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ABSTRACT 

During the season soccer players are likely exposed to a myriad of factors that may disrupt 

the process of sleep. Such disturbances may result in shortened sleep quantity, reduced sleep 

efficiency and impact the overall quality of sleep. Therefore a practical sleep hygiene strategy 

(10 min showering at ~40 °C, 20 min before time of lights out) was investigated. A group of 

ten youth soccer players were evaluated under normal sleeping conditions (control) and a 

shower intervention period, each consisting of three days within a randomized cross over trial 

design. Sleep information was collected using a wireless bedside sleep monitor. Additionally, 

measures of skin temperature were evaluated using iButton skin thermistors. The iButtons 

were used to establish both distal and proximal skin temperatures and the distal to proximal 

gradient (DPG). The shower intervention elevated distal skin temperature by 1.1 °C (95% CI: 

0.1 to 2.1 °C, p = 0.04) on average during a 10 minute period prior to lights out in 

comparison to the control condition. The elevation in distal temperature was also present 

during the first 30 minutes following lights out: 1.0 °C (95% CI: 0.4 to 1.6 °C, p < 0.01) 

between conditions. The DPG also showed a significant effect between the conditions within 

the first 30 minutes after lights out 0.7 °C (95% CI: 0.3 to 1.2 °C), p < 0.01). On average the 

sleep onset latency of the youth soccer players was 7 min lower (95% CI: -13 to -2 min, p < 

0.01) in the shower intervention condition. No other sleep variable was affected as a result of 

the intervention. These findings demonstrate that a warm shower performed before lights out 

may offer a practical strategy to promote thermoregulatory changes that advance sleep onset 

latency in youth soccer players.  
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INTRODUCTION 

Soccer players may experience sleep related disturbances during the competitive season 

(Nedelec, et al., 2015). These traits are also common within other elite athlete populations 

(Leeder, et al., 2012). Such disturbances may impact sleep quality and lead to a reduction in 

total sleep time in comparison to the length of time spent in bed (Leeder, et al., 2012). As a 

consequence, increasing attention has centred upon improving sleep hygiene through 

strategies that promote alterations in environmental conditions and individual behaviours, as 

these may enhance an athletes sleeping pattern (Nedelec, et al., 2015).  

 The circadian cycle in human thermoregulation is thought to be a contributing factor 

to the sleep-wake process (Krauchi & Doboer, 2011). Within humans, sleep propensity (the 

need to sleep) is suggested to rise in relation to the regulated decline in core body 

temperature (CBT), which is typically observed in the evening, with the inverse relationship 

being apparent within the morning (i.e. increased CBT relating to increased wakefulness) 

(Krauchi & Doboer, 2011). Sleep propensity is also suggested to be associated with 

increased distal skin temperatures (vasodilation) and reduced proximal skin temperatures 

(Krauchi, 2007’; Krauchi & Doboer, 2011). This distal minus proximal gradient (DPG) 

(used as an indirect measure of heat loss) has been suggested to be a key predictor in the 

initiation of sleep onset (Krauchi, 2007). Therefore the circadian derived 

thermophysiological processes associated to heat loss seem to be important factors that 

influence the initiation and maintenance of sleep (Krauchi & Doboer, 2011). This may also 

suggest that strategies that look to manipulate thermoregulatory processes and facilitate heat 

loss may benefit sleep (Krauchi & Deboer, 2011).  

 Within the sport of soccer the use of cold-water immersion (CWI) on sleep has been 

investigated (Robey, et al., 2014), as this may promote changes in the thermoregulatory 

system (i.e. rapid conductive heat loss and lowered core body temperature) that may 



facilitate favourable sleep behaviours (Murphy & Campbell, 1997; Krauchi, 2007; Krauchi 

& Deboer, 2011). However, there were no observed benefits of CWI compared to days 

without CWI on markers of sleep quantity and quality (Robey, et al., 2014). However the 

strategy was performed 20 minutes following evening training exposure and may not reflect 

the thermoregulatory effect of CWI if the strategy was performed closer to bedtime. 

However, current evidence investigating the use of such a strategy before sleep is somewhat 

lacking (Halson, 2014). In addition such procedures may attenuate adaptations to certain 

forms of training (Frohlich, et al., 2014) thereby limiting potentially important performance 

improvements.  

 Research has also examined strategies that attempt to facilitate heat loss, using 

alternative approaches such as targeted skin warming (Sung & Tochihara, 2000; Raymann, 

et al., 2005; Raymann, et al., 2007; Fronczek, et al., 2008; Raymann, et al., 2008). It is 

thought that a rapid sleep onset and facilitation of sleep is linked to an increase in the 

temperature of distal regions of the skin (Krauchi, 2007). Techniques such as whole body 

heating or distal skin heating attempt to create small elevations in skin temperature and the 

promotion of vasodilation of distal regions, which in turn accelerate the process of heat loss 

(Sung & Tochihara, 2000; Raymann, et al., 2005; Raymann, et al., 2007; Fronczek, et al., 

2008; Raymann, et al., 2008; Krauchi & Deboer, 2011). These strategies have been shown 

to reduce sleep onset latency and the level of disturbance during sleep (Sung & Tochihara, 

2000; Raymann, et al., 2005; Raymann, et al., 2007; Fronczek, et al., 2008; Raymann, et al., 

2008; Krauchi & Deboer, 2011). Therefore heating strategies of this type may also act as a 

useful practical strategy to promote sleep related factors within athletic populations. 

 At present no evidence is currently available in youth soccer players on the 

effectiveness of strategies that attempt to influence thermoregulatory processes through skin 

warming in an attempt to promote sleep. Therefore the current study was designed to 



manipulate skin temperature through the use of an alternative practical strategy (warm 

showering), which could be easily incorporated into the athlete’s habitual routine. The aim 

of the strategy was to cause subtle increases to skin temperature before time of lights out in 

an attempt to reduce the sleep onset latency and level of sleep disturbance shown within 

youth soccer players.  

 

METHODS  

 

PARTICIPANTS 

Eleven male youth soccer players participated in the study (Age: 18 ± 1 yrs; Height: 1.78 ± 

0.07 m; Weight: 74 ± 10 kg). The soccer players were analysed during their habitual routine 

within the normal competitive academy soccer season. Each participant was briefed and 

informed of their requirements during the study prior to any data collection for the 

investigation. Participant consent was also obtained prior to the start of the investigation. The 

study was agreed and accepted by the Liverpool John Moores University Institutional Ethics 

Committee.  

 

EXPERIMENTAL DESIGN 

In a randomised cross over design, participants were required to conduct both three nights of 

habitual sleep (CON) without showering before bedtime and a three night period that 

included a 10-min (40°C) shower (SI) twenty minutes before bedtime. Each three-day trial 

was separated by a one-week period; this allowed the measurements to be taken on training 

load-matched days during the in-season soccer period. At the time of study, some of the 

participants were sharing rooms (two players per room) at the elite soccer academies house 

of residence. Where applicable, the players included in the assessment that shared a room 

were assigned to different trial groups to avoid the complications of conducting the same 

trial at the same time. All participants completed both conditions. Each participant was 



provided with all of the equipment needed to complete the measurements. This equipment 

included the Zeo Sleep Manager – Bedside Sleep Management Wireless System (Zeo Inc, 

Newton: Mass) (WS), a total of six iButton Thermochron One Wire thermistor 

(Maxim/Dallas Semiconductor Corp, USA), a handheld AVAX DT1 Digital LCD 

thermometer probe (AVAX TM, UK) and an adapted sleep and temperature diary. The 

experimenter provided an instruction sheet and training on the placement and use of each 

measurement device. The practitioner also demonstrated how the sleep and temperature 

diary was to be completed each day. This was done in an attempt to minimise data collection 

errors during the study period. A familiarisation period of two days was provided, so the 

participants could become comfortable with the experimental procedures and minimise any 

first night effects. All procedures were identical for each night of the respective trials and all 

devices were worn for a complete night of data collection. 

 

ENVIRONMENTAL CONDITIONS 

All participants resided in the elite soccer academies house of residence during the time of 

the study. In an attempt to standardise room temperature, participants were instructed to 

ensure all windows were closed and no heating devices were active on the trial days. Room 

temperature was established using a hand held AVAX DT1 thermometer (AVAX, UK). The 

temperature was recorded both prior to bed and upon awakening to establish the potential 

temperature range during the nights of data collection (Table 1). All participants slept in their 

own bed, in the same room, under a 10.5 TOG duvet throughout the assessment period. 

Participants were also restricted to wearing underwear and the same pair of shorts (<20.5 cm 

leg length) during the assessment period. This allowed the accurate detection of skin 

temperature by ensuring any microclimate created by insulating clothing was avoided. 

 

** Table 1 Near Here *** 



 

 

EXPERIMENTAL MEASUREMENTS 

Skin Temperature:  

The measurement of skin temperature was performed using iButton Thermochron One Wire 

thermistors (Van Marken Lichtenbelt, et al., 2006). Each iButton is enclosed within a 

stainless steel shell; the shell contains a 3V lithium battery, a semiconductor (located at the 

base of the shell), a 1-wire receiver/transmitter, 2kb of memory, date and time capacity as 

well as 512 bytes of additional sRAM. The iButton allowed the measurement of temperatures 

between 15-46 °C at an accuracy of 1 °C with a temperature resolution of 0.125 °C. 

Temperature was captured at a user defined temperature rate of 60 seconds. Each iButton was 

configured to start at the same time each evening (8pm) through the in-built missioning 

process. Participants were instructed when the iButtons were to be attached and where each 

iButton was to be positioned (See Figure 1). For ease of placement each iButton was 

numbered to ensure the same site was collected using the same iButton each night. Site 

locations are visually represented in Figure 1. All iButtons were applied with semiconductor 

touching the skin using micropourous tape. Four iButtons (two per region) were placed at the 

distal regions of the body, on the right hand (middle finger tip & dorsal side of the hand) and 

right foot (big toe tip & dorsal side of the foot). Two iButtons were also placed at more 

proximal regions of the thigh and abdomen. These sites provided measures to assess the distal 

to proximal gradient (DPG) of skin temperature (°C) (Krauchi, et al., 2000) associated with 

each night of data collection. This gradient was calculated by subtracting the average of the 

distal measures by that of the average of the proximal measures (Krauchi, et al., 2000). When 

using this approach, proximal skin temperature can be higher than distal skin temperature; 

therefore a negative gradient may also be likely to be observed (Abe & Kodama, 2015). A 



rise in distal temperature to equal that of proximal temperature will signify a DPG value of 

zero. 

 The iButton temperature data was downloaded using a 1-Wire iButton port attached 

through USB to a computer. The data was analysed using OneWireViewer Java Software for 

Microsoft Windows. The data was then exported into Microsoft Excel were each 60 second 

sample could be reviewed. Using the information provided within the temperature section of 

the diary, the 10-minute periods of temperature assessment were identified and clipped. The 

first 5 minutes of the data collection served as the detection period, allowing the device to 

accurately calibrate to the correct skin temperature following application (Van Marken 

Lichtenbelt, et al., 2006). The second period of 5 minutes was used for the skin temperature 

analysis prior to lights out within the study. After lights out the skin temperature data was 

averaged over 30 minute within the first 3 hours of sleep. Once the data was stored, the 

iButtons were then reset, allowing the restart of data collection to commence at 8pm that 

evening. 

 

 

 

 

 

 

 

 

 

 

*** Figure 1 Near Here *** 

 

 

 

 

 

 



 

 

 

 

Sleep: 

To establish the objective measurement of sleep and sleep staging, Zeo Sleep Manager – 

Bedside Sleep Management Wireless System (Zeo Inc, Newton: Mass) (WS) was utilised on 

a nightly basis. This device has previously been shown to provide a valid assessment of the 

key metrics inherent in habitual sleep monitoring (Shambroom, et al., 2012; Tonetti, et al., 

2013). This data included; total sleep time (TST), sleep onset latency (SOL) and number of 

awakenings (NWAKE), as well as a time spent in wake after sleep onset (WASO).  

 

EXPERIMENTAL PROCEDURES 

Before commencement of data collection, participants were briefed on the procedures of the 

study. Each device was also configured prior to data collection to ensure the time and date 

was calibrated and stored. With each participant being familiar with the data collection 

procedures. During the measurement period participants were instructed to ensure their 

chosen shorts did not cover any of the iButtons during the assessment.  On the control nights 

of sleep the iButtons were attached 15 minutes before lights out following a 5 min period 

permitted for the attachment of equipment. To establish the baseline measures for both distal 

and proximal skin temperatures the participants were required to sit within their bedroom for 

a total of 10 minutes before entering bed.  

Within the shower condition, data collection started 45 minutes before lights out. 

Again the participants were given a 5-min period to attach the equipment and were then 

instructed to assume the seated position in their bedroom for 10 minutes to establish the skin 

temperature assessment period prior to showering (Pre-Shower). The iButtons were then 

removed (as the iButtons are not waterproof) to allow the participant to shower freely. A 5-

minute period was provided for the removal of each iButton. Within this time the participants 



were also instructed to adjust the shower temperature to the desired range of 40 °C. Before 

commencing the shower, the shower temperature was determined using a handheld 

waterproof digital thermometer (AVAX, UK). The participants turned on the handheld 

thermometer and then held the probe directly underneath the showerhead, ensuring their hand 

was not touching the metal conductor. The shower temperature was then determined 

(adjusted if necessary) and noted for each night to the nearest 0.1 °C. Participants were then 

instructed to set a timer using their mobile phone for a duration of 10 minutes. Once the timer 

was set the participants proceeded to shower for the allocated 10 minutes. Upon completion 

of the timer the participants were instructed to cease showering immediately. A subsequent 

period of 5 minutes was then allocated to allow drying and the correct re-application of the 

iButton thermistors. Once each iButton was re-attached, the participant underwent another 

10-min period of temperature data collection to establish the post shower measure. Once the 

seated skin measure was complete, the participants were also required to record the 

temperature of the room using the handheld thermometer. 

Once all the temperature data collection was complete the participants were instructed 

to enter bed as soon as possible. This prompted the attachment of the WS headband and the 

recording of time to bed in the sleep diary. Each participant was instructed to attempt to 

initiate sleep immediately at lights off. Upon awakening the WS headband was removed and 

docked so that data was automatically downloaded and stored. The iButton thermistors were 

also removed at this time. The participants also completed their sleep diary entry for the final 

awakening. Within that same morning the participants returned all assessment tools to the 

sports science practitioner for subsequent download and analysis. The data provided by the 

WS and sleep diary were also entered into Microsoft Excel to create a complete data set for 

each respective trial night. Once all data was correctly stored, each monitoring device was 



then handed back to the participant. The participants then proceeded to follow the same 

methodologies for each of the subsequent nights of the respective trial period.  

 

 

STATISTICAL ANALYSIS 

The data was analysed using the statistical package R - Version 3.2.1 Software (The R 

Foundation for Statistical Computing, 2014) using the statistical technique of linear mixed 

modelling. The linear mixed model approach is able to handle repeated measures data, with 

both fixed and random effects as well as any missing data (Cnaan, et al., 1997). This type of 

analysis is therefore a viable approach to assess the data within the current study. Within this 

analysis, the trial condition (SI vs. CON) was treated as the fixed effect, and random 

intercepts were used for individual players. The main outcomes of the analysis were 

compared using the coefficient value of the condition. In this case the CON condition was 

treated as the baseline within the statistical coding. Therefore the difference between the 

conditions SI vs. CON could be expressed as the coefficient value. Furthermore, in the 

analysis of skin temperature after lights out, time was also included as a fixed effect, since 

temperature data were evaluated at selected time points. The interaction between time and 

condition was therefore also taken into account within the models. Post-hoc contrasts were 

performed to examine the differences between conditions at any considered time point. This 

provided a mean to assess the effects of the shower intervention on the skin temperature data 

(distal, proximal and DPG) within the first hours of sleep. Absolute effect sizes (ES) were 

calculated by dividing the coefficient value by the between-subject standard deviation of the 

specific variable. The magnitude thresholds were evaluated as <0.2 trivial; 0.2-0.59 small; 

0.6-1.19 moderate; >1.20 large (Hopkins, 2010). Statistical significance was set at p < 0.05. 

Coefficients of the condition were reported with 95% confidence intervals. All the other data 

are reported as mean ± sd. 



 

 

 

 

RESULTS 

 

SKIN TEMPERATURE PRIOR TO LIGHTS OUT 

Figure 2 shows a visual representation of this data across the assessment period prior to lights 

out. Within the comparison of pre-shower skin temperature with that of pre-lights out within 

the control condition, there were no significant differences observed for distal (-0.3 °C, 95% 

CI: -1.3 to 0.7 °C, p = 0.55), proximal (0.2 °C, 95% CI: -0.6 to 0.9 °C, p = 0.71) and DPG (-

0.4 °C, 95% CI: -1.3 to 0.4, p = 0.30). At pre-lights out, distal skin temperature was elevated 

by an estimated difference of 1.1 °C (95% CI: 0.1 to 2.1 °C, ES: 0.44, small, p = 0.04) with 

showering (39.7 C ± 1.7 °C) compared to the control condition. Additionally showering 

caused a small, non-significant increase in proximal skin temperature (0.6 °C (95% CI -0.2 to 

1.4 °C, ES: 0.36, small, p = 0.13) and DPG (0.6 °C, 95% CI -0.2 to 1.3 °C, ES: 0.30, small, p 

= 0.15) compared to the control condition. 

 

 

 

 

 

 

 

 

 

*** Insert Figure 2 near here*** 

 

 

 



 

 

 

 

 

SKIN TEMPERATURE AFTER LIGHTS OUT 

A visual representation of the data collected following lights out is shown within Figure 3. 

Following lights out, there was a continued significant effect of showering on distal skin 

temperature observed within the first 30 minutes after lights out 1.0 °C (95% CI: 0.4 to 1.5 

°C, ES: 0.65, moderate, p = 0.0000042). However, this effect was no longer observed after 60 

minutes (+0.0 °C, 95% CI: -0.4 to 0.4 °C, ES: -0.01, trivial, p = 0.94). The DPG also showed 

a significant effect of showering within the first 30 minutes after lights out (0.7 °C, 95% CI: 

0.4 to 1.1 °C, ES: 0.45, small, p = 0.0024). However there were no consequent observed 

effects of showering on the DPG after 60 minutes of lights out (0.1 °C, 95% CI: -0.3 to 0.5 

°C, ES: 0.16, trivial, p = 0.54). Proximal skin temperature showed small, non-significant 

effects of showering after both 30 minutes (0.2 °C, 95% CI: 0.0 to 0.5 °C, ES: 0.31, small, p 

= 0.10) and 60 minutes (0.1 °C, 95% CI: -0.4 to 0.1 °C, ES: -0.32, small, p = 0.38) after 

lights out.  

 

 

 

 

 

 

 

 

*** Insert Figure 3 near here *** 

 

 

 



 

 

 

 

 

OVERVIEW OF SLEEP  

Mean ± sd outputs of the WS for both trial periods are displayed in Table 3. Showering 

enhanced sleep onset latency by approximately -7 min (95% CI: -13 to -2 min, ES: -0.55, 

small, p = 0.007) compared to the control condition. In contrast, showering had a moderate 

non-significant effect on total sleep time (-18 min, 95% CI: -48 to 11 min, ES: -0.63, 

moderate, p = 0.23) and a small, non-significant effect on the time spent in wake after sleep 

onset (-1 min, 95% CI: -4 to 2 min, ES: -0.20, small, p = 0.37) in comparison to the control 

condition. There were no observed effects of showering on the number of awakenings (0, 

95% CI: -1 to 2, ES: -0.10, trivial, p = 0.76) in comparison to the control condition.  

 

 

 

 

 

 

 

 

 

*** Insert Table 2 near here*** 

 

 

 

 

 

 



 

 

 

DISCUSSION 

The current study was designed to manipulate skin temperature prior to bedtime within a 

group of youth soccer players in an attempt to facilitate sleep onset and improve factors 

relating to sleep quantity and sleep quality. The results of the current study indicated a 

significant thermoregulatory effect of a 10-minute warm shower intervention, performed 20 

minutes before bedtime in comparison to a control condition. A rise in distal skin temperature 

was observed before lights out and was also apparent during the first 30-min period after 

lights out. This also reflected in a higher DPG within the first 30-min period after lights out. 

A significant effect on the sleep onset latency of youth soccer players was also observed in 

the shower condition. This may suggests that changes in skin temperature before lights out 

may facilitate sleep onset. No statistical changes were observed for any other variable 

relating to sleep as a result of the shower condition. This may suggest that warm showering 

may have acute effects that relate to sleep propensity, though these may not extend 

throughout the night and influence total sleep architecture. From a practical perspective warm 

showering may offer a potential strategy to improve the sleep onset of youth soccer players.  

Previous research on the relationship between thermoregulation and sleep has 

indicated that there is a subsequent effect of skin temperature on sleep (Raymann, et al., 

2008; Krauchi & Deboer, 2011). For example, a variety of passive heating strategies, which 

successfully elevate skin temperature, positively influence the properties of sleep in healthy 

young and old participants (Sung & Tochihara, 2000; Raymann, et al., 2005; Raymann, et al., 

2007; Raymann, et al., 2008; Krauchi & Deboer, 2011). Within the current study a shower 

intervention lasting 10 minutes, performed 20 minutes before bedtime, at a temperature range 



of 39.7 C ± 1.7 °C, showed elevations to the distal skin temperature of the youth soccer 

players both before and after lights out (up to 30 min). This was reflected by an increase in 

distal skin temperature of 1.1 C on average in comparison to baseline measures of 

temperature under normal sleep routine conditions. Such a rise in distal temperature (hands 

and feet) is often associated with vasodilation of the periphery and the opening of 

arteriovenous anastomoses (AVAs), permitting increased levels of heat dissipation from the 

body and a lowering of core body temperature (Krauchi, 2000). Such thermoregultory 

changes have also been previously linked to a faster time to achieve sleep onset (Krauchi, 

2000). The results of the current study demonstrate a significant effect of the showering 

condition on the process of sleep onset, which was reduced on average by 7 min when the 

youth soccer players showered before lights out. This may be due to thermophysiological-

induced feedback, which may phase advance circadian derived processes of thermoregulation 

(e.g. increased distal skin temperature and DPG, heat loss and a decline in core body 

temperature), which in turn is likely to influence mechanisms of the sleep-wake cycle (i.e. 

increased sleep propensity and reduced vigilance) (Murphy & Campbell, 1997; Krauchi, 

2007; Krauchi & Deboer, 2011, Romeijn, et al., 2012). This data may therefore infer that the 

heat load induced by the shower intervention may facilitate the process of heat loss (as a 

result of increased distal skin temperatures and DPG gradient following lights out) and 

therefore increase sleep propensity. This may suggest that warm showering prior to lights out 

is a viable strategy to promote this process. 

The shower intervention did not statistically influence any of the other variables 

related to sleep (TST, NWAKE, WASO). During sleep humans typically create an insulated 

microclimate (between 34 – 36 °C) through the use of bed covers/duvets to maintain a high 

level of skin blood flow whilst reducing the transfer of heat to the environment (Van 

Someran, 2006). This may offer some explanation as to why the skin temperature 



manipulation of the shower did not affect any further properties of sleep, as this may be 

attributed to the development of this microclimate. Sung & Tochihara (2000), observed that 

the sleep promoting effects of passive heating (whole body or foot bathing at 40 °C) before 

bedtime were moderated after ~2 hrs of being in bed. The current data is again in broad 

agreement with these ideas as the effects of the experimental condition here are seemingly 

dissipated within 60 minutes of lights out, with both conditions displaying similar 

temperature values from this time point onwards (Figure 3). This would suggest that heating 

of this type is only likely to affect the early stages of sleep as opposed to the whole night of 

sleep (Sung & Tochihara; Raymann, et al., 2008). This may also provide an additional 

explanation to the observed reduction of sleep onset latency (within the early phase of sleep) 

and why no further impact was made within the sleep variables collected within the current 

study. 

Though the present study infers that the rise in distal skin temperature induced by the 

shower intervention reduces the sleep onset latency of youth soccer players, it would seem 

that this response is also related to a combined relationship with other thermoregulatory 

mechanisms (Krauchi & Deboer, 2011; Romeijn, et al., 2012).  It is likely that the heating of 

the skin induces thermal afferent feedback to areas of the brain (Romeijn, et al., 2012). A 

review conducted by Van Someran (2000), shows that specific brain regions that relate the 

control of sleep and wakefulness are sensitive to the 24 h regulation of temperature. The 

preoptic area of the anterior hypothalamus (POAH) has been suggested as one such area that 

plays a key role in both temperature regulation and sleep (Van Someran, 2000). Skin 

warming and the increase in peripheral skin blood flow has been suggested to increase the 

firing rate of specific warm sensitive neurons (WSNs), which relay feedback to brain regions 

such as the POAH and in turn promote a sleep like firing pattern of the brain (Van Someran, 

2000; Raymann, et al., 2005). The observed rise in distal skin temperature within the current 



study could suggest an increase in peripheral blood flow (Krauchi, 2000), which in turn may 

promote the maximal firing rate of the WSNs (Van Someran, 2000). If this suggestion were 

true, then it is likely that an induced firing pattern of sleep-promoting behaviour of the brain 

would be favoured and thus sleep onset would be promoted under such conditions (Van 

Someran, 2000; Romeijn, et al., 2012).  

The sleep like firing patterns of the brain may also be influenced by the thermal input 

(i.e. the specific site of skin warming) (Romeijn, et al., 2012). It is likely that during the 

shower intervention the temperature of the skin of the head would also be increased. Such 

heating of this area may directly warm the areas of the brain (e.g. POAH) that promote sleep 

(Romeijn, et al., 2012) or further stimulate neuronal feedback mechanisms that may promote 

sleep onset. (Van Someran, 2000). However due to the applied nature of the study and the 

limited amount of equipment, the exact response of the neuroanatomical pathways detailed 

by Van Someran (2000) in relation to the thermally induced changes of the shower 

intervention cannot be quantified. Future research may look to optimise techniques of 

neuroimaging (to outline the thermal influences of the shower intervention in relation to key 

areas of the brain that control sleep and temperature) and/or thermal imaging (to establish 

which areas of the body are influenced by thermal induced changes) to further the 

understanding of how such mechanisms may be influenced by the shower intervention.  

It should also be noted that humans typically initiate sleep when they reach the 

maximal trough in the circadian derived rhythm of core body temperature (Murphy & 

Campbell, 1997). Though an increase in distal skin temperature caused through the shower 

intervention may indicate increased heat dissipation and infer a reduction in core body 

temperature (Krauchi, 2000), the actual response of core body temperature in relation to this 

particular shower intervention remains unknown. Assessment of core body temperature 



should therefore be investigated within future research in an attempt to gain greater 

understanding of the mechanisms associated with the shower intervention.   

The current study was also limited to youth soccer players who were assessed during 

the in-season period. Therefore future investigations should look to implement a strategy 

such as warm showering before lights out within soccer players of different ages and 

competitive levels to provide further evidence to the findings contained within the current 

study. Additionally these findings may not reflect in-season periods that may cause further 

disturbance to soccer player’s sleep (i.e. away travel and night time fixtures) (Nedelec, et al., 

2015). Therefore future research should also look to establish the relevance of this 

intervention during such periods, to assess if the positive benefits are also transferable to 

these situations that may occur within elite soccer. The current study is also the first to utilise 

this type of shower intervention within the applied setting, therefore future research could 

also manipulate the timing (when the strategy is employed), duration (length of the shower) 

and temperature of the shower intervention to assess if the effects on sleep are further 

pronounced as a result of these changes. 

 

CONCLUSION  

The current study is the first to assess the use of a 10-minute warm shower 20 min prior to 

lights out to manipulate skin temperature in an attempt to promote the process of sleep onset 

latency and improve sleep quantity and quality in youth soccer players. Through the use of a 

~40°C shower intervention, increases in distal temperature and a subsequent reduction in 

sleep onset were observed in relation to control conditions. However, no subsequent effects 

were observed on the improvement of sleep quantity and quality. Therefore showering prior 

to lights out may be a useful strategy to reduce sleep onset times in youth soccer players that 

display long sleep onset latencies.  
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