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Many ion channels spontaneously switch between
different levels of activity. Although this behaviour
known as modal gating has been observed for a long
time it is currently not well understood. Despite the
fact that appropriately representing activity changes
is essential for accurately capturing time course
data from ion channels, systematic approaches for
modelling modal gating are currently not available.
In this paper, we develop a modular approach for
building such a model in an iterative process. First,
stochastic switching between modes and stochastic
opening and closing within modes are represented
in separate aggregated Markov models. Second, the
continuous-time hierarchical Markov model, a new
modelling framework proposed here, then enables
us to combine these components so that in the
integrated model both mode switching as well
as the kinetics within modes are appropriately
represented. A mathematical analysis reveals that the
behaviour of the hierarchical Markov model naturally
depends on the properties of its components. We
also demonstrate how a hierarchical Markov model
can be parametrized using experimental data and
show that it provides a better representation than a
previous model of the same dataset. Because evidence
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is increasing that modal gating reflects underlying molecular properties of the channel protein,
it is likely that biophysical processes are better captured by our new approach than in
earlier models.

1. Introduction
Ion channels regulate the flow of ions across the cell membrane by stochastic opening and closing.
As soon as it became possible to detect currents generated by the movement of charged ions
through the channel via the patch-clamp technique [1], Colquhoun & Hawkes [2] developed the
theory of modelling single ion channels with continuous-time Markov models which describe
the time-course of opening and closing that is reflected in single-channel currents by stochastic
jumps between zero (closed) and one or more small non-zero current levels in the pA range
(open). The activity of an ion channel is usually measured by its open probability PO. But
by 1979, Patlak et al. [3] had already observed spontaneous changes of channel activity in
glutamate-activated channels, shortly afterwards followed by Magleby & Pallotta [4,5], who made
similar observations in the calcium-activated potassium channel. Since then this phenomenon,
known as modal gating, has been ubiquitously observed across a wide range of ion channels
but the significance of modal gating has remained unclear. See Siekmann et al. [6] for a more
comprehensive review of the experimental literature. Colquhoun & Hawkes [7] modified their
general theory from Colquhoun & Hawkes [2] for the analysis of bursts. Bursts are defined as
‘closely spaced openings, separated by longer shut periods’ [7, p. 4], which means that they are
related to modes with a high level of activity. Thus, the papers Colquhoun & Hawkes [2,7] contain
a comprehensive theory for calculating various statistical properties of the channel kinetics from
a given Markov model. However, the problem of constructing models that capture spontaneous
changes of channel activity in a systematic way has, so far, not been addressed in the literature.

In this study, we present a general framework for building data-driven models of ion channels
that account for modal gating. This is essential for accurately representing the dynamics of an
ion channel—instead of producing a misleading constant intermediate open probability PO, a
model should represent the switching between highly different levels of activity characteristic
of each mode. This is illustrated in figure 1 where data points labelled M1 form a segment
characterized by a low open probability, whereas the segment labelled M2 is characterized by
a high open probability. In a realistic time series, the changes between M1 and M2 occur on a
time scale so slow that directly fitting a model (even if they have a sufficient number of open and
closed states) to the data will not be able to resolve the infrequent switching between high and
low open probabilities but instead will most likely lead to a model with a constant intermediate
open probability. Moreover, modes of an ion channel have been associated with biophysical
properties of the channel protein [6]. Therefore, a model accounting for modal gating is more
likely to appropriately relate the dynamics of ion channels to underlying biophysical states of the
channel protein.

Blatz & Magleby [8] presented an early modelling study of three modes observed in a chloride
channel. They chose segments representative of an inactive, an active and a flicker mode and went
through a thorough model selection process. In this way, they obtained models for each of the
three modes. They estimated the order of magnitude of the transitions between these modes and
presented a qualitative model structure that illustrates the transitions between the three modes.
The model that will be developed here can be regarded as a quantitative development of the idea
by Blatz & Magleby [8].

After this early study, modal gating has only rarely been considered in ion channel models.
But recently, shortly after the discovery of modal gating in the inositol-trisphosphate receptor
(IP3R) by Ionescu et al. [9]—an observation that has been received with great interest in the IP3R
community, Mak & Foskett [10]—Ullah et al. [11] and Siekmann et al. [12] independently proposed
two different models that represent modal gating in the IP3R. Both models are discussed in
more detail in §5. The model by Ullah et al. [11] has most recently been used for investigating
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Figure 1. After a statistical analysis of modal gating [6], experimental data are partitioned into segments based on different
levels of open probability PO by inferring changepoints jn. For the small section of data shown in (a), the channel spontaneously
jumps at t ≈ 3.55 s from a low PO close to zero (M1) to a high level of activity with PO ≈ 75% (M2). At t ≈ 3.575 s, the channel
leaves the highly active mode M2 and returns to the low level of activity characteristic for M1. Through this segmentation, the
original stochastic process Tk of open (O) and closed (C) events has beenaugmentedby theadditional information Sk of themode
(M1, M2 . . . ) that the channel is in for a given point in time. The two coupled stochastic processes Sk and Tk will be represented
by the continuous-time hierarchical Markov model developed in this study. (a) Experimental data and (b) stochastic processes
Sk and Tk .

the influence of modal gating on calcium puffs [13] and for studying the impact of increased
IP3R activity in Alzheimer’s disease [14]. One difficulty in appropriately representing modal
gating of ion channels in a model is the fact that for a time series of measurements collected
from an ion channel, it is impossible to infer directly in which mode the channel is at a given
point in time. However, Siekmann et al. [6] have shown how this information can be obtained
by statistical changepoint analysis (figure 1). Previously, segments representative of different
modes were either selected by visual inspection or by estimating the open probability using
moving averages. Ionescu et al. [9] presented a heuristic algorithm that segments the data based
on an analysis of burst durations and burst-terminating gaps. Siekmann et al. [6] detected mode
changes by identifying significant changes of the open probability between adjacent segments
in a time series recorded from an ion channel. In contrast with previous approaches, the
uncertainty of the inferred changepoints where mode switching has supposedly occurred can
be comprehensively assessed because Siekmann et al. [6] calculated probability distributions for
the changepoint locations.

As a result, after this analysis has been carried out, for each point in the time series it is not only
known if the channel is open (O) or closed (C), but also—with an associated level of uncertainty
calculated by the method—in which of the modes M1, M2, . . . the channel is. Previously, we
observed stochastic switching between a nearly inactive mode M1 and a highly active mode M2

in data from the IP3R [6]. In this paper, we will represent the stochastic process of switching
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Figure 2. The model from Siekmann et al. [12] and the new hierarchical model are compared for a dataset from type I IP3R for
10µM IP3, 5 mM ATP and 0.01µMCa2+. (a) The fit of the newmodel to the empirical sojourn time density in modeM1 (shown
in red) is slightly improved in comparison with the original model (shown in green). This improved fit of the modal kinetics
clearly improves the fit to the closed time densities shown in (c). (a) Sojourn time density in M1, (b) sojourn time density in M2,
(c) closed time density and (d) open time density.

between an arbitrary number of different modes Mi by a continuous-time Markov model with
infinitesimal generator M̃. For data by Wagner & Yule [15], empirical histograms suggest that the
sojourn time distribution fM1 (t) within mode M1 is not exponential (see figs 5 and 6 in Siekmann
et al. [6] and figures 2a and 5). For this reason, in general, more than one state is needed for
accurately representing the process of switching between modes. This means that modal sojourn
times are represented by phase-type distributions, a class of distributions which is defined by
the time a Markov chain spends in a set of transient states until exiting to an absorbing state
[16,17]. We assume that the infinitesimal generator M̃ representing the switching between modes
Mi, i = 1, . . . nM, has the following block structure:

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̃1,1 | M̃1,2 | . . . | M̃1,nM

M̃2,1 | M̃2,2 | . . . | M̃2,nM

...
. . .

...
...

. . .
...

...
. . .

...
M̃nM,1 | . . . . . . . . . | M̃nM,nM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.1)

where the block matrices M̃i,i ∈ R
mi×mi , mi ∈ N, on the diagonal describe transitions between

states that represent the same mode Mi, whereas the off-diagonal blocks M̃i,j ∈ R
mi×mj represent

transitions between states representing different modes Mi and Mj, i �= j. An example for a model
for switching between two modes M1 and M2 is shown in figure 3a.

Our modal gating analysis illustrated in figure 1 not only enables us to represent the stochastic
process of switching between modes Mi but by studying the dynamics within representative
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Figure 3. Modular components of a model for modal gating. (a) An example for an aggregated Markov model M̃ representing
inter-modal dynamics, the stochastic switching between twomodes, M1 andM2. M1 is modelled by an aggregate of two states,
whereas M2 is represented by one state. The ratesm23 andm32 stand for transitions between both modes. Note that M̃may, in
general, represent transitions betweenmore than twomodes, therefore, the states M̃i

j are numbered consecutively by subscripts
j, whereas the superscripts i indicate the modeMi . (b) Models Q1 and Q2 representing the stochastic opening and closing that is
characteristic of mode M1 or M2, respectively. The states Cik and O

i
k are numbered similar to the M̃

i
j . Note that k = 1, . . . , ni for

eachmodeMi in contrastwith the states M̃i
j where the index j runs from 1 to the total number of states. In figure 4, we showhow

M̃ and the Qis are combined in a model that accurately represents both inter-modal transitions as well as intra-modal kinetics.
(a) Inter-modal transitions and (b) intra-modal dynamics.

segments we can investigate the processes of stochastic opening and closing characteristic of each
mode. For the example in figure 1, the dynamics within mode M2 can be analysed by considering
the sequence of open and closed events between jk and jk+1. The dynamics within a mode Mi can
be represented by a Markov model with infinitesimal generator Qi which is obtained by fitting to
representative segments of the same mode [12]. Similar to the sojourn times in the modes Mi, the
open and closed time distributions fO(t) and fC(t), respectively, are non-exponential and more than
one open or closed state may be needed for accurately representing the dynamics. For the example
shown in figure 1, we obtain two models with infinitesimal generators Q1 and Q2 (figure 3b).

In this paper, we develop a new mathematical model, the continuous-time hierarchical Markov
model, that accounts simultaneously for both transitions between modes as well as the stochastic
opening and closing within modes. A hierarchical Markov model in discrete time has been
previously described by Fine et al. [18] but because we are not aware of a continuous-time
version discussed in the literature, we develop the mathematical theory in detail and prove
some fundamental properties. For ion channel modelling a continuous-time representation of the
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Figure 4. Aggregated Markov model that represents both transitions between modes M1 and M2 according to model M̃
(figure 3a) aswell as stochastic opening and closing consistentwithmodelsQ1 andQ2 (figure 3b). The open and closed states are
Oi,jk and C

i,j
k , respectively, where the superscripts i,j refer to the state M̃

i
j in the model shown in figure 3a, whereas the subscript

k is the index of the state within a model Qi shown in figure 3b. This illustrates that the state set of the full model is obtained by
the Cartesian product of states representing themodes Mi with the states of themodel Qi . Owing to the transitionsm12 andm21

between the two states representing M1, in the full model there are two copies of model Q1 connected by transition rates m12

and m21. For transitions between modes it is decided stochastically in which state the target mode is entered. The transitions
are determined by initial distributions over the states of themodels Qi . Thus, for our example, we have to choose two stochastic
vectors p1 = (p11, p

1
2) and p

2 = (p21 , p
2
2, p

2
3) that give the initial distributions over the states of Q

1 and Q2. In order to ensure that
the states are indeed enteredwith the chosen initial distribution, the ratesm23 exitingM1 andm32 exitingM2 are weightedwith
p1 and p2.

dynamics is more appropriate because it is commonly assumed that ion channels are able to make
faster transitions than currently resolved by experiments. For the example of modal gating, we
assume that switching between modes Mi is a top-level process that regulates the bottom-level
process, the opening and closing of the channel characteristic of a particular mode Mi. This is
illustrated in figure 3.

The states M̃i
j are numbered consecutively by subscripts j, whereas the superscripts i indicate

the mode Mi. While the model is in mode M1 or analogously within one of the states M̃1
1 or M̃1

2
(figure 3a), its opening and closing is described by the infinitesimal generator Q1 (figure 3b). As
soon as M1 is left to state M̃2

3, the current state of model Q1 is vacated and a state of model Q2 is
entered. Now, opening and closing is accounted for by Q2 until the state M̃2

3 and mode M2 is left
and state M̃1

2 is entered.
The transitions between modes described via M̃ and the dynamics within modes captured by

Qi illustrated in figure 3 can be represented in a Markov model with infinitesimal generator M
that is derived from the individual components M̃ and Qi. The idea is illustrated in figure 4 and
developed formally in §2.

In order to account for the states M̃i
j as well as the states Oi

k and Ci
k representing the opening

and closing within Mi, the state space of the full model consists of the Cartesian products of the
M̃i

j with the Oi
k and Ci

k. Thus, the state space of the full model consists of open and closed states

Oi,j
k and Ci,j

k , respectively, where the superscripts i,j refer to the state M̃i
j in the model shown in

figure 3a, whereas the subscript k is the index of the state within a model Qi shown in figure 3b.
For the example shown in the figure, the closed states C1,1

1 and C1,2
1 as well as the open states O1,1

2
and O1,2

2 are connected by the transition rates m12 and m21. Because M1 is modelled by two states
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M̃1
1 and M̃1

2, two ‘copies’ of Q1 appear in the full model, whereas there is only one ‘copy’ of Q2

which is represented by only one state in M̃.
For transitions between modes, it is decided stochastically in which state the target mode is

entered. The transitions are determined by initial distributions over the states of the models Qi.
Thus, for our example, we have to choose two stochastic vectors p1 = (p1

1, p1
2) and p2 = (p2

1, p2
2, p2

3)
that give the initial distributions over the states of Q1 and Q2, respectively. For simplicity, we
assume that this initial distribution does not depend on the state from which the transition
originates so that—independent of the originating state—each state in the target model is entered
with the same probability. In order to ensure that the states of Qi are indeed entered with the
chosen initial distribution, the transition rates have to be ‘split’ accordingly. For our example,
the rates m23 exiting M1 and m32 exiting M2 are weighted with the stochastic vectors p1 and p2.
The mathematical details of the construction of this model are presented in §2.

It is a strength of our approach that it enables us to build data-driven models of modal gating
in a modular way. After segmenting ion channel data with the method by Siekmann et al. [6], we
obtain a stochastic sequence of events Mi that describes the time course of transitions between
different modes. The infinitesimal generators M̃ and the Qi can then be parametrized from these
data. We demonstrate the practical implementation of this approach in §3 using experimental
data by Wagner & Yule [15] and compare the results with our previously published model of the
same dataset [12].

We investigate the mathematical structure of the continuous-time hierarchical Markov model
in more detail in §4. In particular, we show that many important properties of the infinitesimal
generator M of the full model can be derived from the generators M̃ and Qi. We expect that similar
to its discrete-time counterpart [18], the continuous-time hierarchical Markov model will have a
variety of applications beyond the modelling of modal gating considered here.

We discuss our approach to modal gating in §5. In particular, we explain why our new
modelling framework provides a representation of ion channel dynamics that is likely to provide
a structure that realistically captures biophysical processes.

2. Material and methods

(a) Preliminaries
We now develop formally the hierarchical Markov model illustrated graphically in figures 3
and 4. First, let us describe the structure of the probability distribution p over the states of the
hierarchical Markov model. Let v = (v1; v2; . . . ; vnM ) denote a state probability distribution of the
model M̃. That is, for i = 1, . . . , nM, vi is the probability distribution of the states in mode Mi. In
general, we will allow M̃ to be an aggregated Markov model so that each of the components vi

of the vector v may itself be a vector. With the term aggregated Markov model, we refer to a
model where possibly multiple rather than one Markov states are used for representing the same
experimental observation. Multiple states of the same aggregate cannot be directly distinguished
based on experimental observations. Aggregated Markov models are capable of accounting for
observations whose dwell times are distributed according to a mixture of exponentials rather
than the exponentially distributed sojourns of single Markov states. We make the convention
that components vi and vj that are meant to refer to a vector are separated by semicolons,
whereas components of a vector are separated by commas. Let us first assume for simplicity
that all modes Mi are represented by only one state so that the components vi are scalars.
Then the distribution p over the states of the full model M is a weighting of the distributions
wi over the distributions over the states of the models Qi. Thus, we obtain p := (v1 · w1; . . . ; vi ·
wi; . . . ; vnM · wnM ). Here ‘·’ denotes scalar multiplication of vectors wi with scalars vi. If more
than one state is needed for representing the modes Mi, we must generalize appropriately the
‘weighting’ of a vector wi with a vector vi. Such a generalization is provided by the tensor
product ‘⊗’.
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Definition 2.1 (Kronecker product ⊗). We will only need the special case of the tensor product
for matrices, the Kronecker product. Let A ∈ R

m×n, B ∈ R
p×r. Then

A ⊗ B := (aij · B)1≤i≤m,1≤j≤n =

⎛
⎜⎜⎝

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎞
⎟⎟⎠ ∈ R

mp×nr. (2.1)

The Kronecker product also applies to vectors by identifying column vectors with (m × 1)- and
row vectors with (1 × m)-matrices.

Definition 2.2 (Kronecker sum ⊕). The Kronecker sum of square matrices A ∈ R
m×m and B ∈

R
n×n is

A ⊕ B := A ⊗ idn + idm ⊗ B ∈ R
mn×mn, (2.2)

where idm and idn are the identity matrices of the respective dimensions.

For some properties of Kronecker product and sum that we require for our analysis of the
hierarchical Markov model (§4), we refer to appendix A. For a distribution v over the states of an
aggregated Markov model, subvectors that represent the distributions over the states of the same
mode Mi can be naturally described by partitions.

Definition 2.3 (Partitioned vectors, multi-indices). A multi-index is any vector α =
(α1, . . . , αd) ∈ N

d. We define the absolute value |α| =∑d
i=1 αi and denote dim(α) = d the dimension

of α.
A vector v is partitioned by a multi-index α if

vα := (v1; . . . ; vi; . . . ; vdim(α))

and for each i we have vi ∈ R
αi .

Selection of the ith partition of vα is written as

vα(i) = vi.

The vector space of α-partitioned vectors vα is denoted R
α .

How distributions p over the states of a hierarchical Markov model relate to distributions over
the states of M̃ and Qi can be clarified by the tensor product of partitioned vector spaces.

Definition 2.4 (Tensor product R
m ⊗m,n R

n of d-partitioned vector spaces). Let m, n ∈ N
d, vm ∈

R
m, wn ∈ R

n be d-partitioned vectors. Then the tensor product um·n of d-partitioned vectors vm and
wn is defined by

um·n := vm ⊗m,n wn := (v1 ⊗ w1; . . . ; vi ⊗ wi; . . . ; vd ⊗ wd), (2.3)

with the component-wise product m · n of m and n. With the tensor product ‘⊗m,n’ we obtain the
vector space

R
m ⊗m,n R

n

of the d-partitioned vector spaces R
m and R

n.

Remark 2.1. We make some remarks regarding the interpretation of definition 2.4:

— It can be easily verified that ‘⊗m,n’ fulfils the properties of a tensor product on the vector
space R

m ⊗m,n R
n.
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— Vectors um·n ∈ R
m ⊗m,n R

n can be written as linear combinations

um·n =
d∑

k=1

mk∑
i=1

nk∑
j=1

ak
ij(v

k,i
m ⊗m,n wk,j

n ), ak
i,j ∈ R, (2.4)

where d = dim m = dim n. By choosing bases {vk,i}, i = 1, . . . , mk, {wk,j}, j = 1, . . . , nk, we
obtain systems of linearly independent vectors

vk,i
m = (0; . . . ; vk,i; . . . ; 0) ∈ R

m

and
wk,j

n = (0; . . . ; wk,j; . . . ; 0) ∈ R
n.

Thus, from (2.4) it is easy to see that

R
m ⊗m,n R

n ∼= R
m·n,

where m · n again denotes the component-wise product of m and n.

(b) A hierarchical Markov model for modal gating
Based on the block structure (1.1) of M̃, we now show how a transition matrix for the full
model can be calculated from its components ((m̃0, M̃), (pi, Qi)nM

i=1). Let m and n be the multi-
indices defined above. The transitions within the modes Mi are represented in the full model by
block matrices Mi,i = M̃i,i ⊕ Qi ∈ R

mini×mini . It follows that dim Mi,i = mini. Moreover, we define
the matrix of initial conditions for a transition from Qi to Qj by

Pi,j = uT
ni

⊗ pj = pj ⊗ uT
ni

, (2.5)

where the row vector pj ∈ R
1×nj is the initial condition for Qj from definition 2.5, and uT

ni
∈ R

ni×1 is
a column vector of ones. We observe that Pi,j ∈ R

ni×nj so that, for i �= j we have Mi,j = M̃i,j ⊗ Pi,j ∈
R

mini×mjnj . We can now define the components of a continuous-time hierarchical Markov model
and calculate its infinitesimal generator:

Definition 2.5 (Components of a continuous-time hierarchical Markov model). A continuous-
time hierarchical Markov model (with a two-level hierarchy) is specified by the components
((m̃0, M̃), (pi, Qi)nM

i=1):

— An infinitesimal generator M̃ of a Markov model with initial distribution m̃0 with
aggregates of states Mi, i = 1, . . . , nM. The Mi are referred to as modes.

— For each mode, a Markov model with infinitesimal generator Qi and initial distribution pi.

Then the infinitesimal generator M of the aggregated model for modal gating is calculated as
follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M̃1,1 ⊕ Q1 | M̃1,2 ⊗ P1,2 | . . . | M̃1,nM ⊗ P1,nM

M̃2,1 ⊗ P2,1 | M̃2,2 ⊕ Q2 | . . . | M̃2,nM ⊗ P2,nM

...
. . .

...
...

. . .
...

...
. . .

...
M̃nM,1 ⊗ PnM,1 | . . . . . . . . . | M̃nM,nM ⊕ QnM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.6)

It is straightforward to generalize this definition recursively to an arbitrary number of
hierarchies. From definition 2.4 and (2.3), we know that an arbitrary distribution p over the states
of the full model can be represented by a linear combination of tensor products of the form (2.3).
We now require for initial distributions that they should arise from a single tensor product of
initial distributions over the states of M̃ and initial distributions over the states of the Qi.
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Definition 2.6 (Initial distribution over the states of a hierarchical Markov model). Let vm

be the initial distribution over the states of the top-level model M̃ and wn, a vector whose
components wi are initial distributions over the states of the models Qi. Then the initial
distribution p0

m·n over the states of the full model M is calculated by the tensor product ‘⊗m,n’
introduced in definition 2.4:

p0
m·n = vm ⊗m,n wn = (v1 ⊗ w1; . . . ; vi ⊗ wi; . . . ; vnM ⊗ wnM ). (2.7)

Remark 2.2. We make some remarks regarding the interpretation of definition 2.6:

— Note that whereas vm is a stochastic vector, wn is not. It is easy to see that p0
m·n is a

stochastic vector.
— Algebraically, definition 2.6 constrains initial distributions to so-called pure tensors which

can be written as a single tensor product rather than a linear combination of tensor
products.

— Statistically, definition 2.6 says that for the initial distribution the probabilities of being
in a state M̃i

j and a state Qi
k are stochastically independent: the joint probability of being

in M̃i
j and Qi

k is the product of the individual probabilities (2.7).

It is an interesting question if the time-dependent solution pm·n(t) or the stationary distribution
of the full model M remain in the form pm·n(t) = vm(t) ⊗m,n wn(t) for t > 0. In fact, this is generally
not the case.

Remark 2.3 (Caution). In most situations, pm·n(t) cannot be written as a pure tensor pm·n(t) =
vm(t) ⊗m,n wn(t) for t > 0. As discussed in proposition 4.4, we obtain a solution (vm(t) ⊗m,n πn) for
a solution vm(t) of M̃ and a vector πn of stationary solutions π i of Qi if and only if we choose initial
conditions pi = π i for all Qi.

(c) Example
As an example for the construction of the infinitesimal generator M from the components
((m̃0, M̃), (pi, Qi)nM

i=1), we present a model that will be used in §3 for experimental data from the
inositol trisphosphate receptor (IP3R).

Let the infinitesimal generator for the switching between modes be

M̃ =

⎛
⎜⎝−m13 0 m13

0 −m23 m23

m31 m32 −m31 − m32

⎞
⎟⎠ (2.8)

and the models representing the intra-modal kinetics

Q1 =
(

−q1
12 q1

12

q1
21 −q1

21

)
and Q2 =

⎛
⎜⎜⎜⎜⎝

−q2
12 q2

12 0 0

q2
21 −q2

21 − q2
23 − q2

24 q2
23 q2

24

0 q2
32 −q2

32 0

0 q2
42 0 −q2

42

⎞
⎟⎟⎟⎟⎠ (2.9)

with initial conditions

p1 = (p1
1, p1

2) and p2 = (p2
1, p2

2, p2
3, p2

4). (2.10)
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Then

M =
⎛
⎝ M̃1,1

2 ⊕ Q1 M̃1,2
2 ⊗ P1,2

M̃2,1
2 ⊗ P2,1 M̃2,2

2 ⊕ Q2

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m13−q1
12 q1

12 0 0 m13p2
1 m13p2

2 m13p2
3 m13p2

4

q1
21 −m13−q1

21 0 0 m13p2
1 m13p2

2 m13p2
3 m13p2

4

0 0 −m23−q1
12 q1

12 m23p2
1 m23p2

2 m23p2
3 m23p2

4

0 0 q1
21 −m23−q1

21 m23p2
1 m23p2

2 m23 p2
3 m23p2

4

m31p1
1 m31p1

2 m32p1
1 m32p1

2 −R−q2
12 q2

12 0 0
m31p1

1 m31p1
2 m32p1

1 m32p1
2 q2

21 −R−q2
21−q2

23−q2
24 q2

23 q2
24

m31p1
1 m31p1

2 m32p1
1 m32p1

2 0 q2
32 −R−q2

32 0
m31p1

1 m31p1
2 m32p1

1 m32p1
2 0 q2

42 0 −R−q2
42

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.11)

with R := m31 + m32.

(d) Parametrizing the model with experimental data
In order to parametrize the components ((m̃0, M̃), (pi, Qi)nM

i=1) of our model, the infinitesimal
generators M̃ and Qi have to be inferred from ion channel data. We assume that the original
data, a sequence of current measurements recorded with a constant sampling interval τ , have
been statistically analysed so that they have the form of figure 1. Apart from visual inspection,
mode changes have been investigated based on calculating the open probability within a
window of a certain number of data points. One problem with these methods based on moving
averages is that—depending on the window size—instantaneous jumps are transformed to
gradual transitions so that the transitions between modes cannot be localized very accurately.
By contrast, the heuristic method by Ionescu et al. [9] localizes switching events at specific data
points but the uncertainty of the segmentation into different modes cannot be quantified. By
contrast, the method by Siekmann et al. [6] calculates probability distributions for the position
of each transition between different modes so that for each detected transition between different
modes comprehensive information on the uncertainty is available. After a time series has been
segmented each measurement is classified as open (O) or closed (C) and it has also been
determined in which mode Mi the channel was at this point in time. From the results of a
probabilistic method such as Siekmann et al. [6] rather than assigning a particular mode to each
data point, it is possible to calculate a probability distribution for the different modes. This may
improve the results for datasets where mode changes cannot be localized very accurately. The
Markov model M̃ is then inferred from the sequence Sk of modes Mi, whereas the models Qi are
parametrized from sequences of Tk that are representative of a particular mode. For example,
in figure 1, the five data points between jn and jn+1 could be used for inferring the model Q2

representing the stochastic opening and closing within mode M2.
All models are parametrized with the Bayesian method developed in Siekmann et al. [19,20] or,

alternatively, any other algorithm for fitting Markov models to single channel data. For inferring
the infinitesimal generator M̃ the likelihood has the form

P((Sk)|M̃) = μ̃ · PS1 · exp(M̃τ ) · PS2 · · · · · exp(M̃τ ) · PSN · uT, (2.12)

where (Sk) is a sequence of observations of modes Mi separated by the sampling interval τ , M̃ is
the infinitesimal generator of an aggregated Markov model, μ̃ is the stationary distribution of M̃
and uT is a column vector of ones. The matrices PSk project to the states of the model that represent
the mode observed at data point k. For example,

P M1 =

⎛
⎜⎜⎜⎜⎝

idm1 0 . . . 0
0 . . .

...
0 . . . . . . 0

⎞
⎟⎟⎟⎟⎠ (2.13)
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with the same block structure as in (1.1) projects to states representing mode M1, the other
projection matrices PSi are defined equivalently. The likelihood for inferring the infinitesimal
generators Qi from representative segments of Tk of open (O) and closed (C) events (figure 1) is
analogous to (2.12). Missed events, see Hawkes and co-workers [21–23] and the references therein,
are not considered because they are not relevant for this approach. The method is discussed in
detail in Siekmann et al. [19,20].

3. Data-driven modelling of modal gating
Our new framework enables us to easily construct and parametrize models for modal gating
following a transparent iterative process:

(i) Infer the stochastic process Sk of switching between modes Mi (figure 1).
(ii) Model the process Sk of mode switching by parametrizing an infinitesimal generator M̃

(figure 3a).
(iii) From segments of Tk representative for the opening of closing within each of the modes

M1, M2, . . . (figure 3b) parametrize infinitesimal generators Q1, Q2, . . .
(iv) Choose initial distributions m̃0 and pi and combine all components ((m̃0, M̃), (pi, Qi)nM

i=1)
by calculating the infinitesimal generator M of the full model (figure 4).

Inferring M̃ and Qi using the Bayesian approach briefly described in §2d ensures that the
resulting model will be highly parsimonious because at each step a model with the optimal
number of parameters for representing stochastic switching between modes, and opening and
closing within modes, is determined. We demonstrate the practical implementation of this process
using data collected by Wagner & Yule [15] and compare the results with our previously published
model of the same dataset [12].

(a) Step (i): statistical analysis of modal gating
Previously, we have statistically analysed mode switching exhibited in the data by Wagner & Yule
[15] and found two modes, the nearly inactive mode M1 with a very low open probability and
the highly active mode M2 with PO ≈ 70% (see Siekmann et al. [6] for details). As illustrated in
figure 1, we have a stochastic sequence of events M1 and M2 that are separated by a sampling
interval τ = 0.05 ms. We have results from two types of the inositol trisphosphate receptor (type
I IP3R and type II IP3R) for various calcium concentrations (Ca2+), 0.01 µM, 0.05 µM and 5 µM,
at fixed concentrations of 10 µM inositol trisphosphate (IP3) and 5 mM adenosine trisphosphate
(ATP). Empirical histograms of the sojourn times in M1 and M2 for all except one dataset
indicate that whereas time spent in the active mode M2 may be represented satisfactorily by one
state, accurately representing sojourn times in the nearly inactive mode M1 seems to require at
least two states (e.g. figure 2). Whereas one state accounts for the support of the sojourn time
density in mode M2 (figure 2b), the more widespread sojourn time density in mode M1 is better
approximated by two states (figure 2a). Thus, for five of our six datasets we parametrize M̃ with
the structure of (2.8). For one dataset (type II IP3R at 0.05 µM Ca2+), the histograms suggest that
we need a model with two states representing M1 and two states representing M2 (figure 5). Thus,
for these data we use the following infinitesimal generator:

M̃Type II IP3R, 0.05 µM Ca2+ =

⎛
⎜⎜⎜⎝

−m12 − m13 m12 m13 0
m21 −m21 − m24 0 m24

m31 0 −m31 0
0 m42 0 −m42

⎞
⎟⎟⎟⎠ . (3.1)

It may seem that the mode switching dynamics of type II IP3R is represented here with two
different model structures. But, in fact, we can obtain the model structure from (3.1) by simply
adding an additional M2 state to the models for 0.01 µM Ca2+ and 5 µM Ca2+ such that transition
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Figure 5. Empirical sojourn time distributions for both modes M1 and M2 for type II IP3R for for 10µM IP3, 5 mM ATP and
0.05µM Ca2+. Whereas the hierarchical model can resolve (by using a four-state model) the widespread distributions of both
M1 and M2, the model from Siekmann et al. [12] can only capture one characteristic sojourn time due to the fact that only one
pair of transition rates has been used to connect the submodels for mode M1 and M2. Sojourn time distribution in (a) M1 and
(b) M2.

rates entering this state vanish. The interpretation of this is that the additional state representing
long sojourns in M2 observed for 0.05 µM Ca2+ —although present in the model—is never visited
at the other ligand concentrations.

(b) Step (ii): parametrizing M̃
Fitting M̃ to a time series Sk of M1 and M2 using our MCMC method [19,20] is a challenging
problem. Because in a time series of a few hundred thousand up to about a million data points,
the number of transitions between the two modes is only in the order of hundreds, the data
from which the rate constants have to be inferred are effectively very limited—despite the large
number of data points. An example of a convergence plot shown in electronic supplementary
material, figure S1, demonstrates that values of the two rates, m13 and m23, alternate. This is due
to symmetry in the model structure chosen for the model M̃ where the two states M1

1 and M1
2 can

be swapped without changing the model. This effect can be removed by considering only one
mode of the multi-modal posterior, in this case by considering only samples where m31 exceeds
a certain threshold. Nevertheless, even after this correction some parameters such as the rate m23
show a high degree of uncertainty indicated by a widespread marginal distribution (electronic
supplementary material, figure S1). Mean values and standard deviations of the distributions of
the model parameters are summarized in electronic supplementary material, tables S1 and S2.

(c) Step (iii): parametrizing Q1 and Q2

In our previous study [12], we have already fitted a model with two states to representative
segments of the inactive mode M1 and a model with four states for representing M2, see (2.9)
for the form of the infinitesimal generators Q1 and Q2. Interestingly, we could show that Q1 and
Q2 were independent of the concentrations of IP3, ATP and Ca2+. The parameter values from the
Supplementary Material of Siekmann et al. [12] are reproduced here for convenience (electronic
supplementary material, table S3).

(d) Step (iv): the generatorM of the full model
After the models M̃, Q1 and Q2 have been obtained, we finally need to specify the initial
distributions m̃0, p1 and p2. Consistent with the experimental assumption that recording of the
data was started when the channel had reached steady state, we set m̃0 = μ̃, p1 = π1 and p2 = π2,
where μ̃, π1 and π2 are the stationary distributions of M̃, Q1 and Q2, respectively. After all
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Figure 6. Comparison of a segment of data from type II IP3R recorded at recorded at 10µM IP3, 5 mM ATP and 0.05µM (a,d)
with simulations of the hierarchical model presented here and the model from Siekmann et al. [12]. The colour of the line
indicates if the channel is in the nearly inactive mode M1 or the active mode M2. As expected from the dwell time distributions
of the two modes (figure 2), the model from Siekmann et al. [12] shows too many long sojourns in the active mode M2 as well
as in the inactive mode M1 ((c) and (f )). By contrast, both long as well as short visits to both modes are seen in the sample path
generated for the hierarchicalmodelwhich is closer towhat is observed in the data ((b) and (e)). (a) Data, (b) hierarchicalmodel
(HM), (c) Siekmann et al. [12] (SM), (d) data (detail), (e) HM (detail) and (f ) SM (detail).

components ((m̃0, M̃), (pi, Qi)nM
i=1) of our model have been specified, the infinitesimal generator

M of the full model can be calculated using (2.6).

(e) Results
Owing to the problems with fitting the infinitesimal generator M̃ (2.8) mentioned in §3b, one may
ask if a simpler two-state model representing the dynamics of modal gating would be preferable.
However, the ability of a three-state model to approximate the sojourn distribution of the nearly
inactive mode M1 more accurately (figure 2a) was found to be crucial for obtaining a better fit of
the closed time distribution in comparison with the model from Siekmann et al. [12] (figure 2c).
That the model structure of the hierarchical model proposed here is better able to capture the
properties of the entire time series data seems even more convincing because it has—unlike the
original model from Siekmann et al. [12]—been built without directly fitting to the time series at
any step of its construction.

In electronic supplementary material, figure S2, we show that the bimodal closed time
distribution observed for some combinations of ligand concentrations arises due to the mixing
of the closed time distributions within nearly inactive mode M1 and active mode M2 both of
which only have one distinct maximum.

Stronger differences between both models are observed for a dataset collected from type II
IP3R for 10 µM IP3, 5 mM ATP and 0.05 µM Ca2+. For this experimental condition, the effect of
modal gating can be observed without statistical analysis (electronic supplementary material,
figure S3a). Figure 5 shows that both modes M1 and M2 exhibit a widespread distribution of
sojourn times which can only approximately be captured by a four-state model with two states
each for both M1 and M2. Whereas the new hierarchical model can approximate the empirical
distributions of both modes relatively well, the model from Siekmann et al. [12] fails due to the fact
that only one characteristic sojourn time for each mode can be captured by the pair of transition
rates accounting for modal gating in this model (figure 5).
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Owing to the failure to account for the modal sojourn time distributions, we expect the model
from Siekmann et al. [12] to reproduce the kinetics observed in the data much less accurately
than the new hierarchical model. In order to illustrate this, we simulated both the Siekmann et al.
[12] model and the new model and compared them with a segment of experimental data of the
same length (figure 6). The sample path was plotted in blue when the channel was in mode M1,
whereas it was plotted in brown when the channel was in mode M2. The same colours were used
for colouring the data based on the results of the statistical analysis from Siekmann et al. [6]. In the
data segment shown here, both dwell times in the active mode M2 of about 0.2–0.5 s are observed
as well as very brief sojourns of a few milliseconds. Consistent with the dwell time distribution
(figure 2), the long but not the short sojourns in the active mode M2 are captured by the model
from Siekmann et al. [12], whereas the hierarchical model developed in this study reproduces both
long and short sojourns in this mode. Interestingly, as we show in the electronic supplementary
material, for this particular dataset the channel seems to change its behaviour at an even slower
time scale by spontaneously increasing the observed prevalence in M2 for an extended period of
time before returning to the initial level of activity (electronic supplementary material, figure S3a).

4. Mathematical analysis of the hierarchical Markov model
In the previous section, we demonstrated that the hierarchical Markov model introduced in §2
provides a statistically efficient framework for systematically building models for modal gating.
Now, we focus on some interesting aspects of the mathematical structure of the hierarchical
Markov model and show that many important properties of the infinitesimal generator M of the
full model can be derived from the components ((m̃0, M̃), (pi, Qi)nM

i=1) of the model.
In §4a, we calculate the eigenvalues of M. The spectrum of M consists of two parts: the

eigenvalues of M̃ and a subset of the eigenvalues of the blocks Mi,i = M̃i,i ⊕ Qi. But whereas the
eigenvalues of the submatrices M̃i,i appear in the spectrum of the submatrices Mi,i, they are not
eigenvalues of the full model M.

From a modelling point of view, it is an important question if properties of the components
((m̃0, M̃), (pi, Qi)nM

i=1) are preserved when they are combined in the full model. In §4b, we
demonstrate that the sojourn time distribution in the states representing a particular mode in
the model M̃ is preserved for the analogous distribution calculated for the augmented state space
of M.

When the initial distributions pi coincide with the stationary distributions, pi = π i, we calculate
the full time-dependent solution and the stationary distribution of M from the components
((m̃0, M̃), (pi, Qi)nM

i=1) of the hierarchical Markov model (§4c).

(a) Eigenvalues
Before we calculate the eigenvalues for general infinitesimal generators M of the full model, we
remark that in most cases relevant for ion channel modelling we may assume that the matrices
M̃ and Qi appearing in our model are diagonalizable—this is implied by the so-called detailed
balance conditions:

π iqij = π jqji, (4.1)

where π is the stationary distribution of an infinitesimal generator Q = (qij). A matrix Q = (qij)
with (4.1) is diagonalizable with real eigenvalues because by choosing the transformation matrix
diag(π )1/2 it is similar to a symmetric real matrix. Detailed balance is usually assumed to hold
for ion channel models because it can be related to thermodynamic reversibility of the transitions
between different states in the model. Note that (4.1) holds automatically if the adjacency graph
of the states of a Markov model is acyclic. This follows from Kolmogorov’s criterion [24], see
theorem 1.8 of [25] for a more recent statement of the continuous-time version. Thus, in particular,
all infinitesimal generators M̃ and Qi considered in this article satisfy detailed balance.
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Proposition 4.1 (Eigenvalues and eigenvectors of M assuming detailed balance). We assume
that the matrices M̃ and Qi of a hierarchical Markov model fulfil the detailed balance conditions (4.1).

(i) Let ζ be an eigenvalue of the matrix M̃ and vT
m a right eigenvector associated with ζ . Then ζ is

also an eigenvalue of the full model M with associated right eigenvector vT
m ⊗ uT

n , where uT
n is a

vector of |n| ones.
(ii) Moreover, all ν = ζ̃ + λ, where ζ̃ is an eigenvalue of M̃i,i and λ �= 0 is an eigenvalue of Qi, are

eigenvalues of the full model M. If w̃i is a left eigenvector of the submatrix Mi,i associated with the
eigenvalue ν, wm = (0; . . . ; 0; w̃i; 0; . . . ; 0) with w(i) = w̃i and w(j) = 0, i �= j is a left eigenvector
of M associated with ν.

Proof. Detailed balance implies that M̃ and the Qi are diagonalizable with real eigenvalues. In
particular, all matrices have full sets of eigenvectors. This enables us to construct eigenvectors of
the infinitesimal generator M of the full model from the eigenvectors of M̃ and the Qi.

(i) We need to show that M(vT
m ⊗m,n uT

n ) = ζ (vT
m ⊗m,n uT

n). Let [M(vT
m ⊗m,n uT

n)]i denote the
ith component of the partitioned vector. Here, vT

m ⊗m,n uT
n is a tensor product that is

consistent with the partitions m and n as in (2.3) (definition 2.3). We calculate

[M(vT
m ⊗m,n uT

n )]i = (M̃i,i ⊕ Qi)((vi)T ⊗ uT
ni

) +
∑
k �=i

(M̃i,k ⊗ Pi,k)((vk)T ⊗ uT
nk

).

Using the compatibility condition of matrix multiplication and tensor product (A 2) we
calculate

[M(vT
m ⊗m,n uT

n )]i = (M̃i,i(vi)T ⊗ uT
ni

+ (vi)T ⊗ QiuT
ni

) +
∑
k �=i

(M̃i,k(vk)T ⊗ Pi,kuT
nk

).

Noting that QiuT
ni

= 0 and Pi,kuT
nk

= uT
ni

, we finally get

[M(vT
m ⊗m,n uT

n)]i =
nM∑
k=1

M̃i,k(vk)T ⊗ uT
ni

= ζ ((vi)T ⊗ uT
ni

).

Because this holds for all blocks we obtain the desired result.
(ii) All except for the ith block of w are zero, so we get

wM = (w̃i[M̃i,1 ⊗ P1,i]; . . . ; w̃i[M̃i,i ⊕ Qi]; . . . ; w̃i[M̃i,nM ⊗ PnM,i]).

Because w̃i is an eigenvector of M̃i,i ⊕ Qi we know that w̃i(M̃i,i ⊕ Qi) = νw̃i. For w to be an
eigenvector, it remains to be shown that all other blocks vanish. Let u be a left eigenvector
of M̃i,i associated with the eigenvalue ζ̃ and v a left eigenvector of Qi associated with the
eigenvalue λ. Then w̃i can be written as w̃i = u ⊗ v according to (A 3). Substituting this
and Pi,k = pk ⊗ uT

ni
, k �= i, we calculate

(u ⊗ v)[M̃1,k ⊗ pk ⊗ uT
ni

] = u(M̃1,k ⊗ pk) ⊗ vuT
ni

. (4.2)

The term vuT
ni

is the standard scalar product 〈vT, uT
ni

〉 of the vectors vT and uT
ni

. Because
the row sums of Qi are zero, uT

ni
is in the right nullspace of Qi. By assumption, v is an

eigenvector associated with any eigenvalue λ �= 0. This means that v is not in the left
nullspace of Qi, so it must be orthogonal to any vector in the right nullspace. It follows
that (4.2) vanishes as required. �

For the general case where the infinitesimal generators of the model M̃ and the submatrices
Mi,i may not necessarily be diagonalizable we need the Schur decomposition (proposition A.2).
The Schur decomposition ensures that the matrix M can be transformed to an upper-triangular
matrix by a unitary matrix. In the following, we construct a unitary matrix S from the components
((m̃0, M̃), (pi, Qi)nM

i=1) of our model.
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Lemma 4.1 (Unitary matrix S). For the components ((m̃0, M̃), (pi, Qi)nM
i=1) of a hierarchical Markov

model, let
TM̃ = Θ∗M̃Θ , TM̃i,i⊕Qi = (Vi ⊗ Wi)

∗M̃i,i ⊕ Qi(Vi ⊗ Wi),

be the Schur decompositions of M̃ and M̃i,i ⊕ Qi. Let ūT
ni

= 1/
√

niuT
ni

be the vectors obtained by normalizing
the vectors of ones uT

ni
.

(i) The matrices Wi may be chosen so that they have the form Wi = (ūT
ni

W̃i) with W̃i ∈ C
ni×(ni−1).

(ii) Let

Θ =

⎛
⎜⎜⎝

Θ1

...
ΘnM

⎞
⎟⎟⎠

be row-partitioned according to the block structure of M̃ from (1.1). Then the matrix

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

Θ1 ⊗ ūT
n1

V1 ⊗ W̃1 0 . . . 0

... 0 V2 ⊗ W̃2 . . .
...

...
...

. . . 0
ΘnM ⊗ ūT

nnM
0 . . . . . . VnM ⊗ W̃nM

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.3)

is unitary.

Proof.

(i) Because the row sums of Qi vanish, the vector ūT
ni

is a right eigenvector of Qi associated
with the eigenvalue zero. Without loss of generality, we can choose ūT

ni
as the first column

of Wi.
(ii) By construction, all column vectors of S are normalized. Thus, it remains to show that they

are also pairwise orthogonal. By definition, any two distinct column vectors appearing in
the same block of S are orthogonal. It is trivial that column vectors from different blocks
are orthogonal unless one of the two appears in the first block of S. Thus, let θT be a
column vector of Θ and vT

i ⊗ w̃T
i be a column vector of any Vi ⊗ Wi. With the shorthand

for tensor products consistent with partitions (2.3) introduced in definition 2.3, the scalar
product 〈·, ·〉 of the two columns is

〈θT
m ⊗m,n ūT

n , (0; . . . ; vi ⊗ w̃i; . . . 0)T〉 = 〈θT
m(i) ⊗ ūT

ni
, vT

i ⊗ w̃T
i 〉

and due to the zeroes in all except for the ith block, all other summands vanish. Noting
that 〈u, v〉 = u(v∗)T = uTv∗ can be interpreted as a special case of matrix multiplication
(where ‘∗’ denotes component-wise complex conjugation) we can use (A 2):

〈θT
m(i) ⊗m,n ūT

ni
, vT

i ⊗ w̃T
i 〉 = 〈θT

m(i), vT
i 〉〈ūT

ni
, w̃T

i 〉.
But because ūT

ni
appeared as a column in the original unitary matrix Wi, the w̃T

i are all
orthogonal to ūT

ni
so that the above scalar product vanishes. Thus, the matrix S is unitary.

�

Proposition 4.2 (Eigenvalues of the full model M). Let ζ̃ be an eigenvalue of the model M̃. Then
ζ̃ is also an eigenvalue of the full model M. Moreover, all ν = ζ̃ + λ, where ζ̃ is an eigenvalue of M̃i,i and
λ �= 0 is an eigenvalue of Qi, are eigenvalues of the full model M.

Proof. We demonstrate that with the matrix S from (4.3), we obtain a Schur decomposition of
the matrix M. We need to show that A = S∗MS is upper triangular. The block structure of S is
rectangular with nM × (nM + 1) blocks which means that S∗ has an (nM + 1) × nM block structure.
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Thus, the resulting matrix A will have (nM + 1) × (nM + 1) blocks and its diagonal will consist of
the eigenvalues of M̃ in the upper left block followed by the remaining eigenvalues from the
submatrices M̃i,i. We show that all blocks Ai,j are upper triangular which implies that A is indeed
upper triangular. First, a lengthy calculation shows that A1,1 is a block-wise expanded form of
Θ∗M̃Θ and thus upper triangular. One can see directly that the remaining elements on the block
diagonal are

Ai,i = (Vi ⊗ W̃i)
∗(M̃i,i ⊕ Qi)(Vi ⊗ W̃i)

and, therefore, all upper triangular.
It remains to show that the lower diagonal blocks Ai,j with i > j vanish. We will demonstrate

that the Ai,j vanish provided that
W̃∗

i ūT
ni

= 0. (4.4)

Equation (4.4) is just another way of saying that ūT
ni

is orthogonal to all columns of W̃i. But this is
true because from Lemma 4.1(i) we know that ūT

ni
is the first column of Wi, so it must be orthogonal

to all column vectors of W̃i.
We now calculate the subdiagonal blocks Ai,j, i > j. First, we calculate the blocks A·,1 on the

first block column. We observe that

(M · S)k,1 = (M̃k,k ⊕ Qk)(Θk ⊗ ūT
nk

) +
∑
j�=k

(M̃k,j ⊗ Pk,j)(Θ j ⊗ ūT
nj

).

Because S∗ is block diagonal below the first row, we can calculate

Ak+1,1 = (S∗ · M · S)k+1,1 = (Vk ⊗ W̃k)∗(M̃k,k ⊕ Qk)(Θk ⊗ ūT
nk

)

+
∑
j�=k

(Vk ⊗ W̃k)∗(M̃k,j ⊗ Pk,j)(Θ j ⊗ ūT
nj

)

because in the row (k + 1)th row of S∗ for k = 1, . . . , nM only the kth block is non-zero. By taking
advantage of (A 2), we obtain

Ak+1,1 = (Vk ⊗ W̃k)∗(M̃k,kΘk ⊗ ūT
nk

+ Θk ⊗ QkūT
nk

) +
∑
j�=k

(Vk ⊗ W̃k)∗(M̃k,jΘ j ⊗ Pk,jūT
nj

)

= (Vk ⊗ W̃k)∗(M̃k,kΘk ⊗ ūT
nk

) +
∑
j�=k

(Vk ⊗ W̃k)∗(M̃k,jΘ j ⊗ ūT
nk

),

where we have used QkūT
nk

= 0 and Pk,jūT
nj

= ūT
nk

. Again using (A 2), we calculate

Ak+1,1 = V∗
k M̃k,kΘk ⊗ W̃∗

k ūT
nk

) +
∑
j�=k

V∗
k M̃k,jΘ j ⊗ W̃∗

k ūT
nk

).

This vanishes due to (4.4) as explained above.
For the remaining blocks Ak+1,l+1, k > l = 1, . . . , nM − 1, we simply calculate

Ak+1,l+1 = (Vk ⊗ W̃k)∗(M̃k,l ⊗ Pk,l)(Vl ⊗ W̃l)

= (V∗
k M̃k,l ⊗ W̃∗

k Pk,l)(Vl ⊗ W̃l)

= (V∗
k M̃k,lVl) ⊗ (W̃∗

k Pk,lW̃l).

Replacing Pk,l by ūT
nk

⊗ pl (2.5), we get

Ak+1,l+1 = (V∗
k M̃k,lVl) ⊗ (W̃∗

k ūT
nk

) ⊗ (plW̃l),

where—due to the term W̃∗
k ūT

nk
—we again conclude with (4.4) that Ak+1,l+1 vanishes. �

(b) Sojourn times in modes
We will now investigate the sojourn times within the states that represent the modes Mi.
The switching between modes is represented by a model with infinitesimal generator M̃ and
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one can ask if the dynamics is preserved after M̃ is combined with the other components
((m̃0, M̃), (pi, Qi)nM

i=1) to the generator M of the full model . We denote by fM̃i (t), the density function
of the sojourn time in mode Mi represented by M̃ and by fMi (t) the sojourn time densities of Mi in
the augmented state space of the generator M of the full model. If the mode switching dynamics is
preserved, the sojourn time densities should be equal and we will show that indeed fMi (t) = fM̃i (t).

Proposition 4.3 (Modal sojourn times). For fMi (t), sojourn time densities within mode Mi with an
initial distribution p0 as in definition 2.6, we have fMi (t) = fM̃i (t).

Proof. For simplicity we only treat the case of two aggregates of states, M1 and M2. For the
sojourn time within M1 we have

fM1 (t) = p0M2,1 exp(M1,1t)M1,2uT
m2n2

,

where p0 = p0
M̃2 ⊗ p0

Q2 is a suitably normalized initial state probability distribution. Substituting
from (2.6), we obtain for

exp(M1,1t)M1,2 = exp([M̃1,1 ⊕ Q1]t)M1,2

= [exp(M̃1,1t) ⊗ exp(Q1t)](M̃1,2 ⊗ P1,2),

where we have used (A 4) for calculating the matrix exponential. Now,

[exp(M̃1,1t) ⊗ exp(Q1t)](M̃1,2 ⊗ P1,2) = [exp(M̃1,1t)M̃1,2] ⊗ P1,2

according to the compatibility of tensor and matrix product (A 2) which will be used repeatedly
below. Also note that exp(Q1t) · P1,2 = P1,2. Multiplying this on the right by uT

m2n2
= uT

m2
⊗ uT

n2

leads to
{[exp(M̃1,1t)M̃1,2] ⊗ P1,2}(uT

m2
⊗ uT

n2
) = [exp(M̃1,1t)M̃1,2uT

m2
] ⊗ uT

n1
,

where we have evaluated P1,2uT
n2

= uT
n1

in the right-most term. Analogous calculations will be
carried out automatically below. The above result is now multiplied on the left by M2,1 = M̃2,1 ⊗
P2,1:

(M̃2,1 ⊗ P2,1)[exp(M̃1,1t)M̃1,2uT
m2

] ⊗ uT
n1

= [M̃2,1 exp(M̃1,1t)M̃1,2um2 ] ⊗ uT
n2

.

Finally, we multiply the preceding result on the left by p0 = p0
M̃2 ⊗ p0

Q2 and compute

fM1 (t) = (p0
M̃2 ⊗ p0

Q2 )[M̃2,1 exp(M̃1,1t)M̃1,2um2 ] ⊗ uT
n2

= [p0
M̃2 M̃2,1 exp(M̃1,1t)M̃1,2uT

m2
] ⊗ (p0

Q2 uT
n2

).

Now, because (p0
Q2 uT

n2
) = 1, we obtain the desired result:

fM1 (t) = p0
M̃2 M̃2,1 exp(M̃1,1t)M̃1,2uT

m2
= fM̃1 (t).

�

(c) Full solution for pi = π i

If we choose initial conditions pi = π i, where the π i are stationary distributions of the models Qi,
the solution of the full model has a particularly simple form.

Proposition 4.4 (Full solution for pi = π i). Let vm(t) be the time-dependent solution for the initial
condition w0

n and μ̃n be the stationary solution of the infinitesimal generator M̃ with their partition m.
Let π i, i = 1, . . . , nM be the stationary distributions of Qi or written as a partitioned vector, πn with its
partition n. If for each generator Qi we set pi = π i and we choose an initial distribution p0

m · n = v0
m ⊗m,n πn

consistent with definition 2.6, the solution pm · n(t) of the full model is

pm · n(t) = vm(t) ⊗m,n πn = (v1(t) ⊗ π1; . . . ; vi(t) ⊗ π i; . . . ; vnM (t) ⊗ πnM ). (4.5)

By taking the limit t → ∞, we obtain the stationary distribution

μm · n = μ̃m ⊗m,n πn = (μ̃1 ⊗ π1; . . . ; μ̃i ⊗ π i; . . . ; μ̃nM ⊗ πnM ). (4.6)
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Remark 4.1. The stationary distribution (4.6) is independent of the initial distribution p0
m·n,

so, for pi = π i, we converge to the stationary distribution (4.6) also for p0
m·n = (v0

m ⊗m,n w0
n) with

w0
n �= πn and even for arbitrary initial conditions p0

m·n that are inconsistent with definition 2.6.

Proof. That (4.5) is a solution can be shown by substituting pm·n(t) = vm(t) ⊗m,n πn into

dp(t)
dt

= p(t)M, (4.7)

where M is the generator of the full model (2.6). First, we calculate the left-hand side:

dpm·n(t)
dt

= d(vm(t) ⊗m,n πn)
dt

=
(

dvm(t)
dt

)
⊗m,n πn

= (vm(t)M̃) ⊗m,n πn, (4.8)

where the last equality (4.8) follows because vm(t) is a solution of the model generated by M̃.
We now show that we also obtain (4.8) from the right-hand side of (4.7). For the ith component

[pm·n(t) · M]i, we calculate

[pm·n(t) · M]i = (vi(t) ⊗ π i)(M̃i,i ⊕ Qi) +
∑
j�=i

(vj(t) ⊗ π j)(M̃j,i ⊗ Pj,i).

For the first summand, the contribution of Qi vanishes because of π iQi = 0

(vi(t) ⊗ π i)(M̃i,i ⊕ Qi) = (vi(t)M̃i,i) ⊗ π i + vi(t) ⊗ π iQi = (vi(t)M̃i,i) ⊗ π i. (4.9)

Because of π jPj,i = π i, the second summand simplifies to∑
j�=i

(vj(t) ⊗ π j)(M̃j,i ⊗ Pj,i) =
∑
j�=i

(vj(t)M̃j,i) ⊗ π i. (4.10)

With (4.9) and (4.10), we derive for each component:

[pm · n(t) · M]i =
nM∑
i=1

(vj(t)M̃j,i) ⊗ π i.

This means that the right-hand side of (4.7) is indeed of the form (4.8) which confirms that (4.5) is
a solution. �

5. Conclusion
We have proposed a new model for representing modal gating, the spontaneous switching of
ion channels between different levels of activity. The model is suitable for modelling channels
with an arbitrary number of modes and is capable of representing both the probabilistic opening
and closing within modes as well as the stochastic switching between modes that regulates these
dynamics.

(a) Modular representation of modal gating
In comparison with previous studies, the model presented here incorporates modal gating in a
much more transparent way. Ullah et al. [11] developed their model of the IP3R from a binding
scheme. First, the authors determined the set of open and closed model states from a statistical
model selection criterion. Second, they determined which of these states should account for which
of the three modes observed by Ionescu et al. [9]. The decision that a particular open or closed
state should account for the mode showing a low, intermediate or high level of activity was based
on heuristic inspection of the ligand-dependency of modal gating. The model was parametrized
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by optimizing a likelihood that accounted for various sources of single channel data including
statistics of modal gating. This treats the parameter space of their model as a black box from which
a suitable set of parameters capable of accounting for all datasets is selected by optimization. We
expect such an approach to be statistically less efficient than a model whose structure incorporates
modal gating more explicitly.

Siekmann et al. [12] used modal gating as the underlying construction principle of their model
by separating the inference of parameters related to dynamics within modes from estimation
of parameters related to switching between modes. First, models for the inactive mode M1 and
the active mode M2 were inferred by fitting segments of data representative of each of the two
modes—in fact, the same models were reused in the present study. However, because at that
time rigorous statistical techniques for segmenting ion channel data by modes were not available,
the time scales of the switching between both modes was inferred by connecting the submodels
for M1 and M2 with a pair of transition rates whose values were then determined from a fit
to complete traces of single channel data. Similar to Ullah et al. [11] modal gating was thus
incorporated into the model without explicitly considering its stochastic dynamics apparent in
the data.

In this study using our previously developed method Siekmann et al. [6], we were able to
explicitly account for transitions between different modes inferred from experimental data. The
method partitions a time series into segments based on the open probability PO of the channel. In
this way, spontaneous changes of channel activity can be detected. Because the analysis is based
on Bayesian statistics, comprehensive information on the uncertainty of the results is available
via the posterior distribution. For the IP3R data used here the inferred times at which the channel
made a transition to another mode had very low estimated standard deviations (less than one
data point up to a few data points). Whereas for this study, it was therefore sufficient to use
point estimates of the change times, the full posterior distribution can be used for channels whose
modes cannot be distinguished with similar accuracy.

Thus, the statistical method from Siekmann et al. [6] enables us to fit a model M̃ directly to the
stochastic process of mode switching inferred from the experimental data instead of arbitrarily
introducing transition rates between modes as in our previous study [12]. Therefore, we can
accurately represent mode switching, only adding exactly as many parameters as required. In
comparison with our previous model, the new model described here requires only two additional
parameters. Inspection of the sojourn time histograms show that these two parameters are
essential in order to account for the fact that sojourns in the nearly inactive mode M1 exhibit
two different time scales which cannot be represented by a model with less parameters.

Because Siekmann et al. [6] distinguished modes based on their open probabilities, it may be
difficult to distinguish modes with similar characteristic open probabilities PO but with different
kinetics, like, for example, an active mode with high PO and a flicker mode with similiar PO
but faster transitions between open and closed states. This possibility can be excluded by fitting
models Qi to the observed open and closed events in segments representative for each mode. For
the IP3R dataset used for this study we could not only show that Q1 and Q2, respectively, did not
differ significantly for segments from the same time series but were also ligand-independent.

The hierarchical Markov model developed in this study allows us to combine the ‘modules’
Qi accounting for opening and closing within modes with M̃ representing mode switching to
a representation of both aspects of the single channel dynamics. It is important to note that
none of the components ((m̃0, M̃), (pi, Qi)nM

i=1) of our model were determined by directly fitting
to the sequence of open and closed events observed in experiments—the models Qi are inferred
from segments of the data and the model M̃ is parametrized from transitions between the modes
Mi. Thus, the open and closed time distributions fO(t) and fC(t), respectively, can be considered
a prediction of our hierarchical model M. That the hierarchical model M performs better at
predicting fO(t) and fC(t) than our previous model whose transition rates were inferred from a
direct fit to complete traces of open and closed events provides additional evidence that our new
approach does not suffer from possible sources of error in our statistical analysis of modal gating
but is, in fact, a superior representation of the data.
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For analysing statistical properties of modal gating, an advantage of our model is that in
addition to representing the channel being open or closed each state is also associated with a
mode. The analysis of bursts according to Colquhoun & Hawkes [7] depends on the selection of
open and ‘short-lived’ closed states that represent a burst and a class of ‘long-lived’ closed states
that account for gaps between bursts. This not only requires additional assumptions but it is also
unclear how the state space of an unstructured Markov model should be partitioned if a channel
has multiple modes. No such difficulties arise in our model because each mode is represented
by an aggregate of open and closed states. It is, therefore, clear how the relevant states should
be chosen so that various properties such as, for example, the open and closed times of each
mode, can be calculated using the theory of Colquhoun & Hawkes [2] or Colquhoun & Hawkes
[7]. Because here, mode switching is defined as spontaneous changes between different open
probabilities rather than clusters of open events, the methods from Colquhoun & Hawkes [2] seem
more suitable. The theory of Colquhoun & Hawkes [7] leads to more complicated calculations due
to the assumption that bursts must commence with an opening of the channel, whereas this does
not necessarily have be the case for a sojourn in a mode. In summary, this means that an additional
benefit of our modelling approach is that statistical properties of modes can be calculated more
easily from our model than from a general Markov model.

The modular structure of our hierarchical model which separates the representation of
transitions between modes (inter-modal kinetics) from the dynamics within modes (intra-modal
kinetics) not only provides a more parsimonious representation than previous models but, most
notably, evidence is accumulating that in channels that exhibit different modes the switching
between modes may be more important for their physiological function than intra-modal kinetics.
This is strongly suggested by recent studies of the IP3R. In a study of insect type I IP3R, Ionescu
et al. [9] observed three modes with essentially identical kinetic properties across different ligand
concentrations, whereas the overall dynamics of the channel was determined by the highly
ligand-dependent prevalence of the channel in these modes. Thus, Ionescu et al. [9] proposed
that modal gating is the major mechanism of ligand regulation in the IP3R. This was confirmed for
mammalian type I and type II IP3R data by Siekmann et al. [6] and led to the interpretation that ion
channel kinetics is restricted to a fixed repertoire of modes which have to be mixed appropriately
in order to respond to given ligand concentrations. Ligand-dependent switching between ligand-
independent modes suggests that physiological function may depend more strongly on the
slow time scale of switching between modes rather than the fast opening and closing of the
channel within a mode. This was indeed recently shown in two studies of the role of IP3R
in intracellular calcium dynamics. Cao et al. [26] showed that the essential features of calcium
oscillations in airway smooth muscle could be preserved after iteratively simplifying the model
from Siekmann et al. [12] to a two-state model that only accounted for switching between the
two modes neglecting the kinetics of transitions between multiple open and closed states within
the modes. Siekmann et al. [27] applied similar reduction techniques to demonstrate that also the
stochastic dynamics of small clusters of IP3R s can be captured by a two-state model reduced to
the dynamics of mode switching. In our new hierarchical model, inter-modal and intra-modal
kinetics are represented separately so that the model representation with the right level of detail
can be chosen based on the requirements of a specific application.

(b) Biophysical implications of modal gating
Although modal gating has been observed for a long time it has rarely been accounted for in
ion channel models. The crucial importance of modal gating has only recently been appreciated
among investigators of the IP3R channel and it is now widely recognized in the community
[10]. Various independent sources of evidence indicate that modal gating must be accounted for,
both for understanding IP3R function as well as for gaining insight into biophysical properties
of the channel molecule. As mentioned in the previous section, the role of IP3R in intracellular
calcium dynamics is defined by its behaviour on the slow time scale of transitions between
different modes rather than the fast time scale of opening and closing [26,27]. Previously,
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Ionescu et al. [9] discovered that the IP3R adjusts its level of activity depending on ligands such as
calcium by regulating the proportion of time that the channel spends in different modes. This was
subsequently confirmed by the statistical analysis by Siekmann et al. [6]. These results reveal the
major functional implications of modal gating, so one may ask if any insight can be gained into
the underlying biophysics. In their early model of modal gating in a chloride channel, Blatz &
Magleby [8] postulated that different modes may be related to different conformations of the
channel protein. Direct experimental evidence into how different modes arise from biophysical
constraints of the channel protein is accumulating. Two examples include a thorough analysis of
the potassium channel KscA discussed in more detail below [28–30] and a more recent study by
Vij et al. [31] on the acethylcoline receptor. Also see the commentary by Geng & Magleby [32].
This suggests that modes form a fixed repertoire of possible behaviours defined by the molecular
properties of the channel. Being constrained to a few different modes, ion channels overcome
these limitations by switching between modes.

This implies that methods for identifying different modes in single channel data not only
provide us with more accurate insight into the channel dynamics but may also reveal the
transitions between different biophysical states of the channel. As mentioned above there are
strong indications that each mode is reflected by a different three-dimensional arrangement of the
channel protein, known as a conformational state. Thus, the aggregates of states in ion channel
models that account for different modes Mi correspond to different conformations at the level of
the channel protein. In such a model, the transitions between states representing different modes
reflect the rates of conformational changes.

This direct correspondence between aggregates of states and underlying biophysics is
important to note because interpreting individual states in Markov models for ion channels
is problematic in general, at least without additional experiments. For the simplest possible
representation of a gating ion channel is a two-state Markov model with only one open and
one closed state it is, of course, obvious that these two different model states at the same time
correspond to different biophysical states of the channel protein. This ‘mechanistic’ interpretation
explains the popularity of this type of model. The Markov assumption implies that the open
and closed times of a two-state model are exponentially distributed which means that durations
of channel openings and closings both have characteristic time scales τO and τC given by the
parameters of the exponential sojourn time distributions fO(t) and fC(t). However, many ion
channels exhibit multiple characteristic open and closed times that cannot be represented by
exponential distributions. Whereas an open ion channel must be in a different conformation than
a closed ion channel distinguishing only two conformational states is a very coarse description of
the complicated deformations of channel proteins that can be identified by molecular dynamics
models. Nevertheless, if our goal is to base our models on rigorous statistical analysis, for some
data we may not be able to identify more than two states.

Non-exponential open and closed times can often be represented satisfactorily by aggregated
continuous-time Markov models where more than one state is used for representing the channel
being open or closed. These models provide a simple generalization of the two-state Markov
model and account for more than just one characteristic open or closed time scale τO and τC.
By definition, the sojourn times in the open or closed class of an aggregated Markov model are
distributed according to a phase-type distribution, a class of distributions representing the time a
Markov chain spends in a set of transient states until exiting to an absorbing state [16,17]. As with
the two-state model it is tempting to also associate the individual states of an aggregated Markov
model with different biophysical states of the channel protein. The multiple open and closed
states of an aggregated Markov model could be interpreted to resolve in more detail the series of
conformational changes that the channel goes through while it opens. If this interpretation was
valid one could hope to discover details of the molecular structure of ion channels beyond the
trivial distinction between an open and a closed state once the ‘best’ aggregated Markov model
for a given dataset has been found.

Unfortunately, this ‘mechanistic’ interpretation of aggregated Markov models has several
flaws. Whereas it can be directly inferred from single channel data if the channel is open or
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closed and in which of its modes Mi it is, distinguishing different open or closed Markov
states requires additional experiments and is possibly ill-defined. First, the only reason that a
particular model consists of multiple open and closed states is that multiple characteristic open
and closed times were observed. It is an assumption to be empirically confirmed that for each
observed exponentially distributed sojourn time the channel must necessarily be in a distinct
conformational states—so more Markov states may appear in the model than can be distinguished
biophysically at the level of the channel protein. By contrast, it is likely that some conformational
states may not have a strong enough influence on the dynamics that they are represented by a
state in a model inferred from the data. But even if we assume that each Markov state should,
in principle, reflect a distinct underlying biophysical state, it is challenging both experimentally
as well as theoretically to identify, for example, a three-dimensional configuration of the channel
protein that corresponds to a model state with a short open time and distinguish it from another
conformational state that is characterized by a long open time.

Second, and more importantly, aggregated Markov models are only defined up to equivalence
[20,33–36] with other models having the same number of open and closed states. In particular, it
can be shown that models with completely different adjacency matrices can describe the same
process [35] although there is a canonical phase-type description, given, for example, by its
Laplace–Stieltjes transform. Thus, interpreting the graphical structure of an aggregated Markov
model as a description of possible transitions between different conformational states is not
necessarily meaningful without further data. A related problem is the fact that some adjacency
matrices lead to non-identifiable models, in particular, certain types of cyclic models are non-
identifiable. Whereas it is unlikely that transitions between conformational states underlie any
fundamental restrictions of this kind, only some of these transitions would be identifiable from
experimental data. It is important to note that the described challenge of relating aggregated
Markov models with biophysical processes does not restrict in any way their capability of
statistically capturing the stochastic dynamics of ion channels. This only demonstrates that
aggregated Markov models are a more abstract representation than they may appear to be at
first glance.

In summary, because it is much less problematic to associate aggregates of states with different
underlying biophysical states than individual states within an aggregate, interpreting mode
switching as transitions between distinct biophysical states does not suffer from these difficulties.
Chakrapani et al. [28–30] were able to restrict the KscA channel to one of its normally four modes
by mutating a particular site of the amino acid sequence of the channel protein. Combining
crystallography imaging and molecular dynamics modelling they could further demonstrate that
the four modes were related to different conformational states of the channel. It is therefore likely
that switching between distinct characteristic dynamical patterns in single channel data can be
directly associated with the transition from one to another conformation of the channel protein.
This implies that models which accurately represent mode switching can also be used to infer
the time scales of transitions between biophysical states associated with these modes. This opens
up the exciting possibility that we can gain insight into biophysical processes involved in ion
channel gating by statistical analysis and modelling of single channel data rather than having to
rely on more time-consuming experimental techniques such as crystallography or more laborious
modelling techniques such as molecular dynamics.
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Appendix A. Mathematical background
The results presented in the main text are derived from the following properties of the Kronecker
product and sum and some well-known results from linear algebra.

Proposition A.1 (Properties of Kronecker product ⊗ and Kronecker sum ⊕). The following
properties of the Kronecker product and sums can all be found in Horn & Johnson [37].

(i) Transposition and conjugate transpose (Properties 4.2.4 and 4.2.5):

(A ⊗ B)T = AT ⊗ BT, (A ⊗ B)∗ = A∗ ⊗ B∗. (A 1)

(ii) Compatibility of tensor product and matrix multiplication (Lemma 4.2.10) : Let A ∈ R
k1×m1 ,

C ∈ R
m1×n1 , B ∈ R

k2×m2 , D ∈ R
m2×n2 .

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) ∈ R
k1k2×n1n2 . (A 2)

(iii) Eigenvalues of Kronecker sums A ⊕ B (Theorem 4.4.5) : Let α, β denote eigenvalues of the square
matrices A and B. Then the eigenvalues of M = A ⊕ B are

γ = α + β. (A 3)

(iv) Matrix exponentials of Kronecker sums (ch. 6, Problem 14) : For square matrices A ∈ R
m×m and

B ∈ R
n×n :

exp(A ⊕ B) = exp(A) ⊗ exp(B) ∈ R
mn×mn. (A 4)

If we cannot assume that a matrix has a complete set of eigenvectors so that it may not be
diagonalizable we can still triangularize this matrix over the complex numbers C. The process of
triangulation can be described by the Schur decomposition.

Proposition A.2 (Schur decomposition). For a square matrix A ∈ R
m×m there exists a unitary

matrix Θ ∈ C
m×m and an upper triangular matrix T such that

T = Θ∗AΘ , (A 5)

where Θ∗ is the conjugate transpose of Θ ; (A 5) is known as the Schur decomposition.
Let A ∈ R

m×m and B ∈ R
n×n with Schur decompositions

TA = V∗AV and TB = W∗BW.

Schur decompositions for the Kronecker product A ⊗ B and the Kronecker sum A ⊕ B can then be obtained
via

TA⊗B = (V ⊗ W)∗A ⊗ B(V ⊗ W), TA⊕B = (V ⊗ W)∗A ⊕ B(V ⊗ W). (A 6)

Proof. See Horn & Johnson [38], theorem 2.3.1. For (A 6), we refer to the proofs of Theorems
4.2.12 and 4.4.5 in [37]. �
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