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ABSTRACT
A striking signal of dark matter beyond the standard model is the existence of cores in the
centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG)
inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers,
long after the relaxation of the overall cluster. This phenomenon is absent with standard cold
dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this
hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting
as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we
measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical
simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the
95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude
of Aw = 11.82+7.3

−3.0 kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level.
This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy
clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is
exactly coincident with the large-scale halo. While our small sample of galaxy clusters already
indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm
the effect but also to use it to determine whether or not the wobbling finds its origin in new
fundamental physics or astrophysical process.

Key words: galaxies: clusters: general – dark matter.

1 IN T RO D U C T I O N

Cosmological simulations of the Universe predict that structure
should form a web-like texture (e.g. Davis et al. 1985; Springel
et al. 2005; Vogelsberger et al. 2014; Schaye et al. 2015). Lying
at the nodes of the cosmic web are the largest known structures
in the Universe. Galaxy clusters consist of thousands of galaxies,
all embedded within a plasma of hot X-ray gas and a halo of dark
matter (for a review see Kravtsov & Borgani 2012).

It is not uncommon for the mass of a galaxy cluster to exceed
M = 1014 M� or even M = 1015 M� (e.g. Limousin et al. 2007;
Bourdin et al. 2011; Merten et al. 2011; Jauzac et al. 2012;
Medezinski et al. 2013; Jauzac et al. 2015a,b,c). In these environ-
ments the curvature of space–time becomes increasingly warped,
causing objects that lie behind these clusters to be distorted. Should
objects such as galaxies serendipitously find themselves directly in
the line of sight of the observer and the cluster, their image can
be split into multiple images of the same distant, ‘source’ galaxy
(for review, please see e.g. Bartelmann 2010). Using these multiple
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images of the same source, we can reconstruct the distribution of
foreground matter (e.g Richard et al. 2010; Johnson et al. 2014;
Merten et al. 2015; Zitrin et al. 2015).

Despite the success of the non-relativistic (cold), collision-
less dark matter paradigm at predicting the large-scale distri-
bution of galaxies within the Universe (e.g. Davis et al. 1985;
Percival et al. 2001; de la Torre et al. 2013; Anderson et al. 2014),
small-scale discrepancies between observations and data means
that tensions still exist. Observations of the Local Group have
highlighted issues regarding the underabundance of dwarf galax-
ies, plus the apparent cored density profiles of these galaxies,
something not predicted by cold dark matter (CDM) (Dubinski &
Carlberg 1991; Mateo 1998; Klypin et al. 1999; Moore et al. 1999;
Boylan-Kolchin, Bullock & Kaplinghat 2011). Although solutions
to reconcile these discrepancies could lie within complex baryonic
physics (e.g. Teyssier et al. 2011; Pontzen & Governato 2014), it
is possible to alleviate this tension by invoking more exotic forms
of dark matter that have extra degrees of freedom, for example
warm dark matter (Viel et al. 2005; King & Merle 2012; Lovell
et al. 2012) or self-interacting dark matter (e.g. Yoshida et al. 2000;
Peter et al. 2013; Rocha et al. 2013; Buckley et al. 2014, hereafter
SIDM).
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The ability to reconstruct the total mass of a cluster to within
1 per cent has now become common place with a multitude of
different algorithms allowing both parametric and free form fits
to the data (e.g Bradač et al. 2005; Cacciato et al. 2006; Diego
et al. 2007; Jullo et al. 2007; Merten et al. 2009). This, in conjunction
with the availability of high resolution, deep imaging from space
(Postman et al. 2012; Lotz et al. 2017), means that we now have the
ability to accurately reconstruct the distribution of dark matter that
lies within galaxy clusters along with its baryon counterparts and
hence have now become important test-beds for the cold dark matter
paradigm.

Initial studies of CDM within clusters have provided unequiv-
ocal proof for its existence when it separates from the gas com-
ponent during mergers (Clowe, Gonzalez & Markevitch 2004;
Markevitch et al. 2004; Bradač et al. 2006, 2008; Clowe et al. 2006;
Dawson et al. 2012). Moreover they have become direct tests
for the collisionless assumption associated with CDM (Spergel &
Steinhardt 2000; Miralda-Escudé 2002; Williams & Saha 2011;
Zavala, Vogelsberger & Walker 2013; Harvey et al. 2014; Harvey
et al. 2015; Massey et al. 2015; Jauzac et al. 2016). Since these
studies there have been further investigations looking at different
ways in which we can study the cold dark matter paradigm using
galaxy clusters, for example looking for misalignments between
galaxies and their dark matter halo in the Hubble Frontier Fields
(Harvey, Kneib & Jauzac 2016), trailing dark matter after a colli-
sion (Harvey et al. 2017; Taylor et al. 2017) and the wobbling of
the brightest cluster galaxy (BCG) within the cluster centre (Kim,
Peter & Wittman 2017).

Where the centre of a group or cluster of galaxies has remained an
unanswered question in the literature. It is usual that in the centre of
these galaxy clusters lies a giant galaxy, known as the BCG. George
et al. (2012) did an exhaustive study of what the best estimate of the
centre of a group of galaxies was, over a mass range of M = (1013–
1014) M�. Using the weak lensing profile as a proxy for ‘goodness
of fit’ test for the centroid, they found that the most massive galaxy
near an X-ray peak was the best identifier for the centre of a galaxy
group. However, this study still found some evidence for an offset
between the weak lensing centre and the most massive galaxy.

In clusters of galaxies where the mass range is an order of mag-
nitude higher, the question becomes very different. When recon-
structing the mass profile of galaxy clusters with parametric lens
modelling tools, it it is often assumed that the centre of the large-
scale dark matter to be kept fixed on the BCG. This is from the fact
that in a CDM paradigm, the BCG well traces the bottom of a steep
gravitational potential, with no known process that could offset a
galaxy from its halo (Schaller et al. 2015). However, Kim et al.
(2017) found that in the event that dark matter self-interacts, then
a relaxed cluster could exhibit some residual wobbling due to the
existence of a remnant core in the density profile (Kim et al. 2017).
Any detection of a wobble would infer the existence of a core, and
hence some potential new physics beyond the standard model.

The debate of whether a core exists in galaxy clusters contin-
ues. Newman et al. (2013a,b) carried out a detailed study of seven
massive relaxed galaxy clusters to see if any core existed by direct
measurement of the total mass distribution. Using a combination
of stellar dynamics, strong lensing and weak lensing there directly
measured a mean core of 〈log rcore〉 = 1.14 ± 0.13 kpc. They found
that although the density profile of the dark matter seemed to be
lower in the core than what was expected from a typical NFW pro-
file (Navarro, Frenk & White 1997), this was correlated with the
distribution of stars. Although suggestive of their existence, it still
remains an unanswered question of whether clusters, like dwarf
galaxies, exhibit central cores.

In this paper, we study a sample of 10 galaxy clusters and ask the
question ‘does the bright cluster galaxy lie at the centre of the large-
scale dark matter potential or does evidence exist for some finite
wobbling?’ We will carry out the same measurement on galaxy
clusters from the BAHAMAS simulations (McCarthy et al. 2017)
and compare the predictions of cold dark matter to observations.

In Section 2, we will outline the suite of cosmological simulations
and the observations of the galaxy clusters used in this study. In
Section 3, we outline our mass reconstruction method using strong
gravitational lensing, and how we estimate the wobbling of the
BCG in Section 3.5. In Section 4, we present our results from
the simulations and observations and in Section 6 we conclude
and discuss future observations. Throughout the paper we use a
cosmology of �M = 0.3, �� = 0.7 and h = 0.7 to convert from
angular separation to angular diameter distances.

2 DATA

Here, we describe our two primary samples of data. The sample of
clusters from our N-body simulations, and the observations using
the Hubble Space Telescope (HST).

2.1 N-body simulations of galaxy clusters

We use a number of simulations from the BAHAMAS suite of
cosmological hydrodynamical simulations (McCarthy et al. 2017)
to predict the offset distribution for the standard �CDM scenario
(i.e. non-interacting dark matter). BAHAMAS consists of large 400
Mpc h−1 on a side periodic box simulations with 10243 baryon
and CDM particles and a force softening of 4 kpc h−1, run in a
number of different background cosmologies. Here we use a set
of four independent realizations of a Nine-Year Wilkinson Mi-
crowave Anisotropy Probe (WMAP9) cosmology, along with a
higher-resolution 100 Mpc h−1 box with 5123 particles and a soften-
ing of 2 kpc h−1 (also WMAP9), to test for a resolution dependence
in the predicted offset distribution.

BAHAMAS was run using a modified version of the GADGET 3
code (last described in Springel 2005). The simulations include sub-
grid treatments for metal-dependent radiative cooling, star forma-
tion, stellar evolution and chemodynamics, and stellar and active
galactic nuclei (AGN) feedback, developed as part of the Over-
Whelmingly Large Simulations project (see Schaye et al. 2010 and
references therein). McCarthy et al. (2017) calibrated the stellar and
AGN feedback to reproduce the local galaxy stellar mass function
and the amplitude of the gas mass–halo mass relation of galaxy
groups and clusters, as inferred by spatially-resolved X-ray obser-
vations. As demonstrated in McCarthy et al. (2017), the simulations
reproduce not only the overall gas and stellar content of groups and
clusters, but also the detailed radial distributions of these compo-
nents and the observed split in stellar mass between satellites and
centrals.

The large volume of the BAHAMAS runs allows us to ex-
tract a large statistical sample of galaxy clusters for compari-
son with our observed sample of massive clusters. From the four
400 Mpc h−1 boxes, we select all haloes from the z = 0.25 snap-
shot with M200 > 3 × 1014 M�, yielding a combined sample of
≈600 systems. For each cluster, we produce three maps: (i) a total
surface mass density map (stars+gas+CDM); (ii) a stellar surface
mass density map; and (iii) an X-ray surface brightness map. All
three maps are centred on the potential minimum and span a field
of view of 2 Mpc (physical) with a pixel resolution of 1 kpc. The
maps are created by summing mass (or X-ray emission) along the
line of sight, using a column length of 10 Mpc (i.e. particles with
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|z − zmin| < 5 Mpc are selected, where zmin is the z-coordinate
of the potential minimum). Particles are mapped to the grid using
a smoothed particle hydrodynamics interpolation scheme with 24
neighbours.

2.2 Selecting a uniform sample of clusters from simulations
and observations

When selecting our clusters from the simulations we want to ensure
that primarily the clusters are relaxed, plus they have the same
selection function as the observations. To this extent we ensure
X-ray gas has a uni-modal distribution and have a dynamical state
parameter � ≥ 0.2, where � is defined as the ratio of the X-ray flux,
S, within 100 and 400 kpc i.e.

� = S(<100 kpc)

S(<400 kpc)
. (1)

This definition was previously shown to be the most robust measure
for the dynamical state of a galaxy clusters using high-resolution
hydrodynamical zoom simulations of clusters (Rasia, Meneghetti &
Ettori 2013).

Applying this relaxation criterion results in a total of 190 clusters
in our final sample. However, we have checked that our results are
not sensitive to the specific relaxation criterion adopted.

We extract the the position of the BCG for the stellar distribution
by running SEXTRACTOR (Bertin & Arnouts 1996) on the stellar
surface mass density maps, to try to mimic the method used for the
real data. For the centre of the dark matter, we use the deepest part
of the potential (of the total matter). We then measure the offset
between the measured BCG position as derived from SEXTRACTOR

and the centre of the potential.
For the observations we use the X-ray emission maps from the

Chandra X-ray telescope (for information regarding the reduction
and extraction please see Harvey et al. 2015).

2.3 HST observations of relaxed galaxy clusters

We analyse clusters from the Local Cluster Substructure Survey
(LoCuSS; Richard et al. 2010) and the Cluster Lensing And Super-
nova survey with Hubble (CLASH) we select only those clusters
that have greater than or equal to 10 confirmed multiple images at
differing redshifts. This equates to a sample of 10 galaxy clusters.

The selected multiple images are those presented in Zitrin et al.
(2015), Richard et al. (2010) and Limousin et al. (2008). We also
use the cluster member catalogues from Zitrin et al. (2015), Richard
et al. (2010) and Limousin et al. (2008), who used the red sequence
to identify each member. We derive the luminosity of the clus-
ter members in the CLASH clusters using the publicly available
photometric catalogues (Jouvel et al. 2014). We also use the the
photometric redshifts from the same catalogues for any multiple
images that do not have spectroscopic redshifts and used their asso-
ciated error as a Gaussian prior (Jouvel et al. 2014), hence keeping
these source redshifts a free parameter within the range allowed by
the prior.

3 M E T H O D

To measure whether the BCG oscillates around the centre of a
relaxed galaxy cluster we use strong gravitational lensing to recon-
struct the total mass distribution. In order to carry out a systematic,
uniform measurement over the sample of galaxy clusters, we at-
tempt to use the same methodology for each cluster.

3.1 Strong lensing modelling

We model the distribution of matter in each galaxy cluster using the
open source software LENSTOOL (Jullo et al. 2007), which is a strong
lensing Bayesian algorithm that uses analytical fits. It then samples
this parameter space using a Monte Carlo Markov Chain (MCMC)
with Metropolis Hastings sampling returning the estimated poste-
rior for each parameter. We fit the main large scale, cluster halo
with an NFW profile (Navarro et al. 1997), with mass, concentra-
tion, ellipticity, position angle and x–y position as free parameters
(making a total of six for the main halo). We also apply a flat prior
on the position of the halo with a width of 10 arcsec in the x and
y position. We address the dependency of this choice later in the
study.

We then assume that each galaxy member lies on the Fundamental
Plane (Richard et al. 2010) and that each galaxy scale halo can
be described by a pseudo-isothermal elliptical mass distribution
(PIEMD). The PIEMD follows the radial density profile

ρPIEMD = ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
, (2)

where rcore and rcut are the core and cut radius respectively, where
we assume

rcore = r�
core

(
L

L�

)1/2

, (3)

rcut = r�
cut

(
L

L�

)1/2

, (4)

ρ0 = σ 2
0

2πG

(rcore + rcut)

(r2
corercut)

, (5)

and the 3D velocity dispersion, σ , of the PIEMD is

σ = σ �

(
L

L�

)1/4

. (6)

Following Richard et al. (2010), we assume that the normaliza-
tion of the galaxy masses scale with their luminosity, relative to
a L� galaxy, r�

core = 0.15 kpc, and we free up the cut radius with a
tight Gaussian prior r�

cut = 45 ± 1 kpc and the velocity dispersion as
σ � = 158 ± 27 km s−1. In some very specific cases where there hap-
pens to be a multiple image wrapped around an individual galaxy
member, we free up a galaxy velocity dispersion and cut radius as
well.

3.2 Mass of the BCG

The inherent degeneracy of the large-scale halo and the BCG in the
very centre of the cluster means that we do not have constraints on
its mass. We therefore choose to model the BCG in the cluster as part
of the galaxy members, assuming they lie along the Fundamental
Plane. This was found to be accurate, and in fact, the BCG had less
scatter than that of normal early-type galaxy (Bernardi et al. 2007).
Future work, with potential integral field spectroscopic observations
of the BCG will allow us to break this degeneracy, allowing us to
exploit larger sample sizes.

3.3 Mass reconstruction

Following the methodology above we present the results from our
sample of 10 galaxy clusters. Table 2 shows an overview of the data
and the fits. For each galaxy cluster we give the right ascension (RA)
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Table 1. We calibrate our errors empirically and do not use those derived
from the width of the posterior in the MCMC. We run a simulation with
the main halo and BCG coincident, with a multiple image random error of
σ im = 0.5 arcsec. We then calculate the scatter around the true value and
use these as the uncertainty on the position throughout the analysis.

Parameter Mean LENSTOOL error Empirical error

σ x 0.05 arcsec 0.3 arcsec
σ y 0.04 arcsec 0.6 arcsec
σ radial 0.05 arcsec 0.7 arcsec
σM200 /M200 0.1 dex 0.2 dex
σc200 /c200 0.07 dex 0.55 dex

and declination (DEC) of the BCG, the dynamical state of the cluster
according to equation (1), the number of multiple images used in
the analysis and the number of parameters in the fit, including free
redshifts, the root mean square (RMS) of the true image position to
the predicted image position and then the best-fitting position (with
respect to the BCG), the mass and concentration of the cluster scale
halo. In each case the error bar is the statistical marginalized error
bar returned by LENSTOOL, i.e. the 1σ width of the posterior. We
find that our models have very similar RMS to previously found for
these clusters (for example Zitrin et al. 2015), lending confidence
to our models.

3.4 Empirical measurement of positional errors with image
simulations

The errors within LENSTOOL are derived from the width of the pos-
terior sampled during LENSTOOL’s MCMC. These therefore do not
account for the systematic errors that could reside within the re-
construction. In order to understand better the total error budget for
each cluster, we empirically measure the errors by running a suite
of image simulations. Each image simulation is based on the actual
data. It uses the expected source positions from each actual cluster,
then using a known cluster model (centred exactly on the BCG) we
create a set of multiple images such that it mimics the observations.
Therefore simulating lensed images that are close to the observed
positions. For each cluster we simulate a circularly symmetric NFW
halo, with a mass of MNFW = 1015 M� (given that we find the mean
mass of the actual data to be 〈M200〉 = 1.3 × 1015 M� and hence
will slightly overestimate our error bars). The concentration follows
that of Duffy et al. (2008) for a cluster mass of M = 1015 M� (and

redshift of each cluster), and using the same cluster member cat-
alogue with the same L� value, we adopt the central values of the
prior as outlined in Section 3. We then randomly move the simu-
lated multiple images according to the statistical error input in to
the reconstruction (using the expected RMS = 0.5 arcsec from the
actual reconstructions), and analyse the cluster in exactly the same
way we do the data. Since we know the simulated large-scale haloes
are exactly centred on the BCG, this Monte Carlo approach of es-
timating the error bars allows us to estimate the error in the actual
data, better reflecting the total systematic plus statistical error. In
other words, this strategy allows us to estimate the total measure-
ment errors inherent to the lensing reconstruction in the absence of
any wobbling.

We then repeat this experiment with image simulations four more
times. Each time we introduce a random offset drawn from a known
calculated posterior, into the BCG, mimicking a wobble. We simu-
late five different wobble amplitudes, Aw = [0, 1, 5, 10, 20] kpc (see
Section 3.5). Given we know the true input position we use all five
simulations to estimate the total error in the mass reconstruction.
Fig. 1 shows the results of our five sets of image simulations, each
consisting of 10 clusters. The top panel shows the positional esti-
mates of the large-scale halo in each image simulation with respect
to the simulated true position. The error bars are the Gaussian uncer-
tainties derived directly from the width of the posterior in LENSTOOL.
In some cases it can be seen that the uncertainties in the position are
too small compared to the true position, which is why we carried
out a Monte Carlo estimate of the total error bars. The bottom panel
shows the logarithm of the ratio of the estimated and true input mass
and concentration. The degeneracy between these two parameters
is clear, suggesting that point estimates of mass and concentration
are biased and replaced by the full 2D posterior distributions for the
parameters.

Despite this, we find that LENSTOOL predicts an average error
σ x = 0.05 arcsec, σ y = 0.04 arcsec and a propagated error in the
radial offset of σ r = 0.05 arcsec. However, the scatter of the esti-
mated positions gives an error of σ x = 0.3 arcsec, σ y = 0.6 arcsec
and σ r = 0.7 arcsec. This equates to a factor of 10 difference be-
tween what LENSTOOL predicts the error is, and what the true error on
the position is. We therefore adopt Monte Carlo error estimates as
these are empirical and based on the data and hence more reliable.

Following the calibration of the uncertainty in the position, we
use the reconstructed clusters from the simulated multiple images
to see if we can recover the input wobble amplitudes introduced
into these simulations.

Table 2. The survey sample of the 10 dynamically relaxed galaxy clusters in which we aim to measure the offset between the BCG and large scale main halo.
Column 2: Right Ascension, Column 3: Declination, Column 4: Cluster redshift, Column 5: Dynamical state [equation (1)], Column 6: Number of multiple
images, Column 7: Number of parameters in the fit, Column 8: RMS error of the mode fit, Column 9 and 10: the offset between the BCG and the large-scale
halo in arc-seconds, Column 11: Mass of the cluster halo and Column 12: the concentration parameter. All uncertainties are purely statistical Gaussian errors
as reported by LENSTOOL.

Cluster RA DEC z � NI NP RMS δx (arcsec) δy (arcsec) M200(×1014 M�) c200

A1063 342.18324 − 44.53087 0.35 0.24 41 17 0.88 0.05 ± 0.12 − 0.01 ± 0.10 16.2 ± 0.3 4.7 ± 0.1
A383 42.01409 − 3.52938 0.19 0.53 26 11 0.75 0.13 ± 0.18 0.68 ± 0.15 16.6 ± 5.1 4.0 ± 1.4
A2261 260.61341 32.13266 0.22 0.36 32 20 0.68 0.67 ± 0.04 − 0.56 ± 0.05 6.9 ± 0.6 9.0 ± 0.5
A1703 198.77197 51.81749 0.28 0.20 42 22 1.03 − 0.55 ± 0.09 1.07 ± 0.16 13.5 ± 0.9 4.6 ± 0.2
A1835 210.25865 2.87847 0.25 0.51 18 14 1.20 4.25 ± 0.06 − 0.64 ± 0.12 28.7 ± 1.7 3.7 ± 0.2
A1413 178.82449 23.40445 0.14 0.33 11 9 0.75 0.07 ± 0.06 − 0.71 ± 0.13 6.7 ± 0.9 7.2 ± 0.5
MACS0744 116.21999 39.45740 0.69 0.38 20 19 1.52 − 0.62 ± 0.21 − 0.42 ± 0.61 9.9 ± 1.4 4.7 ± 0.8
MACS1206 181.55060 − 8.80093 0.44 0.28 35 13 1.62 − 1.36 ± 0.07 − 0.36 ± 0.03 15.0 ± 0.2 4.8 ± 0.1
MACS1720 260.06980 35.60731 0.39 0.44 17 13 1.61 0.61 ± 0.04 − 1.64 ± 0.05 9.8 ± 0.7 5.2 ± 0.3
MACS1931 292.95683 − 26.57584 0.35 0.55 23 10 0.91 0.45 ± 0.03 1.91 ± 0.09 9.7 ± 0.3 5.0 ± 0.1
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Figure 1. We run five suites of simulations each with a different wobble
amplitude, Aw, to calibrate our positional uncertainties. The top panel shows
the offset in position between the estimated and true position of large-scale
cluster halo (in arc-seconds) and the bottom shows the logarithm of the ratio
between the estimate and true value of the concentration and mass of the
large-scale NFW halo. In both cases, the error bars are the marginalized ones
derived from the LENSTOOL posterior. It can be seen that the statistical scatter
in the positional offsets is much larger than the estimated uncertainties.

3.5 Estimating the wobble amplitude

To calculate the input wobble we assume that if the BCGs are oscil-
lating about the cluster core, they do so in simple harmonic motion.
This is a simplification but enables us to predict the distribution of
2D offsets when their 3D motion is viewed in projection. In order
to estimate the amplitude of the BCG wobble, Aw, we numerically
generate posterior probability distributions for multiple Aw and then
compare these posteriors to the data to find the best-fitting posterior
and its associated wobble amplitude. Kim et al. (2017) found that
over the simulated period post merger (∼6 Gyr), the wobble am-
plitude was the same size as the core and behaved like a minimally
decaying simple harmonic oscillator. We assume in this study that
there is no damping, however this may not be true and simulations

Figure 2. We calculate p(offset|Aw), the expected posterior for the radial
offset between BCG and cluster halo, given some wobble amplitude, Aw kpc.
To do this we generate them numerically folding in the true redshift distri-
butions of the clusters (see the text). The kink in the tail of the posterior is
due to the hard cut-off in the simple harmonic oscillation convolved with
statistical errors in position.

will need to test this. However, this is beyond the scope of this
paper. To generate posteriors as a function of wobble amplitude,
we model the wobble as a simple harmonic oscillator, where the
radial distance the BCG is from the centre of the potential follows
the normal solution,

r(t) = Aw cos(ωt), (7)

where w is inversely proportional to the period of the oscillation
and t is the time. Since we expect the oscillation to be periodic
we generate multiple realizations of the radial distance (in three di-
mensions which is then projected) to create an expected probability
distribution function of radial offsets on the plane of the sky. We
then add to this statistical error in the position of the BCG, which
we calibrate empirically.

Using the extracted error estimates, we fold these into the estimate
of the expected distribution of radial offsets for a given wobble
amplitude, Aw, and random error, σ r. The posteriors calculated for
various oscillating amplitudes, Aw are shown in Fig. 2. We then
compare the distribution of best-fitting positions from simulations
to these posteriors and generate a probability that the distribution of
positions were pulled from that posterior using the Kolmogorov–
Smirnov (KS) two sample test.

Using these posteriors we can compare the distribution of the
10 maximum likelihood positions returned from the MCMC in
LENSTOOL, and compare this distribution to each posterior. We then
have for each posterior a probability that the distribution of positions
were drawn from it, and hence generate the best-fitting value of Aw.
The error in this is just when the likelihood that the measured
distribution is drawn from a particular posterior falls below the 1σ

threshold.

4 R ESULTS

4.1 Image simulation results

In Section 3.4, we generated five sets of image simulations to em-
pirically measure the error in LENSTOOL. In each suite we introduced
a fake wobble amplitude of Aw = [0, 1, 5, 10, 20] kpc. Here we
present the results from measurement of the wobble amplitude.
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Figure 3. Each panel shows the stacked radial posteriors for a different image simulation. Each simulation has 10 galaxy clusters with a different input
BCG wobbling amplitude centred around the main cluster halo (coloured histogram), with the key showing the input wobble amplitude Aw. Overlaid is the
best-fitting posterior from Fig. 2. The corresponding estimated wobble amplitude, Ãw with its associated uncertainty is shown in the key. In each case the
estimated wobble amplitude is consistent with the input, true wobble amplitude.

Fig. 3 shows the posteriors derived from the observation sim-
ulations. In each panel we show a different image simulation
stacked posterior in the coloured histogram, and the best-fitting
numerically calculated posterior from Fig. 2 according to the KS
two-sample test as the solid black line. The key shows the input
wobble amplitude, Aw, and the estimated wobble amplitude, Ãw,
that corresponds to the solid black line with its associated uncer-
tainty. We generate the uncertainty by finding the wobble ampli-
tude at which probability P given the data, D is less than 0.32 (i.e.
P(Aw|D) < 0.34). We find that in each simulation, the estimated
wobble amplitude is consistent with the input at the 1σ level.

4.2 Cosmological simulation results

We next estimate the BCG wobble amplitude in the BAHAMAS
simulations. We measure the radial distribution of the offsets be-
tween the BCG and the centre of the cluster potential using fidu-
cial and high-resolution simulations. We then estimate the wob-
ble amplitude by comparing these distributions to a variety of

posteriors calculated numerically for a given Aw. The top panel
of Fig. 4 presents the two distributions plus their best-fitting numer-
ically calculated posteriors, with their associated wobble amplitude
in the legend. We find that the fiducial resolution simulations ex-
hibit a radial distribution consistent with a wobble amplitude of
Aw = 6.9+4.0

−1.8 kpc. However, we note here that the model with which
we fit to the data to derive the offsets is parametrized by a wob-
ble amplitude and the expected random error in the model-fitting
process. This does not allow for an extra degree of error associated
with the smoothing length of the simulations since the real data
does not have such a thing. As mentioned, the smoothing length of
the fiducial simulation is 4h−1 kpc which is almost exactly what is
found with out model. We can include this into the error model such
that the error stated includes this, or we use the exact same model
on the simulations as we do in the data, we decide to use the latter.

We therefore carry out the same experiment on the high-
resolution simulation. We find that the high-resolution simulations
exhibit a radial distribution consistent with a much smaller am-
plitude wobble of Aw = 0.8+0.5

−0.8 kpc. We therefore find that the
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Figure 4. The top panel shows the distribution of radial offsets between
the BCG and the dark matter potential in the BAHAMAS simulations. We
analyse both the fiducial resolution sample consisting of 600 clusters, and
the high-resolution sample of 22 clusters. The dark histogram and associated
dashed line represent the offsets in the high-resolution sample and its best fit
to the numerical posteriors. The light-grey histogram and associated dashed
line show the distribution of offsets in the high-resolution simulation and
its best-fitting posterior. The legend shows the wobble amplitude for these
best-fitting lines and their associated errors. The bottom panel shows the
distribution of samples in the MCMC from LENSTOOL from the 10 mass
reconstructions of the observed galaxy clusters. The fitted line is the best-
fitting posterior to the distribution of best -fitting positions. The legend shows
the wobble amplitude of this best-fitting line with its associated error.

high-resolution simulations predict an offset distribution that is
consistent with zero1 and has an upper limit of Aw < 2 kpc at
the 95 per cent confidence limit.

4.3 HST observation results

Finally, we carry out the same test on the observations. We take
the best-fitting positional parameters and construct a radial offset
distribution. We then find the posterior that describes this distribu-
tion the best. In Fig. 4, we present the stacked posterior from all
the reconstructions and the best-fitting posterior with its associated
wobble amplitude, Aw shown in the legend. We find that the data
has an amplitude of Aw = 11.8+7.3

−3.0 kpc and is ruled out as a zero
wobble at the 3σ level (p-value = 0.005).

5 SE N S I T I V I T Y TO M O D E L C H O I C E

Throughout our study we have adopted an NFW as our fiducial den-
sity profile for the main cluster halo. This was valid under our null

1 The trend that the offset distribution becomes narrower and closer to zero
as the resolution of the simulation is increased appears to be consistent
with the findings of Schaller et al. (2015), who used the Evolution and
Assembly of GaLaxies and their Environments (EAGLE) simulations, which
are approximately a factor of 4 higher in spatial resolution than BAHAMAS
hi-res, to explore the offsets between stars and dark matter. Schaller et al.
(2015) find an offset of �200 pc. A caveat in making this comparison,
however, is that the EAGLE sample does not include massive clusters, given
the relatively small volume, and Schaller et al. (2015) did not compute
galaxy centres in an observational manner (i.e. from analysis of imaging
data).

Figure 5. Distribution of offsets for the fiducial dark matter model, NFW,
in grey, and its best-fitting posterior in the solid black line and the corre-
sponding wobble in the legend. In blue are the offsets when fitting a PIEMD
dark matter model which has an extra degree of freedom in the core, with
the best-fitting posterior and its associated wobble in the legend.

hypothesis. However, evidence for a core does raise the question of
model dependency. We therefore choose to test our results with an
PIEMD. This mass profile has the additional degree of freedom in
the core, better reflecting a profile in an SIDM scenario. We carry
out the same test as previously, measuring the positions of each
halo with respect to the BCG. Fig. 5 shows how the distribution and
best-fitting posterior is consistent with the NFW. We also find no
significant difference in the quality of fit between the two profiles.
This is encouraging, not only showing that the results are not sensi-
tive to the choice of profile, but also that this method of measuring
a core is more sensitive than simply measuring it.

6 C O N C L U S I O N S

Extensions to the cold dark matter model predict the existence
of cores in the centres of galaxy clusters, something not apparent
in standard model of dark matter. Simulations of collisional dark
matter predicts that the BCG in a relaxed halo that has experienced
a major merger in its formation will exhibit a residual ‘wobble’ due
to the existence of a core (Kim et al. 2017), whereas no such wobble
is found in standard model dark matter.

In this paper, we test this hypothesis using the BAHAMAS suite
of cosmological simulations (McCarthy et al. 2017) and observa-
tions of 10 relaxed galaxy clusters from the CLASH and LoCuSS
surveys. Using the public software LENSTOOL, we model the strongly
lensed images of distant galaxies to measure the radial offset be-
tween the large-scale cluster halo and the BCG and ask whether we
observe any evidence for an excessive variance that cannot be ac-
counted for purely with positional uncertainties including a realistic
account for systematics.

We estimate the wobble amplitude in the BAHAMAS fiducial and
high-resolution simulations. We find that the result is sensitive to the
adopted resolution, in the sense that the offset distribution becomes
more narrow and closer to zero as the resolution is increased. The
BAHAMAS high-resolution simulations indicate Aw = 0.8+0.5

−0.8. We
therefore conclude by placing an upper limit wobble amplitude from
the simulations of Aw < 2 kpc at the 2σ confidence limit. This likely
represents a conservative upper limit, given that the results are not
converged to resolution (see also Schaller et al. 2015).

We empirically estimate the errors on the strong lensing model,
by creating a suite of 10 image simulations. For each image sim-
ulation we use a known analytical model of a galaxy cluster to
produce multiple images that closely reflect the distribution of
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multiple images in the observed, real data. In each case the cluster
halo is centred exactly on the BCG.

We find that when the cluster halo is exactly coincident with the
BCG, with no offset, we observe an uncertainty in the radial po-
sition of the offset of σ r 	 0.7 arcsec or σ r 	 3.1 kpc (taking into
account the distribution of cluster redshifts used in this study). If
we compare this to the mean uncertainty reported by LENSTOOL of
σ r 	 0.05 arcsec (0.22 kpc), we find that the modelling procedure
significantly underestimates the uncertainty in the position of the
halo. Following this test we create 4 more suites of image simu-
lations, each with 10 galaxy clusters, now containing fake input
signal. We model the BCG wobble as a simple harmonic oscillator,
described uniquely by its wobble amplitude, Aw. We simulate four
wobble amplitudes up to 20 kpc and find that our method recovers
each case within the 68 per cent confidence region.

Finally, we estimate the wobble amplitude within 10 relaxed
galaxy clusters observed by HST. We find that the data prefers a
wobble amplitude of Aw = 11.82+7.3

−3.0 kpc, and disfavours a zero-
wobble amplitude at the 3σ confidence level.

One effect that could cause some variance in the position of
the centres of the clusters is line-of-sight structure. Dietrich et al.
(2012) found that weak lensing positional peaks can be offset by
∼5 kpc, where the mass of structure along the line of sight would
be comparable to the size of the halo being studied. In this sample
we measure the positions of 10 clusters with a mean mass of over
1015 M�, and hence would require a very large halo along the line
of sight to perturb the position of the cluster. The chances of having
two clusters of M ∼ 1015 M� along the same line of sight is very
small (Harvey et al. 2013), and hence we argue that the variance we
see is not due to line-of-sight structures.

Simulations by Kim et al. (2017) predicted that the amplitude of
a BCG wobble would correspond directly to the size of a constant
density core in the centre of a galaxy cluster and ‘decayed mini-
mally’. This study therefore finds evidence for a mean finite core
of ∼11 kpc at the centre of galaxy clusters, potentially indirectly
inferring the need for new physics. Interestingly, this is consistent
with the direct measurement of cores by Newman et al. (2013a,b),
where they found a mean core size of 〈log rcore〉 = 1.14 ± 0.13 kpc.
Moreover, it also shows the importance of not assuming that the
BCG lies at the centre of a galaxy cluster when fitting parametric
fits in strong lensing reconstructions. Kim et al. (2017) claim that it
would equate to a cross-section of σ DM/m ∼ 0.1 cm2 g−1. However,
this will need to be confirmed with more data as increased observa-
tions of relaxed clusters are observed, and the consequences need to
further modelled using simulations. Surveys such as Euclid (Lau-
reijs et al. 2011), which will provide thousands of relaxed clusters
with strong lensing information will allow us to not only confirm
this finding, but also probe the redshift evolution of the core.
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