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remains unclear if this will lead to reductions in GI symp-
toms. Athletes competing in the heat may, therefore, benefit 
from acute glutamine supplementation prior to exercise in 
order to maintain gastrointestinal integrity.

Keywords  Glutamine · Exercise · Intestinal 
permeability · Gastrointestinal symptoms

Abbreviations
ELISA	� Enzyme-linked immunosorbent assay
GI	� Gastrointestinal
HR	� Heart rate
I-FABP	� Intestinal-fatty acid binding protein
L:R	� Lactulose:rhamnose ratio
NSAID	� Non-steroidal anti-inflammatory drug
RPE	� Ratings of perceived exertion
TC	� Thermal comfort

Introduction

Gastrointestinal (GI) discomfort is frequently reported by 
endurance athletes in long-distance events such as mara-
thons and triathlons (Gil et al. 1998). Indeed, 30 to 65% 
of long-distance runners experience some deleterious GI 
symptoms related to exercise including nausea, vomiting, 
abdominal cramps and the urge to have a bowel movement 
(Riddoch and Trinick 1988). However, the precise mecha-
nisms underpinning such GI complaints during prolonged 
endurance exercise are not yet fully understood. Decreased 
splanchnic perfusion and increased small intestinal perme-
ability, defined as the non-mediated diffusion of large nor-
mally restricted molecules from the intestinal lumen to the 
blood (Lambert 2009), have been postulated as key mecha-
nisms (van Wijck et al. 2012). It is thought that a reduction 

Abstract 
Purpose  To examine the dose–response effects of acute 
glutamine supplementation on markers of gastrointestinal 
(GI) permeability, damage and, secondary, subjective symp-
toms of GI discomfort in response to running in the heat.
Methods  Ten recreationally active males completed a total 
of four exercise trials; a placebo trial and three glutamine 
trials at 0.25, 0.5 and 0.9 g kg−1 of fat-free mass (FFM) 
consumed 2 h before exercise. Each exercise trial consisted 
of a 60-min treadmill run at 70% of V̇O

2max
 in an environ-

mental chamber set at 30 °C. GI permeability was meas-
ured using ratio of lactulose to rhamnose (L:R) in serum. 
Plasma glutamine and intestinal fatty acid binding protein 
(I-FABP) concentrations were determined pre and post exer-
cise. Subjective GI symptoms were assessed 45 min and 24 h 
post-exercise.
Results  Relative to placebo, L:R was likely lower follow-
ing 0.25 g kg−1 (mean difference: − 0.023; ± 0.021) and 
0.5 g kg−1 (− 0.019; ± 0.019) and very likely following 0.9 
g kg− 1 (− 0.034; ± 0.024). GI symptoms were typically low 
and there was no effect of supplementation.
Discussion  Acute oral glutamine consumption attenuates 
GI permeability relative to placebo even at lower doses of 
0.25 g kg−1, although larger doses may be more effective. It 
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in splanchnic blood flow may lead to damage of the intesti-
nal epithelial cells that line the gastrointestinal tract (Zuhl 
et al. 2014a). Passage of ions, water and molecules through 
the paracellular pathway is regulated by the tight junctions 
of the epithelia (Gonzalez-Mariscal et al. 2003), and con-
sequent disruption of these tight junctions during exercise 
can lead to increased intestinal permeability allowing pas-
sage of both small and large molecules. Increased intestinal 
permeability results in the translocation of endotoxins from 
the intestinal lumen into systemic circulation (Selkirk et al. 
2008). Lipopolysaccharide (LPS) endotoxins are found in 
large quantities in the human gut (van Deventer et al. 1988) 
and increased circulating LPS levels in athletes have been 
found to be associated with GI symptoms including nausea, 
vomiting and diarrhoea (Jeukendrup et al. 2000). Increased 
permeability or circulating endotoxin could also impact on 
physical performance (Vargas and Marino 2014) or delay 
recovery (van Wijck et al. 2013). Recent investigations have, 
therefore, examined the efficacy of nutritional strategies 
such as colostrum, probiotics and glutamine in an attempt 
to lessen such gastrointestinal disruption (Marchbank et al. 
2011; Shing et al. 2014; Zuhl et al. 2014b).

Glutamine is a natural non-essential amino acid and is 
the most abundant free amino acid in human plasma and 
skeletal muscle (Gleeson 2008) where it performs a number 
of roles including acting as fuel for cells of the gut mucosa 
and immune system (Fürst and Stehle 1995; Parry-Billings 
et al. 1992; Walsh et al. 1998). It has been proposed that 
permeability of the intestinal barrier increases following 
depletion of intestinal glutamine, whereas glutamine sup-
plementation can restore intestinal barrier homeostasis 
(Camilleri et al. 2012). To this end, it is noteworthy that 
7 days of glutamine supplementation at 0.9 g kg −1 of fat-
free mass (FFM) per day reduces intestinal permeability in 
humans exercising in the heat. Subsequently, it was shown 
that a single acute dose of glutamine (0.9 g kg −1 FFM) 2 h 
before exercise was sufficient to attenuate the increase in 
intestinal permeability caused by a 60-min run in the heat 
(Zuhl et al. 2015), although GI symptoms were not reported. 
However, an acute dose of glutamine at 0.9 g kg −1 of FFM 
still equates to 54 g for a 70-kg individual with 15% body 
fat, a dose that might not be practical for many athletes. To 
date, no study has examined if a lower dose of glutamine 
administered acutely can attenuate the increase in intestinal 
permeability observed following endurance exercise or if 
the effect is dose dependent. While a connection has been 
made between increases in endotoxaemia and GI symptoms 
in athletes during and following prolonged strenuous exer-
cise (Altenhoefer et al. 2004; Brock-Utne et al. 1988; Jeu-
kendrup et al. 2000), markers of GI permeability and symp-
toms are not always connected. We have recently shown that 
there was no connection between subjective GI symptoms 
and markers of GI permeability following high-intensity 

intermittent running (Pugh et al. 2017). This has added to 
the discrepancy between field studies showing increases in 
GI permeability and subjective symptoms, and previous lab-
oratory studies showing increases in GI permeability but not 
symptoms (Lambert et al. 2008; Van Wijck et al. 2011; Zuhl 
et al. 2014b). Some previous studies have also not reported 
subjective GI symptoms at all (Marchbank et al. 2011; Zuhl 
et al. 2014b). Therefore, to better understand the connection 
between markers of gut permeability, and symptoms of GI 
distress, it is crucial that studies assess symptoms rather than 
focus purely on biological markers.

If a worthwhile attenuation of intestinal permeability 
could be achieved with a smaller dose of glutamine than 
that used previously, it could be a practical acute interven-
tion for athletes. Therefore, the aim of the current study was 
to test the dose–response relationship of acute glutamine 
supplementation upon markers of intestinal permeability and 
GI symptomology in recreationally active male runners. We 
hypothesised that acute glutamine ingestion would reduce 
markers of GI permeability and damage [assessed using 
intestinal-fatty acid binding protein (I-FABP)], in a dose-
dependent manner with the highest dose having the greatest 
effects. A secondary aim was to assess whether this resulted 
in lower subjective GI symptoms.

Methods

Participants

Ten recreationally active healthy males [age 24 ± 4 years, 
body mass 74.7 ± 8.5 kg, V̇O

2max
 52.3 ± 5.4 mL kg−1 min−1] 

volunteered to participate in the study after providing 
informed written consent. None were taking medication 
(e.g. NSAIDs, antidepressants, or diuretics) or nutritional 
supplements and no participant reported any history of GI-
related medical issues (e.g. IBS or abdominal surgery). The 
study was approved by the Ethics Committee of Liverpool 
John Moores University.

Overview of experimental design

In a 4-arm, double-blind, placebo-controlled, randomised 
crossover design, after baseline measures and familiarisa-
tion, each participant completed a total of four exercise trials 
consisting of a placebo trial and three glutamine trials at 
doses of 0.25, 0.5 and 0.9 g kg −1 of fat-free mass (FFM). 
Each exercise trial consisted of a 60-min treadmill run at 
70% of V̇O

2max
 in an environmental chamber set at 30 °C 

and a humidity range of 40–45% (relative humidity). Trials 
were separated by a 1-week washout period. A randomised 
design was used in an effort to separate the effects of glu-
tamine supplementation from any changes that may have 
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occurred during the testing period such as an increase in 
exercise capacity or acclimation to heat stress. A summary 
of the experimental design can be seen in Fig. 1.

Baseline testing

During the first visit, participants were weighed and skinfold 
measurements were taken by an ISAK (International Society 
for the Advancement of Kinanthropometry) Level 1 certified 
anthropometrist to estimate per cent body fat and calculate 
FFM. Skinfold measurements were taken from four sites 
and body fat percentage was calculated using the Jackson 
and Pollock equation for men (Jackson and Pollock 1985).

Maximal oxygen consumption (V̇O
2max

) was assessed 
using an incremental exercise test to volitional exhaustion 
on a motorized treadmill (HP Cosmos, Germany). Briefly, 
participants started running at 10 km h−1, and thereafter 
running speed was increased by 2 km h−1 every 2 min. On 
completion of 2 min at 16 km h−1 the incline of the treadmill 
was increased by 1% every 2 min until volitional exhaustion 
was reached. V̇O

2max
 was validated using the following end-

point criteria: (1) RER > 1.1, (2) heart rate within 10 beats 
min−1 of age predicted maximum and (3) O2 consumption 
no longer increasing despite increased workload (Howley 
et al. 1995). Based on the results of the incremental test the 
running speed required to elicit 70% V̇O

2max
 was estimated 

for each participant using a linear regression equation.
Participants were asked to attend a session at the labora-

tory a week later to familiarise themselves with the exercise 
protocol. Participants began running in an environmen-
tal chamber set at 30 °C at the velocity predicted as 70% 
of V̇O

2max
 during baseline testing. Treadmill speed was 

adjusted as necessary to maintain this intensity throughout 
1 h of running. In all exercise trials that followed partici-
pants ran at the pace recorded during their familiarisation 
session.

Glutamine supplementation and dietary control

Prior to each trial participants were provided with an opaque 
bottle containing the placebo or a dose of glutamine. Glu-
tamine was provided from a company registered with 
‘Informed Sport’ to minimise the risk of supplement con-
tamination. Participants ingested glutamine mixed with 
400 mL of water and 100 mL of sugar-free lemon cordial or 
a placebo which was 400 mL of water and 100 mL of sugar-
free lemon drink only. The drink was consumed 2 h prior 
to commencing exercise, and participants were informed to 
consume all of the drink within 5–10 min. Participants were 
asked to record their food intake the day before the first exer-
cise trial and were instructed to repeat this intake the day 
before each subsequent visit.

Exercise protocol

Participants reported to the laboratory at the same time of 
day for each trial (07:30–09:00) following an overnight fast. 
Baseline blood samples were taken before exercise com-
menced. Each exercise trial consisted of running for 60 min 
in an environmental chamber set at 30 °C and a humidity 
range of 40–45% (relative humidity). Oxygen consumption 
was sampled every 5 min throughout the trial using an auto-
mated gas analysis system (Oxycon Pro, Jaeger, Wuerzberg, 
Germany). Heart rate was recorded every 5 min with the 
Polar FT1 HRM (Polar Electro, Kempele, Finland). Fifteen 
minutes into the exercise trial, the sugar probe drink (see 
below) was consumed for measurement of small intestinal 
permeability. Participants were permitted to consume water 
ad libitum during and after each trial; drinking patterns were 
not recorded. Further venous blood samples were taken 
immediately post- and 45 min post-exercise. Core tempera-
ture was monitored throughout the trial using a rectal ther-
mistor (Grant Squirrel SQ800, Cambridgeshire, UK). Trials 

Fig. 1   Schematic overview of the experimental protocol. Participants repeated the same protocol on four occasions separated by 1 week. In each 
trial participants ran at the pace set during the familiarisation session
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were to be terminated early if participants reached a core 
temperature of 39.6 °C, but this did not occur at any time 
during the study. Intestinal permeability and symptomology 
were also measured during a resting condition, performed 
under the same environmental conditions as exercise trials. 
Timings for administration of the sugar probe and blood 
sampling mirrored those during the exercise trials.

Blood analysis

Blood samples were collected into vacutainers contain-
ing EDTA, lithium heparin or serum separation tubes and 
stored on ice or at room temperature until centrifugation 
at 3000 rpm for 15 min at 4 °C. Following centrifugation, 
aliquots of plasma or serum were stored at − 80 °C for 
later analysis. Samples were analysed for plasma glutamine 
and I-FABP and serum IL-6. Intestinal permeability was 
assessed using a lactulose/rhamnose dual sugar absorption 
test (L:R).

Assessment of plasma glutamine

Plasma glutamine was assessed using a quantitative colori-
metric enzyme assay kit (EGLN-100, BioAssay Systems, 
Hayward, CA) sensitive to 0.023 mM glutamine according to 
manufacturer’s instructions. Samples were diluted 1:2 with 
distilled water. Glutamate was measured in each sample and 
subtracted from the glutamine absorbance of the respective 
sample. The coefficient of variation using this assay was 
6.7%.

Assessment of intestinal permeability

Intestinal permeability was assessed by analysing serum 
samples using a previously published protocol (Fleming 
et al. 1996), with the modification of using rhamnose instead 
of mannitol as the monosaccharide probe. Briefly, 15 min 
after exercise, a 50-mL sugar probe solution (5 g lactulose, 
2 g rhamnose) was consumed and the ratio of the sugars was 
measured from serum samples 60 min post exercise. The 
respective sugars were separated using high-pressure liquid 
chromatography (HPLC) and quantitated by use of a pulsed 
electrochemical detector using a gold working electrode 
and silver–silver chloride reference electrode. The detection 
potential was − 0.01 V (0–0.5 s), the oxidation potential was 
+ 0.75 V (0.51–0.64 s), the reduction potential was − 0.75 V 
(0.65–0.75 s) and the integration period was 0.05 to 0.5 s. 
Retention times were 2.7 min for rhamnose and 6.1 min for 
lactulose using 120 mmol/L NaOH as an isocratic eluant. 
The coefficient of variation for lactulose and rhamnose com-
bined was 11%.

Assessment of I‑FABP

I-FABP was determined by analysis of EDTA plasma sam-
ples using an ELISA kit (Hycult Biotechnology, Uden, the 
Netherlands) according to the manufacturer’s instructions. 
I-FABP concentrations were measured in samples taken pre- 
and immediately post-exercise. The intra-assay coefficient of 
variation was 8%.

Assessment of gastrointestinal symptoms

Global gastrointestinal symptoms were recorded every 5 min 
during each experimental protocol using a GI discomfort scale 
(adapted from Pfeiffer et al. 2009). Participants rated their 
symptoms on a 10-point scale, ranging from 0 (‘no problem 
at all’) to 9 (‘the worst it has ever been’), with a score > 4 being 
regarded as serious. Participants were asked to complete a 
more detailed questionnaire (adapted from Pfeiffer et al. 2012) 
post-exercise to assess any specific symptoms of GI discomfort 
encountered during the session, such as bloating, flatulence 
and urge to vomit. GI symptoms were scored on a 10-point 
scale (0 = no symptoms and 9 = very severe symptoms) with 
a score > 4 being regarded as serious. This questionnaire was 
completed again 24 hours later to assess GI symptoms follow-
ing the exercise trial.

Statistical analysis

Descriptive statistics (mean ± SD) were calculated for all 
variables. Magnitude-based inferences were then employed 
to determine the likelihood of meaningful changes with glu-
tamine supplementation compared to placebo. For intestinal 
permeability, I-FABP and physiological measures, the mean 
effect and 90% confidence limits (hereafter depicted as effect; 
± 90% confidence limit) were calculated. Non-clinical (mecha-
nistic) inferences were made based on a smallest worthwhile 
change of 0.2 x the SD of the placebo trial with standardised 
changes (ES) of 0.6 and 1.2 being considered moderate and 
large, respectively (Hopkins 2009). Threshold probabilities 
for a meaningful effect based on the 90% confidence lim-
its were as follows: <1%, almost certainly not; 1–5%, very 
unlikely; 5–25%, unlikely; 25–75%, possibly; 75-97.5%, likely; 
97.5–99% very likely; >99%, almost certainly. Effects with 
> 5% confidence limits across a likely small positive or nega-
tive change were classified as unclear (Hopkins 2006). All 
analyses were completed using a predesigned spreadsheet 
(Hopkins 2006).
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Results

Glutamine supplementation did not affect physiological 
or thermoregulatory responses to exercise

Participants ran at 10.1 ± 0.9 km h−1 at an average inten-
sity of 72.8% ± 4.7 V̇O

2max
 across all trials. There were no 

clear differences in heart rate, thermal comfort, core tem-
perature or subjective gastrointestinal comfort between 
doses (Table 1).

Glutamine supplementation elevates plasma glutamine 
in a dose dependent manner

The effects of glutamine supplementation on plasma glu-
tamine concentration are presented in Fig. 2. There was a 
very likely large increase pre-exercise with the 0.9 g kg− 1 
dose compared with placebo (ES = 4.2; ± 2.7). Doses 
of 0.25 and 0.5 g kg− 1 glutamine resulted in moderate 
(ES = 1.1; ± 1.8) and large (ES = 1.5; ± 0.8) increases, 
although these were unclear. Mean plasma concentra-
tions were lower post-exercise in all supplement trials, 
although all changes were unclear compared to placebo.

Glutamine attenuates GI permeability 
in a dose‑dependent manner

There was a large increase in the L:R ratio following 
exercise in all trials when compared to rest. However, 
when compared to the placebo trial, the post-exercise 
L:R ratio was lower following glutamine supplementa-
tion with 0.25 g kg−1 (moderate ES = 0.6; ± 0.5), 0.5 
g kg−1 (small ES = 0.5; ± 0.5) and 0.9 g kg−1 (moderate 
ES = 0.9; ± 0.6) (Fig. 3).

Larger doses of glutamine have a small modulating 
effect on I‑FABP

There were possible or likely small reductions in I-FABP 
before exercise in supplement trials when compared to pla-
cebo (Fig. 4). Post-exercise, I-FABP was likely lower fol-
lowing glutamine supplementation with 0.5 g kg− 1 (small 
ES = 0.46; ± 0.54) and 0.9 g kg− 1 (small ES = 0.44; ± 0.42), 
but the change was unclear with 0.25 g kg− 1 (ES = 0.02; 
± 0.38) compared to placebo.

Gastrointestinal symptoms were low and unaffected 
by glutamine supplementation

Global GI symptoms were low in all exercising conditions 
(rated < 4) with no effect of glutamine supplementation at 
any given dose. Specific symptoms regarded as serious (i.e. 
rated > 4) represented 2–4% of symptoms reported after 
45 mins and 3–4% after 24 h and included flatulence and 

Table 1   Physiological 
responses to exercise by dose of 
glutamine

Data are mean and change in mean: ± 90% CL vs placebo
Inferences based on a smallest worthwhile change 0.20 of the between-subjects SD in placebo. Inferences 
were unclear vs placebo for all measures at all supplement dosages

Placebo 0.25 g kg−1 0.5 g kg−1 0.9 g kg− 1

Mean HR (%max) 82.5 83.2 84.8 83.3
– 0.7; ± 1.6 2.3; ± 4.0 0.8; ± 2.8

Thermal comfort (AU) 7.6 7.8 7.5 7.8
– 0.2; ± 0.5 − 0.1; ± 0.5 0.2; ± 0.4

Core temperature (˚C) 38.46 38.53 38.61 38.42
– 0.07; ± 0.3 0.15; ± 0.3 − 0.04; ± 0.3

Gastrointestinal comfort (AU) 1.1 1.1 0.9 1.4
– 0.0; ± 0.5 − 0.2; ± 0.7 0.5; ± 0.5

Fig. 2   Plasma glutamine concentrations at Inference refers to mean-
ingful change relative to Placebo trial
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the urge to defecate. All other symptoms were rated as less 
than 4 (Tables 2, 3).

Discussion

The aim of the present study was to assess the effects of 
various doses of acute glutamine supplementation on 
markers of GI permeability and damage prior to and fol-
lowing a bout of endurance exercise in the heat. While 
it has been previously shown that a large, acute dose of 
glutamine (0.9 g kg−1 FFM) is able to attenuate exercise-
induced increases in intestinal permeability (Zuhl et al. 
2015), we report for the first time that lower doses (as low 

as 0.25 g kg−1) ameliorates this effect in what appears 
a dose–response manner. In addition, we show that glu-
tamine of at least 0.5 g kg−1 can also attenuate exercise-
induced increases in I-FABP. Nonetheless, subjective 
symptoms of gastrointestinal symptoms immediately and 
24 h after exercise in this sample were low, and glutamine 
had no modulatory effect. Taken together, our data suggest 
that acute glutamine supplementation (even at a low dose 
of 0.25 g kg−1) can reduce GI permeability and damage 
post exercise; however, its use to reduce mild GI symp-
toms that are typically associated with endurance exercise 
in the heat could not be elucidated in the present study. 
Athletes competing in the heat may, therefore, benefit from 
acute glutamine supplementation prior to exercise in order 
to maintain gastrointestinal integrity.

Fig. 3   Plasma 
lactulose:rhamnose ratio at 
rest and following exercise 
with different acute doses of 
glutamine supplementation. 
*Large increase relative to rest. 
Inference refers to meaningful 
change relative to Placebo trial

Fig. 4   I-FABP concentrations before and pre (clear bars) and post 
(solid bars) exercise. Inference refers to meaningful change relative to 
matched time point during Placebo trial

Table 2   GI symptoms post-exercise, rated 0–9

Data are median and range appearing in parenthesis

Placebo 0.25 g kg−1 0.5 g kg−1 0.9 g kg−1

Side stitch 0 (0–0) 0 (0–3) 0 (0–5) 0 (0–1)
Bloating 0 (0–2) 0 (0–2) 0 (0–1) 0 (0–2)
Urge to defecate 1 (0–5) 1.5 (0–5) 0 (0–3) 0.5 (0–4)
Diarrhoea 0 (0–5) 0 (0–5) 0 (0–0) 0 (0–1)
Flatulence 0.5 (0–2) 0 (0–1) 0 (0–2) 0.5 (0–6)
Stomach cramps 0 (0–0) 0 (0–2) 0 (0–1) 0 (0–2)
Stomach upsets 0 (0–1) 0 (0–1) 0 (0–3) 0 (0–2)
Intestinal cramps 0 (0–0) 0 (0–1) 0 (0–2) 0 (0–2)
Urge to burp 1 (0–5) 0.5 (0–3) 1 (0–2) 0 (0–2)
Nausea 0 (0–0) 0 (0–1) 0 (0–5) 0 (0–6)
Urge to vomit 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–5)
Dizziness 0 (0–3) 0.5 (0–5) 0 (0–2) 0 (0–5)
Shivering 0 (0–0) 0 (0–2) 0 (0–0) 0 (0–0)
Heart burn 0 (0–2) 0 (0–0) 0 (0–0) 0 (0–0)
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Numerous exercise protocols are used to model the exer-
cise-induced increase of GI permeability compared to rest-
ing values (Marchbank et al. 2011; Pals et al. 1997; Van 
Wijck et al. 2011). Running for 60 min has led to increases 
in GI permeability 1.4–1.7 times that of resting values (Lam-
bert et al. 2008). This is exacerbated to values of 3 times 
resting figures when this protocol is completed in the heat 
(Zuhl et al. 2015), which is in agreement to values found in 
the current study. Glutamine is a major substrate for pro-
liferation and differentiation of intestinal epithelial cells 
(Newsholme et al. 2003) and a significant body of research 
exists showing that glutamine supplementation is able to 
attenuate increases in stress-induced GI permeability (Rao 
and Samak 2012). We have shown that all exercise trials 
resulted in large increases in GI permeability, relative to 
rest. Furthermore, relative to placebo, consumption of sup-
plemental glutamine 2 h before exercise resulted in attenu-
ated GI permeability in what appears to be a dose-dependent 
manner. The apparent dose–response effect shown was also 
observed in post exercise I-FABP. Previously 0.9 g kg−1 of 
glutamine administered for 7 days and as a single, acute dose 
2 h before exercise has been found to attenuate increases in 
GI permeability by around 33% (Zuhl et al. 2014b, 2015). 
We show a similar (40%) attenuation with this same dose 
and also add novel data showing that smaller doses, as low 
as 0.25 g kg−1, can also modulate this disruption, although 
the magnitude of effect is reduced, with approximately 25% 
attenuation.

While we have shown that acute glutamine supplemen-
tation can attenuate exercise-induced GI permeability, the 
mechanism cannot be elucidated from the present data. Up 
to 63% of the variance in intestinal permeability following 
running exercise has been attributed to changes in core 

temperature (Pires et al. 2016). In the current study, there 
was no difference in physiological response, including 
peak core temperature and thermal comfort between condi-
tions, suggesting an alternate mechanism One mechanism 
proposed is through the activation of heat shock protein 
70 (HSP70), heat shock protein-1 (HSP-1) and heat shock 
protein 72 (Wischmeyer 2002; Zuhl et al. 2014b, 2015). It 
has also been shown, in an animal model, that glutamine 
administration increases HSP 72 expression in a dose-
dependent manner and may explain the dose–response 
effect on GI permeability here.

Although GI permeability and I-FABP increased during 
all exercise trials, ratings of GI discomfort, either during 
or in the following 24 h after exercise, were low to mild 
(all median values < 4). The low scores for GI discomfort 
may be because the cohort consisted of healthy males, who 
were well hydrated and had no history of GI disease. This 
is consistent with much of the recent laboratory-based 
research into single exercise sessions and markers of GI 
permeability and damage. Many of these have reported 
measures of increased L:R or I-FABP, but reported either 
low or mild scores of GI discomfort during acute exercise 
bouts (Lambert et al. 2008; Van Wijck et al. 2011) or have 
not reported GI symptoms at all (Marchbank et al. 2011; 
Zuhl et al. 2014b). Even during, and following, 60 min of 
running in the heat, 30 min of which was a distance time 
trial, GI symptoms were rated as “very mild” to “notice-
able” (Morrison et al. 2014). This apparent discrepancy in 
symptom expression between field and laboratory studies 
may be due to several factors. Exercise modalities used 
in laboratory studies have often been shorter in duration 
and lower in relative intensity than those typically seen 
in competitive endurance races. Competitive events may 
also cause increases in mental stress not seen in labora-
tory studies which could exacerbate GI symptoms due to 
further decreases in splanchnic blood flow (Murray 2006), 
direct changes to intestinal bacterial composition (Palma 
et al. 2014) or effects on GI transit time via the central 
nervous system (Brouns and Beckers 1993). There may 
also be specific nutritional strategies employed during 
competition that lead to GI symptoms, that are not used 
during the training cycle, such as carbohydrate loading 
and/or carbohydrate ingestion during exercise (de Oliveira 
and Burini 2011). Further investigations should investi-
gate whether there are unique aetiologies or not relating 
to different exercise modalities (i.e. long duration, steady 
state vs shorter, high intensity) and between training and 
competition. Finally, it may also be that the lack of rela-
tionship between symptoms and markers of permeability 
are related to differences between the size of the molecules 
used to asses permeability (typically < 0.5 kDa) and those 
antigens and macromolecules which may cause symptoms 
(typically > 10 kDa) (Menard et al. 2010).

Table 3   GI symptoms 24-h post-exercise rated 0–9

Data are median and range appearing in parenthesis

Placebo 0.25 g kg−1 0.5 g kg−1 0.9 g kg−1

Side stitch 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
Bloating 0 (0–3) 0 (0–2) 0 (0–1) 0 (0–1)
Urge to defecate 1 (0–3) 2 (0–5) 2 (0–3) 2 (0–5)
Diarrhoea 0.5 (0–2) 0 (0–1) 0 (0–1) 0 (0–1)
Flatulence 2.5 (0–8) 1.5 (0–4) 1 (0–5) 1 (0–6)
Stomach cramps 0 (0–2) 0 (0–2) 0 (0–2) 0 (0–0)
Stomach upsets 0 (0–5) 0 (0–4) 0 (0–0) 0 (0–0)
Intestinal cramps 0 (0–4) 0 (0–1) 0 (0–0) 0 (0–0)
Urge to burp 2 (0–5) 0 (0–3) 1 (0–5) 0 (0–4)
Nausea 0 (0–0) 0 (0–7) 0 (0–0) 0 (0–2)
Urge to vomit 0 (0–0) 0 (0–7) 0 (0–0) 0 (0–0)
Dizziness 0 (0–5) 0 (0–4) 0 (0–0) 0 (0–0)
Shivering 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)
Heart burn 0 (0–0) 0 (0–1) 0 (0–0) 0 (0–0)
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In summary, we have confirmed that 0.9 g kg−1 of acute 
glutamine supplementation not only attenuates GI perme-
ability relative to placebo, but also provides novel data 
highlighting doses as low as 0.25 g kg−1 could have some 
benefit. In order to better inform practical application, future 
studies should compare different doses prior to exercise of 
higher intensities or longer duration, particularly as these are 
more often associated with subjective symptoms. It is also 
important that future studies continue to assess subjective 
symptoms of GI discomfort during, and following endurance 
exercise alongside markers of GI permeability and damage, 
to better understand potential aetiologies. Therefore, while 
we cannot elucidate any effect on GI symptoms, athletes 
competing in the heat may still benefit from acute glutamine 
supplementation prior to exercise in order to maintain gas-
trointestinal integrity.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.
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