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Abstract - For the first time, this work investigated the time-

dependent variability (TDV) in RRAMs and its interaction with the 

RRAM-based analog neuromorphic circuits for pattern 

recognition. It is found that even the circuits are well trained, the 

TDV effect can introduce non-negligible recognition accuracy drop 

during the operating condition. The impact of TDV on the 

neuromorphic circuits increases when higher resistances are used 

for the circuit implementation, challenging for the future low power 

operation. In addition, the impact of TDV cannot be suppressed by 

either scaling up with more synapses or increasing the response time 

and thus threatens both real-time and general-purpose applications 

with high accuracy requirements. Further study on different circuit 

configurations, operating conditions and training algorithms, 

provides guidelines for the practical hardware implementation.  
 

Introduction 

RRAM-based neuromorphic circuit has attracted extensive 

attention [1,2]. The binary and multi-level RRAM synapses have 

been demonstrated (Fig.1a) [3,4]. To achieve the full potential, 

efforts have been made on the analog neuromorphic system using 

the plasticity property of RRAMs (Fig.1b&c) [5-6]. The variability 

inevitably becomes the critical concern. During training condition, 

many programming schemes, such as verification [7] have been 

developed to suppress resistance variability due to the stochastic 

filament growth. However, for the well-trained circuit, during 

operating condition, the time-dependent variability, TDV, induced 

by the noise, can dynamically change the RRAM resistance and 

thus the weight of the synapse, causing accuracy loss.  
 

Time-dependent variability (TDV) 

For low power operation, RRAMs with higher resistance are 

preferable for the synapses implementation. The range from tens of 

kΩ to several MΩ have been reported [8-10]. TDV increases 

gradually with the higher resistance (Fig.2a-c). Such trend can also 

be observed from literatures in recent years (Fig.2d). TDV 

originates from defects, therefore, the TDV-induced instability is 

expected to be an intrinsic issue for any defect-based RRAM 

technology [11-12] and thus needs to be addressed properly. In this 

work, for the first time, the impact of TDV on the neuromorphic 

circuit under operating condition for pattern recognition is 

investigated. The emphasis is made on the interaction between TDV 

and the circuits with different implementations including the system 

scalability, the synapse configuration, the training algorithms and 

the circuit operating conditions. RRAMs with TiN/Ta2O5/Pt 

structure and a 100nm sputtering-deposited TaOx oxide were used 

in the work. The fabrication process is detailed in ref. 13. 
 

Characterization and Model of TDV for RRAMs 

TDV-induced resistance variation is monitored with the continuous 

current measurements in this work. As shown in Fig.3a, the 

measured current can be divided into two components: the time-

invariant Istable and the time-varying Ifluc. Ifluc introduces TDV, 

which varies with different RRAMs exhibiting additional cell-to-

cell variability (Fig.3a&b). The current conduction by several 

defects (such as oxygen vacancy) has been proposed [14]. Each 

defect carries certain amount of current. With the statistical RTN 

analysis using HMM method [15], the current conducted by each 

defect follows an exponential distribution (Fig.4). By assuming the 

defect number is found to follow the Poisson distributed in different 

RRAMs [16], the distribution of total current from multiple 

RRAMs can be formulated by summing the exponential 

distribution weighted by the Poisson probability, as shown in Eqn 

(3) [17]. By further derivation, the average number of defect, N, 

and current conduction per defect, ΔI, can be calculated with Eqns 

(4-5) based on the cell-to-cell variation of the current. Since 

RRAMs have higher cycle-to-cycle variation than the cell-to-cell 

variation [18], the cell-to-cell variation can be analyzed using the 

cycle-to-cycle data measured within one RRAM. 
 

Two examples under different compliance current, Icc, are shown 

in Fig.5, in which Ifluc and Istable are extracted from 300 cycles. The 

median values of Istable is larger than Ifluc (Fig.5a&b). However, the 

extracted ΔI are similar (Fig.5c&d), as further confirmed by 

comparing multiple RRAMs with various conditions (Fig.6). This 

suggests that defects for Ifluc have the same current conduction 

capability as defects for Istable. Fig.5e&f shows the defect number 

corresponding to Ifluc is much less than Istable (cf. Nfluc < Nstable). Both 

Nfluc and Nstable do not vary with voltage. Therefore, their values 

were taken from the currents measured at 0.1V hereafter.  
 

Nstable shows strong dependence on Icc and Vreset, suggesting its 

sensitivity to the shape of the filament (Fig.7a&b): A shorter 

filament due to smaller Vreset and a larger cross-section formed with 

higher Icc will contain more defects for current conduction [19]. In 

contrast, Nfluc keeps as a constant under different Icc and Vreset 

(Fig.7a&b), supporting that they locate at the boundary of the 

filament [20]. Istable also varies with Icc and Vreset. However, its 

median and standard deviation exhibit a power law relationship 

(Fig.8a) [18], based on which ΔI can be readily calculated. 
 

During practical operation, the neurons will integrate the currents 

before firing which is expected to reduce TDV. In the device level, 

this can be investigated by using different measurement time, tm 

(Fig.9): Nfluc reduces with longer tm, while ΔI is unchanged. This is 

because at longer tm, the trapping/de-trapping of some defects have 

been averaged out, leading to smaller Nfluc. Such averaging effect 

does not change the ability for the current conduction per defect 

and thus ΔI keeps constant. The temperature effect is another 

important factor. It introduces little effect on Nfluc (Fig.10) and the 

relationship between the median and standard deviation of Istable 

(Fig.8a). However, the median value of Istable exhibits temperature 

dependence with the activation energy of Ea (Fig.8b). 
 

Given an ideal resistance of R0 at room temperature, Istable at any 

temperature can be firstly determined with Eqns (7-8). TDV is 

introduced (Fig.11): After calculating ΔI and Nfluc from Eqns (4-6), 

the defect number and the current conduction by each defect in one 

RRAM cell can be generated with their respective distributions 

defined in Eqns (1&2). By assuming these defects are uniformly 



distributed in space and energy [21], the filling probability can be 

randomly generated. Ifluc is the summation of the currents 

conducted by the unoccupied defects which vary with time (Eqn 

(9)). The model is capable to produce the TDV behavior similar to 

the measurement in one cycle (Fig.12a&b). In addition, the model 

is validated by comparing the measured resistance distribution 

from multiple cycles (Fig.12c). Good agreement can be achieved.  
 

Circuit/Device Interaction within Neuromorphic System 

The neuromorphic system training with the winner-takes-all 

(WTA) algorithm was simulated for the MNIST handwritten digit 

recognition (Fig.11c) [22]. 60000 images were used in the training 

and finally the accuracy reached stabilization (Fig.13). The pre-

trained weight metrics is implemented into the RRAM array with 

and without TDV (Fig.11b). One example is shown Fig.14. Five 

random-chosen inputs can be recognized by the system without 

TDV. One TDV-embedded system instance is generated and the 

same input is repeatedly used for pattern recognition. The weight 

metrics varies due to TDV and thus occasionally the system fails to 

recognize the input. In the following TDV analysis, the recognition 

accuracy is evaluated by repeating the above procedure on 1000 

images and 30 system instances are used to extract the distribution 

of the accuracy. For clarity, the median value and the ±3σ level is 

shown in Figs.15-23. Unless specified, the integration time of 10ms 

and room temperature are used in the simulation. 
 

a. TDV interaction with artificial synaptic configuration 

For analog neuromorphic circuit with one RRAM as a synapse, the 

pre-trained weights need to be mapped into a range of resistances. 

The resistance adjustment relies on the potentiation and depression 

of RRAMs, which is closely related to the fabrication process. 

Therefore, it is critical to understand the TDV impact with different 

resistance ranges. The resistance range is firstly changed by 

gradually increasing the lower boundary RLB, while keeping the 

constant span (e.g. RUB = 10*RLB). When RRAMs with higher RLB 

are used, both the recognition accuracy and the power consumption 

reduces (Fig.15a&b). The resistance range can also be changed by 

keeping RLB as the constant but gradually increasing RUB. TDV-

induced accuracy drop reduces and quickly reaches saturation 

when RUB/RLB is larger than one decade (Fig.16a). In terms of the 

power consumption, if RLB is fixed, further increasing RUB can 

reduce much less power compared with increasing RLB with 

constant RUB/RLB (Fig.15b&Fig.16b). This shows that although a 

wider range is used in the system, the RRAMs with lower 

resistance still dominate the power and the accuracy of the system. 

They can carry larger current and contribute more under the WTA 

rule, while at the same time, dominate the power consumption.  
 

For resistance adjustment, RRAM depression is usually more 

difficult to achieve compared with the potentiation and thus 

challenges the implementation with one RRAM as the synapse in 

the neuromorphic system. Therefore, two RRAMs with the 

opposite contribution to the neuron’s integration has been 

suggested as one potential solution. Wherein, the RRAM 

depression can be converted to the potentiation of the second 

RRAM cell [23]. Fig.17 shows that two-RRAM configuration 

exhibits slightly better immunity to TDV. 
 

b. TDV interaction with the number of synapse 

At the expense of higher power consumption, increasing the 

number of synapse has been considered as one effective way to 

achieve high accuracy (Fig.18a&b). However, TDV-induced 

accuracy drop does not reduce (Fig.18a). Therefore, the accuracy 

under practical operation is eventually limited by TDV, which must 

be minimized for high accuracy application.  
 

c. TDV interaction with the response time 

Different applications impose different requirements to the 

response time for pattern recognition. In the circuit level, WTA rule 

relies on the currents to be integrated within certain time before 

triggering the neuron to response. The longer response time are 

expected to be more effective for TDV suppression through 

averaging effect. However, TDV-induced accuracy drop is almost 

unchanged even under the response time of 1s in the neuromorphic 

circuit (Fig.19a). This is because when the circuit operates under 

low voltage, the characteristic time of many defects within TDV 

can be much longer than the response time, weakening averaging 

effect. Therefore, this suggests that TDV can be harmful to both 

real-time and general-purpose applications. 
 

d. TDV interaction with the ambient temperature 

3D architecture has been proposed for future circuit integration 

[24]. Due to thermal dissipation, circuits will be inevitably affected 

by the temperature. When temperature increases, the impact of 

TDV becomes smaller and the accuracy starts to increase (Fig.20). 

This can be understood from the nature of TDV: the higher 

temperature increases the frequency for the (de)trapping of defects 

and thus at the constant response time, the TDV can become 

smaller. Practically, the temperature is unlikely to rise within the 

entire circuit. With the temperature rises only in certain local areas, 

the TDV impact is found to be similar (Fig.21). 
 

e. TDV interaction with the learning algorithms 

Back-propagation algorithm (BP) is one of the most popular 

algorithm and has been investigated for hardware implementation 

[2]. Compared with WTA, BP exhibits much higher sensitivity to 

TDV (Fig.22a). To further understand this, the resistances 

implemented in the system trained with BP and WTA are compared 

(Fig. 22b&c). Very different distributions can be observed: For BP, 

most of the weights are narrowly distributed. A small variation in 

resistance will have high impact on the weight and thus induces 

high TDV sensitivity. Compared with WTA, BP in theory can 

achieve similar accuracy with lower power, however, the accuracy 

deteriorates after hardware implementation due to TDV (Fig. 23).  
 

Conclusion 

This work investigated the TDV in RRAMs and its interaction within 

the analog neuromorphic circuits for pattern recognition. TDV 

increases in RRAM cells with higher resistance because the 

corresponding number of defects do not scale accordingly. The circuit-

level analysis revealed that TDV can deteriorate the pattern 

recognition accuracy when the neuromorphic circuit is implemented 

with high resistance for low power operation. The impact of TDV 

cannot be suppressed by either scaling up with more synapses or 

increasing the response time and thus challenges both real-time and 

general-purpose applications with high accuracy requirements. In 

addition, TDV exhibits strong interaction with training algorithms, 

which therefore must be properly chosen for practical hardware 

implementation. 
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Fig.1 (a) Resistance with multiple levels measured 

with consecutive set/reset cycles under different Vreset 

varying from -1.5V to -2.0V. Vset = 0.9V. (b&c) 

Resistance change as a function of number of applied 

potentiation pulses with (b) -2V and (c) -1.9V. Pulse is 

with 10ns width. Forming Icc = 300µA.  
 

Fig.2 (a-c) Examples of TDV, measured on RRAMs 

with different resistances: 13kΩ, 128kΩ and 224kΩ. 

Resistance is measured at 0.1V. At higher resistance, 

higher variation in resistance can be observed. (d) 

TDV dependence of resistance from literature. 

Fig.4 Histograms of RTN 

magnitudes from 100 cycles of 7 

devices. Icc = 30μA. Vset/Vreset = 

0.9V/-1.2V. Inset:  representative 

RTN and their HMM fitting. 
 

Fig. 5 Istable and Ifluc after averaging from 300 cycles under Icc = 1mA (a) or 300µA (b). The 

read voltage is 0.1V and Vset/Vreset is 0.9V/-1.3V for both cases. (c&d) The current conduction 

per defect and (e&f) the effective number of defect for Istable and Ifluc extracted from the 

measured data in (a) & (b) respectively using Eqn (4&5). The average current conduction per 

defect in the same for both Istable and Ifluc.  

Fig.9 Dependence of 

the defect number 

Nfluc and current ΔIfluc 

on the integration 

time, tm.  

Fig.8 (a) Relationship between standard deviation 

and median value of Istable measured at 0.1V under 

different temperatures. Vreset from -1.2V to -1.9V. 

Vset = +1.2V. Icc = 300µA. (b) Dependence of 

activation energy, Ea, on the median resistance. Inset 

shows one examples for Ea extraction. 
 

 

Fig.10 Dependence of the 

defect number, Nfluc, on 

the temperature. Two 

devices after reset under -

1.2V and -1.4V are used.. 
 

Fig.3 Current measurement under 0.1V for 1sec 

after RRAM reset to its HRS. test condition: Icc = 

300µA, Vset/Vreset = 0.9V/-1.5V. Two devices were 

shown in (a) and (b). The minimum current is 

defined as Istable and the peak-to-peak value as Ifluc.  

Fig.11 (RHS) (a) Procedure for introducing TDV 

into the ideal resistance at room temperature. 

Initialization stage: Istable at 0.1V under given 

temperature is first calculated. Then the defect 

number, and the current per defect is generated from 

their average value with Eqn (1&2). The filling 

probability of each defect is randomly generated 

from 0 to 1. TDV stage: the unoccupied defects are 

randomly chosen and the total current can be 

obtained by Eqn (9). Then R’ can then be obtained. 

(b) Procedure for taking TDV into the network: The 

TDV model is applied on each resistance within the 

weight matrix and thus a new matrix is generated. (c) 

Network topology. The input layer contains 784 

neurons. The hidden layer with M neurons which can 

vary in our investigation. The output layer has 10 

neurons corresponding to 10 classes of digits. 
 

Fig. 7 Dependence of 

Nstable and Nfluc with (a) 

Icc and (b) Vreset. Vset = 

+0.9V is used for all 

cases. Measurements 

are taken at room 

temperature. 
 

Fig. 6 Comparison of 

ΔIfluc and ΔIstable 

under different Icc 

(30µA ~1mA), Vread 

(0.02V to 0.3V) and 

Vreset (-1.2V ~ -1.9V). 

Vset = +0.9V. 
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4. Response time dependence for Nfluc: 

2. CDF of current conduction from multiple cells:  

(6) 
(1) 

(4) (5) 

3. Average number of defect and current conduction (multiple cells): 

Fig.16 TDV impact with 

resistance range from 

RLB=100kΩ to different RUB 

for (a) recognition accuracy 

and (b) power consumption. 

Fig.18 TDV impact comparison 

with the synapse number for (a) 

pattern recognition accuracy and 

(b) power consumption.  

Fig.20 TDV impact comparison 

under different temperature on 

the accuracy implementing with 

resistance from RLB to 10*RLB. 

Fig.21 TDV impact comparison under 

different local temperature rise 

(defined in inset) on accuracy. R of 

100kΩ~1MΩ are used. 

Fig.22 (a) TDV impact comparison with two 

different algorithms: WTA and BP. Different 

resistance range with RLB to 10*RLB are used. The 

resistance distribution for the well-trained system 

using (b) WTA and (c) BP.  

Fig.19 TDV impact 

comparison with integration 

time for (a) pattern 

recognition accuracy and 

(b) power consumption.  
 

Fig.15 TDV impact with 

resistance range defined 

from RLB to RUB =10*RLB on 

(a) recognition accuracy and 

(b) power consumption.  

Fig.17 Comparison of TDV 

immunity for different types of 

synapses: 1R and 2R. Wherein, 

R of 100kΩ~1MΩ are used. 

. 

Fig.12 Similarity in 

TDV-induced current 

from (a) measurements 

and (b) simulation with 

the proposed model. (c) 

Comparison of the 

resistance distribution 

from the measurements 

and model prediction. 

The resistances were 

measured within 1s 

under 0.1V from 300 

cycles. Three RRAMs 

were used with Vreset (-

1.2V,-1.4V and -1.7V). 

Icc = 300µA and Vset = 

1.2V are used for all 

cases. 

Fig.13 Iteration of the 

training. The accuracy 

increases when more 

samples are used and finally 

reach stabilization. 

Fig.14 TDV impact on the recognition 

accuracy for 5 input patterns using one 

circuit instance, implemented with 

resistance from 100kΩ to 1MΩ. 

Fig.23 Power consumption 

vs. accuracy for WTA & 

BP. Power decreases when 

higher resistance ranges are 

used. 

1. PDF of defect number and current per defect (single cell):  

(2) 

(3) 

N: average number of defect; ΔI: average current conduction per defect. 

6. TDV on Ifluc: , 

pf,k is the filling probability for the kth defect. pf is related to the 

spatial and energy location of the defect which is uniformly 

distributed between 0 to 1. r is a random number generated for 

each simulation run to determine the filling status of each defect. 

r < pf,k 

r > pf,k 
(9) 

5. Temperature dependence for Istable: 
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