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ABSTRACT 

Primary headache disorders are the most common complaints worldwide. The 

socioeconomic and personal impact of headache disorders is enormous, as it is the 

leading cause of workplace absence. Headache patients’ consultations are increasing 

as the population has increased in size, live longer and many people have multiple 

conditions, however, access to specialist services across the UK is currently 

inequitable because the numbers of trained consultant neurologists in the UK are 10 

times lower than other European countries. Additionally, more than two third of 

headache cases presented to primary care were labelled with unspecified headache. 

Therefore, an alternative pathway to diagnose and manage patients with primary 

headache could be crucial to reducing the need for specialist assessment and increase 

capacity within the current service model. Several recent studies have targeted this 

issue through the development of clinical decision support systems, which can help 

non-specialist doctors and general practitioners to diagnose patients with primary 

headache disorders in primary clinics. However, the majority of these studies were 

following a rule-based system style, in which the rules were summarised and 

expressed by a computer engineer. This style carries many downsides, and we will 

discuss them later on in this dissertation. 

In this study, we are adopting a completely different approach. The use of machine 

learning is recruited for the classification of primary headache disorders, for which a 

dataset of 832 records of patients with primary headaches was considered, 

originating from three medical centres located in Turkey. Three main types of 

primary headaches were derived from the data set including Tension Type Headache 

in both episodic and chronic forms, Migraine with and without Aura, followed by 

Trigeminal Autonomic Cephalalgia that further subdivided into Cluster headache, 

paroxysmal hemicrania and short-lasting unilateral neuralgiform headache attacks 

with conjunctival injection and tearing. Six popular machine-learning based 

classifiers, including linear and non-linear ensemble learning, in addition to one 

regression based procedure, have been  evaluated for the classification of primary 

headaches within a supervised learning setting, achieving highest aggregate 

performance outcomes of AUC 0.923, sensitivity 0.897, and overall classification 

accuracy of 0.843. 
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This study also introduces the proposed HydroApp system, which is an M-health 

based personalised application for the follow-up of patients with long-term 

conditions such as chronic headache and hydrocephalus. We managed to develop this 

system with the supervision of headache specialists at Ashford hospital, London, and 

neurology experts at Walton Centre and Alder Hey hospital Liverpool. We have 

successfully investigated the acceptance of using such an M-health based system via 

an online questionnaire, where 86% of paediatric patients and 60% of adult patients 

were interested in using HydroApp system to manage their conditions. Features and 

functions offered by HydroApp system such as recording headache score, recording 

of general health and well-being as well as alerting the treating team, have been 

perceived as very or extremely important aspects from patients’ point of view. 

The study concludes that the advances in intelligent systems and M-health 

applications represent a promising atmosphere through which to identify alternative 

solutions, which in turn increases the capacity in the current service model and 

improves diagnostic capability in the primary headache domain and beyond. 
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CHAPTER 1: INTRODUCTION 

1.1. Overview 

Headache is the commonest neurological symptom presenting to general 

practitioners (GPs) and neurologists. It can be a symptom of many different diseases 

and disorders, with a variety of forms, frequency and severity from mild that 

disappear easily, to severe and repeated disabling headache that can be painful and 

debilitating in some individuals [1, 2]. Since 1988, The International Headache 

Society (IHS) has established a standardised terminology and consistent operational 

diagnostic criteria for a wide range of headaches under the term of International 

Classification of Headache Disorders [3]. These criteria are derived according to an 

international consensus of headache experts and have been accepted as a gold 

standard for headache diagnosis. The current revision of IHS criteria, i.e. ICHD-3 

beta was published in 2013. 

Headaches, according to IHS criteria, are broadly classified into primary and 

secondary. Primary headaches, such as migraine (MIGR), tension-type headache 

(TTH) and trigeminal autonomic cephalalgias (TACs), are the most common in the 

community and they are not related to any underlying medical condition, where the 

headache itself is the disorder [3-5]. While secondary headache disorders occur 

secondarily to another medical condition, some of which may be life threatening and 

therefore require quick and accurate diagnosis. Secondary headache is extremely rare 

and represents less than 1% of the population who experience headaches [6, 7]. 

In the UK, the lifetime prevalence of headaches is 90% of the general population [4], 

and the annual headache consultation is 4.4% of all primary care consultations [6]. 

The personal, social and economic burden of headache disorders is enormous. 

Migraine is classed by the World Health Organisation (WHO) as one of the 20 

leading causes of disability amongst adults [8]. There are an estimated 6.7 million 

people living with migraine in England [9], and around 83,000 people miss work or 

school every day, because of headache, which is equivalent to 20 million days of lost 

productivity per year [10], with a cost to the UK economy that may exceed 1.5 

billion pound a year [11]. 
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1.2. Problem statement 

Patients with headaches usually do not seek medical help from their GPs until the 

headache really affects their quality of life, and when they do seek medical help, the 

diagnosis is usually incorrect and the condition improperly managed. This was 

clearly shown by a UK study of the primary care database, which revealed that 70% 

of headaches were not assigned a diagnostic label [6]. Another similar study 

conducted in the USA revealed that 69% of headache sufferers were labelled with 

unspecified headache in the primary care [12]. The findings of these two studies 

made clear that GPs encounter difficulty in the diagnosis of headaches, which in turn 

may increase the pressure on the specialist neurology clinics. 

Headache referrals currently account for around a third of outpatient referrals to 

specialist neurology clinics across the UK [7, 13]. However, access to specialist 

services across the country is currently inequitable. This is due to the fact that the 

numbers of trained consultant neurologists in the UK are 10 times lower than other 

European countries [11], and this problem is exacerbated further by the inequitable 

distribution of specialist headache clinics between regions in England [14].  

Patients with chronic headache are usually asked to fill in headache diaries or 

outcome measures such as Headache Impact Test (HIT-6) and Migraine Disability 

Assessment Test (MIDAS) on a regular basis; specialists use these forms to measure 

the impact of headache on a patient’s life. However, within publicly funded health 

care systems such as the UK’s National Health Service (NHS), long term monitoring 

in neurology clinics or GPs appears not to be possible for all patients with chronic 

headache due to the continued decline in funding over the past decade. This was 

shown by a study conducted in 2016, which revealed that more patients in Britain 

will be unable to obtain an appointment with their GPs due to the decline in GPs 

funding by 17% of the NHS budget [15]. 

Accordingly, an alternative pathway to diagnose and manage patients with headache 

is necessary to improve patient care as well as to conquer the challenges facing the 

NHS. This is what Hedley Emsley, a consultant neurologist at the Department of 

Neurology, Royal Preston Hospital, has confirmed in his online article for the Health 

service journal (HSJ) [13]. Therefore, this study proposes an intelligent solution to 

overcome these difficulties via two main points. First, the use of Machine Learning 
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(ML) to improve the diagnosis of primary headaches, in which a set of ML classifiers 

will be used to build several diagnostic or predictive models from a real-world 

dataset of patients with primary headaches. The second point is adopting mobile 

health (M-health) technology to provide an effective platform for long-term patient 

follow-up. This study aims to contribute to this gap in knowledge. 

ML classifiers can learn and gain knowledge from previous experiences and/or 

through identifying patterns in medical data. They are able to learn the important 

features of a given dataset, i.e. primary headaches that are diagnosed by specialists, 

in order to make predictions about other data, i.e. new headache cases, which were 

not a part of the original training set. The ML based diagnostic model will act as a 

decision support to assist non-specialist doctors or nurses in GPs’ surgeries to make 

accurate diagnosis with respect to patients with primary headaches. This in turn 

could reduce the need for specialist assessment and thus referrals to neurology 

clinics.  

Likewise, M-health application represents an intelligent solution, and holds potential 

to allow specialists to monitor a larger number of patients with chronic headache 

than would be possible within the current service model. It could replace traditional 

paper based headache diaries and outcome measures and provide several advantages 

including improved monitoring of historical responses to therapies, improved 

recording of side effects and it can be adapted to improve communication between 

patients and clinicians. A remote follow-up using M-health technology can promote 

the quality of care given to this category of patients as well as engaging them in their 

condition management. Therefore, our proposed pathway is a great step toward 

optimal patient care and proper clinical management. 

1.3. Research question 

Is it possible to use machine-learning methods supported by M-health technology for 

diagnosing and follow-up of patients with headache? 

1.4. Research aims and objectives 

The main aim of this study is to provide a robust and effective diagnostic support 

model to improve the diagnosis or classification of primary headache disorders using 

ML methods, and initialising a user-friendly central control platform that would 
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support and facilitate the headache specialist's task and increase their productivity 

with respect to long-term follow-up and clinical management of patients with 

headache. We will work towards these aims by addressing the following objectives 

and as shown in the research map (Figure 1-1). 

1. Review and comprehend primary headache disorders in accordance with the 

latest clinical guidelines, in addition to initialising an overall comparison 

among their types. 

2. Review and evaluate various research studies and intelligent decision support 

systems (DSS) that aimed at improving the classification or the diagnosis of 

primary headache disorders. These studies or systems are going to be 

assessed and compared against each other in order to identify their points of 

strength and weakness and examine their intelligent module as well as the 

overall efficiency and outcomes. 

3. Prepare for a data acquisition procedure. This is probably the most 

challenging part of the study, which requires establishing links or getting in 

contact with dozens of research groups, specialised headache centres and 

hospitals as well as headache associations such as the British Association for 

the Study of Headache. 

4. Design the data quality framework to the highest possible standard. This 

framework outlines and describes almost all of the essential measures for data 

processing and analysis, making use of the most advanced and sophisticated 

computational and statistical approaches. This step helps to ensure that the 

data is clean enough, legitimate and the ML classifiers can use the most 

relevant features. 

5. Develop and evaluate several diagnostic or predictive models using a number 

of ML classifiers trained with data records of patients with primary 

headaches. These intelligent predictive models are going to be assessed using 

different performance matrices as a way to demonstrate their discriminatory 

power. An overall comparison can bring about the best performing predictive 

model. 

6. Design and develop an M-health based application along with a central 

control system prototype to enable an effective and affordable means for an 

ongoing follow-up of patients with chronic headaches. This long-term 
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monitoring system permits information to flow easily between patients and 

their care providers. This personalised system enables patients to engage in 

their condition management. 
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1.5. Research scope 

This study focuses on creating an ML-based diagnostic model for classifying the 

most common primary headache disorders, such as migraine, tension-type headache 

and trigeminal autonomic cephalalgias, according to the following points: 

1. Primary headaches are the main cause of headaches in the community, where 

the headache itself is the disease [4, 7]. 

2. Brain imaging is not always necessary in the diagnosis of primary headaches, 

considering the fact that the disease has no impact that leads to macroscopic 

change in general terms [16].  

3. Primary headache disorders are diagnosed by defining the clinical features of 

episodes, pain patterns and associated sign and symptoms and then applying 

them to the established definitions, or clinical rules and guidelines for 

diagnosis, which are formulated by IHS and accepted worldwide [17]. 

Moreover, this study also focuses on providing a simple yet powerful method to 

enable a long-term monitoring and follow-up of patients with chronic headache via 

adopting the M-health application. We will design and develop this application to 

help in the follow-up of headaches whether it was a disease or symptom of another 

disease such as hydrocephalus, i.e. primary and secondary headaches. 

1.6. Research contributions 

This study holds two novel contributions. The first contribution is to improve the 

diagnosis of primary headache disorders in the primary care clinics by applying 

advanced intelligent methods. Developing such an intelligent diagnostic model will 

have a significant impact on NHS services as it will decrease the need for specialist 

assessment, and can be used to train non-specialist and junior doctors to improve 

their decision-making procedure. The development of such novel intelligent 

diagnostic model will pass through many stages such as a proper configuration of 

clinical data including data cleansing, preparation and processing. In addition to 

investigating and evaluating a range of machine learning approaches to examine their 

capability, validity and accuracy of classification. 

The second novel contribution is to establish a personalised platform for long-term 

monitoring and follow-up of patients with chronic headaches at secondary clinics. 
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This platform will be developed using M-health technology and from a headache 

specialist’s perspective. The new proposed platform provides an on-the-go analysis 

of a patient’s data, which improves a doctor’s productivity and decision making as 

well. 

A clinical team from NHS will be involved in the design and development of this 

novel follow-up system. This advanced technology will be used to replace the 

traditional way of follow-up and data collection, as it allow patients to manage their 

condition and will ensure that patient-reported outcomes are recorded efficiently. It 

will be assumed that the standard use of such smartphone based PRO (patient 

reported outcome) will be able to reduce unnecessary visits to neuroscience centres, 

whilst enabling and improving communication between patient and health care 

provider and follow by creating appropriate clinical thresholds for alerting medical 

staff of changes in symptoms or of changes of behaviours and of symptoms 

automatically. 

1.7. Structure of the thesis 

This thesis is organised in seven chapters, each chapter addressing a different 

element of the study.  

Chapter 1 introduces the research problem along with the aims and objectives of this 

study. It also identifies the research scope and describes the structure of this thesis.  

Chapter 2 reviews the literature to investigate recent studies that target the diagnosis 

of primary headache disorders using different intelligent techniques. This chapter 

compares and evaluates these studies to explore their advantages and drawbacks.  

Chapter 3 is introductory to headache disorders. In this chapter, we review and 

discuss the main types of primary headaches according to the globally agreed criteria 

of IHS. Chapter 3 ends with an overall comparison of the various types of primary 

headaches.  

Chapter 4 presents the data acquisition procedure and the comprehensive data 

processing stages. In this chapter, we start by identifying outliers, addressing missing 

data using multiple imputations and eventually data normalisation approach.  
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Chapter 5 starts with a feature selection process, in which a majority vote of three 

different methods is considered to retain the most relevant features. Chapter 5 then 

analyses these features to define their discriminative power. Before starting training 

ML classifiers and creating predictive models, chapter 5 also investigates class 

distribution to improve the generalisation approach in the learning phase. Chapter 5 

ends with pooling the results and provides an overall comparison of the predictive 

models.  

Chapter 6 introduces the HydroApp system for self-management of patients with 

long-term conditions such as chronic headache or hydrocephalus. This chapter 

discusses the technical aspects of the HydroApp system along with the ability of 

using such a system for the benefit of the NHS. Finally, chapter 7 concludes this 

study, where we provide recommendations for future work. 
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CHAPTER 2: HEADACHE DISORDERS 

2.1. Introduction 

Headache, or cephalalgia in the medical term, is the sensation of pain in any region 

of the head. It can affect all age groups in both severe and chronic settings with 

numerous underlying causes and variety of forms, frequency and severity from mild 

that disappear easily to severe and repeated disabling headache that can be painful 

and debilitating in some individuals [1]. Headache can be a symptom of many 

different diseases and disorders that make the discrimination between potentially 

life-threatening and non-serious causes complicated, even to the health professionals 

[18]. It may be a sharp pain, boring ache or throbbing sensation, show up 

progressively or suddenly, and it may last less than 60 minutes or for many days. 

This chapter presents an overview of the main types of primary headache disorders 

along with their clinical features and the operational diagnostic criteria. An overall 

comparison of primary headache disorders according to the most up-to-date criteria 

of IHS and scientific studies is also presented in this chapter. 

2.2. Types of headaches 

Headache is the commonest neurological symptom presenting to GPs and 

neurologists [1, 18]. According to the Scottish Intercollegiate Guidelines Network 

(SIGN), lifetime prevalence of headache is 90% of the general UK population [4]. 

There are several types of headaches; in fact, according to WebMD [19], there are 

150 different types of headaches. These types can happen for many reasons, have a 

distinct or overlapping set of symptoms and require different kinds of treatment. 

Classifying the type of headache can be challenging, but allows optimal treatment for 

the patient [20]. A systematic approach to headache classification and diagnosis is 

therefore the first step to optimal patient care, proper clinical management, effective 

investigation and more focused research [21, 22]. 

In 2013, the International Headache Society (IHS) released the beta edition of the 

third International Classification of Headache Disorders (ICHD) [3]. ICHD includes 

a standardised terminology and consistent operational diagnostic criteria for a wide 

range of headache disorders [23]. These criteria were drawn up based on an 

international consensus of headache experts and have been accepted worldwide as a 
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gold standard for headache diagnosis. The IHS uses straightforward diagnostic 

criteria, which are explicit, unambiguous, accurate and with as little scope for 

interpretation as possible. ICHD-3 beta was published to synchronise with the World 

Health Organization’s next revision of the International Classification of Diseases 

(ICD-11), which is due by 2018. The last version of international classification of 

headache disorders (ICHD-2) was incorporated into the previous International 

Classification of Diseases (ICD-10). 

 

Figure ‎2-1: Types of headache 

The ICHD-3 beta divides headache disorders into primary and secondary headaches, 

and these two broad categories are further subdivided into particular headache forms. 

Primary headache disorders include migraine, the trigeminal autonomic cephalalgias 

(TACs), and tension-type headache. TACs category includes cluster headache (CH), 

paroxysmal hemicrania (PH) and short-lasting unilateral neuralgiform headache 

attacks with conjunctival injection and tearing (SUNCT).  

Headache history can play an important role in the diagnosis of primary headache 

disorders, since there are no diagnostic tests that can be beneficial [4, 5, 24, 25]. 

Tracking a headache history requires time to elicit basic information, and not finding 

the time is probably the cause of the most misdiagnosis. A simple and helpful way to 

tack headache history is to request keeping of a diary over a couple of weeks when 

the patient first presents with headache [26]. A good headache history will enable the 

medical expert to understand a pattern, which consequently leads to the accurate 

diagnosis. Ravishankar in his work [5] has reviewed the art of history taking in 
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patients with headache across different settings. He mentioned that the routine 

history taking starts with a set of regular questions that will elicit fundamental 

information such as age of the patient, the acuity of onset, pain location and pattern 

of radiation, duration of headache, frequency and severity of attacks, nature of the 

pain and many other questions related to family history [5]. 

To exclude secondary causes of headache, particularly when patients are presenting 

with new onset headache or with sudden changes in the headache pattern, it is 

important to consider the “red flags” signs to decide whether the patient could be 

having a serious condition that requires further investigation. Red flags act as a 

decision threshold to help with identifying headache patients who would benefit from 

having a prompt brain imaging [25].  

Examples of red flags include; new onset or change in pattern of headache in patients 

who are aged less than 10 years or over 50 years, new onset of headache in patients 

with a history of cancer or HIV. Other example of red flags are when headache 

changes with postural changes, presence of fever, weight loss or abnormal blood 

tests, and many other signs [4, 5, 24, 25]. The table below summarises the 

differences between primary and secondary headaches in a very simple way. 

Table ‎2-1: The difference between the primary and secondary headache 

 Primary headache Secondary headache 

Prevalence More common Less common 

Age of patient Between 10 and 50 years of 

age. 

Younger than 10 years 

Older  than 50 years  

Onset More than 6 months  Sudden onset 

Pathological causes Problem with brain function  Problem with brain structure  

Diagnosis  Based on symptoms  

Usually normal examination  

normal imaging test  

No neurological sign  

Based on aetiology  

Abnormal examination  

Abnormal imaging test  

Neurological signs (i.e. abnormal gait, 

speech and confusion).  

Systemic sign (i.e. fever and weight 

loss). 

Prognosis Headache history with no 

change in pattern. 

Progressive pattern. 

Family history Positive history, particularly for 

migraine 

Negative family history  
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2.3. Primary headache disorders 

Primary headache disorders are the most common in the community, they are not 

related to any underlying medical condition and the headache itself is the disorder 

[4]. In contrast, secondary headache disorders occur secondarily to another medical 

condition; some of which may be life threatening and therefore require quick and 

accurate diagnosis. Secondary headache is extremely rare and represents less than 

1% of the population who experience headaches [26]. 

Brain imaging is important for optimal management of brain tumours as well as for 

other secondary headache disorders, in particular with the presence of red flag signs, 

nevertheless it is not really recommended for the clinical management of the 

majority of headache disorders. In contrast, brain imaging is usually ineffective for 

the diagnosis of most primary headaches such as migraine and tension-type headache 

[7]. The most common major categories of primary headache will be reviewed in 

sequence with the subsections below. This section presents an overview of the main 

types of primary headache disorders along with their clinical signs and symptoms 

according to the operational diagnostic criteria that were formulated by IHS [3], an 

overall comparison of these main types is also presented in this chapter. 

2.3.1.  Migraine 

Migraine is the commonest debilitating and disabling primary headache disorder. 

Including both Chronic Migraine (CM) and Episodic Migraine (EM) forms, it affects 

up to 18% of women, less frequently in men [20, 27]. According to ICHD-3, two 

major subgroups of migraine can be distinguished based on the presence or absence 

of aura, which is a focal neurological phenomenon that often precedes the headache 

[3, 4]. Migraine without aura can be defined as a recurrent headache with moderate 

or severe intensity that last 4-72 hours. Typical characteristics of migraine are 

unilateral location, pulsating quality, aggravation by routine physical activity and 

association with nausea and/or photophobia and phonophobia [3].  

Patients could meet the criteria of migraine without aura by different combinations of 

features; no single feature is essential to be present. Because two of four pain 

features are required, therefore a patient with unilateral, throbbing pain could be 

eligible to meet the criteria, so does a patient with moderate pain that is aggravated 

by physical activity. Likewise, only one of two possible related symptom 
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combinations is required. Patients with nausea or vomiting, but without photophobia 

or phonophobia meet the conditions, as do patients with photophobia and 

phonophobia but without nausea or vomiting [23]. According to the criteria of IHS, 

migraine without aura can be defined as a clinical syndrome recognised by headache 

with certain features and involved symptoms as shown in table 3-2. 

Table ‎2-2: Migraine without aura 

A At least 5 attacks fulfilling criteria B-D 

B Headache duration of 4 to 72 hours (For untreated or unsuccessfully treated).  

C Headache has at least two of the following characteristics  

1. Unilateral location. 

2. Pulsating quality (e.g., varying with the heartbeat). 

3. Moderate or severe pain intensity. 

4. Aggravation by or causing avoidance of routine physical activity (e.g., walking 

or climbing stairs)  

D During headache at least one of the following 

1. Nausea and/or vomiting. 

2. Photophobia and phonophobia. 

E Not attributed to another disorder 

Secondary causes of headache must be excluded (Normal exam, imaging, etc.)  

 

On the other hand, migraine with aura is primarily recognised by the focal 

neurological phenomena that often precede the headache, however, in some cases it 

comes with or occurs in the absence of the headache [3, 4, 23]. Migraine with aura 

affects approximately one third of migraine patients [26]. Migraine with typical aura 

is the commonest form of migraine with aura [23]. Typical aura includes visual 

and/or sensory and/or a speech symptom, however, visual aura is the most common 

form. Most aura symptoms are progressive and develop gradually from 5 to 60 

minutes prior to the headache (and usually around 20 minutes) [3, 26]. 

Visual aura usually includes transient hemianopia disturbance or a spreading 

scintillating scotoma [26]. Sometimes visual symptoms appear jointly or in sequence 

with other reversible focal neurological disturbances like unilateral paraesthesia of 

hand, arm or even face and/or dysphasia, all indications of functional cortical 

disturbance of one cerebral hemisphere [26]. Table 3.3 presents the diagnosis criteria 

of migraine with typical aura in accordance with the criteria of IHS. 
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Table ‎2-3: Migraine with typical aura 

A At least two attacks fulfilling criteria B-D 

B Aura consisting of at least one of the following, but no motor weakness: 

1. Fully reversible visual symptoms including positive features  

(e.g., flickering lights, spots, or lines)  

and/or negative feature (i.e., loss of vision) 

2. Fully reversible sensory symptoms including positive features  

(i.e., pins and needles) and/or negative features (i.e., numbness) 

3. Fully reversible dysphasic speech disturbance[3][3][3][3][3][3]. 

C  At least two of the following: 

1. Homonymous visual symptoms and/or unilateral sensory symptoms. 

2. At least one aura symptom develops gradually over 5 minutes and/or different 

aura symptoms occur in succession over 5 minutes. 

3. Each symptom lasts ≥ 5 and ≤ 60 minutes. 

D Headache that meets criteria B-D for migraine without aura (i.e. table 3-2) begins during 

the aura or follows the aura within 60 minutes. 

E Symptoms not attributed to another disorder. 

 

Several studies have shown that, patients with CM reveal a greater personal and 

societal burden, as well as impaired quality of life because they are considerably 

more disabled compared to patients with EM [27]. The study of American Migraine 

Prevalence and Prevention (AMPP) has used different tests to assess headache 

impact on the lives of patients with migraine; the Headache Impact Test (HIT-6) 

results have revealed that patients with CM were substantially more likely to 

experience severe headache impact (72.9%) in comparison with those with EM 

(42.3%). Moreover, the Migraine Disability Assessment (MIDAS) test outcomes 

have similarly showed that patients with CM had a greater disability, where a 

disability evaluation on the MIDAS test depends on the disability score, which is 

derived from decreased productivity such as missed days of work and school [28]. 

Migraine is classified as EM when headache attacks a patient for 14 or fewer days 

per month, otherwise CM is considered [3, 4]. 

2.3.2.  Tension-type headache 

Tension-type headache (TTH) is a very common form of primary headache [23], 

with a lifetime prevalence ranging from 30 to 78% in the general population as 

shown by several studies [3, 22]. According to the criteria of IHS, the diagnostic 
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criteria for tension-type headache have primarily been designed to differentiate 

between tension type headache and migraine [3]. In contrast to migraine, the main 

pain features of tension-type headache can be represented by the absence of 

migraine’s characteristic features. The pain is mild to moderate and not as severe as 

in migraine, non-throbbing quality, not aggravated by physical activity. No nausea or 

vomiting is associated, although no more than one of phonophobia or photophobia 

[4, 20, 23, 29]. The headache can be unilateral, but is commonly generalised. It can 

be described as pressure or tightness, such as a tight band around the head, and 

usually arises from or spreads into the neck [26].  

The underlying cause of TTH is doubtful, but the most likely contributing factor for 

episodes of infrequent TTH is probably the activation of hyperexcitable peripheral 

afferent neurons from head and neck muscle [30]. Although muscle tenderness and 

psychological tension is not evidently the cause of TTH, however they are usually 

associated with it and worsen the pain. Both migraine and TTH have chronic forms, 

and sometimes it can be difficult to differentiate between them, in particular when 

migraine or TTH is invoked by neck problems.  

Most of the migraine’s features explicitly differentiate this type of headache from 

TTH, and therefore help in a precise diagnosis. Similar to episodic TTH, migraine is 

a recurrent headache that can last from a couple of hours to a few days. However, 

while TTH is commonly generalised, migraine pain is mostly unilateral; and while 

migraine has a pulsating quality with moderate-to-severe pain, TTH presents as a 

mild-to-moderate in intensity and a dull ache or feeling of a tight band around the 

head [30, 31]. Furthermore, patients with TTH headache are significantly less 

disabled than patients with migraine or cluster headache [23]. A headache diary can 

help to distinguish between migraine, TTH, and other primary headaches [30]. 

The ICHD-3 beta differentiates three subtypes of TTH: infrequent episodic TTH, 

which occurs on less than one day a month (on average less than 12 days per year). 

Frequent episodic TTH, that occurs on less than 15 days a month for at least three 

months and a chronic TTH, which occurs for more than 15 days a month (on average 

more than 180 days per year) [3, 22, 29]. 
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Table ‎2-4: Tension-type headache 

A At least 10 episodes fulfilling criteria B–E 

(Infrequent episodic, headache < 1 day/month), 

(Frequent episodic, 1–14 days/month), or 

(Chronic ≥ 15 days/month). 

B Headache lasting from 30 min to 7 days 

C Headache has at least two of the following pain characteristics 

1. Pressing or tightening (non-pulsating) quality. 

2. Mild or moderate intensity (may inhibit but does not prohibit activities). 

3. Bilateral location. 

4. No aggravation by walking stairs or similar routine physical activity 

D Both of the following 

1. No nausea or vomiting (anorexia may occur). 

2. Photophobia and phonophobia are absent, or one but not the other may be present. 

E Not attributed to another disorder 

 

2.3.3.  Trigeminal Autonomic Cephalalgias (TACs) 

The trigeminal autonomic cephalalgias (TACs) are another group of primary 

headache disorders that were first proposed by Goadsby and Lipton and listed in 

ICHD-3 under their own section [32]. TACs are rare in comparison with other 

primary headache disorders such as migraine and TTH. They can be characterised by 

a relatively short duration of attacks with severe unilateral pain associated with 

autonomic dysfunction ipsilateral [4, 23, 33]. 

3.3.3.1 Cluster headache 

Cluster headache (CH) is the commonest form of the TACs. CH predominantly 

appears in young adulthood as early as the second decade of age; persist well in life, 

even in the seventh decade [34]. CH is extremely rare in children, men are also more 

than three times more likely to be diagnosed with this type of headache , and it is 

quite often in smokers [23, 35]. CH is usually severe, recurring, but generally briefer 

than migraine and non-throbbing [3]. The pain is excruciatingly severe, intense, 

strictly unilateral, and variously described as sharp, drilling and stabbing [23]. It is 

most often located behind one eye, and sometimes generalised to a larger area of the 

head [26]. In general, the pain takes 10-15 minutes to reach its peak intensity and 



17 
 

remains excruciatingly intense for an average of one hour, and usually ranges from 

15 to 180 minutes. Typically, it occurs at the same time every day, most often at 

night, 1-2 hours after sleep [23, 26]. Patients during the attack find it difficult to lie 

down, because it aggravates the pain, and can cause themselves harm through 

beating their head on the wall or floor until the pain reduces, usually after 30-60 

minutes [23, 26]. 

CH typically attacks for 6-12 weeks, occurring once every year or two years and 

usually at the same time each year [26]. CH is usually accompanied by swollen or 

drooping eyelid, teary or red eye, pupil contraction in one eye, stuffy or runny 

nostril, sweaty face and forehead and a sense of restlessness and agitation. The 

presence, at least, of one or two of the associated symptoms can secure the diagnosis 

[23, 26]. ICHD-3 has divided CH in two forms. The episodic CH attack cycle occurs 

in periods lasting from 7 days to 1 year, separated by remission periods of a month or 

longer each year. Approximately 85% of patients affected by cluster headache have 

the episodic form. The remaining 15% of cluster sufferers have the chronic form of 

CH. They will have a daily or near-daily headache for more than 1 year, and it will 

be without remissions or with remissions that last less than a month in a given year. 

Generally, 5% of the chronic form evolves from the episodic form (secondary 

chronic form), or it may start de novo as a primary chronic cluster in 10% [3, 23, 34]. 

Table 3-5 displays the diagnostic criteria for CH according to the guidelines of IHS. 

Table ‎2-5: Cluster headache 

A At least five attacks fulfilling criteria B–D 

B Severe or very severe unilateral orbital, supraorbital and/or temporal pain lasting 15–

180 minutes untreated. 

C Headache accompanied by at least one of the following symptoms or signs that have to 

be present on the side of the pain: 

1. Conjunctival injection, lachrymation, or both. 

2. Nasal congestion, rhinorrhoea, or both. 

3. Eyelid oedema. 

4. Forehead and facial sweating. 

5. Miosis, ptosis, or both. 

6. A sense of restlessness and agitation. 

D Frequency of attacks: from one every other day to eight per day for more than half of 

the period (or time if chronic). 

E Not attributed to another disorder. 
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 Episodic cluster headache: 

At least two cluster periods lasting 7 days to 1 year, separated by pain-free periods 

lasting ≥ 1 month. 

Chronic cluster headache: 

Attacks occur for > 1 year without remission or with remission for < 1 month. 

3.3.3.2 Paroxysmal hemicrania 

In 1974, Sjaastad and Dale first identified Paroxysmal hemicrania (PH) [36]. It is a 

rare primary headache disorder belonging to TACs [37]. PH is characterised by 

relatively short attacks of severe, strictly unilateral pain that is orbital, supraorbital, 

and temporal or in any combination of these sites. The attack duration is 2-30 

minutes and occurs several times a day [3], and the typical frequency is more than 

five attacks per day, however there are reports of 1 to 40 attacks per day [35]. The 

attacks are associated with at least one autonomic symptom on the same side of the 

pain such as ipsilateral conjunctival injection and tearing with nasal congestion and 

rhinorrhoea. The syndrome is also characterised by its absolute response to 

therapeutic doses of indomethacin [3, 35, 37]. Similar to CH, HIS guidelines 

describe a chronic and episodic form of PH. Episodic PH occurs in periods lasting 

from 7 days to 1 year, separated by pain-free periods lasting at least 1 month, while 

chronic PH occurs for more than 1 year and without pain-free period, or with pain-

free periods lasting less than 1 month [3]. 

3.3.3.3 SUNCT 

Short-lasting unilateral neuralgiform headache attacks with conjunctival injection 

and tearing (SUNCT) is among the rarest primary headache syndromes. ICHD-3 

identifies SUNCT as a short-lasting unilateral pain that is stabbing or throbbing. The 

pain is moderate to severe; however, it considered being less severe pain compared 

to other TACs such as CH and PH [3]. The paroxysms of pain is lasting for 1-600 

seconds, but commonly last between 5 and 250 seconds and occurring as single stab, 

series of stabs or in a saw-tooth pattern. Patients can have 20-300 attacks per day 

[35]. The frequency of attacks may be different between episodes. Some patient can 

have up to 30 episodes per hour, while it is more common to have 5-6 episodes per 

hour. The most prominent autonomic feature of SUNCT is conjunctival injection. 
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Migraine’s characteristic features such as nausea, photophobia and phonophobia 

might occur in SUNCT and other TACs for patients who had a personal or family 

history of migraine in a first-degree relative [38]. 

The most significant clinical indication pointing toward SUNCT and against 

trigeminal neuralgia is the prominent distribution of pain in the ophthalmic division 

of the trigeminal nerve. Moreover, the attacks could be triggered by various 

cutaneous stimuli such as touching the face, brushing teeth and shaving [3, 35]. 

Despite the distinctive clinical differences such as the frequency and duration of 

attacks, SUNCT shared many of its basic features with CH and PH such as episodic 

attacks, unilateral pain and autonomic symptoms. However, unlike PH, SUNCT is 

not affected by therapeutic doses of indomethacin, and in contrast to CH, there is no 

significant effect of using oxygen, sumatriptan or verapamil [35]. 

2.4. Presentation and comparison 

Primary headaches represent more than 90% of headache complaints presented to 

GPs. Although primary headaches are the most common, they are not serious or life 

threatening. There are no distinguishable causes for primary headaches, and the 

diagnosis is most often made by the history of headache as well as the associated 

signs and symptoms. Primary headaches may share certain features; pain is severe 

for migraine and CH as an example. However, CH varies from migraine primarily in 

its pattern of occurrence. CH is in briefer episodes over a period of weeks or months. 

Sometimes, a whole year can pass between two CHs. Migraine usually does not 

follow this type of pattern. Consequently, and after a comprehensive study of the 

literature of primary headaches, we decided to conclude this chapter with a thorough 

comparison of the major types of primary headache disorders. Although there are 

some intertwined features between them, such a comparison provides significant 

support in distinguishing a particular type of headache from another. 
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Table ‎2-6: Comparison of migraine, tension-type and TACs 

 Migraine Tension-type 

headache 

Cluster 

headache 

Paroxysmal 

hemicrania 

SUNCT 

Gender ratio 

(M:F) 

3:1 5:4 3:1 1:3 1:1.8 

Age of onset 15-55 years 25-30 years 28-30 years 20-40 years 20-50 years 

Prevalence 18% F - 6% 

M 

30 up to 78% 0.9% 0.02% Very rare 

Pain features      

Quality Throbbing Tightening Boring, 

sharp, 

burning 

Boring Stabbing 

Intensity Moderate to 

severe 

Mild to 

moderate 

Severe to 

very severe 

Severe Moderate to 

severe 

Location Unilateral Bilateral Unilateral Unilateral Unilateral 

Duration of 

attack 

4-72 hours 30 min to 7 

days 

15-180 min 2-30 min 1-600 sec 

Symptoms      

Nausea ++ -- ≈ ≈ ≈ 

Vomiting ++ -- ± ± ± 

Photophobia ++ ++ ≈ ≈ ≈ 

Phonophobia ++ ++ ≈ ≈ ≈ 

Aura symptoms ≈ -- -- -- -- 

Autonomic 

dysfunction 

-- -- ++ ++ ++ 

Triggers      

Physical activity ++ -- -- ± ± 

Laying down or 

sleep 

-- -- ++ -- -- 

Alcohol ++ ± ++ ≈ -- 

Cutaneous 

stimuli 

-- -- -- -- ++ 

Stress ± ++ -- ++ ± 

Relaxation after 

stress 

-- -- -- ++ -- 

Exercise ± -- -- ++ ≈ 

Neck movement -- -- -- ++ ++ 

Symbols: ++ positive; -- negative; ± probable; ≈ rare. 

The table has been drawn based on the following sources [3, 35, 38-40]. 
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2.5. Secondary headache disorders 

There is a definite underlying cause of secondary headaches that identifiable on 

examination or investigation. Secondary headaches are very rare in comparison to 

primary headaches; however, they are convoluted because they can lead to serious 

complications. Secondary headache is a symptom of another disease that can activate 

the pain-sensitive nerves of the head. Secondary headache has numerous causes 

including head and neck trauma or injury; intracranial vascular disorders such as 

ischaemic stroke, or non-vascular disorders such as high cerebrospinal fluid (CSF) 

pressure (i.e. hydrocephalus), infection and psychiatric disorder, and disorder of the 

cranium, neck, eyes, ears, nose, sinuses, teeth, mouth or other facial or cervical 

structure [2-4, 22]. 

Headache attributed to idiopathic intracranial hypertension (IIH) or hydrocephalus is 

an example of secondary headache. It was initially described in 1897 as a syndrome 

of papilledema and elevated intracranial pressure attributed to impaired cerebrospinal 

fluid (CSF) flow. Hydrocephalus is a neurological condition in which the 

cerebrospinal fluid (CSF) is excessively accumulated around the brain, which can 

lead to an enlargement of the ventricular system of the brain and increase the 

pressure inside the head. It is caused by various etiological factors, however the 

common final result is insufficient passage of cerebrospinal fluid (CSF) from its 

point of production in the cerebral ventricles to its point of absorption into the 

systemic circulation [41]. 

This excessive build-up of CSF yields a harmful pressure on the tissues of the brain. 

In an adult human, there is approximately 150 cubic cm of CSF surrounds the brain, 

the spinal cord and present in the ventricular system within the brain. The CSF 

possesses many functional benefits such as protecting from mechanical stresses by 

minimising the pressure inside the cranial vault induced brain expansion during 

cardiac constriction. It is also supporting the brain weight by the buoyancy. CSF 

protects the brain and spinal cord from shocks by acting as a cushion. Moreover CSF 

plays an important role in the absorption and carrying away of the toxic by-products 

of metabolism [42].  
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2.6. Chapter summary 

In this chapter, we have reviewed and understood the main types of primary 

headaches including migraine, tension-type headache and TACs. Each of them 

presented with its clinical features and diagnostic criteria based on the latest clinical 

guidelines and references. This deep investigation of headache causes and patterns 

leads to a comprehensive comparison that can highlight common and different 

qualities of primary headaches. In general, it can be noted that the criteria of IHS is 

the most agreed clinical guideline worldwide that is in use for clinical diagnosis of 

headache disorders. These criteria also extensively used to establish almost all of the 

diagnostic support modules. 
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CHAPTER 3: LITERATURE REVIEW 

3.1. Introduction  

Over the last decades, information technology in general and artificial intelligence in 

particular have gradually involved in every single field of life, starting from industry, 

business, weather forecasting and media, but the most significant development has 

taken place in the field of healthcare. Healthcare organisations are continually 

endeavouring to improve patient care and provide better services. Introducing 

information technology into healthcare delivery is expected to become an enabler to 

get more efficient and effective healthcare services. Under the term of electronic 

health (e-health), information and communication technology has changed the means 

of patient care by providing home healthcare services with better infrastructure, cost 

effectiveness and quality of services [43]. 

Currently, healthcare applications have expanded from (e-health) to mobile health 

(m-health). The main driving force behind the change was the wide acceptance and 

usage of smartphone mobile devices worldwide and a suitable platform and 

environment for healthcare applications provided by these devices [44, 45]. This 

chapter reviews the literature to investigate recent studies and decision support 

systems (DSS) that target the diagnosis of primary headache disorders. This chapter 

also compares and evaluates these relevant studies to explore their advantages and 

drawbacks, which enable us to create a new diagnostic model that overcomes current 

difficulties. 

3.2. Intelligent driven modules to diagnose headaches 

The development of clinical DSS to diagnose primary headache disorders has 

become an interesting research topic, especially after the launch of the IHS clinical 

criteria for the classification of headaches. A range of studies or diagnostic models 

have been proposed or already developed to aid headache specialists in making 

decisions with respect to the diagnosis of headaches. Many others were restricted for 

patients’ usage such as an application to enable patients in keeping track of their 

conditions and treatments or applications to get recommendations from health 
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professionals. This section reviews the most recent studies that have been published 

over the last decade. 

3.2.1.  Neurologist expert system (NES) 

It is a rule-based DSS developed by Al-Hajji [46] to diagnose more than ten types of 

neurological diseases including migraine and cluster headache. In this DSS, 

knowledge has been obtained from different sources such as domain experts, 

specialised databases, books and a few electronic websites. A list of neurological 

diseases has been stored in a table and approximately 70 related symptoms were also 

stored in another table. Then, a combination between each neurological disease and 

its most related symptoms has been derived. 

In fact, the diagnosis of many neurological diseases disease, such as Alzheimer’s, 

Parkinson’s, Epilepsy, in addition to migraine and cluster headache, can be 

challenging even for neurology specialists themselves. It is a wide range of diseases 

that generally have shared symptoms and various diagnostic procedures. For 

example, brain imaging can play a vital role in the diagnosis of Alzheimer’s or the 

early detection of Parkinson’s disease. Moreover, there was no clear adoption of IHS 

criteria with respect to the diagnosis of migraine and cluster headache. Therefore, 

using a very simple link between each neurological disease and its symptoms cannot 

be seen as an effective clinical DSS and would bear a large error rate. 

3.2.2.  Expert system based headache solution (ESHS) 

An expert system was proposed by Hasan and his partners [47] to diagnose different 

types of headache based on expert knowledge. ESHS includes a set of key questions 

that derived from neurology experts to help other doctors when diagnosing patients 

with headache. When symptoms are entered in accordance with these questions, 

ESHS then would help in detecting the type of headache and generate prescriptions. 

This expert system uses very simple yes/no questions derived from expert’s 

knowledge instead of the globally agreed criteria of IHS. Moreover, the authors 

failed to clarify who those experts are, and show their affiliations and experiences. 
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3.2.3.  A guideline-based DSS for headache diagnosis 

A computerised headache guideline method was proposed by Yin and others [48] to 

assist general practitioners in primary hospitals to improve the diagnostic accuracy of 

primary headaches such as migraine, tension-type headache and cluster headache. 

The main aim was to develop a system to counteract the complexity of the second 

version of IHS criteria. Authors pass through three main steps to develop their 

clinical DSS. A clinical specialist summarises the diagnostic guidelines of IHS and 

expresses them as a flowchart in the first step. Then, a knowledge engineer 

establishes a computerised model for headache knowledge representation based on 

these flowcharts. Finally, the knowledge representation model is translated into a 

series of conditional rules, which are used by the inference engine. This clinical DSS 

evaluated by 282 previously diagnosed headache cases obtained from a Chinese 

hospital.  

3.2.4.  Validation of a guideline-based DSS for headache diagnosis 

In 2014, Dong and his colleagues have developed a guideline-based clinical DSS for 

headache diagnosis [49]. They have followed the same procedure presented in [48] 

for knowledge acquisition, but using the third version of IHS criteria and validated 

their system by 543 data sheet of patients with headache obtained from the 

International Headache Centre at the Chinese PLA General hospital, Beijing, China. 

The main difference between this guideline-based DSS and the guideline-based DSS 

developed by Yin in [48] is that three more types of headache have been added to the 

library of this DSS including probable migraine, probable tension-type headache, 

new daily persistent headache and medication overuse headache. As shown in [49], 

there was some improvement in the diagnosis in comparison with DSS by Yin in 

[48]. 

3.2.5.  Case-based reasoning DSS for headache diagnosis 

A computer-aided diagnosis method was proposed by Yin et al. [50] and employs 

case-based reasoning (CBR) method to differentiate between probable migraine and 

probable tension-type headache. This CBR clinical DSS provides recommendations 

to the general practitioners based on the previously solved cases in the built-in 

library. This library contains 676 data sheets of patients with probable migraine and 
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probable tension-type headache that were collected by clinical interview. Each data 

sheet consists of 74 different attributes including patients’ information and medical 

history in addition to headache symptoms derived from the IHS criteria. The authors 

employ genetic algorithm (GA) to assign weights to these attributes and K-nearest 

neighbour (KNN) method to measure the similarity between new headache cases and 

the previous cases in the library. 

3.2.6.  Hybrid intelligent reasoning DSS 

A hybrid DSS tool was proposed by Yin and his partners [51] using a combination of 

rule-based and case-based reasoning methods to improve the diagnosis of primary 

headache disorders such as migraine, tension-type headache and cluster headache. 

The reasoning modules in this clinical DSS run independently, the rule-based module 

is the first diagnostic module and the case-based module is the second. The 

diagnostic rules are summarised by a clinical specialist based on the criteria of IHS 

in the first module, while data sheets of previous headache cases have been used in 

the second module. The diagnostic procedure starts through applying the first 

diagnostic module to a new headache case, if headache symptoms are typical and 

match the existing rules, then a diagnostic decision can be made. Otherwise, the 

headache case is transferred to the case-based module to search for the most similar 

previous cases. 

The research group in [50] claim that the CBR clinical DSS shows an improvement 

with respect to the diagnosis of primary headaches when compared to their previous 

works [48, 49] that were built around the guideline-based concept. Although the core 

concept of [48, 49] and [50] seems to be similar, however knowledge acquisition 

methods are completely different. In [48, 49], the specialist derives diagnostic 

guidelines from IHS criteria, which is then expressed as a set of conditional rules, 

while [50] uses clinical interviews of patients with headache as a knowledge 

acquisition stage. The same research group have also proposed a hybrid clinical DSS 

in [51], which is a merger of their previous proposals in [48, 49] and [50]. 

3.2.7.  Automatic DSS for the classification of primary headaches 

This is a machine learning based DSS proposed by Krawczyk and his colleagues [52] 

to support the classification of primary headaches. The main aim of this study was to 
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distinguish between the episodic tension-type headache and migraine without aura. 

Authors have prepared a questionnaire according to the second version of the criteria 

of IHS as a knowledge acquisition stage. The questionnaire includes general 

information of patients such as age, gender, marital status, level of education, etc., in 

addition to questions that related to headache characteristics such as frequency of 

attacks, quality of pain, associated symptoms, headache location, intensity and 

triggers. Six machine-learning algorithms were applied to the collected data 

including Naïve Bayes, Decision Tree (C4.5), Support Vector Machine, Bagging, 

Boosting and Random Forest. Using the 10-fold cross validation method, the 

experiment showed that the best result could be achieved through a combination of 

Random Forest method with Bagging and/or Boosting methods. 

3.2.8.  Other headache diagnostic modules 

Simić and others in  [53] and [54] have proposed a computer-assisted diagnosis of 

primary headaches. It is a rule-based fuzzy logic (RBFL) system designed to help 

physicians when diagnosing patients with primary headaches such as migraine, 

tension-type headache and cluster headache. This work involves under the type of 

knowledge-based DSS, in which the criteria of IHS are expressed as a collection of 

IF-THEN statements. Another group of researchers in [55] trained artificial neural 

networks to diagnose migraine, tension-type headache and medication overuse 

headache. The artificial neural networks have been trained using questionnaire-based 

data collected from patients with headache. 

Ufuk and others in [56] have evaluated an immune algorithm for the classification of 

migraine, tension-type headache and cluster headache. A website based survey 

expert system was used to collect data of patients with primary headaches. They 

conclude that the immune algorithm can help the neurologist with respect to the 

classification of primary headaches. 

Eslami and his partners in [57] have designed a computerised expert system to help 

in the diagnosis of primary headache disorders such as migraine, tension-type 

headache, cluster headache and other trigeminal autonomic cephalalgias. A 

questionnaire was designed to approach all criteria of primary headache disorders 

based on the second version of IHS criteria. When a patient starts filling in the 

questionnaire, the expert system uses a simple human-like algorithmic reasoning to 
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classify the type of headache. Similarly, Maizels and Wolfe in [58] employ a simple 

human-like branching logic to determine the most appropriate diagnostic questions to 

ask the patients, then, classify the type of headache using modified Silberstein Lipton 

criteria and IHS criteria. Maizels and Wolfe implemented their expert system as a 

web-based tool with an interview section that includes questions about headache 

characteristics. The modified Silberstein Lipton criteria are used to classify patient 

with frequent headache, while IHS criteria are used to diagnose patients with brief 

headache syndromes. 

Zafar and others in [59] proposed a clinical DSS to aid physicians in the diagnosis of 

migraine and other headaches and at the same time to enable patients living in 

remote areas to have medical check-ups. Zafar implemented his work as a web-based 

tool, in which information related to primary and secondary headaches are stored in 

the knowledge base. The inference engine will search this knowledge base to find 

suitable diagnostic recommendations based on headache characteristics. This 

proposed system, in fact, is considered as a black box because there is no clear 

sequence of operations in particular for knowledge acquisition. 

3.3. Evaluation and justifications 

Decisions taken made by headache specialists usually depend on clinical guidance, 

medical evidence, instructions and principles derived from medical science. In an 

ideal situation, clinical DSS should improve the use of knowledge to support those 

specialists in making more accurate decisions, and therefore enhancing the quality of 

care being delivered to the patient. Although clinical DSS have a potential to 

improve decision making, handling large amount of information and analysing real-

time data or patient history, however, the use of clinical DSS is not yet widespread in 

clinics or hospitals. This might be because the majority of such systems are 

developed apart from healthcare professionals and there is lack of criteria for a 

proper use of intelligent methods in these clinical DSS [60]. 
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Figure ‎3-1: Types of clinical decision support systems 

In general, we can categorise clinical decision support systems into three main 

groups as shown in figure 2-1. Knowledge-based clinical DSS is the first, machine 

learning based clinical DSS is the second, and hybrid clinical DSS that is based on a 

combination of the first two groups. The Knowledge-based DSS is designed and 

structured around the logic of IF-THEN statements, in which clinical guidelines such 

as IHS criteria or experts' knowledge are formed into rules and expressed by a 

computer engineer as a set of IF-THEN-ELSE statements. This usually includes a 

significant amount of information regarding the types of headache together with their 

signs and symptoms. Once the patient data are input, the inference engine examines 

the data against these IF-THEN statements to limit the outcome response. 

A simple example of using knowledge based DSS presented in [61], in which the 

DSS includes a probable list of haematological diseases combined with their 

symptoms. Inputs to this CBC clinical DSS include patient information such as age, 

gender, altitude, pregnancy period in addition to the complete blood count (CBC) test 

result. The inference engine will suggest a list of probable haematological diseases 

based on these inputs. Although it is unable to provide an ultimate diagnosis, 

however, it is a good start for further and more disease-specific tests to confirm the 

diagnosis. 

Going back to the diagnostic modules that are summarised in table 2-1, the core 

concept of the majority of them was approximately similar regarding the knowledge 

acquisition, where the international classification of headache disorders was used as 
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a base for deriving the diagnostic rules. These rules were summarised and expressed 

by a computer engineer. This style is commonly known as a rule-based method, by 

which the rules are formulated based on a human expert. The basic principle of the 

rule-based technique is pattern identification followed by a recommendation of what 

should be done in response. These rules are a conditional statement that links the 

supplied conditions to actions or results. Ideally, the rule is straightforward, 

understandable and represents the knowledge in near-linguistic form [60]. 

Table ‎3-1: Summary of diagnostic modules 

No. Authors Year Type of 

module 

Knowledge Type of headache 

1 Al-Hajji [46]  2012 Knowledge-

based 

Domain experts MIGR and cluster 

headache 

2 Hasan et al. [47] 2012 Knowledge-

based 

Domain experts Primary headaches 

3 Yin et al. [48] 2013 Knowledge-

based 

IHS criteria Primary headaches 

4 Dong et al. [49] 2014 Knowledge-

based 

IHS criteria Primary headaches 

5 Yin et al. [50] 2015 Knowledge-

based 

Case-based 

similarity 

Probable MIGR 

and probable TTH 

6 Yin et al. [51] 2014 Knowledge-

based 

Case-based and 

IHS criteria 

Primary headaches 

7 Krawczyk et al. [52] 2013 Machine 

learning 

IHS criteria Episodic TTH and 

MIGR without aura 

8 Simić et al. [53, 54] 2008 Knowledge-

based 

IHS criteria Primary headaches 

9 Mendes et al. [55] 2010 Machine 

learning 

Questionnaire Primary headaches 

10 Ufuk et al. [56] 2016 Knowledge-

based 

Survey data Primary headaches 

11 Eslami et al. [57] 2013 Knowledge-

based 

Questionnaire Primary headaches 

12 Maizels and Wolfe 

[58] 

2008 Knowledge-

based 

Silberstein Lipton 

criteria and IHS 

criteria 

Primary headaches 

13 Zafar et al. [59] 2013 Knowledge-

based 

Unknown Primary and 

secondary 

headaches 
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The rules-based system style can facilitate the separation of knowledge from 

processing, in addition to allowing incomplete or uncertain knowledge to be 

expressed and bounded. However, implementing this kind of system could possibly 

carry certain downsides. First, rule-based systems are not able to learn and modify 

their rules from experience or via identifying patterns in clinical data. Secondly, 

navigating the categorisations and relationships in a large rule-based system can be 

complicated and time consuming. Third and the most important point is that the 

necessary information needed to derive these diagnostic rules might consist of more 

variables than the human mind can accommodate. There is persuasive evidence to 

indicate that the human ability to discover and understand complicated configuration 

relationships could be limited [62].  

Therefore, deriving and formulating these diagnostic rules, with the limited ability of 

human mind to manipulate a large quantity of information or variables in considering 

a complex subject such as IHS criteria, may lead to insufficient representation of 

knowledge and eventually a poor diagnostic model [60]. Moreover, we would like to 

pay attention to the fact that the IHS criteria are designed to provide a ground truth 

for headache specialists, where this classification of headaches provides clear distinct 

definitions describing many different types of headache. However, these types of 

headache may share signs and symptoms in real world scenario and they also my 

change over time, which makes the classification of primary headaches not as clear 

as black or white (i.e. as we show in the procedural classification function). This 

means that there is a grey area in between, which can affect the diagnostic 

performance, validity and reliability of decisions made by such CDSMs. In this 

context; we are adopting a completely different approach, in which several machine-

learning classifiers were applied to diagnose primary headache disorders using 

anonymised real-world data records of patients with primary headaches. 

3.4. Chapter summary 

In this chapter, we reviewed the literature to explore studies and decision support 

systems (DSS) that target the diagnosis or classification of primary headache 

disorders. The majority of these studies or systems have followed a rule-based 

system style, in which a computer engineer formulates the diagnostic rules as a set of 

IF-THEN-ELSE statements based on clinical guideline or prepared questionnaire. 
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Although the rule-based system style is straightforward, understandable and can 

represent the knowledge in near-linguistic form, however, it bears many serious 

downsides such as the inability to learn and gain knowledge over time and 

maintaining categorisations and relationships in a large rule-based system can be 

complicated. Therefore, we will avoid such a style of diagnostic models via the 

implementation of machine learning methods. 
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CHAPTER 4: DATA PREPARATION  

4.1. Introduction  

Since the data is a building block of every information system, a first step in the 

application of machine learning is to examine the characteristics of the data, which is 

commonly known as a data processing stage. In general, there are two main types of 

data in scientific researches, quantitative and qualitative. Quantitative data are the 

data that express items of interest numerically and quantitative research involves 

examining causal relations, patterns and associations in such data using statistical 

methods [63]. In quantitative data, measurement units are often used to represent 

observations, for example patients’ age measured in years, patients’ height measured 

in meter or inches, duration of pain measured in minutes or hours, years of suffering 

and so on.  

In contrast, qualitative data is typically descriptive and it represents numbers of 

cases, scenarios, events, experiences using data from observations or interviews. In 

quantitative research, the phenomena examined cannot be fully comprehended 

through quantification. For instance, how do patients describe their headache 

characteristics? Where is the location of pain? Did patients or any of first-degree 

relatives suffer from a particular chronic condition? Qualitative research involves 

examining answers to these types of questions for a particular condition in order to 

understand patients’ experience [63].  

This chapter describes the process of knowledge acquisition. It begins by describing 

the data set, and then emphasises all potential key concerns that ought to be 

addressed in the pre-classification stage. In this chapter, we identify and process 

outliers in data, then, handle missing data using multiple imputations, and we end 

this chapter by normalising the data using min-max normalisation method. 

4.2. Data description 

This study re-uses the data set in [64] for the following reasons; a) the dataset has 

been collected by headache specialists in three medical-academic centres in Turkey 

(i.e. School of Medicine - Mersin University, Medical Faculty - Istanbul University 

and Istanbul Education Hospital). These centres combine clinical care with scientific 
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research. b) It is high dimensional data with 65 dimensions, which covers a wide 

range of patients’ information including medical history, family history and 

psychological conditions, where such dimensions have not been covered in previous 

studies. c) The data set involves patients with the most common primary headache 

disorders including migraine with and without aura, chronic and episodic tension-

type headache, trigeminal autonomic cephalalgias TACs (i.e. cluster headache, 

paroxysmal hemicranias and SUNCT). This diversity of patients has not been 

addressed in previous studies as well. Finally, d) the data set was collected with the 

aim of identifying a new sub-group of patients with vestibular symptoms in primary 

headache disorders, where it is ideal for diagnostic purposes. 

The data set consists of 832 records of patients with primary headache disorders, and 

each record involves 65 attributes, including class attribute, as shown in table 4-1. 

We can group patients’ records into three main categories. The first category 

includes patients with tension-type headache. It is the largest group of patients and 

includes 383 records, which represents 46.03% of the data. Out of 383 records, 221 

records are for patients with episodic tension-type headache and 162 records are for 

patients with chronic tension-type headache. The second category includes patients 

with migraine, which consists of 378 records. It constitutes 45.43% of data. More 

than two-thirds of the second group are for patients with migraine without aura, i.e. 

around 300 records. The remaining 78 records are for patients suffering from 

migraine with aura.  

The last category of records is for patients with TACs, which comprises of 71 

records and represents 8.54% of the data. These 71 records are distributed as follows; 

53 records are for patients with cluster headache, 12 records are for patients with 

paroxysmal Hemicrania and six records for patients with SUNCT. The number of 

records for patients with TACs is considerably less than other records (i.e. patients 

with migraine and tension-type headache). It is naturally inherited because the 

occurrence of TACs is very rare in comparison with other primary headache 

disorders. However, this can lead to an imbalanced class distribution that may affect 

the learning approach. We will discuss and handle this issue further in the next 

chapter. 
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Table ‎4-1: Data attributes 

No. Data attributes Level of 

measurements 

Descriptions 

1 Gender Dichotomous Male/Female 

2 Age Numerical Calculated in years 

3 Age of admission Numerical Calculated in years 

4 Diagnosis Categorical Type of primary headache – Class attribute 

5 Headache onset Numerical Calculated in months 

6 Headache frequency Numerical Days per month 

7 Headache characteristic Categorical Throbbing, Pressing, Dull, Stabbing, lightening 

8 Headache duration Numerical Calculated in hours 

9 Headache location Categorical Unilateral, Bilateral, Frontal, Periocular, Bi-

temporal, Occipital, Calvarial 

10 Headache intensity Numerical Visual analogue scales (VAS) 1-10 

11 Accident Dichotomous Present/Absent 

12 Periodic vomiting Dichotomous Present/Absent 

13 Motion Sickness Dichotomous Present/Absent 

14 Abdominal pain Dichotomous Present/Absent 

15 Epilepsy Dichotomous Present/Absent 

16 Surgery Dichotomous Present/Absent 

17 Allergy Dichotomous Present/Absent 

18 Homocysteinemia1 Dichotomous Present/Absent 

19 TIA/Stroke2 Dichotomous Present/Absent 

20 Atherosclerosis3 Dichotomous Present/Absent 

21 Hyperlipidaemias4 Dichotomous Present/Absent 

22 Oral contraceptive Dichotomous Present/Absent 

23 Hypertension Dichotomous Present/Absent 

24 Diabetes Dichotomous Present/Absent 

25 Coronary Artery disease Dichotomous Present/Absent 

26 Snoring Dichotomous Present/Absent 

27 OSAS5 Dichotomous Present/Absent 

28 Infantile colic6 Dichotomous Present/Absent 

29 Medication overuse Dichotomous Present/Absent 

30 Pain killer using frequency Numerical The frequent usage of painkiller per month. 

31 Medication overuse duration  Numerical Calculated in months 

32 Headache Dichotomous Present/Absent 
33 Hypertension Dichotomous Present/Absent 
34 Atopic disorder7 Dichotomous Present/Absent 
35 Diabetes Dichotomous Present/Absent 
36 Heart disease Dichotomous Present/Absent 
37 Epilepsy Dichotomous Present/Absent 
38 Psychopathology8 Dichotomous Present/Absent 
39 Smoking Dichotomous Yes/No 

40 Smoking duration Numerical Calculated in years 

41 Emotional stress Dichotomous Present/Absent 
42 Physical activity Dichotomous Present/Absent 
43 Menstrual cycle Dichotomous Present/Absent 
44 Seasonal Dichotomous Present/Absent 
45 Alcohol Dichotomous Present/Absent 
46 Skipping meals Dichotomous Present/Absent 
47 Positional association Dichotomous Present/Absent 
48 Nausea Dichotomous Present/Absent 
49 Vomiting Dichotomous Present/Absent 
50 Phonophobia Dichotomous Present/Absent 
51 Photophobia Dichotomous Present/Absent 
52 Dizziness Dichotomous Present/Absent 
53 Sleep disturbances Dichotomous Present/Absent 
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54 Vertigo Dichotomous Present/Absent 
55 Osmophobia9 Dichotomous Present/Absent 
56 Allodynia10 Dichotomous Present/Absent 
57 Normal Dichotomous Present/Absent 
58 Anxiety Dichotomous Present/Absent 
59 Depression Dichotomous Present/Absent 
60 Obsession Dichotomous Present/Absent 
61 Psychosis Dichotomous Present/Absent 
62 Fundoscopy Dichotomous Normal/Abnormal 

63 Fundoscopy explanation Numerical Comments 

64 Neurological examination Dichotomous Normal/Abnormal 

65 Pericranial muscle tenderness Dichotomous Present/Absent 
 

1 Abnormally high levels of Homocysteine in the serum, above 15 µmol/L. 
2A transient ischemic attack (TIA), also called a mini stroke, occurs when a blood clot blocks blood 

flow in the brain. 
3A serious condition where arteries become narrow or clogged up by fatty substances known as plaques 

or atheroma. 
4Elevated lipid levels in the blood. 
5Obstructive Sleep Apnoea syndrome, a condition where the walls of the throat relax and narrow during 

sleep, interrupting normal breathing. 
6Distress or crying in an infant, which lasts for more than three hours a day, for more than three days a 

week, for at least three weeks in an otherwise healthy infant. 
7The genetic tendency toward developing a classical allergic diseases including; atopic dermatitis, 

allergic rhinitis, and asthma. 
8A study of mental disorders. 
9Refers to a fear, aversion or psychological hypersensitivity to odours. 
10An abnormal sensation, in which patients feel pain from something that shouldn't be painful. 
11Also called Ophthalmoscopy, is a test that allows a doctor to see inside the back of the patient’s eye 

and other structures using a magnifying instrument and a light source. 

 

Headache data set includes a combination of quantitative and qualitative data 

described using different levels of measurement, such as numerical, dichotomous and 

categorical. Although the levels of measurement differ in many ways, they are 

unifying both quantitative and qualitative data into four different levels of 

measurement or scales [65]. Categorical and dichotomous scales are within the scope 

of qualitative attributes, numerical scales are belonging to quantitative attributes 

[66]. These categories convey a different amount of information. In fact, 

measurement is the method of assigning numbers or labels to items of interest in 

order to make the data amenable to statistical analysis and machine learning 

requirements [65]. However, the majority of machine learning algorithms are merely 

supporting numerical attributes, which require converting nominal attributes into a 

format that could be supported by these learning algorithms. In other words, 

providing the data in a numerical representation. Therefore, the categorical and 

dichotomous variables were dummy coded. For example, the absence of a certain 

condition was coded as zero; in contrast, the presence of that condition was coded as 

one. 
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4.3. Outliers’ detection 

Outliers are strange data points that are distant from other members of a given data 

cluster [67]. In general, outliers may arise from procedural error, such as inaccurate 

data collection, or they can be inherited from the natural variance of the data. 

Osborne and Amy [68] have described a number of other causes that may lead to 

outliers, while Zhao [69] identifies many different methods to detect outliers 

including visual inspection via plots, clustering and local outlier factor.  

This study follows the visual inspection manner and uses box and whisker plot 

(usually known as boxplot) to detect outliers. Boxplot is a straightforward way that 

graphically depicts clusters of data points via their quartiles. Boxplot employs 

median and interquartile range IQR to detect the outliers, where the median is the 

middle number of an ordered set of numbers and the interquartile range is the 

variance between the first and third quartiles. In the boxplot, outliers are the data 

points that are located beyond the extremes of the whiskers [69]. To be more precise, 

outliers are the data points that fall above Q3 + 1.5(IQR) and below Q1 − 1.5(IQR), 

where Q1 is the first quartile, Q3 is the third quartile, and IQR = Q3 − Q1. 

This section plots the data variables in accordance with the types of headache to 

assist in determining the outliers for each group of patients separately. This is mainly 

because different types of headache have different ages of onset, features, durations 

and intensity. Therefore, plotting variables with three major types of headache as a 

bunch would lead to inaccurate identification of outliers. Figure 4-1 shows the 

outliers within continuous variables, i.e. quantitative attributes, where circles 

represent outliers while stars refer to extreme outliers. The Box plot displays outliers 

and extreme outliers with their record numbers. 

Outliers are usually handled in one of three methods. First, retain the outliers and 

handle them just like every other data point. Second, trimming them (i.e. remove 

outliers from the sample) and third, winsorising them [70]. Retaining outliers and 

handling them just like every other data point may overvalue them and lead to 

estimates that significantly vary from the legitimate population value. Trimming 

outliers is a very common practice in the literature; however, it may not be an 

appropriate way when the outliers are legitimate values [71]. The trimming method 

assumes that outliers are due to mistakes. For example, the measurement of a given 
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variable could be entered as 10000 instead of 100.00, which can cause a huge change 

in the estimates. Therefore, this method is usually recommended for outliers due to 

typographical mistakes or measurement errors. Furthermore, trimming outliers is 

generally unacceptable because they can be legitimate observations and may signify 

the natural variance of data. On the other hand, winsorising is a common procedure 

to handle outliers via modifying them to the next highest or lowest values within the 

distribution that are not suspected to be outlier [72]. Winsorising is recommended 

when the outliers are valid data points, i.e. legitimate observations [70].  

There are controversies regarding the decision to keep or remove outliers, where 

there is no definitive answer to the problem. Some researchers recommend 

eliminating all outliers to ensure that the parameter estimates are more related to the 

target population, while others encourage retaining, in particular, legitimate outliers 

[68, 70]. Osborne and his partner [68] have described how a small percentage of 

outliers can significantly affect even simple analyses, where they have reported that 

outlier removal enhances the accuracy of estimates for correlations and t-tests, while 

it greatly reduces errors of inference. 

On the other hand, Dhiren and his colleague [70] reported that winsorising by 2.5% 

would maintain the characteristics of the data and not really change the distribution 

very substantially. Moreover, they have mentioned that winsorising would alleviate 

bias by preserving an attenuated version of the outlier rather than eliminating it. In 

general, outliers may pose critical problems to data analysis. For example, a normal 

distribution assumption is required for parametric analysis methods and the presence 

of outliers usually contributes to violate such assumptions, particularly for regression 

analysis, where outliers can significantly affect the slope, R-value and R Square 

estimates. Furthermore, outliers can increase the variance of data and therefore 

minimise the power of statistical tests, which is undesirable. 
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Figure ‎4-1: Data outliers 

Before handling outliers, we need to understand why they exist. As shown in figure 

4-1, there are a miniscule number of outliers in the headache data set (0.48% of age, 

0.60% of headache frequency, 0.72% of headache intensity and admission age, 

2.40% of headache onset and 3.24% of headache duration). Comparing these outliers 

to the criteria of the International Headache Society (i.e. ICHD-3 beta)[3] revealed 

that some of them are legitimate extreme observations, which may be inherited from 

the arbitrary sampling of patients. 
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For example, the age of onset for migraine patients can range from 15 up to 55 years 

according to ICHD-3 beta, while the highest observed outlier for migraine patients 

within the data set was 50 years (record number 805). In contrast, some other outliers 

exceed the range that was identified by ICHD-3 beta. For instance, the age of onset 

for patients with tension-type headache may range from 25 to 30 years according to 

ICHD-3 beta, compared to 50 years age of onset (record number 800), which was the 

extreme observed outlier for patients with tension-type headache in the data set. 

Furthermore, let us consider headache duration as another example, where the 

extreme observed outlier was 360 hours of headache duration for patients with 

migraine (record number 579), compared to 72 hours as a maximum duration of 

migraine based on ICHD-3 beta. On the other hand, many other outliers such as 

record 481 and record 733 fell within the range of duration that was identified by 

ICHD-3 beta. 

Although some outliers represent valid observations, nevertheless, extreme outliers 

would drastically influence the normality of the data and possibly one extreme 

outlier can skew the data by a large amount. Therefore, we measured the skewness of 

the data variables with and without outliers to examine whether outliers could skew 

our data. In general, the exclusion of extreme outliers seems to decrease variance and 

degree of skewness remarkably, while maintaining the mean. The skewness of some 

variables dropped by more than 50%. For example, the skewness of age variable was 

0.628, compared to 0.305 without three extreme outliers only. The skewness of 

headache duration variable decreased from 4.048 to 1.801 when excluding six 

extreme outliers only. Likewise, the variance of age and headache duration variables 

reduced by 16.88, 173.47 respectively. Furthermore, the skewness of age of 

admission variable dropped by 75% from 0.641 to 0.170, and the variance decreased 

by 41.63 because of excluding three extreme outliers only. 

On the other hand, the mean age, age of admission and headache duration variables 

were very similar. The mean age was 44.98, compared to 44.73 without extreme 

outliers. Similarly, 37.40 was the mean age of admission, compared to 37.14 when 

excluding extreme outliers. Finally, the mean headache duration dropped by 0.82%. 

Thus, it was clear that only a few extreme outliers could significantly influence the 

distribution of the data as well as raise the degree of skewness dramatically. 
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Figure ‎4-2: Data without outliers 

Consequently, we have decided to winsorise the outliers instead of excluding them, 

as we believe that the presence of outliers in the headache data set is due to the 

nature of data. Therefore, winsorising outliers, as shown in figure 4-2, would make 

them closer to the data points through modifying them to the next highest or lowest 

values that are not presumed to be outlier. As described in [70], winsorising a small 

number of outliers, i.e. just like our case, would not violate the characteristics of 

data. However, it would maintain the sample size in particular when the outliers are 
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legitimate observations. In data pre-processing steps, detecting outliers and 

addressing them was the first step because they can significantly influence other 

stages of data processing. For example, the existence of outliers can affect the 

imputation process, where many other outliers can be produced by imputation. 

4.4. Missing Data 

Missing data or missing values are very common in real-world data sets, particularly 

in medical datasets [73]. According to Tran and his colleagues [74], 45% of the data 

sets in the online data repository UCI have some sorts of missing values. Missing 

data can occur due to many reasons such as unexpected difficulty in getting some 

vital measurements. Participants may refuse to answer some questions. The research 

team may be unable to follow-up all participants during the period of study. 

Participants' records lack some values due to failure of electronic data storage, and 

collecting data from heterogeneous sources such as different medical centres, which 

is the case for our data set. All of these reasons along with many other hidden causes 

can lead to data losses [75, 76]. 

Missing data can give rise to serious concerns for classification, where the main 

concern is the non-applicability of many classification algorithms for such data. 

Although some algorithms can handle data with missing values by ignoring them, 

however the majority cannot. Consequently, waste of data and significant 

classification errors are most likely to occur [77]. Therefore, the first step toward a 

valid classification process is addressing the issue of “missing data”, but we need to 

consider the nature of the missing data mechanism first, which is a fundamental step 

to get a valid inference from incomplete data. 

4.4.1.  Missing data mechanism 

A missing data mechanism identifies how the underlying value of missing 

observation is connected with the reason for being missing [78]. Let us assume 𝑌 is 

𝑁𝑥𝑃 matrix containing the data values of 𝑃 variables (i.e. attributes) for all 𝑁 units 

or participants in the sample. Each units denoted by 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑃). No matter 

whether the type of response falls under quantitative or qualitative data, 𝑌𝑗 represents 

the 𝑗𝑡ℎ measurement for the 𝑖𝑡ℎ subject or participant at time 𝑇𝑖𝑗, where 𝑖 = 1, … , 𝑁 

and 𝑗 = 1, … , 𝑃, and 𝑌−𝑗 represents all columns in 𝑌𝑖 except 𝑌𝑗 (i.e. the complement 
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of 𝑌𝑗). The missing values in 𝑌𝑖 are collectively denoted as 𝑌𝑖
𝑚, while the observed 

values in 𝑌𝑖 are collectively denoted by 𝑌𝑖
𝑜, therefore 𝑌 = ( 𝑌𝑚,  𝑌𝑜) hypothetically 

represents complete data values. Nevertheless, the values of the part 𝑌𝑚 are 

unknown for different reasons, and the data accordingly are incomplete [79]. In 

1976, Rubin has identified three types of mechanisms under which missing data can 

occur: First, missing completely at random (MCAR). Second, missing at random 

(MAR). Third, not missing at random (NMAR) [80]. 

Data is considered to be missing completely at random (MCAR) when the likelihood 

that responses are missing is unrelated neither to the observed values, nor to other 

missing values. In other words, the missing response is independent of both 𝑌𝑖
𝑜 

and 𝑌𝑖
𝑚, which means that the missing values of  𝑌𝑖 merely occurred by chance. 

Unlike MCAR, data deemed to be missing at random (MAR) when the likelihood 

that responses are missing depends only on a set of observed values rather than 

certain missing values. That is, the missing response is merely the result of a chance 

mechanism that does not depend on the values of another unobserved response. In 

particular, missing data fall under MAR when the missing response is conditionally 

independent of 𝑌𝑖
𝑚, but not 𝑌𝑖

𝑜. If missing data is not classified as MCAR or MAR, 

then we are talking about not missing at random (NMAR), which is the third type of 

missing data mechanism. Missing data is perceived as NMAR when the likelihood 

that responses are missing depends on both of the following; first, the values that 

should have been obtained and second, the values that have been actually obtained. 

To be more precise, missing response is related to 𝑌𝑖
𝑚 and 𝑌𝑖

𝑜 [79, 81]. 

The significant feature of MCAR is that the observed data 𝑌𝑜 can be perceived as a 

random sample of the complete data 𝑌. Thus, the observed data inherits the same 

moments and joint distribution of the corresponding complete data. Consequently, 

discarding or ignoring missing values 𝑌𝑚 under MCAR would not lead to bias, 

however it most likely increases the standard error of estimations as a consequence 

of reduced sample size [79, 81]. Therefore, the observed part of data  𝑌𝑜 can be used 

to obtain valid estimates of moments, including; mean, variance, and covariance 

[79]. 

In contrast to MCAR, the conditional distribution of Yi
o for subjects with any Yi

m 

pattern in MAR would not coincide with the distribution of the corresponding 
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components of 𝑌𝑖 in the target population. Consequently, the observed data Yo cannot 

be thought of as a random sample of the complete data Y. Therefore, calculating 

mean, variance, and covariance only based on the observed part of data  Yo can lead 

to biased estimates [79, 82]. MAR and MCAR are showing, in general, the missing 

response patterns at random and they are usually referred to as ignorable 

mechanisms, in which the missing values Ym can be avoided or deleted [73, 81]. 

Conversely, NMAR mechanism is usually known as a non-ignorable mechanism, in 

which the missing value Ym cannot be avoided or deleted because the goal is to make 

inferences about the distribution of the complete data  Y. Therefore, MCAR 

mechanism seems to pose less threat to statistical inferences in comparison with 

MAR and MNAR [79, 81]. 

 

Figure ‎4-3: Overall summary of missing data 

The headache data set as shown in figure 4-3 has 98% of its variables (i.e. attributes) 

coming with missing values and 100% of cases have some sorts of missingness. 

Different rates of missingness has been shown, starting from less than one percent 

for some variables and reaching 100% for some others. Table 4-2 illustrates the 

missingness rate in descending order. At the bottom of the table, gender and age 

variables came with missing rates of 1% and 2% of respectively, this seems unrelated 

to other aspects such as socioeconomic status, disciplinary problems, or any other 

study-related attributes. However, it is most likely caused by an administrative 

mistake or a data storage failure. 
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On the other hand, we have noticed considerably high missing rates in attributes that 

are related to historical queries, for example asking patients whether they suffered 

from infantile colic, such responses may not be known for patients themselves, 

particularly for older patients. This is quite a common type of missing values, where 

responses are usually "Don't know" or questions are skipped. At the top of the table, 

some variables are completely missing for example, Fundoscopy explanation 

variable is 100% missing despite that Fundoscopy variable showed only 13% 

missing rate. This could be due to the difficulty of interpreting and converting a 

countless Fundoscopy explanation into numerical or categorical representations. 

Psychosis is another variable with 100% of missingness. The research team was 

aiming to collect this variable at the start of their study; however, it might have been 

left blank because it requires detailed explanation of test results or perhaps due to 

time limits. 

Table ‎4-2: Variable Summary 
a,b 

 Missing Valid 

N 

Mean Std. 

Deviation N Percent 

Fundoscopy explanation 832 100.0% 0   

PC Psychosis 832 100.0% 0   

Medication overuse duration 818 98.3% 14 3006.64 11128.535 

Pain killer using frequency 813 97.7% 19 40.89 60.688 

PC Obsession 793 95.3% 39   

MH Infantile colic 758 91.1% 74   

PC anxiety 745 89.5% 87   

Smoking duration 719 86.4% 113 8.075 8.2773 

MH OSAS 661 79.4% 171   

MH Snoring 659 79.2% 173   

Medication overuse 642 77.2% 190   

PC normal 625 75.1% 207   

Pericranial muscle tenderness 572 68.8% 260   

PC Depression 554 66.6% 278   

FH Psychopathology 537 64.5% 295   

FH Atopic disorder 537 64.5% 295   

FH Epilepsy 528 63.5% 304   

FH Heart disease 504 60.6% 328   

FH Diabetes 492 59.1% 340   

MH Oral contraceptive 489 58.8% 343   

S Allodynia 486 58.4% 346   

S Osmophobia 479 57.6% 353   

MH Coronary Artery disease 471 56.6% 361   

MH Diabetes 462 55.5% 370   

T Alcohol 461 55.4% 371   

FH Hypertension 455 54.7% 377   

MH Hypertension 428 51.4% 404   

T Skipping meals 425 51.1% 407   
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FH Headache 350 42.1% 482   

MH Homocysteinemia 174 20.9% 658   

MH Allergy 161 19.4% 671   

MH TIA/Stroke 151 18.1% 681   

MH Periodic vomiting 147 17.7% 685   

MH Atherosclerosis 144 17.3% 688   

MH Epilepsy 144 17.3% 688   

MH Motion Sickness 143 17.2% 689   

MH Abdominal pain 142 17.1% 690   

MH Surgery 139 16.7% 693   

MH Accident 135 16.2% 697   

MH Hyperlipidaemias 134 16.1% 698   

S Sleep disturbances 115 13.8% 717   

Fundoscopy 112 13.5% 720   

S Vertigo 110 13.2% 722   

T Positional association 106 12.7% 726   

T Seasonal 97 11.7% 735   

Smoking 91 10.9% 741   

S Dizziness 85 10.2% 747   

T Physical activity 84 10.1% 748   

Headache intensity 73 8.8% 759 7.29 1.767 

T Menstrual cycle 56 6.7% 776   

Neurological examination 48 5.8% 784   

T Emotional stress 43 5.2% 789   

Headache duration 37 4.4% 795 18.3996 18.86362 

Headache onset 34 4.1% 798 79.306 79.9491 

Headache frequency 26 3.1% 806 10.161 9.0164 

Headache characteristic 23 2.8% 809   

Headache location 22 2.6% 810   

S Vomiting 20 2.4% 812   

S Photophobia 16 1.9% 816   

S Phonophobia 16 1.9% 816   

Age of admission 16 1.9% 816 37.24 12.903 

Age 15 1.8% 817 44.83 13.825 

S Nausea 8 1.0% 824   

Gender 7 0.8% 825   

a. Maximum number of variables shown: 65 

b. Minimum percentage of missing values for variable to be included: 0.0% 

 

Although the above assumptions mostly refer to random mechanisms of missing 

response (i.e. MCAR or MAR), however further examination is required to identify 

the specific mechanism that the data belongs to. Accordingly, we have employed the 

separate-variance 𝑡 test to help in identifying the variables whose pattern of 

missingness might be influenced by other quantitative variables [83]. The separate-

variance 𝑡 tests table showed that Osmophobia was most likely to increase the 

duration of headache, when Osmophobia was missing; the mean headache duration 

was 17.82, compared to 24.23 when Osmophobia was non-missing. Similarly, the 
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duration of medication overuse was directly proportional to the duration of headache, 

when medication overuse was missing, the mean headache duration was 20.40, in 

comparison to 28.92 when medication overuse was non-missing. The 𝑡 tests table 

also revealed that older respondents are less likely to report infantile colic. When 

infantile colic is missing, the mean age was 45.77, compared to 36.97 when infantile 

colic was non-missing. Likewise, the missingness of headache duration was 

influenced by other variables such as Osmophobia and medication overuse.  

On the other hand, there were many other variables whose patterns of missingness 

have not been influenced by other quantitative variables. For example, the duration 

of medication overuse variable was not influenced by age, the mean age was 44 

when the duration of medication overuse was missing and non-missing. Likewise, 

the frequency of headache does not seem to have been influenced by either, duration 

of smoking or duration of medication overuse. Overall, the separate-variance 𝑡 test 

reveals that data may not be missing completely at random. 

To confirm this outcome, we have conducted the Little’s MCAR test with an 

embedded null hypothesis that assumes data are missing completely at random 

(MCAR). The result of this test appears in the footnote of expectation maximisation 

(EM) estimate table 4-3. The significant value is less than 0.05 in our test. This 

matches the conclusion that was derived from the separate-variance t test and can 

confirm that the data are not missing completely at random. Therefore, the data are 

most likely to be missing at random. For more details, the complete 𝑡 tests table is 

available in appendix A. 

Table ‎4-3: EM Means
a 

Age Age of 

Admission 

H. 

onset 

H. 

frequency 

H. 

duration 

Smoking 

duration 

P. 

killer 

Med. 

overuse 

44.83 37.24 79.306 10.161 18.3996 12.246 35.305 4306.815 

a. Little's MCAR test: Chi-Square = 153.301, DF = 89, Sig. = .000 

 

4.4.2.  Processing of missing data 

In general, missing data can be addressed using two different methods, complete case 

analysis or imputation methods. In the complete case analysis, each 𝑌𝑖 containing 𝑌𝑖
𝑚 

is deleted or ignored. Researchers are commonly using this method and it is the 
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default method in many statistical packages [73]. A survey study revealed that 97% 

of quantitative studies, that declared the existence of missing values, have used 

listwise deletion or pairwise deletion to handle missing data [84]. These methods can 

obtain reliable results when the missing pattern is MCAR [73, 82]. In imputation 

methods, 𝑌𝑖
𝑚 is filled with imputed values based on other 𝑌𝑖

𝑜 using different 

statistical measurements. Typically, the quality of statistical inference is inversely 

related to the proportion of missing values [81].  

Up to now, there is no agreed cut-off from the literature showing an acceptable 

percentage of missing values in a particular dataset for valid statistical inferences. 

Nevertheless, Schafer [85] has confirmed that a missing rate of 5% or less is 

insignificant, while Bennett [86] has stated that a missing rate of 10% would possibly 

lead to biased statistical analysis. Another study by Tabachnick and his colleague 

[87] showed that missing data mechanisms have more significant impact on 

statistical inferences than does the proportion of missing data, which makes the 

proportion of missing values not the main criterion to evaluate the missing data 

problem [81]. 

To address the issue of missing data, we are going to hold the stick from the middle. 

In other words, we are going to discard the variables that meet our threshold of 

missingness and impute the rest of variables as illustrated in figure 4-4. So let us 

assume that 𝑅 is the threshold of missingness, in this study 𝑅 = 1 5⁄ 𝑁, which means 

that any variable that has a missing rate greater than or equal to 𝑅 (i.e. 20% of the 

population 𝑁) will be discarded from statistical inferences and from the machine 

learning stage.  

We think that imputing variables with less than the threshold of missingness will not 

have a serious impact on the quality of statistical inferences and maintains our 

experiment at the safe side. This is quite different from what some studies have 

adopted, where generally they are neglecting the attributes that contain relatively low 

missing rates (e.g., usually less than 15%) and impute the attributes with high 

missing rates. This course of action might be applicable in certain research areas, but 

in healthcare applications, it undoubtedly leads to biased statistical inferences or 

over-fitted machine learning. 
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Figure ‎4-4: Our vision in handling missing data 

Although the complete case analysis method (listwise deletion) is the default method 

of handling missing data in many statistical packages, it is definitely not the 

appropriate selection for our case study because it eliminates all subjects Yi that have 

one or more missing values 𝑌𝑖
𝑚. Thus, the main disadvantage of the complete case 

analysis approach is that it is potentially wasteful [82], in particular with our dataset, 

where 100% of the cases have some sorts of missingness. Moreover, it is not safe to 

listwise delete cases with missing values as the data is MAR [83]. Therefore, we will 

discard variables that meet our threshold of missingness rather than listwise delete 

cases. To state the definition of our method formally, let 𝑃 be a set of variables (i.e. 

data columns), where 𝑃 = (𝑃1, 𝑃2, … , 𝑃𝑗) and 𝑗 is the dimensions of data set. The 

observed values in 𝑃𝑖 are collectively denoted as 𝑃𝑖
𝑜𝑏𝑠, while the missing values of 𝑃𝑖 

are collectively denoted as 𝑃𝑖
𝑚𝑖𝑠. Hence 𝑁 = ( 𝑃𝑖

𝑜𝑏𝑠,  𝑃𝑖
𝑚𝑖𝑠). Therefore, the first step 

in handling missing data would be discarding the variables that meet our threshold of 

missingness according to equation 1: 

 ∀ 𝑃𝑖 ∈ 𝑃 ↔  𝑃𝑖
𝑚𝑖𝑠 ≥ 𝑅 (1) 

 

In this context, any data column (i.e. variable) 𝑃𝑖 that has missing rate greater than or 

equal to 20% of the whole population will be discarded. Consequently, 30 out of 65 

attributes have been discarded from statistical inference and machine learning as a 

first stage. Although it is considered 46.1% of the attributes, however we have 

Headache data set 

P ≥ R 

Impute P Ignore P 

Yes No 

End 
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maintained 100% of subjects. Stated more precisely, the size of 𝑃 is reduced to 

preserve the size of 𝑁. Hence, we have a smaller size data matrix 𝑌 = 𝑁𝑥𝑃 with 

missing rates less than 𝑅, but with the same number of patients. Moreover, the 

majority of discarded attributes are belonging to historical factors, where all family 

history variables are neglected and less than half of the medical history as well. 

Indeed, these variables are unrelated to the diagnosis of primary headache disorders 

as explained by the criteria of IHS [3], which indicates that omitting the outlined 

variables will not expect to weaken the characteristics of data in particular for 

applying machine-learning methods. 

4.4.3.  Multiple imputations 

Imputation is the process of replacing missing values with plausible ones, which are 

derived from observed values. In this study, imputation is the second step toward 

handling missing values in the remaining variables, where 𝑃𝑖
𝑚𝑖𝑠 < 𝑅. Let us assume 

that 𝑦 is a missing value belong to 𝑃𝑖
𝑚𝑖𝑠 in a particular 𝑃𝑖, carrying out the imputation 

on a multivariate basis would depend on using the complements of 𝑃𝑖, in other 

words, using the observed values in the remaining columns 𝑃−𝑖 as predictors. In 

contrast, conducting the imputation on a univariate basis would be independent 

of 𝑃−𝑖, but using 𝑃𝑖
𝑜𝑏𝑠 of the corresponding 𝑃𝑖, which means using the observed 

values from the same column as predictors.  

The imputation on a univariate basis (i.e. single imputation) is a very common 

method to address missing values. There are several imputation methods that impute 

missing values on a univariate basis. For example, mean imputation is a single 

imputation method that replaces 𝑃𝑖
𝑚𝑖𝑠 with the average of  𝑃𝑖

𝑜𝑏𝑠 in the same 𝑃𝑖. Mean 

imputation is a fast and straightforward method to impute missing values; in 

particular, it maintains the mean of variables when the missing pattern is MCAR. 

However, many studies have considered that it is most likely to underestimate the 

variance of the data because it returns a single imputation value for each missing 

entry in the incomplete variables [76, 82]. In other words, the same value (i.e., mean 

of observed values) will be used to impute all missing entries. 

Last observation carried forward (LOCF) is another single imputation method that 

replaces 𝑃𝑖
𝑚𝑖𝑠 with the latest observed value in 𝑃𝑖

𝑜𝑏𝑠 of that same subject or 



51 
 

participant. This method is commonly used in longitudinal studies, where 

participants drop out at some point. LOCF can be valid only when missing values are 

MCAR; however, it is most likely to produce biased estimates particularly when 

variables have different level of measurements, such as nominal, ordinal or ratio 

scales [88]. Therefore, proper accounting of such a variety of scales seems to be 

inconceivable and potentially leads to impossible values such as negative values 

[79]. Hot-deck imputation is a very common single imputation method, which 

replaces 𝑃𝑖
𝑚𝑖𝑠 for a particular participant with  𝑃𝑖

𝑜𝑏𝑠 of a similar participant called 

donor. Despite its simplicity, the quality of imputed data using the hot-deck 

imputation method is somewhat similar to the quality of imputed data using nearest 

neighbour method however, hot-deck imputation method is considerably faster [89]. 

Although the imputation of missing values on a univariate basis is simple to 

implement and easy to use, however Myers in [90] has encouraged the research 

community to avoid using this method when addressing missing data because it 

involves undesirable concessions in statistical power and may leads to biased 

estimates. Kombo and his colleagues in [91] stated that there is no guarantee that 

conducting imputation on a univariate basis leads to a valid analysis even with a 

strong MCAR assumption. Moreover, it is not safe to impute missing values on a 

univariate basis when data are missing at random MAR [83]. Therefore, this study is 

going to adopt imputation on a multivariate basis using a more sophisticated 

imputation method to address the missing values problem. In fact, advances in 

computational statistics contribute toward a new wave of flexible as well as formally 

justifiable imputation methods with a solid statistical basis such as maximum 

likelihood estimation (MLE) and multiple imputations (MI) [91, 92]. These 

sophisticated methods are not focusing on replacing missing values only, however 

they are concerned with getting an accurate estimates of those values as well [90]. 

Maximum likelihood estimation (MEL) considers the observed values as a 

representative sample of some distribution, then using an iterative optimisation 

algorithm, MLE estimates parameters that maximise the likelihood of making the 

observed values given the parameters [90, 92]. For example, MLE can estimate 

unknown parameters (e.g. mean and variance) of a normally distributed missing data 

when some samples of data are observed. Although MEL can be simple and 

preferable to handle missing values in several scenarios, however with mixtures of 
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categorical and continuous variables, MLE is not the optimal method as reported by 

Enders in [92]. In contrast, multiple imputations (MI) offer the flexibility to handle 

missing values to fit a certain set of analysis objectives and can impute all types of 

variable including nominal, categorical, ordinal, continuous and binary variables [91, 

92]. MI creates multiple imputed datasets, typically two to five, by replacing each of 

the missing values with a set of plausible values [74, 90-92]. 

In 1987, MI proposed by Rubin and has become probably the most popular method 

in addressing missing data due to its convenience, flexibility and considering the 

uncertainty associated with imputation [74, 91]. In general, MI employs a regression 

model to fill in missing data on a multivariate basis, where MI treats variables with 

missing values as outcomes and the rest of variables as predictors. Moreover, it uses 

Bayesian estimation through iterative algorithm to update the regression parameters 

with each iteration to avoid using a single set of regression parameters for imputation 

[92]. After generating 𝑚 imputed data sets, where 𝑚 ≥ 2, the researcher then 

performs a number of statistical analyses for each imputed data set to obtain 

imputation-specific parameter estimates. Then these estimates are pooled into a 

single set of results [88]. Finally, the 𝐷 imputed data sets are averaged to generate a 

single complete data set that is used for classification or clustering purposes [74]. 

In this study, we are going to adopt multiple imputations to handle missing data 

where 𝑃𝑖
𝑚𝑖𝑠 < 𝑅. This is mainly because MI is the most sophisticated method that 

considers the uncertainty associated with the imputation process and it is available in 

many specialised statistical packages including SAS, SPSS, Stata and the MICE 

package in R. In addition to the fact that MI supports a mixture of variables, which is 

what we have in the headache data set that includes continuous, categorical, ordinal 

and binary variables. Craig has confirmed that MI is generally a more suitable 

method to address behavioural science missing data because it allows the researchers 

to customise the imputation procedure to meet the desired goals [92]. Furthermore, it 

is recommended by the statistical package SPSS that using multiple imputations is 

safe when data is missing at random [83].  

After declaring the pathway for imputation process, we are going to use SPSS 

statistical software to perform multiple imputations 𝑚 times, where in this study 𝑚 =

5. This means creating five imputed data sets, which is typically sufficient. The next 
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step is to define the imputation method, where the fully conditional specification 

(FCS) method is automatically selected by SPSS as the data showed an arbitrary 

pattern of missingness rather than a monotone pattern of missingness. FCS is an 

iterative Markov Chain Monte Carlo (MCMC) method that fits a particular 

imputation model for each variable with missing values. Then FCS, with each 

iteration, uses all other variables in the model as predictors to impute missing values 

for the variable being fit [83]. SPSS uses Linear regression (LINR) to impute 

continuous variables and Logistic regression (LOGR) to impute categorical variables 

as shown in imputation models table 4-4. 

Table ‎4-4: Imputation Models 

Variables Models Effects Missing imputed 

Gender LOGR All variables except gender 6 30 

S Nausea LOGR All variables except nausea 8 40 

Age LINR All variables except age 15 75 

Age of admission LINR All variables except age of admission 16 80 

S Phonophobia LOGR All variables except phonophobia 16 80 

S Photophobia LOGR All variables except photophobia 16 80 

S Vomiting LOGR All variables except vomiting 20 100 

H location LOGR All variables except headache 

location 

22 110 

H characteristic LOGR All variables except headache 

characteristic 

23 115 

H frequency LINR All variables except headache 

frequency 

26 130 

H onset LINR All variables except headache onset 34 170 

H duration LINR All variables except headache 

duration 

38 190 

T Emotional 

stress 

LOGR All variables except emotional stress 43 215 

Neurological 

exam. 

LOGR All variables except neurological 

exam. 

48 240 

T Menstrual 

cycle 

LOGR All variables except menstrual cycle 56 280 

H intensity LINR All variables except headache 

intensity 

73 365 

T Physical 

activity 

LOGR All variables except physical activity 84 420 

S Dizziness LOGR All variables except dizziness 85 425 

Smoking LOGR All variables except smoking 91 455 

T Seasonal LOGR All variables except seasonal 97 485 

T Positional 

association 

LOGR All variables except positional 

association 

106 530 

S Vertigo LOGR All variables except vertigo 110 550 

Fundoscopy LOGR All variables except Fundoscopy 112 560 

S Sleep 

disturbances 

LOGR All variables except sleep 

disturbances 

115 575 
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MH 

Hyperlipidaemias 

LOGR All variables except 

hyperlipidaemias 

134 670 

MH Accident LOGR All variables except accident 135 675 

MH Surgery LOGR All variables except surgery 139 695 

MH Abdominal 

pain 

LOGR All variables except abdominal pain 142 710 

MH Motion 

Sickness 

LOGR All variables except motion Sickness 143 715 

MH Epilepsy LOGR All variables except epilepsy 144 720 

MH 

Atherosclerosis 

LOGR All variables except atherosclerosis 144 720 

MH Periodic 

vomiting 

LOGR All variables except periodic 

vomiting 

147 735 

MH TIA/Stroke LOGR All variables except TIA/Stroke 151 755 

MH Allergy LOGR All variables except allergy 161 805 

 

Let us assume that 𝑦 is a continuous variable, linear regression uses 𝑦 as the 

dependent variable and all other variables as explanatory variables in the regression 

model. Linear regression uses the complete cases to fit the regression model and 

impute missing values. The imputation values of the continuous variable 𝑦 may fall 

outside the range of observed values, therefore the imputation values can be 

restricted within a user-specified range. Similarly, let us consider 𝑦 is a categorical 

variable with 𝐾 categories, where 𝐾 ≥ 2. Logistic regression uses 𝑦 as the dependent 

variable and all other variables as explanatory variables. Then using the complete 

cases, logistic regression fits the regression model to impute missing values [83].  

The imputation process repeats five times, as we specified 𝑚 = 5, to create five 

imputed data sets and the variations among the imputed data sets represent 

uncertainty in the imputation process. Once the imputation process is accomplished, 

the imputed data sets are analysed separately to generate multiple analysis results. 

These results (i.e. parameters to be estimated such as mean or regression coefficient) 

are then combined in the pooling approach, where the notation 𝑄(𝑋, 𝑌) denotes a 

function of 𝑋 and 𝑌. For 𝑚 imputed data sets, the estimate 𝑄 and the estimated total 

variance 𝑇 are calculated as described by Rubin’s rules [83, 93]. 

 Q =
1

m
∑ Q̂(i)

m

i=1

 (2) 

 𝑇 = 𝑈 + (1 +
1

𝑚
) 𝐵 (3) 
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 𝐵 =
1

𝑚 − 1
∑(𝑄̂(𝑖) − 𝑄)2

𝑚

𝑖=1

 (4) 

 𝑈 =
1

𝑚
∑ 𝑈(𝑖)

𝑚

𝑖=1

 (5) 

 

Where 𝑄 is the final combination of estimate 𝑄, and 𝑄 = (𝑄1, … , 𝑄𝑘), which is the 

parameter to be estimated with 𝑘 elementns. 𝑄̂(𝑖) = (𝑄̂1
(𝑖)

, … , 𝑄̂𝑘
(𝑖)

), which is the 

estimated parameter using 𝑖𝑡ℎ set of imputed data and 𝑖 = 1, … , 𝑚. B and U are 

respectively the between-imputation and the average within-imputation variance 

calculated by the equations 4 and 5. Finally, 𝑈(𝑖) is the estimated covariance matrix 

of 𝑄̂(𝑖) [83, 93]. 

The pooling approach combines the analysis results of every individual imputed data 

set to provide a comprehensive look at estimates. Table 4-5 compares the original 

and imputed data sets to ascertain whether the range seems acceptable. It shows the 

statistical estimates of continuous variables that were imputed using linear 

regression. The pooled estimates are presented at the bottom part of the table, where 

they are quite similar to the estimates obtained from original data. For example, the 

pooled mean age is 44.85, compared to 44.83 for the original data. Likewise, the 

pooled mean age of admission is 37.28 in comparison with 37.24 for the original 

data. For headache variables, the differences in the means between the pooled and 

original estimates are 0.53, 0.39 and 0.11 for headache onset, duration and frequency 

respectively. The lowest change in the mean is for headache intensity variable by 

0.01 only. The pooling does not average the standard deviations; however, the 

original and imputed data sets nearly have the same estimates. For instance, the 

standard deviation of age in the original data is 13.82, compared to 13.73, 13.72 and 

13.75 for the imputed data sets. 
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Table ‎4-5: Statistics for MI 

Imputation Number Age Age of 

admission 

Headache 

onset 

Headache 

duration 

Headache 

intensity 

Headache 

frequency 

Original 

data 

N Valid 817 816 798 794 759 806 

Missing 15 16 34 38 73 26 

Mean 44.83 37.24 79.306 18.3996 7.29 10.161 

Std. Error of Mean .484 .452 2.8302 .66944 .064 .3176 

Median 44.00 38.00 48.000 12.0000 7.00 7.000 

Std. Deviation 13.825 12.903 79.9491 18.86362 1.767 9.0164 

Variance 191.13

7 

166.490 6391.862 355.836 3.122 81.295 

Percentiles 25 34.00 28.00 17.000 3.0000 6.00 4.000 

50 44.00 38.00 48.000 12.0000 7.00 7.000 

75 55.00 46.00 120.000 24.0000 8.00 15.000 

1 N Valid 832 832 832 832 832 832 

Missing 0 0 0 0 0 0 

Mean 44.86 37.29 79.461 18.8068 7.30 10.210 

Std. Error of Mean .476 .444 2.7445 .65901 .061 .3120 

Median 44.00 38.00 55.021 12.0000 7.00 7.921 

Std. Deviation 13.739 12.817 79.1635 19.00888 1.750 9.0008 

Variance 188.76

7 

164.269 6266.859 361.337 3.062 81.014 

Percentiles 25 34.00 28.00 18.000 3.0000 6.00 4.000 

50 44.00 38.00 55.021 12.0000 7.00 7.921 

75 54.00 46.00 120.000 24.0000 8.63 15.000 

2 N Valid 832 832 832 832 832 832 

Missing 0 0 0 0 0 0 

Mean 44.85 37.28 80.236 18.8667 7.29 10.255 

Std. Error of Mean .476 .445 2.7642 .65458 .061 .3137 

Median 44.00 38.00 58.000 12.0000 7.00 7.891 

Std. Deviation 13.735 12.822 79.7309 18.88105 1.751 9.0498 

Variance 188.64

0 

164.393 6357.009 356.494 3.067 81.900 

Percentiles 25 34.00 28.00 18.000 3.0000 6.00 4.000 

50 44.00 38.00 58.000 12.0000 7.00 7.891 

75 54.75 46.00 120.000 24.0000 8.41 15.000 

3 N Valid 832 832 832 832 832 832 

Missing 0 0 0 0 0 0 

Mean 44.85 37.28 79.548 18.8219 7.30 10.311 

Std. Error of Mean .476 .444 2.7440 .65371 .060 .3132 

Median 44.00 37.92 57.250 12.0000 7.00 8.000 

Std. Deviation 13.720 12.815 79.1487 18.85594 1.742 9.0335 

Variance 188.22

9 

164.214 6264.521 355.547 3.036 81.604 

Percentiles 25 34.00 28.00 18.000 3.0000 6.00 4.000 

50 44.00 37.92 57.250 12.0000 7.00 8.000 

75 54.00 46.00 120.000 24.0000 8.51 15.000 

4 N Valid 832 832 832 832 832 832 

Missing 0 0 0 0 0 0 

Mean 44.87 37.29 79.755 18.7336 7.31 10.314 

Std. Error of Mean .477 .445 2.7414 .65210 .061 .3157 

Median 44.00 38.00 60.000 12.0000 7.00 8.000 

Std. Deviation 13.758 12.832 79.0742 18.80949 1.754 9.1068 

Variance 189.29

3 

164.656 6252.730 353.797 3.077 82.933 

Percentiles 25 34.00 28.00 18.000 3.0000 6.00 4.000 

50 44.00 38.00 60.000 12.0000 7.00 8.000 

75 54.06 46.00 120.000 24.0000 8.57 15.000 

5 N Valid 832 832 832 832 832 832 

Missing 0 0 0 0 0 0 

Mean 44.84 37.26 80.195 18.7249 7.31 10.269 

Std. Error of Mean .476 .444 2.7516 .65146 .061 .3115 
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Median 44.00 38.00 60.000 12.0000 7.00 8.000 

Std. Deviation 13.739 12.809 79.3671 18.79084 1.753 8.9853 

Variance 188.76

4 

164.064 6299.131 353.096 3.073 80.736 

Percentiles 25 34.00 28.00 18.000 3.0000 6.00 4.000 

50 44.00 38.00 60.000 12.0000 7.00 8.000 

75 54.00 46.00 120.000 24.0000 8.51 15.000 

Pooled N Valid 832 832 832 832 832 832 

Missing 0 0 0 0 0 0 

Mean 44.85 37.28 79.839 18.7908 7.30 10.272 

Std. Error of Mean .476 .445 2.7773 .65752 .061 .3168 

Fraction Missing Info. .001 .001 .020 .010 .019 .023 

Relative Increase 

Variance 

.001 .001 .021 .010 .019 .023 

Relative Efficiency 1.000 1.000 .996 .998 .996 .995 

 

Furthermore, a head-to-head comparison using multiple regression analysis is 

typically an appropriate way to assess the overall accuracy and reliability of imputed 

data sets. Table 4-6 shows the summary of estimates generated by the regression 

model for each imputed data set individually. The coefficient of determination (R 

Squared) is the percentage of variance explained by the model. In other words, R 

Squared tells us how much of the variance in the dependent variable (Diagnosis) is 

explained by all other variables (Predictors). R Squared is simply the square of the 

correlation coefficient R and it ranges from zero to one, where the higher coefficient 

indicates better goodness of fit for the observations [94]. In our case, .891 is the 

value of R Squared for the original data. This means that our model explains 89.1 

percent of the variance in the diagnosis, which is a significantly good result. If we 

compare the R Squared of original data to those from the imputed data sets, we can 

observe that they are very similar, which implies the diminutive changes of variance. 

Another statistical measure we can use to compare original and imputed data sets is 

the standard error of estimate, which is the average distance that the observed values 

fall from the regression line [94]. For original data, the standard error of estimate is 

.696, which is also quite similar to those from imputed data sets. To summarise the 

statistical results according to tables 4-5 and 4-6, the multiple imputations process 

using FCS method reveals significantly acceptable pooled results that are confirmed 

by multiple regression analysis. 

 

 

 



58 
 

Table ‎4-6: Model Summary 

Imputation Number Model R R
2
 Adjusted R

2
 Std. Error of the 

Estimate 

Original data 1 .944 .891 .883 .696 

1 1 .937 .878 .873 .726 

2 1 .937 .879 .874 .725 

3 1 .938 .879 .874 .724 

4 1 .939 .882 .877 .714 

5 1 .938 .879 .874 .723 

 

4.4.4.  Dichotomous and categorical variables 

In the multiple imputations process, there were 26 variables imputed using logistic 

regression, two of them are categorical variables (i.e. headache characteristics and 

headache location) and the rest are dichotomous variables. The dichotomous 

variables were coded as one for the presence of a certain condition and zero 

otherwise. In general, multiple imputations maintain the frequencies of these 

variables. For example, with 0.7% missing values in the gender variable, 22.5% of 

patients were male and 76.8% were female in the original data, compared to 22.63% 

male and 77.37% female in the pooled estimate.  

It is obvious that multiple imputations preserve male to female ratio, where it was 

about 1/3.41 in both the original and pooled estimate. Similarly, the presence of 

nausea in headache has been reported by 40.4% of the patients in the original data, 

while it was 40.6% in the pooled estimate. In the original data, 68.4% of the patients 

had denied the presence of vomiting as a headache symptom (considering the 2.4% 

of missing values), compared to 69.3% for the pooled estimate. Furthermore, 34.1% 

of the patients in the original data had not experienced phonophobia, compared to 

34.4% in the pooled estimate. Overall, all the different statistical tests that were 

carried out to measure the accuracy and plausibility of multiple imputations have 

revealed a considerably good result, where the multiple imputed data sets were quite 

similar to the original one. This was clear through the pooled estimates and 

confirmed by the regression analysis. 
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4.5. Data normalisation 

Data normalisation is the process of rescaling the quantitative attributes with the 

intention to eliminate impacts of having different levels of measurement [95]. In 

other words, data normalisation can be employed to get all the quantitative attributes 

on the same scale. Normalisation is usually applied before learning and feature 

selection stages mainly because having disparate scales tends to complicate the 

comparison of attributes and can influence the algorithm’s ability to learn. Let us 

consider the age of patients ranges from 15 to 85 and the headache intensity is 

between 1 and 10 on a visual analogue scale. Thus, the values in the age attribute are 

very large when compared to the values in the headache intensity attribute. Then, in 

this case attributes may overwhelm each other, which impacts the algorithm’s ability 

to learn and influences the measure of similarity or distance among cases [96]. 

It has been shown in literature that data normalisation could improve overall 

performance. As mentioned in [97], normalising the data has a great effect on the 

training process in particular for neural network, which can be very slow when fed 

with raw inputs. Another experimental study conducted by Jin and others [98] 

reported that using normalisation methods in general can remarkably increase the 

training speed of neural network. Furthermore, the predictive performance of 

multilayer perceptron neural network was further improved after normalising the 

data in one of our previous studies [95], where R Squared has improved by 0.15 and 

root mean square of error was slightly decreased. 

Data can be normalised using different rules including arithmetic rules using 

minimum and maximum values, statistical rules using mean and standard deviation, 

or using sigmoid normalisation function. In general, all different normalisation 

techniques transform values of the quantitative attributes to lie within a predefined 

range such as (0, 1) or (-1, 1). In this study, I am going to normalise the quantitative 

attributes using min-max normalisation method. This means that the largest value for 

those attributes will be one and the smallest value will be zero according to the 

following equation [96-98], 

 𝑥𝑛 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

(6) 
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where 𝑥 is a certain value to be normalised, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum and 

maximum observed values of a given quantitative attribute 𝑃𝑖,  𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ∈ 𝑃𝑖 

and 𝑥𝑛 is the new value of 𝑥. Selecting the range of (0, 1) rather than (-1, 1) for data 

normalisation is essentially to unify the quantitative variables with dichotomous 

variables. Thus, all data attributes will have a minimum value of zero and maximum 

of one as shown in table 4-7. The main advantage of using the min-max 

normalisation method is it maintains exactly all relationships in the data [97]. 

Table ‎4-7: Descriptive statistics of quantitative attributes after normalisation 

Data attributes N Minimum Maximum Mean Std. Deviation 

Age 832 .00 1.00 .4263 .19627 

Age of admission 832 .00 1.00 .4585 .19407 

Headache duration 832 .00 1.00 .2692 .26637 

Headache onset 832 .00 1.00 .2099 .22008 

Headache intensity 832 .00 1.00 .6156 .25042 

Headache frequency 832 .00 1.00 .1642 .15101 

Valid N (listwise) 832 

 

 

4.6. Chapter summary 

Comprehensive processing stages have been carried out in this chapter. We start the 

chapter by describing the data attributes and identifying their level of measurement. 

Detecting and processing outliers was the first step of the data processing journey, in 

which we have employed the winsorising method to modifying outliers to the next 

highest or lowest values within the distribution. Then, we have handled missing data 

using multiple imputations to generate five complete data samples that have been 

analysed and tested. Finally, we ended the journey of data processing by normalising 

the data using the min-max normalisation method in order to have all data attributes 

on the same scale. 
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CHAPTER 5: PREDICTIVE MODELS 

5.1. Introduction  

The advances in data collection capabilities have led to exponential growth of both 

data dimensionality and sample size. Nowadays, the data are overwhelmed with a 

large number of features, particularly within the healthcare sector. In general, 

machine-learning algorithms attempt to learn patterns in data and discover relations 

among features (i.e. variables); therefore reducing the number of features in a given 

data set is a fundamental step in building an accurate predictive model. This chapter 

starts with introducing three different methods of feature selection and then uses a 

majority vote to obtain the most representative subset of data features. Each one of 

the selected features will be analysed to investigate its discriminatory power. This 

chapter also discusses the imbalance of class distribution and presents the methods to 

address this issue. In this chapter, a number of predictive models will be created and 

evaluated using a range of statistical metrics. Finally, the chapter ends with pooling 

the results and discussing the advantages and disadvantages of each predictive 

model. 

5.2. Feature selection 

Feature selection is the process of selecting a relevant smaller subset of features in 

order to enhance the performance of machine-learning algorithms and to minimise 

the cost of building a predictive model [99, 100]. It is often the case that different 

features possess different quantities of information. Thus to maintain high 

performance of classifiers, the researchers are usually preserving the most relevant 

features whilst discarding irrelevant, redundant, or noisy ones. The aim of this 

section is to select a subset of headache features that will in one way or another 

provide more information or describe the proposed data more than any other 

combination. Kumar and his partner in their literature review [101] have reported 

that selecting the correct subset of features would improve classifiers’ performance 

in several ways such as, reducing the size and complexity of problem, improving 

learning speed, minimising the possibility of over-fitting to irrelevant features, and 

enhancing generalisation capacity. 
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Many feature selection methods usually use a feature ranking metric as their primary 

or secondary mechanism to select features. Ranking algorithms determine the 

strength of a particular feature in discriminating instances into different classes, and 

then high ranked features are selected [102]. In the literature, many different 

approaches are already proposed to handle feature selection. These approaches are 

broadly divided into two general categories, wrapper approach and filter approach 

[103, 104]. The wrapper approach uses a classifier’s performance as an assessment 

measure to score feature subsets. Each new subset is used to train a classifier, which 

is tested using cross validation or holdout method. Measuring the classifier's 

accuracy and error rate provides a rating score for that subset [104]. As the wrapper 

approaches train and test a particular classifier for each subset, they are very 

computationally intensive in particular for high dimensional data, where the size of 

the search space for n features is 𝑂(2𝑛) [105]. Generally, the wrapper approach 

provides an ideal performing subset of features; however, it conducts the selection of 

features subset as a black box, which is the main disadvantage of this approach. On 

the other hand, the filter approach gives heuristic using pre-processing steps and 

works independently from the learning algorithm [105]. In contrast to the wrapper 

approach, the computational cost is much less while selecting the features subset. 

The filter approach attempts to select an optimal subset of features based on 

distinctive characteristics, where it assigns some weights to the features based on 

statistical relations with the class labels [103]. 

Considering the large number of headache features in our data set, and to ensure the 

best possible selection of features subset, we adopt a majority vote of three different 

methods. Our hypothesis is to employ two filter approaches and one wrapper 

approach, then consider the majority vote to select the best subset of headache 

features. Information gain (IG) and symmetrical uncertainty (SU) are the two filters, 

while multilayer perceptron (MLP) neural network is the third method. Although 

using MLP for feature selection poses a huge computational cost, it considers a 

combination of features to find a subset with the highest predictive value to boost 

classification accuracy. Conversely, filters are considering features in isolation from 

each other. Using statistical analysis, filters evaluate the power of features 

individually in distinguishing instances into different classes. Therefore, a 
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combination of filters and wrapper methods would ensure selecting the best 

performing subset of features. 

5.2.1.  Information gain (IG) 

In the field of machine learning, information gain (IG) is the most widely used 

feature selection method. The state-of-the-art concept behind using IG is to select an 

ideal subset of features that explains the most information about the classes [106]. 

With our proposed data set, IG evaluates the worth of headache features by 

measuring the information gain with respect to the type of primary headache 

disorders. IG is an information theoretic criterion and entropy-based evaluation 

method. Entropy is the negative of information and can be seen as a measure of 

system’s unpredictability [107, 108]. The higher the entropy of the feature, the more 

information is required to identify the type of headache. Likewise, the lower the 

entropy of the feature, the less information is required to recognise the type of 

headache. The information contained in a discrete distribution of feature X can be 

given by, 

 𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖)

𝑖

𝑙𝑜𝑔2 𝑝(𝑥𝑖) (7) 

The 𝑥𝑖𝑠 are the discrete feature values and 𝑝(𝑥𝑖) is its probability [109]. In a given 

data set S, let us consider that X is the type of primary headache disorder, and Y is a 

particular headache feature. If the observed values of X (i.e. headache type) are 

classified based on the values of feature Y, and the entropy of X with regards to the 

classification that is induced by Y is less than the entropy of X before classification, 

then we can conclude that there is a relationship between X and Y [110]. Then, the 

information embedded in this joint distribution is provided by, 

 𝐻(𝑋|𝑌) = − ∑ 𝑝(𝑦𝑗)

𝑗

∑ 𝑝(𝑥𝑖|𝑦𝑗) 𝑙𝑜𝑔2 𝑝(𝑥𝑖|𝑦𝑗)

𝑖

 (8) 

where 𝑝(𝑥𝑖, 𝑦𝑗) is the joint probability [109]. Mutual information (MI) offers a good 

measure of feature worth, where a headache feature is more important when the 

mutual information MI(Y, X) between the type of headache and the feature 

distributions is greater [109]. Information gain is a similar measure, where IG is the 
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amount of information that is obtained after removing the uncertainty, and defined in 

the following equation. 

 𝐼𝐺(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (9) 

 The conditional entropy 𝐻(𝑋|𝑌) is calculated between a particular headache feature 

and the type of headache, where the higher value of mutual information, the larger 

the IG. This indicates better discriminative power in classifying different types of 

primary headache and the lower probability error. 

With a full list of headache features, IG uses the ranker method to rank headache 

features by their individual evaluation in a descending order. Features arranged from 

largest IG to smallest IG. To reduce the feature set, we identified an IG threshold of 

0.15, by which headache features with less discriminative power can be discarded. 

Table 5-1 demonstrates the top-ranked headache features, whose IGs are greater than 

the predefined threshold. The selected features constitute about one-third of the 

original feature list, while the remaining two thirds of the features have failed to 

satisfy the IG threshold. Although, dizziness symptom was the closest headache 

feature to the selected list, however with an IG of 0.124, it has been discarded. All 

headache features that belong to the trigger's section have recorded an IG value of 

less than 0.085, in which physical activity gains the lowest IG. Likewise, features 

that fall under medical history have revealed negligible IG. 

Table ‎5-1: Top-ranked features using IG 

No. Features Average merit Average rank 

1 Neurological exam. 0.308 +- 0.006 1.3 +- 0.46 

2 Headache frequency 0.305 +- 0.007 1.7 +- 0.46 

3 Headache char. 0.271 +- 0.009 3.1 +- 0.3 

4 Headache location 0.254 +- 0.01 3.9 +- 0.3 

5 S. photophobia 0.233 +- 0.01 5.4 +- 0.49 

6 Headache intensity 0.222 +- 0.009 5.6 +- 0.49 

7 Headache duration 0.203 +- 0.007 7.3 +- 0.46 

8 S. nausea 0.199 +- 0.006 8.2 +- 1.08 

9 Fundoscopy test 0.191 +- 0.005 9.1 +- 0.3 

10 S. phonophobia 0.187 +- 0.008 9.5 +- 1.02 

11 S. vomiting 0.174 +- 0.007 10.9 +- 0.3 
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5.2.2.  Symmetrical Uncertainty (SU) 

Symmetrical uncertainty is a filter method that assesses the goodness of features in 

classifying instances into different classes. Let us consider that X is a certain 

headache feature and Y is the type of primary headache (i.e. class attribute). The 

greater SU(X, Y) value (i.e. closest to 1) means that feature X has the ability to predict 

primary headache disorders with high accuracy. Conversely, SU(X, Y) equal to zero 

means that X and Y are entirely independent [111, 112]. In general, the value of SU is 

normalised between zero and one. Symmetric uncertainty, equation 10, compensates 

for the bias of mutual information towards features with large number of values 

[113] such as headache frequency and duration. 

 𝑆𝑈(𝑋, 𝑌) = 2 
𝐼𝐺(𝑋, 𝑌) 

𝐻(𝑋) +  𝐻(𝑌)
 (10) 

Information gain was a measure of the dependency between headache features and 

the type of headache; therefore, we selected symmetrical uncertainty as a measure of 

correlation between headache features and the type of headache. This method gives 

weight to the headache features depending on their SU value and compensates for the 

IG’s bias towards features that have more values [111]. Similarly, SU uses the ranker 

method to rank headache features in descending order according to their SU value. 

Table 5-2 shows the top-ranked headache features with threshold of 0.15. 

Table ‎5-2: Top-ranked features using SU 

No. Features Average merit Average rank 

1 Neurological exam. 0.269 +- 0.005 1 +- 0 

2 Headache frequency 0.246 +- 0.005 2 +- 0 

3 Headache location 0.223 +- 0.008 3 +- 0 

4 Headache char. 0.203 +- 0.01 4.4 +- 0.49 

5 S. photophobia 0.201 +- 0.009 4.6 +- 0.49 

6 S. nausea 0.172 +- 0.006 6.5 +- 0.92 

7 S. phonophobia 0.165 +- 0.007 7.3 +- 1.1 

8 Fundoscopy test 0.164 +- 0.004 7.5 +- 0.5 

9 S. vomiting 0.156 +- 0.006 8.7 +- 0.46 
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5.2.3.  Multilayer perceptron (MLP) 

MLP is a feed-forward neural network with input layer, output layer and one or more 

hidden layers in between. Feed-forward indicates that the data flows in only one 

direction, i.e. from input to output layer [114]. Layers are consisting of a set of 

neurons (i.e. perceptrons). Each layer is fully connected to the next one, except 

output layer. All these connections possess weights, which are randomly assigned at 

first. Neurons receive inputs from an external source or other neurons. In a typical 

multilayer perceptron model (figure 5-1), each single neuron performs a weighted 

sum of its inputs, i.e. the neuron adds up its inputs (𝑥1, 𝑥2, … , 𝑥𝑖), 

weights (𝑤1, 𝑤2, … , 𝑤𝑖), in addition to the bias b as given by equation 11 [115]. 

Then, neuron thresholds the result using non-linear activation function, usually with 

a sigmoid activation function (equation 12). The activation function maps the 

neuron's output Y to a range between zero and one according to the weighted sum 

and a certain threshold (equation 13) [116]. 

 

Figure ‎5-1: A typical MLP neural network 

Error at neuron’s output is calculated as the difference between desired and predicted 

output values 𝛿 =  𝑌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −  𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. If the predicted output was exactly like or 

similar to the desired output (i.e. that already known), then, the predictive 

performance is satisfactory and there is no need to adjust neuron weights. Otherwise, 

to reduce error at neuron’s output, the backpropagation training method adjusts the 

weights to some extent in an adverse direction to the gradient [117]. 

Backpropagation adjusts the weights according to the error and learning rate 𝜂 as 

shown in equation 14, and then propagates the adjusted weights 𝛥𝑤 backwards via 
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network beginning at output units. This procedure is repeated until the output error is 

below a predefined threshold [118]. 

 𝑆 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏
𝑖

 (11) 

 𝑓(𝑆) =
1

1 + 𝑒−𝑥
 (12) 

 𝑌 =  {

0    𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖
𝑖

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

1    𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖
𝑖

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (13) 

 𝛥𝑤 =  𝜂. 𝛿𝑗 . 𝑥𝑖 (14) 

MLP has been widely used for an enormous range of supervised classification and 

regression problems in diverse areas of research. Paliwal and Kumar [119] have 

presented a comparative review of the use of MLP using 73 various studies that 

addressed many different application areas. Besides this, MLP is one of the most 

successful wrapper approaches used for feature selection over the last decade [120, 

121]. MLP may start with an empty set of features, all features, or an arbitrary point 

in the search space. Then using a greedy approach, headache features are 

sequentially added and/or removed until no single feature can contribute to a better 

overall performance. 

In this study, we use the performance of MLP to evaluate the goodness of the 

selected subset of features. To be more specific, we use a measure that combines 

precision and sensitivity (i.e. F-measure) as recommended by Kim and his colleagues 

[122]. F-measure is a harmonic representation of precision and sensitivity (or also 

known as recall) that is calculated using confusion matrix [122]. The total number of 

headache features subsets (i.e. combinations) that were evaluated using MLP was 

274 subsets, in which MLP consumes approximately 160 minutes for training and 

testing using 10 folds cross validation method. With a predefined learning threshold 

of 0.8, table 5-3 considers a combination of headache features that would ensure 

output values that exceed the threshold. 
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Table ‎5-3: The highest performing feature subset using MLP 

No. Features Number of folds (%) 

1 Neurological exam. 10 (100%) 

2 Headache frequency 10 (100%) 

3 Headache char. 9 (90%) 

4 Headache duration 8 (80%) 

5 Headache location 6 (60%) 

6 Fundoscopy test 4 (40%) 

7 S. dizziness 4 (40%) 

8 S. vomiting 3 (30%) 

9 MH. epilepsy 3 (30%) 

 

5.2.4.  A majority vote 

Despite the large computational cost of wrapper based MLP feature selection 

method, using a combination of feature selection methods is crucial to obtain a 

precise and reliable prediction. Imagine the learning algorithm has been trained with 

all features in the data set, it is thought then that all features are good for prediction. 

However, this conviction is not valid as the data may include irrelevant and/or 

redundant features [120].  

In fact, training learning algorithms with irrelevant features would result in a very 

poor generalisation performance, increase computational time and over-fitting. 

Consequently, we adopted a majority vote of three different feature selection 

methods in order to get an optimal selection of the most representative subset of 

features that lead to a high performance predictive model. Majority vote is a decision 

rule that selects headache features, which have more than half of the votes. 

Accordingly, a certain headache feature will involve creating predictive models, i.e. 

differentiate between primary headache types, if this feature possesses two out of 

three votes as demonstrated in table 5-4. 
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Table ‎5-4: Features evaluation (all features are considered) 

No. Features Feature selection methods  

Filters approach Wrapper approach Majority 

vote IG SU MLP 

1 Headache frequency √ √ √ √ 

2 Headache char. √ √ √ √ 

3 Headache location √ √ √ √ 

4 Headache intensity √ --- --- --- 

5 Headache duration √ --- √ √ 

6 S. photophobia √ √ --- √ 

7 S. phonophobia √ √ --- √ 

8 S. nausea √ √ --- √ 

9 S. vomiting √ √ √ √ 

10 S. dizziness --- --- √ --- 

11 MH. epilepsy --- --- √ --- 

12 Neurological exam. √ √ √ √ 

14 Fundoscopy test √ √ √ √ 

 

5.3. Feature analysis 

After considering a majority vote of three different feature selection methods, we 

need to have a deep understanding of why these features are voted and perceived as 

relevant features. Technically, the higher the feature ranked, the stronger the 

relevance of a feature. This means that the top-ranked features are always necessary 

for an optimal learning performance. On the other hand, features with weak 

relevance (i.e. that just above the threshold line) may not be always essential for the 

learning procedure. However, they might become essential for an optimum subset in 

particular circumstances. In other words, they might be beneficial for the learning 

procedure when combining them with other strong features. Therefore, an ideal 

subset should preferably consist of all strongly relevant features and a small subset of 

weakly relevant features.  

It is worthwhile to analyse the final set of features to define their discriminative 

power in differentiating among various types of primary headache disorders. This 

step enables us to understand the level of overlap among different types of primary 

headache. More conveniently separable types of headache that contain reduced 

overlap among instances from different headache groups, or obvious patterns that 
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distinguish a certain headache type from another one, will generate much better 

results during the classification stage. 

5.3.1.  Continuous features 

Starting from continuous features i.e. headache duration and frequency. A simple 

crosstab analysis shows that 77.46% of patients with trigeminal autonomic 

cephalalgias TACs (i.e. cluster, paroxysmal hemicrania and SUNCT) are 

experiencing duration of headache less than 10 hours/day; conversely 74.86% of 

patients with migraine and 42.29% of patients with tension type headache are 

experiencing duration of headache more than 10 hours/day. Twenty-four hours 

duration of headache is approximately reported by 4% of patients with TACs, 

compared to 29% and 20% of patients with migraine and tension type TTH 

respectively.  

Furthermore, a one-way analysis of variance (ANOVA) can ascertain whether the 

differences of mean in the headache duration and frequency among patients with 

different types of primary headache are statistically significant. Figure 5-2 shows an 

interval plot of headache duration versus the type of headache with 95% confidence 

intervals (i.e. significance level α = 0.05). It is obvious that there are no overlapping 

areas among the intervals of the three groups, and ANOVA reveals that there is a 

significant difference in the population means with p < 0.001. For this reason, all of 

the three feature selection methods have considered headache duration feature as 

being one of the best features with a substantial discrimination capability. 

 

Figure ‎5-2: Interval plot of level means and confidence intervals of headache duration and frequency 
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Headache frequency was the second top ranked feature by all of the three feature 

selection methods; it is measured as the number of headache episodes in one month. 

Similarly, we use crosstab and ANOVA tests to investigate its capability with respect 

to differentiating types of primary headache from one another. Crosstab reveals that a 

large proportion of patients with migraine (i.e. 65.87%) were suffering from five or 

less headache attacks per month, in comparison to nearly a third of patients with 

TTH and TACs. Conversely, about half of patients with TACs, none with migraines, 

and about one third of patients with TTH have recorded high frequencies of headache 

attacks (i.e. ≥ 20 per one month). The extreme frequency of headache attacks within 

migraines was 15 episodes/month, which was recorded by one patient. Finally, 

2.64% of migraine patients have been subjected to 12 episodes per month. On the 

other hand, the ANOVA test with 95% confidence intervals shows a significant 

difference in the population means with p < 0.001.  

As demonstrated in figure 5-2, the interval level of mean of migraines varies 

perfectly from TTH and TACs. In contrast to headache duration, the interval level of 

mean of TTH is relatively close to TACs, but there is no observable overlap between 

their interval levels of means. It is noticeable that the interval plot of headache 

duration is almost a pivot rotation of the headache frequency plot. Therefore, 

combining these two features can conclude that the longer the duration of headache, 

the fewer attacks occur in a month and vice versa. The discriminatory power of these 

features lies behind their selection by the three feature selection methods. 

5.3.2.  Discrete features 

The discrete features constitute exactly eighty percent of the selected headache 

features. Two of them are categorical i.e. headache characteristics and location, while 

the rest are dichotomous. In this sub-section, we are using cross-tab analysis to 

examine the discriminative power of discrete features and their relationship with the 

type of primary headache. Then we conclude with Pearson’s Chi-Square test at 95% 

confidence interval, which is able to ascertain whether there is a significant 

association between a given discrete feature and the type of primary headache 

disorders in the sample set. 
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5.3.2.1 Headache characteristic 

Starting from headache characteristics, which is one of the top-ranked features by the 

three features selection methods. As each type of primary headache has its own 

specific pain features, patients are usually asked by a specialist to describe the 

characteristic of the pain that they are exposed to. The characteristic of pain usually 

falls under one of the following five popular labels; dull, pressing or tightening, 

throbbing, stabbing, and lightning. Approximately 91% of patients with migraine 

describe their pain as throbbing, 7% as pressing, 1.5% as stabbing, and 0.5% as dull. 

Patients with migraine reported no lightning pain feature. Almost 60% of patients 

with TTH express their pain as dull and pressing, 37.5% as throbbing, 2% as 

stabbing, while only two patients reported a lightning pain quality. On the other 

hand, 12.6% of patients with TACs define their pain feature as lightning, 18.3% as 

stabbing, and 15% as pressing and dull. Finally, 53% of patients with TACs report 

throbbing pain feature. 

Although there is an overlapping area when it comes to how patients precisely 

describing their pain, however the overwhelming majority of patients are committed 

to a specific pain label (figure 5-3). For example, throbbing pain was expressed by 

the vast majority of patients with migraine, half of patients with TACs, and roughly 

one third of patients with TTH. In contrast, dull and pressing pain was reported by a 

larger portion of patients with TTH, 15% of patients with TACs, and less than 8% of 

patients with migraine. Moreover, lightning and stabbing pain was described by one 

third of patients with TACs, less than 2% for both patients with migraine and TTH. 

Pearson’s Chi-Square test at 95% confidence interval concludes that there is a 

significant relationship (p < 0.001) between headache characteristics and the type of 

primary headache disorders. 
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Figure ‎5-3: How headache patients describe their pain 

5.3.2.2 Headache location 

Headache location was almost in the middle of the selected features list. Apart from 

other headache features, the location of pain (i.e. headache) may be on one side of 

the head (unilateral), on both sides of the head (bilateral), or on other locations of the 

head as will be explained according to different anatomical positions (figure 5-4). 

Patients with primary headache have reported five locations of pain, in addition to 

unilateral and bilateral headache locations. The stated pain locations are frontal pain 

location that is a yellow coloured area in figure 5-4. Periocular region, which is the 

area surrounding the eye. Bi-temporal area is the orange coloured on the side of the 

head in figure 5-4. Occipital location is the green coloured area at the back of the 

head. Finally, Calvarial or the dome, which is the superior parts of the cranium, 

including the superior parts of the frontal, parietal, and occipital areas. 
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Figure ‎5-4: Parts of the human skull [3] 

A crosstab analysis shows that a unilateral pain location is reported by nearly 65% of 

patients with migraine and TACs, while barely 7% of patients with TTH. In contrast, 

about 20% of patients with TTH experienced bilateral and frontal pain locations, 

which is about double that of patients with migraine who reported the same locations 

of pain, and seven times as many as patients with TACs. A pain in the area 

surrounding the eye (i.e. periocular region) was mentioned by almost 20% of patients 

with TACs, compared to 3.1% and 6.2% of patients with migraine and TTH 

respectively. Patients with TACs reported no bi-temporal pain location. Conversely, 

bi-temporal pain location is claimed by about 10.4% of patients with TTH and 7.9% 

of patients with migraine. Approximately one third of patients with TTH experienced 

a pain location at the back of the head (occipital), in comparison to 7.1% of patients 

with migraine and 4.2% of patients with TACs. 

For a comprehensive evaluation, we are grouping the recorded pain locations as 

presented in figure 5-5. The majority of patients with migraine and TACs revealed a 

one sided headache location, and it was considerably less common among patients 

with TTH. On the other hand, a pain on both sides of the head was more prevalent 

among patients with TTH. Moreover, the majority of patients with TTH experienced 
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a pain location at the front and the back of the head. A pain surrounding the eye area 

was more widespread among patients with TACs. Lastly, there was no big difference 

in various types of headache with respect to Calvarial pain location. Despite the fact, 

that there are slight or near overlaps between different pain locations, which probably 

was the causative of the current ranking of headache location feature. However, 

Pearson’s Chi-Square test at 95% confidence interval shows that there is a 

statistically significant association (p < 0.001) between the location of headache and 

the type of headache. 

 

Figure ‎5-5: Grouping the locations of pain 

5.3.2.3 Photophobia and phonophobia 

Photophobia is a condition in which patients are unable to tolerate bright lights. In 

other word, patients are sensitive to any sources of light such as sunlight and bright 

fluorescent light. Likewise, phonophobia is an abnormal and unjustified sensitivity to 

sounds that cannot under any conditions be harmful [123]. Patients with 

phonophobia have a fear of loud sound, as well as regular environmental sounds 

including traffic noise or loud speech. The sensitivity to light and sound typically 

accompanies some types of headache and leads to discomfort or even to worsen the 

pain. A crosstab analysis shows that patients with migraine are most likely to be 
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sensitive to light and sound during headache. The presence of photophobia and/or 

phonophobia among patients with migraine was about 90%. On the other hand, 

approximately two third of patients with TTH and TACs reported no photophobia 

and/or phonophobia during headache, which indicates that these patients are less 

sensitive to light and sound. As shown in figure 5-6, the sensitivity to sound, in 

general, was reported slightly more than sensitivity to light. Photophobia and 

phonophobia are two symptoms that were selected by only two feature selection 

methods (i.e. filter methods). However, Pearson’s Chi-Square test at 95% confidence 

interval reveals that they are significantly associated (p < 0.001) to the type of 

headache. Although there is an overlapping area between patient groups, the 

involvement of these two symptoms along with other strongly relevant features will 

promote the classification of primary headache disorders. 

 

Figure ‎5-6: The presence of photophobia and phonophobia 

5.3.2.4 Nausea and vomiting 

Nausea is a kind of discomfort in the stomach, in which patients might feel they need 

to vomit, however they are not really vomiting. Vomiting is a forced eviction of the 

contents of the stomach through the mouth, and also known as throwing up [124]. 

Nausea and vomiting are very common symptoms of headache, particularly in 

patients with migraine. Nausea was accompanying the headache in 86.77% of 

patients with migraine, while the presence of vomiting during headache was in about 

55% of patients with migraine. As shown in figure 5-7, one third of patients with 

TTH and TACs have reported nausea during headache, while only 9.66% of TTH 
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and 15.49% of TACs patients have experienced vomiting during headache. The 

presence of vomiting was generally less common than nausea for all types of primary 

headache disorders and particularly in patients with TTH, where less than 10% of 

those patients have experienced vomiting with headache. All feature selection 

methods have voted for the vomiting feature to participate in the learning stage, 

while only filter methods have voted for nausea. Although different types of primary 

headache may share certain symptoms, however, at 95% confidence interval, 

Pearson’s Chi-Square test confirms that there is a significant relationship (p < 0.001) 

between these two symptoms and the type of primary headache disorders. 

 

Figure ‎5-7: The presence of nausea and vomiting 

5.3.2.5 Neurological examination and Fundoscopy test 

Neurological examination and fundoscopy test are also known as neuro-ophthalmic 

examination. They are probably the most significant parts of the physical 

examination in the assessment of patients with headaches. A number of serious and 

occasionally life-threatening secondary reasons behind headache may possess neuro-

ophthalmic signs and symptoms. Comprehending the assessment can also help in 

making a primary headache diagnosis [125]. A neurological examination is an 

assessment of the patient's nervous system and motor responses to determine whether 

the nervous system is impaired. In other words, it is a systematic review of nerve 

functions in delivering sensory information to the brain and transporting motor 

orders (peripheral nervous system) and impulses returning to the brain for processing 

and coordinating (central nervous system) [126]. 
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According to the Scottish intercollegiate guidelines network [4], it is imperative to 

conduct a neurological examination in particular when patients are presenting with 

headache for the first time, or when there is a difference in headache pattern. A 

comprehensive neurological examination should include the following assessments, 

mental status (e.g. level of alertness, attention, memory, speech and language). 

Cranial nerves (e.g. fundoscopy test, visual fields, pupillary response, and eye 

movements). Motor system assessment, in particular muscular contraction, 

movement at the joints, reflexes and coordination of all limbs. Assessing the 

sensation of pain, temperature and vibration (i.e. sensory system). Coordination and 

gait assessment, and finally assessing the neck’s mobility and stiffness [4, 126]. 

Although neurological examination includes a wide range of assessments in addition 

to the fundoscopy test, however the headache dataset summarise these assessments 

under two variables (i.e. features). These variables are neurological examination and 

fundoscopy test. Abnormal neurological examination means that the patient may 

show an abnormality in one of the mentioned assessments above such as confusion, 

loss of balance or memory, abnormal reflexes of limbs, blurred or double vision, 

slurred speech, stiffness of neck muscles.  

As shown in figure 5-8, the majority of patients with migraine show a normal 

neurological examination. An abnormal neurological examination presented in only 

5% of patients with migraine, in which about 60% of them were suffering from 

migraine with aura. Conversely, more than half of patients with TACs and 65.27% of 

patients with TTH have an abnormal neurological examination. Neurological 

examination is one of the top ranked features that were voted by all three features 

selection methods. Moreover, the Pearson’s Chi-Square test at 95% confidence 

interval confirms that there is a significant relationship (p < 0.001) between 

neurological examination and the type of primary headache disorders. 
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Figure ‎5-8: Neurological examination result 

 

Figure ‎5-9: Fundoscopy test result 

On the other hand, the British Association for the Study of Headache (BASH) [26] 

stated that fundoscopy test is mandatory for patients who are presenting with 

headache for the first time, and it is usually worthwhile to repeat it during follow-up. 

The fundoscopy test allows a visual inspection of the inner eye, also called the retina 

or the fundus. This visual inspection is clinically valuable as the veins and arteries 

are visible in their natural state in the inner eye, and many diseases can be detected 

based on the evidence observed in this location [127]. A crosstab analysis reveals 

that an abnormal Fundoscopy test was noticed in about two third of patients with 

TTH, slightly more than a half of patients with TACs, and only in 17.46% of patients 

with migraine. Moreover, Pearson’s Chi-Square test at 95% confidence confirms that 
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there is a significant correlation (p < 0.001) between fundoscopy test and the type of 

primary headache disorders. 

5.3.3.  Summary of analysis 

The basic insight behind machine learning is to recognise patterns in data and 

discover ways to identify a certain subject based on the existing variances between 

subjects. Even though different types of headache can share common features, 

however they also vary on certain points. Table 5-5 demonstrates the dissimilarities 

of the final list of headache features in accordance with the type of headache; thus 

the greater the difference, the more accurate the classification. This section highlights 

the dissimilarities of headache features within our dataset and harmonises them to 

many other dedicated headache studies. 

As presented in table 5-5, migraine episodes are shown to last longer than TTH and 

TACs. According to the criteria of IHS [3], migraine attacks last more than four 

hours and can go up to three days; in contrast to TACs that are characterised by short 

lasting episodes. The pain in TACs and migraine is unilateral, but it may spread to 

the entire head during migraine episodes. Leroux and his colleague reported in their 

differential diagnosis that migraine might attack many patients on alternate sides 

[126]. Nausea and/or sensitivity to light and sound are the main clinical criteria in 

differentiating migraine from other primary headaches [3, 4, 26]. These symptoms 

may occur in patients with TTH and TACs, yet not as much as migraine. It has been 

shown that nausea, photophobia and phonophobia present in up to 50% of patients 

with TACs [126], while Turner and others showed that they could overlap with TTH 

symptoms as well [128]. 

Haque and his colleagues [129] have spotted that migraine and TTH sufferers share a 

number of precipitating factors such as anxiety and stress, nevertheless migraine 

sufferers were significantly sensitive to sunlight. Using self-reported data, Ashina et 

al. [130] have assessed the one-year prevalence of neck pain in subjects with TTH 

and migraine. The prevalence of neck pain was considerably higher in patients with 

TTH. In general, migraine was characterised by a throbbing pain pattern, which 

presented in roughly half of the TACs patients, conversely, throbbing pain is less 

prevalent in TTH. 
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Table ‎5-5: Selected features evaluation 

Number of patients’ n (≈ %) 

 Migraine  

n=378 

Tension-type 

headache 

n=383 

TACs 

n=71 

Headache duration
*  

 <5 hours 49 (12.96) 175 (45.69) 49 (69.01) 

5 - 10 hours 46 (12.16) 46 (12.01) 16 (22.53) 

10.1 - 24 hours 165 (43.65) 111 (28.98) 5 (7.04) 

24.1 - 48 hours 82 (21.69) 51 (13.31) 1 (1.40) 

>48 hours 36 (9.52) --- --- 

Attack frequency
*
  

 < 10 episodes 312(82.54) 149(38.90) 21(29.58) 

10 to 20 episodes 66(17.46) 153(39.95) 27(38.02) 

> 20 episodes 0(0.0) 81(21.15) 23(32.40) 

Headache characteristics
*
  

 Throbbing 343(90.74) 145(37.86) 38(53.52) 

Dull and pressing 30(7.94) 228(59.53) 11(15.50) 

Stabbing and 

lightning 

5(1.32) 10(2.61) 22(30.98) 

Headache location
*
  

 Unilateral 224(59.26) 27(7.04) 47(66.20) 

Bilateral or bi-

temporal 

71(18.78) 111(28.99) 2(2.82) 

Frontal and occipital   59(15.60) 195(50.91) 6(8.45) 

Periocular 12(3.18) 24(6.27) 13(18.31) 

Calvarial 12(3.18) 26(6.79) 3(4.22) 

Headache symptoms
*
  

 Nausea 328(86.77) 141(36.81) 27(38.02) 

Vomiting 207(54.76) 37(9.66) 11(15.49) 

Photophobia 327(86.50) 124(32.37) 22(30.98) 

Phonophobia 343(90.74) 177(46.21) 26(36.61) 

Neurological examination
*
 19(5.02) 250(65.27) 40(56.33) 

Fundoscopy test
*
 66(17.46) 263(68.66) 41(57.74) 

* p < 0.001 

 

In contrast to TTH, unilateral pain location presents in two thirds of TACs patients, 

while about 20% of them reported a periocular pain location (i.e. pain surrounding 

the eye). Unilateral, periocular, and temporal pain locations are being displayed as a 
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part of the dominant symptoms of patients with TACs [131, 132]. Although the 

underlying cause and exact mechanisms of TTH are not known according to the 

criteria of the IHS [3], however increased tenderness of Pericranial muscles seems to 

be the most important neurological abnormal finding in patients with TTH. Many 

recent studies have emphasised the role of muscles in the pathogenesis of TTH and it 

is becoming gradually obvious that the pain in TTH is of a muscular source [31]. 

Loder and Rizzoli in their clinical review [30] stated that although muscle tenderness 

and psychological tension are not evidently the cause of TTH, however they are 

associated with this type of headache. A controlled study by Anttila et al. [133] 

shows that increased tenderness of Pericranial muscles is associated with TTH in 

adults. In another study dating back to 1995, Sakai and his colleagues [134] have 

measured the hardness of Pericranial muscles (i.e. trapezius and posterior neck 

regions) of 60 patients with tension type headache and 223 normal healthy subjects. 

The hardness of trapezius and posterior neck muscles in patients with TTH was 

significantly greater than that in normal subjects, which led them to conclude that the 

muscle factor plays a crucial role in the pathophysiological mechanism of TTH. 

Finally, Lipchik and others [135] have reported that the tenderness of Pericranial 

muscle was quite effective in differentiating headache patients from healthy subjects, 

yet failed to identify patients with chronic TTH from those with migraine.  

Likewise, many other studies have highlighted the role of myofascial trigger points 

TrPs in Pericranial muscles and their association with TTH. Myofascial trigger 

points TrPs are focal disturbances in skeletal muscle, which could direct pain to the 

head and imitate the pain patterns of TTH [136]. A group of researchers in two 

different studies have assessed the presence of TrPs in head and neck muscles in 

patients with episodic and chronic tension-type headache (i.e. ETTH and CTTH) 

[137, 138]. Active and latent TrPs are present on patients with ETTH and CTTH, 

while only latent TrPs are present on healthy subjects. In both studies, patients with 

ETTH and CTTH show greater forward head posture (FHP) and lesser neck mobility. 

In patients with CTTH, the location of active TrPs played an important role in 

headache. Longer headache duration was observed when active TrPs were in the 

right temporalis muscle, while greater headache intensity noticed when active TrPs 

were in the left temporalis muscle [137]. On the other hand, Doraisamy et al. [139] 

studied the effect of Myofascial release therapy to the TrPs in patients with CTTH, 
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where they showed that the therapy has a positive influence in reducing the number 

of headache days and pain intensity level. Moreover, massage therapy for myofascial 

TrPs release in patients with recurrent TTH is shown to decrease headache frequency 

[136]. 

5.4. Class balancing and Binarization 

Primary headache disorders are the most common in the community, with TTH and 

migraine being the most prevalent. Ahmed in [24] has reported that TTH can affect 

up to 80% of the population, while migraine has a prevalence of 15%. A 

multinational European study has also shown that migraine occurs in 15% of the 

population, whereas TTH in 60%. Cluster headache in particular and TACs in 

general are very rare with a prevalence rate of 0.3% [140]. Katsarava et al. [141] 

conducted a community-based survey to estimate the prevalence of cluster headache 

in the Republic of Georgia. In 1145 interviewed subjects, the prevalence of cluster 

was 87/100 000. In our patients cohort (n=832), the prevalence of migraine and TTH 

was 91.5% of the patients population, compared to 8.5% of TACs. The prevalence of 

migraine and TTH was very close (i.e. migraine was 45.5% and TTH was 46%). 

According to the IHS classification of headache [3], migraine and TTH are the most 

common primary headaches, compared to TACs that are very rare in nature. This is 

what technically known as imbalanced class distribution. It is a very common 

problem in data mining and machine learning fields. 

Imbalanced class distribution is a supervised learning problem where one class 

enormously outnumbers the other class [142]. This problem is more frequent in 

binary classification than in multi-class classification, however, it may also occur in 

one-versus-all schema in multi-class classification [143]. The main complication of 

the class imbalance issue is evaluating the overall performance of the targeted 

classifier. Consider training a classifier to classify patients with cluster headache 

from normal individuals for example, a very big portion of the data, usually 99% 

describes normal individuals and merely a tiny fraction of the data represents patients 

with cluster headache. In this scenario, if the classifier always predicts normal 

individuals, then it is correct in about 99% of the time. However, it is actually 

worthless in spite of its high accuracy as the minority class (i.e. patients with cluster 

headache) is the class of interest. Machine learning classifiers can be severely 
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skewed toward the majority class when learning the class boundary from imbalanced 

data, which therefore results in a very high false negative rate [143]. 

On the other hand, imbalance class distribution can occur with Binarization 

techniques, which is a popular approach in solving multi-class classification 

problems. Assume that there are N distinct classes; one of the basic multi-class 

classification techniques built on the top of binary classifiers would be to train N 

different binary classifiers. Each classifier is trained to differentiate the examples in 

one class from the examples in all other classes. This process is one-versus-all 

(OVA) Binarization approach, which builds one classifier for each class. Sen et al. 

[144] mentioned that the OVA approach might introduce the imbalance class 

distribution even when it was not existing in the original data. In general, OVA is a 

straightforward approach that reduces the problem of classifying among N classes 

into N binary problems. Moreover, it ensures a performance that is more comparable 

to other complicated approaches, particularly when the binary classifier is adjusted 

properly [145]. 

Learning algorithms usually assume that the data has a balance class distribution, but 

in fact medical data are usually imbalanced as many conditions are quite infrequent, 

which tend to be the minority class, for example cluster headache [140, 141]. A 

massively imbalanced data set will therefore have a severe impact on learning and 

generalisation approach. Sampling methods are widely used to handle this problem, 

by either dropping some observations from the majority class (i.e. under-sampling) 

or synthetically adding or even duplicating some observations to the minority class 

(i.e. over-sampling) [142, 143, 146]. In sampling methods, the data are adjusted in 

such a manner that produces a more balanced class distribution. This adjustment 

occurs by altering the size of the data and renders a somewhat similar proportion of 

different classes. The data then become more adaptable to traditional learning 

algorithms and we can ensure effective classification accuracy with high confidence. 

In the OVA Binarization approach, we have three potential scenarios in building a 

set of binary classifiers. The class of interest in the first scenario would be TTH, in 

which the classifier will recognise patients with TTH from other primary headaches 

(i.e. migraine and TACs). In this case, the data has a balance ratio of 46:54. In the 

second scenario, the classifier will distinguish patients with migraine from other 
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primary headaches (i.e. TTH and TACs). This scenario has a very similar balance 

ratio to the first scenario, which is about 46:54. Finally, TACs will be the class of 

interest in the third scenario, and the classifier will differentiate patients with TACs 

from other primary headaches (i.e. migraine and TTH). In typical multi-class 

classification, Binarization may lead to an imbalance class particularly when K 

classes have comparable densities. Nevertheless, Binarization worked to benefit our 

idea in the first two scenarios as we are embedding the minority class (i.e. TACs) 

once with migraine and another with TTH. 

Conversely, there will be a significant class imbalance (ratio 91.5:8.5) when TACs is 

the class of interest in the third scenario. Therefore, we adopted under-sampling 

method to ensure that the classifier is capturing the decision boundary between the 

majority and minority classes. Let us assume that 𝑀𝑗  is the majority class for the 

third scenario (i.e. migraine and TTH), while 𝑀𝑛 is the minority class (i.e. TACs). N 

represents the sample size (i.e. 832 records), and 𝑁 = 𝑀𝑗 +  𝑀𝑛. We adopted a 

random under-sampling method, in which a reasonable subset of 𝑀𝑗  was randomly 

selected and then combined with the minority class sample as a balanced data. In 

order to achieve a relatively balanced class distribution, the size of new 𝑀𝑗 after 

under-sampling will be approximately 60% of the sample size. This enables 𝑀𝑛 to 

become as much as 40% of the whole data. Therefore, the balanced ratio of the data 

after under-sampling would be 60:40 in the third scenario.  

We have avoided minority oversampling via duplicating TACs records because even 

if we duplicate 100% of the records, the minority class would not represent more 

than 15% of the whole sample. As Rahman and Davis have reported in [146], 

minority over-sampling, despite the longer training time, would potentially lead to an 

over-fitted learning model. Furthermore, Drummond and Holte in [147] have showed 

that random under-sampling establishes a reasonable standard for algorithmic 

comparison, where they examined the interaction of under/over sampling with the 

C4.5 decision tree classifier using cost curves as performance measure. 

5.5. Performance metrics 

The overall performance and capability of predictive models can be measured using 

a range of statistical metrics including sensitivity, specificity and classification 
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accuracy. These metrics are calculated based on the terms listed in the confusion 

matrix (table 5-6). Confusion matrix is an unambiguous way to display the prediction 

outcomes; it plots the true class of interest (i.e. gold standard) in a binary class 

classification against the predicted class [148]. These terms are represented as true 

positive (TP), false positive (FP), true negative (TN) and false negative (FN). 

Table ‎5-6: Confusion matrix 

 Predicted classes 

Positives Negatives 

Positives TP FN 

Negatives FP TN 

 

Sensitivity, also called the true positive rate (TPR), is the classifier's ability to 

identify the class of interest correctly, while the specificity (also called true negative 

rate TNR) refers to the classifier's ability in excluding the other class correctly. 

Classification accuracy is the overall correctness of the predictive model, which is 

the sum of correct predictions (both true positives and true negatives), divided by the 

total number of predictions made [149]. Classification accuracy is commonly the 

first step in evaluating the quality of predictive models. However, it could be 

misleading in some cases especially with a large class imbalance situation [142]. 

Going back to our cluster headache example, the predictive model achieves high 

classification accuracy as it usually predicts the value of the majority class, but the 

model is not useful in the problem domain because it has a very low predictive 

power. Therefore, sometimes it might be acceptable to choose a predictive model 

with a lower accuracy just because it provides a greater predictive power on the 

problem. 

Furthermore, we use some other metrics such as precision and F1 score (also known 

as F1 measure) to provide an objective performance evaluation of their predictive 

power, in addition to Receiver Operating Curve (ROC) analysis and area under the 

ROC curve (AUC). Precision or also called positive predictive value (PPV) is the 

number of true positive predictions divided by the total number of true and false 

positives [143]. Using precision matrix, we can see how a particular case that been 

predicted as positive is in fact a positive, as reported by Hoens and Chawla [142]. 
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Accordingly, low precision can reveal that there is a multitude of false positives, thus 

we can perceive precision as a measure of a classifier’s perfectness. Moreover, we 

can derive a harmonic mean of precision and sensitivity using F1 score as shown in 

table 5-7, which also called F-score or F-measure. 

Table ‎5-7: Performance metrics 

Metrics Abbreviation Computation Scope 

Sensitivity  TPR TP/(TP+FN) [0,1] 

Specificity TNR TN/(TN+FP) [0,1] 

Accuracy  ACC (TP+TN)/(TP+TN+FP+FN) [0,1] 

Precision PPV TP/(TP+FP) [0,1] 

F1 score F1 2*(PPV*TPR)/(PPV+TPR) [0,1] 

 

On the other hand, ROC analysis is a standard technique that is designed to 

summarise the predictive performance of binary classification models. The ROC 

curve plots the true positive rate (TPR) against the false positive rate (FPR) 

measurements at diverse decision thresholds in two-dimensional ROC space [142].  

An ideal predictive model would have a point in the upper North West corner of the 

ROC space, which means that the model has accurately classified all the positive and 

negative classes. In contrast, a model with random prediction performance will fall 

along the diagonal line of the ROC curve, in which TPR and FPR are equal over all 

different decision thresholds. The ROC curve analysis is widely accepted in the 

medical field, where it provides perfect details of the model's predictive performance 

particularly with imbalanced data. From this graphical representation, we can select 

an optimal decision boundary, as well as consider the AUC metric. 

5.6. Predictive models 

The diagnosis of headache relies entirely on the history and examination. A history 

plays an important role in the assessment of headache, where headache symptoms 

and characteristics should be described as completely as possible. According to the 

Scottish intercollegiate guidelines network [4], healthcare professionals commonly 

find it difficult to diagnose headaches, and headache sufferers are usually concerned 

about serious rare causes of headaches such as brain tumours. Here comes the role of 

examination to exclude secondary causes of headache, or to differentiate chronic 
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TTH from migraine as an example. In the UK, General practitioners refer about 3% 

of patients with headaches to specialist neurology clinics as a way to exclude 

secondary causes of headache, or for a more accurate diagnosis [150]. The majority 

of primary headaches can be managed in primary care and specialist’s assessment is 

occasionally required. 

The aim of the present study is to assess the capability of machine learning (ML) 

methods in the diagnosis of primary headaches. The involved ML methods are 

decision tree (RPART), adaptive boosting model (ADA), random forest (RF), 

support vector machine (SVM), logistic regression (LOGR) and artificial neural 

network (MLP). In this research, we measure the sensitivity, specificity and 

classification accuracy of six popular supervised ML algorithms using clinical data.  

The data set consists of patients’ records with the main types of primary headaches 

including migraine, TTH and TACs. The data set went through a comprehensive 

processing stage to ensure effective and reliable results. Using the holdout method, 

we divided the dataset into 60:40 ratios for training and testing respectively. This 

section presents the evaluation of six predictive models in a binary approach (i.e. 

OVA approach) and results are then pooled. We conducted the experiment using R 

statistical computing language, and evaluated MLs on a PC computer with 3.40 GHz 

Intel Core i7 CPU, 16 GB main memory and running Windows 7 Enterprise 64-bit 

operating system. 

5.6.1.  Tension type headache vs. all 

The evaluation results of the predictive models in diagnosing TTH are presented as 

follows. Table 5-8 lists the results from the experimental procedure for each model in 

terms of the six performance metrics considered, in addition to the overall error and 

required training time. Figure 5-10 demonstrates the AUC values resulting from 

ROC analysis, along with F1 measure as a harmonic indication of precision and 

sensitivity. Figure 5-10 provides a visual assessment for the overall performance of 

classifiers’ responses in classifying TTH from other primary headaches. 
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Table ‎5-8: TTH vs. All results using holdout method 

Predictive 

Model 

TPR TNR PPV F1 ACC AUC Overall 

error (%) 

Time 

(Seconds) 

RPART 0.884 0.588 0.766 0.821 0.767 0.807 23 0.01 

ADA 0.865 0.735 0.833 0.849 0.813 0.873 19 0.37 

RF 0.884 0.735 0.836 0.859 0.825 0.891 17 0.09 

SVM 0.884 0.705 0.821 0.851 0.813 0.880 19 0.03 

LOGR 0.865 0.676 0.803 0.833 0.790 0.811 21 0.02 

MLP 0.942 0.617 0.790 0.859 0.813 0.800 19 0.03 

 

 

Figure ‎5-10: Performance of MLs (TTH vs. All) 

It can be spotted that almost all of the models systematically yield AUC values of 

greater than 0.8, where RF model achieved highest AUC value of 0.89, lowest 

overall error and reasonable training time. MLP was the most sensitive model to 

distinguish TTH from other primary headaches. RPART, RF and SVM reached a 

sensitivity of 0.884, followed by LOG and ADA with a sensitivity of 0.865. 

Although RF and MLP reached F1 measure of 0.859, however, RF was superior with 

both AUC and classification accuracy. Both ADA and AVM models showed 

classification accuracy of 0.813 and an overall error of 19%, but SVM showed a 

better sensitivity, while ADA revealed a superior specificity. All models produced 

considerably better sensitivities than specificities with respect to diagnosing TTH 

from other primary headaches.  
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5.6.2.  Migraine vs. all 

This sub section presents the evaluation results of the classifiers with respect to the 

diagnosis of migraine. Table 5-9 illustrates performance metrics using holdout 

method. It is obvious that all of the predictive models have reached much higher 

specificities than sensitivities. RPART and MLP models have yielded identical 

results with exception of the AUC and training time, and they yielded the highest 

sensitivities among other learners. Likewise, ADA and SVM have also showed 

precisely the same evaluation results with exception of AUC and training time, 

where ADA was the most time consuming classifier. RPART and MLP models have 

achieved an AUC of 0.899 and 0.896 respectively, while the rest of the models have 

reached AUC value greater than 0.95. As shown in table 5-9, F1 measures were very 

much the same for the classifiers, with very little variation. The highest possible 

value of classification accuracy was 0.903 and reached by ADA, RF and SVM 

models. 

Table ‎5-9: MIGR vs. All results using holdout method 

Predictive 

Model 

TPR TNR PPV F1 ACC AUC Overall 

error (%) 

Time 

(Seconds) 

RPART 0.809 0.944 0.894 0.85 0.894 0.899 11 0.01 

ADA 0.785 0.972 0.942 0.857 0.903 0.962 10 0.39 

RF 0.761 0.986 0.969 0.853 0.903 0.959 10 0.10 

SVM 0.785 0.972 0.942 0.857 0.903 0.954 10 0.04 

LOGR 0.785 0.944 0.891 0.835 0.886 0.961 11 0.03 

MLP 0.809 0.944 0.894 0.85 0.894 0.896 11 0.03 

5.6.3.  TACs vs. all 

Table 5-10 shows the performance measure of the predictive models with respect to 

diagnosing TACs.  It can be observed that almost all of the classifiers yield AUC 

values greater than 0.85, with the exception of evaluation over the MLP and RPART 

models that show a slightly lower values. The highest sensitivities were achieved by 

MLP model, followed by ADA model and then LOGR model, where these models 

have achieved diagnostic sensitivity greater than 0.9. The classifiers consistently 

yield F1 and overall error values. The highest classification accuracy outcome over 

the TACs class was obtained by ADA model, yielding a value of 0.813. MLP model 

has reached the second highest classification accuracy with 0.8, followed by RF and 
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LOGR models that yield an accuracy value of 0.791. As presented in table 5-10, 

AUC values for nearly all of the models were higher than their F1 values, with 

exception of MLP model that achieve highest F1 value. Finally, both of RF and SVM 

show greater specificities than sensitivities in contrast to all other models. 

Table ‎5-10: TACs vs. All results using holdout method 

Predictive 

Model 

TPR TNR PPV F1 ACC AUC Overall 

error (%) 

Time 

(Seconds) 

RPART 0.88 0.658 0.758 0.814 0.78 0.836 22 0.01 

ADA 0.94 0.658 0.77 0.846 0.813 0.908 19 0.4 

RF 0.738 0.923 0.96 0.834 0.791 0.918 21 0.21 

SVM 0.727 0.92 0.96 0.827 0.78 0.857 22 0.03 

LOGR 0.92 0.634 0.754 0.828 0.791 0.853 21 0.04 

MLP 0.94 0.625 0.758 0.839 0.8 0.807 20 0.03 

 

5.7. Pooling and discussion 

This section pools the evaluation results of the predictive models (i.e. classifiers), but 

before starting let us highlight some of the general observations from performance 

evaluation sections. Starting from TTH versus others, all of the classifiers have 

registered considerably higher diagnostic sensitivities than specificities. In contrast, 

specificities were noticeably larger than sensitivities for all of the classifiers when 

diagnosing migraine from others. Unlike previous models (i.e. TTH and migraine), 

there was a performance fluctuation with respect to the diagnosis of TACs, where 

some of the classifiers reached higher sensitivities, while others achieved better 

specificities.  

There was a fair balance between F1 and AUC values for all of the predictive models 

with respect to diagnosing migraine; moreover, the classification accuracy of 

migraine was much higher than TTH and TACs. Conversely, there was a lack in such 

a harmony between the values of F1 and AUC in the diagnostic performance of both 

TTH and TACs. Very similar classification accuracy was observed with respect to 

the diagnosis of TTH and TACs. The classifiers expressed relatively larger overall 

error rates with the diagnosis of TACs, followed by TTH and then migraine. 

On the other hand, figure 5-11 shows the trade-off between true positive rate (i.e. 

sensitivity) and false positive rate (i.e. 1-specificity or type 1 error α) across a series 
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of decision boundaries plotted in the ROC space. It is another effective analysis 

method to evaluate the overall performance of the classifiers. On observation of the 

ROC plots, all models tend to exhibit greater capabilities in the diagnosis of migraine 

than other primary headaches, where all the curves of migraine versus all are close to 

the upper left corner of the ROC space.  

It is also clear on the ROC space that nearly all of the classifiers have yielded slightly 

better results in the diagnosis of TACs than TTH, with the exception of the SVM 

learner. The similarity in the performance profile between PRART and MLP models, 

with a few exceptions, can be confirmed in terms of migraine diagnosis. Moreover, 

all other models appear to exhibit a similar behaviour over the migraine diagnosis as 

well. RF and ADA models stand out in the ROC space with respect to TACs; they 

are also, in addition to SVM, showing a very similar performance profile when 

diagnosing TTH and migraine.  
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Figure ‎5-11: ROC Plots for the models 

The initial scene that we can come through using OVA approach and ROC analysis, 

with respect to different types of headache, is that migraine was the most well 

classified headache, followed by TTH and then TACs. We can consider such a 

context, regardless of some tiny variations, as a generic insight that covers all of the 

targeted classifiers in this study. This is most likely to be due to the distinctive 

characteristics of migraine, where all of the migraine’s related features (i.e. nausea 

and/or sensitivity to light and sound) have been involved with the final set of the data 

as specified by features selection methods.  

In addition to the ROC analysis, the pooled results in general can provide a 

comprehensive view of the model’s diagnostic power. Since we have guaranteed a 

particularly reliable and balanced class distribution and obtained performance 
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evaluation results over OVA approach, we compared the overall diagnostic power of 

the predictive models using the pooled results from table 5-11, after calculating 

performance metrics for each type of headache individually. Pooling results is the 

main step toward classifiers’ assessment. It reveals the overall capacities of the 

classifiers in diagnosing all of the three types of primary headache. From the pooled 

result, we have built a comparison that is primarily based on precision and recall (i.e. 

TPR and PPV), in addition to the F1 measure, which is their single combined 

representative. We also took into consideration the pooled accuracy and area under 

the ROC curve. The use of precision and recall are very common in the assessment 

of predictive models as they represent or express both type 1 and type 2 errors (α and 

β respectively). 

Table ‎5-11: Pooled results 

Predictive 

Model 

TPR PPV F1 ACC AUC 

RPART 0.858 0.806 0.828 0.814 0.847 

ADA 0.863 0.848 0.851 0.843 0.914 

RF 0.794 0.922 0.849 0.84 0.923 

SVM 0.799 0.908 0.845 0.832 0.897 

LOGR 0.857 0.816 0.832 0.822 0.875 

MLP 0.897 0.814 0.849 0.836 0.834 

 

Predominantly, all of the predictive models have achieved  considerably good results, 

however the highest sensitivity (i.e. TPR or recall) was about to reach 0.9 and 

achieved by MLP model, followed by ADA model with a sensitivity value of 0.86, 

then PRART and LOGR that showed somewhat similar sensitivities. Eventually, 

SVM and RF models have achieved a sensitivity value of slightly less than 0.8. 

Sensitivity refers to the classifier's capability to correctly identify certain types of 

headache from others. To be more precise, for all cases that actually diagnosed a 

migraine for example, sensitivity measure shows how many of these cases were 

accurately captured by predictive models. In this context, the probability of making 

type 2 error, i.e. called false negative rate FNR, which in this case is falsely 

classifying the type of headache, is inversely proportional to the sensitivity as shown 

here 𝛽 = 1 − 𝑇𝑃𝑅. This means that higher sensitivity can ensure lower β, which in 

turn contributes to a better predictive model. 
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Figure ‎5-12: Pooled TPR, PPV and F1 measures 

In contrast to the sensitivity measure, it can be noticed from figure 5-13 that almost 

all of the models have shown an inverse behaviour with respect to the precision 

measure, i.e. PPV. Models with low sensitivity have produced the highest precision 

and vice versa. RF model has achieved the highest precision value of 0.92, followed 

by SVM and ADA models respectively. MLP, LOGR and RPART models have 

gained very similar precision values. Precision is indicative of the model's accuracy 

on condition that a particular type of headache has been predicted. In other words, 

how realistic is the model when it claims that a certain case is positive? 

Consequently, low precision can expose that there is a large number of false 

positives, i.e. false alarms, and hence an elevated type one error. 

Although there is a clear variation between sensitivity and precision measures as 

presented in figure 5-12, nevertheless F1 scores are very much the same for virtually 

all of the models. This is mainly because F1 measure provides a general idea of the 

model’s predictive capabilities, no matter what type of error has occurred. In the real 

world, type 1 and type 2 errors cannot be entirely prevented; however, it has been 

recommended that increasing the sample size would reduce the likelihood of their 

occurrence. This might be one of the reasons that led to high error rate with respect 

to the diagnosis of TACs in the third scenario, where we have tried to create a 

balance distribution of class labels, which in turn affects sample size in one way or 

another. Moreover, as presented in table 5-5, TACs share few features with migraine 
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and TTH. It can be observed from figure 5-11 that migraine was the class with less 

error, compared to TACs that registered the largest error rate. 

 

Figure ‎5-13: Pooled ACC and AUC 

On the other hand, almost all of the predictive models, with the exception of the 

MLP learner, achieved AUC values that were noticeably higher than their overall 

classification accuracies as presented in figure 5-13. The MLP model shows a 

relative balance of values of AUC and ACC. The highest overall accuracy was 

achieved by the ADA model with a value of 0.843, while the highest AUC value was 

about 0.92 and achieved by RF model.  

In total, the results illustrate that machine learning represents an encouraging and 

viable approach for the diagnosis of primary headache disorders. The classification 

and regression tree RPART shows somewhat stable results in terms of the 

performance metrics. RPART model uses the ratio of information gain as a splitting 

criterion. The best spilt would minimise the impurity of the output data subsets. From 

the resulting subsets, the splitting process is repeated until a stopping criterion is 

invoked. In this study, a minimum number of observations that were selected as a 

stopping criterion are 16, which means that next split will not occur unless there are 

16 observations in a leaf node. We have also identified an equal prior probability for 

each type of headache. In the RPART model, a predefined control parameter, i.e. 

complexity parameter or CP, can ensure an optimal tree size. RPART was the model 

that requires significantly less training time than other models. RPART model is a 
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non-linear supervised learning method that is typically used to classify non-linearly 

separable data and can be graphically represented as a binary decision tree. Figures 

5-14 shows an example of RPART model for diagnosing of migraine. 

 

Figure ‎5-14: RPART model of migraine vs. all 

Compared to the other predictive models such as MLP and SVM, RPART model has 

the advantage that it is not a black-box model. RPART model can be interpreted and 

expressed as a decision rules that derived from the data features as presented in table 

4-12. Moreover, the interpretation of RPART model allows for an external validation 

by medical professionals. Barlin and others [151] have mentioned that RPART can 

manage highly skewed data, while it does not require many inputs compared to other 

multivariate modelling methods such as multivariate regression. On the other hand, 

the primary downside of the RPART model as highlighted by Dreiseitl and his 

colleague [152], is given by the greedy construction method, where at each splitting 

process, a single feature with optimum split-point is recruited. However, a multi-step 

look ahead that takes into account combinations of features might achieve much 

better results. In medical applications, the advantage of RPART model may carry 

more weight than its downsides [152]. However, RPART model does not ordinarily 

have the best overall performance when compared to other predictive models. 
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Therefore, ensemble learning has emerged to improve the performance of a 

singletree model via the use of many trees, then aggregating the predictions across 

these trees. Examples of ensemble learning method are random forest (RF) and 

adaptive boosting (ADA) models. 

Table ‎5-12: The translation of figure 4-16 into a set of rules 

Rule no. Probability Covers Type of headache Conditions 

3 1.00 57(34%) Others    Headache frequency >= 0.215 

19 1.00 8(5%) Others    Headache frequency < 0.215 

   Neurological exam < 0.5 

   Photophobia < 0.5 

   Headache duration < 0.105 

11 0.95 33(19%) Others    Headache frequency < 0.215 

   Neurological exam >= 0.5 

   Vomiting < 0.5 

18 0.76 12(7%) Migraine    Headache frequency < 0.215 

   Neurological exam< 0.5 

   Photophobia < 0.5 

   Headache duration >= 0.105 

10 0.83 8(5%) Migraine    Headache frequency < 0.215 

   Neurological exam >= 0.5 

   Vomiting >= 0.5 

8 0.99 52(31%) Migraine    Headache frequency < 0.215 

   Neurological exam< 0.5 

   Photophobia >= 0.5 

 

RF model is a collection or ensemble of decision trees (DTs). RF takes the concept 

of DT a step further via generating dozens of trees. In contrast to DT, which uses all 

of the features along with the whole dataset to build a predictive model, RF selects 

an arbitrary sample of the data and determines a particular subset of features to build 

each DT individually. The resulting collections of DTs have their Out-Of-Bag error 

(i.e. OOB or error rate of the whole model) as shown in figure 5-16. This ensemble 

of DTs then compared to discover the best subset of features that can generate the 

most effective predictive models. 

Our RF model built 100 separate DTs with m features considered at each split. In 

typical RF model 𝑚 = √𝑝 𝑜𝑟 𝑙𝑜𝑔2 𝑝, where p is the number of the headache 
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features. The OOB estimate of error of RF model tends to decrease as the number of 

trees increases. We can also note that migraine was the class with less error, 

compared to TACs that registered the largest class error. Moreover, we can see the 

most importance features in the RF model through the mean decrease Gini as shown 

in figure 5-16. Gini measures the mean gain of purity by splits of a particular 

headache feature. When the feature is informative, it is likely to split mixed labelled 

headache nodes into pure single headache nodes.  

The final RF model has identified that headache frequency, duration, location and 

characteristics are the most important features for the classification of primary 

headache as presented in figure 5-16. Although the RF model was slower when 

compared to the RPART model, which is the main drawback of the RF model, 

however, it was more accurate than RPART and tremendously reduces the chances 

of over-fitting that typically occur with a single deep DT via building smaller trees 

using random subsets of features [118]. In contrast to RPART, final classification of 

RF model is difficult to interpret as it is made by aggregating the classifications of 

the ensemble, where the model considers majority vote by the trees. 

 

Figure ‎5-15: Class error rate of RF model with 100 trees 
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Figure ‎5-16: Features importance plot by RF model 

 

 

 

Figure ‎5-17: Training error of ADA model over a 100 iterations 
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Similarly, ADA model is another ensemble method that is used to boost the 

performance of any binary machine-learning classifier. This study uses the ADA 

learning method to boost the performance of RPART by creating a strong classifier 

from a number of trees, where the final classification of the ADA model is made by 

calculating the weighted average of the trees [153]. A single DT produced by the 

RPART model has a test error rate of 11%, 22% and 23% for headache classes of 

migraine, TACs and TTH respectively. In this context, the ADA model considerably 

drives down the training error, where after only forty iterations; the training error has 

dropped to less than 2%, 5% and 8% for migraine, TTH and TACs respectively. The 

test performance of the ADA model on the headache dataset was extremely good for 

all of the performance metrics, more stable than the RPART model and even than the 

RF model. 

Away from tree-driven models, we have implemented two black-box models, i.e. 

SVM and MLP models, in addition to LOGR model. A 10-10-1 MLP neural network 

architecture shows the highest sensitivity with a very good predictive power with 

respect to the diagnosis of primary headaches. In contrast to all other models, MLP 

achieved a stable ACC and AUC values. However, the output of the MLP model 

might be more difficult to interpret when compared with tree-driven models, or even 

with LOGR model that allows a simple calculation of the probability of an output 

using the regression equation. Moreover, MLP is a computationally expensive model 

compared to LOGR models. For 10 headache features, MLP with one hidden layer 

requires significantly more parameters to estimate the output than LOGR models 

require. For example, MLP requires 131 connection weights with respect to migraine 

class, while LOGR takes only 10 coefficients to predict the same output.  

Jack V. Tu in his thorough comparison [115] stated that the LOGR model can be 

disseminated to a considerably wider audience than the MLP model can. He 

attributed this issue to the fact that the connection weight matrices of the MLP model 

have occasionally been published and these matrices are most likely to be huge and 

difficult to interpret. Conversely, the coefficients of LOGR model are simple to 

interpret and use by end users to calculate the predicted likelihood of an outcome 

[115]. Additionally, Dreiseitl and his colleague [152] have stated that the wide use of 

LOGR and MLP models could possibly be encouraged by the advantage that they 
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have lower generalisation error than tree-driven models, meanwhile being simpler to 

develop than the SVM model.  

The SVM model, on the other hand, is one of the dichotomous, kernel-based learning 

methods that the OVA approach extends its functionality to multi-class classification. 

The MLP model uses back propagation algorithm to adjust the weights and 

determine the set of weights and bias values with the goal of minimising error rate. 

In contrast, the SVM model in this study uses a Gaussian radial basis kernel function 

(RBF) to map the data into high dimensional space, where it is easier to create a 

linear decision boundary in the headache features space. The decision boundary, also 

called hyper-plane, should maximise the margin between the headache classes for an 

optimal diagnosis. SVM model with 70 support vectors has achieved a training error 

of 0.04 with respect to migraine class. Although SVM and MLP models behave 

differently, they are able to handle complex nonlinear relationships between the 

headache features and the outcome diagnosis when they exist. The hidden nodes 

within the MLP model allow the network to model complex nonlinear relationships, 

while different kernel functions, e.g. polynomial function, can be adopted by the 

SVM model to turn a linear model into a nonlinear model. In the context of 

nonlinearity, these models are more flexible and adaptable compared to the LOGR 

model. However, MLP, SVM and LOGR models are more complex for external 

validation than tree-driven models. Even though all of the predictive models have 

achieved impressive overall results in terms of performance metrics, however, we 

should be aware of individual variations, as shown in table 5-13, including 

advantages and drawbacks of adopting each one of the models by considering their 

capabilities on the truth ground. 
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Table ‎5-13: Comprehensive comparison of predictive models 

 Predictive models 

No. Advantages RPART ADA RF SVM LOGR MLP 

1 Overall performance       

2 Nonlinearity handling       

3 Simplicity of interpretation       

4 External validation       

5 Computational complexity       

6 Consider Features combination       

7 Multi-class handling       

Symbols:   very good;   good;   acceptable;   poor; 

5.8. Chapter summary 

In this chapter, we have selected the most relevant subset of features using a majority 

vote of three different feature selection methods. This step was essential for a proper 

learning and generalisation approach, and at the same time to ensure reliable results. 

At the pre-classification stage, we have also analysed the nominated subset of 

features in order to investigate their discriminatory power in differentiating between 

different types of headaches. Also in this stage, we investigated the balance of class 

distribution to avoid any potential skewness of classifiers toward the majority class. 

Next, we have reviewed several statistical measures that have been used for the 

evaluation of the classifiers’ prediction performance. Finally, we have trained and 

tested six supervised ML classifiers in OVA approach to create six predictive models 

for classification of primary headache disorders. The results of evaluation using 

OVA approach have been pooled in order to provide an overall comparison of 

predictive models, then generating a comprehensive picture that shows the 

advantages and disadvantages of each predictive model. We concluded this chapter 

with an extensive discussion that covers not only the predictive performance of these 

ML classifiers, but also highlights their capability in many aspects including 

computational complexity and error rates, handling of nonlinearity feature in data, 

simplicity of interpretation and capability of external validation by medical experts. 
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CHAPTER 6: HEADACHE FOLLOW-UP 

6.1. Introduction 

Nowadays, technology is widely adopted for healthcare delivery, which has made the 

healthcare system far better in several ways. Take for instance the Manchester Triage 

System (http://www.triagenet.net/), which is a clinical risk management tool used in 

emergency departments by clinicians to help in triaging patients. Many other 

computer tools intended for patients or managing appointments have been in use for 

decades to support healthcare. Although great improvements were made, however it 

goes without saying that technology to support the healthcare sector is always in 

need of more improvement. Therefore, the Department of Health, in 2012,  reported 

that general practitioners (GPs) might soon direct their patients for free or affordable 

apps to involve themselves in managing their health more effectively [154]. After 

that, a call to find new ideas or existing smartphone apps that help patients and 

doctors in providing better healthcare has been announced. Many entries have been 

received including apps to manage diabetes, apps to monitor blood pressure, apps to 

help people with post-traumatic stress, apps to provide information about healthy 

diets and keeping fit and finally apps to find NHS services on a map. In this chapter, 

we introduce the HydroApp system to support self-management and follow-up of 

headaches as primary or secondary due to hydrocephalus. 

6.2. The HydroApp system 

HydroApp system is a web-based management, administration, communication and 

m-health application that provide follow-up treatment for patients with chronic 

headache or hydrocephalus. Using HydroApp, patients will be able to record all the 

pain events and the episodes related to those events, as well as access a quick and 

convenient way to fill in diaries, outcome measures and health questionnaires. 

Clinicians will have a central point of control, where the data will be collected from 

the patients’ mobile app, analysed and presented in numerical and graphical formats. 

An inbuilt alert model will inform clinicians if there is any episode that may cause a 

serious situation. The HydroApp system is an end-to-end solution that allows 

information to flow smoothly between patients and clinicians. 

http://www.triagenet.net/


105 
 

As administrators, clinicians can create a unique patient profile, configure the type of 

condition, assign a condition to the patient profile and append any historical 

information such as previous diagnosis and medications. When this occurs, patients 

can begin using the HydroApp system and record all their episodes, and fill in diaries 

and outcome forms. Clinicians now are in a position to observe their patients' 

episodes and get updates. Patients will feel safer by realising that their clinicians are 

observing them and that they have an easy and efficient way to get in touch if 

necessary. The HydroApp system will provide clinicians with much more details 

about their patients on the day they have to visit the healthcare facility, and clinicians 

will be well prepared to manage their patients more efficiently, as well as making 

faster and better decisions. Lastly, the healthcare system, in general, could save 

money because clinicians can work faster and more efficiently in managing patients, 

as well as reducing avoidable visits to the healthcare facilities. This makes the 

solution very powerful and flexible by bringing the focus on self-management. 

6.3. HydroApp system architecture 

System architecture is the process of defining a structured solution that meets all the 

technical and operational requirements in order to identify how logically the system 

performs all the tasks. A modern web application needs to be scalable, reliable, 

ensure fast performance and be highly available, either if it is self-hosted or on the 

cloud. To achieve these features, HydroApp system has been built on a typical 3-tier 

architecture (figure 6-1). This architecture is the widely favoured architecture of 

modern web-based systems because it ensures a logical separation of all the required 

components to run the system. The front-end tier represents a client application. End-

users (e.g. patients) operate on this tier and they know nothing regarding the other 

two tiers. At this tier, users can see the application through the graphical user 

interface (GUI), data will be captured from patients’ mobile app and multiple views 

of the database can be provided to the clinicians via web application. 
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Figure ‎6-1: Simple overview of 3-tier applications 

The business logic is the middle tier, which represents server application and 

programs that access the database (i.e. business logic and algorithms that process the 

data). For a user, this tier presents an abstracted view of the database. End-users are 

unaware of any existing database beyond the application. On the other hand, the 

back-end tier (i.e. database tier) is not aware of any other user beyond the application 

tier. Thus, the business logic tier is located in between the front-end and back-end 

tiers and plays the role of a mediator between the end-user and the database. In other 

words, it controls application functionality by performing detailed processing.  

Finally, the data tier contains database servers where data is collected and retrieved. 

This tier is responsible for data persistence mechanisms and data access layer. The 

data is stored independently from business logic or front-end tiers, but can be 

retrieved and passed back to the business logic tier for processing and eventually to 

the end user. Although the 3-tier system architecture is complex to build and time-

consuming, however, it is easy to maintain and involves numerous advantages; first, 

a logical separation among tiers to enable a parallel development for tiers. Secondly, 

the scalability of architecture allows the deployment of server application on multiple 

cloud platforms. Third, the middle tier (i.e. business logic) ensures a more secure 

environment by verifying and validating the data and preventing a direct access to 

the database. Moreover, the middle tier represents a protection shield for the 

database, where we can define new validation and protection rules without affecting 

the front-end tier. Figure 6-2 illustrates the big picture of the HydroApp system. 
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Figure ‎6-2: The big picture 

6.3.1.  The client application 

The client application (i.e. HydroApp) as shown in figures 6-3 and 6-4, is currently 

implemented using JAVA programming language for Android platform and it is 

independent from the server application, but they are communicating with each other 

via HTTP protocol. The client application can also be implemented for any other 

platform such as iOS or web-based application and communicate with the server 

application as long as it is capable of HTTP communication. The mobile clients will 

exchange data with the server via HTTP requests. In order to get or save the 

information needed such as reporting pain events or sending monitoring forms, 

clients will use the URIs that each resource in the web service has.  

Prior authentication via a secure login system is required for the mobile client to use 

the service and be able to communicate with the server application. The clients must 

be connected to the internet via Wi-Fi or cellular network when required to send 

data. This solution might change in the future on mobile clients and desktop clients 

by applying a synchronization method, in which the data is stored locally and in the 

cloud, and then updated whenever the clients and server are online. This will enable 

users to send their data offline and synchronize when the client is online. This feature 

is out of scope for this first version of the project. 
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Figure ‎6-3: HydroApp screenshots 1 

 

 

Figure ‎6-4: HydroApp screenshots 2 
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6.3.2.  The server application 

The server application will run on a web server and connect to data tier (i.e., central 

database); these two tiers will be hosted on AIMES data centre 

(http://www.aimes.uk/), which provides hosting services to health and NHS business 

partner organisations. The server application will be a RESTful API and will query 

the database to serve and store the data to and from the clients. For more information 

about RESTful APIs, see REST API Guide by Oracle [159]. The server application 

must be scalable and able to handle potentially thousands of users. We developed the 

core of the server application using PHP5, JavaScript, while HTML and CSS are 

used to implement the GUI as shown in figures 6-5 and 6-6. The application server 

will verify the data sent from the mobile client before storing to central database. 

 

Figure ‎6-5: Example of patients profiles 

 

http://www.aimes.uk/
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Figure ‎6-6: Dashboard to present patients’ data 

 

6.3.3.  Central database 

The database is developed using MySQL database - InnoDB engine. We have 

designed the database in a way that can migrate to different database engines or a 

new table can be added for any new outcome forms when required. It will make use 

of SQL statements to query and populate the database. The RESTful API will have 

resources, which will make use of the database implementation to read/write data 

from and to client applications. To access the resources, the mobile app will use the 

embedded URIs.  

The database design is very important for the system to work as intended, because 

we need to store and retrieve data dynamically, as well as adapt the clinician and 

patient user interfaces to this dynamically added data structure. Therefore, we adopt 

the star schema architecture in the development of the central database. The star 

schema is the simplest data warehouse schema and the most common nowadays, the 

diagram of the database resembles a ‘star’ with points radiating from a centre. In 
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order to make the database schema readable, we will logically group database tables 

into two sets of tables. The first set receives data from mobile clients while the 

second set receives data from administrators, both via server application.  

Figure 6-7 shows the set of tables that feed the mobile clients; we will call this set of 

tables apps’ tables. The centre of the star schema will be a login table, where the 

login details of clients are kept, while each one of the dimensional tables represent a 

monitoring form, pain diary or an assistant table. The star schema is simply a 

relational model. One-to-many relationship is defined from login table to eight 

dimension tables and One-to-one relationship to patient_info table that is initialised 

first by the administrator and forms_time table that stores dates when the monitoring 

forms are due. All tables are linked by patient_id, which is a unique integer identifier 

(key) generated by the system for each patient when the patient profile is setup. 
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Figure ‎6-7: Star schema of Apps’ tables 

6.3.4.  Data privacy and security 

Data privacy and security are essential aspects that are required to be highly 

considered in data driven systems to ensure an adequate protection of clients’ data. 

This section covers the security considerations that have been taken into account to 

protect the system and patients’ data. On one hand, the central database and server 

application will be hosted on AIMES data centre, which provides secure hosting 
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services to a range of organisations, including the Health, pharmaceutical, 

automotive, professional services and the digital and creative sectors. AIMES meets 

the NHS criteria for information security and governance and is currently hosting 

data for The Institute of Child Health and Liverpool Heart and Chest Hospital. In 

addition to this, the central database will include anonymised data. Patient profiles 

will have no name or personal details that may expose patient identity. Furthermore, 

all collected data from mobile clients will be stored in numeric format rather than 

plain text for many reasons; first, the numeric representation will not provide any 

details about clients. Second, only the server app can display this representation into 

understandable format. Finally, it requires much less storage space and query time. 

On the other hand, as we are managing the client accounts, the most important aspect 

is to protect client passwords. Instead of encoding passwords using Base64 method, 

which can be easily reversed to get the plain password, we protect client passwords 

using a salted password hashing method. Hash algorithms are one-way functions. 

They convert any quantity of data into a fixed-length "fingerprint" that cannot be 

reversed and will be completely different with any tiny variations in input. 

Theoretically, using hash functions is an ideal way to protect passwords because they 

are designed in a way that it is impossible to turn a hash code back into its original 

string. Storing passwords in a form of hash code will protect them even if the 

password file itself is compromised.  

However, there is always a probability that malicious software and hackers may try 

to guess the passwords using pre-calculated dictionary attacks or brute-force attacks. 

Therefore, we use a process called "salting", which is a process of adding a random 

string called a salt to the password before the hashing process. This helps to lower 

the probability that the hash code maybe found in any pre-calculated table. Finally, to 

push the password protection level to the highest possible, we adopt a combination of 

hash functions in addition to adding salt in a process called two-step hash. 

6.3.5.  Authentication and authorisation 

Authentication is a process of verifying clients through their provided credentials. In 

HydroApp system, we follow the common method of authentication, in which the 

clients will submit their login credentials (i.e., user names and passwords) via their 

mobile apps. The server application will receive a login request along with clients' 
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credentials. At first, the server application will validate the credentials and then 

query the table that includes the credentials of authorised users in order to find the 

same credential. If there was a match, the client is granted authorisation for access, 

otherwise the access will be denied. The passwords are not only encoded in the 

database, but they are transmitted from client app in encoded format as well. 

Therefore, passwords will never present in plain text in the system. The server 

application will send patient_id to the client app in order to start a session when the 

credentials are approved as illustrated in figure 6-9. The server application will 

respond with a general error message whether or not the username or password was 

incorrect. This can prevent enumeration of username and password by hackers. The 

majority of error messages generated as error code in server app are based on 

requirement and delivered to and expressed in the mobile client. 

 

 

Figure ‎6-8: Authentication process 

 



115 
 

6.3.6.  Application usability 

The mobile App corresponds to a data collection component together with the 

responsibility of linking patients with the server application. A user-friendly mobile 

app would be an essential data source, intended to obtain the data directly from the 

patient, this would facilitate the collection of non-measurable signs or symptoms 

such as headache severity, pain location and feeling. As the system interacts with the 

patient directly, the user interface (UI) must be clear and intuitive, it must have a 

modern look and it must be fully featured and easy to use on mobile clients. We 

considered a patient’s convenience through minimising data entry fields and taking 

advantage of alternatives such as, yes/no questions, pre-defined options, providing 

min and max attributes for input elements such as durations, date and so on. 

6.4. HydroApp system in use for clinical follow-up study 

We developed HydroApp system in accordance with the requirements of headache 

and hydrocephalus specialists at Alder Hey Children's NHS foundation trust and 

Walton centre - Liverpool. The HydroApp system meets their requirements of follow 

up, data collection and analysis. This is mainly because the HydroApp system 

includes a range of patients’ self-reported outcome measures and monitoring forms 

as shown in figures 5.3 and 5.4 such as headache impact test (HIT6), hydrocephalus 

outcome questionnaire (Hydro-OQ), EQ5D-Y and EQ5D-3L, in addition to headache 

diary and visiting reports as shown in figure 6-3 and 6-4. Therefore, the BASICS 

clinical trial team is going to use the HydroApp system to extend the follow-up phase 

of the BASICS clinical study from two to ten years. BASICS (The British Antibiotic 

and Silver Impregnated Catheters for ventriculoperitoneal Shunts) is a randomised 

control trial (RCT), designed to compare the outcomes of children and adults 

diagnosed with hydrocephalus who have been randomised to receive Bactiseal 

(antibiotic impregnated VPS), or Silverline (silver impregnated VPS), versus the 

Standard VPS (made of silicone). The BASICS trial patient cohort is the largest 

cohort of shunted hydrocephalus patients ever studied prospectively worldwide, 

including 1600 patients.  

The main objective of BASICS is to establish which shunt catheter is most effective 

in reducing shunt infection and within this context; the economic question is to 

assess which of the three shunts is most cost-effective for the NHS. Using HydroApp 
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system for collecting 10-year data on patients recruited to BASICS offers the 

opportunity to measure longer-term neurological outcomes, complications resulting 

from multiple shunt revisions and reductions in morbidity and infections. A long-

term follow-up study should lead to a better understanding of the resource and 

healthcare implications for these patients and for the NHS to help plan and resource 

healthcare services for the future.  

Most regional neuroscience centres follow-up large cohorts of shunted patients from 

within and outside of their region, often for the remainder of their life with little 

evidence-base for how and when they should be seen as out-patients or consideration 

for the huge burden on the patients and their families in terms of travel, time off 

work, school etc. The understanding  that ‘once a shunt, always a shunt’ implies that 

nearly all patients, once implanted for hydrocephalus, will remain shunt-dependant 

for life and thus need some sort of life-long follow-up and relationship with the 

regional neuroscience centre. Better follow-up information, in terms of resources 

used, time spent in primary and secondary care, health professionals consulted, total 

in-patient stay, will lead to a better understanding and future effective planning for 

future follow-up and resource utilisation.  

Given that there are no economic evaluations of VP shunts, evidence of which shunt 

is most efficient is needed to ensure that decisions are made on robust grounds. 

While the two-year follow-up period offers evidence of cost-effectiveness in the 

short term, there may be time horizon bias, which can only be mitigated through 

extended follow-up. Published studies show that shunts fail in the first 12 to 24 

months with a rate between 30-50% [160-164] after shunt surgery and this is due to 

obstruction, infection or mechanical failure. A study undertaken in the USA which 

conducted a retrospective analysis on a cohort of patients extracted from 10 years of 

hospital admissions and discharges between 1990 and 2000, showed that the 

cumulative complication rate after 5 years of shunt insertion was 32% and that 

children tend to have a higher complication rate than adults [165]. 

Collecting 10-year data on patients recruited to BASICS offers the opportunity to 

measure longer-term neurological outcomes, complications resulting from multiple 

shunt revisions and reductions in morbidity and infection. A longer observation 

period would allow for an assessment of how clinical organisation and patient 
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characteristics during the first two years shape individual trajectories in the medium 

and long term. The economic analysis will take the NHS and societal perspectives 

following NICE guidance. Healthcare costs will be collected for both arms of the 

trial in order to evaluate the burden that hydrocephalus has on patients and their 

families in the long term. Unit costs to account for patients’ healthcare use and 

personal spending will be extracted from national sources. A cost effectiveness 

analysis will be run from the data collected in the follow up period and cost 

acceptability curves estimated. 

The use of HydroApp system as a follow-up technique and data collection method 

will ensure that economic and patient-reported outcomes are recorded efficiently. It 

will be assumed that the standard use of such smartphone based PRO (patient 

reported outcome) and intelligent software will be able to reduce unnecessary visits 

to neuroscience centres, whilst enabling and improving communication between 

patient and neurosurgical care and follow by creating appropriate clinical thresholds 

for alerting medical staff to changes in symptoms or to changes of behaviours and of 

symptoms, automatically. Thus, it is improving safety whilst reducing unnecessary 

costs and speeding up communications and access when it counts. 

Collecting outcome information from patients is critical for the success of a trial, but 

it can also be time consuming and expensive. A nested RCT Study Within a Trial 

(SWAT the use of smartphone for data capture) will allow us to test the hypothesis 

that patients’ self-reported information using a smartphone app will provide more 

accurate, timely and economic data in comparison to paper questionnaires. 

Differences between the two groups will be tested using appropriate statistical 

methods (these will be specified once the pilot design has been finalised).  

To initialise a pilot study, we have participated with the BASICS clinical trial team 

in developing an online questionnaire asking the recruited patients about their 

experience of living with a shunt and follow-up with the medical profession. In 

addition, we investigated the acceptance of using technology to manage living with a 

shunt and follow-up. As of this writing, we obtained 37 responses from 

hydrocephalus patients with VP shunts, in which 15 were adults and 22 paediatric 

patients. The mean age of adult and paediatric patients were 36.4 and 8.3 years 

respectively. Approximately 80% of paediatric patients had 1-4 shunt operations, 
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compared to 60% of adult patients. The majority of patients usually spent 30 minutes 

or less as a waiting time, while 5-6% had to wait up to 60 min. About half of the 

patients spent 10-15 minutes with the doctor or nurse in clinic, while it is very rare 

that patients only spend 5 min or less with the doctor or nurse in clinic. 

One third of patients would like to be seen by the neurosurgery team in clinic every 6 

months, while the other one third yearly. Surprisingly, 20% of adult patients prefer to 

be seen in clinic only when they have problems. In total, about 78% of all patients 

expected to be followed up routinely in clinic for life. On the other hand, and for 

participating in the use of technology to manage living with a shunt and follow-up, 

paediatric patients was more interested in taking part in such a study, where 86% of 

them said yes, compared to 60% of adult patients. All paediatric patients have 

smartphones, compared to approximately 79% of adult patients, while the majority of 

patients have a home computer with internet access. Patients who were interested in 

taking part in such a study have rated the listed aspects of using technology for 

follow-up as shown in table 6-1 as very or extremely important on a scale of 1 to 5 

(i.e. from least important to most important). 

Table ‎6-1: Very or extremely important aspects of using technology for follow-up 

 Patients (%) 

Adults Paediatric 

1 Record your headache score  93% 85% 

2 Record your general health and well-being  69% 81% 

3 Alert your treating team 85% 90% 

4 Record and update your details about your shunt 62% 90% 

5 Conduct a video-call appointment 46% 52% 

9 Conduct video-call emergency consultation 43% 81% 

 

It is obvious that the first four points listed in the above table, i.e. recording headache 

score and general health, recording details about the shunt and alerting the medical 

team, were seen by patients as the most important aspects in terms of using the 

HydroApp system for self-management and follow-up. In contrast, making a video-

call in general was the less important aspect from the patients’ point of view.  On the 

other hand, eight patients were not interested in taking part in such a study (5 adults 

and 3 paediatric). Although they were not interested in taking part, however more 
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than half of them rated the aspect of recording the headache score as very or 

extremely important. 

6.5. The benefits of HydroApp system 

More than 15 million people in England have a long-term condition [155]. These 

people use a large proportion of healthcare services. Patients with long-term 

conditions such as chronic headache or hydrocephalus are usually asked to complete 

traditional paper-based diaries or monitoring forms on a regular basis, which enables 

specialists to monitor and evaluate their status. However, within publically funded 

healthcare systems such as the UK’s National Health Service (NHS), long-term 

follow-up in specialist clinics is not currently possible for all patients with long-term 

conditions. In 2014, the Royal College of General Practitioners reported that over 34 

million patients in England would be unable to get an appointment with their GPs, 

when seeking treatment. This is due to the continued decline of the NHS funding 

budget and dramatically growing demand to provide high quality healthcare services 

[156]. Consequently, ensuring the continuity of care for all patients with long-term 

conditions requires a switch from a classical model of care to a new model, in which 

patients with long-term conditions are encouraged to track their conditions and to 

play a vital role in managing their own care. 

In this context, there is scope to improve patient monitoring and safety in the 

specialist clinics by employing mobile health (M-health) technologies. The M-health 

application represents an intelligent solution, and holds potential to replace 

traditional paper based diaries and monitoring forms. The M-health scenario is the 

use of mobile phones, pads or any other handheld devices to follow-up patients with 

chronic conditions [157, 158]. In this study, we have developed a novel mobile 

application based system (i.e. HydroApp system) to enable remote monitoring of 

patients with chronic headache or hydrocephalus. This application focuses on pain 

and other symptoms that patients may suffer and enables them to enter their own 

episodes and to have a diary to follow up on their condition. Moreover, HydroApp 

system allows doctors or any qualified medical staff to keep close track of patients 

and avoid unnecessary visits to the hospital by reviewing each of their patients’ 

histories. Additionally, it is entirely configurable; we can add any other monitoring 

forms or modify the app to suit for any remote monitoring purposes, no matter what 
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the condition being treated is. The impacts or advantages of HydroApp system can 

be summarised in two main aspects as presented below: 

A. Impact on patients: 

The primary impact of this work is to improve patient monitoring and safety. 

Patients with chronic headache or hydrocephalus can be better equipped to 

manage their own conditions and to maintain a good quality of life. HydroApp 

improves monitoring of historical responses to therapies and recording of side 

effects. Patients can send their diaries or monitoring forms anytime/anywhere. 

This will help to alleviate concerns about normal events that occur and to put 

the patient’s mind at ease about specific events that commonly occur after 

installation of a shunt. Patients will feel safer by realising that their clinicians 

are observing them and that they have an easy way to get in touch if required. 

B. Impact on the NHS: 

The potential of the developed system to healthcare providers is significant. 

HydroApp system provides an end-to-end solution that allows information to 

flow freely between patients and clinicians. It overcomes the need to physically 

collect and interpret data from remote facilities, such as the home, which can 

be a time consuming process, expensive and often impossible due to a 

clinician’s existing work commitments. The HydroApp system can improve 

communication between patients, clinicians and healthcare service provider. 

This will help to monitor a larger number of patients than would be possible in 

the current service model. Using the HydroApp system, clinicians will have 

more details about their patients on the day they have to visit the hospital and 

will be prepared to manage their patients more efficiently, as well as making 

faster and better decisions. Economically, the HydroApp system has a potential 

to reduce avoidable expenses for the NHS by reducing unnecessary visits on 

one hand, and enabling clinicians to work faster and more efficiently in 

managing their patients, on the other hand. 
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6.6. Chapter summary 

This chapter introduced the HydroApp system, a method for self-management of 

patients with long-term conditions such as chronic headache and hydrocephalus. 

Several different technical aspects have been covered in this chapter, including the 

client application, server application and central database. This chapter also 

discussed the security and privacy procedures that have been followed in the design 

stage. This chapter ends with reviewing the benefit of using the HydroApp system 

for patients’ follow-up, and shows the potential implementation of this system in 

neurology clinics at Alder Hey hospital. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

In general, this work proposes the use of intelligent approaches to improve the 

quality of healthcare provided to patients with headache. We worked toward 

improving the quality of care via two main ways; the first way was to improve the 

diagnosis or classification of primary headache disorders at primary clinics using 

machine-learning methods, while the second way was to start an M-health based 

platform to facilitate the long-term follow-up and clinical management of patients 

with chronic headache at neurology clinics. 

This research was inspired by the urgent need for a new pathway that could reduce 

the burden on the shoulders of NHS, and at the same time enhance the quality of 

patients’ lives. In fact, the use of machine-learning methods as a diagnostic model 

could reduce the need for specialist assessment as they can learn from previously 

diagnosed patients to diagnose new cases. These machine-learning based diagnostic 

models could also be used to train non-specialist doctors to improve their decision-

making procedure. Likewise, the personalised M-health application has a potential to 

improve the long-term monitoring of patients with chronic headaches and enables 

specialists to monitor a larger number of patients.  A remote follow-up using M-

health technology can promote the quality of care given to this category of patients 

as well as engaging them in their condition management. 

To establish intelligent diagnostic models, an experimental procedure was 

undertaken in this study by training six popular supervised machine-learning 

classifiers using patients’ records originating from three medical institutions in 

Turkey, containing over 800 cases of patients with primary headaches. This stage 

usually known as the knowledge acquisition stage, where classifiers learned, 

identified patterns and gained knowledge from patients’ records in order to classify 

new headache cases. Thereafter we have tested the classifiers’ learning and 

generalisation capabilities using a number of records that not been used in the 

training process, i.e. holdout method. Using a number of statistical measures, we 

have evaluated the classifiers’ sensitivity, specificity and classification accuracy to 

establish a performance evaluation. 
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Generally, all of the predictive models have achieved impressive pooled results. The 

MLP model has achieved the highest sensitivity, followed by the ADA model with a 

sensitivity value of 0.86, then PRART and LOGR that showed somewhat similar 

sensitivities. The ADA model achieved the highest classification accuracy, while the 

highest AUC value was about 0.92 and achieved by the RF model. Almost all of the 

predictive models, with exception of the MLP learner, achieving AUC values that 

were noticeably higher than their classification accuracies. The MLP model shows a 

relative balance between AUC and ACC values. Migraine was the most accurately 

classified type of headache, and all of the predictive models have shown a balance 

between F1 and AUC values with respect to the diagnosis of migraine. 

In addition to the performance evaluation, we have configured and started with a 

comprehensive assessment and comparison of the targeted classifiers using not only 

the performance matrices, but also considering their points of strengths and weakness 

such as the simplicity of model interpretation and capability of external validation by 

a medical expert. We have also considered their computational complexity, required 

training time and error rates. Moreover, we discussed and investigated the models’ 

ability to handle multi-class problems and nonlinearity in data. In summary, the 

results reveal that intelligent systems, i.e. machine learning based diagnostic models, 

represent a promising approach for the classification of primary headaches, and are 

likely to hold significant prospects to improve traditional models of diagnostic 

delivery.  

Likewise, patients with long-term conditions such as chronic headache and 

hydrocephalus can be better equipped to manage their own conditions using the 

proposed HydroApp system. We have investigated the acceptance of using such M-

health based system for patients’ follow-up via an online questionnaire. More than 

80% of paediatric patients and about 60% of adult patients were interested in using 

the HydroApp system to manage their conditions. In general, over 80% of those who 

are interested, have rated the recording of their headache score, general health and 

well-being as well as alerting their treating team as very or extremely important 

aspects when using the HydroApp system. Some other aspects such as conducting 

video-call appointment and consultation were less important from the patients’ point 

of view. 
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In aggregate, machine learning based diagnostic models in combination with the 

HydroApp system for long-term follow-up are likely hold a significant potential to 

improve the quality of healthcare provided to patients with headaches, and reduce  

avoidable expenses for the NHS by reducing unnecessary visits on one hand, and 

enabling clinicians to work faster and more efficiently in managing their patients on 

the other. In short, it is the start of personalised healthcare. 

7.2. Future work 

Although we have evaluated the diagnostic models using a part of the data set, 

however the diagnostic labels in this data might be inaccurate. Therefore in the future 

work, we aim to validate the diagnostic models in primary care clinics and by a 

number of headache specialists on the one hand, and installing and validating the 

HydroApp system with patients treated with VP shunts at Alder Hey hospital on the 

other. We also aim to overcome some of the key limitations inherited from patients’ 

records. For example, a patient who presents with headache will be labelled with 

only one diagnosis. However, this should be extended to allow for multiple 

simultaneous diagnoses because multiple types of headache are known to coexist in 

the same patient, or a particular type of headache may transform into another one 

[166, 167]. 

Additionally, it is understood that the diagnosis of primary headaches is based on the 

history and examination, however, it is worthwhile to investigate whether genetic 

factors can play a role for an early prediction of headaches. Likewise, physiological 

signals like EEG may provide another channel of information to improve the 

diagnosis of headaches, where it may be possible that each type of headache has its 

hidden patterns in EEG signals. Finally, we can also recommend the use of other 

statistical and learning methods such as principle component analysis for 

dimensional reduction and deep learning algorithms, which may lead to better 

diagnostic results. 
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 Appendix A: Separate Variance t Tests 

Separate Variance t Testsa 

 Age Admission Onset Frequency Duration Smok.dur P.killer Movr.dur 

Smok.dur 

t 1.5 .5 -1.3 .1 -1.3 . 1.5 1.0 

df 147.2 147.3 157.6 140.4 162.9 . 6.0 4.0 

# Present 111 110 109 110 109 113 7 5 

# Missing 706 706 689 696 685 0 12 9 

Mean(Present) 46.919 38.009 73.725 10.455 18.01193 8.075 74.286 8388.000 

Mean(Missing) 44.677 37.309 84.218 10.365 20.95510 . 21.417 17.000 

P.killer 

t -1.2 .6 3.2 -.5 2.0 .6 . . 

df 19.9 19.7 18.3 19.8 19.1 9.5 . . 

# Present 19 19 19 19 19 7 19 14 

# Missing 798 797 779 787 775 106 0 0 

Mean(Present) 42.158 38.684 192.632 9.632 31.42105 9.143 40.895 3006.643 

Mean(Missing) 45.049 37.373 80.106 10.395 20.28457 8.005 . . 

Movr.dur 

t -.4 1.2 3.0 .0 1.3 .6 1.6 . 

df 13.9 13.8 13.1 13.8 13.5 6.5 13.3 . 

# Present 14 14 14 14 14 5 14 14 

# Missing 803 802 784 792 780 108 5 0 

Mean(Present) 44.000 40.571 211.714 10.429 28.92857 9.000 48.714 3006.643 

Mean(Missing) 44.999 37.348 80.483 10.376 20.40069 8.032 19.000 . 

H.intesity 

t 1.8 -.6 -1.5 7.4 -3.2 -2.1 . . 

df 82.0 81.3 77.2 99.3 45.7 6.0 . . 

# Present 751 750 732 747 752 107 19 14 

# Missing 66 66 66 59 42 6 0 0 

Mean(Present) 45.210 37.329 81.320 10.765 19.85511 7.780 40.895 3006.643 

Mean(Missing) 42.379 38.242 99.030 5.466 33.01190 13.333 . . 

MH.acc 

t 5.1 -.2 -3.2 9.4 -3.4 -2.7 . . 

df 248.1 237.3 162.4 369.8 131.8 12.6 . . 

# Present 682 681 667 677 674 102 19 14 

# Missing 135 135 131 129 120 11 0 0 

Mean(Present) 45.886 37.370 77.534 11.226 18.59502 7.436 40.895 3006.643 

Mean(Missing) 40.415 37.570 109.523 5.922 31.53750 14.000 . . 

MH.perv

om 

t 3.3 -1.3 -3.9 7.5 -3.8 -2.7 . . 

df 232.9 226.3 170.1 313.8 145.6 12.6 . . 

# Present 670 669 655 668 662 102 19 14 

# Missing 147 147 143 138 132 11 0 0 

Mean(Present) 45.710 37.123 75.492 11.183 18.25611 7.436 40.895 3006.643 

Mean(Missing) 41.660 38.680 116.192 6.478 32.06061 14.000 . . 

MH.msic t 4.3 -.8 -3.7 7.5 -3.8 -2.7 . . 
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k df 256.3 246.8 169.2 297.8 140.3 12.6 . . 

# Present 674 673 659 672 666 102 19 14 

# Missing 143 143 139 134 128 11 0 0 

Mean(Present) 45.810 37.250 76.253 11.162 18.28009 7.436 40.895 3006.643 

Mean(Missing) 41.077 38.126 113.752 6.440 32.36719 14.000 . . 

MH.abdp

ain 

t 4.4 -.7 -3.7 7.4 -3.7 -2.7 . . 

df 254.3 245.3 167.5 292.9 139.0 12.6 . . 

# Present 675 674 660 673 667 102 19 14 

# Missing 142 142 138 133 127 11 0 0 

Mean(Present) 45.827 37.276 76.191 11.152 18.32465 7.436 40.895 3006.643 

Mean(Missing) 40.965 38.007 114.322 6.459 32.24409 14.000 . . 

MH.epil 

t 3.4 -1.3 -3.5 8.3 -3.7 -2.7 . . 

df 228.9 221.0 174.5 328.6 141.6 12.6 . . 

# Present 673 672 658 671 665 102 19 14 

# Missing 144 144 140 135 129 11 0 0 

Mean(Present) 45.709 37.134 76.751 11.224 18.29706 7.436 40.895 3006.643 

Mean(Missing) 41.583 38.660 111.146 6.170 32.17054 14.000 . . 

MH.surg 

t 3.7 -1.0 -3.6 5.7 -3.8 -3.1 . . 

df 237.1 228.6 163.5 246.0 133.5 12.5 . . 

# Present 678 677 664 676 671 102 19 14 

# Missing 139 139 134 130 123 11 0 0 

Mean(Present) 45.701 37.223 76.637 11.012 18.26012 7.338 40.895 3006.643 

Mean(Missing) 41.475 38.281 113.250 7.077 33.04878 14.909 . . 

MH.aller

g 

t 2.9 -2.0 -3.6 4.7 -3.6 -3.2 . . 

df 303.4 296.5 191.9 283.9 161.3 14.9 . . 

# Present 656 655 641 654 650 100 19 14 

# Missing 161 161 157 152 144 13 0 0 

Mean(Present) 45.599 36.992 75.651 11.002 18.31391 7.185 40.895 3006.643 

Mean(Missing) 42.466 39.075 111.914 7.691 30.64931 14.923 . . 

MH.hom

o 

t 2.5 -2.4 -3.6 4.2 -3.3 -3.6 . . 

df 327.5 319.4 214.2 307.1 178.5 17.4 . . 

# Present 643 642 628 641 638 98 19 14 

# Missing 174 174 170 165 156 15 0 0 

Mean(Present) 45.555 36.866 75.600 10.992 18.43345 6.923 40.895 3006.643 

Mean(Missing) 42.862 39.385 109.326 7.988 29.21154 15.600 . . 

MH.strok

e 

t 3.8 -1.3 -3.9 7.4 -3.8 -3.5 . . 

df 274.2 264.7 181.6 322.0 149.4 14.9 . . 

# Present 666 665 651 663 659 100 19 14 

# Missing 151 151 147 143 135 13 0 0 

Mean(Present) 45.748 37.143 75.642 11.211 18.24968 7.085 40.895 3006.643 

Mean(Missing) 41.603 38.550 114.418 6.510 31.78519 15.692 . . 
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MH.ather 

t 3.9 -1.1 -4.1 7.6 -3.9 -2.7 . . 

df 255.5 246.9 169.8 307.0 140.1 12.6 . . 

# Present 673 672 658 670 666 102 19 14 

# Missing 144 144 140 136 128 11 0 0 

Mean(Present) 45.756 37.188 75.403 11.182 18.20352 7.436 40.895 3006.643 

Mean(Missing) 41.361 38.410 117.482 6.412 32.76562 14.000 . . 

MH.lipid 

t 4.5 -.5 -3.8 7.7 -3.9 -2.4 . . 

df 232.0 222.6 157.3 289.2 147.0 13.1 . . 

# Present 683 682 668 679 676 103 19 14 

# Missing 134 134 130 127 118 10 0 0 

Mean(Present) 45.818 37.321 76.290 11.130 18.85583 7.655 40.895 3006.643 

Mean(Missing) 40.716 37.821 116.158 6.354 30.26271 12.400 . . 

Oral 

contracepti

ve 

t -5.5 -.3 3.8 -1.9 1.0 4.4 . . 

df 733.4 718.0 678.4 734.6 791.2 76.7 . . 

# Present 343 343 337 331 327 37 19 14 

# Missing 474 473 461 475 467 76 0 0 

Mean(Present) 41.816 37.251 97.111 9.637 21.54483 12.527 40.895 3006.643 

Mean(Missing) 47.272 37.514 72.312 10.893 19.85521 5.908 . . 

MH.hype

r 

t -1.7 3.1 4.0 -.3 .8 2.7 . . 

df 800.4 798.0 782.5 801.4 735.7 109.3 . . 

# Present 400 400 394 391 387 51 19 14 

# Missing 417 416 404 415 407 62 0 0 

Mean(Present) 44.127 38.902 95.671 10.263 21.28887 10.324 40.895 3006.643 

Mean(Missing) 45.801 35.962 70.218 10.484 19.84951 6.226 . . 

MH.diab 

t -4.2 .6 3.4 -1.2 .8 3.1 . . 

df 775.5 767.9 752.6 772.8 739.2 92.7 . . 

# Present 368 368 364 358 355 42 19 14 

# Missing 449 448 434 448 439 71 0 0 

Mean(Present) 42.658 37.712 94.444 9.953 21.36688 11.060 40.895 3006.643 

Mean(Missing) 46.886 37.150 73.007 10.717 19.89134 6.310 . . 

MH.cadis 

t -4.8 .0 3.1 -1.4 .1 3.8 . . 

df 767.2 757.0 738.7 766.1 775.6 89.0 . . 

# Present 359 359 355 349 345 41 19 14 

# Missing 458 457 443 457 449 72 0 0 

Mean(Present) 42.290 37.412 93.877 9.854 20.62969 11.720 40.895 3006.643 

Mean(Missing) 47.092 37.396 73.896 10.777 20.49065 6.000 . . 

MH.snor 

t -5.5 -1.7 3.9 -10.6 1.2 3.0 1.3 . 

df 270.8 263.7 245.5 595.9 347.5 52.6 16.7 . 

# Present 173 173 168 170 161 23 17 13 

# Missing 644 643 630 636 633 90 2 1 

Mean(Present) 39.775 35.815 108.143 5.918 22.35901 11.565 43.059 32.462 
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Mean(Missing) 46.380 37.830 76.023 11.569 20.09122 7.183 22.500 41671.000 

MH.osas 

t -5.4 -1.7 3.7 -10.6 1.2 3.0 1.5 -1.0 

df 265.0 257.9 244.2 585.0 337.6 47.7 15.8 1.0 

# Present 171 171 166 168 159 22 16 12 

# Missing 646 645 632 638 635 91 3 2 

Mean(Present) 39.819 35.813 106.699 5.917 22.37610 11.727 44.813 33.167 

Mean(Missing) 46.348 37.825 76.504 11.552 20.09408 7.192 20.000 20847.500 

Infantile 

colic 

t -6.5 -2.3 3.1 -5.9 -2.0 2.8 -.4 -1.0 

df 101.7 99.6 84.5 124.0 127.2 27.0 10.9 5.0 

# Present 74 74 74 73 74 16 11 8 

# Missing 743 742 724 733 720 97 8 6 

Mean(Present) 36.973 34.622 117.068 6.521 16.96216 12.125 35.182 20.250 

Mean(Missing) 45.779 37.681 79.281 10.761 20.91992 7.407 48.750 6988.500 

Med.over 

t -6.9 -2.3 4.3 -12.8 4.0 3.2 . . 

df 350.6 342.8 290.5 701.7 413.6 47.4 . . 

# Present 190 190 187 184 187 21 19 14 

# Missing 627 626 611 622 607 92 0 0 

Mean(Present) 39.232 35.532 108.294 5.353 26.23369 11.857 40.895 3006.643 

Mean(Missing) 46.724 37.971 74.978 11.863 18.80040 7.212 . . 

FH.head 

t -4.7 -3.3 3.8 -4.8 1.3 2.6 . . 

df 713.8 735.3 768.5 601.2 580.3 110.9 . . 

# Present 481 481 470 472 466 60 19 14 

# Missing 336 335 328 334 328 53 0 0 

Mean(Present) 43.012 36.121 92.454 9.012 21.64086 9.942 40.895 3006.643 

Mean(Missing) 47.801 39.245 68.930 12.307 19.00275 5.962 . . 

FH.hyper 

t -4.6 -1.9 2.4 -3.8 .1 1.3 . . 

df 794.7 791.9 792.5 802.5 762.0 109.0 . . 

# Present 376 376 367 367 362 60 19 14 

# Missing 441 440 431 439 432 53 0 0 

Mean(Present) 42.500 36.431 90.812 9.038 20.60215 9.025 40.895 3006.643 

Mean(Missing) 47.098 38.234 75.950 11.497 20.50825 7.000 . . 

FH.atopi

c 

t -6.5 -1.8 3.8 -3.5 .9 3.9 . . 

df 600.2 585.5 605.4 651.2 759.4 69.3 . . 

# Present 295 295 290 287 285 33 19 14 

# Missing 522 521 508 519 509 80 0 0 

Mean(Present) 40.705 36.288 98.579 8.868 21.60930 12.318 40.895 3006.643 

Mean(Missing) 47.398 38.035 73.769 11.212 19.95853 6.325 . . 

FH.diab 

t -5.6 -1.9 2.9 -3.8 .4 2.3 . . 

df 731.2 722.3 730.2 755.3 791.7 102.3 . . 

# Present 339 339 332 330 326 48 19 14 

# Missing 478 477 466 476 468 65 0 0 
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Mean(Present) 41.696 36.322 93.461 8.900 20.93942 10.135 40.895 3006.643 

Mean(Missing) 47.312 38.172 75.179 11.401 20.28054 6.554 . . 

FH.hdis 

t -5.3 -1.6 2.9 -3.6 .7 3.3 . . 

df 700.2 696.1 706.1 748.1 790.9 77.3 . . 

# Present 328 328 319 320 316 38 19 14 

# Missing 489 488 479 486 478 75 0 0 

Mean(Present) 41.768 36.494 93.978 8.984 21.28060 11.461 40.895 3006.643 

Mean(Missing) 47.137 38.014 75.331 11.294 20.06877 6.360 . . 

FH.epil 

t -6.2 -1.4 3.7 -3.5 1.4 3.9 . . 

df 636.6 623.7 639.9 673.8 760.6 69.3 . . 

# Present 304 304 299 296 292 33 19 14 

# Missing 513 512 499 510 502 80 0 0 

Mean(Present) 41.016 36.559 97.779 8.902 22.08613 12.318 40.895 3006.643 

Mean(Missing) 47.331 37.904 73.801 11.233 19.65815 6.325 . . 

FH.psych 

t -5.8 -1.2 3.3 -3.4 1.2 3.9 1.7 1.0 

df 607.2 586.5 619.9 647.0 748.1 56.6 16.7 11.0 

# Present 295 295 290 287 283 30 17 12 

# Missing 522 521 508 519 511 83 2 2 

Mean(Present) 41.166 36.620 96.524 8.920 21.95813 12.583 43.647 3502.750 

Mean(Missing) 47.138 37.846 74.942 11.183 19.77180 6.446 17.500 30.000 

Smok 

t 3.3 -.8 -2.6 10.3 -2.9 . . . 

df 131.4 127.1 103.3 217.6 94.3 . . . 

# Present 726 725 710 722 713 112 19 14 

# Missing 91 91 88 84 81 1 0 0 

Mean(Present) 45.460 37.295 79.487 10.987 19.54971 8.058 40.895 3006.643 

Mean(Missing) 41.165 38.264 109.398 5.137 29.36543 10.000 . . 

T.emostr

e 

t 2.8 .6 -2.1 2.7 -3.0 -1.0 -1.0 1.0 

df 48.5 47.8 39.6 43.7 38.1 1.1 1.0 11.0 

# Present 774 773 760 768 759 111 17 12 

# Missing 43 43 38 38 35 2 2 2 

Mean(Present) 45.270 37.461 81.016 10.528 20.01916 7.986 29.824 3486.750 

Mean(Missing) 39.791 36.372 118.158 7.329 32.08571 13.000 135.000 126.000 

T.physact 

t 3.1 -.4 -3.1 4.1 -2.9 -2.1 -1.0 1.0 

df 114.3 110.9 85.8 109.5 89.6 5.6 1.0 11.0 

# Present 733 732 719 727 718 108 17 12 

# Missing 84 84 79 79 76 5 2 2 

Mean(Present) 45.423 37.340 78.364 10.733 19.63411 7.884 29.824 3486.750 

Mean(Missing) 41.131 37.952 123.025 7.101 29.21382 12.200 135.000 126.000 

T.menstr

ual 

t .8 -1.7 -2.0 3.4 -1.6 -2.1 -1.0 1.0 

df 68.4 66.9 56.3 62.9 51.3 8.6 1.0 11.0 

# Present 760 759 745 754 743 108 17 12 
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# Missing 57 57 53 52 51 5 2 2 

Mean(Present) 45.071 37.204 80.619 10.617 19.75241 7.940 29.824 3486.750 

Mean(Missing) 43.789 40.053 113.226 6.894 32.18627 11.000 135.000 126.000 

T.season 

t 3.5 -.3 -3.3 4.0 -2.4 -.8 -1.0 1.0 

df 141.2 136.1 101.2 130.5 104.6 4.8 1.0 11.0 

# Present 720 719 707 716 709 108 17 12 

# Missing 97 97 91 90 85 5 2 2 

Mean(Present) 45.519 37.363 77.876 10.756 19.78920 7.977 29.824 3486.750 

Mean(Missing) 40.990 37.701 120.923 7.367 26.90588 10.200 135.000 126.000 

T.alcohol 

t -6.0 .1 3.3 -3.8 1.8 5.7 -1.0 1.0 

df 793.4 784.9 777.3 798.5 790.7 83.6 1.0 11.0 

# Present 371 371 366 361 355 43 17 12 

# Missing 446 445 432 445 439 70 2 2 

Mean(Present) 41.771 37.466 94.149 9.029 22.39482 13.128 29.824 3486.750 

Mean(Missing) 47.652 37.351 73.157 11.471 19.06010 4.971 135.000 126.000 

T.skipme

al 

t -6.4 .5 4.7 -4.4 3.5 5.5 -1.0 1.0 

df 813.4 813.7 793.3 797.0 746.2 88.9 1.0 11.0 

# Present 407 407 402 394 387 44 17 12 

# Missing 410 409 396 412 407 69 2 2 

Mean(Present) 41.850 37.654 97.327 8.907 23.85313 12.875 29.824 3486.750 

Mean(Missing) 48.090 37.154 68.023 11.783 17.41126 5.014 135.000 126.000 

T.posass

o 

t 4.4 .3 -3.5 6.3 -2.6 -1.8 -1.0 1.0 

df 156.4 151.1 112.6 183.0 116.3 11.6 1.0 11.0 

# Present 711 710 698 708 701 104 17 12 

# Missing 106 106 100 98 93 9 2 2 

Mean(Present) 45.702 37.449 77.260 10.903 19.65841 7.784 29.824 3486.750 

Mean(Missing) 40.151 37.094 121.350 6.577 27.27957 11.444 135.000 126.000 

S.dizzine

ss 

t 4.6 .8 -2.8 5.1 -2.5 -2.1 . . 

df 116.9 113.4 90.4 121.0 87.6 6.3 . . 

# Present 732 731 717 727 720 108 19 14 

# Missing 85 85 81 79 74 5 0 0 

Mean(Present) 45.635 37.509 79.077 10.772 19.80422 7.912 40.895 3006.643 

Mean(Missing) 39.353 36.494 115.605 6.747 27.81757 11.600 . . 

S.sleepdi

st 

t 3.7 -.6 -3.8 6.3 -3.2 -2.3 . . 

df 173.8 167.2 125.0 204.4 109.9 12.8 . . 

# Present 702 701 687 698 691 102 18 13 

# Missing 115 115 111 108 103 11 1 1 

Mean(Present) 45.641 37.291 76.212 10.954 18.75838 7.534 42.500 3237.692 

Mean(Missing) 40.957 38.087 123.468 6.648 32.57767 13.091 12.000 3.000 

S.vertigo 
t 1.6 -2.1 -2.6 1.7 -2.1 -2.9 . . 

df 162.6 158.8 119.5 144.2 127.9 7.9 . . 
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# Present 707 706 692 702 695 105 19 14 

# Missing 110 110 106 104 99 8 0 0 

Mean(Present) 45.250 37.057 78.517 10.574 19.82308 7.424 40.895 3006.643 

Mean(Missing) 43.255 39.627 110.646 9.048 25.66162 16.625 . . 

S.osmop

h 

t -7.5 -1.4 4.2 -5.5 3.4 4.6 . . 

df 763.3 754.4 725.9 795.6 644.0 90.8 . . 

# Present 353 353 347 343 338 39 18 14 

# Missing 464 463 451 463 456 74 1 0 

Mean(Present) 40.799 36.626 98.066 8.372 24.23272 12.372 41.778 3006.643 

Mean(Missing) 48.164 37.996 71.028 11.863 17.82211 5.811 25.000 . 

S.allodyn

ia 

t -6.8 -1.0 4.7 -5.2 2.7 3.7 . . 

df 748.1 735.4 704.7 783.6 782.2 87.6 . . 

# Present 346 346 340 334 330 35 19 14 

# Missing 471 470 458 472 464 78 0 0 

Mean(Present) 41.090 36.873 100.191 8.430 23.36109 11.757 40.895 3006.643 

Mean(Missing) 47.841 37.794 69.864 11.755 18.55255 6.423 . . 

PC.norm

al 

t -6.6 -2.6 .4 -5.4 .8 2.6 -1.4 1.0 

df 389.1 379.7 398.4 400.0 490.3 24.7 15.1 3.0 

# Present 207 207 202 199 194 16 4 4 

# Missing 610 609 596 607 600 97 15 10 

Mean(Present) 39.710 35.386 84.574 7.598 21.59876 12.031 20.500 10423.000 

Mean(Missing) 46.770 38.089 82.179 11.288 20.21230 7.423 46.333 40.100 

PC.anxiet

y 

t -.4 .7 3.0 -.2 .4 2.5 .2 -1.0 

df 98.9 97.5 97.4 103.2 111.2 22.2 13.9 7.0 

# Present 86 86 86 84 82 18 9 6 

# Missing 731 730 712 722 712 95 10 8 

Mean(Present) 44.360 38.605 116.535 10.179 21.47056 12.778 43.889 52.333 

Mean(Missing) 45.055 37.262 78.709 10.400 20.44516 7.184 38.200 5222.375 

PC.depr 

t 5.6 2.8 -1.7 5.3 -1.7 -.1 1.7 -1.0 

df 581.7 559.8 598.3 479.1 458.0 89.3 4.0 10.0 

# Present 274 273 268 273 270 47 5 3 

# Missing 543 543 530 533 524 66 14 11 

Mean(Present) 48.774 39.231 75.511 12.875 18.27263 8.000 99.000 89.000 

Mean(Missing) 43.068 36.484 86.463 9.098 21.72506 8.129 20.143 3802.364 

PC.obses 

t -6.0 -3.2 2.6 -5.4 .4 1.6 -1.6 -1.0 

df 50.0 48.9 41.4 61.1 42.8 13.8 12.4 9.0 

# Present 38 38 39 39 39 11 6 4 

# Missing 779 778 759 767 755 102 13 10 

Mean(Present) 37.053 33.263 121.615 6.564 22.17949 11.182 18.333 21.500 

Mean(Missing) 45.368 37.605 80.790 10.571 20.46694 7.740 51.308 4200.700 

PC.psych t . . . . . . . . 
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df . . . . . . . . 

# Present 0 0 0 0 0 0 0 0 

# Missing 817 816 798 806 794 113 19 14 

Mean(Present) .000 .000 .000 .000 .00000 .000 .000 .000 

Mean(Missing) 44.982 37.403 82.785 10.377 20.55106 8.075 40.895 3006.643 

Fscopy 

t -1.3 -3.9 -2.8 .3 -1.6 -2.7 -.8 1.0 

df 143.8 139.9 120.2 146.3 112.5 11.9 2.3 10.0 

# Present 705 704 692 697 691 102 16 11 

# Missing 112 112 106 109 103 11 3 3 

Mean(Present) 44.716 36.616 78.238 10.413 19.70122 7.358 34.187 3822.545 

Mean(Missing) 46.652 42.348 112.467 10.147 26.25243 14.727 76.667 15.000 

Fscopy.e

xp 

t . . . . . . . . 

df . . . . . . . . 

# Present 0 0 0 0 0 0 0 0 

# Missing 817 816 798 806 794 113 19 14 

Mean(Present) .000 .000 .000 .000 .00000 .000 .000 .000 

Mean(Missing) 44.982 37.403 82.785 10.377 20.55106 8.075 40.895 3006.643 

Neur.exa

m 

t .8 -1.2 -2.3 3.2 -1.5 -1.1 -.8 1.0 

df 53.1 52.5 48.0 57.7 41.8 5.5 2.3 10.0 

# Present 769 768 753 759 752 108 16 11 

# Missing 48 48 45 47 42 5 3 3 

Mean(Present) 45.079 37.260 80.786 10.570 19.88037 7.968 34.187 3822.545 

Mean(Missing) 43.417 39.687 116.244 7.255 32.55952 10.400 76.667 15.000 

PMT 

t -5.7 -1.4 3.7 -2.3 1.4 3.8 1.0 1.0 

df 509.5 496.3 501.0 538.1 681.7 56.2 16.0 10.0 

# Present 260 260 257 255 256 27 16 11 

# Missing 557 556 541 551 538 86 3 3 

Mean(Present) 40.900 36.408 99.560 9.286 22.19359 12.537 43.563 3821.727 

Mean(Missing) 46.887 37.869 74.816 10.882 19.76948 6.674 26.667 18.000 

For each quantitative variable, pairs of groups are formed by indicator variables (present, missing). 

a. Indicator variables with less than 5% missing are not displayed. 
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 Appendix B: HydroApp Dashboard snippets 
 

Calculate mean headache duration and pain score (PHP code) 

1. <?php   
2. /**  
3.  * @author Ahmed Al-Jaaf  
4.  * @copyright 2015  
5.  */   
6. include ('../config.php');   
7. $patient_id = $_GET['id'];    
8.    
9. if (isset($_GET['start_date']) && isset($_GET['end_date'])) {   
10.         $strat = $_GET['start_date'];   
11.         $end = $_GET['end_date'];   
12.         // query the Table within the requierd start and end dates   
13.         $sql = $mysqli->query("SELECT DISTINCT `headache_date`,  
14.                                 `headache_duration`, `pain_score`   
15.                                 FROM `headache_diary`    
16.                                 WHERE `patient_id` = '$patient_id' AND  
17.                                 `headache_date` BETWEEN  
18.                                 '$strat' AND '$end'");   
19. } else {   
20.     // return last 20 records reversed,  
21.     // this query will loads by default when dashboard page loads first   
22.        $sql = $mysqli->query("SELECT DISTINCT `headache_date`,  
23.                            `headache_duration`, `pain_score` FROM (    
24.                            SELECT `headache_date`, `headache_duration`,  
25.                            `pain_score` FROM `headache_diary`    
26.                            WHERE `patient_id` = '$patient_id'     
27.                            ORDER BY `headache_date` DESC LIMIT 20) sub    
28.                            ORDER BY `headache_date` ASC");   
29. }   
30. $rowcount=mysqli_num_rows($sql);  
31.      // return how many days patient suffering from  
32.      // headache within a certain time period   
33. if ($rowcount>0) {   
34.         $x=0;   
35.         while ($row = mysqli_fetch_row($sql)) {    
36.                 $x++;   
37.                 $array_one[] = $row[0]; //  return an array of dates column

                                        // number of headache days   
38.                 $array_two[] = $row[1]; // return an array of the second  
39.                                         // column values / duration   
40.                 $array_three[] = $row[2]; // return an array of the third  
41.                                         // column values / max_pain   
42.         }  
43.         // start calculation   
44.         $total_duration = 0;   
45.         $total_pain_score = 0;   
46.         for ($i=0; $i<$x; $i++) { // go through the array and  
47.                                   // select the first and last date   
48.                 $start_date = $array_one[0]; // Get the start date   
49.                 $end_date = $array_one[$x-1]; // Get the last date   
50.                 $total_duration += $array_two[$i]; // Get total H. dur. 
51.                 $total_pain_score += $array_three[$i]; // Get total P.Sc.   
52.                 }   
53.         $temp_duration = $total_duration / $rowcount;   
54.         $temp_score = $total_pain_score / $rowcount;   
55.         $mean_headache_duration = round($temp_duration,2);   
56.         $mean_pain_score = round($temp_score,2);   
57.    
58. $jsonData =array (   
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59.     "Start_date" => $start_date,   
60.     "End_date" => $end_date,   
61.     "Headache_days" => $rowcount,   
62.     "Mean_duration" => $mean_headache_duration,   
63.     "Mean_pain_score" => $mean_pain_score   
64.     );   
65.          print json_encode($jsonData);   
66.    
67. } else {   
68.     // No query result, empty table or no data for selected time period   
69. $mean_headache_duration = 0;   
70. $mean_pain_score = 0;   
71. $jsonData =array (   
72.     "Start_date" => $strat,   
73.     "End_date" => $end,   
74.     "Headache_days" => $rowcount,   
75.     "Mean_duration" => $mean_headache_duration,   
76.     "Mean_pain_score" => $mean_pain_score   
77.     );   
78.          print json_encode($jsonData);   
79. }    
80. mysqli_close($mysqli); // close the DB connection   
81. ?>    

 

Visualise headache duration and pain scores (PHP code) 

1- <?php   
2- /**  
3-  * @author Ahmed Al-Jaaf  
4-  * @copyright 2015  
5-  */   
6- include ('../config.php');   
7- $patient_id = $_GET['id'];    
8-    
9- if (isset($_GET['start_date']) && isset($_GET['end_date'])) {   
10-         $strat = $_GET['start_date'];   
11-         $end = $_GET['end_date'];   
12-         $sql = $mysqli->query("SELECT DISTINCT `headache_date`,  
13-         `headache_duration`, `pain_score`   
14-          FROM `headache_diary`    
15-          WHERE `patient_id` = '$patient_id'  
16-          AND `headache_date` BETWEEN '$strat' AND '$end'");   
17- } else {   
18-     // return last 20 records reversed,  
19-     // this query will loads by default when dashboard page loads first   
20-     $sql = $mysqli->query("SELECT DISTINCT `headache_date`,  
21-     `headache_duration`,  
22-     `pain_score` FROM (    
23-           SELECT `headache_date`, `headache_duration`, `pain_score`  
24-           FROM `headache_diary`    
25-           WHERE `patient_id` = '$patient_id'    
26-           ORDER BY `headache_date` DESC LIMIT 20) sub    
27-           ORDER BY `headache_date` ASC");   
28- }   
29- $result_one['name'] = 'Headache duration / hours';   
30- $result_two['name'] = 'Max pain score / 10';   
31- if($sql->num_rows > 0) {   
32-         while($r = mysqli_fetch_array($sql,MYSQLI_BOTH)) {   
33-             $result_one['category'][] = $r['headache_date'];   
34-             $result_one['data'][] = $r['headache_duration'];   
35-             $result_two['data'][] = $r['pain_score'];   
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36-         }   
37-         $jsonData = array ($result_one,$result_two);   
38-         print json_encode($jsonData, JSON_NUMERIC_CHECK);    
39- }   
40- else{   
41-         $data_one = 0;   
42-         $data_two = 0;   
43-         $result_one['name'] = 'No data available between these two dates'; 
44-         $result_two['name'] = 'No data available between these two dates'; 
45-             $result_one['category'][] = $strat;   
46-             $result_one['category'][] = $end;   
47-             $result_one['data'][] = $data_one;   
48-             $result_two['data'][] = $data_two;   
49-         $jsonData = array ($result_one,$result_two);   
50-         print json_encode($jsonData, JSON_NUMERIC_CHECK);    
51- }   
52- mysqli_close($mysqli);   
53- ?>    

The Pie chart (JavaScript code) 

1. $(document).ready(function() {   
2.         // Mean headache chart - Pie chart   
3.         mean = {   
4.             chart: {   
5.                 plotBackgroundColor: null,   
6.                 plotBorderWidth: null,   
7.                 plotShadow: false,   
8.                 renderTo: 'thirdcontainer'   
9.             },   
10.             credits: {   
11.                 enabled: false   
12.             },   
13.             title: {   
14.                 text: ''   
15.             },   
16.             tooltip: {   
17.                 pointFormat: '{series.name}: <b>{point.percentage:.1f}%</b>

'   
18.             },   
19.    plotOptions: {   
20.        pie: { 
21.            //Headache color, Normal color 
22.            colors: ['#EF5350', '#26C6DA'],  
23.            allowPointSelect: true,   
24.            cursor: 'pointer',   
25.            size:'100%',   
26.            dataLabels: {   
27.                 enabled: true,   
28.                 distance: -30,   
29.                 format: '<b>{point.name}</b>: {point.percentage:.1f} %',   
30.                    style: {   
31.                         color: (Highcharts.theme &&  
32.                                 Highcharts.theme.contra stTextColor)  
33.                                 || 'black'      
34.                     }   
35.                     }, 
36.                     showInLegend: true   
37.                 }   
38.             },   
39.             series: [{   
40.                 type: 'pie',   
41.                 name: 'Days',   
42.                 data: [],   
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43.                 innerSize: '20%'   
44.             }]   
45.         }   
46.    
47.  // Plotting patients data between a selected dates   
48.     $(function() {   
49.          $('form').submit(function(evt) {   
50.              evt.preventDefault();   
51.              var time = $("#Sdatepicker").val();   
52.              var end = $("#Edatepicker").val();   
53.                 if (time != '' && end != '') {   
54.    
55.             $.getJSON("includes/php-charts-file/diary.php",    
56.             {id:patient_id, start_date: time, end_date: end},    
57.             function(json){   
58.                   mean.series[0].data = json;   
59.                   chart = new Highcharts.Chart(mean);   
60.             });// end getJSON   
61.    
62.        } else {    
63.            alert('Please select a start and end dates that you would like  
64.                   to show results in between. Note that start date should  
65.                   be after the date of setting up a patients account.');   
66.            $("#Sdatepicker").focus();    
67.            }   
68.     }); //end submit function   
69. }); //end function 
70. });// end ready   
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