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Abstract 

 
Studying different types of dental pathology, wear, and developmental defects can allow 

inferences into diet and behaviour in a variety of ways. In this project data on these different 

variables were collected for South African hominins and compared with extant primates. The 

species studied include Paranthropus robustus, Australopithecus africanus, A. sediba, early 

Homo, Homo naledi, baboons, chimpanzees and gorillas. Macroscopic examination of each 

specimen was performed, with a 10X hand lens used to verify certain pathologies. Variables 

recorded include antemortem chipping, enamel hypoplasia, caries, occlusal wear, tertiary 

dentine, abscesses, and periodontal disease. Clear differences in frequencies were found in 

the different South African hominin species. Homo naledi displays high rates of chipping, 

especially small fractures above molar wear facets, likely reflecting a diet containing high 

levels of contaminants. Other noteworthy results include the high levels of pitting enamel 

hypoplasia in P. robustus molars compared to other species, likely due to a species-specific 

enamel formation property or developmental disturbance. The low rates of chipping in P. 

robustus does not fit with this species being a hard food specialist. Instead, the wear best 

supports a diet of low-quality tough vegetation. Australopithecus africanus likely had a broad 

diet, with angled molar wear, lack of caries, and high chipping frequencies supporting this 

conclusion. Seven new carious lesions are described, two from H. naledi and five P. robustus. 

Other, rarer, pathologies are also highlighted, including abscesses in an early Homo individual, 

root grooves caused by erosive wear in A. africanus and a case of amelogenesis imperfecta in 

a female chimpanzee. The main conclusion from this thesis as a whole is the substantial 

difference in frequencies of the different variables among hominin species, supporting the 

proposition that their diets differed substantially. 
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1 .  Chapter 1: Introduction 
 

Dental pathologies, developmental defects, and different types of wear can give 

insight into the diet, behaviour and health of individuals and groups. In this project, data on 

these various indicators are presented for South African fossil hominins with the aim of 

providing further insight into diet and the ecological niche these species may have filled. 

Profiles for each species are created using these different dental components followed by 

comparisons with one another, as well as extant primates and modern humans. Lastly, these 

frequencies are likened to those from other dietary-reconstructing techniques, such as dental 

morphology, isotopic analysis, and microwear. 

Data was collected on dental caries, ante-mortem chipping, tertiary dentine, enamel 

hypoplasia, periodontal disease, abscesses, malocclusion, attrition, and unusual wear. Other, 

rarer, pathologies are also noted. The hominin material studied includes specimens assigned 

to Paranthropus robustus, Australopithecus africanus, Australopithecus sediba, Homo naledi 

and ‘early Homo’. These specimens are curated at Ditsong Museum and the University of the 

Witwatersrand in South Africa. The comparative primate sample consists of chimpanzees 

(Pan troglodytes), gorillas (Gorilla gorilla gorilla), drills (Mandrillus leucophaeus), and baboons 

(Papio anubis and Papio hamadryas), curated at the Powell-Cotton Museum in the UK, and 

medieval and Roman era human samples that are curated at Liverpool John Moores 

University. The common names for the extant primate samples are used in the rest of this 

thesis as a quick way to differentiate them from the fossil hominins. 

It is often cited that dental enamel is the hardest tissue in the human body (Duverger 

et al., 2016). The high mineral content of this material, as well as other dental tissue, has led 

to exceptional levels of preservation in the archaeological and fossil records.  Indeed, the 

majority of hominin fossils are isolated teeth, although there are some very well preserved 

examples in which an entire jaw is present. Two other characteristics of teeth make it very 

fortunate they preserve so well in the fossil record. Firstly, once enamel forms in childhood, 

it stays virtually unchanged, barring pathologies and wear, meaning that any defects offer a 

snapshot of the individual's development history (Guatelli-Steinberg, 2015; Hillson, 2014). 
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Secondly, the oral cavity is directly exposed to the environment in which these early hominins 

lived, meaning that a unique insight into their way of life can be discerned. 

1.1. Structure of thesis 

In the succeeding chapters, different types of pathology, wear, and developmental 

defects are dealt with separately within their own chapter, followed by an overall discussion. 

A concise materials and methods section precedes these, with more in-depth description and 

explanations to why certain methods were used are detailed in the appropriate chapter. First, 

however, a brief overview of the material is presented as well as an overview of the literature 

to give a framework on which this work hopes to build. The chapters, therefore, are as 

followed, introduction (Chapter 1), sites and species (Chapter 2), dental pathology, 

developmental defects and wear (Chapter 3), materials and methods (Chapter 4), chipping 

(Chapter 5), caries (Chapter 6), enamel hypoplasia (Chapter 7), macro-wear (Chapter 8), 

abscesses, periodontal disease and antemortem tooth loss (Chapter 9), tertiary dentine 

(Chapter 10), case studies (Chapter 11), discussion, conclusions and future research (Chapter 

12). 

Chapter 2 outlines the hominin material found in the cradle of humankind as well as 

when and how particular sites and specimens were discovered. Additionally, this chapter 

outlines the species represented along with information on preservation and taphonomy. 

Chapter 3 reviews the literature with focus on dental pathology and wear research already 

carried out on South African hominins. Other types of dietary-reconstructing methods are 

also outlined and discussed. Chapter 4 gives an overview of the methods used for each 

variable and gives a summary of the specimens studied, and their condition, for each site and 

species. Chapters 5 to 10 each focus on one variable (except Chapter 9 which has three) and 

are structured similar to a journal article, with separate introduction, materials and methods, 

results, and discussion. Chapter 11 highlights a couple of rare lesions and defects, structured 

as two separate case studies. Chapter 12 compares the results of the previous chapters and 

then gives an overview of what these results may mean in terms of diet and behaviour for 

each of the species studied. The main findings are then highlighted and a brief overview given 

on how these results can be built upon. 
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1.2.  Justification of research 

In this project dental pathologies, wear and developmental defects were recorded in 

H. naledi for the first time, and therefore a new insight into this intriguing species can be 

given. Additionally, although individual studies have looked at particular indicators in P. 

robustus and A. africanus, broad-scale comparisons of multiple pathologies and 

developmental defects have not yet been conducted. A brief outline on the significance of 

this research for each species is outlined below. 

1.2.1. Homo naledi 

The recently discovered material assigned to a new hominin species, H. naledi, has not 

been subjected to the decades of research that P. robustus and A. africanus specimens have. 

However, the open access and large-scale nature of the project, led by Professor Lee Berger, 

means a surprisingly large amount of research has already been conducted (Berger et al., 

2015; Cofran et al., 2016; Feuerriegel et al., 2016; Harcourt-Smith et al., 2015; Kivell et al., 

2015; M.M. Skinner et al., 2016; Williams et al., 2017). Microwear, photolith and enamel 

property analysis are all being conducted and will be able to be compared with the data from 

this project. Additionally, dental morphology and enamel property analysis have already been 

performed (Berger et al., 2015; Hawks et al., 2017; M.M. Skinner et al., 2016). The large 

sample size of this material means different frequencies of pathologies can be compared to 

other hominins and extant primates, making dietary inferences possible. The small and more 

humanlike dentition of these individuals compared to most of the other South African 

material means it will be fascinating to gain any information on their diet and behaviour, but 

also the stresses that they faced (Berger et al., 2015; Hawks et al., 2017). Comparisons 

between rates of dental pathologies and wear will be made with the other South African 

hominins, but also, given its classification into the genus Homo, with other Homo specimens 

in the literature. 

1.2.2. Australopithecus sediba 

The sample size of A. sediba is much smaller than the other species studied in this 

project, meaning large-scale species comparisons for different pathologies is difficult. 

Nonetheless, these remarkably well-preserved specimens still offer a fascinating insight into 

the behaviour of these unique hominins, with occlusal wear particularly informative. In recent 
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years unusual pathologies have been described on other skeletal elements of these 

individuals, and therefore it will be interesting to see if there are any dental indicators of 

particular pathologies (Randolph-Quinney et al., 2016; Williams et al., 2013). 

1.2.3. Paranthropus robustus 

The robust masticatory apparatus of P. robustus has led many researchers to suggest 

such morphology must have been an adaptation to a highly specialised diet (Daegling et al., 

2011; Scott et al., 2005). The suggestions have, however, covered almost all items consumed 

by all extant primates. For example, suggestions have included a specialised diet of meat, 

grasses, leafs, fruit, small hard objects, and termites (Daegling et al., 2013; DuBrul, 1977; 

Grine et al., 2012; Merceron et al., 2004; Peters, 1987; Scott et al., 2005; Walker, 1981). Two 

of the most insightful ways of interpreting diet in fossil hominins are dental microwear and 

isotopic analysis. The former of these methods has led to much discussion regarding dietary 

interpretation, and the latter shows a mix of C3 and C4 foods were likely consumed (Grine, 

1981, 1986; Grine et al., 2012; Merceron et al., 2004; Scott et al., 2005; Sponheimer et al., 

2005; Sponheimer et al., 2013; Teaford & Glander, 1996; Teaford & Robinson, 1989; Ungar & 

Grine, 1991). Therefore, it is still very much open to debate what P. robustus ate, and 

therefore also why such large masticatory equipment evolved. The aim of this study is to try 

a different approach in reconstructing diet by looking at dental pathology, developmental 

defects and macrowear, which will hopefully provide further insight into the diet of these 

individuals. This data will also be able to be combined with the microwear and isotopic 

analysis and hopefully suggestions on what sort of food could cause these different patterns 

and signatures can be suggested. Particularly, it will be interesting to see how many ante-

mortem dental chips these individuals have compared with extant primates with known diet, 

as well as with other fossil hominins, to see if hard object feeding was common. Severe pitting 

enamel hypoplasia has been recorded on certain specimens of P. robustus (Moggi‐Cecchi, 

2000), but as yet the scale of these defects, as well as a differential diagnosis, has not been 

explored. Therefore, developmental defects and chipping will be particularly interesting to 

study in this species.  
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1.2.4. Australopithecus africanus 

In this project the largest hominin sample, in terms of number of individual teeth, is 

A. africanus. Some specimens are subjected to much discussion in terms of phylogeny 

(Calcagno et al., 1999; Fornai et al., 2015; Grine, 2013; Lockwood & Tobias, 1999; Moggi-

Cecchi, 2003; Wood & Richmond, 2000). The species as a whole has been suggested to be 

ancestral to Homo and Paranthropus, but such debate is very much ongoing. Similar to P. 

robustus, a wide variety of diets have been suggested for this species (e.g., Strait et al., 2009). 

The debate regarding occlusal wear, chipping, biomechanics of the masticatory system, and 

developmental stress have all remained discussion points (Grine et al., 2010; Scott et al., 

2005; Sponheimer et al., 2013; Van Der Merwe et al., 2003). Given the large scale, cross-

species, nature of the comparisons in this study it is hoped insight into these debates can be 

made. For example, biomechanical research has proposed A. africanus individuals may have 

evolved to process high-stress loads in the premolar region of the dentition; therefore it will 

be interesting to see if these teeth are particularly affected by ante-mortem fractures 

compared to other teeth, as well as other species. No carious lesions have yet been found on 

any tooth belonging to A. africanus, which is unusual given the large sample size and the 

growing number of lesions found on other hominin specimens. This will be explored by 

comparing caries frequencies with other fossil hominins and extant primates. 

1.2.5. Early Homo 

This sample consists of a few individuals, but the exact number of teeth is highly 

debated in the literature, with some specimens often attributed to another known species 

such as P. robustus or A. africanus and others suggesting them to belong to a separate new 

species (Grine et al., 2013). Which Homo species, or number of species, is represented is also 

highly debated (Braga & Thackeray, 2003; Grine et al., 1993; Moggi-Cecchi et al., 1998). These 

specimens are therefore simply called early Homo in this thesis. This material is 

morphologically distinct from the H. naledi material and therefore not grouped together. 

Comparisons with the other South African material will be intriguing. For example, it will be 

interesting to see if this early Homo material has more in common with much later H. naledi 

specimens or the more contemporary material assigned to Paranthropus and 

Australopithecus.  
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The recently published A. sediba material is similar in age to other species discussed 

above, particularly early Homo and P. robustus (Chapter 2). Clearly, there were multiple 

hominin species thriving in South Africa during roughly contemporary times. This raises the 

possibility that these different species filled different ecological niches, an idea where dental 

pathology and wear data can perhaps provide some insight. Additionally, the surprisingly 

young age of the H. naledi material offers a fascinating insight into the continued use of the 

cradle of humankind. Diet is often noted as changing dramatically in both the genus Homo 

and Paranthropus; particularly the use of fire and high intake of meat is often cited for the 

former. Therefore, it will be interesting to see if wear and pathology differences are visible 

between these different genera or if variation appears relatively unrelated to phylogeny. 

1.2.6. Comparative samples  

The comparative sample consists of baboons, chimpanzees, gorillas, drills, and 

agricultural humans. The extant primate comparative material offers insight into what effect 

certain foods and behaviours can have on the teeth since such dietary and behavioural 

information is widely available for these species. Therefore, if similar patterns are observed 

in the hominin fossils, it can be speculated that the same aetiology is responsible. It will also 

be interesting to look at these species independently given the small amount of data on these 

variables in the literature. The same data and analysis will be performed on all species, and 

any rare defect, wear and pathology also recorded and described. 

1.3. Project aims 

This is an exploratory study given that few macroscopic dental pathology studies have 

been conducted on the South African hominins. Indeed, as yet no study has been conducted 

that compares multiple variables. The overall aim of this study is first to elucidate dietary and 

behavioural components for these hominins but also to create a data set that can be easily 

compared and contrasted with other hominin and primate groups. Additionally, a further aim 

of this project is to explore the findings of the limited number of studies that have already 

looked at specific dental pathologies, wear and development defects in these specimens (see 

Chapter 3), and to compare these previous findings with the results of this study in each 

individual chapter. 
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1.3.1. Research questions to be addressed 

Because this study is largely exploratory, several broad research questions will be 

addressed rather than testing specific hypotheses. These questions include: 

 Can prior studies of diet in these various hominins based on microwear, 

isotopic analysis etc. be supported or refuted by the study of basic dental 

pathological indicators? 

 Can pathology, wear, and enamel defect data suggest differences in diet 

between the South African hominins? 

 Is there a link between the different variables and species? That is, are there 

certain species which consistently have similar patterns of wear and 

pathologies? 

 Do dental pathology and wear data fit with known ecological information on 

the extant primate samples, and if so what diet is therefore most applicable to 

the different hominin species? 

 Are differences observed between the different hominin species substantial 

enough to infer different ecological niches? 

These questions will be addressed throughout this thesis. 
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2 .  Chapter 2: Sites and species 
 

The sites in which the South African hominin material was found are not scattered 

evenly across this vast country. In fact, all the material studied comes from an area of only 

47,000 hectares called the “cradle of humankind” (Figure 2.1). Located 50 kilometres 

Northwest of Johannesburg in the Gauteng province it was made a World Heritage Site by 

UNESCO in 1999. There are many reasons for the abundance of fossils, both hominin and 

other animals, in the cradle of humankind, but the main factors are the geology of the area 

and the climate at the time of deposition. However, it is also possible that these same factors 

not only allowed better preservation of remains but also influenced, to a certain extent, the 

diversity and number of hominins at the site. 

 

 

Figure 2.1. Map showing the location of the cradle of humankind, with hominin bearing caves 

highlighted. Edited from Hawks et al. (2017). 

 

2.1. The cradle through time 

In the last few hundred years, extensive quarrying and mining has taken place in the cradle 

of humankind. Over half the world's gold in current circulation was mined from the 

surrounding area. Platinum mines have also been widespread. Gold was first discovered in 
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the area in 1884, with extensive mining following soon after. Lime was needed for both gold 

processing and the manufacture of cement, so the area in and around the cradle of 

humankind was extensively mined. This led to the discovery of hominin fossil sites, but 

unfortunately almost certainly destroyed many specimens. As Robert Broom wrote: 

“It is sad to think that for nearly 40 years no scientist ever paid the slightest attention to the 

caves; and probably some dozens of skulls of ape-men and all the bones of their skeletons 

were burnt in lime kilns” (Broom & Schepers, 1946). 

2.2. Sites 

2.2.1. Taung 

In 1924 the Taung child was discovered by Raymond Dart hundreds of miles away from 

the cradle of humankind in Buxton in the Northern Cape. The Taung child is the type specimen 

of the most numerous of South African hominin species, A. africanus. Due to the fragility and 

importance of this specimen, it was not available for study. 

2.2.2. Sterkfontein 

The first fossil discoveries were made by Marist Brothers College students, from   

Johannesburg, in 1895 (Clarke, 1988). However, a mining company that owned the land 

intended to extract large quantities of lime from the cave system, which they did, but 

fortunately a geologist called David Draper persuaded the company to leave the main cave 

untouched, using the stalactite and stalagmite formations, as well as an underground lake, as 

reasoning.  

In April 1947 Robert Broom and John Robinson discovered what is now one of the 

most famous fossils in the world, Mrs Ples (STS 5). Dynamite blasting was used, to the dismay 

of modern researchers, as well as many at the time, to dislodge the breccia and allow fossils 

to be found. This separated the skull into two fragments, but luckily, no serious damage was 

done. This was the first adult Australopithecus discovered, and it helped cement the idea that 

along with the Taung child these fossils did indeed belong to the hominin lineage (Broom, 

1949; Robinson, 1954, 1956).  

The site has been continually excavated since 1966 making it one of the longest-

running archaeological digs in the world (Clarke et al., 2003; Hughes & Tobias, 1977; Moggi-
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Cecchi et al., 2006). Hominin specimens from this cave are predominantly A. africanus. 

Between 1966 and 1989 Alun Hughes and Phillip Tobias collected and catalogued 505 hominin 

specimens (Moggi-Cecchi et al., 2006). It is worth noting the number of other animal fossils 

that were found at this time, with Charles Brain recovering 350,000 fossil specimens (Brain, 

1983). 

The first discovery of a fossil that could confidently be assigned to the genus Homo 

was made in 1976, under the supervision of Alun Hughes (Hughes & Tobias, 1977). What 

species is represented is unknown, although it was originally catalogued as H. habilis with 

some suggesting H. ergaster (see below).  

There is also a well-preserved specimen known as Little Foot, STW 573 (Clarke, 1998). 

Ron Clarke discovered some hominin foot bones while going through mislabelled fossil bags, 

after finding more leg bones that fitted this specimen he was convinced the rest of the 

skeleton was still in Sterkfontein caves, in particular, the area known as Silberberg Grotto. 

Other skeletal elements have since been found in this area, but extraction of the material 

from the breccia proved difficult. These specimens have now been removed from the cave 

but were not available for study in this project, but virtually all other specimens from 

Sterkfontein were. 

Member 4 from Sterkfontein has yielded large quantities of hominin fossil material 

(Pickering et al., 2004). This formation was originally called the Lower Breccia (Robinson, 

1963), and fossil hominins have been extracted since the 1930s. Some fossil have been found 

in situ deposits within the cave, whereas others come from breccia blocks in lime miners 

dumps (Tobias & Hughes, 1969). With some blocks, their origin is less certain. However, some 

are more certainly originally from the Member 4 formation, including dumps 9, 10, 13, 14, 15, 

17, and 18 (Tobias et al., 1967).  

2.2.3. Kromdraai 

In June 1938 hominin teeth were found by a local school boy, Gert Terreblanche, and 

after some initial misleading and confusion from a Sterkfontein quarryman, the site and the 

fossils (including the teeth recovered by the school boy) were found. The fossils came from 

the cave known as Kromdraai and now have the specimen number TM 1517. These remains 
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are very robust, with a large jaw and molars and therefore thought worthy of a distinct and 

new species name, Paranthropus robustus, of which TM 1517 is the type specimen. 

2.2.4. Coopers 

Controversy surrounds an isolated tooth found at Coopers in the 1930s, with some 

suggesting it was transported there from Sterkfontein (Hilton-Barber & Berger, 2004). This 

tooth has since gone missing from the University of the Witwatersrand. However, a different 

tooth was found in what is now Ditsong Museum which was enough to convince Lee Berger 

to carry out excavations. These excavations were successful with further hominin material 

uncovered, and there was also the unusual discovery by Christine Steininger of a partial 

hominin skull within the Ditsong Museum's fossilised fauna collections (Berger et al., 2003; 

Steininger et al., 2008). This material has been classified as P. robustus. A few more teeth have 

also since been found (de Ruiter et al., 2009). 

2.2.5. Drimolen 

This is the only site not included in this project, as these specimens were not available 

for study at the time of data collection. This relatively newly discovered hominin fossil bearing 

site has produced a significant amount of dental material thought to belong to P. robustus 

(Keyser et al., 2000; Moggi-Cecchi et al., 2010). However, where possible, this material will be 

incorporated into this thesis by using published information on these specimens from the 

literature. 

2.2.6. Swartkrans 

There are five Members defined for Swartkrans, with the first three containing 

hominin material (Clark, 1993). Member 1 has produced abundant remains of P. robustus but 

no other distinct hominin species. Member 2 also contains a large number of specimens 

assigned to P. robustus but also some attributed to the genus Homo. Similarly, Member 3 

contains evidence of both. However, only a small number of postcranial bones represent 

Homo in this member (Grine, 2005).  

The two main concentrations of hominin fossils from all sites come from Swartkrans 

Hanging Remnant (Member 1) and Sterkfontein Member 4. What is remarkable about the 

finds is not just the sheer number but also the proportion of all faunal remains that have been 
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excavated that are hominin. Brain (1983, 1993) found that a minimum of 90 individuals are 

represented in the Swartkrans Hanging Remnant, which make up 20% of the total assemblage 

MNI. Sterkfontein Member 4 was found to have a minimum of 45 individuals represented, 

comprising 13% of the assemblage MNI. Furthermore, more recent work has shown that the 

number of individuals in Sterkfontein Member 4 is likely much higher than thought, with at 

least 87 individuals represented (Pickering et al., 2004). 

2.2.7. Makapansgat 

Apart from potential recent H. sapiens remains, the site consists of only material 

belonging to A. africanus (Reed et al., 1993). It will be interesting to see if there are any 

difference in pathologies and wear with the Sterkfontein A. africanus. 

2.2.8. Malapa 

The geology of the area surrounding the Malapa Cave means that water seeps deep 

into the bedrock and prevents the thin layer of top soil from supporting larger plants. 

However, where there are underground streams, sinkholes or cave entrances, there is 

potential for larger plants and trees to take root. Although many of these trees have since 

been felled for use in mining operations, the stumps can still be used in modern day 

prospecting potential fossil sites.  This method has been enhanced in recent years with new 

satellite technology allowing vast areas of landscapes to be viewed remotely, one of the 

methods used by Lee Berger and his team in his discovery of A. sediba, using Google Earth 

(Berger et al., 2010). Skeletal elements from a minimum of six individuals have since been 

found, all thought to belong to A. sediba, although it is two individuals, MH1 and MH2, that 

stand out as being remarkably complete (Berger et al., 2010; Irish et al., 2013; Kibii et al., 

2011; Zipfel et al., 2011). 

2.2.9. Rising Star  

The most recently discovered of the samples in this thesis is H. naledi. The material 

comes from the Dinaledi chamber within the Rising Star cave system, discovered in 2013 

(Berger et al., 2015). A minimum of 15 individuals are represented, with the very unusual 

circumstance of virtually no other animals remains found in the chamber (Dirks, 2015). Due 

to how the remains are preserved and the difficulty in getting to this chamber, it is suggested 
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deliberate burial of these individuals may have taken place (Berger et al., 2015). Already many 

publications have studied H. naledi with preservation, phylogeny and diet the focus (e.g., 

Berger et al., 2015; Cofran et al., 2016; Feuerriegel et al., 2016; Harcourt-Smith et al., 2015; 

Kivell et al., 2015; M.M. Skinner et al., 2016; Williams et al., 2017). All the material from this 

cave belongs to a single species, H. naledi, with uniform dental morphology between 

individuals. The discovery of further H. naledi material in a second chamber within this cave 

system has recently been published (Berger et al., 2017; Dirks et al., 2017; Hawks et al., 2017). 

This material promises to provide further insight into this species, with a very complete 

individual as well as the presence of other animal fauna. 

2.3. Site codes 

Site codes are used in tables and the text. TM is material from Sterkfontein and Kromdraai 

and comes from ‘Transvaal Museum' which is the original name of what is now the Ditsong 

National Museum of Natural History, in which the material is still curated. STS is from the 

same site and stands for ‘Sterkfontein Type Site'. STW is also from Sterkfontein. MLD stands 

for ‘Makapansgat Limeworks Dumps' which is a literal description of where the material was 

found. SE stands for ‘Sterkfontein Extension'. UW 101 refers to the H. naledi material, which 

is curated at the University of the Witwatersrand. SK and SKX are both site codes for 

Swartkrans. KB is the site code for Kromdraai. MH is the site code for Malapa, which is 

represented by A. sediba material. 

2.4. Species classification 

There is debate regarding almost all hominin fossil remains as to which species the 

remains should be assigned to. The South African material has been lumped and split into 

different groups over the years, and, particular specimens, as well as all specimens from 

particular sites, are still subjected to ongoing debate. 

Most comparisons in this thesis are made among five main groups: A. africanus, P. 

robustus, H. naledi, A. sediba and early Homo. Evolution, however, does not tend to produce 

such distinct populations over such time frames, and therefore it is not surprising that debate 

surrounds many specimens. Instead, variation is ubiquitous, and what one person thinks of 

as a distinct species others will argue it is simply variation of an already-defined species. 

However, in studies looking at diet and behaviour, it is nonetheless useful to group specimens 
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so that large scale comparisons can be made. Furthermore, the specimens studied show 

significant variation among samples, with distinct morphological differences among most of 

the species studied, meaning that such splitting is justified (Grine, 2013; Irish et al., 2013). 

However, results will also be presented by site where appropriate, to see if there are 

differences within these groups. Table 2.1 shows the material assigned to each species with 

the sites and time span represented for each displayed.  

Table 2.1. Sites, number of teeth and dates for each species studied. YBP: years before present. 

Species Number of teeth Dates Sites 

H. naledi 181 335,000 to 236,000 YBP Rising Star 

A. sediba 20 1.980 to 1.977 million YBP Malapa 

P. robustus 511 2.0 to 1.2 million YBP Kromdraai, Swartkrans 

A. africanus 504 3.3 to 2.1 million YBP Sterkfontein, Makapansgat 

Early Homo 81 2.0 to 1.5 million YBP Sterkfontein, Swartkrans 

Olive baboons 867 19th/20th century * 

Chimpanzees 3256 19th/20th century * 

Drills 246 19th/20th century * 

Gorillas 2597 19th/20th century * 

Hamadryas baboons 90 19th/20th century * 

H. sapiens 921 12th to 17th century Gloucester, UK 

*wild-shot, see text for details 

Below is a short summary of some of the main issues surrounding the classification of 

different species and individuals, and how such issues are taken into account in this project. 

2.4.1. Australopithecus africanus 

When hominin material was first discovered at Taung, Sterkfontein, and Makapansgat, 

it was assigned to three species across either two or three genera (Broom, 1936, 1938, 1950; 

Dart, 1925, 1948). After these early years, however, the consensus was that all such material 

represented a single species, A. africanus (Rak, 1983; Robinson, 1954; Tobias, 1967). Recently 

the high variation in tooth size has led researchers to suggest more than one species is 

represented in Member 4 deposit in Sterkfontein (Grine et al., 2013). Even amongst those 

researchers that would split this material, there is much debate as to which specimens are 

allocated to which species (see Grine et al., 2013). A particularly contentious debate centred 

on material from the site of Makapansgat. Although Tobias (1967) considered this material 

the same species, he did note the robustness of the remains compared to those from 
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Sterkfontein. Aguirre (1970) went on to suggest that such robusticity in some specimens was 

due to two species being represented in the assemblage, A. africanus and P. robustus. This 

work also suggested the same may be the case for the Sterkfontein collection. This possibility 

would not receive significant attention for a couple of decades (e.g., Clarke, 1988; Grine, 

2013).  

The majority of the A. africanus remains come from Sterkfontein. A large proportion 

of these A. africanus specimens (including well-preserved specimens such as STS 5, STS 17, 

STS 19, and STS 71) were discovered between 1947 to 1949 by Broom and Robinson, 

describing them all as one species (Broom, 1949). A well-represented skeleton from 

Sterkfontein was discovered in the 1980s and assigned the specimen number STW 151. This 

individual has been described as potentially more derived in the direction of Homo relative to 

other A. africanus from Member 4 (Moggi-Cecchi et al., 1998). However, following the 

majority of other studies, this specimen is recorded as A. africanus. Two other parts of the 

Sterkfontein cave system that are fossil-bearing is Silberberg Grotto and the Jacovec Cavern. 

The famous find from Silberberg Grotto is STW 573, also known as ‘Little Foot.' At present 

little research has been published on these specimens. The remains are very well preserved 

with many elements represented (Clarke, 1998). It seems likely that this individual is dated 

much earlier, perhaps to 3 Ma (Bruxelles et al., 2014; Clarke, 1998), than the material from 

Sterkfontein Member 4, although there is still debate to the actual date due to potential 

movement within the cave. 

2.4.2. Paranthropus robustus 

Originally, Robert Broom suggested the material now assigned as P. robustus was 

made up of two species, but this theory was later discounted by John Robinson; since then 

there has been much debate in the literature, although most studies tend to keep all remains 

within one species. However, some researchers maintain there are multiple species 

represented. Most notably, morphological differences between specimens from Kromdraai 

and Swartkrans, particularly in deciduous dentition, have been highlighted (Grine, 2007). 

Wallace (1975) suggested that a single lineage was observed in the specimens now assigned 

to A. africanus and P. robustus with the latter evolving from the former. He saw the 

Makapansgat specimens as intermediate in form between these two types and thought they 
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represent a species that partly linked the two groups. In this study, all Swartkrans teeth, 

except those assigned to Homo (see below), as well as Kromdraai specimens, are assigned to 

P. robustus.  

A specific specimen that has been debated in the literature is SKX 5013. It is from 

Member 2 of Swartkrans and is represented by part of the left mandible, with a complete first 

molar present. It has been assigned to both P. robustus and Homo (Grine, 2005; Schwartz & 

Tattersall, 2003). It is clear that this individual is noticeably smaller than other P. robustus 

specimens but as Grine et al. (2015) point out size is not often a good way to distinguish 

species. They suggest instead that P. robustus may have had a level of sexual dimorphism 

similar to gorillas and therefore SKX 5013 may simply represent a small female of this species 

(Grine et al., 2012; Lockwood et al., 2004). Following this logic, SKX 5013 is here classified as 

P. robustus.  

2.4.3. Early Homo 

In the article describing H. naledi, Berger et al. (2015) view the comparative specimens 

assigned to Homo from Swartkrans as belonging to H. erectus, although this was mainly for 

convenience of comparisons. Specimens included in this category were: SK 15, SK 18a, SK 27, 

SK 43, SK 45, SK 68, SK 847, SK 878, SK 2635, SKW 3114, SKX 257/258, SKX 267/2671, SKX 268, 

SKX 269, SKX 334, SKX 339, SKX 610, SKX 1756, SKX 2354, SKX 2355, SKX 2356, and SKX 21204. 

These are not all represented by teeth, but here the same format is followed in including SK 

15, SK 27, SK 43, SK 45, and SK 2635 as ‘early Homo’. Unfortunately apart from a few well 

represented and preserved examples such as SK 15, SK 45, and SK 27, the early Homo dental 

sample from Swartkrans is predominantly isolated, broken, teeth. 

From Sterkfontein the samples designated here as early Homo are specimens from the 

Sterkfontein Extension site (SE 255, SE 1508 and SE 1937). Also debated in the literature are 

STW 19 and STW 42, both of which have been classified as Australopithecus and Homo; here 

they are included with Homo, though their small number does not affect the results for any 

pathology except chipping (see Chapter 5). Additional Homo specimens from Sterkfontein are 

STW 53, STW 75, STW 80, and STW 151 (Clarke, 1985; Hughes & Tobias, 1977; Kuman & 

Clarke, 2000; Moggi-Cecchi et al., 1998, 2006; Robinson, 1963; Tobias, 1979). 
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2.4.4. Homo naledi 

Although only recently published, H. naledi has been subjected to debate concerning 

phylogeny. At present, the majority of objections to its placement and new species status has 

largely been in the media rather than in peer-reviewed journals. The unique morphology 

across these individuals, in a variety of different skeletal elements, is supportive of the new 

species classification in the genus Homo (Berger et al., 2015). Furthermore, the dental 

morphology is remarkably uniform across individuals; as such, there is little doubt that these 

individuals represent the same species (Berger et al., 2015; Cofran et al., 2016; Hawks et al., 

2017; M.M. Skinner et al., 2016).  

2.4.5. Australopithicus sediba 

The unique morphology of this material has led to debate regarding how the Malapa 

material should be characterised, including the genus and species (Berger et al., 2010; Carlson 

et al., 2016; Irish et al., 2013; Kibii et al., 2011; Pickering et al., 2011; Zipfel et al., 2011). Much 

of this debate revolves around interpretation of juvenile remains, but also the relationship 

with the genus Homo and other Australopiths is common. In this thesis, all material from 

Malapa is recorded as A. sediba. 

2.4.6. Family Tree 

As mentioned, the phylogenetic relationship among species in this thesis has been 

debated in the literature (e.g., Berger et al., 2017; Moggi-Cecchi et al., 2006). Although not an 

essential part of this project, with analysis mainly among the five species mentioned, such 

relationships will be discussed in Chapter 12 concerning ecological niches that the species 

may have filled. These niche differences are of particular interest given the overlapping 

occurrence of potentially three of the species, P. robustus, A. sediba and early Homo (Figure 

2.2). The three genera in this study, Homo, Paranthropus, and Australopithecus will also be 

interesting to compare variable frequencies, particularly because they are made up of a 

similar number of teeth (Chapter 4). The H. naledi material is much more recent than any 

other samples in this study, between 236 ka and 335 ka (Dirks et al., 2017), raising an 

interesting question as to whether their diet was substantially different than the earlier 

hominins (Figure 2.2). 
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Figure 2.2. Phylogenetic tree showing the five main species used, along with other hominin groups. 
Adapted from the National Geographic. 

2.5. Geology and deposition 

The cradle of humankind is dominated by 2.6 billion-year-old dolomitic formations, with 

cave systems formed in numerous locations (Dirks & Berger, 2013; Gommery et al., 2008; 

Witthüser & Holland, 2008). Once a cave has formed, due to the process of erosion and 

dissolution of dolomite, animal remains, along with other debris in the area, are washed or 

otherwise transported in, causing a build-up of material. If the remains are located in a zone 

that has lime-bearing water dripping or seeping through it, then there is a chance it may 

become calcified (Dirks et al., 2015). The fossils that are not then eroded have the potential 

to be stumbled upon hundreds of thousands of years later by an observant archaeologist. 

More broadly, there are many ways for an animal or plant to become fossilised, including 

an impression of footsteps or original specimen, void filling with minerals seeping through the 

surrounding rock, and total replacement of the original specimen with mineral (Grimes et al., 

2001; Pfretzschner, 2004). The caves in the cradle of humankind have a mix of different 

preservation types, but concerning hominin material, the most important are fossilisation of 

material through calcium carbonate precipitated from the bedrock (Hilton-Barber & Berger, 

2004). Once such replacement takes place the resulting block of cemented material can be 

incorporated into breccia. This is true for all the hominin specimens in this study, although it 

should be noted that the H. naledi material offers a unique and fascinating preservation 

history that is still being studied (Dirks et al., 2015; Dirks et al., 2017). Luckily, in general, this 
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process has little effect on the appearance of enamel and other dental tissues and therefore 

allows most of the pathologies and wear recorded in this thesis to be observed in the majority 

of specimens. 

2.6. Archaeological record and preservation 

The environment in which fossil hominins lived is a vital component to incorporate in 

any study looking at diet and behaviour. Another important aspect to consider is that 

specimens of P. robustus and A. africanus cover a large time span. The environment and their 

behaviour potentially changed significantly during this time. However, it is interesting to note 

that isotopic analysis results for different specimens show there is no trend over time 

(Sponheimer et al., 2005), although there is high variability in isotopic results in both species, 

particularly A. africanus, at any given time. Environmental components such as fluoride and 

mercury levels as well as deficiencies such as vitamin D may also be important to consider as 

they can have an impact on dental formation (Alvarez et al., 2009; Ioannou, 2015; Ogden et 

al., 2007).  

When discussing the ecology and behaviour of early hominins, it is important to 

remember that they were unlikely to have been at the top of the food chain (Chapter 12). 

Large cats including lions, leopards and the now extinct sabre-toothed and false sabre-tooth 

cats roamed this area, as well as numerous species of hyena and dog species. Birds of prey 

that would have been capable of taken small hominins were also present around the cradle 

of humankind, including large eagles and owls. This is highlighted by the fact hominin bones 

have shown evidence of damage caused by such predators (e.g., Berger & Clarke, 1995; 

Pickering et al., 2000). 

2.6.1. Taphonomy, excavation and curation 

The process of fossilisation, excavation, and curation can all have dramatic effects on 

the preservation of teeth, and therefore methods must be implemented to allow for 

comparisons to be made between sites to try and counter any potential bias. The 

archaeological and fossil record very rarely approaches completeness, in terms of a realistic 

cross section of skeletal elements as well as how pristine are the elements that survive. In 

fossil hominins, different assemblages will be more predisposed to contain certain individuals 
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within the populations, selected by size, age, sex or health. A good example of this is research 

carried out on the Swartkrans material by Charles Kimberlin Brain and later by Travis Pickering 

and colleagues. This work suggests that the accumulation of animal remains in Members 1 

and 2 was likely due to the actions of large carnivores such as leopards and hyena. Pickering 

provides evidence suggesting such action may also have led to the accumulation of such 

remains in Member 3; Brain favoured hominin activity as the cause of accumulation of fossils 

in this member (Brain, 1969, 1970, 1983, 1993; Pickering, 2001; Pickering et al., 2004, 2005, 

2007, 2008). 

Therefore, there may be clear differences between fossil sites depending on how 

material was accumulated. Clearly, a site that consists mainly of animals that were killed and 

carried to that location by leopards or other carnivores will have a different set of 

characteristics than that of a site resulting from a natural disaster. Similarly, a modern 

collection that is made up of wild-shot individuals, such as the primates from the Powell-

Cotton museum, should also have a different pattern and set of biases.  

Likewise, due to the varying circumstances in which an animal can be fossilised, there 

are often significant differences in preservation of certain skeletal elements between sites. 

This selection of elements can create biases in data sets if such circumstances are not taken 

into account. For example, if a site is made up of skeletal material that has been washed into 

a cavern that has later fossilised, then skeletal elements may get mixed up and some 

potentially washed away and therefore not fossilised. This scenario can cause issues for dental 

studies because anterior teeth tend to become dislodged from the maxilla and mandible more 

often than molars, due largely to differences in root morphology.  

Even before fossilisation takes place, there are numerous factors that lead to varying 

degrees of preservation, including: time exposed on the surface, climate, biodegradation and 

soil type. Such information is principally important for the small amounts of maxilla and 

mandible available for study rather than teeth. Although there have been some examples of 

microbiological degradation of dental material in fossil mammals (e.g., Fostowicz-Frelik & 

Frelik, 2010; Kalthoff et al., 2011), it has been noted that most teeth show little or no evidence 

of such osteolysis (Grine et al., 2015). This lack of deformation is likely due to enamel being a 

particularly uninviting host to such bacteria but also because fragmentary remains tend to be 

less affected by such processes. 
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Although, as will be highlighted in the following chapters, taphonomic processes are 

unlikely to be misidentified as ante-mortem; certain features are, nonetheless, important to 

consider. Many teeth in this study are heavily discoloured, making the recording of certain 

conditions difficult and creating potential error. For example, many hominin specimens have 

a black discoloration. This colouration occurs due to the presence of manganese in dolomitic 

bedrock in which the fossils were entrapped, with the possibility that biodegradation in the 

sediment may have been needed to facilitate fossilization (Grine et al., 2015). Figure 2.3 

illustrates this staining on a specimen from Swartkrans (SKX 5013), with black colouration on 

the mandible as well as dentine islands on the occlusal surface of the first molar. It is worth 

noting that this staining does not extend far beyond the surface in specimens (Kuczumow et 

al., 2010). It has also been suggested that this layer may have protected the material from 

further intrusion from organic matter (Kuczumow et al., 2010). Such colouration rarely makes 

a tooth unobservable for all variables; however some, such as tertiary dentine on the first 

molar in Figure 2.3 may be affected. 

Other taphonomic processes can leave a tooth in perfectly recordable condition for 

all variables and simply change the colour of material through contact with particular minerals 

during fossilisation; some strikingly colourful examples can result (Figure 2.4). 

Perhaps surprisingly, the main problem encountered during data collection was not 

caused by morphological differences among species, but rather preservation of the material. 

The most striking difference is between fossil specimens and modern day extant ape samples. 

However, variation in the preservation even within the South African hominins is significant. 

For example, H. naledi material is made up of very pristine teeth with little post-mortem 

damage and are associated with many other teeth (Chapter 4). Commonly, this is not the case 

for P. robustus and A. africanus. How these different processes affect the different species 

are highlighted in the individual chapters, along with methodological techniques used to 

counteract potential bias. 
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Figure 2.3. Black discolouration on the mandible and left lower first molar of SKX 5013, caused by 
taphonomic processes. 

 

 

Figure 2.4. Blue colouration to the dentine in SK 873. 
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Some teeth have also been broken post-mortem, before, during and after fossilisation. 

Such teeth can be removed from analysis for any variable that cannot be recorded (see 

Chapter 4). Rarely is a tooth damaged in such a way that it is mistaken for an ante-mortem 

pathology or defect (see Chapter 5). Sometimes the overall shape of a tooth or jaw can be 

changed. For example, the lower left first molar of SK 63 has moved inferiorly compared to 

the deciduous second molar, although in this case, it is clearly post-mortem in origin, it is 

important to keep such factors in mind during data collection. 

Another post-mortem mechanism that is worth mentioning is how fossils have been 

excavated and curated. It was common up until the 1950's for dynamite to be used to retrieve 

fossils, with, undoubtedly, much damage caused. This issue should not have much effect in 

this study since such post-mortem damage does not seem to have extensively affected 

isolated teeth. However, two other components may have had an effect.  The handling of 

specimens may, over time, erode pathologies or developmental defects so that they are 

slightly less visible, or potentially for such pathologies as calculus, be completely removed. It 

could be argued that such handling likely has little effect, barring calculus, and should 

theoretically be similar across sites and therefore not of great concern. However, that is not 

the case for methods used to remove debris. In many of the Ditsong Museum specimens acid 

was used to remove different matrix, whereas much of the material curated at the University 

of the Witwatersrand was removed mechanically using instruments. Acid removal almost 

certainly removed more calculus deposits than the mechanical method, and therefore it is 

difficult to compare these groups. Other pathologies, wear and developmental defects are 

likely relatively un-affected by such factors. For these reasons, calculus is not included in the 

analysis or results of this thesis. Results are too unreliable, in that deposits are likely lost 

through a variety of taphonomic processes as well as handling and processing. 
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3 .  Chapter 3: Dental pathology, developmental 
defects and wear 

 

3.1. Introduction 

Research involving dental pathologies can provide valuable insight into diet, social 

systems, cultural practices, systemic stress, idiosyncratic behaviour, health, and disease of 

individuals and groups, as well as information on when certain traits and behaviours 

developed in the hominin lineage. Research involving the dentition is common in the 

paleoanthropological literature, partly due to the preservation bias in favour of teeth, but also 

because of the wealth of information that can be gained from these remains. Indeed, prior 

research has looked in depth at dental pathologies and anomalies in hominins; however much 

of this work has been primarily descriptive in nature and often limited to one species, or 

focuses on a single variable. A brief overview of different pathologies, developmental defects, 

and wear is given below, with a more in-depth discussion in each specific chapter. In this 

section, the focus is on research that has been conducted on hominin material, particularly 

the South African specimens, as well as giving a concise summary into what inferences each 

defect can give into diet and behaviour. Additionally, other evidence for diet and behaviour 

in these hominins is explored to allow a base literature on which this works builds. 

3.2. Caries 

Caries is present in a wide range of hominin populations, but varies in prevalence, severity 

and location depending on the group, population and species studied (Figure 3.1; Byun et al., 

2004; Gussy et al., 2006; Humphrey et al., 2014; Lanfranco & Eggers, 2012; Larsen et al., 1991; 

Lukacs, 1996). Carious lesions can provide information on the diet and oral health of 

individuals, with the position and severity key to attributing behaviours and diets to 

populations as a whole (Hillson, 2005). Additionally, the teeth most affected can give insights 

into food processing habits. For example, the high attrition of anterior teeth in early 20th 

century Greenland Inuit, due to a diet consisting predominantly of meat, means the little worn 

third molars have a high level of caries (Pederson, 1947), although still relatively rare in 

contrast to most agricultural groups. In contrast, the teeth of contemporary Australian 
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aboriginal groups, with a diet high in grass seeds, have a much higher rate of caries, 

particularly in the first molars (Hillson, 2005). Other factors that can be gleaned from the 

presence, location and severity of caries include dental hygiene techniques, cooking 

technology, frequency of food consumption and sex differences (Crittenden et al., 2017; 

Hillson, 2001; Tayles et al., 2000). Caries has been extensively researched in recent human 

populations, allowing many samples in which comparisons can be made (e.g. Humphrey et 

al., 2014; Larsen et al., 1991; Novak, 2015; Rohnbogner & Lewis, 2016; Walker, 1986). Carious 

lesions have already been found in South African hominins (Grine et al., 1990; Robinson, 1952) 

as well as numerous fossil Homo specimens (e.g., Lebel & Trinkaus, 2001; Tillier et al., 1995; 

Trinkaus et al., 2000; Walker et al., 2011). That said, the South African fossil hominins have 

not yet been studied for caries using micro-CT scans and specimens belonging to H. naledi 

have not been studied at all for the presence of caries. 

 

Figure 3.1. Dental pathology and wear on a mandible of skeleton 1235 from the medieval Gloucester 
collection. A: calculus; B) heavy/angled occlusal wear; C) periodontal disease; D) caries. 

 

 

 



26 
 

3.3. Dental wear 

Dental wear comes in the form of attrition, abrasion and erosion, although in reality, 

dentitions can show a combination of these (Burnett et al., 2013; Kaidonis, 2008). Attrition is 

caused by the occlusal surfaces of teeth coming into contact with each other, whereas 

abrasion occurs when other materials introduced to the mouth wear teeth during mastication 

or via localised wear from food processing (Burnett et al., 2013). Attrition and abrasion can 

provide in-depth detail on an individual's diet, cultural practices and idiosyncratic behaviours. 

Particular wear patterns are associated with different practices, and by comparing various 

groups, it is possible to then infer these ecological and social behaviours in archaeological 

remains. For example, particular wear patterns are associated with certain types of 

agriculture, high meat intake, and a more varied hunter-gatherer lifestyle (Deter, 2009; 

Fiorenza, 2011; Smith, 1984). Wear research has been carried out on a variety of hominin 

species and has been used to deduce diet, behaviour and even potential cultural practices in 

Australopithecus (Clement & Hillson, 2013; Estebaranz, 2009; Grine, 1986; Tobias, 1967; 

Ungar & Grine, 1991) and Homo (Fiorenza, 2011; Ungar et al., 2001). Another aspect of wear 

research is occlusal and interstitial wear, which can be used to estimate the age at death, diet, 

environmental factors and potential cultural practices (Burnett et al., 2013; Fiorenza et al., 

2011). Wear from food processing, tool use or using an instrument to relieve a toothache 

have all also been observed in different archaeological samples (e.g., Estalrrich et al., 2016; 

Ungar, 2001). Conflicting results have been presented for occlusal wear in South African 

hominins (Cachel, 1975; Grine, 1981, 1986; Robinson, 1956; Wallace, 1975). However, now 

that a larger dental sample is available further inferences into this debate can be made. 

Additionally, unusual dental wear, such as through erosion or abrasion, has not been 

extensively explored, except in search of ‘toothpick’ grooves (Ungar et al., 2001; Wallace, 

1974). In this thesis, all signs of unusual wear were recorded. 

3.4. Chipping 

Ante-mortem dental fractures, or chips as they are more commonly referred to, can give 

insight into diet and environmental contaminants as well cultural and food processing 

practices (Figure 3.2; Belcastro et al., 2007; Constantino et al., 2010; Daegling et al., 2013; 

Lucas et al., 2008; Scott & Winn, 2011). The teeth and crown positions most affected, as well 
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as the frequency and severity of chips, can all, therefore, give insight regarding diet and 

behaviour (Belcastro et al., 2007; Larsen, 2015; Lous, 1970; Molnar at al., 1972). Some authors 

have researched dental chipping in South African hominins, most commonly to compare 

chipping frequencies between P. robustus and A. africanus but also to look at chip size and 

masticatory processes (Constantino et al., 2010; Grine et al., 2010; Robinson, 1954; Tobias, 

1967). However, there is much debate in the literature regarding frequencies as well as issues 

concerning methods used (see Chapter 5). Recent human groups and other extant primates 

have also been extensively studied, making a large database on which comparisons from the 

results of this thesis can be made (Belcastro et al., 2007; Constantino et al., 2012; Gould, 1968; 

Lous, 1970; Molnar et al., 1972; Scott & Winn, 2011; Silva et al., 2016; Turner & Cadien, 1969). 

 

Figure 3.2. Chipping examples. Both teeth belong to H. naledi. Bottom image: UW 101–1401 upper 
right second premolar, multiple small chips on distal surface; top image: UW 101–1402 upper right 

first premolar, mesial chip. Scale is in millimetres. 

 



28 
 

3.5. Periodontal disease 

Periodontal disease is a common condition in present-day humans and is predominately 

characterised by loss of alveolar bone (Figure 3.1). It results from the accumulation of specific 

bacteria close to the gum margins and is associated with certain diets, pathologies and oral 

hygiene behaviours (Clarke & Hirsch, 1991; Lieverse, 1999; Morris et al., 2001; Ogden, 2008).  

As well as recent humans, this condition has been recorded in a variety of hominin specimens 

(e.g., Gracia-Téllez., 2013; Ripamonti, 1988; Smith, 1977). 

3.6. Dental abscesses 

Abscessing and, more generally, periapical voids in the maxilla and mandible are found 

commonly in archaeological remains (Cawson et al., 2002; Ogden, 2008). The characteristics 

of the bone surrounding the void can give insight into its aetiology (Dias & Tayles, 1997). 

Heavy wear, trauma, and caries are often associated with abscesses, and therefore their 

presence can provide information on diet and behaviour (Hillson, 2005; Linn et al., 1987; Nair, 

2004; Ricucci et al., 2006). 

3.7. Calculus 

Calculus is mineralized plaque which adheres to enamel surfaces (Figure 3.1; Greene et 

al., 2005). Its presence and location can provide information on diet as well as facilitate 

comparison with other pathologies. For example, there is a trend toward higher rates of 

periodontal disease with more calculus deposits (Greene et al., 2005), due to calculus 

displacing the epithelium around the gum line, allowing bacteria from living plaque to reach 

the alveolar bone. Both calculus and caries tend to increase when more carbohydrates are 

ingested, so an inference on diet can be gained from quantity and severity (Delgado-Darias et 

al., 2006; Larsen et al., 1991; Lieverse, 1999; Novak, 2015; Turner, 1979). Calculus is 

frequently recorded in modern day case studies (e.g., Keenleyside, 2008; Lieverse, 1999; Lillie, 

1996; Lillie & Richards, 2000; Littleton & Frohlich, 1989; Pechenkina et al., 2002; Šlaus et al., 

2011) and has been recorded in fossil hominins (Pap et al., 1995; Vandermeersch et al., 1994).  
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3.8. Enamel hypoplasia 

 

 

Figure 3.3. Enamel hypoplasia examples. A) pitting enamel hypoplasia (A. africanus, SK 9); B) 

linear enamel hypoplasia (H. naledi, UW 101-38). C) plane-form enamel hypoplasia (H. sapiens, 

Gloucester skeleton 1672); D) localised hypoplasia (gorilla, M 667). 

 

Enamel hypoplasia are developmental defects appearing as grooves and pits, as well as 

more irregularly shapes, of missing enamel on the surface of a tooth crown (Figure 3.3; 

Goodman & Rose, 1990; Guatelli-Steinberg, 2015; Pindborg, 1970). Most types of hypoplasia 

are caused by periods of stress, such as disease or malnutrition, which disrupt the usual 

productivity of ameloblasts (Guatelli-Steinberg, 2003; Hillson, 2014; Weerheijm, 2003). 

Although the exact cause of such periods of systemic stress can often not be deduced from 

archaeological remains, they nonetheless record a very accurate account of duration and 
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severity of stress episodes (Goodman et al., 1980; Goodman et al., 1984; Goodman & 

Armelagos, 1985). Although few in number there have been some studies looking at 

hypoplasia differences in hominin species, including those in South Africa (e.g., Bombin, 1990; 

Guatelli-Steinberg, 2004; Moggi-Cechi, 2000; White, 1978), as well as individual case studies 

(Robinson, 1956; Tobias, 1991). However, a large scale study looking at all types of enamel 

hypoplasia has not yet been conducted on this material. Enamel hypoplasia has also been 

extensively researched in recent humans, and other mammals, due to the insight defects can 

give into disturbed development (e.g., Guatelli-Steinberg, 2015; Hillson & Bond, 1997; Ogden 

et al., 2007). Some specific types of illness, disease, and trauma have been associated with 

certain types and forms of hypoplasia (Dirks et al., 2002; Hillson, 1996, 2014; Radu & Soficaru, 

2016; Skinner et al., 2015). Other abnormalities that are often recorded include tooth rotation 

and malocclusion, most notably as widely reported in a Homo floresiensis specimen (Brown, 

2004), as well as genetic conditions (e.g., Crawford, 2007; Mehta et al., 2013). Rare 

abnormalities are infrequently searched for in fossil hominins and therefore are almot 

certainly overlooked in certain collection. 

3.9. South African Literature 

Some of the most exciting research in biological anthropology in recent years has 

centred on new finds from South Africa. The first A. sediba fossils were discovered in 2008, 

and since then over 220 skeletal fragments have been extracted. Their cranial and post-cranial 

skeletal morphology shares much in common with A. africanus but also with contemporary 

and later members of Homo. It has even been suggested that they may represent a species 

that gave rise to the Homo genus (Berger, 2012). Their dental crown and root morphology 

also suggest a very close association with A. africanus as well as links with members of the 

genus Homo (i.e., relative to other australopithecine species) sharing numerous apomorphies 

(Irish et al., 2013). Already studied in these remains are various indicators of bipedalism, the 

upper limb and manipulative abilities, mandibular remains, lower limb, geology setting, diet, 

dental morphology, pelvis, phylogeny and the vertebral column (Carlson et al., 2011, 2016; 

Churchill et al., 2013; Daegling et al., 2016; de Ruiter, 2013; DeSilva et al., 2013; Dirks et al., 

2010; Henry, 2012; Irish et al., 2013; Kibii et al., 2011; Kivell et al., 2011; Ledogar et al., 2016; 

Pickering et al., 2011; Schmid et al., 2013; Williams et al., 2013; Zipfel et al., 2011). 
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Homo naledi is an even more recent discovery, with the description of this species less 

than two years ago (Berger et al., 2015; Dirks et al., 2015). However, the open access nature 

of this material has meant numerous studies have already been conducted (e.g., Feuerriegel 

et al., 2017; Harcourt-Smith et al., 2015; Kivell et al., 2015; Williams et al., 2017), with several 

relating to the dentition (Berger et al., 2015; Cofran et al., 2016; M.M. Skinner et al., 2016). 

Most of the early Homo, P. robustus and A. africanus specimens have been studied 

intensively over the past 50 years. Research has focussed on teeth, predominately studies 

looking at phylogeny and diet (e.g., see Clement & Hillson, 2013; Grine, 2013). Studies on 

dental chipping, linear enamel hypoplasia, and occlusal wear have been studied several times 

each in these specimens (Bombin, 1990; Clement & Hillson, 2013; Constantino et al., 2010; 

Grine, 1986; Guatelli-Steinberg, 2004; Moggi-Cechi, 2000; Robinson, 1954; Tobias, 1967; 

Ungar & Grine, 1991; White, 1978). 

3.9.1. Other South African hominin sites 

In this study, only hominin material from the cradle of humankind is studied. There 

are, however, samples from other parts of South Africa dating to the middle and upper 

Palaeolithic. These sites are briefly outlined here as their dates are not too far from the H. 

naledi material. A human skull from Hofmeyr has been dated to 36.2 thousand years ago (± 

3.3), a morphological study found its closest affinities, perhaps surprisingly, with Upper 

Paleolithic Eurasians (Grine et al., 2007). Another South African site with hominin remains is 

Klasies River, which dates to the middle Palaeolithic. The remains include some teeth, a 

mandible and several other skeletal elements (Rightmire et al., 2006; Rightmire & Deacon, 

2001). Dental pathology and wear have not been studied in detail in these specimens; 

however in the descriptive paper Rightmire & Deacon (2001) do mention an interproximal 

groove on an upper second molar. 

3.10. Archaeological evidence 

Although a controversial subject, it is worth mentioning the use of fire in early 

hominins due to the clear impact on diet, social systems, and the ecological niche filled. 

Evidence for the period 1-2.5 million years ago is limited, with the possible exception of 

Swartkrans. Brain (1993) found that 270 specimens of animal bone at Swartkrans appear to 
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have been deliberately burnt, along with evidence for 20 hearths in one section of the cave. 

The fact that this evidence was found in different areas (and ages) of the site led to the 

suggestion of long-term fire use by hominins from before 1 Ma. Such potential evidence is 

only found in Member 3 deposits (Brain, 1993; Brain & Sillen, 1988). It is, therefore, worth 

keeping in mind that fire may have been exploited by some hominins studied here. The date 

of the H. naledi material, as well as its intriguing deposition, suggest these individuals may 

have been directly introduced to fire use by other hominins or were perhaps even efficient in 

its use and transport.  

Stone and bone artefacts have also been found at these sites. These include stone 

artefacts found by Brain in loose breccia at the ‘Extension Site' at Sterkfontein, followed by in 

situ finds of Robinson and Mason in 1957 and 1958 -- adding 286 lithics and a bone tool (Grine, 

2013). Many cultural artefacts have been found at Swartkrans, with Members 1, 2, and 3 all 

containing stone tools (Clark, 1993). Additionally, over 80 limb bones and horns from bovids 

were shown to have been potentially used as tools (Backwell & d'Errico, 2001; Brain, 1989; 

Brain & Shipman, 1993; d'Errico & Backwell, 2003; Grine et al., 2015). The stone tool 

technology these materials should be defined as has been debated as well as which species 

likely used them, and what the different tools were used for (Backwell & d'Errico, 2001; Clark, 

1993; Grine et al., 2015). However, evidence does suggest differences in frequency, types and 

processing of tools between site Members (Brain & Shipman, 1993; Clark, 1993; Pickering et 

al., 2008). As well as cut marks on animal bone and stone/bone tools found in these caves, 

another interesting observation is the presence of grooves on the skull of a hominin specimen 

(STW 53); the latter were suggested to be cut marks created by other hominins (Pickering et 

al., 2000). If true, this would likely signify the disarticulation of this individual. Usually the 

behaviours outlined above are suggested to be caused by species in the genus Homo. 

However, tool use has been suggested for P. robustus, with a suggestion of termite fishing 

(Backwell & d’Errico, 2001; Macho, 2015). 

3.10.1. Other work on diet 

For the most part, the current understanding of diet and behaviour in these hominin 

fossils is not influenced by dental pathology and developmental defects. Occlusal wear has 

received slightly more coverage. Daegling et al. (2013) provide an in-depth summary of the 
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most common methods for reconstructing diet in hominins.  Below the general understanding 

of diet in South African hominins is explored with reference to these methods. These studies 

are used in the discussion section of this thesis (Chapter 12) to allow comparisons with the 

results. 

3.10.2. Morphology 

Dental morphology, biomechanics, and allometry have been studied extensively in 

South African hominins, either directly relating to diet, or with a focus on phylogeny but with 

a dietary or behavioural component to conclusions (Constantino et al., 2010; Daegling & 

Grine, 1991; Hylander, 1988; Jungers & Grine, 1986; Kay, 1985; Lucas et al., 2008; Rak, 1983; 

Robinson, 1952, 1954; Strait et al., 2009; Ungar, 2004; Wood & Abbott, 1983). The conclusions 

from such research has varied dramatically, and debate is very much ongoing (e.g., Grine et 

al., 2010; Strait et al., 2012). 

It is well known that anterior and posterior teeth often play a significantly different 

role in mastication. For example, Cachel (1975) points out that anterior teeth are often used 

for processing foods, such as tearing and cropping, whereas posterior teeth tend to process 

the food through grinding and crushing. Therefore the overall size and morphology of teeth 

within the dental arcade may give insight into diet and food processing behaviour. Allometric 

factors will also play a role. A larger hominin will need larger posterior teeth, all else being 

equal, to allow a larger volume of food to be consumed (Cachel, 1975). Such factors are 

discussed and incorporated into the discussion of this thesis (Chapter 12). 

As well as the morphology of the teeth, the overall shape of the dental arcade is also 

important. For example, the presence of diastema, how teeth occlude, and the palate shape 

will all have an effect on how the masticatory process affects teeth (Daegling et al., 2013; 

Robinson, 1954; Strait et al., 2012). Therefore, such factors are important to consider when 

comparing species, as they may influence the frequencies and position of different 

pathologies and wear. Due to the close phylogenetic relationship between the hominins 

studied in this thesis, it may be less of an issue than when comparing more distantly related 

species. Tobias (1967) highlighted such similarities between these species, stating there is 

little difference in overall shape of the dental arcade between Paranthropus specimens and 

other hominins. He also points out that these hominins are distinctly different from extant 
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non-human great apes. In particular, in extant non-human great apes, the canine and 

posterior teeth form an approximate straight line which is parallel and in some cases even 

divergent anteriorly. Additionally, they tend to have a diastema between the canine and 

anterior teeth. These two characteristics, in particular, are not found in these hominins.  

3.10.3. Microwear 

Microwear research has been carried out multiple times on South African hominin 

specimens, with conflicting conclusions. Microwear analysis involves comparing the number 

of microscopic scratches and pits on the crown of a tooth. Microwear analysis can, therefore, 

provide direct evidence to the foods that were processed and eaten by individuals in the days 

and weeks leading up to death. This technique has been used to suggest broad dietary 

categories for particular species as well as for distinguishing between subtle differences 

among closely related species (Grine, 1981, 1986; Grine et al., 2012; Merceron et al., 2004; 

Scott et al., 2005; Teaford & Glander, 1996; Teaford & Robinson, 1989; Ungar & Grine, 1991). 

However, in isolation, the precise cause of a wear pattern can often be difficult to interpret 

(Daegling et al., 2013). Early studies on microwear of P. robustus suggested hard objects may 

have made up a significant part of their diet. However, some of the more recent research has 

suggested that the microwear pattern may not be as conclusive (see Grine et al., 2012). 

An issue with microwear analysis is that it can only give insight into foods consumed 

in the days leading up to death, so a bias may be introduced. One such bias may be created 

due to the individual being ill or weak and therefore not eating a ‘normal' diet. That said, this 

is one of the most direct and reliable methods of reconstructing diet in archaeological 

specimens, and reference to microwear results will regularly be made, particularly in Chapter 

12. 

3.10.4. Stable isotope analysis  

Another direct line of dietary evidence comes from stable isotope analysis (Copeland 

et al., 2011; Sponheimer et al., 2005, 2006). Stable isotope analysis can give insight into the 

diet of past populations due to different foods leaving different isotopic signatures in the 

teeth of individuals. This method has been used on many hominin specimens over the last 

couple of decades (for an overview see Sponheimer et al., 2005; Sponheimer et al., 2013). C3 

foods include fleshy fruits and hard objects such as seeds and nuts along with most other tree 
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biomass. C4 foods include items such as grasses and sedges but also animals that eat these 

foods. Therefore, one drawback of using this technique is that it can be difficult to identify 

the specific foods eaten. However, this can be partially overcome by also analysing certain 

potential foods in the area studied. For example, Sponheimer et al. (2005) took into 

consideration the C3/C4 values of termites and sedges in the South Africa when looking at 

stable isotope analysis in P. robustus and A. africanus, meaning the actual foods consumed 

could be narrowed down. It was expected that South African hominins would show C3 

isotopic signatures, mainly due to our closest living relatives, chimpanzees and bonobos, 

having a predominantly frugivorous diet (Carter, 2001; Schoeninger et al., 1999).  

All the carbon isotope studies conducted so far on P. robustus and A. africanus have 

shown a relatively strong C4 signature suggesting non-fruit foods must have been an 

important component of their diets (Sponheimer et al., 2005). Stable carbon isotope analysis 

has also been used in other mammals found at hominin fossil sites in South Africa (Lee-Thorp 

et al., 2007). From this data, the authors could then see if there were trends towards 

assemblages being dominated by certain types of diet, this could then provide environmental 

information. Their results highlight a general trend in the direction of open environments 

after 3 Ma, which could potentially help explain the higher than expected quantities of C4 

foods in the diet of P. robustus and A. africanus.  

As mentioned, bone tools found at Swartkrans have been suggested to be instruments 

for digging termite mounds. This has led researchers to suggest that the 13C-enriched isotopic 

signature in P. robustus may be caused by the consumption of termites which feed on C4 

grasses (Backwell & d'Errico, 2001). However, although eating certain termites could produce 

the C4 levels needed to explain these results, they are very unlikely to be the only C4 food 

eaten as many termites are either C3 or mixed C3/4 (Sponheimer et al., 2005). 

Earlier hominins seem to have had a diet closer to that of savannah chimpanzees, with 

Ardipithecus ramidus and A. anamensis diets dominated by C3 foods (Schoeninger et al., 

1999). Paranthropus boisei on the other hand, shows even higher levels of C4 intake than the 

South African species suggesting they may have specialised in the consumption of a type of 

C4 vegetation or, less likely, species that fed on them. In contrast, A. sediba shows a 

remarkably different isotopic signature than the other South African hominins with a dietary 
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signal high in C3 material (Henry et al., 2012). These isotopic results are discussed in relation 

to the results of this study in Chapter 12. 

3.10.5. General diet 

Different dietary proxies discriminate different aspects of diet, meaning a full 

appreciation of the food consumed by a fossil hominin cannot be fully deciphered. For 

example, dental microwear predominantly provides information on the abrasiveness of foods 

consumed and isotopic analysis can infer the proportion of C3 and C4 foods eaten, but the 

actual foods consumed can only be approximated (Pineda‐Munoz et al., 2016). Another 

important factor is the time scale that is actually being tested for diet. Different methods will 

be inferring diet at different times of the individual's life. For example, dental microwear is 

often referred, usually negatively, as the ‘last supper effect' as these scratches and pits that 

are used to estimate dietary objects may be worn away in as little as weeks. The opposite is 

true of methods such as isotopic analysis in which the carbon and oxygen isotopes present 

while teeth are forming are incorporated into the enamel (Martínez et al., 2016). Such factors 

are also important to consider for the variables studied in this thesis. For example, dental 

chipping records periods of days to several years, depending on the size of fracture. 

Macrowear, caries, and calculus essentially measure diet over many years. Developmental 

defects on the other hand only form in the first few years of life. Therefore it may not be 

surprising that different methods show different results across species. Comparing different 

methods may, therefore, allow the most reliable conclusions on diet as a whole. 

3.10.6. Tooth properties 

When studying pathologies and wear, and particularly when comparing rates between 

different groups, it is important to take tooth properties into account. For example, the 

structure and morphology of the dentine, cementum, and enamel can all influence 

frequencies of the different pathologies and wear studied in this project (Lucas et al., 2008). 

These are discussed and taken into account in each chapter. 

Over time there has been much debate about the fossil record regarding the evolution of 

human ontogeny (See Smith et al., 2015 and references therein). It has been suggested that 

Plio-Pleistocene hominins, including those studied here, show a developmental pattern more 

similar to extant non-human great apes than to modern humans (Bromage & Dean, 1985; 
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Dean et al. 1993). Such differences in timing makes a big difference to estimating the age of 

death of fossil hominins. For example, the age of death of the Taung child has been estimated 

to be anywhere between three and six depending on which great ape species is used as the 

proxy (Conroy & Vannier, 1991; Mann, 1988; McNulty et al., 2006). This goes back to the 

circular problem of using an extant species as a reference for studying developmental timings 

in extinct species. Attempts have been made however to counter this problem by using 

methods that do not depend on extant species (e.g., Smith et al., 2015). Difference in 

formation and eruption times between the samples in this project, particularly with the 

inclusion of the comparative extant primate samples are therefore vast. For example, 

chimpanzee deciduous teeth erupt at around half the age of modern humans, with, by the 

age of one and a half, all their deciduous teeth erupted (Smith & Tafforeau, 2008). 
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4 .  Chapter 4: Materials and methods 
  

A total of 9,274 teeth were studied for this project; of these, 1,297 comprise South African 

hominin specimens and the rest are divided among the comparative samples. This material is 

summarised below, along with an overview of the methods used.  

At the time of data collection, over 1,500 H. naledi specimens were available for study, 

from which over 15 individuals are represented (Berger et al., 2015; Dirks et al., 2015). The 

teeth, and the small number of mandibles and maxillae are in excellent condition. To the 

extent that they offer almost as good of preservation as the modern day comparative samples 

(Table 4.1). The A. sediba material is also very well preserved, however with much less dental 

material represented. Paranthropus robustus and A. africanus are the largest samples but also 

have the highest rate of post-mortem broken teeth, both in total and proportionally. That 

said, given their large sample sizes, the amount of teeth observable for all variables is high 

(Table 4.1). Broken teeth are not recorded when post-mortem damage renders multiple 

pathologies, wear, and developmental defects impossible to record. However, in certain 

circumstances, such teeth can be recorded for particular variables. For example, if a tooth is 

broken half way down the crown, yet the occlusal surface is still fully visible, then occlusal 

wear can be recorded. The criterion for each variable is explained in the subsequent chapters. 

Table 4.1. Number of permanent teeth for each sample. 

Species Observable Teeth Broken Teeth Total Teeth % Broken 

H. naledi 147 12 159 7.55 

A. sediba 16 4 20 20.00 

P. robustus 318 136 454 29.96 

A. africanus 328 164 492 33.33 

Early Homo 44 23 67 34.33 

Olive baboons 790 2 792 0.25 

Chimpanzees 2498 5 2503 0.20 

Drills 212 0 212 0.00 

Gorillas 2090 10 2100 0.48 

Hamadryas baboons 90 0 90 0.00 

H. sapiens 918 3 921 0.33 

Total 7451 359 7810 4.60 
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The deciduous tooth sample is significantly smaller than the permanent sample in 

both the hominins and comparative primates. There are also different proportions for the 

different species, with P. robustus having by far the largest sample size of deciduous teeth 

(Figure 4.2). The other hominin samples are relatively small, making comparisons for certain 

pathologies difficult.  

Table 4.2. Number of deciduous teeth for each sample. 

Species Observable Teeth Broken Teeth Total Teeth % Broken 

Hominins     
H. naledi 20 2 22 9.09 

P. robustus 46 11 57 19.30 

A. africanus 7 5 12 41.67 

Early Homo 13 1 14 7.14 

Comparative samples     
Olive baboons 75 0 75 0.00 

Chimpanzees 749 4 753 0.53 

Drills 34 0 34 0.00 

Gorillas 495 2 497 0.40 

Totals 1439 25 1464 1.71 

 

The A. africanus material originates from two sites, Sterkfontein and Makapansgat. P. 

robustus specimens are from Kromdraai and Swartkrans, with additional observations added 

from the literature on specimens from Drimolen and Coopers. The early Homo material 

originates from Sterkfontein and Swartkrans. Both H. naledi and A. sediba are only found at 

one site, Rising Star and Malapa, respectively. Table 4.3 displays the number of teeth 

represented for each site. 

As discussed in the preceding chapters, much debate in the literature has centred 

upon phylogeny for certain specimens. However, most are consistently identified into the five 

main species used in this thesis due to sharing key morphological traits. The few examples 

where this is not the case is due to the specimen being small/broken or because a variety of 

characteristics from two or more species has been argued. For distinguishing which samples 

should be included in these different categories, the following three articles are 

predominantly used (Berger et al., 2015; Grine et al., 2013; Moggi-Cecchi et al., 2006). 
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Table 4.3. Number of teeth for each hominin site, and the percentage of all teeth that are 

deciduous. 

Species/Site Permanent Teeth Deciduous Teeth % Deciduous 

H. naledi    
Rising Star  159 22 12.15 

A. sediba    
Malapa 20 0 0.00 

P. robustus    
Kromdraai 30 9 23.08 

Swartkrans 424 48 10.17 

A. africanus    
Makapansgat 45 2 4.26 

Sterkfontein 447 10 2.19 

Early Homo    
Sterkfontein 47 12 20.34 

Swartkrans 20 2 9.09 

 

The vast majority of specimens from Sterkfontein are assigned to A. africanus, with 

those assigned to Homo including: SE 255, SE 1508, SE 1937, STW 53, STW 75, STW 80 and 

STW 151, and one is assigned to P. robustus: STW 566 (Clarke, 1985; Hughes & Tobias, 1977; 

Kuman & Clarke, 2000; Moggi-Cecchi et al., 1998, 2006; Robinson, 1963; Tobias, 1965; 1978). 

STW 80 and STW 151, in particular, are both classified regularly as A. africanus and early 

Homo. Here they are counted as early Homo, although the debate is very much ongoing to 

their classification (Braga & Thackeray, 2003; Grine et al., 1993; Moggi-Cecchi et al., 1998). 

Specimens from Swartkrans are predominantly assigned to P. robustus, with the following 

specimens regarded as early Homo: SK 15, SK 27, SK 43, SK 45, SK 2635 (Berger et al., 2015; 

Grine et al., 2013; Moggi-Cecchi et al., 2006). The Kromdraai specimens are all classified as P. 

robustus, and the Makapansgat specimens all A. africanus. A full list of specimen studied from 

each site can be found in Appendix A for permanent teeth and Appendix B for deciduous 

teeth. 

A couple of teeth have been sacrificed for particular studies over the years, such as 

isotopic analysis, and therefore only the casts are left to study (see specimen list in Moggi-

Cecchi et al., 2006). Although the casts can be of extremely high quality, it is not at present 

known how much bias would be introduced if recording pathologies and wear on these casts 

was compared to the real tooth. Therefore data on casts are not presented. 
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As mentioned in the introduction, the fossil record is not made up of equal amounts 

of different skeletal elements. Even teeth, which are by far the most frequently preserved 

elements, have variable frequencies of preservation depending on what part of the jaw they 

are from. The main factor is that anterior teeth tend to have less complex roots and therefore 

are more likely to be dislodged during taphonomic processes and subsequently washed away. 

This effect can be strikingly seen in this sample, with posterior teeth preserved in much 

greater numbers than anterior, in both dentitions (Table 4.4). These differences justify 

splitting the results into tooth types, especially with variables that show significant 

differences between different teeth. 

Table 4.4. Total number of teeth for all hominins. # per tooth position refers to the total number of 

teeth divided by the number of tooth positions for that tooth type. 

Tooth type Permanent teeth # per tooth position Deciduous teeth # per tooth position 

Incisors 185 23.13 12 1.50 

Canines 124 31.00 20 5.00 

Premolars 317 39.63 n/a n/a 

Molars 567 47.25 73 9.13 

 

4.1. Comparative samples 

 

The primate comparative sample was chosen because of the close phylogenetic 

relationship of gorillas and chimpanzees with hominins as well as similar behavioural and 

environmental factors suggested in the literature for baboons (e.g., Codron et al., 2008; Jolly, 

1970; Macho, 2014). Data were collected in material at the Powell-Cotton Museum, which 

was amassed by Percy Powell-Cotton and includes a variety of faunal remains as well as 

botanical and ethnographic specimens. He collected the primate material during expeditions 

to Africa between 1887 and 1939 (Guatelli-Steinberg & Skinner, 2000). The majority of the 

primate specimens included here were collected between 1927 and 1936, with the great apes 

killed in their natural habitat in Cameroon and the Congo (Dean & Jones, 1992; Lukacs, 2001). 

Most of the samples were collected near the villages Batouri and Lomie in south-east 

Cameroon, with rainfall for the region averaging 1500 mm/year and an altitude of up to 750 

meters above sea level (Lukacs, 2001). The great ape specimens include western lowland 

gorillas and common chimpanzees. The baboon sample consists of olive and hamadryas 
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baboons that, along with the drill sample, are all wild shot and come from a variety of 

locations (Guatelli-Steinberg & Skinner, 2000). The majority of monkey specimens are olive 

baboons (Table 4.1), and for most variables, only olive baboons are displayed due to small 

sample sizes for drills and hamadryas baboons. Therefore, the main three comparative extant 

primate species are western lowland gorilla (Gorilla gorilla gorilla), common chimpanzees 

(Pan troglodytes) and olive baboons (Papio Anubis), and unless stated when chimpanzees, 

gorillas and baboons are mentioned it refers to these three species/subspecies. 

Due to the quality of this collection for research on wild specimens, many interesting 

studies have been conducted. Manning and Chamberlain (1993) used the collection to look 

at asymmetry in the canine teeth of Old World primates, with the hope of providing insight 

into sexual selection. Measurements of the size and shape of the teeth have also been used 

in research looking at phylogenetic relationships (Wood & Willoughby, 1991). Lukacs (2001) 

studied enamel hypoplasia in deciduous teeth, finding that gorillas and orangutans have 

significantly more enamel defects on their canines than chimpanzees. Skinner (1986) 

compared LEH rates in chimpanzees and gorillas from this collection, finding that the latter 

had more LEH grooves than the former. Later research by Guatelli-Steinberg and Skinner 

(2000) again looked at LEH frequencies in these same primates but with a focus on differences 

between a larger sample of primates and the influence of crown height on LEH rates. Dean 

and Jones (1992) looked at the relationship between tooth wear, continuous eruption and 

periodontal disease concluding that when studies look at periodontal disease in 

archaeological material continuous eruption is an important component to consider. The 

teeth in this collection have also been used in research on ageing individuals (Dean & Wood, 

1981), sexual dimorphism (Wood, 1976), and abscesses (Legge, 2012). 

For comparisons with the fossil hominins it is important to incorporate dietary data 

on the extant primate samples. Western lowland gorillas eat higher quantities of fruit than 

other gorillas (Tutin, 1996), but leaf matter still makes up a large proportion of their diet 

(Table 4.5). This diet varies over the course of the year, with fruits eaten more regularly in the 

wet season (Conklin-Brittain et al., 2001). Chimpanzees are best described as omnivorous 

frugivores, eating more fruit and less leaf matter than gorillas (Table 4.5). In addition to 

leaves, fruit and other vegetation, chimpanzees have also been observed eating birds, small 

mammals, eggs, insects, and honey, although these make up a small portion of their diet 
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(Table 4.5; Isabirye-Basuta, 1989; Boesch et al., 2002; Phillips & Lancelotti, 2014). Baboons, in 

general, are also omnivorous, although their diet is predominated by herbaceous material 

(Table 4.5). Olive baboons in particular are noted for their varied diet which differs from place 

to place because they are highly adaptable (Whiten et al., 2011). Baboon diet can include 

fruits, tubers and leaf matter but also insects, roots, eggs and animal material (Macho, 2014; 

Lodge et al., 2013). Therefore, these three groups of primates are justifiably good specimens 

to use as comparisons with the fossil hominin since their diets differ substantially from each 

other and cover a wide range of food items. 

Table 4.5. Percentage of different food items in the diet of wild gorillas, chimpanzees and baboons 
(Conklin-Brittain et al., 2001; DeCasien et al., 2017; Doran et al., 2002; Leonardet al., 2003; Mitani et 

al., 2012). 

Species Leaf matter Fruits and seeds Other* 

Gorilla 37 63 0 

Chimpanzee 16.6 77 6.4 

Baboons 34.79 53.5 11.71 

          *Predominantly animal matter 

A modern human comparative sample was also studied, with the same methods used. 

This medieval collection from Gloucester, UK, consists of 41 individuals (Table 4.1). A variety 

of work has been completed on the diet and health during this period, so inferences into the 

effect on dental pathology and developmental defects are possible (Albarella, 2006; Connell 

et al., 2012; Novak, 2015; Thomas et al., 1997; Wadsworth, 1992; Woolgar et al., 2006). 

4.2. Background to methods 

The methods used for each species and site, including the comparative samples, are 

the same. Methods were selected based on their appropriateness for recording fossil teeth. 

The most important selection criteria, therefore, were methods that did not rely on whole 

jaws for comparisons. Methods that use colouration differences were also not used, as post-

mortem processes can often affect colour. Finally, methods used had to be appropriate for all 

species and populations studied, and therefore not reliant on certain morphological features. 

These criteria were easy to meet, with most commonly used techniques usually appropriate. 

There have been numerous recording systems created to allow successful collection 

and analysis of dental data. For this research only methods that take into account hard tissue 
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are applicable, but other issues are important to consider when looking at archaeological 

remains. For example, using DMF scores (Decayed Missing Filled; Broadbent & Thomson, 

2005) is not appropriate, because if teeth are missing (e.g. through periodontal disease or 

post-mortem tooth loss) an accurate total cannot be calculated. Therefore, appropriate 

recording methods are selected by using relevant systems already published, or altering them 

slightly, allowing direct comparison with published data. 

The position of pathologies and defects were recorded, both the tooth type affected 

but also the position on the tooth, with analysis often split by such groupings. Figure 4.1 

highlights the terminology used in this thesis to refer to these different positions since there 

is often confusion created by the variety of terminology in current use. Perhaps the most 

note-worthy aspects are the use of the word buccal for all teeth, the premolars being called 

1 and 2 rather than 3 and 4, and posterior deciduous teeth being called deciduous molars, 

not premolars. Although the use of the word buccal for use on incisors and canines, rather 

than labial, is technically wrong, it is gaining popularity due to being much easier to use 

regarding descriptions and comparisons. Therefore buccal in this thesis refers to the outside 

(i.e. the side not facing into the oral cavity) of all teeth. 

 

Figure 4.1. Common terminology used in this thesis. Image credit: Lorraine Heidecker 

(Redwoods.edu). Teeth shown are all the upper permanent teeth. 
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Dental pathologies, wear, and developmental defects can lead to increased levels of 

ante-mortem tooth loss in a population. Similarly, many of these variables can be worn away 

during life. For example, any trace of a chip, a carious lesion, or developmental defect can be 

lost through attrition long before death. Therefore, in studies such as this, the actual number 

of such indicators that existed on an individual's dentition in their lifetime is not what is 

displayed. Instead, what is presented is a snap shot of the pathologies and wear that were 

present when the individual died. This has led to a variety of authors suggesting methods to 

attempt to counteract for such factors (e.g., Duyar & Erdal, 2003; Kelley et al., 1991; Lukacs, 

1995). However, given the complex interactions between these different factors and the fact 

that the true overall rate (whatever that may mean) for most variables is not possible to 

reconstruct, the best way to display results is the actual frequencies found for the different 

pathologies. For example, in modern human studies in which the vast majority of ante-

mortem tooth loss is through caries, perhaps such correction factors are justified, but in these 

fossil hominins, ante-mortem tooth loss is likely caused a variety of factors, but most 

commonly heavy attrition. Therefore, when comparing populations in which the interaction 

between different pathologies, defects and wear is complicated and not fully understood such 

corrective methods may lead to misleading results. Instead, each variable is displayed as 

found and the interaction between the different pathologies and wear explored. This method 

is now commonly used (e.g., Meinl et al., 2010; Novak, 2015). 

Developmental defects are perhaps the exception to this rule. With increasing wear, 

all else being equal, fewer enamel defects should be visible on a tooth crown. This is due to 

the defects being worn away as a tooth wears towards the cementum enamel junction (CEJ). 

Therefore methods to attempt to counteract the defects lost through wear are justified (see 

Chapter 6). The best way to do this is to simply split teeth into wear categories and only 

compare similarly worn teeth between species. 

A number of steps were taken to prevent biases being introduced due to recording 

data at the different times and locations. The same lamp (Lumen MDL-NR-942, 230V) was 

used throughout to prevent any effects of lighting affecting pathology frequencies. This is 

particularly important in the recording of enamel hypoplasia. All teeth were placed on the 

same black cloth, and the same hand lens was used (10x). 
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How the fossils have been curated and arranged have the potential to create biases in 

the data set. For example, the loose teeth in the Sterkfontein collection at the University of 

the Witwatersrand have boxes full of loose teeth of a certain type, e.g. lower second molars, 

clearly from a variety of different individuals, but they are curated this way to help with 

studies, such as on dental morphology. Whereas the Rising Star material was (at the time of 

collecting the data) arranged in individuals. Material from Distong museum has a mixture of 

these different techniques. These various curator techniques highlight the importance of 

using identical methods and the same amount of time for each specimen studied. 

4.3. Recording and quantitative methods 

It is useful to be able to split deciduous and permanent teeth up for analysis due to 

differences in formation times, morphology, and tissue properties. Therefore individuals that 

have both permanent and deciduous teeth are split up, and most analysis in this thesis is done 

separately for the two dentitions. Unless stated, all analysis is done by tooth and not by 

individual. This is due to the scarcity of complete, or close to complete, hominin dentitions, 

but has the added benefit of the majority of literature also using per tooth frequencies. The 

scale in all figures is in mm unless otherwise stated. 

Figure 4.2 shows the recording form used for recording all samples. Deciduous teeth 

are simply noted with a “d” on the appropriate tooth position. This technique allows the same 

sequence of recording, minimising bias but also making it difficult to repeat or neglect 

particular variables. A mark of 0 is used to signify that a pathology is not present but that the 

area of the tooth that it would appear on is present. Teeth where it would not be possible to 

tell if the pathology is present are marked with an 8 (except for wear data). If just left blank 

then the figure would be inflated because teeth that are broken may have had a particular 

pathology during life and now due to post-mortem damage that pathology is not visible. 

Therefore, although shrinking the sample size for the different pathologies, the only fair way 

to get an accurate reading of the rates is only to include teeth where it can be recorded with 

near certainty that a certain pathology could have been present ante-mortem. Such processes 

are becoming more common to attempt to reduce error. However, older studies often display 

these frequencies as a percent of all teeth. Such study differences will be explored by 

comparing rates with and without the inclusion of broken teeth (Table 4.1). 
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A difficulty occurs when trying to record a tooth that has post-mortem damage, yet a 

defect or pathology is partly visible. These pathologies are recorded in notes, as they are still 

useful information to have, but because the tooth is marked as broken in most analysis these 

teeth are excluded. In each chapter, the exact protocol for inclusion is defined. If a tooth is 

recorded as broken in Table 4.1, it means most pathologies and defects cannot be recorded, 

but a certain variable may still be possible to record. For example, if a tooth is broken, but the 

occlusal surface is still complete, it can still be registered for wear. Due to this, the number of 

teeth used in the different chapters varies slightly. The sample of South African hominins is 

now large enough to allow detailed analysis of only complete, undamaged, teeth, and 

therefore this is the most reliable method to employ. Teeth are therefore marked as present 

if the vast majority of the crown is present and at least the upper most part of the root(s). 

Only the most superficial damage is acceptable, in the area in which the variables would be 

affected. Teeth missing parts of the roots and crown are therefore marked as broken, likewise 

if only part of the tooth is visible in breccia. 

Loose teeth were recorded individually for wear first, and then the other pathologies 

and defects were checked for in the same order as they are on the form (Figure 4.2). Collecting 

data in this order helped reduce the risk of overlooking a certain pathology. Teeth were 

viewed using the naked eye at first and then a 10x hand lens to double check for and confirm 

pathologies. A lamp was used to highlight the tooth surface. Teeth were placed on black cloth 

which was also used for photographs unless the tooth was partially black in which case white 

cardboard was used. After the recording form was completed any pathologies that were 

identified were photographed using a Dino-Lite® camera followed by numerous photos of the 

whole tooth using a Ricoh® digital camera (Ricoh GR compact digital camera, macro setting; 

Dino-Lite AM2111 handheld microscope). The photos were then added to a file so that all 

were in the same place, filed under the date and the specimen number. A brief summary of 

the tooth was then written in Microsoft Word unless there was nothing significant to note. 

 

  



48 
 

Dental Pathology: Maxilla 

 

Institution:_____________________ Site:________________ Context/Skeleton number:________ Age:________ Date:_______           

  

 
 
 
 

                

Maxilla M3 M2 M1 PM2 PM1 C I2 I1 I1 I2 C PM1 PM2 M1 M2 M3 

Inventory                 
Attrition Score                  
I, C and PM (1-8)                 
Mesio-Buccal (1-10)                 
Mesio-Lingual (1-10)                 
Disto- Lingual (1-10)                 
Disto- Buccal (1-10)                 
Calculus (0-3)                 
Calculus Location (B, L)                 

                                

                                

                                
SDF:  Present 
(1);NotPresent(2) No 
dentine=0 (can’t view=8) 

                

Chipping (0-3)                 
Chipping Location                 
Abscess(0-observable: 
not present,severity: 1-3) 
8- unobservable 

                

Periodontitis  
    General (0-3) 

                

    Pockets (0-3)                 
Enamel Hypoplasia                 
Systemic/Localised (1,2)                 

LEH (1)/PEH (2) 
Both (3) 

                

                

                

                

                                

                                

                

                
Amelogenesis Imperf 
Dentinogenesis Imperf 
Fluorosis (0-5) 

                

 
Supernumerary teeth/other anomalies/unusual wear patterns: 
 
 

Figure 4.2. Recording form used for all samples. The mandible is the same except the right and left are reversed. The 

number ‘8’ is marked if the variable is not recordable (except wear). See text both details.

Right Left 
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4.4. Specific methods 

Specimens are individually examined regardless of any adjacent teeth. Macroscopic 

inspection of each tooth is carried out within each museum under good lighting. A 10x hand 

lens is used for certain pathologies as well as to confirm the presence of others (e.g., LEH and 

caries). Statistical tests used are described in each section, with multi-variable analysis 

performed in Chapter 11.  

For caries, both location and severity was recorded, the former following Schollmeyer 

and Turner (2004) and the later Koritzer (1977). Due to difficulties with recording early stage 

caries in archaeological remains, this 1-4 severity scale is preferred over other methods such 

as that proposed by Hillson (2001). Calculus, periodontitis and abscesses are measured on a 

scale of 1 to 3 (Brothwell, 1981; Ogden, 2008). The location, severity and type of enamel 

hypoplasia is recorded. Additionally, the distance in mm from the cementoenamel junction 

(CEJ) to the defect, for LEH, is recorded, and whether it is acute or chronic in nature. Tooth 

wear is recorded in different ways for the anterior and posterior teeth. Molars are scored on 

a scale of 1-10 following Scott (1979) with each tooth being divided into quadrants so that 

direction of wear can be inferred. Anterior teeth are scored on a scale of 1-8 following Smith 

(1984). The position, severity, and number of dental chips are also recorded. Severity is based 

on the three-point scale of Bonfiglioli et al. (2004) and the number of chips following Belcastro 

et al. (2007). Tertiary dentine is marked as present or absent for each tooth that has dentine 

exposed ante-mortem (Geissler et al., 2015; Pampush et al., 2016). An in-depth description 

of these different methods are given in the appropriate chapters. 

The benefit of using micro-CT scans to study teeth has long been recognised (e.g. Rossi 

et al., 2004; Swain & Xue, 2009). These scans have been used to identify and interpret 

pathologies including caries, calculus, enamel hypoplasia, and hereditary reduction of enamel 

thickness or density (Crawford et al., 2007; Marchewka et al., 2014; McErlain et al., 2004; 

Neves et al., 2010; Schuurs, 2012; Xing et al., 2015). Micro-CT scans are also regularly used in 

studies to compare the morphology and thickness of different dental tissues (Kato et al., 2011; 

Kono, 2004; Xing et al., 2015), and have even been used to disprove the notion that a H. 

floresiensis tooth contained a filling (Jungers & Kaifu, 2011). In Chapters 6 and 7 micro-CT 

scans are used to show the presence and extent of caries and enamel hypoplasia. 
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To assess intraobserver error, 218 baboon teeth were recorded on two separate 

occasions (see Chapter 5). Interobserver error was not possible to conduct directly on the 

fossil hominins during this project; however previous research using the same methods made 

evaluations possible. Therefore, for chipping (Chapter 5) and enemal hypolasia (Chapter 6) 

interobserver error is assessed through comparsons with studies already carried out on these 

specimens that have used the same methods. For caries, abcesses, periodontal disease, and 

ATML all cases are presented individually due to small sample sizes, negating the need for 

interobserver error since all cases are described and discussed separately. 
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5 .  Chapter 5: Chipping 
 

5.1. Introduction 

Dental fractures, or ante-mortem chips as they are more commonly described, have 

been recorded in numerous populations and species. These chips are produced when a tooth 

comes into contact with a hard object with sufficient force to fracture dental tissue (Chai & 

Lawn, 2007; Constantino et al., 2010). Most commonly this process affects the enamel as it 

tends to be the material most exposed in the oral cavity. Because enamel is strong, but brittle, 

a chip is created with little prior plastic deformation (Thomas, 2000). Consequently, although 

enamel can sustain considerable stress before breaking, a fracture may occur when this 

threshold is reached (Constantino et al., 2010; Scott & Winn, 2011). Chipping is technically a 

type of dental wear, due to crown height being reduced. However, it differs from other forms 

of wear in not being a gradual process and tending to not leave a smooth occlusal surface. 

Instead, irregular fractures commonly form on the occlusal edge of the enamel, with, in 

severe cases, the dentine involved. Different dietary items cause enamel fractures at different 

rates and sizes -- from soft fruits that rarely cause chipping to hard seeds and nuts that may 

lead to large chips. However, the propensity of some foods for dental chipping is harder to 

discern. Bark and low-quality terrestrial herbaceous vegetation tend to envelope the crown 

surface, thereby spreading out stresses to make chipping unlikely (Chai et al., 2009; Lucas et 

al., 2008). Environmental contaminants may also be important, such as grit incorporated into 

the diet (Belcastro et al., 2007; Nystrom et al., 2004). The size and shape that an object must 

be to cause chipping are subjects of debate (e.g., Constantino et al., 2012; Daegling et al., 

2013; Lucas et al., 2008); yet, the teeth affected, position on the tooth, and severity can all 

give insight into the etiology producing such chips (Belcastro et al., 2007; Constantino et al., 

2010, 2012; Sauther et al., 2002; Scott & Winn, 2011; Stojanowski et al., 2015; Van 

Valkenburgh, 2009).  

Comparatively low chipping rates are found in gorillas and chimpanzees relative to 

orangutans (Constantino et al., 2012). The rate in gorillas is a result of their infrequent 

ingestion of hard seeds and fruits while feeding predominantly on foods like low-quality 

herbaceous vegetation (Conklin-Brittain et al., 2001; Doran et al., 2002). Similarly, 
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chimpanzees commonly consume soft fruits (Conklin-Brittain et al., 2001). Orangutans, 

however, have far higher chipping rates than other great apes, with Constantino et al. (2012) 

reporting three to six times more chips on their posterior teeth. This high rate is attributed to 

the large hard foods that make up a significant part of their diet (Galdikas, 1982). 

A variety of recent human populations have also been studied (e.g., Belcastro et al., 

2007; Bonfiglioli et al., 2004; Gould, 1968; Lous, 1970; Molnar et al., 1972; Scott & Winn, 2011; 

Silva et al., 2016; Turner & Cadien, 1969), and the findings are useful for inferring chipping 

etiologies in fossil hominins. In general, hunter-gatherers tend to have higher rates in their 

posterior teeth, whereas agriculturalists have more chipping of the anterior teeth. Also, the 

former groups are most affected by diet or environmental contaminants, while the latter are 

more often affected by diet and tool use (Scott & Winn, 2011; Stojanowski et al., 2015). Non-

masticatory behaviour is usually the focus of chipping studies in H. sapiens, with different 

activities leading to a variety of patterns (e.g., Bonfiglioli et al., 2004; Gould, 1968; Larsen, 

2015; Lous, 1970; Molnar at al., 1972). Chipping frequencies may also allow insight into sex 

and social status differences. In modern day populations, this mainly reflects non-masticatory 

activities, but dietary differences may also be inferred. A dietary example of differences 

within a population is that of Australian and African foragers that actively hunt or fish more 

meat/fish than other members of their group (Bonfiglioli et al., 2004; Larsen, 2015). Non-

masticatory behaviour has also been shown to cause different frequencies of dental chipping 

between the sexes (Gould, 1968; Lous, 1970; Molnar, 1972).  

Chipping frequencies have also been recorded in hominin fossils, with South African 

specimens particularly well studied (Constantino et al., 2010; Grine et al., 2010; Robinson, 

1954; Tobias, 1967). For example, there has been much debate in the literature concerning 

what the frequencies of dental chipping in P. robustus and A. africanus indicate in terms of 

diet. Alternate explanations include grit introduced into the masticatory process from eating 

roots (Robinson, 1954), crunching of bones (Tobias, 1967), and consumption of seeds and 

nuts (Constantino et al., 2010). Chipping has also been noted in the teeth of A. afarensis 

(Johanson & Taieb, 1976), A. anamensis (Ward et al., 2001), P. boisei (Tobias, 1967), and H. 

neanderthalensis (Fox & Frayer, 1997). Neanderthal teeth exhibit high rates that are likely 

caused, at least in part, by non-masticatory processes (Fiorenza & Kullmer, 2013; Fox & Frayer, 

1997). 
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Although dental chipping can be useful in reconstructing hominin diets, a few issues 

have not yet been thoroughly addressed in the literature, including the effects that enamel 

microstructure, thickness, and morphology have on susceptibility to fracture, and the time 

spent in occlusion and wear of the tooth. It has been suggested that fractures may follow lines 

of weakness such as lamellae and tufts, which means cracks can form differentially or more 

easily at certain locations (Lucas et al., 2008). Similarly, the orientation of enamel 

microstructure, as well as the dietary object is important (Xu et al., 1998). Most research on 

fractures assumes that enamel has similar properties across the occlusal surface, as well as 

between tooth types and populations. However, more recent work suggests that enamel 

mechanical properties differ across the surface of a single tooth, as well as between teeth 

(Cuy et al., 2002; Macho & Shimizu, 2009; Ziscovici et al., 2014). Enamel property differences 

among species could also mean that two closely related species with nearly identical diets 

have markedly different patterns of chipping. In this regard, it was proposed that thick enamel 

may have evolved in certain lineages to resist tooth loss through fracture (Kay, 1981; Lucas et 

al., 2008). This possibility could lead to bias in the data if these same species evolved other 

adaptations to cope with consuming large amounts of hard foods. Efforts to quantify bite 

forces in extinct species may be especially influenced by such factors (Chai & Lawn, 2007; Chai 

et al., 2011; Constantino et al., 2010, 2012). However, species differences are just beginning 

to be researched (e.g., Ziscovici et al., 2014). There are also issues concerning how samples 

are chosen, such as the inclusion of incomplete crowns and differences in the presentation of 

results that may yield substantial differences among studies of the same species (Daegling et 

al., 2013). 

That said, if care is taken in choosing the methods and enamel property differences 

are considered, dental chipping should be able to provide some insight into the diet and 

behaviour of extinct species. By recording position, severity, and frequency, a unique sample-

specific pattern may be obtained for comparison with other samples. 

 Sections of this chapter have incorporated edited text, figures, and tables from Towle 

et al. (2017). Additional analysis and interpretations are added in this thesis, with 

comparisons made between species, but chipping patterns for each hominin species are also 

explored separately. 
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5.2. Materials and methods 

A variety of methods have been used to record chipping, although simply recording 

presence/absence on a tooth is often used. Other methods for separating chips depending on 

their severity include Pattersons’ (1984) technique of splitting fractures into two categories 

(minor enamel chipping vs. major segments of enamel loss). This is only slightly different from 

the method used in this study with effectively severity one and two being equivalent to 

“minor enamel chipping” and severity three to “major segments of enamel loss”. The 

Bonfiglioli et al. (2004) method is favoured in this research due to its finer scale of 

distinguishing between chips. Another example is that of Turner et al. (1991) in only recording 

individual chips when less than 10 teeth in a dentition show chipping, if more; it is referred to 

as generalised. This method made sense as the focus of their study was on dental morphology. 

This highlights the issue of making sure methods are compared before frequencies between 

studies are contrasted. The inclusion of post-mortem damaged teeth and differences in 

presenting results may also cause significant differences between studies looking at the 

sample (Daegling et al., 2013). 

Similarly, some studies have only looked at frequencies of chipping per individual and 

not per tooth (e.g., Turner & Cadien, 1969). The drawback of using this method has been 

pointed out by Scott & Winn (2011). The main issue is that bias will be introduced if only 

certain teeth represent an individual, as different tooth types may be more likely to have 

enamel fractures in different populations.  The number of teeth represented by each 

individual will have a similar effect and may introduce error. These issues are heightened 

when looking at older archaeological material in which the only remains from an individual 

may be one or two teeth.  

In other animal groups, because the chipping is caused by different dietary factors, 

chips are often called and described differently. For example, there has been research on 

dental chipping in carnivores, but this is usually called fractures or breakages rather than chips. 

This is because the most striking cases are on canines which have broken due to high impacts 

such as hunting activities or interspecies conflicts (Valkenburgh, 1988). Apart from 

terminology, another issue in species comparisons is methods used to define anti-mortem 

chipping. It is common only to include teeth that show further wear on the chip to allow only 
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ante-mortem chips to be included (Scott & Winn, 2011). However, some researchers have 

limits on the size of the chip they include. Additionally, some researchers go further and 

include other types of wear within their sample, such as Patterson et al. (2003) who included 

any tooth that had worn down to the pulp chamber (by any means of wear) and included this 

along with chips as ‘damaged' teeth. Such studies are therefore not appropriate for 

comparison with this research. 

Post-mortem damaged teeth were not recorded for chipping. Therefore even if a 

broken tooth had a chip, it was not recorded for analysis. The threshold for a tooth to be 

recorded as post-mortem broken was deliberately low, with only very minimal damage, such 

as a small crack or patch of discoloration, to the occlusal surface allowed. Damage to other 

parts of the tooth did not warrant the exclusion of these teeth as chipping data could still be 

gathered. This is to prevent an underestimate of the total number of chips, as if severely 

broken teeth are included in analysis then teeth that did have chips, but that part of the tooth 

was lost post-mortem, would be marked as not present. Therefore, this method, although 

limiting sample size, is the only way to get a true representation of actual chipping rates. This 

is particularly important in this study since the different samples clearly have much variation 

in their preservation (Chapter 4). As pointed out by Scott & Winn (2011) intraobserver error 

is likely minimal considering the difference between ante-mortem and post-mortem fractures. 

However, to make sure no such effects may occur 218 baboon teeth were recorded on two 

separate occasions (see below). 

Fracture rates are analysed and presented per tooth rather than per individual. This is 

for two reasons, firstly the fossil record rarely provides complete dentitions for examination 

so comparisons with the extant primate samples would have been difficult, but secondly, 

because in some samples, particularly baboons and H. naledi, virtually all adult individuals 

have at least one chip, so comparisons based on per tooth provides much more detail. Overall 

tooth frequencies are presented, but teeth are also divided into tooth type. 

It is common in the literature to only study permanent teeth. Splitting the dentitions 

is justified due to the different properties between permanent and deciduous teeth 

(Mahoney et al., 2000). Data is therefore also displayed, separately, for deciduous teeth for 

species with large enough sample sizes. Results are displayed for all specimens; however, for 

individual figures and tables, a subset is used. For example, for comparing chip frequencies 
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by tooth type and jaw, the samples of A. sediba and early Homo are too small to offer helpful 

insight, with many tooth positions not represented. There is a specific section for H. naledi in 

the results and discussion due to the unusual results this species displays. 

5.2.1. Specific materials and methods 

Following Daegling et al. (2013), damaged teeth as well as those not subjected to 

chipping, due to non-eruption or limited occlusion (based on negligible or no crown wear), 

are not recorded. The same criteria for tooth exclusion were followed when recording 

chipping in all samples. Table 5.1 displays the number of permanent teeth for each sample. 

The same criteria are used for deciduous teeth. However, unless stated, the results refer to 

permanent teeth only. To assess the level of intraobserver error, 218 baboon teeth were 

recorded on two separate occasions; no significant difference was detected (χ2=0.008, 1 df, 

p=0.927). Analogous data in seven additional samples of recent humans were derived from 

the literature (see Table 5.3). 

Teeth were observed macroscopically with a 10x hand lens to determine whether a 

chip occurred ante- or post-mortem. Distinguishing between post- and ante-mortem 

fractures was based on criteria of Scott & Winn (2011), where only chips evidencing 

subsequent attrition were included in the latter category. The severity, position and number 

of chips were also recorded. Severity is based on the three-point scale of Bonfiglioli et al. 

(2004): 1) slight crack or fracture up to 0.5 mm in width or larger, but with only superficial 

enamel loss, 2) larger irregular fracture up to 1 mm with the enamel more deeply involved, 

and 3) chip larger than 1 mm involving both enamel and dentine. The number of chips per 

tooth was recorded following Belcastro et al. (2007). Position was recorded as buccal, lingual, 

mesial, and distal. If multiple chips are present then the tooth surface with the most fractures 

was recorded, whereas if the number is equal between two or more sides then the surface 

with the largest chip was recorded. Statistical significance was tested between tooth groups 

using a chi-square test of homogeneity, with significance set at the 0.05 alpha level. 

To further explore the chipping frequencies in H. naledi teeth are also subdivided 

according to the severity of occlusal wear. Extensively worn teeth are often excluded from 

study over concerns that previous chips have worn away, or the enamel has become more 

susceptible to chipping (Bonfiglioli et al., 2004; Scott & Winn, 2011). However, this strategy 
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can omit important dietary trends, particularly when comparing species. Occlusal wear is a 

normal part of the masticatory process, so eliminating from consideration data on teeth worn 

past a certain point may mask dietary differences. Wear data for molars were scored following 

the method of Scott (1979) and for all other teeth the method of Smith (1984). This approach 

was employed to determine whether dental attrition is related to chipping frequencies. 

Scott's (1979) method divides teeth into quadrants, where each quadrant is given a score 

from 1 to 10. The former value refers to a tooth that is unworn or has very small wear facets, 

while the latter describes a complete loss of the enamel. Smith's (1984) method is similar but 

uses a scale of 1 to 8. In this study, molars are separated from the other teeth based on the 

total of their four quadrants into categories of high (i.e., 20+), medium (13-19), and low wear 

(5-12). Anterior teeth, here including premolars, are divided into high (5+), and medium-to-

low wear (2-4) categories. Individuals referred to in the original publication (Berger et. al., 

2015) and those defined as likely individuals at the time of data collection were included in a 

separate analysis. 

For all samples, if a tooth is listed as grade 1 for either wear method outlined above, 

it was not included in the analysis due to the likelihood it was not in occlusion (Scott, 1979; 

Smith, 1984). For the comparative sample, in which the sex is known for the vast majority of 

specimens, an analysis is also performed to compare sexes. This is again tested using a chi-

square test of homogeneity, with significance set at the 0.05 alpha level. 

Table 5.1. Sample size for each species. 

Species Total teeth Wear score 1 Damaged/incomplete teeth 

Chimpanzees 2501 248 262 

Gorillas 2090 263 309 

Baboons 883 30 93 

Drills 194 12 19 

P. robustus 402 35 132 

A. africanus 477 65 147 

H. naledi 156 24 6 

A. sediba 20 1 6 

Early Homo 66 13 20 
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5.3. Results 

Chipping frequencies are extremely variable between species (Table 5.2), with H. 

naledi and baboons having up to 10 times the amount of chipping than other samples. The 

hominin specimens do not cluster together and show as high variation as the extant primates 

(Figure 5.1). 

 

Table 5.2. Chipping frequencies (%) for the different species. 

 

 

 

 

 

 

 

 

The pattern of chipping also varies within dentitions, with certain teeth more 

susceptible in certain species. For example, H. naledi has extremely high rates of chipping on 

all tooth types, but the molars are particularly affected. Whereas A. africanus has many more 

fractures on premolars, particular maxillary, compared to other tooth groups (Figure 5.1). 

Similarly, in P. robustus, canines show the highest frequency of chipping. It can also be seen 

in Figure 5.1 that gorillas and chimpanzees have rather uniform chipping patterns with no 

tooth groups standing out. 

 

Species % chipped teeth 

H. naledi 44.44 

Hamadryas baboons 40.26 

Olive baboons 22.58 

A. africanus 21.13 

Early Homo 20.59 

Drills 17.01 

P. robustus 12.77 

Gorillas 11.13 

A. sediba 7.69 

Chimpanzees 4.92 
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Figure 5.1. Chipping rates (%) for extant primates and fossil hominins, divided by jaw and tooth type. 

Edited from Towle et al. (2017). 

 

Results are also extremely variable by tooth type for the size and position of chips. 

Table 5.3 displays the results for South African hominins and comparative extant primates, 

per jaw and tooth type. This table also shows the number of chips for each severity grade. 

Particularly noticeable is the low number of large chips in H. naledi, and the proportionally 

greater number of large chips in P. robustus. Although, overall, the chipping rate for P. 

robustus is low compared to the other hominins and baboons. Overall chipping rates for the 

different samples, as well as ratios comparing chip frequency, are provided for maxillary vs. 

mandibular teeth, posterior vs. anterior teeth, and small vs. large chips in Table 5.4.
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Table 5.3. Chipping presence, absence, and severity for upper molars (UM), upper premolars (UP), upper canines (UC), upper incisors (UI), lower molars 

(LM), lower premolars (LP), lower canines (LC), lower incisors (LI), and all teeth (All). Edited from Towle et al. (2017). 

Sample UM % UP % UC % UI % LM % LP % LC % LI % All % 

Chimpanzees                   
Total number of teeth1 501  292  136  315  497  300  140  320  2501  
Complete teeth with chip(s) 29  6  9  11  25  5  5  8  98  
Complete teeth with no chips 415  248  107  261  432  279  121  278  2141  
Damaged/incomplete teeth 57  38  20  43  40  16  14  34  262  
Teeth with a wear score of 1 24  51  23  26  17  51  24  32  248  
Small chips2 19 66 5 83 6 67 9 82 16 64 3 60 2 40 8 100 68 69 

Medium chips2 10 34 1 17 2 22 2 18 9 36 2 40 3 60 0 0 29 30 

Large chips2 0 0 0 0 1 11 0 0 0 0 0 0 0 0 0 0 1 1 

Chipping frequency % 7  3  10  4  6  2  5  3  5  
Gorillas                   
Total number of teeth1 409  247  110  271  411  241  113  288  2090  
Complete teeth with chip(s) 72  9  6  12  37  19  6  8  169  
Complete teeth with no chips 301  201  78  200  332  200  83  217  1612  
Damaged/incomplete teeth 36  37  26  59  42  22  24  63  309  
Teeth with a wear score of 1 17  54  23  43  32  24  25  45  263  
Small chips2 68 94 7 78 6 100 8 67 33 89 18 95 6 100 8 100 154 91 

Medium chips2 4 6 1 11 0 0 4 33 4 11 1 5 0 0 0 0 14 8 

Large chips2 0 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

Chipping frequency % 20  6  10  7  11  10  9  4  11  
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Baboons 

Total number of teeth1 174  116  49  107  166  110  49  112  883  
Complete teeth with chip(s) 38  16  1  29  62  10  3  33  192  
Complete teeth with no chips 123  90  41  59  85  80  43  77  598  
Damaged/incomplete teeth 13  10  7  19  19  20  3  2  93  
Teeth with a wear score of 1 5  8  8  0  4  1  4  0  30  
Small chips2 31 82 13 81 1 100 27 93 49 79 9 90 3 100 29 88 162 84 

Medium chips2 7 18 3 19 0 0 2 7 13 21 1 10 0 0 4 12 30 16 

Large chips2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chipping frequency % 24  16  3  33  43  11  7  30  25  
Paranthropus robustus                   
Total number of teeth1 78  63  15  38  117  58  10  23  402  
Complete teeth with chip(s) 2  4  2  3  12  5  1  1  30  
Complete teeth with no chips 50  30  7  26  74  34  4  15  240  
Damaged/incomplete teeth 26  29  6  9  31  19  5  7  132  
Teeth with a wear score of 1 4  4  1  5  12  2  2  5  35  
Small chips2 2 100 1 25 0 0 1 33 10 83 4 80 0 0 1 100 19 63 

Medium chips2 0 0 3 75 1 50 2 67 2 17 1 20 1 100 0 0 10 33 

Large chips2 0 0 0 0 1 50 0 0 0 0 0 0 0 0 0 0 1 3 

Chipping frequency % 4  13  25  13  16  14  33  9  13  
Australopithecus africanus                   
Total number of teeth1 81  55  20  31  153  65  36  36  477  
Complete teeth with chip(s) 6  11  0  4  24  9  1  1  56  
Complete teeth with no chips 48  24  16  19  90  36  19  22  274  
Damaged/incomplete teeth 27  20  4  8  39  20  16  13  147  
Teeth with a wear score of 1 4  9  8  10  10  8  8  8  65  
Small chips2 6 100 10 91 0 0 4 100 22 92 8 89 0 0 1 100 51 91 

Medium chips2 0 0 1 9 0 0 0 0 1 4 1 11 1 100 0 0 4 7 

Large chips2 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 1 2 
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1Damaged/incomplete teeth and teeth with a wear score of 1 dropped from the total number of teeth before chipping frequency is calculated. 

2Small, medium, and large chips are scored according to Bonfiglioli et al. (2004) with three-point severity scale 

 

 

 

 

 

 

 

Chipping frequency % 12  42  0  31  23  24  8  7  21  
Homo naledi                   
Total number of teeth1 31  21  13  14  28  19  11  19  156  
Complete teeth with chip(s) 15  9  3  3  14  7  0  5  56  
Complete teeth with no chips 16  11  9  11  14  11  10  12  94  
Damaged/incomplete teeth 0  1  1  0  0  1  1  2  6  
Teeth with a wear score of 1 2  2  4  3  3  0  6  4  24  
Small chips2 13 87 9 100 3 100 3 100 11 79 6 86 0 0 5 100 50 89 

Medium chips2 2 13 0 0 0 0 0 0 3 21 0 0 0 0 0 0 5 9 

Large chips2 0 0 0 0 0 0 0 0 0 0 1 14 0 0 0 0 1 2 

Chipping frequency % 52  50  38  27  56  39  0  38  44  
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Table 5.4. Per-tooth chipping frequencies and ratios of dentitions affected. Edited from Towle et al. (2017). 

Sample/Location 
Chipping rate 
% 

Multiple 
chipped 
teeth % 

Small:Large1 

chip ratio 
Maxilla:Mandible 
ratio 

Anterior:Posterior 
ratio Time period Reference 

        

Fossil hominins        
H. naledi 44.44 50.00   8.33:1** 1.05:1 0.61:1** Not yet known This study 

A. africanus 21.13 16.07 10.20:1** 1.04:1 0.54:1 Plio-Pleistocene This study 

P. robustus 12.77   6.67   1.73:1 0.66:1 1.25:1 Plio-Pleistocene This study 

        

Extant primates        
Baboons 25.26 18.75   5.40:1** 0.79:1 0.93:1 19th/20th cent CE This study 

Gorillas 11.13   4.14 10.27:1** 1.48:1** 0.51:1** 19th/20th cent CE This study 

Chimpanzees   4.92   2.04   2.27:1** 1.73:1 0.95:1 19th/20th cent CE This study 

        

Recent humans        
St. Lawrence Island Inuit 66.40 * * 1.04:1 0.77:1** 2nd–17th cent CE Scott & Winn (2011) 

Quadrella (Italy) 48.40 *   0.70:1 1.14:1 1.50:1** 2nd–3rd cent BCE Belcastro et al. (2007) 

Vicenne-Campochiaro (Italy) 38.90 *   1.12:1 1.17:1 1.68:1** 4th–10th cent CE Belcastro et al. (2007) 

Taforalt (Morocco) 29.20 * * * 0.64:1** 11,000–12,000 BP Bonfiglioli et al. (2004) 

Norway 21.90 * * 1.24:1** 3.40:1** 11th- 14th cent CE Scott & Winn (2011) 

Spain   5.90 * * 1.73:1 3.10:1** 11th– 18th cent CE Scott & Winn (2011) 

Cape Cod Woodland (USA) 43.40 * * 0.79:1 * 5th–10th cent CE McManamon et al. (1986) 
 

1Small chips are those recorded as severity grade 1 and large as grades 2-3, according to Bonfiglioli et al. (2004)   

*Data not reported in publication 

**Chi-square significant at 0.05 level 
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5.3.1. Deciduous teeth 

The small sample size for deciduous teeth in the hominins does not permit splitting 

results up by tooth type or jaw. Therefore, the overall frequencies for each species are 

displayed in Table 5.5.  The rate of chipping is lower than in permanent teeth, with much less 

variability between species. Figure 5.2 displays one such chip on a deciduous second molar of 

an A. africanus specimen (STW 151). 

 

Table 5.5. Chipping frequencies (%) for deciduous teeth. 

Sample Number of chipped teeth Total number of teeth % Chipped 

H. naledi 3 22 13.64 

P. robustus 1 29 3.45 

A. africanus 4 30 13.33 

Early Homo 2 12 16.67 

Chimpanzees 16 741 2.16 
Gorillas 19 482 3.94 
Olive baboons 9 65 13.85 

 

 

 

Figure 5.2. STW 151: Mandibular left deciduous second molar, displaying a distal chip (arrow). 
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5.3.2. Chip position 

There are substantial differences between the extant primate and fossil hominin 

samples in terms of chip position (Figure 5.3). In the former, except for gorillas, the vast 

majority of chips are on the buccal surface of upper molars and the lingual surface of lower 

molars. Whereas in hominins there is much more interproximal chipping, especially in H. 

naledi (Figure 5.3). However, P. robustus and gorillas do seem to have very similar patterns, 

with each surface affected by roughly the same amount of chipping. 

 

 

Figure 5.3. Chipping position for the molars of extant primates and fossil hominins. As a percentage 
of all chipped teeth from each sample. 
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5.3.3. Sex differences 

There is a statistically significant difference between the sexes in chimpanzees (X2= 

13.769, 1 df, p= 0.0002), with males having double the amount of chipped teeth than females 

(6.87% vs. 3.34%; Figure 5.6). Males also have more chipping in both gorillas and baboons, 

although these differences are not statistically significant (gorillas: X2= 2.263, 1 df, p= 0.1325; 

baboons: X2= 3.836, 1 df, p= 0.0501). This relationship does not appear to hold for deciduous 

teeth with no significant differences, and females actually have more chips in chimpanzees 

(gorillas: X2= 0.973, 1 df, p= 0.3240; chimpanzees: X2= 1.959, 1 df, p= 0.1617). The baboon 

sample is not large enough for deciduous teeth to include. 

 

Table 5.6. Overall chipping frequencies (%) divided by sex and dentition. 

Variable Chimpanzees Gorillas Baboons 

Permanent teeth    
     Males 6.87* 12.69 25.82 

     Females 3.34* 9.99 19.03 

Deciduous teeth    
     Males 1.25 5.10 - 

     Females 2.70 3.28 - 

                  *Chi-square significant at 0.05 level 

 

5.3.4. Homo naledi 

Due to the extremely high levels of chipping in H. naledi compared to the other 

hominin samples, it is worth investigating further potential etiologies. With 44.4% of 

permanent teeth affected, H. naledi exhibits a far higher chipping rate than the other South 

African samples. Specifically, 53.7% of molars, 44.4% of premolars, 25% of canines, and 33.3% 

of incisors have at least one chip; of these, 50% display two or more chips. Only 13.6% of 

primary teeth are affected. Most chips are small, i.e., severity 1 (n=51), with only six recorded 

as 2 or 3. Over 73% of those on the molars are located interproximally. Particularly common 

are several small chips above the wear facets of posterior teeth (Figure 5.4). 
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Chipping frequencies 

are presented by wear score 

and side in Table 5.8. Among 

other variation evident in 

these categories, it can be 

seen that right teeth are 

affected slightly more often 

than left, with rates of 50% 

and 37.7%, respectively, 

having at least one chip. The 

average affected right molar 

has 2.37 chips and the left 

2.06, with medians of 2 and 1 

in these non-normally 

distributed data (Shapiro-

Wilk, p=0.000). However, 

differences by side are not 

statistically significant (X2= 

1.945, 1 df, p= 0.16).  

 

 

 

 

 

 

 

 

 

Figure 5.4. Chipping examples: a) UW 101-525 upper right first 

molar, three chips on mesial surface; b) U.W. 101-1401 upper 

right second premolar, multiple small chips on distal surface; 

c) UW 101-1402 upper right first premolar, mesial chip. Edited 

from Towle et al. (2017). 
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Table 5.7. Chipping frequencies for different tooth types in H. naledi. Edited from Towle et al. 

(2017). 

Sample Total 

Teeth 

With 

Chipping 

% 

All teeth 126 56 44.44 

Left teeth 61 23 37.70 

Right teeth 

Primary teeth 

66 

22 

33 

3 

50.00 

13.64 

Molar wear stage1 

   

All molars 54 29 53.70 

Light wear (5 to 12) 19 4 21.05 

Medium wear (13 to 19) 21 12 57.14 

High wear (20+) 14 13 92.86 

PM's, C's and I's wear stage1 

   

All anterior and premolar teeth 72 27 37.50 

Light wear (2 to 4) 46 15 32.61 

Heavy wear (5+) 26 12 46.15 

1Molar wear was calculated following Scott (1979) with all other teeth using Smith 
(1984) 

 

The posterior teeth of H. naledi have more chips than the anterior teeth, and the 

average difference in overall frequency is statistically significant (χ2=3.938, 1 df, p=0.047). 

Posterior teeth are also more likely to exhibit multiple chips than anterior teeth; to test this, 

a chi-square test was again used, though with Yates’ continuity correction because expected 

cell size for anterior teeth with multiple chips is <5. The difference is significant (χ2
c = 7.240, 1 

df, p= 0.007). Of the 12 individuals represented by dental remains, nine have at least one 

chipped tooth; two of the remaining three are represented by only one tooth, and the third 

has minimally worn teeth (i.e., scores of <2). 

Homo naledi has a higher rate of chipping than other South African hominins and 

extant non-human primates (Table 5.4). The rate is more comparable to several of the recent 

human samples. However, many of the latter differ in chipping ratios compared with H. naledi; 

particularly noticeable is the preponderance of small chips vs. large (i.e., ratio of 8.33:1) and 
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fewer affected anterior vs. posterior teeth (0.61:1). Although the overall rate of chipping in H. 

naledi is more similar to these recent human groups, the nature of the chipping with regard 

to size and location within the dental arcade is more like that observed in A. africanus and in 

baboons. 

5.4. Discussion 

Perhaps the most striking aspect of the results is the variability observed in the fossil 

hominin samples. The extant primate results fit well with the dietary information, with 

chimpanzees having the lowest chipping rate, baboons the highest and gorillas in between. 

Chimpanzees do not regularly eat hard seeds and nuts, whereas baboons eat a wide range of 

foods, many of which are hard or tough (Boesch et al., 2002; Conklin-Brittain et al., 2001; 

Doran et al., 2002; Isabirye-Basuta, 1989; Lodge et al., 2013; Macho, 2014; Phillips & 

Lancelotti, 2014; Whiten et al., 2011). Thus, it is surprising to see such a range in frequencies 

for the hominin sample; as such, a range fills almost the entire spectrum of the extant primate 

sample. This finding is at least suggestive of dietary or behavioral differences among these 

hominin species. 

5.4.1. Paranthropus robustus 

Chipping frequencies in South African hominins have been used to support a variety 

of different hypothesis regarding diet. For example, as noted by Wallace (1975), frequencies 

have been used to both support and refute Robinsons dietary hypothesis, with Robinson 

(1954; 1956) claiming high rates of chipping he found in P. robustus is caused by grit-laden 

roots, whereas Tobias (1967) rejected this as he found similar amounts of chipping in P. 

robustus and A. africanus. Of the chipping studies previously carried out on South African 

hominins, the most similar study in terms of methods to those used in this thesis is Wallace 

(1975), yet on the face of it the differences in results look rather substantial. Additionally, as 

has been introduced above, other studies (Robinson, 1954, 1956; Tobias, 1967) that have 

used different methods have shown contradictory results. 

If teeth recorded as wear score one and teeth that have been marked as unobservable 

are included then the percent of chipped teeth for P. robustus, A. africanus and H. naledi drop 

to 7.8%, 11.4% and 36.1% respectively. These are very similar to those recorded by Wallace 

(1975), especially for P. robustus, meaning the different rates observed are likely simply a 
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consequence of Wallace including more teeth that in this thesis were marked as unobservable. 

It is not stated by Wallace if such broken or obscured teeth were included but judging by the 

sample size (n= 589), the threshold for including a tooth must have been lower. Additionally, 

the 34 extra chips that are found in this study can be easily explained by the addition of many 

new fossils. However, unfortunately, a list of the chipped teeth was not given, so a direct 

comparison is not possible. When these earlier chipping studies were conducted, there was 

little in the way of comparative material, both hominin and other mammals, and therefore it 

was presumed the chipping rate found in P. robustus was high. Recent research, however, 

including the results of this study, have shown that enamel chipping is common in many 

species, and indeed, even species such as gorillas and chimpanzees that are not known for 

hard object feeding still show regular fractures. 

When the P. robustus and A. africanus material is split up by site (P. robustus: 

Swartkrans and Kromdraai; A. africanus: Sterkfontein and Makapansgat), there is no 

statistically significance difference in chipping frequency between sites for each species (P. 

robustus: X2= 0.180, 1 df, p= 0.6718; A. africanus: X2= 0.153, 1 df, p= 0.6959). Given the 

variability between hominins as a whole, this is a fascinating result. If the diet was 

substantially different, or if different species are represented as has been suggested, then it 

would be expected that there would be a difference given how variable chipping rates can 

clearly be. It also further suggests these two species may have distinct diets. When the 

Drimolen P. robustus material is studied for chipping it will be interesting to see if this material 

too has a chipping frequency of around 12%. 

The low rate of chipping in P. robustus, with comparable rates to gorillas, suggests 

they did not specialise in hard object feeding. The fact that P. robustus has similar chipping 

frequencies to gorillas is in itself interesting. Particularly when it is considered that the 

position of chips is also the most similar out of all the samples. This may, therefore, suggest 

that similar proportions of certain food items are being consumed. This does not necessarily 

mean the same food, but perhaps does suggest P. robustus was eating substantial amounts 

of tough fibrous vegetable matter and fruits, rather than hard food items such as seeds and 

nuts (Daegling et al., 2013). This is explored further in the other chapters, but particularly in 

Chapter 12 when all variables are considered together. 
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It has been suggested that thick enamel may have evolved in certain mammals to 

improve resistance to fractures caused by the ingestion of hard foods or environmental 

contaminants (Kay, 1981; Lucas et al., 2008). It has also been proposed that thick enamel may 

evolve to prolong a tooth’s life by allowing more occlusal attrition to be accommodated 

(Macho & Spears, 1999). Debate has surrounded which of these may explain the extremely 

thickly enamelled teeth of P. robustus. Clearly, the results of this chipping analysis, when 

compared with the other hominins and extant primates, is supportive of the latter suggestion, 

due to the relatively low rates of dental fractures. 

5.4.2. Australopithecus africanus 

Although the chipping rate for A. africanus is substantially lower than H. naledi, it is 

higher than that for extant great apes and P. robustus. Interestingly, the premolars of A. 

africanus are the most affected teeth, supporting recent biomechanical analyses (Strait et al., 

2009; 2012), with this pattern not observed in the other hominins studied. Another, although 

likely related, possibility is due to the placement of certain foods into this part of the mouth. 

For example, Morse et al. (2013) show that Cercocebus atys has a unique wear pattern in 

which there is an unusual amount of wear in the p4-m1 region, thought to be caused by the 

regular consumption of a particularly large and hard nut (Sacoglottis gabonensis). The authors 

suggest this is likely due to the size and shape of the nut making initial mastication of the nut 

in other parts of the mouth impractical or potentially damaging. This is supported by 

observations of these primates placing these nuts into this area of the mouth (Daegling et al., 

2011). Therefore, a similar effect could explain the high rates of chipping in the premolar 

regions of A. africanus. 

5.4.3. Early homo 

As has been discussed, H. naledi specimens have extremely high levels of chipping, but 

what about other specimens assigned to the genus Homo? Unfortunately, the sample is very 

small for the early Homo sample and, as mentioned, there is much debate to which specimens 

should be included in this category. One such specimen which has had its fair share of 

controversy regarding phylogeny is STW 19. This specimen shows chipping (Figure 5.5), and 

given the small sample size, the inclusion of these specimens has a big impact on the 

frequency for early Homo as a whole. Therefore, any assessment of chipping in these 
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specimens is speculative. However, worth noting here is the surprisingly similar chipping rates 

of early Homo and A. africanus, perhaps hinting at dietary similarities. 

 

Figure 5.5. STW 19: Chipping on the lingual distal corner of the upper right second molar (arrow). 

 

5.4.4. Homo naledi 

The H. naledi sample appears quite homogeneous with regard to the location, number, 

and severity of chipping across individuals, not unlike that of the species’ developmental 

attributes, such as uniformly simple crown morphology on relatively small, thick-enameled 

teeth (Berger et al., 2015; Cofran et al., 2016; Skinner et al., 2016). The amount of ante-

mortem dental chipping across the sample, including multiple instances in individuals with 

greater attrition, indicates that the teeth were exposed to acute trauma on a regular basis. 

Interproximal surfaces are more affected than buccal surfaces and posterior teeth more than 

anterior teeth, which is suggestive of a dietary rather than a non-masticatory cause (Belcastro 

et al., 2007). This patterning can result from contaminants in the diet, like grit when 

consuming foods such as roots and tubers (Belcastro et al., 2007; Robinson, 1963; Stojanowski 

et al., 2015). 

Clearly, there will be a point when an object is too small to create a visible chip and 

instead results in enamel microwear. The point at which this occurs likely varies, depending 

on the properties and shape of both the enamel and the object (Daegling et al., 2013). The 

contaminants consumed by H. naledi would have had to at least occasionally been above this 

size threshold. Certain environments make contaminants more likely to be consumed, such 
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as dry and arid conditions or areas affected by such phenomena as ash clouds following a 

volcanic eruption (Belcastro et al., 2007; Riede & Wheeler, 2009; Spradley et al., 2016). It will, 

therefore, be useful to incorporate data about the environment in which H. naledi lived. 

As mentioned in the introduction, the effects of enamel thickness, occlusal wear, and 

enamel microstructure on chipping frequencies are not well understood at present. It has 

been suggested that thickness is not important in terms of chip number (Constantino et al., 

2012). Nevertheless, thicker enamel can accommodate larger chips and hence may skew 

inferences drawn from assessments of chip size. Severe wear will have a similar effect on 

frequencies, with chip size being limited. These factors do not seem to be responsible for 

small chips in this sample, because chip size is consistently small regardless of wear and 

despite the presence of thick enamel (Skinner et al., 2016).  It is also unlikely that H. naledi 

has significantly different enamel microstructural properties than other hominin species, 

given their presumed phylogenetic relationship. Additional research on masticatory and 

enamel properties should offer further insight into the susceptibility of these individuals to 

dental fractures. Chipping rates clearly increase with wear, due to enamel properties or, more 

likely, time in occlusion. However, it is clear that the high rate in this sample is not simply a 

consequence of heavy wear, for even lightly worn teeth have far higher rates of chipping than 

those observed in the other hominin samples. It seems probable that the objects responsible 

for this chipping were consumed regularly, especially given that small chips should wear away 

more quickly than large chips. 

Dental chipping in H. naledi differs notably from the other fossil hominin samples 

examined for this study. The rate is roughly twice that of A. africanus (44.44% vs. 21.13%) and 

more than three times that of P. robustus, among whom only 12.77% of teeth are affected. 

The patterning of chipping differs as well, particularly relative to P. robustus (see ratios in 

Table 5.4). The extant primate samples may offer more useful comparisons for H. naledi. For 

example, in a microwear study by Nystrom et al. (2004), baboons in dry environments were 

reported to consume large amounts of grit. In the combined sample of hamadryas and olive 

baboons, we found similarities to H. naledi, with frequent small chips and a higher rate of 

chipping among posterior teeth relative to anterior teeth.  

Recent human samples with comparably high rates, such as the Inuit and medieval 

Italian Quadrella (Table 5.4), have different patterns of chipping than observed in H. naledi; 
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either their anterior teeth are more affected from extra-masticatory activity, or all teeth 

evidence severe chipping as a result of dietary and cultural behaviors (Belcastro et al., 2007; 

Scott & Winn, 2011; Turner & Cadien, 1969). However, there are some human parallels. A 

Late Woodland sample from Cape Cod in the U.S.A. has a pattern like H. naledi in terms of 

frequency and position (McManamon et al., 1986). The overall frequency is 43%, and molars 

are reported as the tooth type most prone to chipping, with interproximal surfaces most 

affected. Unfortunately, frequencies for tooth types and positions in that study are not 

reported. McManamon et al. (1986) suggest that the cause of this patterning was the 

incorporation of sand, gravel, and shell fragment contaminants into the food. Another sample 

with somewhat similar frequencies to H. naledi is from the site of Taforalt. Bonfiglioli et al. 

(2004) concluded that the frequent interproximal chipping in these epipalaeolithic Moroccans 

was due to chewing hard, abrasive snail shells and fruit stones. Many seeds and nuts were 

also consumed (Humphrey et al., 2014). Dietary contaminants may have been a factor as well, 

given the environmental conditions and presence of grindstones (Humphrey et al., 2014). 

However, direct comparison is confounded, because these peoples practiced maxillary incisor 

avulsion (De Groote & Humphrey, 2016). Lastly, the medieval Vicenne-Campochiaro sample 

exhibits a chipping pattern similar to H. naledi; it has high rates of interproximal chipping on 

posterior teeth, especially in females. Belcastro and coworkers (2007) suggest the cause was 

grit incorporated into the diet.  

Numerous ways of incorporating grit into the diet of H. sapiens have been 

documented; these include grit from food processing and ash from roasting pits (Hartnady & 

Rose, 1991). It has even been noted that some historic populations in South Texas added dirt 

to sweeten food (Newcomb, 2010). This behaviour demonstrates that incorporating grit into 

the diet may not necessarily be accidental, although clearly, this is far more likely. Instead, 

the most likely explanation is probably that H. naledi was consuming large amounts of foods 

that already had grit or sand sized particles attached, such as tubers. 

If a specific food item is responsible for chipping in H. naledi, then these individuals 

must have specialised in the consumption of a particular type of very small hard object. 

Additional evidence, such as the steeply-angled wear and slight cupped, i.e., scooped-out, 

wear of dentine on several posterior teeth in H. naledi – both of which can result from 

consumption of grit, generally in conjunction with softer foods (Brace, 1962; Hinton, 1981; 
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Smith, 1984; Figure 5.6). It also cannot be ruled out that these individuals were processing 

foods, at least to the extent seen in chimpanzees who dismantle seeds and nuts before 

ingestion (Boesch & Boesch, 1982; Daegling et al., 2013; Wrangham & Conklin-Brittain, 2003). 

So, potentially, only small hard objects were masticated in the mouth, with larger hard items 

processed to some extent prior to mastication. That said, other evidence for this hypothesis 

is lacking. Moreover, although conjectural, perhaps the higher rate of chipping in the right 

teeth of H. naledi resulted from preferential placement of the food or objects (and 

contaminants) in this side of the mouth. Greater wear on right relative to left teeth has been 

reported in several fossil Homo specimens and has been attributed to right-hand dominance 

in the manipulation of objects during oral processing (Estalrrich & Rosas, 2013; Fiore et al., 

2015; Frayer et al., 2016). Yet, as noted, side differences in chipping in H. naledi were found 

to be non-significant; recovery of additional specimens may provide clarification, while micro- 

and macrowear analyses by side should provide interesting comparisons. 

 

Figure 5.6. Steeply-angled wear on an upper left second molar (UW 101-528). 

5.4.5. Enamel properties 

The extant primate sample has an extremely high rate of lingual chipping, especially 

on mandibular teeth, whereas in the hominin sample lingual surfaces are little affected. This 

is likely, at least partly, due to dental morphology, enamel properties and the masticatory 

cycle (Chai & Lawn, 2007; Constantino et al., 2010; Daegling et al., 2013; Lawn et al., 2009; 

Ziscovici et al., 2014). However, there may be dietary input, but such research is yet to be 



76 
 

carried out. Perhaps such factors may also be important in explaining why H. naledi, and 

hominins in general, have such a high rate of chipping on interproximal surfaces. This will be 

explored in the wear chapter by comparing chipping rate with angle and severity of wear for 

the different species.  

Cuy et al. (2002) suggest studies that do not consider enamel properties might be 

overly simplifying the process. They found that enamel mechanical properties varied between 

the lingual and buccal side of upper second molars studied, with the lingual side of the 

occlusal surface harder than the buccal. The opposite relationship was true for the interior 

enamel. These aspects taken as a whole could lead to the issue that two species with near 

identical diets could have different chipping patterns based simply on enamel properties. 

These results the authors put down to being possibly related to differences in function. This 

is an intriguing possibility; unfortunately, little has been done on this topic since this 

publication. It would be interesting to know if the same (or opposite) pattern holds for 

mandibular molars and if other hominin species have the same pattern. Likewise if it is related 

to function, then a good hypothesis would be that hominin species with certain molar pattern 

should share similar enamel properties across the crown. 

Other enamel property differences still need to be explored further, for example it has 

been suggested that heavily worn teeth may be weaker and more susceptible to chipping 

(Scott & Winn, 2011), although this does seem logical on the face of it, little work has been 

done to clarify if this is true in practice. Similarly, it is not known if enamel stays consistently 

susceptible to fracture through life or if the enamel properties change slightly with age. 

Tooth property differences may also explain why deciduous teeth are less affected 

than permanent teeth, although dietary differences and time in occlusion are also likely 

significant factors. It is interesting that there seem to be no sex differences in deciduous teeth 

yet in adult chimpanzee teeth there is. This is perhaps not surprising given they are likely still 

being cared for during most of the period of having deciduous teeth. However, it does raise 

the issue of potential biases being introduced if you have an uneven mix of juveniles and sexes 

when comparing species and populations. 

Enamel cracks will most often run along interprismatic pathways (Bajaj et al., 2008; 

He et al., 2006; He & Swain 2008). Therefore, fractures will cross many prism boundaries on 
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their way to the lateral surface of the crown. Due to this, it has been suggested that an 

increase in crisscrossing of enamel prisms will, therefore, mean a larger chip in such a species 

would need a higher bite force to have formed (Constantino et al., 2012). If such differences 

exist in South African hominins, this could, therefore, be an important factor in the size and 

amount of chips.  Although some work has been conducted on species differences, at the 

moment such sample differentiating research has not been specifically conducted (e.g., 

Lacruz, 2007). It may seem unlikely that the species included in this thesis would have 

significantly different enamel micro-structure given their close phylogenetic relationship. 

However, the fact that P. robustus and to a lesser extent H. naledi show signs of, potentially, 

evolving traits to facilitate hard object feeding, such as large posterior teeth (in P. robustus), 

thick enamel relative to tooth size and large masticatory muscles, suggests that caution 

should be given to presuming the enamel micro-structure may be the same. This is because 

if these traits have evolved as a defence against fractures then potentially other possible areas 

of evolving defences against such cracks would be through altering the microstructure of the 

enamel. However, this has not been researched and, as mentioned, there is still a lot of 

debate to whether the suite of masticatory characteristics displayed by P. robustus are related 

to hard object feeding (see Chapter 12). 

In noting differences between maxillary and mandible chipping Scott & Winn (2011) 

highlight that in their study all samples showed more fractures on maxillary teeth than 

mandibular, although only one sample showed a statistically significant difference. They 

suggest such difference is likely due to fracture mechanics of the different teeth involved 

(Schatz et al., 2001). There is high variation in the species studied here, with, for example, 

baboons and P. robustus having much more chipping on mandibular teeth. That said, only 

gorillas show a statistically significant difference (Table 5.4). Therefore, it seems improbable 

there is a strong trend for a certain jaw to be affected in primates as a whole, although further 

research is needed to clarify this.  

5.5. Future research 

It is noteworthy that chimpanzees and baboons have a similar rate of chips on anterior 

and posterior teeth. However, on closer inspection of the data, this is due to different factors. 

Chimpanzees have very low chipping in all teeth compared with the other species studied, 
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with the incisors being no exception to this. However, the upper canines have a surprising 

number of chips, with almost 10% affected; double the overall percentage. This is likely due 

to their large size and perhaps even social behaviour. The opposite is true for baboons, in 

which canines are barely affected whereas incisors, both upper and lower, have chipping rates 

over 30%. This likely reflects their omnivorous diet and the processing of hard foods but could 

be due to contaminants affecting teeth more evenly, as is hypothesised for H. naledi. Clearly, 

there are large differences between the teeth affected in different species, an area of 

research that has received virtually no attention. For example, the little research that has 

been carried out on extant primates has predominantly only used posterior teeth in the 

sample. Therefore, such patterns can be missed or misconstrued. Further research on other 

extant primates would, therefore, offer more insight into what the chipping patterns 

observed in these hominins may mean in terms of aetiology. 

Comparisons with other hominins will also be interesting. Tobias (1967) notes 

chipping in OH 5, the type specimen of P. boisei, although for some of these fractures he is 

not sure if they are anti- or post-mortem in nature. The left first molar and right second molar 

have potential ante-mortem chips, although the associated post-mortem fractures make such 

a classification less reliable. Chipping is often said to be high in P. boisei, yet apart from the 

example above, no research on chipping has been conducted. Even species with very little 

hard food in their diet, such as chimpanzees, have chips; so, until further studies examine this 

material, such conclusions cannot be drawn. The isotopic signature for P. boisei may suggest 

a different diet than the South African hominins, but it still seems more likely there will be 

relatively few chips compared to species such as H. naledi or baboons. Such research, as well 

as on other hominins, will allow further inferences into diet in the specimens studied but also 

the South African species as further comparative data will be available. 

5.6. Conclusions 

Homo naledi exhibits high rates of ante-mortem enamel chipping, particularly on the 

posterior teeth and interproximal areas. These chips are predominately small, and all 

individuals are affected. These characteristics are suggestive of a dietary aetiology rather than 

a non-masticatory cause. Once microwear analysis of the teeth is completed, further support 

may be provided for the possibility that grit underlies the patterns of macroscopic chipping 
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reported here. In addition, alternative forms of analyses of H. naledi specimens (e.g., 

photolith analyses, etc.), along with chipping research on additional primates, particularly 

hominins, can help further elucidate whether H. naledi regularly ate foods that contained 

contaminants. Environmental data will be of interest to integrate. However, at present, 

results from this chipping analysis highlight the fact that H. naledi differed noticeably from 

species comprising the comparative samples studied here – in terms of diet, behaviour, 

and/or the environment in which they lived.   

Given the significant difference in chipping between male and female chimps, as well 

as sex differences commonly found in recent human samples, it would not be surprising to 

find similar sex differences in fossil hominins. This cannot be explored in this sample due to 

the small number of specimens that have been confidently assigned a sex, but it is worth 

noting for future studies on samples in which sex determination is possible. 

Paranthropus robustus has a similar chipping frequency and pattern to gorillas making 

it unlikely that this species specialised in hard object feeding. A. africanus has substantially 

more chipping than P. robustus, with the premolars particularly affected, perhaps supporting 

recent biomechanical analysis and/or the suggestion that certain hard foods were commonly 

consumed by placing them in this part of the mouth. There is little difference between the 

sites from which P. robustus and A. africanus came, potentially suggesting a very similar diet 

over time for these species, and further highlighting potential dietary differences between 

these two species. 

Chipping has commonly only been used to compare two species by using overall 

chipping rates, and often only using certain tooth types, and therefore misses out on other 

potential patterns that this chapter has hopefully highlighted. The sample size for these South 

African hominins is high, i.e., for hominins. However, there are also later samples in which 

these methods can be applied; in doing so a much better understanding of the aetiology of 

these different patterns will be possible. Further work on enamel properties, both in hominins 

and other mammalian groups, will also be interesting to incorporate and explore. 
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6 .  Chapter 6: Enamel hypoplasia 
 

6.1. Introduction 

Enamel hypoplasia is created during the secretory stage of formation, as opposed to 

other enamel defects that form during the maturation stage, such as hypocalcification and 

dental fluorosis; it is caused by the cessation of ameloblast function (Guatelli-Steinberg, 2015; 

Ten Cate, 1994; Xing et al., 2015). Enamel hypoplasia comes in a variety of forms, most of 

which are found in fossil hominins (Goodman et al., 1987; Guatelli-Steinberg et al., 2004; 

Hillson, 2014; Lukacs et al., 2001). A range of factors can create similar defects, making a 

diagnosis of particular etiologies difficult. Nonetheless, enamel defects can often give insight 

into diet, genetic disorders, environment and health of individuals and populations (Cunha, 

2004; Guatelli-Steinberg et al., 2014; Hillson et al., 1998; Schuurs, 2012).  

Enamel hypoplasia is often split into three broad categories, linear-form (LEH), pit-

form (PEH) and plane-form (Guatelli-Steinberg, 2015; Pindborg, 1970; Seow, 1990). These 

defects can look remarkably different from each other but ultimately are all associated with 

a reduction of enamel caused by a disruption in ameloblast production while enamel matrix 

secretion is taking place (Eversole, 1984; Hillson, 2014; Hillson & Bond, 1997). It is not always 

simple to split defects into these three categories (e.g., Ogden, 2007). However, such division 

is usually justified as certain defects can have specific aetiologies. Genetic conditions, injuries 

to the tooth during formation, and certain diseases can sometimes cause characteristic 

hypoplasia defects (Cook, 1980; Crawford et al., 2007; Goodman & Rose, 1991; Ogden et al., 

2008; Skinner & Newell, 2003; Weerheijm, 2003). 

Enamel hypoplasia was studied in depth during the early to mid-20th century. Research 

that used rats and mice in experiments was particularly common (e.g., Kreshover, 1960; 

Schour & Massler, 1945). Even though the use of rodents as proxies for human dental 

development has since received criticism, these studies nonetheless proved that nutritional 

deficiencies could lead to enamel defects (Goodman & Rose, 1991). Therefore, even during 

this period, it was known that hypoplastic defects, particularly LEH, could be caused by a 

variety of different situations and thus should be best explained as non-specific indicators of 

stress. Around the same time, it was hypothesised that the majority of enamel hypoplasia in 
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all human populations occurred in the first year of life (Sarnat & Shour, 1941); however, this 

idea has since been discredited. Indeed, it is now known that hypoplasia timing varies 

significantly among groups, with many showing higher frequencies in later years (Goodman 

et al., 1987; Yamamoto, 1988). 

Enamel hypoplasia has been studied in a variety of human populations, with rates 

varying dramatically in both deciduous and permanent teeth (Goodman & Rose, 1990; 

Guatelli-Steinberg, 2015; Hillson, 2014; Hillson & Bond, 1997; Moggi-Cecchi et al., 1994; 

Odgen et al., 2007; Pisanty et al., 1977; Purvis et al., 1973; Seow, 1990; Skinner & Newell, 

2003). Enamel defects have also been recorded in numerous fossil hominin specimens, with 

South African hominins particularly well studied (e.g., Guatelli‐Steinberg, 2003, 2004; 

Robinson, 1952; Tobias, 1967; White, 1978). In the sections that follow, each type of 

hypoplasia is described and a review of the literature given. 

6.1.1. Pitting enamel hypoplasia 

Pitting enamel hypoplasia (PEH) is displayed in a variety of forms, from small circular 

pin like pits up to vast irregular depressions (Hillson & Bond, 1997; Skinner, 1996). These pits 

also vary in how they are spread around a tooth crown, with some forming rows around the 

circumference, usually associated with shallow pits, and others more randomly scattered 

(Goodman & Rose, 1990; Hillson & Bond, 1997; Figure 6.1). Pitting can also be associated with 

plane-form defects (e.g., Lauc et al., 2015; Ogden et al., 2007), however in the majority of 

cases PEH is the only defect observed on a tooth.  

 

Figure 6.1. A) STW 140: A. africanus, maxillary left third molar, relatively random scatter of pitting 

hypoplasia (black circle); B) M 857: Gorilla, mandibular right canine, more uniform pitting near the 

CEJ (black arrows). 
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As pointed out by Hillson & Bond 

(1997) the position of PEH on a tooth 

crown does not necessarily give insight 

into the age the individual was when the 

defect formed. This is because the depth 

of a pit is related to its position on the 

plane of the brown striae of Retzius on 

which enamel matrix formation ceased. 

Deep pits may, therefore, represent a 

disturbance much earlier than their crown 

position suggests. It is not yet clear why in 

some cases PEH forms as opposed to 

other hypoplasia types, particularly LEH. 

However, the tooth involved, the position 

on the crown and the cause of the 

disruption are all likely important factors.   

 Hillson (2014) notes that PEH is 

mainly found on the occlusal half of the 

crown. It is only the occlusal type of 

perikymata that is affected, and the 

molars have more of their crowns covered 

with this type. Thus perhaps explaining 

why there is usually more PEH on molars 

than other tooth types (Hillson & Bond, 

1997). However, it has also been 

suggested that because it is relatively 

uncommon for an individual to have both 

LEH and PEH, that these different types of 

hypoplasia may have different 

aetiologies (Lovell & Whyte, 1999). 

Figure 6.2. Roman era human premolar (Skeleton 

1672 from Gloucester): Pitting enamel hypoplasia on 

the upper left second premolar (A) whole tooth (B) 

SEM showing pitting and the perikymata below (C) 

close-up SEM of one of the pits. 



83 
 

Each pit corresponds to the cessation of ameloblast activity at a particular point in 

enamel formation.  It is not clear why only certain ameloblasts are affected along the plane 

of a brown stria of Retzius during formation (Ogden et al., 2007). In some cases, only a few 

ameloblasts stop forming enamel matrix, leading to small pits, up to large pits in which 

hundreds may cease production (Guatelli-Steinberg, 2015). In other forms of systemic enamel 

hypoplasia, such as LEH and plane form hypoplasia, all ameloblast activity is affected. In most 

instances of PEH the enamel between pits appears normal (Figure 6.2). Exposed Tomes’ 

process pits can often be observed within pits, showing a sharp end to the ameloblasts 

(Hillson, 2014). However, some examples show continued deposition of irregular enamel 

(Hillson & Bond, 1997).  

In most cases of PEH in the literature, particularly in archaeological examples, the 

authors have not been able to specify a cause but rather a non-specific stress was concluded 

(e.g., Ogden et al., 2007). However, PEH has been associated with a number of specific 

disturbances in modern clinical studies, including hypocalcaemia, premature birth, low birth 

weight, hypoparathyroidism, neonatal tetany, maternal diabetes mellitus, kernicterus, 

vitamin D deficiency, congenital syphilis, amelogenesis imperfecta, as well as general 

nutritional deficiency (Aine et al., 2000; Croft et al., 1965; Eliot et al., 1934; Gaul & 

Grossschmidt, 2015; Grahnen & Selander, 1954; Nikiforuk & Fraser, 1979, 1981; Pisanty et al., 

1977; Pinhasi et al., 2006; Purvis et al., 1973; Radu & Soficaru, 2016; Seow et al., 1984; 

Stimmler et al., 1973; Wright et al., 1993). It has been noted that although enamel hypoplasia 

can relate to genetic conditions, on population bases the vast majority of hypoplasia is a direct 

response to environmental disturbances (Goodman & Rose, 1990; Moggi-Cecchi et al., 1994; 

Seow, 1990). 

Relatively few studies have reported on different types of hypoplasia and compared 

their frequencies. Lovell and Whyte (1999) studied a sample of humans from Ancient Mendes, 

Egypt, finding that linear defects were over three times as common as pitting defects. 

However, their permanent teeth samples only consisted of anterior teeth. PEH has also been 

compared between tooth types very rarely. Goodman et al. (1987) compared frequencies of 

pitting between deciduous and permanent teeth but, again, only for anterior teeth, finding 

more cases in the permanent dentition. In a modern human sample, Pedersen (1944) found 

14% of two to four-year-old children had enamel hypoplasia in their primary teeth. In modern 
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developed countries, the frequency of hypoplasia in deciduous teeth is typically around 5% 

or less (Lovell & Whyte, 1999; Robles et al., 2013). However, studies focussing on human 

samples that have been severely affected by disease, famine or malnutrition have shown 

much higher rates, ranging from 18% to 62% of teeth affected (Enwonwu, 1973; Infante & 

Gillespie, 1974; Seow, 1990). 

Similarly, differences in PEH frequencies among fossil hominins and extant primates 

has rarely been explored. PEH has, however, been found on the teeth of various hominin 

specimens (e.g., Ogilvie et al., 1989; Tobias, 1967; Xing et al., 2015; Zanolli et al., 2016). Some 

previous studies have noted the presence of PEH in P. robustus teeth (Moggi-Cecchi, 2000; 

Robinson, 1956; White, 1978). These South African hominin studies have been in the context 

of enamel hypoplasia rates as a whole. Here we build on this research by comparing PEH with 

other hominins and extant primates to try to highlight species differences of this rarely 

studied type of defect. 

6.1.2. Linear enamel hypoplasia 

Linear enamel hypoplasia (LEH) is the most common type of hypoplasia reported in 

the literature and is commonly found in humans as well as other mammals (Dobney & 

Ervynck, 2000; Goodman & Armelagos, 1985; Guatelli-Steinberg, 2004; Guatelli‐Steinberg & 

Lukacs, 1999; Skinner et al., 2015). These defects have been studied in a variety of hominin 

species, including South African fossil specimens (e.g., Guatelli‐Steinberg, 2003, 2004). Linear 

enamel hypoplasia is characterised by grooves, lines or furrows on the enamel surface, which 

are caused by a variety of systemic stresses (Guatelli-Steinberg, 2015; Figure 6.3).  

Linear enamel hypoplasia is found more commonly on anterior than posterior teeth. 

This is due to anterior teeth having more lateral enamel, on which LEH is found, compared to 

cuspal enamel. Another potential reason is due to the curved surfaces of posterior teeth 

which may affect the angle the perikymata are displayed on the crown surface, meaning LEH 

bands tend to be shallower and less pronounced compared to anterior teeth (Goodman & 

Rose, 1990; Hillson & Bond, 1997). LEH defects are created when perikymata spacing 

increases beyond normal width for a particular position on a tooth crown (Hillson, 2014). As 

well as being an indicator of developmental disturbance, LEH defects are also commonly aged, 
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through several different techniques that have been proposed (Goodman & Armelagos, 1985; 

Reid & Dean, 2000). 

 

 

Figure 6.3. H. naledi (UW 101-38), upper right central incisor. Numerous bands of LEH on the buccal 

surface. Arrows highlighting LEH bands. 

 

6.1.3. Localised hypoplasia 

Localised hypoplasia is characterised by isolated areas of hypoplasia that typically do 

not extend around the crown, and are commonly only made up of one or two continuous 

defects (M.F. Skinner et al., 2016; Figure 6.4). The cause of these localised defects is usually 

suggested to be trauma during development (see below). Although not commonly recorded, 

this type of hypoplasia has been studied in depth in certain species. Localised hypoplasia of 

the deciduous canine is particularly well studied, with rates varying significantly between 

different primate species (M.F. Skinner et al., 2016; M.F. Skinner & Newell, 2003).  
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Figure 6.4. Gorilla (M 667): left lower deciduous canine, localised hypoplasia (arrow). 

 

Before teeth erupt into the oral cavity, they are usually present in a crypt of their own. 

However, occasionally the alveolar bone between adjacent teeth that normally separate 

crypts may be missing leading to fenestration (M.F. Skinner et al., 2016). It has been suggested 

that it is this process that commonly leads to the formation of localised hypoplasia, or at least 

certain kinds (Skinner, 1986; Skinner & Newell, 2003). As pointed out by M.F. Skinner (2016) 

if this hypothesis is correct, then understanding what may cause these crypt fenestration 

defects, or at least why there are species and population differences, is the next important 

question to consider. Skinner and colleagues have started this research by suggesting a link 

between Vitamin A deficiency and reduced bioavailability and higher instances of localised 

hypoplasia in primates (Skinner et al., 1994; Skinner & Newell, 2003). Therefore, if correct, 

the overarching reason for the cause of these defects is that they reflect deficient growth in 

infancy of the mandible and maxilla (Lukacs, 1999; M.F. Skinner et al., 2016). The hypothesis 

being that if malnutrition, or another stress, occurs during a critical stage of development, 

then the jaws may be smaller than they would have been otherwise, and therefore dental 

crowding could result. Fenestration follows, and ultimately then localised hypoplasia. The 

only real opposition to this theory is that these defects could be caused by similar effects to 
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other types of hypoplasia (Hillson, 2014). There does appear to be a link between general ill 

health and an increase in localised enamel hypoplasia, however neither theories dispute this 

link (Koch, 1999; Scheutzel & Ritter, 1989; Silberman et al., 1991; Skinner, 1986; Skinner & 

Hung, 1989). 

By studying extant primates it is hoped insight into this debate can be given in this 

study.  Specifically to try and address why certain species have such high levels of localised 

hypoplasia compared to others. This will be done by exploring if individuals with localised 

defects are more likely to have other types of hypoplasia. 

6.1.4. Plane-form hypoplasia 

The terminology used to describe plane-form enamel hypoplasia is often confusing 

and hard to interpret. Plane form enamel hypoplasia occurs when enamel matrix formation 

ceases, either entirely, or in part. This results in areas of an affected crown with little or, in 

severe cases, no enamel deposition (Hillson & Bond, 1997; Krenz-Niedbała & Kozłowski, 2013; 

Ogden et al., 2007). Such defects have been described as extreme furrow-form defects, with 

one perikymata significantly widened (Hillson, 2014). In rare circumstances, the whole plane 

of the brown stria can be exposed down to the dentine surface (Figure 6.5). 

 

Figure 6.5. Roman era human (Skeleton 1672): Plane form enamel hypoplasia defects. (A) Upper left 

central incisor; (B) upper right central incisor; (C) upper right canine; (D) upper left first molar; (E) 

upper right first molar; (F) lower right first molar. 
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Plane-form hypoplasia has only been reported in the literature on fossil hominins as 

either mild in form or as part of a localised defect (Guatelli-Steinberg, 2003; Littleton & 

Townsend, 2005; M.F. Skinner et al., 2016). In this study localised hypoplasia is not included 

as a plane form defect, as the latter is reserved for systemic defects. 

6.2. Materials and Methods 

Methodology used in recording enamel hypoplasia varies substantially between 

studies. Most commonly, researchers only record and compare LEH frequencies (e.g., 

Guatelli-Steinberg, 2003, 2004; Miszkiewicz, 2015; Smith et al., 2016). Others include all 

hypoplasia defects (e.g., Goodman et al., 1980, 1984; Goodman & Armelagos, 1985; Ogilvie 

et al., 1989). Some studies only record defects on certain teeth, with posterior and deciduous 

teeth often excluded (e.g., Infante & Gillespie, 1974; Lovell & Whyte, 1999). Additionally, it is 

not clear in some cases if the pitting hypoplasia mentioned only refers to defects found as 

part of LEH bands (e.g., Goodman et al., 1980, 1984; Goodman & Armelagos, 1985). Other 

methods have been used to classify defects. This includes M-hypoplasia which is named after 

May Mellanby due to work she carried out on these defects (Mellanby, 1929). This method 

splits hypoplastic defects into two categories, gross defects and M-hypoplasia defects 

(Hillson, 1992; Sognnaes, 1956). However, it is not clear at which point a pitting defect falls 

into these two categories, with Hillson (1992) remarking that all pitting defects are recorded 

as gross defects, but earlier work by Sognnaes (1956) seems to include at least some pitting 

defects in the M-hypoplasia category. 

Due to how defects are displayed on the crown of a tooth, Hassett (2012) concluded 

enamel hypoplasia prevalence based solely on macroscopic observation could be misleading 

and create biases when comparing populations. To add to this debate, however, it has now 

also been suggested that microscopic techniques likely miss defects too, with micro-CT 

imaging showing clearly enamel defects that did not show up on SEM or light microscopy 

(Marchewka et al., 2014; Xing et al., 2015). In this study defects are only viewed 

macroscopically. However, micro-CT scans are used when describing the pitting hypoplasia 

found on P. robustus teeth. 

All species have a substantial amount of teeth for which hypoplasia was not recorded 

due to the crown being damaged or discoloured post-mortem (Table 6.1). 
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Table 6.1. Number of observable teeth for each species. 

Species Teeth observable Not observable % Unobservable 

Early Homo 47 19 28.79 

A. sediba 10 1 9.09 

P. robustus 304 127 29.47 

H. naledi 142 14 8.97 

A. africanus 360 122 25.31 

Gorillas 1693 392 18.80 

Chimpanzees 1837 677 26.93 

Baboons 774 92 10.62 

 

6.2.1. Specific methods 

Specimens are examined macroscopically, with a 10x hand lens used to clarify defect 

types. The presence and position of linear, localised, pitting and plane-form hypoplasia is 

recorded for each tooth, as well as the size and shape of the defect noted.  

Methods for recording LEH follow Goodman & Rose (1990), Guatelli‐Steinberg (2003), 

Lukacs (1989), and Miszkiewicz (2015). All teeth were placed under a lamp with the tooth 

slowly rotated so that light hit at a variety of angles. The smallest discernible LEH defect was 

recorded; this includes all defects visible with the naked eye, with the hand lens only used to 

confirm defect type. The distance from the middle of the LEH defect to the CEJ was also 

measured. If the CEJ was not visible or was broken, then the LEH was still recorded, but no 

distance was noted. Linear enamel hypoplasia data on South African hominins has already 

been the subject of extensive research by Guatelli‐Steinberg (2003, 2004). Therefore LEH on 

its own is not the focus of this study. Instead, however, LEH has not been comprehensively 

compared with other types of hypoplasia and then compared with other species. Therefore, 

LEH is recorded again here to make sure the same specimens are recorded for each type of 

defect. 

Pitting and localised hypoplasia were both recorded and the defects described, but 

measurements are not taken due to the often irregular shape of these defects and lack of 

understanding regarding ageing (Hillson, 2014). Localised hypoplasia was recorded following 
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M.F. Skinner et al. (2016). The presence of PEH is recorded, and notes on its position 

described. Additionally, micro-CT scans of some of the P. robustus molars are viewed and 

defect size and number recorded. If pits are part of an LEH defect then the position of the LEH 

was recorded and pitting noted; however, this pitting is not included as part of the PEH 

analysis. 

Data are presented by tooth count, in which the number of hypoplastic teeth is 

displayed as a percentage of the total number of observable teeth. Due to the fragmentary 

nature of the hominin collections this is the best way to get a large enough sample for 

comparison, but as Lovell & Whyte (1999) note, displaying by per tooth and not per individual 

allows a broader comparison for both subsamples of different tooth groups and with other 

populations. Antimeres are treated as separate data points in the overall hypoplasia 

frequencies. This enlarges the sample and allows maximum recovery of information. Two 

additional points justify the inclusion of antimeres, first the fact that some defects may be 

displayed on one antimere and not the other, in particular, localized defects, and secondly 

the nature of the fossil record in some cases makes assigning antimeres difficult. As the results 

are presented as a percentage of all teeth affected this also allows the exact frequencies of 

hypoplasia to be presented and allows better comparisons with other samples.  

Instead of rejecting teeth that are worn past a certain point, all teeth that are not 

broken due to post-mortem damage are included. This will clearly lead to teeth being included 

that have had enamel defects worn away. However, the alternative of excluding such teeth 

will also lead to issues, since this will mean an entire sample is made up of individuals that 

died young i.e. potentially they were more ill, on average, during dental development than 

the individuals that lived to old age. However, in Chapter 12 we compare the wear scores and 

enamel hypoplasia frequencies for each species, to see if there is any bias caused by certain 

samples having more severely worn teeth. 

Unless stated, results refer to permanent teeth only. To compare certain defect types, 

as well as to compare species and sexes, a chi-square test of homogeneity, with significance 

set at the 0.05 alpha level, was used. 
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6.3. Results 

Table 6.2 displays the frequency of the different types of hypoplasia in the permanent 

teeth of the different species. The hominins have higher rates of LEH than the extant great 

apes, with baboons having the lowest frequency (barring A. sediba that has a small sample 

size). There are low levels and very little variation in species for localised hypoplasia and PEH, 

except for P. robustus. There is much more PEH in the P. robustus sample than in the other 

species, with almost three times the rate of A. africanus (14.75% and 5.03% respectively). 

Indeed, P. robustus has more teeth with PEH than it does with LEH, which is exceedingly rare 

in samples of permanent teeth.  

 

Table 6.2. Per tooth frequencies (%) of pitting enamel hypoplasia (PEH), Linear enamel hypoplasia 

(LEH), and localised hypoplasia for permanent teeth of each species. 

Permanent PEH LEH Localised 

Chimpanzees 0.65 8.06 0.98 

Gorillas 2.89 4.25 0.95 

Baboons 0.00 2.07 1.68 

H. naledi 0.70 14.79 0.70 

A. africanus 5.03 15.08 0.28 

P. robustus 14.75 11.51 1.08 

Early Homo 0.00 8.51 2.13 

A. sediba 0.00 0.00 0.00 

 

The high rates of PEH of the permanent teeth of P. robustus are due predominately to 

molars being affected, although the premolars also have high rates compared to the other 

hominin species (Table 6.3). The three molars are similarly affected with over 20% showing 

PEH defects for each. Linear enamel hypoplasia is less common in P. robustus than either A. 

africanus or H. naledi. 
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Table 6.3. Per tooth frequencies (%) for pitting enamel hypoplasia (PEH) and linear enamel 

hypoplasia (LEH) for different tooth groups of permanent teeth. 

Permanent teeth P. robustus A. africanus  H. naledi 

 
PEH LEH PEH LEH PEH LEH 

Anterior teeth 1.75 22.81 2.11 40.00 2.04 24.49 

Premolars 7.04 9.86 0.00 6.67 0 23.08 

First molars 21.43 5.36 6.90 5.17 0 0 

Second molars 21.57 5.88 9.09 6.06 0 0 

Third molars 25.58 11.63 10.20 4.08 0 0 

 

Localised hypoplasia is not found on any of the hominin deciduous tooth sample 

(Table 6.4). This is in contrast with the extant primate sample in which it is relatively common, 

especially in gorillas (12.93%). In deciduous teeth PEH is rare in all samples except P. robustus, 

in which over 40% of teeth have defects. 

Table 6.4. Per tooth frequencies (%) of pitting enamel hypoplasia (PEH) and localised hypoplasia for 
deciduous teeth of each species. 

Deciduous Pitting Localised 

Chimpanzees 4.23 5.08 

Gorillas 1.39 12.93 

Baboons 0.00 3.74 

H. naledi 0.00 0.00 

A. africanus 5.00 0.00 

P. robustus 41.30 0.00 

Early Homo 14.29 0.00 

 

The PEH defects found on deciduous teeth of P. robustus are almost all found on 

molars (Table 6.5). Both first and second molars are similarly affected, with 54% of first molars 

and 52% of second molars exhibiting PEH, with the crown often completely covered in PEH 

(Figure 6.6). In both the permanent and deciduous teeth of P. robustus, the severe PEH often 

covers large areas of the crown and is characteristically made up of numerous relatively 

uniform small depressions. When pits do not cover the whole crown, they are typically more 

defined and prevalent toward the occlusal surface. These defects vary little in size or shape, 
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and hundreds of separate pits are often visible across the crown, with defects in both 

permanent and deciduous teeth being very similar (Figure 6.6; Table 6.6). In deciduous molars 

that have antimeres and PEH, both tend to have identical patterns of defects. For example, 

the right and left second deciduous molars of SK 61 not just have the same general covering 

of uniform pits but the areas where the most defined defects can be seen is the same. These 

pits are clearly not post-mortem in nature, and the enamel does not seem to have been 

reduced (except for the defects themselves) and appears to be of normal density (Figure 6.7). 

The rate of PEH seems to be similar between P. robustus sites. At Kromdraii 16.67% of 

permanent teeth show PEH, and Swartkrans this figure is 14.34%. Anterior teeth that are 

associated with permanent molars that have PEH do not show a significant increase in LEH 

defects, with only 16.67% affected. 

 

Table 6.5. Percentage of deciduous P. robustus teeth with pitting enamel hypoplasia (PEH). 

Deciduous Teeth PEH % Total teeth Teeth with hypoplasia 

All teeth 41.30 46 19 

Anterior teeth 8.33 12 1 

First molars 53.85 13 7 

Second molars 52.38 21 11 

 

 

Table 6.6. Number and size of P. robustus pitting defects. Pit size is in millimetres. L: left; R: right; d: 
deciduous; M1: first molar; M2: second molar. All mandibular teeth except SK 89. 

Specimen Number of pits Minimum pit size Maximum pit size Average 

SK 61: RM1 50+ 0.12 0.36 0.23 

SK 61: RdM2 80+ 0.11 0.28 0.17 

SK 61: LdM2 80+ 0.12 0.26 0.18 

SK 63: RdM2 100+ 0.11 0.42 0.23 

SK 64: RdM2 300+ 0.12 0.21 0.16 

SK 89: LM1 100+ 0.12 0.26 0.16 
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Figure 6.6. Uniform circular pitting enamel hypoplasia on four P. robustus teeth. Top left: SK 61; top 

right: SK 63; bottom left: SK 64; bottom right: SK 90. 

 

Figure 6.7. Micro-CT scan slices of SK 64 (P. robustus), the right mandibular first molar. A) Overview 

of the lingual surface with the orange line being the position of the slice in B; B) Slice showing pitting 

on both the lingual and buccal surfaces. C) Occlusal view; D) Close up of pitting on the occlusal 

surface. 
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No plane-form defects (not including localised hypoplasia) were recorded in any of the 

hominin samples. For each species, PEH, LEH and localised hypoplasia frequencies are 

displayed in Figure 6.8 (permanent teeth) and Figure 6.9 (deciduous teeth). Although P. 

robustus has the lowest frequency of LEH of the hominins, the high rate of PEH means it has 

the highest overall rate of hypoplasia of any species. When compared directly with the species 

with the second highest levels of hypoplasia, A. africanus, there are no statistically significant 

differences for LEH (X2= 1.678, 1 df, p= 0.1953) or overall hypoplasia (X2= 1.604, 1 df, p= 

0.2053). However, there is a statistically significant difference in PEH (X2= 14.823, 1 df, p= 

0.0001). This is also true for deciduous teeth, with P. robustus having significantly more PEH 

defects than A. africanus (X2= 5.824, 1 df, p= 0.0158). 

 

 

Figure 6.8. Frequency (%) of the different types of hypoplasia on permanent teeth. 

 

The number of teeth with LEH is similar across hominin species, ranging from 12% in 

P. robustus to 15% in A. africanus, although the latter shows much higher rates in anterior 

teeth than both P. robustus and H. naledi (40%, 23% and 24% respectively). The position in 

which LEH defects are found on the crown varies substantially between the extant primate 

and hominin samples. In the hominins LEH is usually a lot closer to the CEJ than in the 

comparative primates (Means, P. robustus: 3.59mm; A. africanus: 4.25mm; H. naledi: 

2.90mm; baboons: 8.30mm; gorillas: 7.05mm; chimpanzees: 5.80mm). This is likely due to 

crown sizes and developmental timings varying substantially among groups. 
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Figure 6.9. Frequency (%) of the pitting enamel hypoplasia and localised hypoplasia on deciduous 

teeth. 

 

Perhaps surprisingly, when individuals with and without localised hypoplasia are 

analysed separately, there is more PEH in the group with no localised hypoplasia for both 

gorillas and chimpanzees. For chimpanzees, in individuals with at least one localised defect, 

1.2% of teeth have PEH, whereas for individuals with no localised defects 5.42% of teeth have 

PEH. For gorillas, the figures are 0% and 5.77% respectively. For both species this is a 

statistically significant difference (gorillas: X2= 12.533, 1 df, p= 0.0004; chimpanzees: X2= 4.416, 

1 df, p= 0.0356). 

Males have more enamel hypoplasia, of all types, than females in baboons and gorillas, 

although these differences are not statistically significant (Table 6.7). Chimpanzees, on the 

other hand, show the opposite trend with localised defects, as well as PEH+LEH, being more 

common in females. The PEH+LEH difference is statistically significant (X2= 5.194, 1 df, p= 

0.0227). There are no statistically significant differences between the sexes in deciduous 

teeth, with the rates for both PEH and localised defects very similar (Table 6.8). 
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Table 6.7. Per tooth frequency (%) of hypoplasia split by sex for permanent teeth of the extant 

primate samples. 

Permanent teeth Gorillas Chimpanzees Baboons 

 
Males Females Males Females Males Females 

Total teeth 793 874 565 1264 484 216 

No hypoplasia 717 813 526 1125 462 212 

Teeth with localised hypoplasia 11 5 2 16 10 2 

% of Localised hypoplasia 1.39 0.57 0.35 1.27 2.07 0.93 

Teeth with PEH or LEH 65 56 37 123 12 2 

% of PEH/LEH defects 8.20 6.41 6.55* 9.73* 2.48 0.93 

        *Chi-square significant at 0.05 level 

 

Table 6.8. Per tooth frequency (%) of hypoplasia split by sexes for deciduous teeth of the extant 

primate samples. 

Deciduous teeth Gorillas Chimpanzees 

 
Male Female Male Female 

Total teeth 186 241 312 233 

No hypoplasia 155 212 282 211 

Teeth with localised hypoplasia 25 29 17 11 

% of Localised hypoplasia 13.44 12.03 5.45 4.72 

Teeth with PEH 6 0 13 11 

% of PEH defects 3.23 0.00 4.17 4.72 

 

6.4. Discussion 

Clearly a variety of stresses, illnesses and malnutrition can cause LEH, and likely most 

PEH defects (Bowman, 1991; Dirks et al., 2002; Guatelli-Steinberg, 2001; Kelley & Bulicek, 

2000; Macho et al., 1995; Skinner et al., 2015). The results of this study agree with previous 

research that has shown higher rates of LEH in great apes than other primates (e.g., Guatelli-

Steinberg, 2001; Moggi-Cecchi & Crovella, 1991). With apes being slow growing mammals 

their teeth are exposed to a longer time span in which teeth may be adversely affected during 

formation, this is particularly the case for hominins. Thus, individuals likely have to live 

through disease, nutritional deficiencies and seasonal cycle related stresses to some extent 
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during this sensitive period (Zihlman et al., 2007). Similarly, P. robustus canines have less LEH 

than both Australopithecus and early Homo, likely due to the shorter crown, and therefore 

developmental time, meaning there is less opportunity for a defect to form (Guatelli‐

Steinberg, 2003, 2004). This is the result also found here, with P. robustus having the lowest 

rate of LEH for any of the hominin samples. 

There is much debate over whether PEH is caused by different factors than LEH, or if 

it is simply a consequence of the tooth and crown position involved (Hillson, 2014). Recent 

research suggests both may be correct, at least to an extent. For example, PEH is commonly 

present without LEH, such as in many cases of amelogenesis imperfecta and conditions such 

as congenital syphilis (Crawford et al., 2007; Hillson, 2014; Lauc et al., 2015). Additionally, 

there are many examples of the same disturbance events causing PEH on one tooth and LEH 

on another. Therefore, the answer is clearly going to be a mix of these two viewpoints. 

An issue highlighted in this study relates to the idea that PEH only forms on certain 

areas of a tooth crown and is therefore simply a result of developmental timing. Although 

much rarer than normal LEH grooves, pitting form LEH was recorded in most species studied. 

When a pitting LEH defect is present, it is much more likely that another such defect will be 

present elsewhere on the crown surface, in positions that ‘normal’ LEH defects commonly 

occur in other specimens (e.g., Figure 6.10). This would not be expected if such pitting was 

wholly caused by the position of the crown. That said, certain teeth in this sample were much 

more likely to show pitting than other teeth, particularly posterior teeth of P. robustus and 

canines of gorillas. These two observations add support to the suggestion that pitting defects 

are likely caused by a variety of factors, including specific condition/disturbances that only 

cause pitting, but also systemic generalised stress that may cause PEH or LEH depending on 

the tooth and tooth position involved. How these different types of PEH can be distinguished 

may be difficult, however, in certain conditions it is already possible. For example, there are 

often particular patterns associated with amelogenesis imperfecta (Crawford et al., 2007; 

Chapter 10). Given the advancement of techniques such as micro-CT scans and SEM in 

describing enamel defects, this may lead to a better understanding of how and why these 

different defects form. 

Tobias (1967) described the third molars of OH 5, the type specimen of P. boisei, as 

having rugose and irregular enamel. The other teeth of this individual are also affected but by 
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more defined regular defects, particularly PEH. The irregular and wavy enamel on the third 

molars in some ways resemble that in some H. naledi specimens. No current hypoplasia 

definitions cover this type of defect, and it is, therefore, hard to know how to characterise 

them. This ‘wrinkly' or ‘wavy’ appearance was noted in some teeth within the sample of this 

thesis but seemed particularly common in H. naledi. This has not been recorded as a 

hypoplasia, as it was not part of the methodology, however, photos and notes were taken. 

This type of abnormality has been described before, and it is not easy to know if it is a type of 

vertical hypoplasia or simply an effect of the morphology of tooth formation. For example, 

Xing et al. (2015) at first propose vertical enamel hypoplasia for abnormalities on an incisor, 

but after viewing CT-scans of the tooth, they conclude that, because the same feature is 

present at the enamel-dentine junction, that the effect is caused by epithelium folding during 

development. Therefore many of the instances where ‘wavy’, ‘wrinkled’ or ‘potential vertical 

hypoplasia’ have been recorded in this thesis are potentially a feature of the crowns 

morphology rather than being caused by a disturbance to ameloblast secretion, and therefore 

unlikely caused by periods of stress or illness. However, further research is needed on this 

type of defect before an aetiology can be proposed. Since such ‘wavy’ enamel is found much 

more commonly in certain populations, such as the H. naledi, it would be interesting to 

explore if this can be attributed to dental morphological differences compared to other 

hominins. 

Recent publications have noted unusual vertical groove defects on the incisors of 

primates (Hannibal et al., 2016; M.F. Skinner et al., 2016). These two papers, published at the 

same time, highlight similar defects found on the lateral maxillary incisor and are thought to 

be a developmental defect rather than simply variation in morphology. The primate data for 

this thesis was recorded before these two publications; however similar unusual defects were 

recorded.  That said, these defects are not similar to ‘usual’ localised defects and are more 

likely to be confused with morphological features, therefore given the fact these defects were 

not specifically looked for during data collection inferences and comparisons with these two 

studies would be difficult. 
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Figure 6.10. Linear enamel hypoplasia in pitting form. Chimpanzee upper left permanent canine, 

buccal view. 

 

More generally, there are still issues that need to be addressed regarding the aetiology 

of localised defects. As mentioned, Skinner and colleagues believe localised hypoplasia are 

caused by contact between the developing tooth and an opposing force, either an adjacent 

tooth or the surrounding bone, or the lack thereof. Dental crowding is suggested as a potential 

primary cause (M.F. Skinner et al., 2016). This hypothesis would also explain why localised 

hypoplasia is often found more often in ill individuals i.e. malnutrition results in a reduced jaw 

size which results in overcrowding which the creates localised hypoplasia. In their recent 

paper, M.F. Skinner et al. (2016) suggest there is such a relationship between malnutrition 

and overcrowding in humans. However, the only paper referenced to support this claim does 

not clearly show a relationship between malnutrition and overcrowding (Thomaz et al., 2010). 

As Thomaz et al. (2010) state "An association between low height-for-age (z-score < −1SD) 

and crowding were only observed in adolescents with a prolonged history of mouth breathing 

(OR = 3.1). No association was found between underweight and crowding. Malnutrition is 

related to crowding in permanent dentition among mouth-breathing adolescents". Mouth 



101 
 

breathing increases the likelihood of numerous dental pathologies and the relationship found 

in this study could, therefore, be the result of complicated relationships between mouth 

breathing, malnutrition and other pathologies (Newman et al., 2011; Thomaz et al., 2010). A 

larger sample from a diverse set of populations may show such a relationship, but at present, 

there is not enough evidence to support a connection between malnutrition, dental 

overcrowding and localised hypoplasia. 

The fact individuals with localised defects on their deciduous canines do not show 

higher rates of other forms of hypoplasia also suggests general poor health is not directly 

related to increased localised hypoplasia rates. Certainly, it appears a systemic disturbance 

during development is not a prerequisite for localised hypoplasia. It is also worth noting; it is 

the species with the least amount of PEH and LEH in this study that have the highest rate of 

localised hypoplasia. That said, studies on other mammal species have shown that 

malnutrition may cause localised enamel defects in certain populations (Dressino & 

Pucciarelli, 1997; Garat et al., 2006; McCance & Ford, 1961; Tonge & McCance, 1973). 

Although these studies, on primates, rats and pigs, are not based on wild populations and the 

animals involved were subject to severe starvation and malnutrition. Therefore in many cases, 

particularly with localised defects of the deciduous canine, it seems poor health is perhaps 

not the main driving factor behind high frequencies in certain extant primate species. This is 

also supported by the lack of sex differences in samples with high rates, such as gorillas and 

chimpanzees. In particularly, the results of this study also highlight the unlikelihood that 

localised defects are caused by the same factors as PEH and LEH, as has been suggested 

(Hillson, 2014). Localised defects are often not related to other types of defects and 

commonly do not occur on antimeres, therefore a systemic cause on its own seems extremely 

unlikely. This is also the case with the small amount of localised defects found in the hominin 

sample, which are found in a variety of tooth types and in no case are they found on antimeres 

or other teeth in the dentition (Figure 6.11). 
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Figure 6.11. Localised hypoplasia above a LEH defect (arrow) on the second molar of STW 327 (A. 

africanus). 

 

Tobias (1967) notes that OH 5 has a hypoplastic defect on the left upper canine that 

is not found on the right canine. He notes that it is similar to a published example found on a 

baboon right maxillary central incisor (Colyer, 1936). This defect is what we would now 

describe as localised hypoplasia and it can be clearly seen and compared with similar 

examples highlighted in this project, found commonly in the gorillas. 

Amelogenesis imperfecta has only once been suggested in a fossil hominin (Zilberman 

et al., 2004). However, given recent research into different types of hypoplasia, there is not 

enough evidence in this case for such a conclusion (Zanolli et al., 2016). Indeed, given the 

broad range of how defects can be displayed, it may be tough to diagnosis amelogenesis 

imperfecta in the fossil record unless a full dentition is available (see Chapter 10).  

6.4.1. Localised vs. pitting enamel hypoplasia 

Comparisons with other mammals offer potential insight into defect properties. 

Toxodon teeth show a variety of different types of enamel hypoplasia (Braunn et al., 2014). 

Interestingly one defect that was common in these fossils is lines of vertical pits. The authors 

suggest such defects may relate to enamel fold formation. Although not directly applicable to 

primate teeth, due to Toxodon teeth continuously growing during life, it nonetheless raises 

the possibility that some PEH defects may in fact not relate to development disturbance or 

stress, but be more akin to localised hypoplasia. This possibility further blurs the line between 

what is characterised as PEH and localised hypoplasia.  If pitting defects are commonly found 

in the same regions of the crown in different individuals, especially in areas of undulating 
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enamel, then it may be possible that defects relate directly to enamel formation rather than 

a stress experienced by the individual. This is unlikely the case for the pitting found on P. 

robustus given the fact pitting is usually scattered on the crown. There are a few instances in 

the material studied here in which pitting is present in undulating enamel, particularly on the 

buccal side near the occlusal surface. The possibility that these are the result of such factors 

will need to be explored further in extant species.  

Therefore the definition of what pitting and localised defects actually mean regarding 

appearance and aetiology is further complicated. Clearly, as it stands, both can be caused by 

non-systemic factors, with pitting being caused by disturbance during development but also 

can be caused by heritable conditions (Crawford et al., 2007; Sundell & Koch, 1984). Localised 

enamel hypoplasia defects may not be isolated, with multiple defects potentially being 

displayed on the same crown. Furthermore, localised defects may be present on anti-meres, 

in adjacent teeth, and those forming at the same time. For example, in gorillas, it is common 

to have a localised defect on both lower deciduous canines. This means the current 

classification of localised hypoplasia may no longer be appropriate, especially when 

comparing species. 

An extreme example, but one that illustrates this issue well, is a male chimpanzee 

from the Powell-Cotton Collection. This juvenile, with a full deciduous dentition, has defects 

on his maxillary canines, lateral incisors, and right first molar, as well as all mandibular teeth 

except the deciduous second molars. For most of the teeth, if found in isolation, a researcher 

would likely record the defects as being localised hypoplasia (Figure 6.12). Some defects may 

also be recorded as PEH. The fact that so many teeth are affected, and the numerous defects 

on certain teeth, make a differential diagnosis more complicated. Amelogenesis imperfecta 

must also be considered. However, the fact an antimere is not affected, and the pattern of 

the defects are different on each tooth, suggests these defects may not be best described as 

PEH. This case highlights the major issue in studying enamel hypoplasia in fossil hominins, 

which predominantly consist of isolated teeth. 
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Figure 6.12. M 475, a male chimpanzee displaying non-symmetric localised/pitting hypoplasia on 

multiple deciduous teeth. A) Upper left lateral incisor; B) Upper right lateral incisor; C) Lower left 

first molar; D) Lower right first molar. All buccal view. 

6.4.2. Paranthropus robustus 

Clearly, P. robustus has extremely high levels of PEH, particularly on deciduous molars. 

However, due to the lack of known frequencies in many other hominin samples it is not yet 

known just how common such pitting is in hominins in general. That said it is clear from the 

results of this study, as well as comparisons with modern human studies, that the PEH rate 

found in P. robustus is remarkably high (Goodman et al., 1987; Ogilvie et al., 1989; Seow et 

al., 1992). Identical PEH defects can be seen on the posterior teeth of P. robustus specimens 

not included in this study, from Drimolen and Cooper's, as well as remarkably similar PEH 

defects on P. boisei posterior teeth (Figure 6.13; de Ruiter et al., 2009; Tobias, 1967). The 

frequency of these defects across sites and time suggests perhaps that the Paranthropus 

genus, in general, shared this tendency for PEH defects. 
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Figure 6.13. Pitting enamel hypoplasia. Left: P. robustus from Cooper's Cave (CD 1634; de Ruiter et 

al., 2009); and P. boisei (OH 5; Tobias, 1967). 

 

The extant apes studied here do not have significant rates of PEH. Indeed it is 

extremely uncommon. In the extant primates that do have PEH, the defects do not usually 

look similar to those of P. robustus. For example, the most similar pitting in the chimpanzee 

sample is a female juvenile, M 556. This individual has PEH on the maxillary lateral incisors, 

lower lateral incisors and both sets of deciduous molars (Figure 6.14). Although the pitting in 

this individual does look similar to examples found in P. robustus, the anterior teeth are also 

affected. This is also the case for other primate examples. Therefore, this raises the question 

of why P. robustus does not also have affected deciduous anterior teeth. This fits with the 

hypothesis that perhaps the morphology of these teeth makes deciduous molars in particular 

prone to pitting. That said, in modern humans, differences in developmental timing between 

the different deciduous teeth mean it is not uncommon to show defects on molars and not 

anterior teeth. When the developmental timing for deciduous Paranthropus teeth is better 

understood it may be possible to speculate further on this issue. 

An isolated Swartkrans tooth, SKX 1756, is not complete but has been attributed to 

the genus Homo (Berger et al., 2015). However, given the broken nature of this specimen, 

there is doubt over its phylogenetic placement (Grine, 2005). This deciduous molar shows 

PEH defects that are very similar to that in the P. robustus specimens (Figure 6.15). Such 

defects are not found on any of the other Homo specimens, perhaps suggesting this specimen 

may belong to P. robustus. 

 



106 
 

 

Figure 6.14. Pitting enamel hypoplasia on the deciduous dentition of a female chimpanzee (M 556). 

A) Left lower lateral incisor; B) Lower left second deciduous molar. Both buccal view. 

 

 

Figure 6.15. SKX 1756: fragmentary deciduous molar assigned to the genus Homo. Clear pitting 
enamel hypoplasia defects (arrow). 
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The PEH displayed on P. robustus molars do not resemble the hypoplastic defects 

described in many modern clinical studies of primary teeth, including those caused by 

premature birth, low birth weight, vitamin D deficiency, tuberous sclerosis, congenital syphilis, 

pseudohypoparathyroidism and epidermolysis bullosa (Aine et al., 2000; Croft et al., 1965; 

Gaul et al., 2015; Nikiforuk & Fraser, 1979, 1981; Pinhasi et al., 2006; Purvis et al., 1973; Radu 

& Soficaru, 2016; Seow et al., 1984; Stimmler et al., 1973; Wright et al., 1993). The majority 

of these conditions are associated with pitting that is usually irregular in shape and 

distribution. These conditions also tend to affect all teeth and not just molars, and are often 

associated with other types of dental defects.   

PEH defects have also been associated with deficiencies or surpluses of certain 

compounds. For example, dental fluorosis can create pit like features on the crown of a teeth 

(Fejerskov et al., 1990). This can manifest in several ways but most commonly in white opaque 

lines, but the entire crown can have a chalky white appearance (Fejerskov et al., 1990; Xing 

et al., 2015). If the fluorosis is severe enough then once the tooth has erupted the outer 

enamel may start to fracture leaving pits or cracks. These pits have edges that are jagged or 

broken when viewed under a SEM (Thylstrup & Fejerskov, 1978). Another common 

occurrence with dental fluorosis, particular servere cases, is discolouration. The teeth in this 

sample do not show jagged or broken edges or discolouration of any of the teeth suggesting 

fluorosis is unlikely the cause. The fact that it is mainly posterior teeth affected also supports 

this conclusion. Other toxic compounds such as mercury can also create enamel defects if 

exposed to high quantities during dental development (Ioannou et al., 2015; Ogden, 2007; 

Radu & Soficaru, 2016). It is possible therefore that the pitting in P. robustus is caused by a 

specific environmental or dietary component, or lack thereof, although the issue of anterior 

teeth appearing to be unaffected again makes this hypothesis unlikely. 

Ogden et al. (2007) highlight an example of a human sample with high rates of 

hypoplasia in the deciduous and permanent dentitions from 16th–18th Century London. 

Superficially some of these defects look similar to the pitting found on the P. robustus molars. 

However, the pitting appears less uniform, and there seems to be a mix of plane form and 

pitted defects across much of the crown in many teeth. Additionally, the cuspal morphology 

is affected in many of the teeth, which does not appear to be the case for the P. robustus 

examples. 
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It is perhaps surprising that out of the 12 permanent anterior teeth associated with 

posterior teeth with pitting, only two show enamel defects -- both in the form of LEH. Even if 

the developmental timing differs between the anterior and posterior teeth it is surprising 

individuals with pitting don’t also show defects on anterior teeth. This is because illnesses and 

malnutrition can often last substantial periods of time and therefore if these defects are 

caused by a systemic disturbance it would be expected that anterior teeth would also be 

affected to a certain extent. Although the sample of associated teeth is small, it nonetheless 

adds further support to the idea that dental morphology, or genetic factors more broadly, are 

at least partially responsible for the high rate of PEH on posterior teeth of both dentitions. 

The example in Hillson (2014) of PEH in a modern human deciduous first molar and 

associated plane form defects on the second deciduous molar and canine, is suggested as a 

case of ‘neonatal dental hypoplasia', in which a stress at birth causes these severe looking 

defects. Therefore, a potential hypothesis would be that the P. robustus defects are caused 

at or around birth, perhaps by a specific issue such as an environmental or nutritional stress. 

If correct, this may have been facilitated by the fact the development of the deciduous molars 

tended to be at a crucial point of development, in that a pitted defect is more likely to form 

or be visible. However, there are a couple of issues with this hypothesis: 1) the lack of 

associated hypoplasia on other deciduous teeth, and 2) the fact that such pitting is also 

present in permanent molars. A neonatal line can be found in a wide variety of populations 

affecting the teeth forming at birth, in humans, this means the deciduous dentition and the 

first permanent molars. It is thought to be due to either a decrease in plasma calcium after 

birth (Norén et al., 1984; Smith & Avishai, 2005) or disturbances and stresses caused by the 

birth process itself (Guatelli-Steinberg, 2015; Whittaker & Richards, 1978). Although this 

hasn't been explored in many fossil hominin materials, if neonatal lines could be found in the 

deciduous and permanent molars of P. robustus teeth with pitting this would allow inferences 

into timing and perhaps therefore also aetiology. Unfortunately, the only P. robustus tooth 

for which these data are available does not show pitting (Smith et al., 2015). If the deciduous 

teeth formed PEH in utero this means the defects would relate to nutritional condition of the 

mother (Lovell & Whyte, 1999; Lukacs, 1992; Seow, 1990). However, it is unclear how many 

of the defects on deciduous molars of P. robustus formed in utero, so it cannot be determined 

whether the disruption that caused these defects occurred before or after birth. 
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It has been suggested that a common cause of prenatal enamel hypoplasia is linked to 

the mother having a calcium deficiency, caused by malnutrition or malabsorption (Lovell & 

Whyte, 1999). Similarly, defects that are postnatal in origin have also been linked to 

hypocalcaemia, often caused by insufficient calcium consumption or malabsorption. The 

defects displayed on the teeth of P. robustus are therefore consistent with calcium deficiency. 

Furthermore, the timing of the majority of the defects and their characteristics would fit with 

the conclusion that PEH in P. robustus is high in deciduous molars due to malabsorption or 

malnutrition which has led to these defects. That said, further examples in humans are 

needed to support this. 

Superficially, the pitting defects in P. robustus resemble certain modern human cases 

of amelogenesis imperfecta. This set of genetic disorders affects one in every 700 to 14000 

humans (Crawford et al., 2007; Sundell & Koch, 1984). Defects usually include scattered pits 

and plane form hypoplasia but often there is also abnormal colouration, thickness and density 

of the enamel (Aldred et al., 2003; Chamarthi et al., 2012; Schuurs, 2012; Wright, 1985). A 

type of amelogenesis imperfecta described as hypoplastic amelogenesis imperfecta (Mehta 

et al., 2013; Wright, 1993), most closely fits the description of defects in P. robustus, in that 

this variety commonly does not show colouration, thickness and density abnormalities of the 

enamel (Seow, 1992; Witkop, 1988; Witkop & Sauk, 1976). The pitting defects do in some 

instances look very similar to examples of this type of amelogenesis imperfecta (e.g., Figure 

3 of Rushton, 1964; Ozdemir et al., 2005). However, the lack of defects associated with 

amelogenesis imperfecta on anterior teeth and the high frequencies of PEH only on deciduous 

molars suggests a genetic disease is unlikely, at least any type similar to that is found in 

modern humans today. The large time span involved, the scarcity of these conditions in 

modern humans, and the lack of other genetic conditions all support this conclusion. It is, 

however, worth noting that a recent study highlighted a particular genetic mutation that 

causes enamel defects to be present in posterior but not anterior primary teeth (Kim et al., 

2016). Therefore amelogenesis imperfecta as the cause of PEH in P. robustus, although 

unlikely, cannot be ruled out completely. 

 That said, perhaps P. robustus had an increased chance of this type of genetic 

disorder relative to other hominins. Recent genomic research has begun to explore genetic 

loci involved in enamel formation, mostly with the aim of understanding formation, but also 
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for inferences into genetic conditions (Al-Hashimi et al., 2009; Hu et al., 2005; Hu & 

Yamakoshi, 2003; Ozdemir et al., 2005; Paine et al., 2001). One such locus, enamelin, has also 

been analysed for differences between primate species (Kelley & Swanson, 2008). They 

hypothesis, using evidence of adaptive enamelin evolutionary changes between species, that 

differences in enamel thickness between primate species is a result of these changes. Areas 

of this gene show signs of strong positive selection, potentially related to enamel thickness 

changes (Horvath et al., 2014). Mutations in this same gene are also responsible for the suite 

of enamel defects known as amelogenesis imperfecta (Crawford et al., 2007; Kelley & 

Swanson, 2008; Wang et al., 2015). Therefore, it may be possible that the evolution of 

extremely thick enamel in Paranthropus led to an increased chance of other genetic 

mutations, which often happens in genes subject to high levels of selection. Thus potentially 

including those that are associated with amelogenesis imperfecta. This hypothesis will be 

difficult to test. However, a larger sample of primates, incorporating genetic information and 

enamel thickness data, may show interesting results. 

6.5. Conclusions 

             In sum, the exact cause of the pitting enamel hypoplasia found in P. robustus is as yet 

unknown, however by comparing frequencies and appearance with other species it has been 

possible to rule out causes and to suggest a few potential aetiologies. Thick enamel, 

developmental timing, genetic factors, calcium deficiency and acute stress during a crucial 

period of development are all possible factors. Given that there are substantially fewer 

defects on anterior teeth and defects are relatively uniform in shape and size on molars across 

individuals, at present, the hypothesis that fits the data best is a predisposition for molars, 

both deciduous and permeant, for this ‘golf ball’ like PEH. However, malnutrition due to a 

narrow diet or specific disorders such as calcium deficiency, may explain why so many 

individuals from this one species are affected. General ill health throughout development 

seems unlikely given the low number of LEH defects compared to other hominins and 

proportionally greater PEH defects than LEH.  

             Studies that have only looked at LEH in the South African hominin material have 

concluded that A. africanus may have been under more stress during development due to 

having higher rates of LEH than P. robustus. However, when PEH is included in analysis it is 
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clear that overall hypoplasia rates are actually greater in the latter species. If it is accepted, 

which most researchers do, that the majority of PEH is formed by similar disturbances to 

development as LEH then this would highlight that in fact the opposite may be true, with P. 

robustus experiencing more disturbances whilst teeth are forming. However, this depends on 

the cause for such high rates of PEH in P. robustus. 

                Localised hypoplasia does not seem to correlate with other types of hypoplasia. 

Additionally, the sexes seem to be equally affected in the species studied. It is also rare for 

defects to be displayed on anti-meres. These three observations add further support to the 

idea that these defects are not systemic in origin and relate to some sort of localised trauma 

during tooth development. 
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7 .  Chapter 7: Caries 
 

7.1. Introduction 

It is often suggested that caries is a modern disease and is scarce or absent in past 

hominin populations, usually justified by inferring dietary or oral bacterial differences 

between present day and ancient human samples (Armelagos & Cohen, 1984; Brothwell, 1963; 

Guatelli-Steinberg, 2016; Hildebolt & Molnar, 1991; Lanfranco & Eggers, 2012; Tillier et al., 

1995). However, evidence for the presence of carious lesions in a variety of non-agricultural 

hominin groups is growing (e.g., Arnaud et al., 2016; Grine et al., 1990; Humphrey et al., 2014; 

Lacy, 2014; Lanfranco & Eggers, 2012; Trinkaus et al., 2000). In light of this evidence, the South 

African hominin material was reanalysed, and H. naledi recorded for the first time, for the 

presence of caries; comparisons were then made among all fossil hominins, along with extant 

primates and recent human samples.  

The frequency and location of caries on the dentition vary with diet. Lesions form 

when specific bacteria demineralize dental tissue through the release of acids as they 

metabolise sugars and starches (Byun et al., 2004; Larsen et al., 1991). Many different bacteria 

can be involved, including Streptococcus mutans and Streptococcus sobrinus (Nishikawara et 

al., 2007). The genome of some of these bacteria have been sequenced and one in particular, 

S. mutans, has evolved quickly in the last few thousand years, potentially in response to 

human population growth and agriculture (Cornejo et al., 2013). The acids released form 

active lesions because the oral pH is lowered over extensive periods (Gussy et al., 2006). Some 

foods are more cariogenic than others. Those containing high levels of refined carbohydrates 

and sugars are particularly virulent (Clarkson et al., 1987; Prowse et al., 2008; Rohnbogner & 

Lewis, 2016). Tough and fibrous foods are linked with low rates of caries since they tend to 

create a more alkaline oral environment due to high levels of saliva production (Moynihan, 

2000; Prowse et al., 2008; Rohnbogner & Lewis, 2016). Meat and dairy products have also 

been associated with low caries frequency (Moynihan, 2000; Novak, 2015). 

Environmental and behavioural influences are also important to consider when 

researching caries prevalence. The clearest example is that of moderate levels of fluoride in 

drinking water, which decrease the likelihood of carious lesions developing (Kotecha et al., 
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2012; Slade et al., 2013). There may also be protective properties against caries in certain 

plant species (Moynihan, 2000). Therefore, if certain plant species with these properties are 

consumed, a population may show surprisingly low levels of carious lesions, even if 

carbohydrate consumption is high. Many fruits, as well as honey, are cariogenic but the 

relationship is not always straightforward (Novak, 2015). Nuts and seeds can be highly 

cariogenic (e.g., Humphrey et al., 2014), although caries rates vary considerably depending 

on the species involved. The teeth, dental tissues, and crown positions that are most affected 

in a population can give further insight into the diet, bacteria present and food processing 

behaviours (Bignozzi et al., 2014; Kelley et al., 1991; Meinl et al., 2010; Novak, 2015; Shen et 

al., 2004; Takahashi & Nyvad, 2016).  

A wide variety of living and fossil species show evidence of caries, including dinosaurs, 

fishes, bats, bears, and primates (Arnaud et al., 2016; Humphrey et al., 2014; Kear, 2001; 

Kemp, 2003; Lacy, 2014; Lanfranco & Eggers, 2012; Lovell, 1990; Miles & Grigson, 2003; 

Palamra et al., 1981; Sala et al., 2007; Trinkaus et al., 2000). Eight carious lesions have already 

been recorded in the South African hominin fossils, including two in a mandible belonging to 

an early Homo individual, SK 15 (Clement, 1956). The rest are attributed to P. robustus, with 

three on SKX 5023 (Grine et al., 1990), two lesions on SK 55 (Robinson, 1952), and one on SK 

13/14 (Robinson, 1952). 

7.2. Materials and Methods 

Only complete teeth are included in the analysis, with postmortem-damaged teeth 

excluded. Each tooth was examined macroscopically under good lighting with a 10x hand lens 

used for clarifying lesions. The frequency of caries is calculated as follows: 

[Total number of teeth with caries/total number of teeth observed]*100 

Once a carious lesion progressed enough for a cavity to form it is relatively difficult to confuse 

with postmortem damage. A carious lesion was recorded when there is a clear cavitation; 

colour changes alone were not recorded. The severity and position of lesions on a tooth were 

also recorded. Caries severity was scored on a scale of 1 to 4 following Connell and Rauxloh 

(2003), with (1) enamel destruction only; (2) involvement of dentine but pulp chamber not 

exposed; (3) destruction of dentine with the pulp chamber exposed; (4) gross destruction with 
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the crown mostly destroyed. Lesion location is also recorded (distal, buccal, occlusal, lingual, 

mesial and gross).  

The interaction between caries and other dental pathologies is often complex. It has 

been suggested that because caries can lead to Antemortem Tooth Loss (ATML), correction 

methods need to be implemented (e.g., Duyar & Erdal, 2003; Kelley et al., 1991; Lukacs, 1995). 

However, these caries correction methods are not appropriate to implement in this research. 

Although it is true that the vast majority of missing (i.e., extracted) teeth today are due to 

caries, in many past populations this would not have been the case. Severe attrition and 

fractures that exposed the pulp and periodontal disease are all other possible contributors. 

In particular, given the high rates of wear in fossil hominin specimens, it is likely that most 

cases of ATML resulted from attrition, not caries. Therefore, following Meinl et al. (2010) and 

Larsen et al. (1991) no corrective methods were implemented; instead, AMTL frequencies are 

displayed separately as an independent factor. By not including correction methods direct 

comparisons with other populations can be made. Additionally, maxilla and mandible 

fragments are so rare in the fossil record that to include ATML data would have little effect 

on overall frequencies (Chapter 9). 

Micro-CT scans of particular teeth are included in this study to also help clarify if a 

cavity is carious. Micro-CT scans can differentiate between normal enamel and dentine and 

areas affected by caries, due to the lower density of areas affected with this pathology (Neves 

et al., 2010). Using such techniques can clearly make visible the extent of a lesion, even if the 

cavity on the surface is ambiguous (McErlain et al., 2004). Therefore, if clear areas of 

demineralised enamel can be seen below the cavity, then it is recorded as caries. As noted in 

Chapter 8, dental attrition is marked according to Smith (1984) for anterior teeth on a scale 

of 1 to 8, and Scott (1979) for molars on a scale of 1 to 10. To compare caries rates between 

chimpanzee males and females (below) a chi-square test of homogeneity with significance set 

at the 0.05 alpha level was used. 

7.3. Results 

In addition to the five carious teeth already described in the literature, an additional 

seven have been added here (Table 7.1). From the seven newly identified teeth, five are from 

P. robustus specimens and two from H. naledi. Therefore, there is now a minimum of 16 
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carious lesions across the available South African fossil hominin material (Table 7.2). The five 

new P. robustus teeth come from three individuals, one of which is thought to belong to the 

same individual that already had carious lesions described in other teeth (SKX 3601 and SKX 

5023; Grine et al., 1990). Therefore, there are three P. robustus individuals, one H. naledi 

individual, and one early Homo individual that exhibit caries. No carious lesions were found 

in deciduous teeth, or any tooth belonging to A. africanus and A. sediba. In sum, there are 16 

carious lesions on 12 teeth belonging to five individuals for the South African hominin material 

(Table 7.2). 

 

Table 7.1. Caries frequency for each species study. 

Species Observable teeth Carious teeth % caries 

Early Homo 44 2 4.55 

P. robustus 318 8 2.52 

H. naledi 147 2 1.36 

A. sediba 16 0 0.00 

A. africanus 328 0 0.00 

Baboons 760 1 0.13 

Chimpanzees 1991 165 8.29 

Gorillas 1518 20 1.32 

 

 

Table 7.2. Hominin specimens with caries. Tooth: first letter, L (left), R (right); second letter, L 

(lower), U (upper); M1, first molar, P2, second premolar. 

Species Specimen Tooth Position Severity Lesion # Described 

P. robustus SK 23 LL M1 Occlusal 1 1 This study 

P. robustus SK 23 RL P2 Occlusal 1 1 This study 

P. robustus SKX 3601 LU M1 Mesial 1 1 This study 

P. robustus SKX 5023 RL M1 Mesial/Distal 2 3 Grine et al. (1990) 

P. robustus SK 55 LU M1 Buccal 1 2 Robinson (1952 

P. robustus SK 13/14 LU M2 Occlusal 2 2 Robinson (1952) 

Early Homo SK 15 LL M1 Mesial 2 1 Clement (1956) 

Early Homo SK 15 RL M2 Mesial 2 1 Clement (1956) 

H. naledi UW 101-001 RL P2 Distal 2 1 This study 

H. naledi UW 101-001 RL M1 Mesial 2 1 This study 

P. robustus SKW 5 RL M1 Occlusal 1 1 This study 

P. robustus SKW 5 LL M1 Occlusal 1 1 This study 
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Other potential carious lesions are present in the sample, particularly in H. naledi, 

including: UW 101-525, UW 101-1277 (second molar), UW 101-010, UW 101-516, UW 101-

001 (third molar), UW 101-445, UW 101-809, and SKW 33. Micro-CT scans of these teeth are 

needed to help substantiate the lesions. Additionally, although SKX 3601 is recorded here as 

having caries, a CT scan would be useful to help rule out post-mortem damage completely. 

7.3.1. SK 23 

 

Figure 7.1. Caries in SK 23 (P. robustus). A) Occlusal view of mandibular teeth, with the right second 

premolar highlighted; B) Close-up of the occlusal surface of the right second premolar; C) CT 

reconstruction with the position of the two slices highlighted; D) CT slice toward the lingual part of 

the cavity; E) CT slice toward the buccal portion of the cavity. 

 

Several teeth belonging to SK 23 have characteristics of caries on their occlusal surface. 

In particular, the left first molar and right second premolar have larger and darker coloured 

fissures on their occlusal surface than do their antimeres (Figure 7.1a). However, due to post-
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mortem matrix in these depressions (Figure 7.1b), it is difficult to confirm whether these are 

carious. A Micro-CT scan of these teeth supports the conclusion that this individual had caries, 

at least on the right second premolar. Enamel under the depression on the occlusal surface 

of the right second premolar appears to have patches of less dense material, and a patchy 

track of less dense enamel extends towards the Enamel-Dentine Junction (EDJ; Figure 7.1d,e). 

This demineralised enamel near the occlusal surface fits a diagnosis of occlusal caries; the line 

towards the EDJ is likely also carious in nature, though it may be a crack that formed due to 

the weakening of tissue by caries. Therefore, the difference compared with its antimere, large 

size of the depressions, colouration changes, and lower density enamel underneath, are all 

highly suggestive that a carious lesion had been active in this occlusal fissure.   

7.3.2. UW 101-001 

Carious lesions on H. naledi specimen UW 101-001 are the most severe of all South 

African hominins (Figure 7.2). They could be severity grade three lesions, however due to 

sediment in the cavity detailed exploration is not possible and therefore the minimum 

severity of two is recorded. CT-scans of these teeth could provide further information. 

However, it is clear that these lesions must have been active for several years since they 

spread deep into the dentine. It is interesting that no reduction of crown wear is evident on 

this side of the mouth, so these lesions may not have affected normal mastication. 

 

Figure 7.2. Carious lesions on the mandibular right second premolar (distal) and first molar (mesial). 

Homo naledi (UW 101-001). 
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7.3.3. SKW 5 

 

Figure 7.3. Caries on the occlusal surface of SKW 5 (P. robustus). A) Occlusal view of the right 

mandibular first molar; B) mandible displaying the two first molars with likely caries; C) CT 

reconstruction of the right first molar showing the position of the slice in D; D) CT slice of the right 

first molar, highlighting the area of demineralised enamel (blue square). 

 

The first molars of SKW 5 (P. robustus) appear to have occlusal caries, based on the 

depth, colouration and pattern within the fissures (Figure 7.3a,b). When a Micro-CT slice of 

this area is viewed, demineralisation is evident deep into the enamel (Figure 7.3d). However, 

the low quality of available CT images means that confirmation of the caries severity is needed. 

Pitting enamel hypoplasia is visible in the adjacent teeth, suggesting this condition may have 

facilitated caries formation. 
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7.3.4. SK15 

In their book on radiographs of hominin specimens, Skinner and Sperber (1982) make 

an interesting observation of one of the early Homo specimens, SK 15. Substantial 

interproximal wear is visible relative to little occlusal wear. They do not provide a suggestion 

for the cause, but do suggest that future research may give insight. They also note 

interproximal caries in this specimen but do not suggest a link between these two phenomena. 

Figure 7.4 shows interproximal caries on the right second molar in photo A, and photo B 

highlights the extent of the interproximal wear.  

 

 

Figure 7.4. SK15 (early Homo). A) right mandibular second molar, mesial caries; B) interproximal and 

occlusal wear. 

 

7.3.5. Extant primates 

The main difference observed between the extant primate sample and hominins are 

the teeth affected by caries. All carious lesions in the hominin sample are found on posterior 

teeth, whereas 70% of caries affects anterior teeth in the primates. Particularly common in 

both gorillas and chimpanzee is the occurrence of carious lesions on interproximal surfaces 

of the incisors. Significantly more caries are present in the dentitions of female chimpanzees 

than males (X2= 20.890, 1 df, p= 0.0001), with five times the number of teeth affected. This 

difference does not appear to relate to time in occlusion, based on tooth wear (Table 7.3). 

Although the female sample is composed of individuals with, on average, more worn teeth 

once wear is accounted for, it is clear that this relationship remains stable (Table 7.3). Females 

with low and medium wear on their teeth (combined wear score of under 64 for all four first 
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molars; Scott, 1979) still have significantly more carious teeth, with around five times the 

caries rate as in males. 

 

Table 7.3. Caries frequencies for male and female chimpanzees. Displayed for all teeth, 
unworn/little-worn teeth removed, and with heavily worn teeth excluded. Is: incisors; Cs: canines; 

PMs: premolars. 

Sample Females Males 

Totals (%)   
All teeth 9.30 1.80 

All teeth except wear score 1 10.15 2.35 

Teeth with medium/low wear* 9.78 2.20 

Individuals with caries 44.90 8.33 

All Teeth   
Total teeth 1301 334 

Carious teeth 121 6 

Mean Is, Cs and PMs wear** 3.94 2.61 

Mean Molar wear** 4.05 2.70 

% carious teeth 9.30 1.80 

Wear score 1 taken out   
Total teeth 1192 255 

Carious teeth 121 6 

Mean Is, Cs and PMs wear** 4.31 3.51 

Mean Molar wear** 4.19 2.91 

%  caries teeth 10.15 2.35 

Medium to low wear*   
Total teeth 511 227 

Carious teeth 50 5 

Mean Is, Cs and PMs wear** 3.52 3.59 

Mean Molar wear** 3.28 2.82 

% carious teeth 9.78 2.20 

*Individuals with a combined wear score of under 64 for all four first molars. Teeth with a                    
wear score of 1 are excluded 

*&**Molar wear is calculated using Scott (1979) and all other teeth following Smith (1984) 

 

7.4. Discussion 

Carious teeth are more likely to be lost or damaged post-mortem because they are 

more fragile than non-carious teeth. In support of this statement, all newly reported carious 

teeth in this study were retained in a jaw. Therefore, it seems likely that caries would have 

been more common in the fossil hominins than the results of this study suggest. 
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Recent research has highlighted that carious lesions may form more frequently on 

different dental tissues, or certain positions on a tooth crown, due to the presence of certain 

bacteria, pathologies, and dietary components (Bignozzi et al., 2014; Meinl et al., 2010; Novak, 

2015; Takahashi & Nyvad, 2016). However, all carious lesions ultimately share an aetiology 

that is based on the presence of certain cariogenic bacteria and fermentable carbohydrates 

(Clarkson et al., 1987). Clearly, therefore, cariogenic bacteria were prevalent in fossil hominins. 

The frequency of caries on different tooth surfaces has predominantly been linked to 

the extent and speed of attrition on the occlusal surface. High rates of occlusal caries are 

associated with low attrition, whereas high levels of interproximal lesions are linked with high 

attrition (Hillson et al., 2008). However, high rates of interproximal caries may also be related 

to levels of calculus, in which plaque buildup in these areas may facilitate lesion formation 

(Tomczyk et al., 2013). Calculus involvement appears to be part of the reason for the high 

interproximal caries rates in the medieval Gloucester sample. However, there does not seem 

to be any evidence for calculus associated with caries in the South African hominins, although 

post-mortem loss may be partly responsible. For example, taphonomic processes may 

remove calculus deposits, as well as handling and excavation (Chapter 2). 

In modern human agricultural groups maxillary teeth tend to display higher rates of 

caries than mandibular teeth (Caglar et al., 2007; Esclassan et al., 2009; Lunt, 1974; Novak, 

2015). It is also more common for caries to be found on posterior teeth than anterior (Novak, 

2015; Slaus et al., 1997; Varrela, 1991; Vodanović et al., 2005; Watt et al., 1997). Similarly, the 

positions most affected are interproximal and occlusal surfaces (Esclassan et al., 2009; Caglar 

et al., 2007; Slaus et al., 2011; Srejic, 2001; Varrela, 1991; Vodanovic et al., 2012). These 

differences in location likely reflect the greater complexity of posterior teeth and their larger 

size, in which more susceptible areas are present for caries to form (Hillson, 2001, 1996). For 

previously reported carious lesions in fossil hominins, the majority are located on 

interproximal areas of the tooth crown rather than root surfaces. This is likely due to 

periodontal attachment loss being uncommon in earlier hominins, which in most cases is a 

prerequisite for root caries (Bignozzi et al., 2014; Stamm et al., 1990). However, root caries 

has been shown to be formed commonly by particular bacteria in modern humans (Shen et 

al., 2005) and may also develop in different acidic conditions than enamel caries (Shen et al., 

2004). Therefore the oral environment may also have been the key factor. The fact that fossil 
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hominins tend to display interproximal carious lesions likely reflects the heavy occlusal wear 

in these populations, in which fissures and pits on the surface are quickly worn away with 

wear progressing too fast for lesions to form. The extremely low levels of occlusal caries in 

the extant primate samples also supports the conclusion that occlusal caries is rare in fossil 

hominins due to high rates of wear. That said, occlusal caries in P. robsutus suggest that tooth 

wear was not rapid enough to prevent lesions forming, perhaps hinting at a high level of 

cariogenic food consumption. 

Many hominin samples within the last 50,000 years show caries frequencies of around 

the same or below some of the species studied in this thesis (Figure 7.5). Although Figure 7.5 

only contains a handful of samples, it highlights the relatively consistent carious frequency in 

hominins of around one to five percent. With the advent of agriculture, this figure varies much 

more dramatically, and some populations had vastly greater rates. A diet high in marine foods 

and terrestrial meat seems to be the most common reason used to explain low frequencies 

in recent hominin groups (Kelley et al., 1991; Lacy, 2014; Larsen et al., 1991). Rather than a 

steady increase, as has been suggested, the rate is rather stable over the last two million years, 

with only an increase in some agricultural groups. Therefore, the commonly perceived notion 

that caries is a new disease, in which only recent populations of the genus Homo are affected, 

may be misleading (Armelagos & Cohen, 1984; Brothwell, 1963; Guatelli-Steinberg, 2016; 

Hildebolt & Molnar, 1991; Lanfranco & Eggers, 2012; Tillier et al., 1995). 

 

Figure 7.5. Per tooth caries frequencies (%) for various hominin groups, including H. naledi, P. 

robustus and early Homo (comparative data: Costa, 1980; Esclassan et al., 2009; Kelley et al., 1991; 

Lacy, 2014; Lanfranco & Eggers, 2012; Larsen et al., 1991; Mant & Roberts, 2015; Meiklejohn et al., 

1988; Smith, 1972; Walker et al., 2011). Log-transformed X-axis. 
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Enamel hypoplasia may influence the formation of carious lesions. Defects may act as 

a site in which lesions can develop, but also it may speed up the progression of a lesion, as 

the enamel may be more vulnerable to acid solubility (Hong et al., 2009; Rohnbogner & Lewis, 

2016). Therefore, enamel hypoplasia seems likely to be associated with caries in P. robustus 

including specimens SK 55, SK 13/14 and SKW 5. Other pathologies and wear can also create 

an environment in which caries is more likely to form. For example, caries may develop as a 

response to unusual occlusion (Calcagno & Gibson, 1991). In populations or species with a 

moderate amount of caries, presumably, such occurrences will be proportionally more likely 

to be the cause of the cavity. A good example comes from the lower right third molar of a 

chimpanzee (M 158). This third molar was still in occlusion at the time of death, making it 

clear that severe caries on the buccal and occlusal surfaces was caused by the angle it 

protrudes from the jaw (Figure 7.6). If this tooth had been found isolated, such an 

interpretation might have been less clear.  

 

 

Figure 7.6. Chimpanzee (M 158), the right side of the mandible. Occlusal/buccal caries on the third 

molar (arrow). 

 

An explanation for the high caries rate in P. robustus is required. The fact that these 

individuals have relatively high levels of wear means that caries would be expected to be low, 

especially on occlusal surfaces (Maat & Van der Velde, 1987; Moynihan, 2000). Therefore, 
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cariogenic foods may have frequently been consumed, i.e. a similar proportion of such 

cariogenic foods in the diet of a population without high occlusal wear would likely display 

much higher rates of caries. The most likely explanation for the high rate of caries in P. 

robustus is the consumption of cariogenic fruits or vegetation matter, although another 

possible component may be the consumption of honey (Moynihan, 2000). Pitting enamel 

hypoplasia has also clearly inflated the caries rate by yielding suitable sites for lesions to form. 

However, cariogenic food and bacteria would have still been a necessary prerequisite for 

caries formation.  

The lack of caries in baboons and A. africanus potentially requires a dietary 

explanation too. It seems unlikely a lack of carious bacteria is on its own responsible, 

particularly given the frequent occurrence of caries in other hominins and extant primates. 

As mentioned, some foods can actively limit or prevent caries formation and are associated 

with low levels of lesions. In particular, tough, hard and fibrous foods can all create a less 

acidic oral environment due to high concentrations of saliva circulation (Moynihan, 2000; 

Prowse et al., 2008; Rohnbogner & Lewis, 2016). Meat is also generally thought to be 

associated with low rates of caries (Novak, 2015). Grit incorporated into the diet can create 

heavy wear and may therefore also mean caries lesions are less likely to form. Baboons 

masticate a significant amount of grit but also have an omnivorous diet containing a lot of 

tough foods such as meat, leaves and roots, likely explaining the lack of caries (Duray, 1992; 

Moynihan, 2000; Nystrom et al., 2004). Therefore, perhaps A. africanus had a similar 

omnivorous diet to baboons. Occlusal wear and dental chipping frequencies for these two 

populations are also very similar (Chapter 5). Such a similarity also fits with diverse results for 

A. africanus in isotopic analysis, microwear, and biomechanical analysis, which suggest a 

varied diet with frequent consumption of tough foods (Nystrom, 2004; Scott, 2005; 

Sponheimer et al., 2005, 2013; Sponheimer & Lee-Thorp, 1999; Strait et al., 2009; Van Der 

Merwe et al., 2003).  

7.4.1. Extant primates 

The unusual interproximal cavities on the incisors of chimpanzees have been noted 

before, with Kilgore (1989) finding deep depressions in two of the older individuals and colour 

changes on the interproximal areas in juveniles. Radiographs of the older individuals showed 
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these voids extended deep into the tooth. Unexpectedly, given this set of observations, they 

concluded that the cause was severe enamel attrition from stripping foods (Kilgore, 1989). It 

is not stated how this process would create such narrow, uniform, deep depressions in an 

interproximal area, or why some individuals only show colouration changes. The descriptions 

and photos in their Figure 7 (Kilgore, 1989) fit precisely with the observation made in this 

study.  Similarly, Dean et al. (1992) note a few root caries in chimpanzees and no caries in 

gorillas, for the same sample as this study (Powell Cotton Museum). Interproximal caries on 

incisors of both species were not recorded, presumably because these lesions were 

considered non-carious. However, confusingly, earlier research did report these interproximal 

cavities and recording their occurrence as caries (Coyler, 1936; Schults, 1956), with a 

longitudinal thin section used as confirmation (Miles & Grigson, 2003). These studies found 

similarly high rates of caries in chimpanzees to this research, with incisors found to be almost 

exclusively affected (Coyler, 1936; Schults, 1956). The results of this project support these 

earlier studies, as the lesions are clearly carious in nature. 

The high rate of caries on the anterior teeth of chimpanzees, and to lesser extent 

gorillas, at first seems unusual, particularly compared with hominins. However, an interesting 

analogue can be found in modern humans that do not use their posterior teeth. A medieval 

individual from Poulton (SK 705) has many small (severity 1-2) caries lesions on the 

interproximal areas of anterior teeth. These anterior teeth are also heavily worn. The reason 

for these carious lesions is due to many posterior teeth being removed, so those that are left 

have no counterpart (i.e., isomere) with which to occlude.  The individual was therefore 

almost exclusively using their anterior teeth for processing and masticating food. Therefore, 

caries found predominately on anterior teeth of chimpanzees may also relate to the ways in 

which they process food. This hypothesis is supported by behavioural observations of 

chimpanzees, where they tend to use their muscular lips along with anterior teeth to process 

fruits (Galdikas, 1982; Ungar, 1994). Such processing may create an acidic microenvironment 

in the front of the mouth to promote caries development. Clearly, it is mainly females that 

are affected by this behaviour, which may suggest the processing of foods differs notably 

between the sexes. 
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7.5. Conclusion 

The results of this chapter show distinct species differences, which likely reflect dietary 

and processing differences among groups. Caries is not as uncommon as previously thought 

in earlier members of the hominin lineage. In fact, the fossil hominins in this study had rates 

similar and, in some cases, higher than modern human groups both pre-and post-agriculture. 

There are however differences within the hominin sample, most notably the lack of carious 

teeth in the largest sample, A. africanus. This absence of caries may reflect a varied diet with 

high levels of tough, non-cariogenic foods. Once again P. robustus and A. africanus have 

substantial difference results, highlighting probable dietary differences. Given the number of 

carious teeth of P. robustus that have now been documented, a diet containing high amounts 

of cariogenic fruit/vegetation may be possible. Caries were previously reported in 

chimpanzees; however, the frequencies have rarely been compared with those in hominins. 

Chimpanzees have extremely high rates of caries, though not uniform, among tooth types or 

individuals. The anterior teeth of females have the most caries in this species, which may 

suggest that food processing of cariogenic foods, such as fruit, is the cause. 
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8 .  Chapter 8: Macro‐wear 
 

8.1. Introduction 

Wear can be defined as loss of crown enamel and the underlying dentine that is not 

caused directly by a pathology or defect. It is often split into three broad categories: attrition, 

abrasion and erosion (Burnett et al., 2013; Grimoud et al., 2012; Kaidonis, 2008). Attrition 

occurs through the occlusal surfaces of teeth contacting each other, abrasion when other 

materials are introduced into the mouth, and erosion by acidic removal of dental tissue 

(Burnett et al., 2013; Deter, 2009; Fiorenza et al., 2011; Smith, 1984). Attrition commonly 

occurs during mastication but can also be non-masticatory in nature, caused by bruxism. In 

most circumstances attrition is responsible for the majority of tooth wear (Deter, 2009). 

Abrasion is most commonly studied with reference to cultural wear grooves or notches, 

caused by the repeated placement of an item in a specific place in the dentition. Examples 

include tooth pick grooves in Neanderthals and tooth brushing and cultural tool use in 

modern humans (Bouchneb & Maureille, 2004; Frayer & Russell, 1987; Hlusko, 2003; Lozano 

et al., 2013; Shellis & Addy, 2014; Turner & Cacciatore, 1998; Ubelaker et al., 1969; Ungar et 

al., 2001). Dental erosion is caused by chemical dissolution of dental tissue by acids, and is 

predominantly caused by specific dietary items or illnesses (Grippo et al., 2004; Indriati & 

Buikstra, 2001; Oginni et al., 2003; Ritter et al., 2009; Robb et al., 1991; Zero, 1996). 

Most important in this research is attrition and abrasion, which provide in-depth detail 

on an individual's diet and cultural practices (Morse et al., 2013; Shykoluk & Lovell, 2010). In 

most cases, wear should not be seen as a pathology because it is a normal part of the 

masticatory process (Carranza et al., 2004; Dirks & Bowman, 2007; Smith, 1991; Williams & 

Woodhead, 1986). Indeed, occlusal wear in many species is crucial in allowing an efficient 

masticatory cycle (Ungar & M'Kirera, 2003; Ungar & Williamson, 2000). For example, in 

certain species wear can adapt the occlusal morphology of the teeth in a dentition so that 

foods can be processed consistently during the lifetime of an individual (Ungar, 2015). 

The wear profile between maxillary and mandibular teeth is formed by the circular 

motion of the mandible, which contacts the maxillary teeth or dietary items (Grimoud et al., 

2012; Hillson, 1996). The severity and pattern of the wear, such as wear direction and teeth 
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most affected, depends directly on the foods consumed (Lanyon & Sanson, 1986; Lavelle, 

1970; Raupp, 1985; Veiberg et al., 2007). It is suggested that hard, tough, and fibrous foods 

prevent efficient lateral movement of the mandible, instead of maximising sagittal movement 

that produces horizontal occlusal wear (Fiorenza et al., 2015; Grimoud & Gibbon, 2017). 

Studying the direction and pattern of wear can, therefore, provide insights into diet, although 

comparative data is still uncommon in the literature (e.g., Brabant, 1966; Esclassan et al., 

2009; Grimoud et al., 2012; Molnar, 1971; Smith, 1984). Additionally, which teeth are most 

affected by wear can provide information on food processing behaviours (Fiorenza et al., 

2015; Hillson, 1996). 

Many fossil hominins and hunter-gatherers show a relatively flat occlusal plane (Kaifu 

et al., 2003; Molnar et al., 1972). The softer diet of agriculturalists creates different wear 

patterns, with Smith (1984) showing that oblique wear is common. That said, recent research 

suggests that hunter-gatherer groups and agriculturalists have high variability in wear 

patterns (Grimoud & Gibbon, 2017; Kaidonis, 2008). At present, it may not be possible to go 

further than to say that oblique wear may represent a broad, mixed, non-specialised diet in 

hominins (Eshed et al., 2006; Lev Tov et al., 2003), and if accompanied by low overall wear a 

diet consisting of soft foods is likely. 

Wear has been studied in a variety of primates and is particularly well researched in 

humans (e.g., Bramblett, 1967; Cuozzo & Sauther, 2006; Deter, 2009; Elgart, 2010; Fiorenza 

et al., 2015; Grimoud et al., 2017; Janis, 1984; Morse et al., 2013; Teaford, 1982, 1983; Veiberg 

et al., 2007). Fossil hominins have also been well-studied (Clement & Hillson, 2013; 

Estebaranz et al., 2009; Fiorenza et al., 2011; Grine, 1986; Tobias, 1967; Ungar et al., 2001; 

Ungar & Grine, 1991). It was suggested by Robinson (1956) that differences in occlusal wear 

direction in the mandibular molars of P. robustus and A. africanus, with more on the lingual 

side on the former and buccal on the latter, is caused by an increase in arch width in P. 

robustus. This adaptation has been suggested to be a consequence of evolving large posterior 

teeth in P. robustus (Cachel, 1975). Since then other researchers have studied wear patterns 

in the South African hominin material (e.g., Grine, 1981; Wallace, 1975; Wolpoff, 1973, 1975). 

Taken as a whole it is evident there is no consensus on differences in both the severity and 

pattern of attrition (Grine, 1986). That said, except for Wolpoff, all researchers note that 
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Paranthropus teeth tend to display more even wear between buccal and lingual molar cusps 

than those of A. africanus. 

This relationship is explored by comparing how the direction of wear in the maxillary 

and mandible molars differs between species of hominins and extant primates. Comparisons 

between tooth types are also made as this offers insights into behaviour and diet. For 

example, populations that tend to use anterior teeth regularly for processing foods, or as 

tools, tend to have proportionally more wear on anterior teeth than posterior teeth (Liu et 

al., 2010; Molnar, 1972, 2008). Therefore, primates that tend to process foods with anterior 

teeth before consumption should be expected to have higher rates of wear than species 

which consume significant amounts of easy to process foods. 

8.2. Materials and Methods 

Broken, obscured and discoloured teeth are excluded from the analysis, because it 

may not be possible to record the appropriate wear score accurately. If a molar is un-sided or 

the tooth type debated in the literature, then wear was recorded but the tooth not included 

in the analysis. The total number of permanent teeth recorded for each species is highlighted 

in Table 8.1. 

Table 8.1. Number of permanent teeth for each sample recorded for occlusal wear. 

Species Observable Teeth 

H. naledi 147 

A. sediba 16 

P. robustus 318 

A. africanus 328 

Early Homo 44 

Baboons 880 

Chimpanzees 2498 

Drills 212 

Gorillas 2090 

Total 6533 

 

Molars were scored in accordance with the method of Scott (1979), and for all other 

teeth, the method of Smith (1984) was used. Scott's (1979) method divides teeth into 

quadrants, in which each quadrant is given a score from 1 to 10. A value of 1 means a tooth 

is unworn or has negligible wear facets, while a score of 10 describes complete loss of enamel. 
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Smith's (1984) method is similar but teeth are not divided into quadrants, and the scale is 

from 1 to 8. 

Most hominin teeth are isolated and not associated with a jaw, therefore all teeth 

were studied separately and not in relation to other teeth in a dentition. Because molars are 

divided into quadrants, the direction of wear can be estimated. The mean value for each 

quadrant of each tooth is calculated and then species compared. Notably, lingual and buccal 

quadrants are compared, as well as anterior and posterior teeth. 

8.3. Results 

The results highlight the reliability of using wear in reconstructing diet and behaviour, 

with the comparative primate samples fitting accurately with behavioural studies (Figure 8.1). 

With the most worn teeth of chimpanzees and baboons being the central incisors, whereas 

for gorillas it is the first molars. This fits with chimpanzees and baboons using anterior teeth 

more often to process foods before consumption (Boesch et al., 2002; Isabirye-Basuta, 1989; 

Macho, 2014; Phillips & Lancelotti, 2014). Homo naledi stands out for having the highest wear 

of all species for both first and second premolars, yet has the lowest wear scores for first and 

second molars (Table 8.2). The wear pattern of H. naledi is the same as baboons and 

chimpanzees with the central incisors the most worn teeth. Paranthropus robustus, on the 

other hand, has an entirely different wear pattern, with the first molars having the most wear 

and the anterior teeth, particularly the central incisors, noticeably less worn than the other 

species (Figure 8.1).  

Paranthropus robustus has the flattest molar wear of all the species studied (Table 

8.3). The extant primate samples show greater differences between buccal and lingual cusps 

in both in the upper and lower dentition than the hominins (Figure 8.2 and 8.3). Out of the 

hominin species, H. naledi has the biggest difference between buccal and lingual wear, which, 

particularly in mandibular teeth, approaches the extant primate samples in steepness. 

Indeed, some of the H. naledi molars show extreme oblique wear (Chapter 5). 
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Table 8.2. Mean wear scores for each species split by tooth type. Anterior teeth and premolars are 

recorded following Smith (1984) and molars following Scott (1979). 

Species I1 I2 C PM1 PM2 M1 M2 M3 

Chimpanzees 4.69 4.30 3.67 2.88 2.85 4.01 3.99 3.60 

Gorillas 3.86 3.36 3.35 2.61 2.68 4.36 3.67 3.47 

Baboons 5.54 5.20 3.29 2.90 2.95 5.01 4.17 3.19 

P. robustus 3.32 3.00 2.82 2.83 2.95 4.04 3.64 2.98 

A. africanus 3.60 2.85 3.28 2.85 2.88 4.10 3.67 2.89 

H. naledi 4.13 2.56 2.96 3.11 3.40 3.92 3.11 3.19 

 

 

Figure 8.1. Mean wear scores for each species split by tooth, anterior teeth and premolars recorded 

following Smith (1984) and molars following Scott (1979). 

 

Table 8.3. Mean wear scores for all three permanent molars combined, split by buccal and lingual 

and by the jaw. Wear score is calculated following Scott (1979). 

Species Upper  buccal Upper Lingual Lower Buccal Lower Lingual 

Chimpanzees 3.45 4.24 4.36 3.56 

Gorillas 3.44 4.43 4.35 3.43 

Baboons 3.42 4.5 5.11 3.8 

P. robustus 3.72 3.91 3.64 3.28 

A. africanus 3.23 3.54 3.88 3.45 

H. naledi 3.22 3.65 3.96 3.22 
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Figure 8.2. Mean wear scores for all upper molars split by buccal and lingual. Wear score is 

calculated following Scott (1979). 

 

 

Figure 8.3. Mean wear scores for all lower molars split by buccal and lingual. Wear score is 

calculated following Scott (1979). 
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8.4. Discussion 

Wallace (1975) looked for different types of wear in the South African hominins, 

including occupational, ritual, and dietary. He found evidence of only normal dietary wear. 

Again, that is the same results as found here, with one potential exception. This individual is 

discussed at the end of this chapter as a case study. 

Differences in wear patterns between species will be observable based solely on 

dental morphology, enamel properties and dental developmental timing (Grimoud et al., 

2017; Lavelle, 1970). In diverse primate species, different teeth erupt at different times and 

therefore individual teeth may be in occlusion comparatively longer in certain species. 

However, in this research, only the general trends are studied, with anterior vs. posterior and 

buccal vs. lingual wear strongly related to diet (Burnett et al., 2013; Fiorenza et al., 2011). 

Contrary to Robinson’s (1956) suggestion, both A. africanus and P. robustus share the 

same pattern of wear, as do all other samples in this project. Upper lingual surfaces are on 

average more worn than buccal surfaces, with the opposite relationship found on lower 

molars. That said, P. robustus has the flattest wear of any species and therefore likely explains 

why in a smaller sample Robinson found the opposite pattern, i.e. the wear is close to flat, 

and therefore sub-samples will probably show both directions of wear. Wallace (1975) notes 

that P. robustus tends to have roughly horizontal wear planes in incisors, whereas A. africanus 

wear planes are more angled. Wallace suggests this wear difference may, at least partly, be 

due to differences in food crushing. Wallace (1975) also suggests the canines and incisors of 

P. robustus may have functioned as an edge to edge occlusion for crushing food items, 

effectively meaning all teeth were functionally similar with little tearing or slicing with 

anterior teeth. The results of this study support this conclusion, with the anterior teeth 

appearing not to be regularly used in processing foods considering the low rate of wear 

compared with other species. Furthermore, P. robustus has similar rates of wear on all 

anterior teeth and premolars, perhaps also suggesting similar masticatory duties were 

performed. In sum, the results here agree with previous research that shows P. robustus has 

flat molar wear compared with other hominins (Cachel, 1975; Grine, 1981, 1986; Wallace, 

1975). 
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Figure 8.4. Mandibular wear in the different hominin species. A) MH 2 (A. sediba) right anterior 

teeth and premolars B) the same individual as A, right molars; C) UW 101-1261 (H. naledi); D) SK 15 

(early Homo); E) SK 23 (P. robustus); F) STW 404 (A. africanus). 
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Wallace (1975) notes that P. robustus specimens tend to display lower cusps on molars 

than those of A. africanus. Robinson (1956) made a similar comment regarding the first 

premolars of P. robustus, mentioning their low and bluntly rounded cusps. Robinson also 

commented that after very little wear the cusps become flat and rounded tubercles. Wallace 

(1975) built on this by observing that not only do P. robustus posterior teeth wear flat, but 

they do not seem to expose any dentine before they do. In A. africanus on the other hand 

dentine exposure occurs before the cusps of posterior teeth have worn horizontal (Figure 

8.4e,f). 

It is suggested that the flat occlusal wear observed in P. boisei may be the result of 

eating underground storage organs (Macho, 2016), with comparisons with hunter-gatherer 

groups used as evidence (Smith, 1984). Tobias (1967) notes that OH 5 (P. boisei), shows 

substantial wear considering the third molars were not fully erupted at the time of death. He 

comments on the fact that many teeth show cusps completely reduced and large areas of 

dentine exposed. He then compares this specimen to South African hominins (STS 52a, STS 

37, SK 13, SK 52, and SK 49), noting that OH 5 has substantially faster rates of wear. More 

recent research, using methods such as microwear and isotopic analysis, has suggested the 

diet of South African hominins differed significantly from that of P. boisei, conceivably 

supporting Tobias’s observations.  

A specimen assigned to early Homo, SK15, has been noted for its wear. Particularly 

the rather even wear on the buccal and mesial cusps of the lower left first molar, with this 

type of wear not seen in other Swartkrans teeth (Wallace, 1975; Figure 8.4d). This wear is 

very similar to that observed in H. naledi (Figure 8.4c). However, H. naledi does not seem to 

produce a prominent dentine patch on the mesial lingual quadrant until the three buccal 

dentine islands are well established (Figure 8.5). This difference in wear may signify slight 

dietary differences between these species. The wear on the mandibular teeth of H. naledi is 

very similar across individuals and molars, with three dentine islands tending to form on the 

buccal side before further wear occurs. Similar wear is also seen in other Homo specimens, 

such as a H. erectus specimen, KNM-ER 992.  
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Figure 8.5. Homo naledi molar wear. The severity of wear increases from left to right. Specimens 

from left to right: UW 101-1261; UW 101-377; UW 101-001; LES 1. LES 1 edited from Hawks et al. 

(2017). 

 

Dentine islands are localised areas in which the dentine has been exposed on the 

surface through occlusal wear (Figure 8.5). The wear pattern of A. sediba is most similar to H. 

naledi, although due to the small number of teeth further comparisons are not possible. 

However, as in H. naledi, MH 2 exhibits three dentine islands on the buccal side of the 

mandibular first molar and has corresponding heavy wear on the anterior teeth, a pattern 

very similar to UW 101-1261 (Figure 8.4a,b). 

8.4.1. Dietary and behavioural inferences 

The flat wear of P. robustus fits with the hypothesis that they had a specialised diet, 

as opposed to regularly consuming a variety of food types (Eshed et al., 2006; Lev-Tov et al., 

2003). Additionally, comparisons with human hunter-gatherer groups, as well as orang-utans, 

suggest a diet of tough or fibrous foods likely created these flat occlusal surfaces (Fiorenza et 

al., 2015; Grimoud et al., 2017; Kaidonis, 2008; Kaifu et al., 2003; Molnar, 1972; Smith, 1984). 

Therefore, these results add further support to the idea that P. robustus was a specialised 

feeder, potentially on low-quality vegetable matter. Additionally, the less worn anterior teeth 

compared to other hominins suggests they were not commonly used for extensive food 

processing, supporting the conclusion that their diet varied little compared with the other 

species.  
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Homo naledi individuals appear to have used their anterior teeth commonly for 

processing foods, with central incisors displaying the highest mean wear score, a pattern seen 

in chimpanzees and baboons but not gorillas, P. robustus or A. africanus (Figure 8.1; Fiorenza 

et al., 2015; Hillson, 1996). Homo naledi also has the steepest molar wear of the hominins 

(Figures 8.2 and 8.3), potentially relating to high levels of grit in their diets (Chapter 5; 

Grimoud et al., 2017; Macho, 2016). A varied, non-specialised, diet may also be involved in 

creating this wear pattern (Eshed et al., 2006). What is clear is the vast difference between P. 

robustus and H. naledi, with completely different wear patterns. Australopithecus africanus 

falls between these two species for both molar slope and which teeth have the severest wear. 

Australopithecus sediba and early Homo show similar patterns to H. naledi, however, the 

sample for these species are too small for firm conclusions. 

There are a few cases of asymmetrical wear. Figure 8.6 shows two such examples. The 

lateral lower right incisor of SK 23 (P. robustus) has erupted inferiorly to its normal position. 

The surrounding teeth are also crowded. The left and right incisors show different degrees of 

wear with the right teeth having more dentine exposed (Figure 8.6a). Another specimen with 

similar differences between sides is STS 52 (A. africanus), showing higher wear on the right 

upper canine than the left, again likely associated with a crowded lower dentition (Figure 

8.6b; Oppenheimer, 1964). As a whole, however, no species shows substantially more wear 

on one side over the other, for any tooth group. 

 

 

Figure 8.6. Asymmetric wear (arrows) A) SK 23 (P. robustus), mandible. B) STS 52a (A. africanus), 

maxilla. 
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8.5. Conclusions 

Overall, the results of this study agree with that of the majority of previous research, in 

that P. robustus clearly has flatter occlusal wear than other South African hominins. 

Furthermore, P. robustus has the flattest wear of all species studied in this thesis, with the 

extant primates having steeper wear than those of the fossil hominins. Enamel and 

morphology properties are clearly important, but the results suggest that P. robustus diet 

differed from the other hominins and perhaps hints at a specialised diet of low-quality 

vegetation. Homo naledi likely used their anterior teeth for processing foods more than the 

other hominin samples, and considering this species has the steepest molar wear of the 

hominins, likely had a varied diet. 
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9 .  Chapter 9: Abscesses, periodontal disease and 
antemortem tooth loss 

 

9.1. Introduction 

Abscesses, periodontal disease, and Antemortem Tooth Loss (AMTL) are considered 

together in this chapter. Studying these pathologies concurrently is justified because they are 

recorded on the alveolar bone of the jaw rather than the tooth, and secondly, they are all 

limited in terms of numbers of observable specimens. Indeed, only a couple of examples of 

all three are present in the entire hominin sample, so inferences into diet and behaviour are 

not possible. Instead, only a limited number interesting examples are presented.  

Antemortem tooth loss can be caused by a variety of factors. Most commonly in 

modern day populations caries is responsible. In the past dental wear would have played a 

much greater role. However, as the analysis of the individuals from the medieval Gloucester 

site demonstrates, just because individuals from a site have extremely high rates of caries 

does not necessarily mean AMTL may stand out (e.g., Caglar et al., 2007; Novak, 2015; Slaus 

et al., 1997; Vodanović et al., 2005). Other factors are likely important, such as periodontal 

disease, fractures, and extreme attrition (Caglar et al., 2007; Esclassan et al., 2009; Whittaker 

et al., 1998). Furthermore, there may be differences in patterns of AMTL between 

populations. For example, AMTL in posterior teeth of certain populations is more likely to be 

produced by heavy attrition or caries, whereas for anterior teeth extra-masticatory behaviour 

is a likely cause (Lukacs, 2007; Molnar, 2011). Therefore, in populations such as hunter-

gatherers and fossil hominins in which caries occurrence is relatively rare, and occlusal wear 

high, the likelihood is that the vast majority of AMTL is not caused by caries. 

Periodontal disease develops when certain bacteria accumulate around the gingival 

margins (Eke et al., 2012; Mikuls et al., 2014; Ogden, 2008). It is widespread and prevalent in 

mammals and can lead to significant bone destruction (Branch-Mays et al., 2008; Cochran, 

2008; Hillson, 1996). For example, in modern day Britain 43% of the population display 

periodontal disease (Morris et al., 2001). Periodontal disease is often split into gingivitis and 

periodontitis. Gingivitis only involves soft tissue and therefore cannot be assessed in the fossil 

record. Both gingivitis and periodontitis are usually painless with the former not necessarily 
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leading to the latter (Page & Kornman, 2000).  Periodontitis is not reversible, as gingivitis can 

be, and is, therefore, a progressive and irreversible condition (Hajishengallis, 2015). However, 

periodontitis can be slowed by changes in oral health and diet (Ogden, 2008). The maxilla 

tends to be more susceptible to periodontal disease than the mandible, likely due to 

differences in bone thickness but it may also be related to the complexity of the root 

morphology of maxillary molars (Kerr, 1998). Periodontal disease has been associated with a 

number of different conditions, including diet (Lieverse, 1999), heart disease (Geismar et al., 

2006), respiratory disease (Scannapieco & Ho, 2001), premature birth (Moore, 2002), vitamin 

D deficiency (Davideau et al., 2004), social status (Borrell et al., 2004), osteoporosis (Jeffcoat 

et al., 2003), and pregnancy (Katz et al., 2000). Rates have increased through time, with higher 

periodontal frequencies in Neolithic populations and further increases in the Bronze Age and 

Medieval periods (Hildebolt & Molnar, 1991; Molnar & Molnar, 1985). Periodontal disease 

has only rarely been reported in fossil hominins (e.g., Grine, 1981; Grine et al., 1990; Hildebolt 

& Molnar, 1991). 

Abscesses and other voids are commonly found in the mandible and maxilla of humans 

and other animals (Miles & Grigson, 2003; Sauther et al., 2002). Such voids often develop due 

to the exposure of a tooth’s pulp chamber. Many potential processes, including heavy wear, 

trauma and caries, can cause the exposure of a pulp chamber (Linn et al., 1987; Nair, 2004). 

As well as abscesses, other types of voids include cysts, fenestrations and granulomata (Nair, 

2004; Ogden, 2008). Although it may seem harmless to call all such voids abscesses, there 

have been concerns raised about their incorrect use (Dias & Tayles, 1997; Hillson, 2005). The 

main issue is that the majority of voids may be painless granulomata, with evidence 

suggesting less than a third may be chronic abscesses (Ogden, 2008). However, given the fact 

that a granuloma can become a cyst and both of these an abscess, there will be times when 

a lesion will be hard to decipher in the fossil record. Moreover, in comparative studies, there 

is much disagreement over what counts as an abscess (Ogden, 2008). Therefore, perhaps the 

most pertinent figure to present is the total number of teeth with associated voids in the 

maxilla or mandible. 

 

The frequency of abscessing varies substantially among populations of modern 

humans, and also differs among species of primates (Dias & Tayles, 1997; Legge, 2012; Lukacs, 
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1992; Miles & Grigson, 2003; Roney, 1959; Schultz, 1956). Great apes appear to have higher 

rates than other primates, with the canine the most frequent tooth involved (Schultz, 1956). 

Legge (2012) looked at the effect tooth breakage may have on abscess rates in chimpanzees 

but found no relationship between the two. His study also failed to show much difference 

between the two species of chimpanzees and between sexes, leading him to conclude that 

occlusal attrition caused by diet was more important than social activity or tooth crown 

height. 

9.2. Methods 

The majority of the hominin fossils are isolated teeth, and therefore the sample for 

this chapter is reduced to only a few well preserved specimens. Substantial bias may be 

present due to teeth with periodontal disease being supported by less bone and therefore 

more likely to become detached from the maxilla or mandible. For this reason comparison 

with the extant primate collection is not made. However, particular cases can give insight into 

the lifeways of the individual and therefore case studies of certain specimens are presented. 

Periodontal disease is commonly recorded if there is a gap larger than 2mm from the 

CEJ to the alveolar crest. However, such a gap may not necessarily be the result of periodontal 

disease. Heavy occlusal wear and loss of opposing teeth may lead to further eruption (i.e., 

supereruption) of a tooth, which may artificially resemble periodontal disease in the 

archaeological record; however, this possibility has been debated in the literature (Clarke & 

Hirsch, 1991; Gottlieb & Orban, 1933; Newman & Levers, 1979; Odgen, 2008; Picton, 1957; 

Sagne & Olsson, 1977). The small sample size studied here requires that the cases of potential 

periodontal disease are discussed and described separately. 

As mentioned in the introduction of this chapter, all voids present in a maxilla or 

mandible that are associated with a tooth root apex were recorded. A differential diagnosis 

of each void was conducted, using criteria described by Dias and Tayles (1997) and Ogden 

(2008). If a lesion is not associated with a root apex, then it is not included here since a 

systemic disease such as multiple myeloma and metastatic carcinoma is likely responsible 

(Ogden, 2008). Such an example is not found in the hominin sample; however, instances were 

observed in the extant primates. 
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For all samples, the presence of abscesses, periodontal disease and AMTL was based 

of the criteria outlined by Ogden (2008). For the extant primate sample, frequencies for all 

variables found in a species are displayed as a percentage of the number of tooth positions 

with associated mandible or maxilla. A tooth needs to have all the surrounding bone present 

to be included i.e. past the border with adjacent teeth. Bone loss caused by an abscess, cyst 

or granuloma around a tooth is not considered as periodontal disease (Hildebolt & Molnar, 

1991). 

9.3. Results 

From the entire hominin sample there are only two abscesses, four potential AMTL’s 

and six teeth with periodontal disease (Table 9.1). There are no cases of these three 

pathologies in any of the primary dentitions (Table 9.2). 

 

Table 9.1. Frequencies of abscesses, AMTL and periodontal disease for all permanent hominin teeth. 

Permanent teeth Abscess AMTL Periodontitis 

Teeth observable 450 854 473 

Teeth with pathology 2 0-4 6 

Total teeth 452 858 479 

% 0.44 0-0.47 1.25 

 

 

Table 9.2. Frequencies of abscesses, AMTL and periodontal disease for all deciduous hominin teeth. 

 

 

 

 

 

Both abscesses and three of the potential AMTL are from the early Homo specimen SK 

80. The other AMTL is from the A. africanus specimen STW 14. These four potential cases of 

AMTL, however, are all recorded as not possible to determine if the missing tooth was lost 

ante or postmortem. In STW 14 it looks as if the second premolar has been lost antemortem; 

however, this could easily not be the case, with potentially post-mortem processes looking 

superficially like an antemortem loss. Similarly, it is more probable that the teeth of SK 80 

Deciduous teeth Abscess AMTL Periodontitis 

Teeth observable 40 86 44 

Teeth with pathology 0 0 0 

Total teeth 40 86 44 

% 0 0 0 
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were lost postmortem given the lack of alveolar resorption in the tooth sockets. All cases of 

periodontal disease are on P. robustus dentitions, with five teeth from SK 12 and one from SK 

65.  

Frequencies of AMTL, periodontal disease and abscesses for the comparative primate 

samples are presented in Table 9.3. Gorillas and chimpanzees have similar rates, but baboons 

stand out as having extremely low levels of all three pathologies, with only one case of an 

abscess and three AMTL. 

 

Table 9.3. The frequency of abscesses, AMTL, and periodontal disease in the competitive extant 

primate samples. 

Pathology Variable Chimpanzees Gorillas Baboons 

Abscesses Teeth without 2414 2060 802 

 Teeth with 50 39 1 

 Total teeth 2464 2099 803 

 % 2.03 1.86 0.12 

AMTL Teeth without 56 2090 790 

 Teeth with 2458 16 3 

 Total teeth 2514 2106 793 

 % 2.23 0.76 0.38 

Periodontal disease Teeth without 2000 1713 797 

 Teeth with 423 355 0 

 Total teeth 2423 2068 797 

 % 17.46 17.17 0.00 
 

9.4. Discussion 

There has been much debate surrounding the early Homo specimen SK 80, also now 

commonly referred to as SK 847 due to two other fragments being incorporated (Clarke & 

Howell, 1972; Grine et al., 1993, 2013; Wolpoff, 1971). This partial maxilla also has much of 

the frontal cranium present (Figure 9.1a) and has been associated with different mandibles, 

including SK 45 and SK 74a (Clarke & Howell, 1972; Wolpoff, 1971). Only one anterior tooth 

remains, with severe wear visible (Figure 9.1c). There are what looks like three abscesses on 

the buccal surface associated with the maxillary incisors (Figure 9.1d). Two of these 

superficially look like post-mortem damage; however, this is likely further damage to an 

already existing void, given the definite abscess associated with the left upper central incisor 

(Figure 9.1e). The left upper central incisor is not present, likely due to post-mortem factors 
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(although ATML section above).  There is also what is potentially an abscess on the lingual 

surface, from what was likely a drainage channel associated with right lateral incisor, with this 

tooth again not being present (Figure 9.1b). However, a CT-scan of this specimen is needed 

to rule out morphological features. Given the heavy wear on these teeth, the abscesses are 

almost certainly a result of heavy wear exposing the pulp chamber. The abscesses originate 

from the apices of the incisor roots and are therefore unlikely to represent a systemic disease 

such as multiple myeloma (Dias & Tayles, 1997). The voids visible best fit the description of 

an abscess rather than a cyst or granuloma, with a rounded thickened rim around the void 

(Figure 9.1e; Dias & Tayles, 1997; Ogden, 2008). 

The maxillary teeth of SK 12 (P. robustus) show alveolar resorption. The specimen does 

also show post-mortem damage. However, there appears to be a consistent 3-5mm gap 

between alveolar bone and the CEJ, which is almost certainly antemortem in nature given the 

complete alveolar bone in some areas (Figure 9.2). The left upper canine of SK 65 (P. robustus) 

has a sufficient gap antemortem to also count as periodontal disease. Another case of 

periodontal bone loss has been described in the literature, STS 24 which is assigned to A. 

africanus (Grine, 1981; Grine et al., 1990). 

Compared with other pathologies and defects studied in this thesis periodontal 

disease is perhaps the most unreliable when inferring diet or behaviour. Partly this is due to 

the issue of continuous eruption masking frequencies, but mainly because of the small 

number of complete maxilla and mandibles compared with the number of teeth. A further 

issue is that most human populations are affected by periodontal disease regardless of oral 

hygiene measures (Clarke & Hirsch, 1991; Newman, 1999; Ogden, 2008). Therefore, it is not 

adequately understood what effect genetic factors, diet and oral health have on periodontal 

disease rates at a population level. Consequentially, trying to disentangle meaning from 

frequencies for fossil species is difficult. For example, it has been suggested that some 

individuals may be predisposed to periodontitis at an early age, with a possibility that around 

10% of individuals may be particularly susceptible and a similar amount being particularly 

resistant (Anerud et al., 1983; Kerr, 1998; Ogden, 2008). 
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Figure 9.1. SK 80 (early Homo): A) overview of the entire specimen; B) potential lingual abscess; C) 

heavy wear on left lateral upper incisor; D) buccal abscesses; E) close up of a buccal abscess. 
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Figure 9.2. SK 12 (P. robustus), maxilla showing likely periodontal disease. 

 

9.5. Conclusion 

 There is a very limited number of instances of abscesses, periodontal disease and 

AMTL in the fossil record, however, the examples presented here explore a few new examples 

of dental pathology in South African early hominins. Additionally, the abscesses on the maxilla 

of SK 80 highlight that this individual used its anterior teeth extensively, to the point that the 

pulp chamber was exposed on multiple teeth. CT-scans of this specimen may provide further 

information on the extent and spread of these abscesses. This is the earliest hominin example 

of a dental abcess and shows that this early Homo individual was able to cope with several 

abscesses at the same time, clearly surviving for a significant amount of time. 
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1 0 . Chapter 10: Tertiary dentine 
 

Dentine is exposed on around half of the teeth in this study (Chapter 8). Therefore, 

studying dentine properties may be just as important as enamel, particularly in populations 

that exhibit heavy wear. Comparatively few studies have looked at dentine in this way (e.g., 

Geissler et al., 2015; Pampush et al., 2016). In this chapter tertiary dentine, one aspect of 

dentine that can be seen macroscopically, is studied. There is often confusion as to what to 

call this phenomenon. ‘Secondary dentine’, ‘tertiary dentine’, ‘irregular secondary dentine’ 

and ‘reparative dentine’ have all been used in the literature to describe this occurrence (e.g., 

secondary dentine: Ortner, 2003; tertiary dentine: Foster et al., 2013; irregular secondary 

dentine: Hillson, 2005). Here the descriptions in Foster et al. (2013) is followed and the term 

tertiary dentine used.  

Primary dentine is produced during tooth formation and is succeeded by secondary 

dentine which is an ongoing slow process (Rutherford et al., 1995). Tertiary dentine forms as 

protection against insult, caused primarily by excessive wear, microbial infection and caries 

(Bjørndal, 2001; Fischer et al., 1970; Foster et al., 2013; Mjör & Karlsen, 1970; Ricucci et al., 

2014; Stanley et al., 1966; Wennberg et al., 1983). This type of dentine can be formed in two 

ways. Reactionary, in which new dentine forms from the pre-existing odontoblast, and 

reparative in which new odontoblast-like cells are formed because the original odontoblasts 

have died (Ricucci et al., 2014). Tertiary dentin can only be formed when an odontoblast is 

directly affected by stimuli, and so the position and structure depends on the type and 

intensity of the force (e.g., occlusal wear and caries). The colour of tertiary dentine is distinct 

from the surrounding primary dentine, being usually darker in appearance (Hillson, 2005). It 

is rarely recorded in the literature, and cross-species studies have not been carried out on 

fossil hominins, although its presence has been noted (e.g., Margvelashvili et al., 2013). 

10.1. Materials and Methods 

A major issue with comparing frequencies of tertiary dentine is the amount of post-

mortem discoloration on many of the hominin teeth. Particularly common is for dentine 

islands on the occlusal surface to be stained but for the surrounding enamel to appear 

unaffected. Teeth with such staining are excluded from analysis. 
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Therefore, only teeth that have dentine exposed on the occlusal surface and are not 

damaged or obscured by post-mortem damage are included. Tertiary dentine is then marked 

as present or absent for each tooth. Clear colouration changes that are undoubtedly 

antemortem in nature are recorded as tertiary dentine (Figure 10.1). Only obvious areas of 

tertiary dentine that are visible with the naked eye are included. 

 

 

Figure 10.1. Gorilla (M 786) lower left first premolar showing tertiary dentine formation. 

 

10.2. Results 

Of the three hominin species with large enough sample sizes to allow comparisons, all 

have very similar tertiary dentine frequencies (Table 10.1), with no statistically significant 

differences between them (P. robustus vs. H. naledi: X2= 0.326, 1 df, p= 0.5679). The extant 

primate samples have substantially higher rates, with gorillas standing out with over 90% of 

teeth with dentine exposed having tertiary dentine. The same order for the extant primate 

sample is shown in deciduous teeth, with gorillas having the highest frequency followed by 

chimpanzees and then baboons (Table 10.2). 
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Table 10.1. The frequency of tertiary dentine on the permanent teeth of the different species. 

Species Tertiary dentine present No Tertiary dentine Tertiary dentine % 

A. africanus 12 78 13.33 

P. robustus 9 66 12.00 

H. naledi 5 26 16.13 

Baboons 215 321 40.11 

Chimpanzees 448 501 47.21 

Gorillas 917 67 93.19 

 

 

Table 10.2. The frequency of tertiary dentine on the deciduous teeth of the comparative primate 

samples. 

 

 

 

 

 

 

 

10.3. Discussion 

Little is known regarding the processes and properties of tertiary dentine (Ricucci et 

al., 2014). However, it is known this material forms as a response to stressors, mainly caries 

and heavy wear (Bjørndal, 2001; Foster et al., 2013; Mjör & Karlsen, 1970; Stanley et al., 1966; 

Wennberg et al., 1983). Why species differences exist has rarely been explored. The results 

show that hominins group closely together. The fact that other variables in this thesis vary 

dramatically among hominin species may suggest the formation of tertiary dentine is more 

closely linked to phylogeny rather than diet. However, the extant primates studied are 

substantially different. The differences between the extant primate samples does not appear 

to be an artefact or a bias of more worn teeth in particular samples, with all species 

represented by a wide range of wear stages that all cluster around the same mean (Chapter 

8). Additionally, the deciduous teeth for the comparative primate sample follow the same 

pattern as the permanent teeth suggesting genuine species differences. Differences in the 

speed of wear between species may be an influencing factor with wear that is too fast 

potentially not allowing enough time for tertiary dentine formation (Fischer et al., 1970; 

Foster et al., 2013; Mjör & Karlsen, 1970; Ricucci et al., 2014; Stanley et al., 1966; Wennberg 

et al., 1983). However, it the main factor is likely dentine properties, with certain species, 

Species Tertiary dentine present No Tertiary dentine Tertiary dentine % 

Baboons 16 35 31.37 

Chimpanzees 113 128 46.89 

Gorillas 131 61 68.23 



150 
 

particularly gorillas, clearly able to lay down tertiary dentine faster and more often. The high 

speed of tertiary dentine formation in gorillas has potentially evolved as a consequence of 

their diet to allow continuation of sharp cutting edges. However further research is needed 

to prove this hypothesis. Additionally, when frequencies for different hominin groups, 

particularly modern humans, have been researched, further conclusions on what the low rate 

of tertiary dentine in the fossil hominins means in terms of diet can be further explored.  
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1 1 . Chapter 11: Case studies 
 

11.1. Chimpanzee with amelogenesis imperfecta 

Amelogenesis imperfecta (AI) is a group of genetic conditions that create enamel 

defects, affecting one in every 700 to 14,000 humans (Crawford et al., 2007; Sundell & Koch, 

1984). A variety of different genetic mutations can be responsible for these heritable diseases 

(Horvath et al., 2014; Kelley & Swanson, 2008; Smith et al., 2016; Wang et al., 2015). Pitting 

and plane form enamel hypoplasia is common, but abnormal enamel density, thickness and 

coloration is also associated with different forms (Aldred et al. 2003; Chamarthi et al., 2012; 

Huckert et al., 2015; Mardh et al., 2002; Mehta et al., 2013; Ozdemir et al., 2005; Poulter et 

al., 2014; Schuurs, 2012; Wright, 1985, 1993). To differentiate between different types of AI, 

clinical, histological and radiographic methods have been used (Crawford et al., 2007; Mehta 

et al., 2013; Wang et al., 2015).  

AI has yet to be implicitly stated to be present on a non-human primate dentition, 

however research has implicated genetic factors in the formation of severe defects and there 

are also descriptions of specimens that fit with what is now classified as AI (Jones & Cave, 

1960; Miles & Grigson, 2003; Tomes, 1898). Given the large amount of mutations that can 

cause these heritable conditions in humans it is perhaps surprising that more examples of 

similar defects in primates have not been described. This likely reflects the much greater 

sample sizes as well as proportionally more research that is carried out on humans. 

11.1.1. Differential diagnosis 

Although many of the extant primate and fossil hominin dentitions display enamel 

defects, with multiple types of hypoplasia commonly occurring (Chapter 6), only one 

individual displays defects that are consistent with a diagnosis of AI. This specimen, M 299, is 

an adult female chimpanzee. Pitting enamel hypoplasia is visible on all anterior teeth as well 

as the maxillary first premolars and both sets of lower premolars (Figure 11.1). There are no 

visible defects on the molars. Apart from the defects themselves the teeth appear normal in 

terms of size and morphology.  
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Figure 11.1. Female chimpanzee showing enamel defects and a congenital missing tooth. A) 

buccal/Labial view of enamel defects on anterior teeth; B) congenital missing left mandibular first 

premolar; C) buccal view of the lower right first premolar, with clear pitting/plane form defects; D) 

buccal view of the lower left lateral incisor, with clear pitting/plane form defects. 

 

The pitting is irregular in both shape and size, but small circular depressions are most 

common (Figure 11.1a,d), with some larger irregular defects that resemble plane form defects 

(Figure 11.1c). Hypoplasia is most defined on the buccal surface and the cervical half of the 

crown. The anterior teeth all appear to be equally effected, with roughly the same position 

and severity of defects (Figure 11.1a,b). There is also a ‘mottled’ or ‘wavey’ appearance to the 

enamel on these teeth. The colour of the enamel appears normal; however, dark post-

mortem coloration may mask defects. The mandibular left first premolar is congenitally 

absent (Figure 11.1b). There is no evidence of caries, ante-mortem enamel fractures, 

periodontal disease, or severe occlusal attrition. Small amounts of calculus are visible on the 

posterior mandibular teeth. 
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The pattern of defects and the teeth affected support a diagnosis of AI for M 299. The 

uniform pattern of defects on anterior teeth, and complete lack of defects on molars, strongly 

suggests these defects are not related to a physiological stress during development (Boughner 

et al., 2015; Crawford et al., 2007; Guatelli‐Steinberg, 2015). Additionally, the pattern of 

defects do not resemble those caused by congenital viruses; vitamin deficiencies, 

malnutrition, and fluorosis and other mineral contaminants in humans (Hillson, 2014; 

Ioannou et al., 2015; Thylstrup & Fejerskov, 1978). A congenitally missing tooth adds further 

support to the diagnosis of AI, as these two conditions are commonly found together (Mehta 

et al., 2013). 

Of the four main AI types that have been commonly categorized in humans, the 

characteristics on this chimpanzee’s dentition match those of the Hypoplastic (Type 1) variety 

(Mehta et al., 2013; Shivhare et al., 2016; Wright, 1993). In line with this variety there is little 

or no colouration change visible, no obvious reduction in size or unusual interproximal spacing, 

and there is clear enamel pitting and plane form defects covering large areas of the crown in 

multiple teeth. Specifically the defects look indistinguishable from those recorded in humans 

as Type 1A (Seow, 1992; Witkop, 1988), which is characterized by enamel with pitting that 

varies from pinpoint to pinhead in size and is found predominantly on the buccal surfaces of 

permanent teeth (Witkop, 1976). It is also common in this condition for some teeth to show 

no visible defects (Witkop, 1988), likely explaining why the molars in this individual seem 

unaffected; however postmortem coloration and ante-mortem wear may conceal defects. 

This type of AI creates the least amount of dental issues for human patients (Seow, 1992); 

therefore potentially explaining the relatively good health, except for the defects themselves, 

of this chimpanzees teeth.  

Although other potential cases of AI in primates need to be confirmed, it is suggestive 

that the range of defects exhibited in non-human primates may be as diverse as in humans 

(e.g., Tomes, 1898; Miles & Grigson, 2003). It is also likely that many examples have been 

overlooked in primate skeletal collections, particularly in light of recent DNA advancement 

showing just how diverse AI defects can be. DNA analysis of this individual as well as additional 

observations of AI in the dentitions of other primates would further our understanding of 

these enamel genetic disorders in primates as a whole. 
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No causes of AI were identified in the hominin material. However, this case study 

highlights that often whole dentitions are needed to know for certain if defects are caused by 

AI. Therefore, certain pitting and localised defects that have been described in Chapter 6 may 

have a genetic origin but given the fragmentary nature of the fossil record diagnosis is not 

possible. 

11.2. Australopithecus africanus  root grooves 

Many human samples have instances of unusual dental wear that was caused by non-

masticatory activities requiring repetition of the same action (Milner & Larsen, 1991). In the 

hominin fossil record one particular type of non-masticatory wear has been commonly 

described, the so-called toothpick, or interproximal, groove (Boaz & Howell, 1977; Bouchneb 

& Maureille, 2004; Brown & Molnar, 1990; Castro et al., 1997; Frayer & Russell, 1987; Hlusko, 

2003; Lozano et al., 2013; Ricci et al., 2014; Sun et al., 2014; Turner & Cacciatore, 1998; 

Ubelaker et al., 1969; Ungar et al., 2001). Although there is now a consensus that most of 

these grooves are caused by the repeated placement of a non-dietary item in these specific 

locations, there is debate in the literature as to why such behaviour was performed. Removing 

food particles, grit-laden saliva, therapeutic relief and other pathologies have all been 

associated with these grooves (Calcagno & Gibson; 1991; Lozano et al., 2013; Turner & 

Cacciatore, 1998; Wallace, 1974). The objects used may be wide-ranging and difficult to infer 

from the fossil record, with Kaidonis et al. (2012) describing interproximal grooves in 

Australian Aborigines created by passing kangaroo tendon between molars. 

Grooves are most commonly found in the interproximal areas of posterior teeth; 

however, similar grooves have been found on anterior teeth (Formicola, 1988; Frayer, 1991; 

Ungar et al., 2001). Micro striations are often present on surfaces with interproximal grooves, 

and these tend to be orientated buccal-lingual (Bouchneb & Maureille, 2004; Grine et al., 

2000; Hlusko, 2003; Lozano et al., 2013; Ungar et al., 2001). Such striations have also been 

found on teeth that do not have a clear groove, with researchers suggesting these are likely 

caused by the same process, but there has not been sufficient time to create a clear 

depression (Bouchneb & Maureille, 2004; Estalrrich et al., 2016; Grine et al., 2000; Sun et al., 

2014). These grooves have been found to affect cementum, enamel, and dentine and 

commonly are just above, below or on the CEJ. 
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Other types of lesions can form on the roots of teeth, namely caries and acidic erosion 

(Grippo et al., 2012). Dental erosion, or corrosion as it is commonly called, of dental tissue 

has been extensively researched in modern humans (e.g., Chapter 8; Grippo et al., 2004; 

Oginni et al., 2003; Zero, 1996), as well as archaeological specimens (e.g., Indriati & Buikstra, 

2001; Ritter et al., 2009; Robb et al., 1991). Mention of dental erosion in fossil hominin 

research is however very rare. Wallace (1974) looked for interproximal grooves in South 

African hominins and found none; similarly Ungar et al. (2001) checked newer finds, and 

likewise found no evidence for the sort of interproximal grooves found in later hominins. 

The teeth described in this case study are STW 270, a mandibular right lateral incisor, 

and isolated mandibular teeth of STW 213, thought to belong to the same individual (Moggi-

Cecchi et al., 2006). Evidence for STW 270 belonging to STW 213 comes from the fact these 

specimens were found near each other and display similar preservation and wear (Moggi-

Cecchi et al., 2006). These specimens were found in Sterkfontein Member 4, in which a 

minimum of 87 individuals are represented, and are aged 2.8–2.4 Ma (Pickering et al., 2004). 

Although many researchers see all the hominin material from Member 4 as belonging to A. 

africanus, there has been much debate in the literature as to whether there is justification for 

the presence of multiple hominin species (e.g., Calcagno et al., 1999; Fornai et al., 2015; Grine, 

2013; Lockwood & Tobias, 1999; Moggi-Cecchi, 2003; Wood & Richmond, 2000). However, 

the specimens studied here do not feature in this debate and are universally seen as A. 

africanus; therefore, it is justifiable to compare these teeth with other canines and incisors 

thought to belong to A. africanus. 

Once the unusual depressions on the roots of STW 270 and the right mandibular 

canine of STW 213 were observed and recorded during data collection, further analysis 

involving a microscope and higher quality photos were undertaken by Marina Elliott at the 

University of the Witwatersrand. These observations and photos are used here with Marina's 

permission. 

11.2.1. Differential diagnosis 

A shallow and elongated groove starting from the CEJ and extending almost a third of 

the way down the buccal surface of the root is present on STW 270 (Figure 11.2). The enamel 

seems unaffected, although there is some slight postmortem damage. The groove spreads 
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around to the interproximal areas of the cementum and pinches to a point towards the lingual 

surface (Figure 11.3). The groove is clearly antemortem in nature and not a morphological 

feature. A smaller depression is visible in the same position on the adjacent right mandibular 

canine of STW 213 (Figure 11.4). 

There are no obvious directional striations; however, a SEM of an impression would 

certainly be informative. The other teeth belonging to STW 213 do not show similar root 

grooves; however, there are clear bands on the enamel, of what have been previously 

described as LEH, on the right premolars and canines. The left teeth show no enamel or root 

grooves. 

 

 

Figure 11.2. STW 270 (A. africanus) right mandibular lateral incisor. A) Bottom row from left to right: 

lingual, labial, mesial, and distal. White arrows and square highlight the location of the groove. The 

white bar is 1 cm long. B) Close-up of the groove (white square in A), showing no directional 

striations and a smooth surface. 

 

The only mention of the grooves described above in the literature is in Moggi-Cecchi 

et al. (2006), in which no inferences into the origin of these antemortem lesions are given. 

They are instead used to help associate these specimens with each other. 
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Figure 11.3. STW 270 (A. africanus) right mandibular lateral incisor. Distal side, showing the 
root groove tapering toward the lingual surface. 

 

 

The unusual wear on the root of STW 270 is very similar to a reported cause of cultural 

wear on a canine of a medieval individual from Ireland (Novak, 2015). The groove has a 

shallow and elongated groove starting from the CEJ and extending a significant way down the 

buccal surface of the root. Novak suggests this is caused by habitual activities, noting that it 

appears something was pulled over the teeth repeatedly and has potentially also removed 

calculus. 

Figure 11.4. STW 213, mandibular right canine. Left to right: mesial, distal, labial, lingual; upper right: 
root tip; lower right: crown top. 
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Dental erosion is caused by chemical destruction of dental tissue and has been 

documented as being caused by a variety of factors, most prominently acidic diets (Grippo et 

al., 2004; Indriati & Buikstra, 2001; Oginni et al., 2003; Ritter et al., 2009; Robb et al., 1991; 

Zero, 1996). The lesions on STW 213 and STW 270 look very similar to some examples of 

erosion. For example, Bader et al. (1993) highlight a case of erosion that looks very similar to 

that of STW 270, with a large lesion on the buccal root surface and then tapering to a point 

toward the lingual interproximal area, following the gingiva (Figure 11.5). Additionally, Grippo 

et al. (2012) highlight an example on an upper canine with the erosion lesion spreading a 

significant way down the buccal surface of the exposed root (Figure 11.5). The way the lesions 

on the two A. africanus specimen wrap around from the buccal surface onto the interproximal 

areas is suggestive that it was following the gingiva, making acid erosion the likely cause. If a 

tool or implement was used, it must have been used regularly on all surfaces, which seems 

unlikely. Further, the lesions vary in width yet stay remarkably smooth and uniform as they 

taper towards to lingual on the interproximal surfaces, again suggesting erosion is likely.  

Ritter et al. (2009) highlight some similar cases of cervical non-carious lesions, finding that 

they are most common in groups that regularly eat citrus fruits. High occlusal stresses may 

also be involved (Grippo et al., 2012), although an acidic component is still needed to create 

the lesions. Although the acid may have originated internally, from regurgitation of gastric 

acids, this is unlikely since this is usually associated with erosion of lingual tooth surfaces (Loch 

et al., 2013). 

 

Figure 11.5. Acidic erosion on the root surface of living humans. Left photo: edited from Bader et al. 

(1993); right photo: edited from Grippo et al. (2012). 
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The lesions found on the two A. africanus teeth look indistinguishable from modern 

day clinical cases of dental erosion. The grooves also superficially look as if they could have 

resulted from abrasion through habitual use of an implement. However, the way the lesion 

wraps around the teeth strongly suggests all root surfaces exposed above the gum line were 

equally affected, and therefore acidic erosion is the much more likely cause. Additionally, the 

broad, shallow and smooth surfaces, as well as the lack of clear striations, adds support to 

this conclusion.  

This unique case of erosive wear is the oldest hominin example of such a groove and 

was likely caused by an acidic diet, such as high concentrations of citric fruits or raw meat, 

with gingivitis probably facilitating its formation. The supposed LEH bands on only the right 

premolars and canine teeth suggest two likely possibilities, either the left teeth do not belong 

to the same individual or these are not, in fact, LEH defects. SEMs of these teeth may resolve 

this issue. However, one possibility is that these defects also relate, in some way, to the root 

lesions. Therefore, potentially the whole lower right side of the mouth was affected. 
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1 2 . Chapter 12: Discussion, conclusions and future 
research 

 

12.1. Discussion 

Since in depth comparisons and discussions have been presented in each chapter, this 

section aims to: 1) briefly reiterate the individual findings, and 2) pull together the different 

variables to yield overall interpretations on the diet and behaviour of each hominin species. 

Comparisons are also made with other areas of research conducted on the South African 

hominins to try to reconstruct diet and behaviour. The overall results are highlighted in Table 

12.1. The main conclusions that can be drawn when all variables are presented together 

(Table 12.1), is that H. naledi and P. robustus are significantly different from each other for 

the majority of dental pathologies under study. In fact, the only exception to this is tertiary 

dentine, which may represent a close phylogenetic relationship rather than dietary 

differences (Chapter 10). 

 

Table 12.1. Frequencies (%) and wear results for the different variables studied. Chipping: % of 

chipped teeth; X: % multiple chips on chipped teeth; Size: number of small chips divided by large 

chips; PEH: pitting enamel hypoplasia; LEH: linear enamel hypoplasia; HR: hypoplasia rate (LEH/PEH); 

TD: % teeth with tertiary dentine; Wear slope: molar wear slope; Most worn: Most worn tooth type 

in the dentition. 

 

*F: flat; S: steep; I: intermediate 

 

Table 12.2 highlights some potential dietary conclusions that can be made from the 

caries, wear and chipping results. Up to three of the most appropriate/likely food types were 

selected based on the results for each variable (Chapters 5, 7 and 8; Burnett et al., 2013; 

Clement & Hillson, 2013; Constantino et al., 2010; Deter, 2009; Hillson, 2005; Scott & Winn, 

Species Chipping X Size PEH LEH HR Caries TD Slope* MW 

P. robustus 12.77 6.67 1.73 14.75 11.51 0.78 2.52 12 F M1 

A. africanus 21.13 16.07 10.2 5.03 15.08 3.00 0 13.33 I M1 

H. naledi 44.44 50 8.33 0.7 14.79 21.13 1.36 16.13 I/S I1 

Chimpanzees 4.92 2.04 2.27 0.65 8.06 12.40 8.29 47.21 S I1 

Gorillas 11.13 4.14 10.27 2.89 4.25 1.47 1.32 93.19 S M1 

Baboons 25 18.75 5.4 0 2.07 - 0.13 40.11 S I1 
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2011). Although there is high variability among variables and species, overall it appears that 

P. robustus had a much more specialised diet than A. africanus and H. naledi. That said, the 

high rates of caries, and isotopic analysis (see below), for P. robustus suggest their diet may 

not have been as specialised as that of some extant primates. 

 

Table 12.2. Up to three broad dietary categories that best fit each variable. H: hard foods, T: tough 

foods, F: fruits, V: low-quality vegetation matter, MD: mixed diet, SD: specialised diet. 

 

 

 

 

The enamel hypoplastic defects observed in the comparative modern human sample 

are far more severe than any other sample studied here, with the potential exception of P. 

robustus. Indeed, the modern human defects sometimes change the occlusal morphology, 

perhaps suggesting individuals with such severe episodes of disturbance during development 

were unlikely to survive in earlier hominins (Guatelli-Steinberg, 2015; Ogden et al., 2007; 

Pindborg, 1970). Other than the modern human samples, some of the most severe enamel 

defects are on the dentition of a female chimpanzee which likely had amelogenesis 

imperfecta (Chapter 11). 

Carious lesions on seven teeth are described for the first time in this thesis bringing 

the total number of carious teeth to 12 for the South African hominin material as a whole 

(Chapter 7). Two of these belong to early Homo, eight to P. robustus and two to H. naledi. It 

is regularly proposed that caries is a recent disease and is scarce or absent in pre-agricultural 

hominins (Armelagos & Cohen, 1984; Brothwell, 1963; Guatelli-Steinberg, 2016; Hildebolt & 

Molnar, 1991; Lanfranco & Eggers, 2012; Tillier et al., 1995). The results of this thesis add to 

the growing evidence for the presence of carious lesions in a variety of non-agricultural 

hominin groups (e.g., Arnaud et al., 2016; Grine et al., 1990; Humphrey et al., 2014; Lacy, 

2014; Lanfranco & Eggers, 2012; Trinkaus et al., 2000). Rather than a steady increase in caries 

through time the rate appears to be rather stable over the last two million years, with only an 

increase in specific groups. 

Species Caries Wear Chipping 

P. robustus F, V SD, V, T SD, V, T  
A. africanus T, H,  MD MD, F H, MD 
H. naledi F, V MD H, MD 
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Given the recent discovery of H. naledi, there is little in the way of dental literature in 

which to compare the results of this study (Berger et al., 2015; Cofran et al., 2016; M.M. 

Skinner et al., 2016). Microwear and isotopic analysis are planned to be performed by other 

researchers, so further comparisons will be possible. The age of the H. naledi material, only 

236 ka to 335 ka years before present, raises the intriguing possibility that stone tools and 

other cultural artefacts found across Africa at this time may not necessarily have been created 

by H. sapiens and their direct ancestors (Berger et al., 2017; Dirks et al., 2017). Presumably 

given the young age of this material and their possible interaction with other hominins, they 

could have been processing foods, if not with fire then perhaps with certain tools (Berger et 

al., 2017). Evidently, H. naledi individuals differed regarding diet and behaviour compared 

with the other hominins considering the extremely high rate of dental chipping (Chapter 5). 

The presence of severe carious lesions contrasts with the baboon and A. africanus samples 

(Chapter 7). Additionally, P. robustus has considerably different wear patterns, hypoplasia 

rates, and chipping patterns than H. naledi. Once additional dietary information has been 

gathered for these specimens further insight can be gained into why such differences exist. 

The high frequency of crown chipping in H. naledi stands out compared with the other 

species studied. Over 50% of H. naledi molars have at least one chip, with interproximal areas 

the most affected (Chapter 5). Many modern human samples with similarly high rates of 

chipping show different patterns of fractures. Anterior teeth are often more affected, and 

there are usually higher proportions of large chips, due to fractures commonly caused by non-

masticatory behaviour (e.g., Scott & Winn, 2011; Turner & Cadien, 1969). However, there are 

some human parallels to H. naledi (Belcastro et al., 2007; Bonfiglioli et al., 2004; McManamon 

et al., 1986). Based on these sites with similar chipping patterns, the most likely cause of the 

high rate of chipping in H. naledi is grit incorporated into their diet. The conclusion that that 

grit is responsible rather than dietary items is also supported by the steep occlusal wear that 

is present in some of the H. naledi molars (Chapter 8; Brace, 1962; Hinton, 1981; Smith, 1984). 

Additionally, the chipping pattern is similar to that of baboons, in which grit is commonly 

masticated (Nystrom et al., 2004). How and why grit was regularly digested is not possible to 

determine. However, the most likely possibility is through the mastication of foods with 
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adhering grit, such as tubers and other underground storage organs. Carbohydrate-rich 

tubers could also potentially explain the severe carious lesions in this sample. 

It has been suggested (Wallace, 1975) that because samples classified as early Homo 

(e.g., SK 15) have a much lighter build of mandible and thinner enamel, they must have 

processed much of their food before mastication. The cited author suggests that the job 

performed by the large teeth of P. robustus and A. africanus effectively was completed by 

stone tools in early Homo, using the association of stone tools as evidence. Since then it has 

been pointed out that chimpanzees and humans often deal with the issue of eating hard 

objects by dismantling them (e.g., seeds or nuts) prior to consumption (Boesch & Boesch, 

1982; Wrangham et al., 2003). Daegling et al. (2013) argue that, therefore, food processing is 

extremely likely to have also been common in fossil hominins. Nothing stands out regarding 

cultural wear or occlusal attrition on the teeth of early Homo studied here. Heavy wear on 

the anterior teeth is present and likely represents food processing behaviours; however, 

heavy anterior teeth wear is also found in H. naledi, A. sediba, baboons, and chimpanzees 

(Chapter 8). 

 The small sample size of A. sediba also limits comparisons for many of the variables 

studied here. However, one conclusion that can be made is that the occlusal wear of this 

species least resembles that of P. robustus and is most similar to several H. naledi specimens 

(Chapter 8). The surprising isotopic results for A. sediba, with much higher rates of C3 foods 

than that apparently consumed by A. africanus and P. robustus (Henry et al., 2012), may, 

therefore, be interesting to compare with H. naledi once isotopic data for this species is 

available. 

Out of all the South African hominin species P. robustus has likely received the most 

attention and debate regarding diet.  This attention is because of their large posterior teeth 

and mandible, along with conflicting conclusions from microwear analysis (Daegling et al., 

2013; Grine et al., 2012; Merceron et al., 2004; Scott et al., 2005; Ungar & Grine, 1991). The 

issue with the large masticatory apparatus is summarised (using P. boisei as an example) by 

Daegling et al. (2013). The bulkier appearance of the Paranthropus skull has been proposed 

to result from a greater reliance on hard foods (Peters, 1987), fibrous and tough foods 

(DuBrul, 1977), and a non-specialised diet similar to other hominin species but in more 

significant quantities (Walker, 1981). Indeed, it has been suggested that all three of these 
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suggestions may cause a similar effect on the cranial morphology (Daegling et al., 2013; 

Ravosa et al., 2007). This view is challenged by Strait et al. (2009, 2012) who suggest that the 

dental morphology in Paranthropus is not well adapted to processing tough foods and instead 

favours hard food objects as the evolutionary driving force behind their tooth form and size. 

Daegling et al. (2013) agree that the teeth of Paranthropus are not ideally suited to processing 

fibrous foods but point out that evolution can only act on features already present. Similar 

cases have been observed in extant primates in which species with similar diets have evolved 

a variety of dental solutions to similar stresses (e.g., Daegling & McGraw, 2007; Taylor, 2006). 

The results of the present study agree with Daegling et al. (2013), with P. robustus having a 

low rate of chipping suggesting infrequent consumption of hard foods (Chapter 5). 

Comparisons with other primates may offer insight into the unique morphology of the 

P. robustus dentition. Large premolars in P. robustus commonly referred to as molarized, are 

also found in species that consume large volumes of bamboo, such as bamboo lemurs and 

giant pandas (Gittleman, 1994; Jernvall et al., 2008). Such a diet has also been suggested for 

an extinct close relative of orangutangs, Gigantopithecus blacki, due to also having molarized 

premolars (Daegling & Grine, 1994). Therefore a good hypothesis would be that in P. robustus 

large posterior teeth evolved due to a diet high in low quality tough vegetation and not hard 

foods. 

Species that regularly eat hard foods also tend to have relatively large second 

premolars, although this is not always the case (Daegling et al., 2011). As noted by Daegling 

et al. (2011), P. robustus does not possess large second premolars compared with the first 

molars, relative to other primate species. It is true that they have very large premolars 

compared with other hominins but their molars are also very large so that the relative size of 

the second premolar is not as striking as it first appears. Therefore, the large premolars are 

potentially just a consequence of the same process that led to large molars, fitting with the 

suggestion of processing significant amounts of abrasive foods (Daegling et al., 2011). 

A popular concept that has often been suggested to explain the large molars of P. 

robustus is "fall-back foods", which broadly refers to material consumed only when favoured 

foods are unavailable (Constantino & Wright, 2009; Harrison & Marshall, 2011; Lambert, 

2009; Marshall & Wrangham, 2007). The term was originally used by primatologists but has 

also been used to explain dietary trends in hominins (Dominy et al., 2008; Laden & 
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Wrangham, 2005; Wrangham et al., 2009). Fallback foods are usually seen as lower in 

nutritional quality or at least tougher/harder than favoured foods (Constantino & Wright, 

2009; Lucas et al., 2009). Although it cannot be ruled out that P. robustus evolved a large 

masticatory apparatus to process foods rarely consumed, evidence for such a hypothesis is 

lacking. Theoretically, such extreme morphology could evolve for this reason, particularly if 

individuals must rely on such foods for survival in crucial periods; that said, the apparatus 

cannot evolve to be overly wasteful. Therefore, if Paranthropus evolved large masticatory 

equipment, with molarized premolars and thick enamel, for processing hard foods, it would 

be expected that such teeth could sustain high levels or sizes of fractures. Therefore, at least 

occasionally large fractures would be expected, as well as high chipping frequencies 

compared with species that do not utilise such foods. As has been concluded above, no 

evidence was found for regular consumption of hard foods, given the very small number of 

chips on their teeth (Chapter 5). Furthermore, on the whole, hominins have thick enamel 

compared with other primates, and even in primates with hard food diets it is rare for large 

fractures to occur (Constantino et al., 2012). Therefore, it seems unlikely that such large 

masticatory equipment evolved in Paranthropus due to a diet of hard objects, either regularly 

consumed or as fallback foods. 

Another suggestion worth mentioning is Liem’s paradox, which refers to the 

observation that the most morphologically-derived cichlids (i.e., a species of fish) have a 

generalised diet (Liem, 1980; Robinson & Wilson, 1998). This relationship has been extended 

to hominins with the suggestion that certain species, particularly those in the genus 

Paranthropus, may have evolved distinguishing masticatory characteristics to permit 

consumption of a broad range of foods, rather than to a particular specialised diet (Wood & 

Schroer, 2012; Wood & Strait 2004). Such a process as Liem’s paradox may certainly be 

involved in the evolution of the masticatory system of P. robustus; however, the results of 

this study do not support a mixed diet for P. robustus, at least compared to the other hominins 

and baboons (Chapters 5 and 8). 

The most striking result of this study for P. robustus is the high frequency of PEH 

compared with the other hominin species as well as the extant primate samples (Chapter 6). 

Indeed, P. robustus shows far higher rates of PEH than almost all modern human samples 

studied (Goodman et al., 1987; Hillson, 2014; Seow et al., 1992). The PEH in P. robustus 
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predominantly seems to affect the posterior teeth, with only a couple of anterior teeth 

showing pitting. Over 20% of permanent molars and 50% of deciduous molars have PEH, 

suggesting these teeth were predisposed to this type of hypoplasia. The PEH on P. robustus 

teeth do not look like the defects published in many modern clinical studies, including those 

caused by amelogenesis imperfecta, fluorosis, low birth weight, vitamin D deficiency, 

tuberous sclerosis, congenital syphilis, pseudohypoparathyrgidism and epidermolysis bullosa 

(Aine et al., 2000; Crawford et al., 2007; Croft et al., 1965; Gaul et al., 2015; Ioannou et al., 

2015; Nikiforuk & Fraser, 1979, 1981; Pinhasi et al., 2006; Purvis et al., 1973; Radu & Soficaru, 

2016; Seow et al., 1984; Stimmler et al., 1973; Wright et al., 1993). Instead, potential 

influences for the high rate of PEH in P. robustus may include molar morphology, genetic 

factors, developmental timing, calcium deficiency and acute disturbance during a crucial 

period of development (Chapter 6). The scarcity of PEH defects on anterior teeth and the 

uniform nature of the defects on molars across individuals suggest all defects, both on 

deciduous and permanent teeth, likely resulted from the same aetiology. 

Paranthropus robustus and gorillas have much in common with many of the variables 

under study sharing similar frequencies (Chapters 5, 7 and 8), perhaps due to eating large 

quantities of low-quality vegetation. In particular, the wear is similar between these two 

species, with both having similar chipping rates and first molars the most worn. Interestingly 

the proportion of PEH to LEH is also similar between these two species, although P. robustus 

has much higher overall rates. This similarity is perhaps explained by the lack of a nutritional 

element, with generalists such as baboons having extremely low levels of PEH.  Pitting enamel 

hypoplasia, therefore, may be related to a lack of dietary breadth, although more research is 

needed to test this possibility. 

Paranthropus boisei has not been studied in depth for many of the present variables, 

and given its supposed close phylogenetic relationship to P. robustus, it is worth comparing. 

It is often reported that P. boisei has high levels of dental fractures, or otherwise chipping is 

mentioned as a component to back up a statement about this species being a hard food object 

specialist (e.g., Martínez et al., 2016; Constantino et al., 2010). However, such a study has not 

been conducted; instead specific instances of chipping have been described, but no 

frequencies for this species has been published (Tobias, 1967). Therefore, the presence of 

chipping in P. boisei cannot be used as evidence for hard object feeding until a study on its 
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prevalence has been undertaken; primate species that rarely eat hard foods still have a few 

examples of chipped teeth (Chapter 5). Fitting with the result of this study, it is therefore 

probable that the masticatory apparatus in Paranthropus as a whole evolved for processing 

tough vegetation rather than hard foods (Cerling et al., 2011; Rabenold & Pearson, 2011). 

Two other similarities can be suggested between P. robustus and P. boisei from the 

results of this thesis. Tobias (1967) notes that OH 5 (P. boisei), has asymmetric wear on the 

maxillary anterior teeth, caused by mal-alignment with the mandibular teeth. Such 

asymmetry and malocclusion have been highlighted in P. robustus as well (Chapter 8). Tobias 

(1967) also notes enamel hypoplasia in P. boisei that looks similar to that in P. robustus 

(Chapter 7). However, given the purported close relationship between these species, it may 

be difficult to infer if similar results are due predominantly to a shared diet or simply a close 

phylogenic relationship. Further analysis of the P. boisei material as well as that on the 

hypoplastic defects may help clarify this. One suggestion for the high levels of PEH in P. 

robustus is that it may just be a unique morphology for this species, and is not caused by a 

stress episode like LEH. The issue with this hypothesis is that the enamel hypoplasia is 

associated with several cases of caries (Chapter 7) and therefore the evolutionary pressures 

to prevent such pitting would evidently be high. Additionally, wear on these teeth would 

presumably have been much quicker than if pitting was not present, potentially limiting the 

life of the tooth. Once P. boisei has been studied for PEH, further insight into these defects 

may be possible. 

The debate around the diet of A. africanus has been intensive in recent years with 

microwear, isotopic, biomechanical and chipping data all used to infer different points of view 

(e.g., Grine et al., 2010; Scott et al., 2005; Sponheimer et al., 2005, 2013; Strait et al., 2009; 

Van Der Merwe et al., 2003). It appears that the prediction of Strait et al. (2012) is correct in 

that A. africanus does have a high chipping rate, particularly compared with P. robustus and 

the extant great apes studied here (Chapter 5). Additionally, the premolars are the most 

affected tooth group with almost one third displaying at least one chip. This high rate of 

chipping fits with the hypothesis by Strait et al. (2009) that facial buttressing features are 

adaptations to large food processing in the premolar region. However, it should be stressed 

that very few of these chips are large and so unusually large and hard objects seem unlikely 

to have been regularly consumed. The evidence from chipping frequencies here does support 
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at least the conclusion that the premolars were an essential part of the masticatory process 

for A. africanus and perhaps indicates tough and hard foods were regularly masticated in this 

region of the mouth. 

Until recently, it was assumed that A. africanus likely had a similar diet to that of extant 

chimpanzees, though since the use of isotopic and microwear analysis this opinion has 

changed. Isotopic analysis by Sponheimer and Lee-Thorp (1999) found that individuals were 

consuming much higher levels of carbon-13–enriched foods meaning that a diet consisting 

mainly of fruits and leaves was unlikely. Since then more samples have been analysed, and a 

similar result produced (Sponheimer et al., 2005, 2013; Van Der Merwe et al., 2003). As well 

as grasses and sedges, the consumption of certain insects and vertebrates could give such an 

isotopic signal (Sponheimer et al., 2013). Microwear analysis of A. africanus teeth is also 

suggestive of a variable diet that contains tough foods (Scott et al., 2005). Whether the A. 

africanus diet also included a significant amount of hard foods is debated in the literature 

(Grine et al., 2010; Strait et al., 2009). As noted above, the chipping results from this thesis 

suggest hard foods were commonly consumed. The fact that this species has the largest 

sample of teeth, yet no caries also suggests a varied diet or at least one low in cariogenic 

foods; it also supports the consumption of tough foods. The results of this thesis, therefore, 

further support the conclusion that A. africanus had an extremely mixed diet (Chapters 5, 7, 

and 8). 

Dental pathologies are mostly seen as a nuisance in modern times, but in the past high 

mortality was often associated with several of these conditions (Calcagno & Gibson, 1991). 

Therefore, high selective pressures may be placed on populations to prevent dental pathology 

and excessive wear (Hillson, 1996; Molnar, 1971). Most notably, it has been suggested that 

evolving smaller teeth may reduce the instances of caries and that large teeth allow further 

resistance to substantial attrition (Calcagno & Gibson, 1991; Lacy, 2014). Both of these 

examples seem logical at face value, but evidence for such a hypothesis is debated. An issue 

with the caries suggestion has been raised by Brace et al. (1991) in that the bulk of the 

reduction seen in hominin tooth size happens before caries frequencies rise dramatically (in 

certain populations) in the last 10,000 years. Caries does not seem to increase significantly 

over the last two million years; therefore it seems unlikely that caries on its own explains the 

reduction of the jaws seen in the genus Homo (Chapter 6). 
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During the middle of the 20th century, the most prominent hypothesis regarding 

differences observed between P. robustus and A. africanus was the dietary hypothesis, as 

argued by Robinson (e.g., Robinson, 1954). The hypothesis suggests that due to 

environmental change, these species were specialised in different ecological niches. The 

robust species (P. robustus) focussed on vegetation in forested locations whereas the gracile 

species (A. africanus) were more omnivorous in open habitats. Other hypotheses were 

subsequently put forward. For example, Cachel (1975) suggests that dental differences 

between P. robustus and A. africanus are due to allometry rather than diet. It has also been 

common to promote the idea of Plio-Pleistocene hominins as mostly carnivorous, and even 

cannibalistic (e.g., Ardrey, 1961; Dart, 1960; Etkin, 1954; Howell, 1963; Washburn, 1959). As 

Pickering et al. (2004) point out, opinion began to change when researchers such as Brain 

(1993) started to highlight that these individuals were likely the prey of large carnivores and 

therefore not near the top of the food chain. The results of this thesis support the suggestion 

that P. robustus filled a different ecological niche than A. africanus, given the vast differences 

in individual variables (Chapters 5, 6, 7, and 8). The morphology of the crania of P. robustus 

and A. africanus also suggests different diets (DuBrul, 1977; Rak, 1983; Strait et al., 2009). 

Carbon isotope values between A. africanus and P. robustus have not been found to 

be significantly different, with much overlap among species (Sponheimer & Lee-Thorp, 1999, 

2003). However, P. robustus specimens seem to be less variable (Sponheimer et al., 2005). 

What can be said for sure is that both P. robustus and A. africanus are significantly distinct 

from C3 and C4 specialising bovids, giraffids, chalicotherids, and suids in terms of diet 

(Sponheimer et al., 2005). Given the differences highlighted between P. robustus and A. 

africanus (Chapters 5, 6, 7, and 8), it may be likely that although they had similar levels of C3 

and C4 foods in their diet, the actual foods consumed differed substantially. 

12.2. Conclusions 

12.2.1. Answers to research questions 

 
Can prior studies of diet in these various hominins based on microwear, isotopic analysis 

etc. be supported or refuted by the study of basic dental pathological indicators?  
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The results of this study do not contradict previous results based on microwear or 

isotopic analysis. Indeed, they complement such research and further narrow the possible 

diets of these hominins. For example, it is known that P. robustus and A. africanus had a mixed 

C3 and C4 diet, but based on chipping frequencies it is unlikely that hard food items were a 

common component, especially in P. robustus. Comparisons between results from other 

dietary reconstructing techniques and those in this study are presented in the discussion 

(Chapter 12.1). 

Can pathology, wear, and enamel defect data suggest differences in diet between the South 

African hominins?  

Yes, clear differences are apparent among the variables studied, particularly in rates 

and forms of chipping, wear and caries in South African species. This evidence, therefore, 

highlights clear dietary and/or behavioural differences (Chapters 5, 6, 7 and 8). 

Is there a link between the different variables and species? That is, are there certain species 

which consistently have similar patterns of wear and pathologies?  

This seems to be the case for certain species. For example, A. africanus has much in 

common with baboons, with several variables showing similar patterns (Chapters 5, 7, 8 and 

12). Similarly, P. robustus and gorillas have much in common, especially wear and hypoplasia 

patterns (Chapters 6 and 8). These results likely reflect dietary and behavioural similarities 

between these species, with gorillas and P. robustus specialising in low-quality vegetation and 

baboons and A. africanus sharing a broader diet (Chapter 12). 

Do dental pathology and wear data fit with known ecological information on the extant 

primate samples, and if so what diet is, therefore, most applicable to the different hominin 

species?  

The answer seems to be ‘yes’ for each extant primate species, with no surprising 

results in terms of overall frequencies (see variable chapters). This, as well as comparisons 

with human samples in the literature, suggest that dietary inferences are possible for the 

fossil hominin species. For example, high levels of environmental grit were likely consumed 

by H. naledi, based on comparisons with baboons and archaeological human samples 

(Chapter 5). Low levels of hard foods and high levels of low-quality vegetation were likely 
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present in the diet of P. robustus, based on comparisons with gorillas and chimpanzees 

(Chapters 5, 8 and 12). Australopithecus africanus likely had a broad diet with high quantities 

of tough non-cariogenic foods, similar to that of extant baboons (Chapters 5, 7 and 12). 

Are differences observed between the different hominin species substantial enough to infer 

different ecological niches?  

It is difficult to answer this question given the way in which ecological niches are 

defined. Certainly, there are clear differences in diet and/or behaviour of certain species, for 

example between P. robustus and H. naledi. Whether a consequence of a completely different 

way of life or simply a result of the environment at the time is hard to infer. However, the 

vast differences in the frequencies of different variables, often covering the entire range of 

the extant primates, suggests the different South African hominin species differed 

significantly in terms of food accusation or processing behaviours. 

 

12.2.2. Overall conclusions 

From this project as a whole, the main conclusion is that South African hominins vary 

substantially with regard to frequencies of dental pathologies, developmental defects and 

wear. Indeed, the variance is often more than that observed among the extant primate 

species, in which diet and behaviour are known to differ significantly. 

Paranthropus robustus has far higher levels of PEH than any other hominin species yet 

studied. Molars, both deciduous and permanent, are affected. Considering anterior teeth 

show few defects, molars are likely predisposed to PEH. The high rate of PEH on molars may, 

therefore, be related to enamel properties, in that the slightest disturbance creates what 

superficially look like severe defects. However, another possibility is that these defects are 

genetic in origin or simply a morphological feature resulting from the evolution of large and 

thick enamelled molars. Specific environmental or dietary influences may also have been 

involved. Chipping and wear results best support a conclusion that P. robustus had a diet low 

in hard foods; the species may instead have eaten substantial amounts of low-quality tough 

food items. The presence of caries suggests that dietary items may have also included 

cariogenic foods such as fruit. 
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If it is accepted that this ‘golf ball’ pattern of hypoplasia found commonly in P. 

robustus is unique to Paranthropus (Chapter 6), or at least exceedingly rare in other hominins, 

then SKX 1756 may be better described as P. robustus, rather than early Homo. The 

classification of this specimen is debated, and a significant amount of postmortem damage 

means little is available to use for comparisons. Therefore, this PEH may be useful information 

to incorporate into assigning a species for this specimen. 

The main finding for H. naledi is the large amount of antemortem chipping. All 

individuals that have multiple worn teeth are affected, with half of posterior teeth having one 

or more chips. The fact that posterior teeth are more affected than anterior, and 

interproximal areas more so than buccal, suggests a dietary or environmental cause rather 

than non-masticatory. The most similar chipping patterns found in humans result from the 

incorporation of grit in their diet. The small size of most chips on H. naledi teeth adds further 

support that grit was masticated. Grit must have been regularly incorporated into their diet; 

perhaps due directly to environmental factors, however more likely it was included through 

eating certain foods. Tubers and other underground storage organs can introduce a 

substantial amount of sediment into the oral cavity if consumed in large quantities. The 

presence of severe carious lesions may also suggest that cariogenic foods were commonly 

consumed. 

Perhaps what stands out most about A. africanus is its tendency not to stand out. It 

has no carious lesions, the second most hypoplastic defects, unremarkable wear and the third 

highest level of chipping. All pathologies and wear support a conclusion that this species was 

a generalised feeder. The lack of caries suggests a non-cariogenic fibrous diet and supports 

the idea that a variety of foods were consumed. As well as having the most similar caries rate 

to baboons, A. africanus also has the most similar chipping rates to this modern primate. A 

mixed diet is also supported by isotopic and microwear analysis, in which a mix of foods is the 

best-supported conclusion for this species. Root grooves were also described on two A. 

africanus teeth, STW 270 and STW 213. These are thought to be adjacent teeth belonging to 

the same individual. The lesions best fits with an aetiology of erosive wear. These depressions 

in the roots suggest that an acidic dietary component, such as fruits, may have regularly been 

consumed. It is also likely this individual suffered from periodontal disease, which facilitated 

root exposure leading to this isolated pocket of erosion. If correct, then this is the first case 
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of extensive acidic removal of dental material described in the South African hominin material, 

with the only comparable examples belonging to recent Homo. 

Although the extant primate samples were predominantly studied to allow 

comparisons with the fossil hominins, some interesting results are worth highlighting. Female 

chimpanzees have five times the amount of carious lesions than do males, due predominantly 

to interproximal caries on the incisors. This high rate is likely caused by the way they process 

foods. Male chimpanzees have significantly more chips than females, further demonstrating 

sex differences in the diet of this species. These differences add further caution to describing 

diet based on a small sample consisting predominantly of one sex. The first case of 

amelogenesis imperfecta in an extant primate was also described, which will hopefully lead 

to further examples of these genetic disorders to be explored in primates in general. The main 

unexpected finding for gorillas was the rate of tertiary dentine. Almost all teeth with 

sufficiently worn enamel evidence tertiary dentine formation. Such a high rate may suggest 

that gorillas have evolved to produce tertiary dentine faster or earlier in response to wear, 

likely to keep an appropriate cutting edge during mastication. 

12.3. Future research 

 It is proposed that additional studies relating to wear and pathologies be undertaken, 

to provide further insight into the diet and behaviour of the South African hominins. Studies 

on other populations and other dietary reconstructing techniques would also allow further 

comparative material for this study. For example, similar data to that collected here but on 

other hominin samples, as well as a broader range of primates in general, would provide 

further comparative information from which further conclusions could be made. A few 

specific areas of research are explored below. 

The use of a Scanning Electron Microscope (SEM) would be extremely informative for 

a number of different reasons. For STW 270 and STW 213, a SEM of these teeth would allow 

further conclusions on the cause of the dental erosion and may allow abrasion to be 

completely ruled out. Additionally, further work on the supposed LEH bands on the right 

premolars and canine of STW 213 would be interesting, as these grooves do not have 

corresponding antimeres. It is likely that similar lesions to those found on STW 213 and STW 

270 are overlooked in other collections of hominins. Once similar grooves are discovered it 
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will be possible to further explore the causes for this rare type of wear. Micro CT-scans of 

different features would also be informative. For example, there are potential carious lesions 

that may be identified using CT-scans (Chapter 7), pitting enamel hypoplasia could be 

explored further with more specimen CT-scans (Chapter 6), and enamel property differences 

between different sections of teeth could be further explored (Chapters 5 and 8; see below). 

 Differences between chipping rates on right and left teeth were found in H. naledi. 

However, this relationship was not statistically significant (Chapter 5). Further H. naledi 

material has since been described, and there are more individuals to excavate (Hawks et al., 

2017). Therefore, when further material is studied, it may allow further investigation into 

these side differences. Microwear analysis may also provide an interesting insight. 

 Enamel properties differ among primate species, although little research has explored 

why such differences exist. For example, the occlusal wear variation between the buccal and 

lingual halves of posterior teeth is well known, yet surprisingly the opposite pattern is 

observed for enamel fractures. This means that the surface with the highest wear is the one 

that shows the least amount of antemortem dental fractures, which would appear counter-

intuitive. This relationship seems consistent across all extant primates and fossil hominins in 

this sample, and it would, therefore, be interesting to explore this relationship. A study that 

includes enamel property differences such as density and structure, masticatory and 

behavioural information, along with wear and chipping data would likely show insightful 

conclusions. Micro CT-scans can be used to analyse a variety of enamel properties, including 

how enamel density varies over the crown of a tooth (e.g., Swain & Xue, 2009; Ziscovici et al., 

2014; He et al., 2011). Masticatory and behavioural information has been published for a 

variety of extant primates as well as fossil hominins (e.g., Conklin-Brittain et al., 2001; 

Constantino et al., 2010; Harrison & Marshall, 2011; Rogers et al., 2004; Strait et al., 2009; 

Taylor, 2006; Wright et al., 2008). Therefore the methodology required to gather the enamel 

property data is already available and the comparative masticatory and behavioural 

information already published. Consequently, the study would require analysis of micro-CT 

scans of different primate species along with chipping and wear data, as well as biomechanical 

and behavioural information from the literature, for these same species. It will then be 

possible to see how wear and chipping rates vary in relation to enamel properties and how 

this relationship varies between species with different diets and dental morphology. 
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Therefore further insight into why hominin specimens vary in terms of dental wear and 

chipping would be possible. 

 As highlighted in this study, the small number of dental fractures found in P. robustus 

compared with other hominins, and extant primates, adds support to suggestions that this 

species did not specialise in eating hard food objects. Interestingly, the smallest toothed 

hominin sample studied, H. naledi, had the highest fracture rate, four times that of P. 

robustus. Therefore, it would be interesting to build on this to see if there is a correlation 

between reduction of tooth size and chipping rate. This could be achieved either through 

collecting more hominin data or through an extensive primate comparative study. For 

example, H. naledi has very simple morphological features and relatively thick enamel. One 

potential evolutionary suggestion, therefore, could be that perhaps this evolved as a 

mechanism to protect against high quantities of contaminants or hard foods in their diet. 

Chipping data is only available for a few species of primates and recording methods are often 

different (e.g., Constantino et al., 2012; Morse et al., 2013). Therefore, the most appropriate 

way forward would be to collect more chipping data using the same methods as this thesis 

but on a larger sample of hominins and extant primates and then to collect tooth size data 

during data collection, or use already published measurements. 

 It would also be interesting to explore other fossil primates, such as the baboons found 

in the South African caves in which hominin material has been discovered (Codron et al., 2005; 

Pickering et al., 2004; Pickering & Carlson, 2002). In the results of this thesis, there are some 

similarities between extant baboons and South African hominins, such as chipping rate with 

H. naledi and caries with A. africanus (Chapters 5 and 7). Therefore, it would be interesting to 

explore if wear, pathologies and enamel properties of these fossil baboons may provide 

further insight into these comparisons. 

In sum, it is often noted that dental pathologies are rare in fossil hominins. Moreover, 

macrowear and enamel defects are given little attention in the literature. However, 

researchers have begun to show examples of different pathologies, and now a wide variety 

of lesions and defects have been described in various hominin species. This thesis builds on 

this research by describing additional carious lesions, abscesses, and instances of periodontal 

disease. Additionally, rates of tertiary dentine, antemortem chipping and occlusal wear 

highlight how variable hominin species are, with rates of the latter two encompassing the 



176 
 

entire range of the extant primate samples. In particular the high level of chipping in H. naledi 

and pitting enamel hypoplasia in P. robustus stand out, with rates as high as the most extreme 

cases found in modern humans. These different variables offer intriguing insight into the diet 

and behaviour of fossil hominins, and between them cover a much broader time scale of an 

individual’s life than specific studies such as microwear or isotopic analysis. The main 

conclusion from this research is, therefore, the high variability in nearly all variables between 

hominin species, suggesting significantly different diets were consumed. It is hoped these 

macroscopic observations of wear, pathologies and defects can be used alongside other 

dietary reconstructing techniques to allow inferences into the ecological niches these 

hominins would have filled. 
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1 4 . Appendix A  
 

Appendix A. Permanent teeth studied. 

A. africanus P. robustus H. naledi early Homo A. sediba 

TM 1527 STW 566 UW 1662 SE 255 MH 1 

TM 1531 SK 83a,b UW 010 SE 1508 MH 2 

TM 1532 SK 876 UW 1463 SE 1937  
STS 556 SK 843 + 846a UW 591 STW 42  
TM 1528 SKX 242 UW 1277 STW 19  
STS 32 SKX 240 UW 1269 STW 53  
STW 498 SK 34 UW 1261 STW 80  
STW 188 SK 12 UW 037 STW 151 (7)  
STW 34 SK 79 UW 516 STW 151 (3)  
STW 407 SK 61 UW 001 STW 151 (1)  
STW 54 SK 856 UW 1006 STW 151  
STW 492 SK 6 UW 999 STW 151 (6)  
STW 56 SK 14246 UW 1004 SK 27  
STW 405 SK 23 UW 706 SK 2635  
STW 317 SK 826a UW 932 SK 15  
STW 451 SK 25 UW 38 SK 80  
STW 564 SK 841b UW 1012 SK 45  
STW 57 SK 881 UW 709 SK 43  
STW 109 SK 1587 UW 816 SKX 2356  
STW 505 SK 64 UW 808 STW 75  
STW 140 SK 3913 UW 455   
STW 14 SK 65a UW 445   
STW 24 SK 67 UW 1015   
STW 502 SK 65 UW 1063   
STW 191 SK 877 UW 789   
STW 277 SK 85 UW 809   
STW 120 SK 93 UW 887   
STW 327 SK 1591 UW 889   
STW 146 SK 16 UW 1076   
STW 5 SK 839 UW 998   
STW 209 SK 14132 UW 1005   
STW 384 SK 17 UW 377/1014  
STW 13 SK 101 UW 1002   
STW 560b SK 102 UW 1689   
STW 213 SK 37 UW 1135   
STW 233 SK 20 UW 501   
STW 241 SK 830 UW 358   
STW 222 SK 857 UW 1610   
STW 270 SK 1594 UW 182   
STW 230 SK 1595 UW 908   
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A. africanus P. robustus H. naledi  

STW 232 SK 838a UW 417   
STW 231 SK 24 UW 344   
STW 241 SK 35 UW 005   
STW 59 SK 831 UW 654   
STW 202 SK 31 UW 602   
STW 183a SK 39 UW 293   
STW 23 SK 44 UW 1403   
STW 287 SK 71 UW 1362   
STW 189 SK 2 UW 796   
STW 212 SK 69 UW 528   
STW 419 SK 70 UW 527   
STW 413 SK 822 UW 359   
STW 414 SK 825 UW 653   
STW 333 SK 833 UW 1510   
STW 415 SK 826a UW 589   
STW 332 SK 870 UW 006   
STW 430 SK 14000 UW 593   
STW 242 SK 838b UW 583   
STW 412 SK 88 UW 708   
STW 215 SK 72 UW 505   
STW 224 SK 24613 UW 285   
STW 128 SK 851 UW 582   
STW 447 SK 14030 UW 886   
STW 450 SK 89 UW 1131   
STW 126 SK 840 UW 1133   
STW 183b SK 855 UW 1132   
STW 569b SK 14133 UW 1126   
STW 169 SK 10 UW 145   
STW 127 SK 1648 UW 507   
STW 133 SK 49 UW 1398   
STW 424 SK 1586 UW 1396   
STW 429 SK 57 UW 1401   
STW 427 SK 62 UW 1402   
STW 446 SK 1588 UW 1558   
STW 425 SK 47 UW 1684   
STW 132 SK 46 UW 1556   
STW 420 SK 14003 UW 1560   
STW 421 SK 858 UW 1561   
STW 120 SK 844 UW 1471   
STW 487 SK 55 UW 850   
STW 107 SK 55b UW 1304   
STW 138 SK 1589 UW 1142   
STW 192 SK 11 UW 594   
STW 509 SK 74 UW 867   
STW 513 SK 48 UW 525   
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A. africanus P. robustus H. naledi 

STW 487b SK 1517c UW 1676   
STW 116 SK 852 UW 1522   
STW 118 SK 849 UW 418   
STW 117 SK 29 UW 284   
STW 119 SK 885 UW 905   
STW 195 SK 1596 UW 297   
STW 206 SK 33 UW 786   
STW 33 SK 3 UW 729   
STW 204 SK 40 UW 337   
STW 518 SK 3975 UW 73   
STW 519 SK 880 UW 39   
STW 560c SK 1 UW 333   
STW 110 SK 30 UW 1107   
STW 493 SK 86 UW 184   
STW 111 SK 1593 UW 144   
STW 495 SK 7 UW 1588   
STW 404 SK 19 UW 686   
STW 252k SK 3977 UW 335   
STW 252h SK 41 UW 339   
STW 280 SK 871 UW 506   
STW 252i SK 3976 UW 383   
STW 536 SK 14001 UW 334   
STW 369 SK 862 UW 347   
STW 281 SK 42 UW 931   
STW 252j SK 849 UW 952   
STW 252g SK 73 UW 412   
STW 252l SK 827 UW 1565   
STW 532 SK 872 UW 985   
STW 246 SK 105 UW 1075   
STW 58 SK 5 UW 601   
STW 558 SK 9 UW 245   
STW 534 SK 24661 UW 298   
STW 531 SK 850 UW 20   
STW 134 SK 75 UW 814   
STW 72 SKX 50079 UW 1688   
STW 286 SKX 3354 UW 1548   
STW 123 SKX 3601 UW 544b   
STW 61 SKX 3355 UW 1305   
STW 234 SKX 3356 UW 1400   
STW 3 SKX 1016    
STW 1 SKX 311    
STW 106 SK 81    
STW 220 SKX 4039    
STW 130 SKX 2003    
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A. africanus P. robustus 

STW 148 SKX 1788    
STW 71 SKX 5013    
STW 422 SKX 4446    
STW 60 SKX 3890    
STW 112 SKX 6013    
STW 7 SKX 313    
STW 401 SKX 10649    
STW 393 SKX 1313    
STW 87 SKX 5004b    
STW 566 SKX 5024    
STW 364 SKX 10645    
STW 574 SKX 50078    
STW 410 SKX 1015    
STW 306 SKX 19031    
STW 551 SKX 271    
STW 540 SKX 5007    
STW 309b SKX 1437    
STW 365 SKX 6277    
STW 319 SKX 312    
STW 537 SKX 3559    
STW 249 SKX 310    
STW 539 SK 341    
STW 538 SKX 5014    
STW 309 SKX 7781    
STW 560e SKX 3300    
STW 218 SKX 27524    
STW 243 SKX 1017    
STW 240 SKX 26967    
STW 143 SKX 35416    
STW 32 SKX 32162    
STW 131 SKX 37663    
STW 560d SKX 308    
STW 295 SKX 5002    
STW 248 SKX 19892    
STW 312 SKX 7992    
STW 149 SKX 5023    
STW 141 SKW 30    
STW 561 SKW 32    
STW 494 SKW 3068    
STW 560a SKW 4769    
STW 73 SKW 5    
STW 285 SKW 12    
STW 290 SKW 3033    
STW 284 SKW 33    
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A. africanus P. robustus 

STW 385 SKW 10    
STW 386 TM 1517    
STW 193 TM 1601e    
STW 198 TM  1601d    
STW 95 TM 1601b    
STW 194 TM 1601c    
STW 203 TM 1603    
STW 252e TM 1602    
STW 252d TM 1600    
STW 252 TM 1536    
STW 283 KB 5383    
STW 530 KB 5223    
STW 529 KB 5222    
STW 322     
STW 321b     
STW 321a     
STW 351     
STW 21     
STW 476     
STW 475     
STW 288     
STW 324     
STW 323     
STW 237     
STW 353     
STW 282     
STW 284     
STW 278     
STW 555     
STW 541     
STW 542     
STW 20     
STW 248     
STW 543     
STW 296     
STW 469     
STW 416     
STW 147     
STW 145     
STW 308     
STW 269     
STS 61     
STS 71     
STS 12     
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A. africanus 

STS 36 

STS 37 + 28     
STS 17     
STS 44/66     
STS 8     
STS 56     
STS 55     
STS 10     
STS 59     
STS 4     
STS 6     
STS 35     
STS 42     
STS 52     
STS 18     
STS 1     
STS 1534     
STS 47     
STS 43     
TM 1520     
STS 41     
TM 1523     
STS 50     
TM 1519     
STS 23     
TM 1512     
TM 1511     
STW 402     
STW 9     
STW 480     
STW 50     
STW 408     
STW 45     
STW 16     
STW 35     
MLD 44     
MLD 18     
MLD 4     
MLD 29     
MLD 42     
MLD 43     
MLD 28     
MLD 23     
MLD 19     
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MLD 24     
MLD 9     
MLD 40     
MLD 11 and 30     
MLD 2     
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1 5 . Appendix B  
 

Appendix B. Deciduous teeth studied. 

A. africanus P. robustus H. naledi early Homo 

STW 59 SK 61 UW 544 SE 255 

STW 62 SK 841 UW 655 STW 151 

STW 488 SK 64 UW 728 STW 151 (6) 

STW 305 SK 839 UW 287 SK 27 

STW 104 SK 438 UW 1611 SKX 1756 

STW 97 SK 3978 UW 824  
STS 18 SK 1595 UW 595  
STS 40 SK 838a UW 384  
MLD 5 SK 90 UW 1571  
MLD 2 SK 91d UW 1687  

 SK 62 UW 823  

 SK 55 UW 544c  

 SK 55b UW 1331  

 SK 63 UW 1377  

 SK 852 UW 1376  

 SK 2147 UW 1400  

 SKX 16060 UW 1612  

 SKX 163 UW 1685  

 SKX 32832 UW 1686  

 SKX 27151   

 SKX 37321   

 SKX 50081   

 TM 1601f   

 TM1601   

 TM 1604   

 TM 1536   

 KB 5223   

 KB 5503   
 


