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Abstract—Fault detection and fault diagnosis have become 

increasingly important for improvement of the reliability, 

safety and efficiency of many technical processes. In this 

research, a new robust fault detection and isolation (FDI) 

scheme is developed for open-loop Chylla-Haase 

polymerization reactor. This reactor has been widely used 

as an industrial Benchmark. The independent Radial Basis 

Function (RBF) Neural Network (RBFNN) is employed here 

for on-line diagnosis of faults on the actuator, sensors, and 

reactor components when the system is subjected to system 

uncertainties and disturbances. Two different techniques to 

employ RBF neural networks are investigated. Firstly, an 

independent neural network is used to model the reactor 

dynamics and generate residuals. Secondly, an additional 

RBF neural network is developed as a classifier to isolate 

faults from the generated residuals. Three sensor faults and 

one actuator fault are simulated on the Chylla-Haase 

reactor. Moreover, many practical disturbances and system 

uncertainties, such as monomer feed rate, fouling factor, 

impurity factor, ambient temperature and measurement 

noise are modelled. The simulation results are presented to 

illustrate the effectiveness and robustness of the proposed 

method. 

Keywords— Robust fault detection; independent RBF 

model; RBF neural networks; open-loop Chylla-Haase 

reactor. 

I. INTRODUCTION 

In recent years, the task of monitoring complex 
nonlinear processes has been intensively studied. Fault 
detection and isolation (FDI) techniques have attracted 
much interest due to the increasing demand for good 
performance and higher standards of safety and reliability 
of technical plants for improving the supervision and 
monitoring as part of the overall control of processes[1]. 
FDI has become a critical issue in the operation of high-
performance chemical plants, nuclear plants, airplanes, 
ships, submarines, and space vehicles, etc. [2]. In the 
chemical industry, faults can occur due to sensor failures, 
equipment failures or changes in process parameters. 
Occurrence of a fault may cause process performance 
degradation, or in the worst cases, may cause disastrous 
accidents. However, FDI can help avoid all these major 
consequences [3 and 11]. 

Due to serve nonlinearity and time varying feature of 
the reactor dynamics, the observer methods, parity space 
methods, and other first-principle model based methods 

cannot be successfully applied for FDI of the Chylla-
Haase reactor.  

   Many research works have been carried out to study 
NNs for FDI. Yu et al [4] studied sensor fault diagnosis 
in chemical process via RBF neural networks; a semi-
independent NN was used for sensor fault diagnosis. 
Moreover, the thins-plate-spline function was used for the 
neural model and the Gaussian function was used for the 
neural classifier. Another study was conducted by Gomm 
and Yu [5] that introduced the selection of radial basis 
function (RBF) network centres with recursive 
orthogonal least squares training. Frank and Seliger [6] 
studied fuzzy logic and neural network applications for 
fault diagnosis. Their paper introduced fuzzy logic for 
residual evaluation, a dependent neural network for 
residual generation, and a neural network for residual 
evaluation by using another dependent neural network for 
generating residuals. All those authors used dependent 
and semi-dependent mode of NN for FDI. As the residual 
of these methods is affected by the plant output, the 
residual is made insensitive to the faults. Although a 
partial dependent mode is used to enhance the residual to 
fault sensitivity, the fault detect threshold is still high 
such that fault with small amplitude cannot be detected [9, 
10, and 11].  

In this research, a new robust FDI scheme is 
developed for open-loop Chylla-Haase polymerization 
reactor. The independent Radial Basis Function Neural 
Network (RBFNN) is employed here for on-line 
diagnosis of faults on the actuator, sensors, and reactor 
components when the system is subjected to system 
uncertainties and disturbances. The independent neural 
network mode is developed to generate enhanced 
residuals for diagnosing faults in the reactor. Then, a 
second neural network is developed as a classifier to 
isolate these faults. The basis Gaussian function is used 
for the neural network model, and for the neural network 
classifier. The K-means clustering algorithm is used to 
choose the centres of the RBF networks, and a p-nearest-
neighbours algorithm is used to choose the widths. 
Moreover, a recursive least squares (RLS) algorithm is 
used to update the weights. 
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II. THE CHYLLA-HAASE BENCHMARK 

REACTOR 

Batch and semi-batch reactors have been widely used 
in the chemical industry. In this research, a semi-batch 
polymerization reactor benchmark is considered which is 
described by Chylla and Haase [8] and used as a 
benchmark for process control applications. The 
schematic diagram of the semi-batch polymerization 
reactor is shown in Fig.1 [8]. It consists of a stirred tank 
reactor with cooling jacket and a coolant recirculation. 
The reactor temperature is controlled by manipulating the 
temperature of the coolant, which is recirculated through 
the cooling jacket of the reactor. The heat released 
through the reaction must be removed by circulating cold 
water through the jacket, where both hot and cold jacket 
streams are available. When the jacket temperature 
controller output is between 0 and 50%, the valve is 
opened and cold water is inserted, and when the jacket 
controller output is between 50 and 100%, the valve is 
opened and steam is inserted [8].  

 

Figure 1.  Chylla-Haase reactor schematic. 

A. Polymerization Reactor Model 

 The mathematical model of the Chylla-Haase reactor 
is described by a set of five ordinary differential 
equations (ODE) which come from material and heat 
balances inside the reactor: 
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The reactor model includes the material balances (1) 

and (2) for the monomer mass      and the polymer 

mass      , the energy balance (3) with the reactor 

temperature     , plus the energy balances (4) and (5) of 

the cooling jacket and the recirculation loop with the 

outlet and inlet temperatures   
             

       of the 

coolant. 

 The heating/cooling function       is influenced by an 

equal-percentage valve with valve position      and the 
following split-range valve characteristic: 
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For         , ice water with inlet temperature        is 

inserted in the cooling jacket, whereas a valve position 

      leads to a heating of the coolant by injecting 

steam with temperature        into the recirculating 

water steam. 

III. RESIDUAL GENERATION WITH RBF MODEL 

A. Independent Model of RBF Modelling 

Using RBFNN for modelling, a non-linear dynamic 
system can be modelled in two modes: a dependent mode 
and an independent mode. The first model referred to is a 
dependent mode, since the past system output is used as 
network input. Thus, the model is dependent on the 
system output and cannot operate independently from the 
system. In the independent mode, the past model output 
is used as network input. Therefore, the model is not 
dependent on the system output and can operate 
independently from the system. The independent model 
has an advantage in that the model can be used to 
simulate the system to obtain long-range prediction. In 
contrast, the dependent model performs as one-step-ahead 
predication. 

The RBF network performs here as nonlinear 
mapping, and is used because of its advantages over the 
multi-layer perceptron (MLP) of short training time. The 
RBFNN consists of three layers: an input layer, a hidden 
layer, and an output layer. The hidden layer contains a 
number of RBF neurons; each of them represents a single 
radial basis function, with associated centre and width. 
The most popular RBF is a Gaussian type that is 
characterized by a centre      , and a positive scalar 

called width     , where        is the output of the 

nonlinear activation function in the hidden layer. It is 
given by a Gaussian basis function as follows:  
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Where     is the input vector and        is the number of 
nodes in the hidden layer. The network outputs are 
computed as a linear weighted sum of the hidden node 
outputs: 
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Where      is the weight of the       centre, and     is 
some radial function. 

B. Input-Output Determination of RBF Model 

The first step towards developing a neural network 
model of the process is to obtain training data. Training 
data is obtained by designing a set of random amplitude 
signals (RAS) for the five inputs to the reactor: monomer 
feed rate, fouling factor, ambient temperature, impurity 
factor ,and valve position, as shown in Fig.2. These five 
inputs are the system inputs (monomer feed rate, 
manipulated variable) included the uncertainties and 
disturbances in the process. The second step towards 
developing a neural network model of the process is to 
determine the network input variables and the input 
vector and output vector. The network input vector 
consists of the past values of the five system inputs and 
the past values of the three system outputs. The 
determination of the inputs and outputs of the system is 
based on the equations (1) to (5). A total data set of 2000 
samples is collected from the system Simulink model, 
and 4s are used as the sampling time. The first 1500 
samples are used for training the network model, and the 
remaining 500 samples are used for testing the network 
model. Before training and testing, the raw data is scaled 
linearly into the range of [0 1] using the following 
formulae: 
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After determining and scaling the input and output 
vectors of the system, the non-linear autoregressive with 
exogenous inputs (NARX) model is used to represent the 
non-linear dynamics of the reactor as shown in Eq.7. 

C. RBF model training data Acquisition for open-loop 

and Validation 

In this research, an RBF network is used to represent 
the NARX model in Eq. (7). Thus, in order to get a good 
training result with minimum modelling error, several 
numbers of maximum lags in the outputs and inputs, and 
several numbers of the maximum time delay in the inputs 
are tried. The maximum lags in the output were selected 

as 3, the maximum lags in the input is selected as 2, and 
the maximum time delay in the inputs is selected as 2, as 
described in Eq. (7). Thus, the RBF model is designed to 
have 19 inputs and 3 outputs, as shown in Fig.6. The 
hidden layer nodes are selected as 21. The centres are 
chosen using a K-means clustering algorithm as 21. 
Moreover, a p-nearest-neighbours algorithm is used to 
choose the widths. In the training of the network model, 
the recursive least squares (RLS) algorithm is used to 
update the weight matrix since the weights are linearly 
related to the output, and the parameters of the RLS 
algorithm are selected as follows:        and     
                           , where   is the forgetting 

factor,   is an identity matrix,   is the element unity 
matrix (matrix with all elements are 1), and    is the 
number of hidden layer nodes. 
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Figure 2.  RAS signal. 
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Figure 3.   a,b,and c show the simulation results of jacket input 

temperature, jacket output temperature, and reactor temperature for 
system outputs and RBFNN model outputs. 

Fig.3 shows the last 200 sample intervals in the training 
data set and the first 200 sample intervals in the testing 
data set. It can be clearly seen that the model outputs 
track the system output with a small modelling error. The 
mean absolute error (MAE) for the jacket input 
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temperature, jacket output temperature and reactor 
temperature are 0.004, 0.0054 and 0.0072, respectively. 

IV. FAULT DETECTION 

A. Simulating Faults 

In this study, after training the independent RBF 
network model with healthy data, the model will be tested 
with faulty data. The faulty data is obtained by simulating 
different faults in the proposed reactor. These faults are 
classified as three sensor faults and one actuator fault. 
The sensor faults are jacket input temperature sensor fault, 
jacket output temperature sensor fault, and reactor 
temperature sensor fault, and the actuator fault is the inlet 
temperature. These faults are simulated as following: 

1) Simulating Sensor Faults: The jacket input 

temperature sensor fault is superimposed with 10% 

change of the measured jacket input temperature, and 

simulated from the sample number 400 to 500, as shown 

in Fig.4. Additionally, the jacket output temperature 

sensor fault is superimposed with 10% change of the 

measured jacket output temperature, and simulated from 

the sample number 600 to 700, as shown in Fig.4. 

Furthermore, the sensor fault of the reactor temperature is 

superimposed with 10% change of the measured 

temperature, and simulated from the sample number 800 

to 900, as shown in Fig.4. 

2) Simulating Actuator Fault: The heating-cooling 
function is influenced by an equal-percentage valve with 

valve position. When the valve position        , 

cooling water with inlet temperature (278.71 k) is 

inserted into the cooling jacket. When the valve 

position       , steam with temperature (449.82 k) is 

injected into the recirculating water stream, which will 

lead to heating up of the coolant. Consequently, it is 

assumed here that a failure in the pump position of 

cooling mode has occurred, which leads to increase in the 

temperature by 10% change of the measured inlet 

temperature. This inlet temperature fault is simulated 

from the sample number 1000 to 1100, as shown in Fig.4. 

 
Figure 4.   Fault structure with respect to number of samples. 

B. Simulation results 

Fig.6 demonstrates the fault detection approach. An 

independent model is implemented in parallel with the 

system to generate the residuals for detecting the sensor 

and actuator faults in the reactor. After training the 

network model with healthy random data, as described in 

the previous section, all four faults were simulated to the 

reactor model. Then, with another set of 2000 samples, 

faulty square data is collected. These faulty data are 

collected by designing a set of square waves for all inputs. 

These five inputs are the system inputs (monomer feed 

rate, manipulated variable) included the uncertainties and 

disturbances in the process. The second step towards 

developing a neural network model of the process is to 

determine the network input variables and the input 

vector and output vector. The network input vector 

consists of the past values of the five system inputs and 

the past values of the three system outputs. Where the  

      ,  
 

  
 ,        ,      and       are the inputs of the 

system; and jacket input temperature       , jacket output 

temperature          and reactor temperature (T   are the 

outputs of the system. Moreover, the collected data is 

scaled linearly. After determining and scaling the input 

and output vectors of the system, the multivariable 

NARX is used to represent the non-linear dynamics of the 

reactor, The maximum lags in the output were selected as 

3, the maximum lags in the input is selected as 2, and the 

maximum time delay in the inputs is selected as 2, as 

described in Eq. (8). Here again the neural network is 

realised by a RBF network with Gaussian basis functions. 

Moreover, the centres are chosen again using a K-means 

clustering algorithm and the widths are chosen using p-

nearest-neighbours. Different numbers of hidden nodes, 

such as 21, 31, and 51, are used in order to get good 

results. The recursive least squares algorithm is used to 

update the weight matrix. The parameters of the recursive 

least algorithm are selected as follows: the forgetting 

factor      ,                             
           .The RBF network model is tested with 

these faulty square data to generate fault–detection 

residuals. The filtered model prediction errors are shown 

in Fig.5. The first model prediction error of jacket input 

temperature is shown in Fig.5 (a), and that for jacket 

output temperature and reactor temperature are shown in 

Fig.5 (b) and Fig.5 (c), respectively. In this study, the 

residual  is generated as the sum-squared filtered 

modelling error as follows: 
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The residuals of testing the neural model are slightly 
bigger than the residuals of training the neural model. 
The mean absolute error (MAE) index is used to evaluate 
the modelling effects. The MAE for the jacket input 
temperature, jacket output temperature and reactor 
temperature are 0.004, 0.0054and 0.0072, respectively. 
Fig.10 demonstrates the residuals after using a low pass 
filter. It can be observed that the independent network 
model output is not influenced by any type of fault, 
because an independent model does not use past faulty 
measurements as inputs. Thus, it can be clearly noticed 
that all faults have been clearly detected. Moreover, no 
false alarms are thereby produced, so this verifies that the 
proposed scheme has shown excellent diagnostic 
performance. 



 

(a) 

 

(b) 

 

(c) 

Figure 5.  (a), (b), and (c) show residual filtered model prediction errors 

of         ,      and   . 

 

Figure 6.  The structure of FD using an independent RBFNN. 

V. FAULT ISOLATION 

Fault isolation is the determination of the kind, 
location and time of detection of a fault. Fig.7 illustrates 
the fault isolation strategy; an additional neural network 
is applied as a classifier for fault isolation. The 
application of NNs for fault isolation has been used by 
many researchers, such as Patton et al.(1994) and Yu et 
al.(1999) used an RBF network, Yu et al.(1996a) using an 
MLP network, and Patton and Benkhedda (1996) used a 
B-spline network. In the fault detection, a residual is 
generated to report a fault occurring. However, it is 
difficult to identify which fault has occurred among all 
pre-specified possible faults using the residual, due to the 
fact that the residual is a scalar and carries little 
information about fault types. In this work, it is proposed 
to isolate faults according to model prediction errors. The 
model prediction errors are multi-dimensional, three-
dimension in this case, and different faults will have 
different impacts on these vectors in three-dimension 
vector space. Classification of these features of different 
faults on the model prediction error vectors will lead to 
classification of different faults. Therefore, the faults that 
have occurred can be isolated. In this work, the neural 
classifier is developed by an RBF network with Gaussian 
basis functions. The residuals that shown in Fig.5.which 
are the difference between the real system output and the 
tested neural output were used as inputs for RBF network 
classifier. Moreover, the neural classifier was developed 
with five outputs, with four outputs associated to the four 

faults, and one output for (no-fault) case.   The centres 

are chosen again using a K-means clustering algorithm 
and the widths are chosen using p-nearest-neighbours. 
Different numbers of hidden nodes, such as 51, 151, 
and251, are used in order to get good results. Finally 51 
hidden layer nodes are selected and the centres are chosen 
as 51. The parameters of the recursive least algorithm are 
selected as follows: the forgetting factor        , 

                                       . 
The samples arranged for fault occurrence are illustrated 
in Table I. Moreover, the target is set such that all four 
outputs are set as zero for the healthy condition data, and 
one output is set as 1 for a specific fault, with the others 
remaining at zero. Thus, once the first output is 1 and the 
other outputs are zero, this means that the jacket input 
temperature sensor fault with 10% change has occurred. 
In the same way, the jacket output temperature sensor 
fault with 10% is believed to have occurred when the 
second output is 1, while the others remain at zero. 
Similarly, the reactor temperature sensor fault and the 
inlet temperature actuator fault with 10% changes will 
have occurred when the third and the forth outputs are 1. 
After training, the RBF network classifier is tested with 
another set of faulty data with the same arrangement of 
training data. The samples arranged for fault occurrence 
can be different from those of the training data. Table I 
shows the classification of faults with respect to the 
number of samples. The four outputs of the neural 
classifier after use of a filter are displayed in Fig.12. It 
can be clearly noticed that all faults have been clearly 
detected and isolated.  



 
Figure  7.  Block diagram for fault isolation. 

TABLE I   CLASSIFICATION OF FAULTS WITH RESPECT TO 
NUMBER OF SAMPLES 

 
Faults Number of samples 

No fault 0~400 

     sensor fault  401~400 

No fault 501~600 

       sensor fault 601~700 

No fault 701~800 

Reactor temperature sensor fault  801~900 

No fault 901~1000 

Inlet temperature actuator fault  1001~1100 

No fault 1101~2000 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  8.  a, b, c, and d show the fault isolation and location for the four 

faults. 

VI. CONCLUSION 

A new robust fault diagnosis scheme has been 
developed for open-loop Chylla-Haase reactor using an 
independent radial basis function (RBF) neural network. 
Two different methods to employ RBF neural networks 
for fault diagnosis have been investigated. Three sensor 
faults and one actuator fault have been simulated on the 
Chylla-Haase reactor superimposed with 10% changes of 
the measured temperatures, and simulated for different 
numbers of samples. Moreover, the uncertainties and 
disturbances in the process, such as fouling factor, 
impurity factor, and measurement noise, have been 
simulated. Firstly, an independent neural network has 
been developed for residual generation, which is the 
output prediction error between a neural network and a 
non-linear dynamic process. Moreover, the generated 
residuals have been used for detecting faults. Secondly, 
an additional RBF neural network classifier has been 
developed to perform the classification task for fault 
isolation. 
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