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Abstract 

The current landscape of Adverse Outcome Pathways (AOPs) provides a means of organising 

information relating to the adverse effects elicited following exposure to chemicals. As such, 

AOPs are an excellent driver for the development and application of in silico models for 

predictive toxicology allowing for the direct relationship between chemistry and adverse 

effects to be established. Information may be extracted from AOPs to support the creation 

of (quantitative) structure-activity relationships ((Q)SARs) as well as to increase confidence 

in grouping and read-across. Any part of an AOP can be linked to these various types of in 

silico models. There is, however, an emphasis on using information from known Molecular 

Initiating Events (MIEs) to create models including 2D and 3D structural alerts, SARs and 

QSARs. MIEs can be classified according to the nature of the interaction e.g. covalent 

reactivity, oxidative stress, phototoxicity, chronic receptor mediated, acute enzyme 

inhibition, unspecific, physical and other effects. Different types of MIEs require different 

approaches to their in silico modelling. Modelling Key Events and Key Event Relationships is 

useful if they represent the rate limiting step or key determinant of toxicity. Modelling of 

metabolism and chemical interactions will become part of AOP networks, which are also 

driving species-specific extrapolation and respective adaptation of models. With more 

information and data being captured, in silico approaches will increasingly support the 

application of knowledge from AOPs to build weight of evidence and support risk 

assessment, e.g. in the context of Integrated Assessment and Testing Approaches (IATAs). 
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Introduction 

As a gradual process, the toxicological testing of chemicals is undergoing a paradigm shift. 

For decades there has been a reliance on in vivo and latterly, to a more limited extent, in 

vitro testing of a chemical with the effects being recorded and used to allow for some type 

of risk assessment. The shift is towards an assessment of the (perturbation of) pathways of 

toxicity allowing for a mechanistic basis to understanding the effects of chemicals, which is 

often overlooked in the traditional testing paradigm. This has a number of advantages, not 

least in the replacement of in vivo testing with associated reduction in animal use and, in 

most cases, costs and the time involved. Advances in what is termed 21st Century Toxicology 

are developing tools and techniques that provide information on pathways (and hence 

mechanisms) that are derived from cells and cell lines more relevant to humans and other 

target species, rather than relying on the extrapolation from surrogate test species.1  

The development of the toxicological pathway concept, not least stimulated by the 2007 

National Academies of Sciences, Engineering, and Medicine report,2 has seen a growth in 

the number of assays and hence data available, e.g. those directly associated with pathways 

such as from high throughput / content assays such as Tox21 / ToxCast3 and omics4-6 or 

those that may be applied indirectly from existing in vivo and other data.7-9 These assays 

have provided an explosion in the number of pathway related data available which could 

form the basis of either strategies to predict toxicity, or be used to develop computational 

models. However, there has been no overarching means of interpreting, rationalising or 

utilising these data. As such, the Adverse Outcome Pathway (AOP) concept was developed 

in part as a response to the call for toxicology to become pathway orientated, but also to 

assist in the utilisation of data from such assays.10 
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It is appreciated that AOPs are a conceptual framework to support the prediction of toxicity, 

a full description of AOPs is not given here but is available from various authors.10-19 In 

practical terms AOPs will assist in the organisation of data, assays, mechanistic knowledge 

and models to predict toxicity within the paradigm of 21st Century Toxicology. The ability to 

use the pathway-derived data to extract further information and knowledge is one of their 

advantages, especially when they can be formalised into computational models.20-21 When 

associated with chemical structure, these models, also called in silico approaches, can 

provide a direct linkage between chemistry and adverse effect leveraging the content of the 

AOP to support the meaning and interpretation of the model.22-23  

In silico models for toxicity prediction vary from structural alerts derived from structure-

activity relationships (SARs) through to quantitative structure-activity relationships (QSARs) 

which are suitable for the prediction of potency.24 This paper explores the linkage of these 

models, as well as grouping and read-across, to AOPs. At the outset it is well acknowledged 

that AOPs can support computational modelling.21 In addition, the use of AOPs to support 

computational modelling deriving structural alerts25-28 for toxicity prediction or as part of a 

grouping strategy leading to read-across, and for QSAR development, is well established.29  

Other computational approaches, beyond the ab initio risk assessment consideration, that 

utilise and extend the AOP framework are the development of Integrated Assessment and 

Testing Approaches (IATAs).13, 18, 30-38 

 

The Links Between in Silico Models and the Different Steps of an AOP 

Figure 1 illustrates that models, or in silico approaches, may potentially be utilised at all 

stages of the AOP to provide knowledge and information (it should be noted that the 
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structure of the generic AOP shown in Figure 1 is illustrative only and many AOPs do not 

include exposure or proceed to the ecosystem level). There are many purposes to the use of 

models within the AOP framework; these include: 

 providing data and information,  

 capturing the knowledge of the AOP, and  

 extrapolation and prediction.  

Computational, or in silico, models for toxicity prediction are many and varied. The focus of 

this paper is the relationship of chemistry-based models for toxicity prediction with AOPs. 

Briefly, as discussed in more detail below, in silico models are especially useful to capture 

and predict the Molecular Initiating Event (MIE) of an AOP, such as binding to biological 

molecules or receptors, and thus predict which chemicals can potentially be associated with 

adverse effects triggered by the MIE. (Q)SARs can also model Key Events or Key Event 

Relationships further downstream in an AOP, which is relevant for toxicity prediction in 

particular if these events are rate-determining steps in an AOP. In this case biokinetic 

modelling will support the prediction of which steps in an AOP actually take place in specific 

exposure situations, and can contribute to the prediction of which target organs a chemical 

will be distributed to and the actual target organ concentrations. Modelling exposure 

related to the source and models determining e.g. oral or skin absorption or bioavailability 

as a whole, will support quantification of the effects occurring as a result of the AOP. 

Overall, a higher level of modelling, such as multiscale modelling, will be required to capture 

all elements of the AOP to link exposure to risk. Extending the consideration of  adverse 

outcomes to the individual, population or ecological models can extrapolate and predict 

adverse effects at the population or ecosystem level. 
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FIGURE 1 HERE 

Figure 2 summarises the main differences where models may drive the development of 

AOPs and vice versa. It illustrates that on one hand AOPs can support the building of 

predictive models, to base them on mechanistic information and give them relevance for 

toxicity assessment, and on the other hand, computational models can help to compile AOP 

pathways. When both robust mechanistic information and computational models for e.g. 

bioactivities are available, this will allow for the better prediction of relevant adverse effects 

or use in an IATA. As such, the ultimate aim of building models and organising mechanistic 

information within the AOP framework is to provide relevant prediction of adverse effects 

to allow for adequate chemical safety assessment. 

FIGURE 2 HERE 

It is important to also consider that there will be a cyclical process whereby models will be 

developed on the basis of a (putative) AOP which will then be refined as more information is 

passed back to the model – likewise this will assist in the refinement of the AOP. More 

broadly, the relationship between AOPs and in silico chemistry based models can be 

considered as being: 

i) models using information derived from the AOP, 

ii) models that support the use or application of information from the AOP e.g. an AOP 

being used to provide evidence for the ab initio risk assessment of a substance and build a 

mode-of-action hypothesis,39  

iii) AOPs supporting the mechanistic interpretation of a model or providing evidence to 

build a weight of evidence to support risk assessment (cf. read-across case studies).40-43  
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This paper attempts to provide an overview of the types of models that may be applied at 

different stages of the AOP, taken in the broadest context from sources to ecosystem, with 

a particular focus on the mechanistic and toxicological aspects. This paper covers the 

mechanistic aspects of the AOP, it does not consider exposure modelling, in silico models for 

the apical endpoint (e.g. traditional (Q)SARs) or ecosystem level models.   

 

Predictive Models Based on AOP-Related Mechanistic Information 

 

Models of the Molecular Initiating Event 

Information from the Molecular Initiating Event (MIE) is one of the key drivers for in silico 

models derived from an AOP.25-28 Before computational modelling approaches are 

considered, it should be recognised that there are different types of MIEs and each may 

require a different modelling approach. These have been summarised in general terms in 

Table 1, along with examples and the types of models that can be derived from the different 

types of MIE. 22, 23, 44-74 Table 1 provides by no means an exhaustive list and practitioners will 

no doubt wish to expand this according to their needs and experience. The key to 

understand why this is important is in the concept of, if the MIE is known, then a model can 

be developed for it.  

TABLE 1 HERE 

On the basis of knowledge of different types of MIEs, it is thus possible to classify AOPs with 

regard to the type of MIE. In order to illustrate the types of MIEs, Table 2 lists the citable 

AOPs (at the time of preparation of the manuscript) listed on the AOP Wiki 
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(https://aopwiki.org/)75 which is one component of the OECD-sponsored AOP Knowledge 

Base (AOP-KB, http://aopkb.org/).76 This wiki represents the central repository for all AOPs 

developed as part of the OECD AOP development effort by the Extended Advisory Group on 

Molecular Screening and Toxicogenomics. The AOP Wiki is not, of course, a complete list of 

AOPs with many others becoming available. However, what is clear from Table 2 is that the 

majority of citable AOPs on the AOP Wiki are for what is termed “chronic receptor 

mediated” toxicity, with a smaller number classified as being “covalent reactivity”. This is 

probably due to the AOPs being defined, at least at the start of the process of their 

compilation, around common, well-known and familiar modes of action. Table 2 was also 

supplemented by literature examples of AOPs where none were available as being citable 

from the AOP Wiki. It must be appreciated that these literature AOPs are likely to be less 

developed (in the formal sense of the AOP Wiki) at the time of writing.12, 29, 62, 67, 77-78  

TABLE 2 HERE  

It is striking from Table 1 that the majority of models derived from AOPs utilise 2-D 

approaches to capture molecular fragments responsible for toxicity. There is a rich history of 

such “structural alerts” and their conversion into usable computational models.20 There are 

many good reasons for this, e.g. they are easy to define and comprehend – hence aiding in 

their transparency. Technologies such as SMARTS strings have made chemistry fragments 

easy to code and be handled computationally.79 They have also been developed into a 

number of commercially and freely available expert systems. Most notable amongst the 

freely available systems is the OECD QSAR Toolbox which for some endpoints,80 e.g. skin 

sensitisation, provides a direct linkage to the AOP and the possibility to build a read-across 

argument on the basis of data from the AOP.81, 82 They are particularly suited when a 

https://aopwiki.org/
http://aopkb.org/
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structural fragment drives a particular chemical and /or biological interaction e.g. covalent 

binding to DNA or proteins.44-45 The disadvantage is that 2-D structural alerts implicitly are 

not able to capture 3-D properties and configurations that are required for receptor binding. 

2-D alerts, e.g. those coded as SMARTS strings, can be extended and made more 

sophisticated when considered as “chemotypes”, i.e. alerts extended with further 

information on molecular structure such as atomic charges; these chemotypes may be 

coded in the so-called Chemical Structure Reactivity Markup Language (CSRML).3, 83 

Receptor mediated MIEs leading to toxicity are more difficult to capture in terms of models. 

However, there is a growing appreciation for the needs for such models to assist in the 

prediction of chronic toxicity. 3-D or conformationally dependent properties can, to a 

limited extent, be captured with extended SMARTs strings which represent particular 

scaffolds.22, 23 However, this is a relatively crude approach that may be suited for grouping 

and read-across but less for toxicity prediction when understanding stereoisomerism may 

be important. Chemotypes are more suitable for the capture and modelling of 3-D effects as 

they can supplement 2-D structural alerts with other properties.83 Most suited, although 

requiring the greatest level of expertise for application, are techniques derived from drug 

design e.g. molecular modelling of the receptor-ligand interaction and / or development of 

toxicophores.57-58 There are also many reported studies (beyond the scope of this paper) on 

modelling effects associated with endocrine disruption – most notably binding to the 

oestrogen receptor. As an example, the recent CERAPP project, where a large variety of 

mostly-QSAR type models were developed, demonstrates the relevance of this approach.84 

Extending the endocrine disruption paradigm, the work of Wu et al59 mapped and compiled 

known mechanisms of developmental toxicity, supporting them with data and structural 

alerts. This is a scheme which allows for the interpretation and prediction of developmental 
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toxicity rapidly, but at this time is, at best, only partially supported by AOPs. However, this 

approach maps out where development of AOPs is required.  

There are a variety of modelling approaches relating to toxicities associated with unspecific 

MIEs, i.e. where there is no single definable interaction analogous to receptor binding or 

covalent interactions. For instance, models may be based on 2-D properties associated with 

giving the molecule the capability to act in the required manner, e.g. the amine functionality 

promoting membrane accumulation leading to phospholipidosis.68,69 Alternatively, models 

may be related to the properties that govern the unspecific effect e.g. hydrophobicity being 

the determining feature for non-polar narcosis.66 

Overall, there is a need to identify the MIE and appropriate modelling techniques for it – 

this is crucial information that can be derived from an AOP. (Q)SARs should be benchmarked 

against the MIE to ensure that the modelling approach is valid for the endpoint of interest. 

Inappropriate modelling approaches run the risk of spurious and overfit models.  

 

Models of Key Events and Key Event Relationships 

As indicated in Figure 1, the modelling of key events is further along the AOP towards apical 

endpoints and may be considered more relevant and quantitative than the MIE. Models 

may be developed for data derived from assays relating to individual Key Events, these may, 

for instance, be in the form of QSARs. However, there are two distinct issues in the 

modelling of data for Key Events, namely the difficulty in obtaining such data (although 

initiatives such as ToxCast and other High Throughput Screening projects may assist here)3 

and their relevance, especially when considered in isolation from the MIE, in comparison to, 

for instance, the MIE itself. However, when relevant data are available that are founded in 
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the preceding Key Events within the AOP, the modelling of Key Events and Key Event 

Relationships may provide a more quantitative prediction of (adverse outcome) potency 

providing they are the rate limiting step. In addition, should a Key Event or Key Event 

Relationship not occur routinely following interaction with the MIE, and require further 

stimulation, e.g. another MIE or reaching a critical concentration (a Point of Departure for 

the Key Event), then models may provide more useful information than one based on the 

MIE alone. However, should the Key Event provide no more meaningful information than 

the MIE, then it may be more appropriate to model the MIE as it is more fundamental and 

likely to be more rapid and less expensive to obtain data for.  

Any models for Key Events will be similar to those for MIEs, i.e. 2-D structural alerts for 

specific molecular fragments, toxicophores for receptor interactions. However, there are 

relatively few assay data available relevant to Key Events and even fewer, if any, models. 

One good source of information has been from the Ames test and related assays for 

genotoxic carcinogenicity. The Ames test in this instance is a good surrogate for the MIE 

involving interaction with DNA but less likely to be appropriate for the later Key Events in 

this AOP. Another source of data would be for skin sensitisation where there is a well 

developed AOP13 and where the AOP has been converted into an IATA.33 Despite the 

proliferation of assays for the different stages of the AOP, with the exception of models for 

protein reactivity,49, 85 no viable models for e.g. HClat, etc have been published. Thus in silico 

models would have the potential to eventually replace assays within the IATA, but have not 

yet been fully recognised, such models would assist in hazard identification and ultimately 

risk assessment. The reliability and relevance of in silico models to predict an endpoint 

within an IATA will be increased if the models are mechanistically based and cover different 
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steps of an acknowledged AOP in the context of a consensus approach, i.e. concordant 

results with independent prediction models.  

There is also the possibility to model Key Event Relationships, such models may assist in the 

quantification and understanding of the relationship. The benefit here is that, should the 

Key Event Relationship be the rate limiting step, then a model for that specific relationship, 

which may resemble a QSAR or quantitative activity-activity relationship (QAAR), could hold 

the key to making a quantitative prediction of potency. Currently there are few, or no 

examples of (Q)SAR or QAAR models for Key Event Relationships, although some in silico 

models for Key Event Relationships are becoming available, especially in the form of 

quantitative AOPs – as described in the next section. 

Ongoing efforts to formalise relationships in AOPs through ontologies86 and to capture 

response-response relationships and corresponding data e.g. in the Effectopedia module of 

the AOP-KB (http://effectopedia.org/)87 will further support future model development in 

this area.   

 

Models Related to the Whole AOP  

It is conceivable that the ultimate aim of modelling the AOP may result in the development 

of an algorithm, or sequence of models21, to include all steps of an AOP. However, it is 

recognised that this is a long-term aspiration and will not, necessarily, be required if there is 

the possibility to predict the adverse outcome with a defined level of confidence. Currently 

there are no chemistry-based approaches i.e. (Q)SARs that attempt to describe the AOP as 

whole. In the longer term, there may be value in this as it may assist in the implementation 

of models from the AOP in the form of IATA.88, 89 However, there will be limited value going 
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beyond chemistry-based models for the MIE and possibly the rate-limiting Key Event 

Relationship. There is increasing interest in quantitative AOPs (qAOPs) which attempt to 

formalise the Key Event Relationships from the MIE to the Adverse Outcome, e.g. Conolly et 

al89 developed a qAOP that linked the inhibition of cytochrome P450 19A aromatase (the 

MIE) to population-level decreases in the fathead minnow. The qAOP itself consisted of 

three linked computational models for relevant parts of the AOP.  

A further approach that has yet to be fully applied to AOPs is that of multi-level, or multi-

scale modelling.90 These approaches attempt to derive inter-connected models for each 

component of the AOP in a manner that is representative of the overall AOP. As such it is a 

data hungry approach. These models may be fed with data from public data sources such as 

ChEMBL22,23, 91-93 and ToxCast/Tox21.94 The use of ToxCast data in this context remains an 

opportunity and a challenge, with more data and a better appreciation of how to use the 

data required.95 

 

Specific Considerations for in Silico Modelling with Regard to AOPs  

Transformations and Interaction of Chemicals  

Until now, metabolic activation has seldom been considered as part of an AOP, however it is 

necessary for chemistry-based in silico modelling (and the use of information from an in 

vitro assay) if a realistic toxicological profile is required and only the parent structure is 

available. For instance, it is important to determine if the parent molecule will be 

metabolised into a more toxic form or detoxified. A large number of in silico approaches are 

available to predict potential metabolites,96 some freely available and others commercial. 

The performance of such predictive methods is not always ideal with over-prediction of 



14 
 

metabolites being one problem, and it still being very difficult to identify stable metabolites 

and kinetics/rates of transformation being another.97 There is, however, the possibility that 

knowledge of metabolic events in AOPs may provide better knowledge to support improved 

toxicity prediction.  

Another possibility to use knowledge from AOPs to support the capture of information and 

development of in silico models is with effects such as chemical interactions. In this case, 

should a key stage of an AOP require the inhibition of an enzyme (either from the target or 

another molecule), this knowledge could be incorporated into a model. As yet, there are no 

approaches that have used the information from an AOP in this way – this is something that 

would be of immense benefit for understanding and modelling drug-drug interactions as 

well as predicting effects from combined exposure to chemicals, taking into consideration 

possible synergistic effects – even over time - which are not accounted for when evaluating 

chemicals individually.  

As AOPs naturally evolve from linear constructs to networks of inter-related effects21, 

metabolism and interactions will become integral to the development of AOP networks 

within an ontology framework, a formalised way to organise AOP knowledge and capture 

AOP relationships.86 This provides the possibility, for example, to include models for 

metabolism, particularly the ability to bind to a CYP or enzyme and the rate of binding / 

inhibition. In addition models will be required to predict relevant metabolites that may go 

elsewhere in the AOP network, or to completely independent AOPs. The other possibility is 

that knowledge of metabolism, metabolite formation and rates of formation which is 

contained within the AOP network will provide information for the models themselves, thus 

the AOP will drive the model.  
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Interspecies Relationships of Toxicity and Sensitivity 

AOPs provide a rational means to extrapolate toxicity across species. The relative similarity 

of acute aquatic potency within groups of compounds acting by a similar mechanism of 

action, especially non-polar narcosis has been known for many years98 and can be applied to 

successful QSAR development.29 Similarly, the need to take care for other mechanisms of 

action, particular those associated with species-specific metabolism99 or reactivity100 is 

important and can be related to the individual AOPs. Whilst generalist extrapolation 

approaches may work for lethal potency, more sophisticated modelling will be required for 

receptor mediated responses. Knowledge of the essential receptors in an AOP can help 

drive the extrapolation of AOPs from one species to another. Thus whilst AOPs are chemical-

agnostic, they are also species-specific and therefore can drive the adaption/applicability of 

predictive models. The web-based SeqAPASS tool is one such approach, utilising information 

on receptor homology to allow for extrapolation of effects, being wholly supported by the 

AOP.101-102  

 

Models for Exposure and Bioavailability – Adding Value to AOPs  

Whilst not strictly part of the AOP, computational models for exposure and bioavailability 

are useful for their implementation.103 These can impact at various points whilst using 

information from an AOP. Models for exposure and bioavailability also vary in their 

complexity. Another area of progress is the development of Aggregate Exposure Pathways 

which will provide information to derive models from.104 
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There are a number of SAR approaches that can be used to screen out compounds that are 

not likely to reach the site of the MIE. Very commonly used (especially as a drug design tool) 

is the Lipinski Rule of 5105 and various adaptions.106 The premise here is that a small number 

of easily calculated properties can identify compounds with low solubility which is taken as 

being indicative of poor oral absorption – thus if this is required for systemic exposure then 

risk assessment may be able to discount oral exposure as a likely route to stimulate the 

AOP. In a similar manner, Ates et al developed a small number of physico-chemical 

properties that are seen to be determinants of poor absorption through the skin.107 

There are also QSARs for effects such as bioavailability which may be used as part of the risk 

assessment process. In addition QSARs can provide an estimate of exposure following 

absorption through the skin,107-108 blood-brain barrier,109 cornea110 and various other 

membranes.96 Whilst such QSARs may be useful, to assess organ level concentrations 

following different types of exposure and doses requires the use of physiologically based 

kinetic (PBK) models.111-112  

 

AOP-Derived Models Driving Grouping and Domain Definition  

In addition to supporting models such as (Q)SARS, the information from MIEs is a key means 

of grouping compounds providing a mechanistic basis and transparency.113-114 In silico 2-D 

profilers of structural alerts, built on knowledge of MIEs have provided a means to group 

compounds for a number of adverse outcomes including skin sensitisation;79 respiratory 

sensitisation;46 phospholipidosis;68-69 mutagenicity;44, 115 hepatotoxicity;116 reproductive 

toxicity59 and testicular toxicity.117 Successful grouping allows for read-across to fill data 

gaps for these types of endpoints.  
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The MIE can also be used to define the chemical domain of an AOP through intelligent 

testing using assays derived around the MIE. For instance, the definition of mechanistically 

derived domains of reactivity, as measured by in chemico testing, has been shown to assist 

in the identification of chemical domains associated with protein reactivity, which in turn 

may be related to effects such as skin sensitisation or elevated acute toxic potency.118-119 

The value of AOPs to support read-across was demonstrated in a series of case studies.40-43 

The case studies demonstrated how the read-across hypothesis and justification were 

strengthened with knowledge of data from New Approach Methodologies (NAMs) that were 

related to the AOP. 120  

 

Conclusions and Recommendations 

 

AOPs provide a framework to organise information within the context of 21st Century 

Toxicology. As such, they are a good driver for the creation, development and application of 

in silico models to predict toxicity. Indeed, AOPs provide the direct mechanistic relevance 

and transparency that is a pre-requisite for in silico models of toxicity. The ability to be able 

to reference back to an AOP has been shown to be crucial for the justification of grouping 

and read-across and to allow for the development of IATA. As further information and data 

are captured, in silico models provide the means to create knowledge and apply it in a 

rational manner to predict toxicity.  

Currently most in silico models from AOPs are derived from the MIE. Qualitative models can 

be derived from knowledge of the MIE, in theory with limited knowledge and without many 

data to support the hypothesis e.g. an alert for skin sensitisation may be developed on the 
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basis of only a single data point if there is a clear mechanistic (i.e. organic chemistry) 

understanding. Quantitative models for the MIE, as well as for Key Events and Key Event 

Relationships require a more complete data set with information from a greater number of 

compounds covering a range of activity and properties. MIEs, in terms of modelling, can be 

classified into a number of types (see Tables 1 and 2). It is useful to classify MIEs in this 

manner. Capturing the type of MIE will allow for possibilities for modelling from an AOP to 

be identified; these could be stored in the AOP Wiki in the first instance and then 

progressed to Effectopedia as well as tools such as the OECD QSAR Toolbox. In order to 

maximise the use of information from AOPs there should be a shift to storing information on 

the MIE in a manner that could be translated into an in silico model e.g. classifying MIEs in 

tools such as Effectopedia and providing a direct linkage from there to a chemistry based 

model. Currently most in silico models derived from the MIE are based on 2-D descriptions 

of chemistry (with some notable exceptions). Most models are for MIEs associated with 

receptor binding, with covalent interactions also well represented.  

Key Events and Key Event Relationships may also prove useful for modelling, however, with 

notable exceptions such as receptor binding data and endpoint data such as those for the 

Ames assay, there is a lack of data. The lack of data is particularly acute for “intermediate” 

Key Events and Key Event Relationships i.e. those between the MIE and the adverse 

outcome. With increasing data becoming available in the framework of 21st Century 

Toxicology and high-throughput measurements, the data gaps may be filled in the future. 

However, they will only be useful if they represent the rate limiting step or key determinant 

of toxicity. These should form the basis of QSARs in particular as there is a desire to make 

the predictions more quantitative. The accurate prediction from chemical structure of 
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metabolites and their rates of formation have historically been very difficult; this is an area 

where improvements are required, especially as networked AOPs become a reality.   

Modelling of the whole AOPs, or qAOPs, will also require further data. At the moment a 

multitude of full chemistry-based computational models for a complete AOP seems unlikely. 

However, consideration of the AOP framework, especially as the new and / or updated tools 

become available, will both support model development and allow for the identification of 

gaps where either models or AOPs are required.  

In conclusion, ideally in silico models will ultimately allow for the complete replacement of 

toxicological testing whereby only a chemical structure is required to make a hazard and / or 

risk assessment – however we are a long way from achieving this. As the frameworks 

provided by AOPs (or whatever framework is utilised) to organise information and data 

become more sophisticated, the needs of modelling and the intimate and intricate 

relationship between the AOP and the models should not be forgotten but should be at the 

heart of AOP development and data capture.   
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Table 1. Types of MIEs with associated adverse outcomes and types and examples of appropriate modelling approaches 

Type of MIE Description Adverse Outcome Appropriate Type(s) of 

Modelling Approach(es) 

Examples of Models 

Covalent Reactivity Covalent binding of the 

compound with a 

biological macromolecule 

e.g. DNA, cellular 

membrane proteins, 

immunoproteins 

Mutagenicity, skin 

sensitisation, respiratory 

sensitisation, liver 

fibrosis, acute toxicity 

evaluated above 

baseline 

2-D structural alerts for 

specific molecular 

fragments, quantum 

chemical calculations of 

reactivity 

DNA binding;44 protein 

binding;45 respiratory 

sensitisation; 46 DFT 

calculations47-49 

Free Radical / Oxidative 

Stress 

Cellular or tissue damage 

caused by free radicals 

promoted by e.g. redox 

cycling 

Mutagenicity, tissue 

damage, aging, 

mitochondrial toxicity 

2-D structural alerts for 

specific molecular 

fragments, calculation of 

redox potential 

2-D alerts for excess 

aquatic toxicity;50-52 

mitochondrial toxicity53 
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Phototoxicity Damage caused by a 

reactive molecule or 

radical following excitation 

by UV light 

Mutagenicity, tissue 

damage, aging 

2-D structural alerts for 

specific molecular 

fragments, quantum 

chemical calculations of 

chemical stability 

2-D alerts and QSARs for 

excess aquatic 

(photo)toxicity54-56 

Chronic Receptor 

Mediated  

Stimulation or disruption 

of a normal physiological 

process, e.g. hormonal 

control, through 

(antagonistic or agonistic) 

binding (usually reversible) 

to a receptor 

Many and varied adverse 

outcomes e.g. disruption 

of endocrine function 

leading to reproductive 

impairment, cancer etc 

2-D alerts for scaffolds 

associated with binding. 

3-D toxicophores, 

receptor-ligand docking, 

molecular dynamics and 

other associated 

molecular modelling 

techniques 

2-D alerts for nuclear 

receptor binding leading 

to steatosis;22, 23, 3-D 

toxicophores for PPARγ 

binding leading to 

steatosis;57-58 2-D alerts 

and QSARs leading to 

reproductive toxicity and 

other endocrine effects59-

61 
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Acute Enzyme Inhibition  Irreversible inhibition of a 

physiological enzyme e.g. 

acetylcholinesterase. 

Rapid acute toxicity 

elevated above baseline 

2-D structural alerts for 

specific molecular 

fragments. 3-D 

toxicophores 

2-D and 3-D QSARs for 

excess aquatic toxicity as 

a result of enzyme 

inhibition62-64 

Unspecific  Unspecific events that 

occur at any relevant site 

e.g. reversible membrane 

disruption. 

Narcosis referring to 

basal cytotoxicity, 

resulting in anaesthesia 

and lethality, 

phospholipidosis leading 

to liver failure 

Relevant physico-chemical 

properties e.g. log P in 

aquatic environment, 

vapour pressure in air. 2-D 

structural alerts for 

specific molecular 

fragments 

QSARs for non-polar 

narcosis to aquatic 

species;65-67 2-D alerts for 

phosopholipidosis68-69 

Physical  Disruption of membranes 

due to the (physical / 

chemical) characteristics of 

a molecule 

Skin, eye, nasal, 

respiratory (other 

membrane) irritation 

and corrosion 

2-D structural alerts for 

specific molecular 

fragments. Measures of 

acidity / basicity; 

2-D alerts for skin / eye 

irritation / corrosion;70-71 

pH for irritation / 
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surfactant activity e.g. 

critical micelle 

concentration 

corrosion;72 QSAR for 

irritation73 

Othera Any other effect that may 

be related to promoting an 

adverse outcome e.g. 

weather, temperature or 

anthropogenic factors   

Any however usually 

associated with 

population decline 

Any relevant effect or 

property 

Climate as a stressor74 

 

aIt is acknowledged that AOPs in this category do not have a chemical interaction. This category of MIE is included in this table to enable any 

framework to categorise AOPs to be fully inclusive of all possible interactions. It should be noted that non-chemical interactions may need to 

be defined separately.   
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Table 2. Examples of currently available AOPs classified according to the type of MIE. Where available “citable” AOPs from the AOP Wiki 

(https://aopwiki.org/) have been used in preference to those available in the literature. 

AOP Title MIE of AOP Adverse Outcome OECD Project Number or 

Reference; AOP Wiki ID 

    

Covalent Reactivity 

    

Covalent Protein binding leading to Skin 

Sensitisation 

Covalent binding to 

immunoprotein 

Skin sensitisation OECD 1.1 

ID: 40 

Alkylation of DNA in male pre-meiotic germ cells 

leading to heritable mutations 

DNA alkylation Heritable mutations OECD 1.11 

ID: 15 

Protein Alkylation leading to liver fibrosis Protein alkylation Liver fibrosis OECD 1.14 

ID: 38 

https://aopwiki.org/
https://aopwiki.org/aops/40
https://aopwiki.org/aops/40
https://aopwiki.org/aops/38
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AFB1: Mutagenic mode-of-action leading to 

hepatocellular carcinoma 

Formation of pro-

mutagenic DNA Adducts 

Hepatocellular 

carcinoma 

OECD 1.8 

ID: 46 

    

Free Radical / Oxidative Stress 

    

No AOP currently citable on the AOP Wiki 

(although some are in draft form) or available in 

the literature 

   

    

Phototoxicity 

    

No AOP currently citable on the AOP Wiki or 

available in the literature 

   

    

Chronic Receptor Mediated 
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Inhibition of thyroperoxidase and subsequent 

adverse neurodevelopmental outcomes in 

mammals 

Inhibition of 

thyroperoxidase 

Neurodevelopmental 

outcomes 

OECD 1.10 

ID: 42 

Disruption of VEGFR signalling leading to 

developmental defects 

Inhibition of VegfR2 Developmental 

outcomes 

OECD 1.6 

ID: 43 

Sustained AhR activation leading to rodent liver 

tumours 

Binding to AhR Liver tumours OECD 1.7 

ID: 41 

Androgen receptor agonism leading to 

reproductive dysfunction 

Agonism of androgen 

receptor 

Reproductive 

dysfunction 

OECD 1.12 

ID: 23 

Aromatase inhibition leading to reproductive 

dysfunction 

Aromatase Inhibition Reproductive 

dysfunction 

OECD 1.12 

ID: 25 

Oestrogen receptor antagonism leading to 

reproductive dysfunction 

Binding to the oestrogen 

receptor  

Reproductive 

dysfunction 

OECD 1.12 

ID: 30 

https://aopwiki.org/aops/42
https://aopwiki.org/aops/42
https://aopwiki.org/aops/42
https://aopwiki.org/aops/43
https://aopwiki.org/aops/43
https://aopwiki.org/aops/41
https://aopwiki.org/aops/41
https://aopwiki.org/aops/30
https://aopwiki.org/aops/30
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Chronic binding of antagonist to N-methyl-D-

aspartate receptors (NMDARs) during brain 

development leads to neurodegeneration with 

impairment in learning and memory in aging 

Binding to NMDAR Neuroinflammation 

leading  to 

neurodegeneration 

OECD 1.13 

ID: 12 

Chronic binding of antagonist to N-methyl-D-

aspartate receptors (NMDARs) during brain 

development induces impairment of learning and 

memory abilities 

Binding to NMDAR  Impairment of learning 

and memory abilities 

OECD 1.22 

ID: 13 

Aromatase (Cyp19a1) reduction leading to 

impaired fertility in adult female 

Binding to aromatase Impaired fertility OECD 1.21 

ID: 7 

PPARα activation in utero leading to impaired 

fertility in males 

Binding to PPAR Impaired fertility OECD 1.21 

ID: 18 

Binding of agonists to ionotropic glutamate 

receptors in adult brain causes excitotoxicity that 

Binding to Glutamate 

Receptor 

Learning and memory 

impairment 

OECD 1.23 

ID: 48 

https://aopwiki.org/aops/12
https://aopwiki.org/aops/12
https://aopwiki.org/aops/12
https://aopwiki.org/aops/12
https://aopwiki.org/aops/7
https://aopwiki.org/aops/7
https://aopwiki.org/aops/18
https://aopwiki.org/aops/18
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mediates neuronal cell death, contributing to 

learning and memory impairment 

Inhibition of the mitochondrial complex I of nigra-

striatal neurons leads to parkinsonian motor 

deficits 

Binding of inhibitor to 

NADH-ubiquinone 

oxidoreductase (complex 

I), 

Motor function, 

impaired 

OECD 1.33 

ID: 3 

    

Acute Enzyme Inhibition 

    

Inhibition of acetylcholinesterase leading to 

lethality 

Irreversible binding to 

acetylcholinesterase 

Lethality 12, 62 

    

Unspecific 

    

https://aopwiki.org/aops/3
https://aopwiki.org/aops/3
https://aopwiki.org/aops/3
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Reversible membrane disruption leading to 

anaesthesia e.g. non-polar narcosis, basal 

cytotoxicity 

Unspecific membrane 

disruption 

Anaesthesia, lethality 29, 67, 77-78 

    

Physical 

    

Intracellular acidification induced olfactory 

epithelial injury leading to site of contact nasal 

tumours 

Decrease in intracellular 

pH 

contact nasal tumours OECD 2.7 

    

Other 

    

No AOP currently citable on the AOP Wiki 

(although some are in draft form) or available in 

the literature 

   

https://aopwiki.org/aops/136
https://aopwiki.org/aops/136
https://aopwiki.org/aops/136
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Figure 1. Schematic of a generic Adverse Outcome Pathway (from source to ecosystem) with 

the types of in silico models that may be associated with each Key Event. 
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Figure 2. Main differences where models may drive the development of AOPs and vice 

versa. 
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