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Key Points Summary 

- Our objective was to quantify endothelial function (via brachial artery flow-mediated 

dilatation) at sea-level (344m) and high-altitude (3800m) at rest and following both 

maximal exercise and 30-minutes of moderate-intensity cycling exercise with and without 

administration of 1-adrenergic blockade. 

 

- Brachial endothelial function did not differ between sea-level and high-altitude at rest, nor 

following maximal exercise.  

 

- At sea-level, endothelial function decreased following 30-minutes of moderate-intensity 

exercise, and this decrease was abolished with 1-adrenergic blockade. At high-altitude, 

endothelial function did not decrease immediately post 30-minutes of moderate-intensity 

exercise, and administration of 1-adrenergic blockade resulted in an increase in flow 

mediated dilatation. 

 

- Our data indicates that post-exercise endothelial function is modified at high-altitude (i.e. 

prolonged hypoxemia). The current study helps elucidate the physiological mechanisms 

associated with high-altitude acclimatization, and provides insight into the relationship 

between sympathetic nervous activity and vascular endothelial function.   



Abstract 

We examined the hypotheses that 1) at rest, endothelial function would be impaired at high-altitude 

compared to sea-level, 2) endothelial function would be reduced to a greater extent at sea-level 

compared to high-altitude after maximal exercise, and 3) reductions in endothelial function 

following moderate-intensity exercise at both sea-level and high-altitude are mediated via an 1-

adrenergic pathway. In a double-blinded, counter-balanced, randomized and placebo-controlled 

design, nine healthy participants performed a maximal-exercise test, and two 30-minute sessions 

of semi-recumbent cycling exercise at 50% peak Watt following either placebo or 1-adrenergic 

blockade (prazosin; 0.05mg/kg). These experiments were completed at both sea-level (344m) and 

high-altitude (3800m). Blood pressure (finger photoplethysmography), heart rate 

(electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear 

rate (ultrasound) were recorded prior to, during, and following exercise. Endothelial function 

assessed by brachial artery flow-mediated dilatation (FMD) was measured prior to, immediately 

following, and 60-minutes post-exercise. Our findings were: 1) at rest, FMD remained unchanged 

between sea-level and high-altitude (Placebo P=0.287; prazosin: P=0.110); 2) FMD remained 

unchanged after maximal exercise at sea-level and high-altitude (P=0.244); 3) the 2.90.8% 

(P=0.043) reduction in FMD immediately after moderate-intensity exercise at sea-level was 

abolished via 1-adrenergic blockade. Conversely, at high-altitude, FMD was unaltered following 

moderate-intensity exercise, and administration of 1-adrenergic blockade elevated FMD 

(P=0.032). Our results suggest endothelial function is differentially affected by exercise when 

exposed to hypobaric hypoxia. These findings have implications for understanding the chronic 

impacts of hypoxemia on exercise, and the interactions between the 1-adrenergic pathway and 

endothelial function.  

 

 

  



Abbreviations: 

CO, cardiac output 

FMD, flow-mediated dilatation 

HR, heart rate 

MAP, mean arterial pressure 

SNS, sympathetic nervous system 

SpO2, peripheral oxyhemoglobin saturation 

SRAUC, shear rate area under the curve 

SV, stroke volume 

TPR, total peripheral resistance 

  



Introduction 

Flow-mediated dilatation (FMD) is a commonly used, non-invasive measurement of conduit artery 

diameter in response to an imposed change in shear rate; it is widely accepted to be an index of 

endothelial function (Thijssen et al., 2011), which is largely nitric oxide mediated (Green et al., 

2014). It has been demonstrated that immediately after cycling exercise, endothelial function 

measured by brachial (i.e. non-exercising limb) FMD is transiently reduced (Jones et al., 2010, 

Birk et al., 2013, Atkinson et al., 2015, Dawson et al., 2013), and the reduction in FMD is inversely 

related to exercise intensity (Birk et al., 2013). Although the precise mechanisms responsible for 

this acute effect of exercise on FMD remain unclear, several possibilities exist, including:  1) 

elevated oxidative stress (Goel et al., 2007, Silvestro et al., 2002); 2) altered hemodynamics (i.e. 

shear rate, shear pattern, and blood pressure) (Johnson et al., 2012a, Dawson et al., 2008, Birk et 

al., 2013, Lamping and Dole, 1987, Millgard and Lind, 1998); 3) changes in baseline artery 

diameter post-exercise (Padilla et al., 2007, Atkinson et al., 2013), and; 4) elevations in 

sympathetic nervous system (SNS) activity (Hijmering et al., 2002, Dyson et al., 2006, Atkinson 

et al., 2015). The role of the SNS was recently examined in a study which observed that the 

exercise-mediated reduction in FMD following exercise was abolished after administration of an 

1-adrenergic receptor blockade (Atkinson et al., 2015). Interestingly, the relationship between 

increased SNS activity and post-exercise FMD has not previously been explored under conditions 

where resting SNS activity is chronically elevated, such as in aging, pathology (e.g. obstructive 

sleep apnea, heart failure), or in hypoxia (i.e. normobaric and hypobaric) (Saito et al., 1988, 

Duplain et al., 1999, Xie et al., 2001, Hansen and Sander, 2003). 

Exposure to hypoxia is associated with arterial stiffening, but the effects of hypoxia on 

endothelial function remain unclear (Lewis et al., 2014, Boos et al., 2012, Rhodes et al., 2011). 



For example, different studies have reported that exposure to simulated high-altitude (i.e. acute 

normobaric hypoxia), results in no change in FMD [~4000m, FIO2 = 0.13; (Iglesias et al., 2015)], 

and decreased FMD [~5000m, FIO2 = 0.11 (Lewis et al., 2014)]. Upon ascent to high-altitude 

between 3700m-5050m (i.e. hypobaric hypoxia), a decrease in FMD has been observed in most 

(Bakker et al., 2015, Lewis et al., 2014), but not all studies (Bruno et al., 2015)(Bruno et al., 2016). 

The disparity within this literature might be due to different methodological approaches between 

investigations. For example, the two studies that reported reductions in FMD involved ascent to 

high-altitude over 7-10 days of trekking for several hours each day (Lewis et al., 2014, Bakker et 

al., 2015). In contrast, the study that reported no change in FMD involved participants ascending 

rapidly to high-altitude via cable car (Bruno et al., 2015). The methodological difference between 

these studies raises the possibility of a moderating impact of trekking exercise at altitude, and total 

acclimatization time [e.g. 3-10 days of exposure (FMD reduced) vs. 1 day of exposure (no change 

in FMD)] on vascular responses at high-altitude. 

In keeping with exercise mediated reductions in FMD, the mechanism responsible for high-

altitude induced vascular impairment may involve increased SNS activity (Saito et al., 1988, 

Duplain et al., 1999, Xie et al., 2001, Hansen and Sander, 2003, Lewis et al., 2014). Augmentation 

in SNS activity may yield vascular dysfunction either directly (Hijmering et al., 2002), or 

indirectly by increasing retrograde shear rate (Thijssen et al., 2014). Nevertheless, there has only 

been one investigation examining the role of the SNS on endothelial function in normobaric 

hypoxia (Lewis et al., 2014), and no studies have addressed the impacts of exposure to hypobaric 

hypoxia (high-altitude) at rest or following exercise.  

By employing a double-blinded, counter-balanced, randomized and placebo-controlled 

design, the primary purposes of the current study were to investigate: 1) the effects of non-trekking 



ascent to high-altitude on endothelial function (via brachial FMD) and shear patterns, and 2) the 

effects of post-exercise related increases in SNS activity on FMD and shear patterns at both sea-

level and at high-altitude (3800m). We hypothesized that: 1) at rest, FMD would be impaired at 

high-altitude compared to sea-level, 2) FMD would be reduced to a greater extent at sea-level 

compared to high-altitude after maximal exercise, and 3) reductions in endothelial function 

following moderate-intensity exercise at both sea-level and high-altitude are mediated via an 1-

adrenergic pathway. 

 

  



Methods and Materials 

Ethical Approval. All experimental procedures and protocols were approved by the clinical 

research ethics board at the University of British Columbia and conformed to the Declaration of 

Helsinki. All participants provided written informed consent prior to participation in this study. 

This study was part of a larger research expedition conducted in October 2015. As such, 

participants took part in a number of studies conducted at the University of British Columbia 

(Kelowna, BC; 344m) and during two weeks at the Barcroft high-altitude research station (White 

Mountain, California, USA; 3800m). However, the a priori, primary research questions addressed 

in the current paper are novel and are exclusively dealt within this study alone – there is no overlap 

between this investigation and others completed on the research expedition.  

 

Participants. Recruited participants (n=11; 3F) were normotensive (systolic blood pressure <140 

and diastolic pressure <90 mmHg) at rest, and completed a medical history questionnaire. Two of 

the recruited participants were excluded from all mean data analysis; one participant due to illness 

(i.e. syncope, light-headedness, nausea) caused by our drug intervention (prazosin), and one 

participant due to illness at high-altitude. The participants (n=9; 2F) included in the data analysis 

were non-smokers, had no previous history of cardiovascular, cerebrovascular, or respiratory 

diseases, were not taking any medications during testing besides oral contraceptives (n=1). All 

participants arrived at the Barcroft high-altitude research facility (elevation = 3800m) on the same 

day, and approximately at the same time (i.e. within one hour). Nine of these participants drove to 

the Barcroft high-altitude research facility after staying overnight in Palm Springs, CA, USA 

(elevation = 146m), while one participant stayed overnight in Bishop, CA, USA (elevation = 

1265m). Maximal exercise testing for this study occurred on day three, while moderate-intensity 

exercise experimentation occurred between days four to seven at high-altitude.  



 

Experimental Design.  

This study was conducted in two parts: sea-level and high-altitude investigations. Prior to each 

experiment, all participants abstained from exercise, alcohol, and caffeine for at least 12 hours. 

Additionally, participants were asked to consume a light meal at least two-hours prior to 

experimentation, and to keep their diet consistent between experimentation days. In order to 

determine whether our participants had normal healthy lung function, at sea-level we conducted a 

forced vital capacity (FVC) test to measure lung function, a vital capacity and inspiratory capacity 

maneuver to measure lung volumes, and a single breath carbon monoxide test to quantify diffusing 

capacity on each individual. All testing procedures were conducted in accordance with the 

American Thoracic Society and European Respiratory Society’s joint guidelines (Macintyre et al., 

2005, Miller et al., 2005). For each of these tests, participants sat within a body plethysmography 

box (V6200, Vmax Sensormedics, Yorba Linda, CA, USA) with a rigid upright posture and their 

feet flat on the ground, whilst breathing through a spirometer and bacteriological filter while 

wearing a nose-clip. All pulmonary function measurements were compared against population-

based predictions. 

Exercise testing was then conducted on three separate lab visits at both sea-level and high-

altitude while participants lay in the semi recumbent position. The time of day of the testing 

sessions were kept the same for each participant, with a minimum of 24-hours between testing 

sessions.  

 

Maximal exercise protocols. Prior to the prolonged moderate-intensity exercise testing at sea-level 

and high-altitude, participants were required to conduct a maximal exercise protocol in order to 



obtain peak Watt. In the semi-recumbent position, participants rested during a quiet baseline period 

on the cycle ergometer (Lode Ergometer, Lode, Groningen, Netherlands) for 15-minutes. 

Immediately after the baseline period a brachial artery FMD was performed (Thijssen et al., 2011). 

Exercise began with a two-minute warm-up period (40 watts for females, 60 watts for males), 

followed by staged exercise with workload increased by 20 watts every minute. This maximal 

exercise protocol was terminated when participants either 1) reached volitional exhaustion, or 2) 

cycling cadence could no longer be maintained. Immediately after the maximal exercise protocol 

was completed, another brachial artery FMD was performed. 

 

Moderate-intensity exercise protocol. Following at least 24 hours after the maximal exercise test, 

participants performed two moderate-intensity exercise protocols on two independent days 

separated by at least 24 hours. Upon arrival on each of these testing sessions, participants ingested 

a capsule containing either oral prazosin (1-adrenergic receptor blocker; 0.05 mg kg-1), or Placebo 

(i.e. sugar pill). The order of condition (placebo and prazosin) was counter-balanced and 

randomized at both sea-level and high-altitude. The dosage of prazosin used has been 

demonstrated to provide ~80% 1-adrenergic blockade, and has been used in other studies by our 

research group (Lewis et al., 2014, Atkinson et al., 2015). Seventy-five-minutes after ingestion, 

participants were instrumented on the semi-recumbent cycle ergometer (see details below in 

section Experimental Measurements). Participants were asked to sit in the semi-recumbent 

position quietly for 15-minutes, and afterwards, a baseline FMD on the left brachial artery was 

conducted. Immediately after the baseline FMD, participants completed 30-minutes of cycle 

exercise at 50% of their peak exercise workload. At sea-level, this workload was 137.0  6.9 Watts, 

while at high-altitude the average workload was 114.3  5.9. Every five-minutes during exercise 



a one-minute measurement of brachial artery shear rate and blood flow was recorded (total of six 

recordings during the 30 minutes of exercise). After completion of the 30-minutes of moderate-

intensity exercise, a brachial FMD was conducted immediately, and then following 60-minutes of 

post-exercise rest.  

 

Experimental Measurements. 

Cardiovascular measurements. All continuously recorded cardiovascular measurements were 

acquired at 200 Hz using an analog-to-digital converter (Powerlab/16SP ML 880; ADInstruments, 

Colorado Springs, CO, USA) interfaced with a personal computer. Commercially available 

software was used to analyze cardiovascular variables (LabChart V7.1, ADInstruments, Colorado 

Springs, CO, USA). Electrocardiogram electrodes were placed in lead II configuration (Bioamp, 

ML132, ADInstruments, Colorado Springs, CO, USA) to measure heart rate. Beat-by-beat arterial 

pressure, cardiac output, stroke volume, and total peripheral resistance was measured by finger 

photoplethysmography (Finometer Pro, Finapres medical systems, Amsterdam, Netherlands). 

Prior to baseline data collection, the Finometer was calibrated using the return-to-flow function, 

and blood pressure from the Finometer was confirmed with automated brachial blood pressure 

readings (HEM-775CAN, Omron Healthcare, Bannockburn, IL, USA). Mean, systolic, and 

diastolic arterial pressure were quantified from the raw Finometer recordings. 

 

Brachial artery imaging. With the participants left arm extended perpendicular (i.e. 80 degrees) 

from their body while seated on the semi-recumbent cycle ergometer, an inflation/deflation cuff 

was placed on the participants left forearm, and their arm was fixed into position on a table. 

Brachial artery image acquisition was obtained using a 10 MHz multifrequency linear array probe 



attached to a high-resolution ultrasound machine (15L4, Terason t3200, Burlington, MA, USA). 

All brachial artery images were performed by the same experienced ultrasonographer (JT), whom 

has a between day coefficient of variation in FMD of 8.3 ± 2.1% (n=10, unpublished data). 

Following optimal image acquisition, and one-minute of baseline recordings, the forearm was 

occluded by inflating the cuff to 220-250 mmHg for five-minutes. Recordings of diameter and 

velocity continued 30-seconds prior to cuff deflation and continuously for three-minutes thereafter 

(Thijssen et al., 2011).  

 

Data Analysis 

Brachial artery diameter and blood flow analysis. Ultrasound recordings were continuously 

screen captured and saved for offline analysis. Blood flow analysis of the brachial artery was 

performed using automated edge-detection and wall tracking software, which allows for the 

integration of synchronous diameter and velocity measurements to continuously determine flow, 

shear, diameter and velocity at 30-Hz, independent of investigator bias (Woodman et al., 2001). 

Antegrade, retrograde, and mean shear rates were calculated as four times the mean blood velocity, 

divided by vessel diameter. The FMD was calculated as the percent increase in vessel diameter 

from resting baseline diameter, where baseline and peak diameters were automatically detected 

from the continuous data described above.  

 

Statistics 

All statistical analyses were performed using SigmaStat V11 (Systat, Chicago, IL, USA), and were 

reported as mean  SEM. Statistical significance was assumed at P<0.05. When significant F-



ratios were detected, post-hoc comparisons were made using Tukey’s post hoc test for pair-wise 

comparisons.  

 

Maximal exercise. For the cardiovascular data obtained at sea-level and high-altitude, baseline 

measurements were averaged over one-minute immediately prior to exercise, peak maximal-

exercise data were averaged over the last 30-seconds of the maximal exercise protocol, and post-

maximal exercise data were averaged over one-minute, immediately prior to FMD cuff release 

after maximal exercise was terminated (i.e. approximately four-minutes post-exercise). 

Differences between peak Watt and maximal exercise time at sea-level and high-altitude were 

determined using a paired Student’s t-test. For the cardiovascular data, a two-way repeated 

measures analysis of variance (2RM-ANOVA) was used to detect differences across time 

(baseline, maximal exercise, post-maximal exercise), and conditions (sea-level and high-altitude). 

For the brachial artery data measured during FMD, a 2RM-ANOVA was used to detect differences 

across time (baseline and post-maximal exercise), and conditions (sea-level and high-altitude).  

 

Moderate-intensity exercise. For the cardiovascular data obtained at sea-level and high-altitude, 

baseline measurements were averaged over one-minute immediately prior to exercise. During 

moderate-intensity exercise, cardiovascular data were averaged over 30-seconds at every five-

minute time-point (i.e. time = 5-, 10-, 15-, 20-, 25-, and 30-minutes). Post-exercise cardiovascular 

data were averaged during the one-minute prior to FMD cuff release, immediately after, and 60-

minutes after, moderate-intensity exercise. For the cardiovascular data, a 2RM-ANOVA was used 

to detect differences across time (baseline, exercise [six time-points], and post-exercise [two time-

points]), and conditions (placebo and prazosin), at sea-level and high-altitude, separately. For the 



brachial artery FMD data, a 2RM-ANOVA was used to detect differences across time (baseline, 

post-exercise, 60-minutes post exercise), and conditions (placebo and prazosin), at sea-level and 

high-altitude, separately.  

 

Adjusted flow-mediated dilatation. The effects of time and condition were analyzed within and 

between sea-level and high-altitude for FMD. To determine if our FMD results were different due 

to changes in baseline arterial diameter and/or shear rate area under the curve (SRAUC), we 

included these variables as covariates in a logarithmic-linked generalized linear model, where 

FMD was the dependent variable. This approach has been used to account for any changes in FMD 

that may be related to differences in baseline diameter or shear rate between conditions (i.e. time 

and condition) (Atkinson et al., 2013).  

 

  



Results  

Participants and resting FMD data 

The participants (n=9; one female) included in the sea-level and high-altitude protocol data 

analysis had a mean  SEM age of 26.9  1.8 years, height of 176.3  1.5 cm, and weight of 71.1 

 2.5 kg. Participants had normal pulmonary health with an FVC of 5.5  0.2 L (109.0  3.2% of 

predicted), forced expiratory volume in one-second (FEV1) of 4.3  0.2 L (100.6  2.8% of 

predicted), FEV1/FVC of 78.7  1.0 (no individuals reported under an FEV1/FVC <75), total lung 

capacity of 6.7  0.3 L (101.9  0.3% of predicted), and had a diffusing capacity of the lung for 

carbon monoxide of 32.1  5.7 ml/min/mmHg (94.1  4.7% of predicted). Recruited participants 

did not demonstrate any signs of small nor large airway obstruction characterized by an irregular 

expiratory flow tracing during the FVC maneuver. Additionally, participants were normotensive 

(systolic blood pressure = 130.6  2.5 mmHg, diastolic blood pressure 68.7  1.9 mmHg). 

 No differences were observed in FMD between sea-level and high-altitude during the 

placebo (P=0.287) and prazosin (P=0.110) trials at baseline (see figure 1).  

 

Maximal exercise data 

Figure 2 illustrates the cardiorespiratory data collected during the maximal exercise protocol at 

sea-level and high-altitude. At sea-level, peak Watt and maximal exercise protocol time (min) were 

greater than at high-altitude (275.4  12.4 watts vs. 228.8  11.2 watts, P<0.001; 13.0  0.5 min 

vs. 10.6  0.5 min, P<0.001). Cardiac output and stroke volume were higher at sea-level compared 

to high-altitude (P=0.047 and P=0.032, respectively). In contrast, heart rate at high-altitude was 

elevated compared to sea-level (P=0.038). No differences were observed between sea-level and 

high-altitude for mean arterial pressure or total peripheral resistance at baseline, peak exercise, and 



post-exercise (P=0.130 and P=0.055, respectively). As expected, a main effect was observed for 

SpO2, as it was elevated at sea-level compared to high-altitude (P<0.001).  

 Table 1 illustrates brachial diameter, shear, and FMD data during baseline and post-

maximal exercise at sea-level and high-altitude. Brachial artery diameter was greater at sea-level 

compared to high-altitude across all time-points (P=0.030). At both sea-level and high-altitude, 

brachial artery diameter was reduced post-maximal exercise compared to baseline by 4.8  2.5% 

and 8.7  1.2%, respectively (P=0.004). Mean shear rate increased post-maximal exercise 

compared to baseline at sea-level by 211.2  26.5 1 s-1, and at high-altitude by 101.7  20.9 1 s-1 

(P<0.001). Although a main effect was not present for mean shear rate between sea-level and high-

altitude (P=0.244), an interaction effect was observed post-maximal exercise as mean shear was 

higher at sea-level by 36.1  19.0% compared to high-altitude (P=0.003). Antegrade shear rate 

increased after post-maximal exercise compared to baseline at sea-level by 236.2  20.2 1 s-1, and 

at high-altitude by 163.8  20.3 1 s-1, respectively (both P<0.001); however, similar to mean shear 

rate, altitude had no effect (P=0.833). Retrograde shear rate increased (i.e. became more negative) 

between baseline and post-maximal exercise at sea-level by -25.3  7.8 1 s-1 and at high-altitude 

by 67.4  11.7 1 s-1 (P<0.001). Retrograde shear was also greater (i.e. more negative) at high-

altitude compared to sea-level (P=0.031). 

No differences were found in absolute (mm) or relative changes (FMD) in brachial artery 

diameter between baseline and post-maximal exercise at sea-level or high-altitude (P=0.453 and 

P=0.282, respectively), or between sea-level and high-altitude (P=0.380 and P=0.244, 

respectively). Flow-mediated dilatation SRAUC was greater post-maximal exercise compared to 

baseline (P=0.025), but there was no difference between sea-level and high-altitude (P=0.312). 

When taking into account baseline diameter and SRAUC as covariates, the FMD results remained 



the same as there was no effect of time (P=0.614), altitude (P=0.291), nor was there an interaction 

between these effects (P=0.717) (refer to Figure 3 for individual FMD data at baseline and post-

maximal exercise).  

 

Moderate intensity exercise at sea-level 

Figure 4 (A-F) illustrates cardiovascular data collected during moderate intensity exercise on 

placebo and prazosin at sea-level. No differences were detected for cardiac output between placebo 

and prazosin during baseline, exercise, and post-exercise (P=0.444). In contrast, prazosin increased 

heart rate (P<0.001), and decreased stroke volume (P=0.026), across all time-points compared to 

placebo. prazosin had no effect on mean arterial pressure (P=0.701), nor total peripheral resistance 

(P=0.492) during baseline, exercise, and post-exercise time-points. Additionally, there was no 

difference in SpO2 between placebo and prazosin trials (P=0.237). 

 Figure 5 (A-C) illustrates brachial antegrade, retrograde, and mean shear rate data collected 

during baseline, exercise, and post-exercise on placebo and prazosin at sea-level. Mean and 

antegrade shear rate were not different between conditions (P=0.567 and P=0.156, respectively. 

Retrograde shear rate was lower (i.e. more negative) during the prazosin trial compared to placebo 

(P=0.037).  

Figure 6 (A-D) illustrates brachial artery velocity, diameter, blood flow and conductance 

data collected during baseline, exercise, and post-exercise on placebo and prazosin at sea-level. 

No differences were found in mean blood flow (P=0.285), forearm vascular conductance 

(P=0.294), artery diameter (P=0.623), nor blood velocity (P=0.400) between the placebo and 

prazosin trials.  



 Figure 7 (A-B) illustrates FMD data collected at baseline, post-exercise, and 60-minutes 

post exercise on placebo and prazosin at sea-level. No differences in FMD were detected between 

placebo and prazosin (P=0.916), however, there was a time effect during the placebo trial, where 

FMD was reduced immediately post exercise compared to baseline (P=0.043), and 60-minutes 

post-exercise (P<0.001). Additionally, an interaction effect was present between placebo and 

prazosin immediately post-exercise, where FMD was greater during the prazosin trial by 2.9  

1.3% compared to the placebo trial (P=0.039). No differences were found in FMD between placebo 

and prazosin trials during baseline (P=0.762), nor 60-minutes post-exercise (P=0.107). When 

taking into account baseline diameter and SRAUC as covariates, the FMD results remained the 

same as there was still a main effect for time (P=0.016), no effect between conditions (i.e. placebo 

vs prazosin) (P=0.450), and an interaction effect (P=0.026). 

 

Moderate intensity exercise at high-altitude 

Figure 4 (G-L) illustrates cardiovascular data collected during baseline, moderate intensity 

exercise, and post-exercise on placebo and prazosin at high-altitude. No differences were detected 

for cardiac output between placebo and prazosin during baseline, exercise, and post-exercise 

(P=0.825). In contrast, heart rate was elevated (P<0.001), and stroke volume was decreased 

(P=0.006), while on prazosin compared to placebo. prazosin resulted in a lower mean arterial 

pressure (P<0.001), and total peripheral resistance (P<0.001) compared to the placebo trial. 

Interestingly, SpO2 was elevated by 2.5  0.7% (P=0.005) during the prazosin trial compared to 

placebo during the moderate-intensity exercise.  

 Figure 5 (D-F) illustrates brachial shear rate data collected during baseline, moderate-

intensity exercise, and post-exercise on placebo and prazosin at high-altitude. Mean and antegrade 



shear rates were elevated during the prazosin trial compared to the placebo trial across all time-

points (P=0.002 and P<0.001, respectively). However, retrograde shear rate was not different 

between placebo and prazosin (P=0.983).  

Figure 6 (E-H) illustrates brachial artery velocity, diameter, blood flow and conductance 

data collected during baseline, exercise, and post-exercise on placebo and prazosin at high-altitude. 

During the prazosin trial, mean blood flow, conductance, and blood velocity were elevated 

compared to the placebo trial (P=0.004, P=0.008, and P=0.002, respectively). No differences were 

found to brachial artery diameter between placebo and prazosin trials (P=0.516).  

Figure 7 (C-D) illustrates FMD data collected at baseline, post-exercise, and 60-minutes 

post exercise on placebo and prazosin at high-altitude. No differences in FMD were detected 

between time-points (i.e. baseline, post-exercise, and post-60 exercise) (P=0.474), between 

placebo and prazosin (P=0.099). When taking into account baseline diameter and SRAUC as 

covariates, no differences were detected between time-points (P=0.681), nor were any interactions 

present (P= 0.474), which was consistent with our original results. However, we found that there 

was a main effect for condition (i.e. prazosin vs placebo), where FMD was higher with prazosin 

compared to placebo (P=0.032).  

 

  



Discussion 

Using a double-blinded, counter-balanced, randomized and placebo-controlled design, this is the 

first study to examine the role of the SNS system on post-exercise peripheral vascular endothelial 

function at both sea-level (344m) and high-altitude (3800m). Our main findings were 1) at rest, 

brachial artery FMD remained unchanged between sea-level and high-altitude on both placebo and 

prazosin conditions, 2) flow-mediated dilatation remained unchanged after maximal exercise at 

both sea-level and high-altitude, and 3) flow-mediated dilatation decreased immediately after 

moderate-intensity exercise at sea-level, but not high-altitude. Prazosin abolished the observed 

post-exercise FMD decrease at sea-level, and resulted in an overall increase in FMD at high-

altitude compared to placebo when SRAUC and baseline diameter were considered as covariates. 

These data demonstrate that hypobaric hypoxia counteracts the effect of moderate intensity 

exercise on FMD. 

 

Endothelial function between sea-level and high-altitude at rest 

Acclimatization to high-altitude results in several physiological changes, but the effect of high-

altitude on endothelial function remains somewhat unclear. At sea-level, recent work has 

established that increases in SNS activity (Hijmering et al., 2002, Dyson et al., 2006, Atkinson et 

al., 2015), and altered hemodynamics (e.g. increased retrograde shear) (Johnson et al., 2012a, 

Dawson et al., 2008, Birk et al., 2013, Lamping and Dole, 1987, Millgard and Lind, 1998) can 

negatively affect vascular endothelial function as assessed by FMD. Since both of these 

physiological changes occur during high-altitude exposure, it is logical to hypothesize that 

endothelial function would be reduced at high-altitude, yet we found that there was no change. 

Comparisons of endothelial function between sea-level and high-altitude have been made 



previously, but studies have reported contradictory results such as reduced FMD (Lewis et al., 

2014, Bakker et al., 2015), or no change in FMD upon acclimatization to high-altitude (Bruno et 

al., 2016, Bruno et al., 2015).  

The major difference between these studies is the mode of transport to altitude – exercise 

versus cable car ascent. We sought to further investigate the effects of non-trekking arrival to high-

altitude on endothelial function, and consistent with the results of Bruno et al. (2015), we found 

no change in endothelial function between sea-level and high-altitude at rest. This finding opposes 

our hypotheses that endothelial function would be impaired at high-altitude due to elevated resting 

SNS activity. These data suggest that exercise at high-altitude (i.e. trekking) may directly effect 

endothelial function, and we speculate the mechanism(s) for this may be due to increased vascular 

inflammation (Bruno et al., 2016), oxidative stress (Quindry et al., 2015), and reductions in nitric 

oxide bioavailability (Lewis et al., 2014).  

 

Endothelial function before and after maximal exercise at sea-level and high-altitude 

The degree of observed post-exercise reduction in FMD has been thought to be exercise intensity-

dependent (Birk et al., 2013); however, few studies have measured FMD after maximal exercise 

in healthy individuals in an inactive limb (free from exercise) (Thijssen et al., 2006, Hwang et al., 

2012, McClean et al., 2015). Moreover, no studies to date have reported FMD after maximal 

exercise at high-altitude. Based on previous reports, FMD following maximal exercise remains 

unchanged in the majority of studies (Thijssen et al., 2006, Hwang et al., 2012, McClean et al., 

2015) but this is not a universal finding (Hwang et al., 2012). In support with studies 

methodologically similar to ours (Thijssen et al., 2006, Hwang et al., 2012, McClean et al., 2015), 

we demonstrated that at sea-level, and for the first time at high-altitude, FMD remained unchanged 



post-maximal exercise at both sea-level and high-altitude. This finding opposes the idea that post-

exercise related decreases in FMD are inversely related to exercise intensity (Birk et al., 2013). 

An explanation for this finding is that the exercise duration of the maximal exercise test was too 

short in duration (i.e. exercise volume) to induce a reduction in FMD (Johnson et al., 2012b, 

Dawson et al., 2013). Interestingly, at high-altitude, FMD was trending in the positive direction 

post-maximal exercise (6.3% to 8.5%), but this observation did not come out statistically 

significant.  

 

Endothelial function before and after moderate-intensity exercise at sea-level and high-altitude 

Sea-level: In a different group of subjects, Atkinson et al. (2016) performed a similar investigation 

to the sea-level component of this study and demonstrated that FMD was transiently impaired 

immediately after 30-minutes of moderate-intensity exercise; these changes improved back to pre-

exercise values 60-minutes post moderate-intensity exercise. Atkinson et al. (2016) attributed this 

reduction in FMD to exercise related increases in SNS activity. Congruent with Atkinson et al. 

(2016) and other studies with similar methodology to assess FMD (Goel et al., 2007, Dawson et 

al., 2008, Jones et al., 2010, Johnson et al., 2012a, Birk et al., 2013), we found similar results.  

 

High-altitude: Although there has been a recent investigation of post-exercise endothelial function 

after moderate-intensity exercise in acute hypoxia (Katayama et al., 2016), our experiment was 

the first to investigate endothelial function after moderate-intensity exercise at high-altitude (i.e. 

3800m). In the study by Katayama et al. (2016), endothelial function was not different post 30-

minutes of moderate-intensity (i.e. 60% VO2 max) exercise between normoxia and hypoxia (FIO2 

= 0.12-0.13) trials. However, longer exposure to hypoxia (i.e. 4-7 days at high-altitude) may yield 



differential results due to cardiovascular adaptation (Lewis et al., 2014, Boos et al., 2012, Rhodes 

et al., 2011), and perhaps differential tonic SNS activity (Hansen and Sander, 2003). There is 

evidence suggesting increased SNS activity may be responsible for vascular dysfunction directly 

(Hijmering et al., 2002), or indirectly by increasing retrograde shear rate (Thijssen et al., 2014). 

Due to high-altitude related increases in SNS activity, and based on previous reports that 

endothelial function (via brachial FMD) is reduced upon arrival at high-altitude in some (Bakker 

et al., 2015, Lewis et al., 2014), but not all studies (Bruno et al., 2016), we anticipated a reduction 

in FMD immediately post moderate-intensity exercise at high-altitude. Our original hypothesis 

was not supported as no reduction in FMD was observed post moderate-intensity exercise, 

indicating that SNS related blood vessel regulation is different between sea-level and high-altitude. 

This suggests that post-exercise associated elevations in SNS activity may have a differential 

transduction to the peripheral vasculature compared to sea-level.  

 

Effects of 1-adrenergic blockade on endothelial function at sea-level and high-altitude. 

1-adrenergic blockade, results in vasodilatation of the peripheral vasculature by reducing SNS 

transduction directly to smooth muscle cells. At sea-level, prazosin resulted in an increased heart 

rate and decreased stroke volume during exercise. However, the differential heart rate response 

between placebo and prazosin trials did not result in a different blood flow or mean and antegrade 

shear rate response to exercise. Similar to Atkinson et al. (2016), we reported that prazosin 

administration abolished the reduction in endothelial function immediately post 30-minutes of 

moderate-intensity exercise.  

 At rest, SNS blockade has no effect on SpO2 at sea-level (Liu et al., 2007), nor high-altitude 

(Ainslie et al., 2012). During exercise, SpO2 remained the same at sea-level between conditions, 



but at high-altitude, an unexpected observation was that participants on prazosin had a higher SpO2 

compared to the placebo trial. This was likely due to increased ventilation during exercise on the 

prazosin trial, perhaps due to baroreflex-chemoreflex interaction, supported by the increased heart 

rate, and reduced stroke volume and mean arterial pressure responses to exercise between placebo 

and prazosin trials. The ventilatory response to changes in arterial blood pressure is related to 

converging baroreceptor and chemoreceptor afferents at the nucleus tractus solitarius (Richter and 

Seller, 1975, Eckberg and Orshan, 1977). A reduction in arterial blood pressure potentiates the 

chemoreflex and results in an increase in ventilation, while an increase in arterial blood pressure 

dampens ventilation (Heistad et al., 1974).  

In contrast to our sea-level data, prazosin resulted in an increased mean and antegrade shear 

rate at high-altitude. These changes were likely facilitated by blockade of SNS vasoconstriction, 

which was likely enhanced at altitude. Increases in antegrade shear rate has been demonstrated to 

have a positive effect on endothelial function (Thijssen et al., 2014). This enhanced antegrade 

shear response at altitude versus sea-level may explain the lack of post exercise FMD impairment, 

and could be in part responsible for the increase in endothelial function observed during the 

prazosin trial at altitude. The increase in FMD observed at high-altitude during the prazosin trial 

compared to the placebo trial suggests that there is indeed some SNS related vascular constraint. 

These data collected at high-altitude indicate that SNS activity is, in part, responsible for the FMD 

response. 

 

Methodological considerations. 

The intervention to reduce SNS activity was an 1 specific adrenergic receptor blockade, and the 

dose of administration has been used to establish ~80% blockade in SNS activity, but this was not 



confirmed on an individual basis. Second, we can not exclude the possibility that the vascular 

response to changes in vasodilatory substances is also altered (Calbet et al., 2014), and could hence 

influence our findings. 

A final consideration is that we did not directly measure SNS activity directly via 

microneurography. Obviously, obtaining muscle SNS measurements in the leg (via peroneal 

nerve) would not be possible during exercise; however, past studies have reported in humans in 

the arm (via radial nerve) (Rea and Wallin, 1989). This approach would not have been feasible 

given our small sample size and the amount of measurements needed in each participant (i.e. twice 

at both sea-level and high-altitude). Nevertheless, we have for the first time employed a powerful 

double-blinded, counter-balanced, randomized and placebo-controlled study to examine the role 

of SNS blockade both at rest and during exercise.  

 

Conclusion. 

Our findings illustrate that at sea-level, exercise related increases in SNS activity reduce 

endothelial function immediately following moderate-intensity exercise, but not at high-altitude. 

These findings indicate that differential governing mechanisms for endothelial function between 

sea-level and high-altitude. Together, our findings have implications for better understanding the 

chronic impacts of hypoxemia and exercise, and the interactions on sympathetic activity and 

vascular function.  
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Table 1: Brachial artery diameter, shear, and flow-mediated dilatation data during baseline  

and post-maximal exercise at sea-level and high-altitude 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of abbreviations: FMD, flow mediated dilatation; SRAUC, shear rate area under  

the curve. *P<0.05, pre-max data vs post-max data. P<0.05, interaction effect baseline vs post-max 

  

 Sea-Level High-Altitude 

 

Baseline Post-max Baseline Post-max 

Diameter (mm) 4.4  0.2 4.2  0.2* 4.3  0.2 3.9  0.2* 

 Time: P=0.004, Altitude: P=0.030, Interaction: P=0.328 

Mean Shear (1 s-1) 86.4  13.5 297.6  26.2* 111.8  20.1 213.5  27.7* 

 Time: P<0.001, Altitude: P=0.244, Interaction: P=0.003 

Antegrade Shear (1 s-1) 101.7  13.7 337.9  20.5* 144.5  17.3 308.3  24.3* 

 Time: P<0.001, Altitude: P=0.833, Interaction: P=0.012 

Retrograde Shear (1 s-1) -15.2  6.2 -40.5  8.6* -22.1  7.1 -89.6  14.9* 

 Time: P=0.001, Altitude: P=0.031, Interaction: P=0.009 

Change in diameter (mm) 0.23  0.05 0.25  0.05 0.26  0.04 0.32  0.05 

 Time: P=0.453, Altitude: P=0.380, Interaction: P=0.581 

FMD (%) 5.0  1.1 6.2  1.2 6.3  1.3 8.5  1.6 

 Time: P=0.282, Altitude: P=0.244, Interaction: P=0.532 

FMD SRAUC (103 s-1) 23.3  1.9 30.3  2.8* 23.2  2.7 22.6  1.9* 

 Time: P=0.025, Altitude: P=0.312, Interaction: P=0.185 



Table 2: Brachial artery diameter and flow-mediated dilatation data during baseline and post moderate-intensity exercise at 

sea-level and high-altitude 

Definition of abbreviations: FMD, flow mediated dilatation; SRAUC, shear rate area under the curve. *P<0.05, vs pre-exercise data. †P<0.05, Post-

60 vs Post. P<0.05, Interaction within Post FMD. Bolded Condition: P=0.099, when accounted for baseline diameter and shear rate, P=0.032. 

 

  Sea-Level High-Altitude 

  

Pre Post Post-60 Pre Post Post-60 

Diameter Placebo 4.5  0.2 4.8  0.2* 4.4  0.2* 4.2  0.1 4.2  0.1 4.2  0.2 

(mm) Prazosin 4.5  0.2 4.6  0.2 4.6  0.2 4.2  0.2  4.3  0.1 4.2  0.2 

  Time: P=0.015, Condition: P=0.783, Interaction: P=0.008 Time: P=0.496, Condition: P=0.398, Interaction: P=0.501 

Change in diameter  Placebo 0.21  0.03 0.12  0.02 0.30  0.05† 0.26  0.03 0.22  0.04 0.25  0.03 

(mm) Prazosin 0.20  0.04 0.22  0.05 0.22  0.03† 0.29  0.03 0.31  0.05 0.35  0.05 

  Time: P=0.022, Condition: P=0.954, Interaction: P=0.074 Time: P=0.502, Condition: P=0.093, Interaction: P=0.501 

FMD Placebo 4.9  0.7 2.1  0.8* 7.0  1.2† 6.3  0.8 5.3  1.0 5.8  0.6 

(%) Prazosin 4.5  1.0 4.9  1.3 4.0  0.9 6.8  0.8 7.3  1.2 8.5  1.2 

  Time: P=0.013, Condition: P=0.916, Interaction: P=0.033 Time: P=0.474, Condition: P=0.099, Interaction: P=0.455 

FMD SRAUC Placebo 19.8  2.4 37.9  4.5*† 18.3  2.7 26.9  2.8 40.2  5.3*† 25.5  1.7 

(103 s-1) Prazosin 27.4  2.1 39.8  4.7*† 23.7  2.5 30.5  2.5 50.2  3.0*† 37.6  3.2 

  Time: P<0.001, Condition: P=0.060, Interaction: P=0.448 Time: P<0.001, Condition:  P=0.005, Interaction: P=0.287 



Figure Legends 

Figure 1. FMD data collected during baseline on placebo and prazosin at sea-level and high-

altitude. White bars represent sea-level data  SEM, and black bars represent high-altitude data  

SEM in 9 participants. Definitions of abbreviations: FMD, flow-mediated dilatation.  

 

Figure 2. Cardiovascular data during baseline, maximal exercise, and post-maximal exercise 

at sea-level and high-altitude. Open circles () represent sea-level data  SEM, and closed circles 

() high-altitude data  SEM in 9 participants. *P<0.05, for interaction effects. Statistics for main 

effects and interactions are displayed on the top right of each figure panel. Definitions of 

abbreviations: BL, baseline; Max-Ex, maximal exercise; Post-Max, post-maximal exercise; SpO2, 

percent oxygen saturation of hemoglobin; SV, stroke volume, HR, heart rate; CO, cardiac output; 

MAP, mean arterial pressure; TPR, total peripheral resistance. 

 

Figure 3. Individual FMD data collected at baseline and post-maximal exercise at sea-level 

and high-altitude. Mean data (n=9) is represented by the gray line plot. Definitions of 

abbreviations: BL, baseline; Post-Max, post-maximal exercise; FMD, flow-mediated dilatation.  

 

Figure 4. Cardiovascular data during baseline, moderate-intensity exercise, and post-

exercise on placebo and prazosin at sea-level and high-altitude. Open circles () represent 

placebo data  SEM, and closed circles () represent prazosin data  SEM in 9 participants. 

*P<0.05, for interaction effects. Statistics for main effects and interactions are displayed on the 

top right of each figure panel. Definitions of abbreviations: BL, baseline; Post, immediately post-

exercise; Post60, 60-minutes post-exercise; SpO2, percent oxygen saturation of hemoglobin; SV, 



stroke volume, HR, heart rate; CO, cardiac output; MAP, mean arterial pressure; TPR, total 

peripheral resistance. 

 

Figure 5. Brachial artery shear rate data during baseline, moderate-intensity exercise, and 

post-exercise on placebo and prazosin at sea-level and high-altitude. Open circles () represent 

placebo data  SEM, and closed circles () represent prazosin data  SEM in 9 participants. 

*P<0.05, for interaction effects. Statistics for main effects and interactions are displayed on the 

top right of each figure panel. Definitions of abbreviations: BL, baseline; Post, immediately post-

exercise; Post60, 60-minutes post-exercise. 

 

Figure 6. Brachial artery velocity, diameter, blood flow and conductance data collected 

during baseline, moderate-intensity exercise, and post-exercise on placebo and prazosin at 

sea-level and high-altitude. Open circles () represent placebo data  SEM, and closed circles 

() represent prazosin data  SEM in 9 participants. *P<0.05, for interaction effects. Statistics for 

main effects and interactions are displayed on the top right of each figure panel. Definitions of 

abbreviations: BL, baseline; Post, immediately post-exercise; Post60, 60-minutes post-exercise. 

 

Figure 7. Individual FMD data collected during baseline and post-exercise on placebo and 

prazosin at sea-level and high-altitude. Mean data (n=9) is represented by the gray line plot. 

*P<0.05, represents time effect, where FMD Post-EX was lower compared to baseline, and Post-

60 (for more details, see results section). Definitions of abbreviations: Post, immediately post-

exercise; Post60, 60-minutes post-exercise; FMD, flow-mediated dilatation.  

 


