text 3.4). Mendelian errors in the crosses were used to guide the design of 406 

filters to remove poor quality variant calls (Supplementary Text 3.5). We performed capillary sequencing 407 

of five genes in 58 individual mosquitoes to provide an estimate for the SNP false discovery rate (FDR), 408 

sensitivity and genotyping accuracy (Supplementary Text 3.6). We also performed genotyping by primer-409 

extension mass spectrometry using the Sequenom MassARRAY® platform at 158 SNPs in 229 individual 410 

mosquitoes to provide a second estimate for genotyping accuracy (Supplementary Text 3.7). 411 



Haplotype estimation. We used SHAPEIT2 to perform statistical phasing with information from 412 

sequence reads35 for all wild-caught individuals (Supplementary Text 4.1). We assessed phasing 413 

performance by comparison with haplotypes generated from the crosses and from male X chromosome 414 

haplotypes (Supplementary Text 4.2; Extended Data Fig. 2b, 2c). 415 

Population structure. To investigate variation in patterns of relatedness along the genome, we 416 

performed a windowed analysis using genetic distance and neighbour-joining trees (NJT). We divided 417 

the genome into 1,418 contiguous non-overlapping windows, where each window contained 100 kbp of 418 

accessible positions. Within each window, we computed the city-block distance between all pairs of 419 

individuals. We used these distance matrices to construct a NJT for each window. We then computed 420 

the Pearson correlation coefficient between all pairs of distance matrices, and performed a singular 421 

value decomposition (SVD) on the correlation matrix. The resulting SVD components were used to 422 

identify major patterns of relatedness (Supplementary Text 6.1). We analysed geographical population 423 

structure using ADMIXTURE36 and PCA37. For these analyses, we used biallelic SNPs from within the 424 

regions 3R:1-37Mbp and 3L:15-41Mbp and with minor allele frequency >= 1%, then each chromosome 425 

arm was randomly down-sampled to 100,000 variants using 10 different random seeds to provide 10 426 

replicate variant sets, then each set was pruned to remove variants in linkage disequilibrium 427 

(Supplementary Text 6.2). For each of the 10 replicate variant sets, ADMIXTURE was run for K (number 428 

of ancestral populations) from 2 to 11 with 5-fold cross-validation. Each ADMIXTURE analysis was 429 

repeated 10 times with different seeds, resulting in a total of 100 runs for each value of K. We then used 430 

CLUMPAK38 to analyse the ADMIXTURE results and compute ancestry proportions (Supplementary Text 431 

6.2). Average FST was computed using Hudson’s estimator and the ratio of averages, and standard errors 432 

were computed using a block-jackknife39 (Supplementary Text 6.4). Ancestry informative markers (AIMs) 433 

were ascertained by starting with SNPs previously discovered in Mali18 with an allele frequency 434 



difference between An. gambiae and An. coluzzii > 0.9, then taking the intersection with biallelic SNPs 435 

discovered in this study, resulting in 506 AIMs (Supplementary Text 6.6). 436 

Population size history. We inferred the scale and timing of historical changes in Ne using two methods, 437 

Stairway Plot40 and ∂a∂i41, both using site frequency spectra but taking different modelling approaches. 438 

To compute site frequency spectra, we used SNPs from within the regions 3R:1-37 Mbp and 3L:15-41 439 

Mbp, taking only intergenic SNPs at least 5 kbp from the nearest gene (Supplementary Text 8). We 440 

modified Stairway Plot to include an additional parameter representing the probability of ancestral 441 

misclassification for each SNP (Supplementary Text 8.1). We fitted a three-epoch (two Ne changes) ∂a∂i 442 

model for each population singly, and fitted joint population models for selected pairs of populations 443 

(Supplementary Text 8.2). Scaling of parameters assumed that the Anopheles mutation rate is within the 444 

range of values estimated for Drosophila, where estimates42,43 range from 2.8x10-9 to 5.5x10-9. For joint 445 

population models, we computed the joint site frequency spectrum for each pair of populations from 446 

the same set of SNPs used for single-population inferences. Joint population models allowed for a phase 447 

of exponential size change in the ancestral population up until the time of the population split, after 448 

which each of the daughter populations experienced their own exponential size change until the 449 

present. We fitted these models with and without the addition of a symmetric, bidirectional migration 450 

rate parameter following the split. To study recent population history in Kenya we used IBDseq44 to infer 451 

genome tracts identical by descent (IBD) then ran IBDNe
45 to infer population size history 452 

(Supplementary Text 8.4).  453 

Recent selection. To scan the genome for signals of recent selection, we computed the H12 haplotype 454 

diversity statistic46 for each population, and the cross-population extended haplotype homozygosity (XP-455 

EHH) score47 for selected pairs of populations. H12 was computed in non-overlapping windows over the 456 

genome, where each window contained a fixed number of SNPs, and window-sizes were calibrated 457 



separately for each population to account for differences in the extent of linkage disequilibrium 458 

(Supplementary Text 9.1). XP-EHH was computed for all SNPs with a minor allele frequency ≥ 5% in the 459 

union of both populations in each pair, and normalized within each chromosome (Supplementary Text 460 

9.2). To study haplotype structure at the Vgsc, Gste and Cyp6p loci, we computed the Hamming distance 461 

between all pairs of haplotypes, then performed hierarchical clustering of haplotypes (Supplementary 462 

Text 9.3). To identify haplotype clusters resulting from recent selection, we cut the dendrograms at a 463 

small genetic distance (0.0004 SNP differences per accessible bp) and studied the largest clusters 464 

obtained after cutting. To look for evidence that the haplotype clusters we identified were related via 465 

recombination events, we performed the same clustering analysis but in non-overlapping windows 466 

upstream and downstream of the target region and compared the resulting clusters.  467 

Plotting and maps. All figures were produced using the matplotlib package for Python48. The map 468 

component of Fig. 2 was produced via the matplotlib basemap package, using the NASA Blue Marble 469 

image as the map background. The map components of Fig. 4 and Extended Data Fig. 10 were plotted 470 

via the cartopy package, using the Natural Earth shaded relief raster as the map background. The map in 471 

Extended Data Fig. 1 was plotted via the cartopy package, using data from the map of standardized 472 

terrestrial ecosystems of Africa49 as the map background. 473 
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Extended data figure legends 518 

Extended Data Figure 1. Overview of population sampling. Red circles show sampling locations for 519 

wild-caught mosquitoes. Colours in the map represent ecosystem classes; dark green represents forest 520 



ecosystems, see (49) Fig. 9 for a complete colour legend. The Congo Basin tropical rainforest is the large 521 

region of dark green in Central Africa. Sampling details for each site are shown in light grey boxes, 522 

including country (two-letter country code), location and year of collection, predominant ecosystem 523 

classification for the local region, and number and sex of individuals sequenced. For colony crosses, the 524 

direction of cross (colony of origin of mother and father) and number of offspring is shown. The inset 525 

map depicts geological fault lines in the East African rift system*. Species assignment for Guinea-Bissau 526 

and Kenya specimens is uncertain, see main text. Sequencing depth per individual is shown as median 527 

(5th – 95th percentile) for each population. 528 

Extended Data Figure 2. Genome accessibility and haplotype validation. a, Percentage of accessible 529 

bases in non-overlapping 400 kbp windows. The schematic of chromosomes below shows chromatin 530 

state predictions from (50). b, Haplotypes inferred in the crosses. Each panel shows either maternal or 531 

paternal haplotypes from a single cross. Each row within a panel represents a single progeny haplotype. 532 

Haplotypes are coloured by parental inheritance (blue=allele from parent’s first chromosome, red=allele 533 

from parent’s second chromosome). Switches between colours along a haplotype indicate 534 

recombination events. Regions that were within a run of homozygosity in the parent and thus not 535 

informative for haplotype validation are masked in grey. c, Error rate estimates for haplotypes inferred 536 

in wild-caught individuals. Upper plots show estimates for the mean switch distance (red line), 537 

compared to the mean switch distance if heterozygotes were phased randomly (black line). Lower plots 538 

show the switch error rate (probability of a switch error occurring between two adjacent heterozygous 539 

genotype calls). 540 

Extended Data Figure 3. Variant discovery and nucleotide diversity. a, Number of variant alleles 541 

discovered per individual mosquito. Only females are plotted. b, Genetic diversity within populations. 542 

                                                           
* http://pubs.usgs.gov/publications/text/East_Africa.html  

http://pubs.usgs.gov/publications/text/East_Africa.html


Nucleotide diversity (π) and Tajima’s D were calculated in non-overlapping 20 kbp genomic windows. 543 

SNP density depicts the distribution of allele frequencies (site frequency spectrum) for each population, 544 

scaled such that a population with constant size over time is expected to have a constant SNP density 545 

over all allele frequencies. c, Average nucleotide diversity (π) and ratio of diversity between sex-linked 546 

(X) and autosomal (A) chromosomes in relation to gene architecture. d, Relationship between number of 547 

individuals sampled and the cumulative number of variant sites discovered (left panel), availability of 548 

conserved Cas9 target sites within genes (center panel), and number of genes containing at least 1 549 

conserved Cas9 target site which could thus be “targetable” for gene drive (right panel). 550 

Extended Data Figure 4. ADMIXTURE analysis. a, Ancestry proportions within individual mosquitoes for 551 

ADMIXTURE models from K=2 to K=10 ancestral populations. Each vertical bar represents the proportion 552 

of ancestry within a single individual, with colours corresponding to ancestral populations. These data 553 

are the average of the major q-matrix clusters derived by CLUMPAK analysis. b, Violin plot of cross-554 

validation error for each of 100 replicates for each K. 555 

Extended Data Figure 5. Population structure and differentiation. a, Principal components analysis of 556 

the 765 wild-caught mosquitoes. b, Average allele frequency differentiation (FST) between pairs of 557 

populations. The lower left triangle shows average FST between each population pair. The upper right 558 

triangle shows the Z score for each FST value estimated via a block-jackknife procedure. CM*=Cameroon 559 

savanna sampling site only. c, Allele sharing in doubleton (f2) variants. The height of the coloured bars 560 

represent the probability of sharing a doubleton allele between two populations. Heights are normalized 561 

row-wise for each population. 562 

Extended Data Figure 6. Ancestry informative markers (AIMs). Rows represent individual mosquitoes 563 

(grouped by population) and columns represent SNPs (grouped by chromosome arm). Colours represent 564 

species genotype. The column at the far left shows the species assignment according to the 565 



conventional molecular test based on a single marker on the X chromosome, which was performed for 566 

all individuals except Kenya (KE). The column at the far right shows the genotype for kdr variants in Vgsc 567 

codon 995. Lines at the lower edge show the physical locations of the AIM SNPs. 568 

Extended Data Figure 7. Population size history. a, Stairway Plot of inferred histories for each 569 

population. The shaded area shows the 95% confidence interval from 199 bootstrap replicates. b, 570 

Inferred histories from ∂a∂i three epoch models. The thick line shows the history with the highest 571 

likelihood found by optimization; thin lines show 100 histories with the highest likelihoods from even 572 

sampling of the model parameter space. c, Inferred histories from ∂a∂i 2-population models allowing for 573 

migration. For each population pair, solutions from 5 optimization runs with the highest likelihoods are 574 

shown, with the thick line showing the history with the highest likelihood. In all panels, time and Ne are 575 

scaled assuming 11 generations per year and a mutation rate of μ=3.5x10-9. Scaling of time and Ne is 576 

proportional to 1/μ, e.g., if the true mutation rate is twice as high then estimates of time and Ne would 577 

be halved. 578 

Extended Data Figure 8. Identity by descent (IBD) and recent effective population size history. a, 579 

Patterns of IBD sharing within populations. Each marker represents a pair of individuals. b, The 580 

distribution of IBD tract lengths within populations. c, Recent population size history for the Kenyan 581 

population inferred by IBDNe. d, Comparison of the IBD tract length distribution between Kenya and four 582 

simulated demographic scenarios. e, Population size histories inferred by IBDNe (red dashed lines) from 583 

data generated by simulations (black line shows the simulated population size history). f, Comparison of 584 

patterns of IBD sharing generated by simulations (black contour lines) with Kenyan data (filled blue 585 

contours). See Supplementary Text 8.4 for details of simulations. 586 

Extended Data Figure 9. Genome scans for signatures of recent selection. a, Haplotype diversity. Each 587 

track plots the H12 statistic in non-overlapping windows over the genome. A value of 1 indicates low 588 



haplotype diversity within a window, expected if one or two haplotypes have risen to high frequency 589 

due to recent selection. A value of 0 indicates high haplotype diversity, expected in neutral regions. b, 590 

XP-EHH scans. For each population comparison (e.g., BF gambiae versus BF coluzzii), positive scores 591 

indicate longer haplotypes and therefore recent selection in the first population (e.g., BF gambiae), and 592 

negative scores indicate selection in the second population (e.g., BF coluzzii). 593 

Extended Data Figure 10. Haplotype structure at metabolic insecticide resistance loci. Plot components 594 

are as described for Fig. 4. For both loci, SNPs shown in the lower panel are all either non-synonymous 595 

or splice site variants, and are associated with one or more haplotypes under selection. a, Haplotype 596 

clustering using 1,375 SNPs within the region 3R:28,591,663-28,602,280 spanning 8 genes (Gste1-597 

Gste8). b, Haplotype clustering using 1,844 SNPs within the region 2R:28,491,415-28,502,910 spanning 5 598 

genes (Cyp6p1-Cyp6p5). 599 
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