{ LIVERPOOL

JOHN MOORES
UNIVERSITY

LJMU Research Online

Jebur, AAJ, Atherton, W, Al Khaddar, RM and Loffill, E
Piles in sandy soil: A numerical study and experimental validation

http:/Iresearchonline.ljmu.ac.uk/id/eprint/6967/

Article

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Jebur, AAJ, Atherton, W, Al Khaddar, RM and Loffill, E (2017) Piles in sandy
soil: A numerical study and experimental validation. Procedia Engineering,
196. pp. 60-67. ISSN 1877-7058

LJMU has developed LUMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LUIMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/


http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Available online at www.sciencedirect.com

ScienceDirect PmCEdia

£l Engineering

ELSEVIER Procedia Engineering 00 (2017) 000-000

www.elsevier.com/locate/procedia

Creative Construction Conference 2017, CCC 2017, 19-22 June 2017, Primosten, Croatia

Piles in sandy soil: A numerical study and experimental validation

Ameer A. Jebur® ®* William Atherton? ,Rafid M. Alkhadar?® ,Edward Loffill2

2School of Civil Engineering, Liverpool John Moores University, Peter Jost Enterprise Centre, Byrom Strret, Liverpool, L3 3AF, UK
bSchool of Civil Enginering, The Unversity of Wasit, Kut, Iraq

Abstract

Pile foundations are structural elements, highly recommended as a load transferring system from shallow inadequate soil layers
into competent soil strata with high performance. There are several theoretical and numerical approaches available concerning the
pile bearing capacity in cohessionless soil, however, there is a need for the development of an accurate and more robust predictive
model. In this technical note, the details of experimental work to investigate the pile bearing capacity penetrated in dense sub
rounded sand as confirmed by scanning electronic microscopy (SEM) tests with a Dr of 85% is discussed. A testing programme
comprised of three types of model piles (steel open-end, steel closed-end and concrete pile). The piles slenderness’s ratios (Ic/d)
are varied from 12, 17 and 25 to simulate the behaviour of both flexible and rigid pile designs. In addition, a novel approach of
multi-layered artificial neural networks (ANNS) based on the Levenberg-Marquardt approach (LM) was developed. Finally, the
accuracy of the developed ANN model was evaluated using independent test data. The results indicated that the optimised model
is highly suited for predicting of the pile-load capacity for the described soil with correlation coefficient, R and root mean square
error (RMSE) of 0.97095 and 0.074025 respectively.
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1. Introduction

Pile foundations are slender structural elements underneath superstructures commonly used as load transferring
systems at sites encountering inadequate sub-soil layers. Pile bearing capacity and associated settlement at certain
applied loads play a key role on the pile foundation design process [1]. Bearing capacity is normally achieved by
dividing the ultimate applied load by a certain factor of safety depending on the building serviceability requirements
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[2]. However, Murthy [3] stressed that if the above criterion is adopted for certain piles in specific soil conditions
(e.g., large diameter pile penetrated in clay soil), then the measured settlement from the applied working load may be
excessive.

Currently, in the absence of reliable pile-load test data, the on-site full-scale pile load-settlement test is normally
conducted to precisely evaluate the pile bearing capacity and associated settlement [1, 2]. Being expensive, time
consuming and due to the difficulty of obtaining undisturbed soil samples, alternative predictive approaches such as
Standard Penetration Test (SPT), Pressure Metre Test (PMT) and Cone Penetration Test (CPT), are normally adopted
to assess the pile bearing capacity [4, 5].

Moreover, Shahin [6] addressed the feasibility of the recurrent neural networks (RNN) by using cone penetration
test data to model steel piles subjected to axial load. Six model input parameters were found to be the most important
factors affecting the steel pile bearing capacity, these parameters comprised from the diameter of pile, the pile effective
length, the weighted average cone point resistance over the pile tip zone of failure, the weighted average friction
resistance over the pile effective depth, the weighted average cone point resistance over the penetrated depth and the
weighted average friction ratio over the pile embedment depth.

The current technical note has been devoted to fill the gaps in literature and to differentiate from the previous studies
in terms of the experimental tests and the ANN approach in three main aspects:

e Conducting experimental works by using three types of model piles (steel open end, steel close end and
concrete), having three slenderness’s ratios (12, 17 and 25) to develop the ANN database for model inputs
and output parameters;

e Relatively simple model input parameters are required to train the network without the need for in-situ tests
such as pile-load test (PLT), cone penetration test (CPT) and standard penetration test (SPT);

o Development of MATLAB code using the Levenberg-Marquardt approach (LM) to the implementation of
an ANN model as it is the most reliable method in comparison to all computational intelligence approaches

[7].

Nomenclature

LM Levenberg-Marquardt

Vi combination coefficient
| matrix identity
I/d slenderness’ ratio

SEM  scanning electronic microscopy
SP poorly graded sand

Wi weight

bj biases

RMSE root mean square error

USCS unified soil classification system

2. Experimental study

The sand used in this study is dense sand. As confirmed by the scanning electronic microscopy (SEM) observation,
Fig. 1a and b at 500um and 200um respectively, the sand was composed of sub-rounded particles. Based on the
Unified Soil Classification System (USCS), the sand is classified as a poorly graded (SP). Moreover, the sand
coefficient of uniformity, Cu and the coefficient of curvature, Cc are 1.786 and 1.142 respectively. It should be
mentioned that the dense sand was prepared in four layers placed at about 32cm thick in a calibration chamber with
internal dimensions 90cm by 90cm and 125 c¢cm in depth with each layer densified using a vibratory compactor. The
test was run following the procedure as recommended by Akdag and Ozden [8]. A repeatable process of compaction
was utilized where the sand chamber was divided in 36 equal segments. Moreover, to maintain the influence of the
grain size distribution on the combined pile-soil interaction, the ratio between the proposed pile diameter to the
medium diameter (d50) of the sand specimen should be (45) [9]. To minimize the scale effect and to give precise
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simulation of the sand-pile interaction, it has been proposed by Remaud [10] that the ratio must be at least (60) times
pile diameter. Whereas, Taylor [11] stated that the ratio should be at least (100). In this research study, the ratio

between pile diameters to minimum medium diameter (d/d50) is about (133) as shown in Fig. 2, matching the scaling
law criteria.
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Fig. 1. (a) and (b). Scanning electronic microscopy, (SEM) test of the sand specimen.
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Fig. 2. Particle size gradation curve of the sand sample.

3. Model piles

Three types of circular steel open end, circular steel close end and square concrete piles were used as models. Pile
aspects ratios, (Lc/d) were varied from 12, 17 and 25 with 40 mm diameter/square section used in the current study to
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simulate the behaviour of both rigid and flexible piles. A pile having a slenderness ratio more than 23 behaves as
long/flexible pile, while, the model pile having a slenderness ratio less than 23 behaves as short/rigid pile [12]. The
pile penetration depths are 480mm, 680mm and 1000mm respectively. It should be noted that an extra length of about
50mm was employed to serve as the load support and to minimize the contact load with the soil surface with the model
pile head. Furthermore, the pile wall thickness is 1.5mm giving d/t ratios of 26.67 within the range of (15-45) for the
open end model pile as recommended by Jardine and Chow [13].

4. Construction of the (ANN) model

In this paper, multi-layered back-prorogation ANNSs were used to develop a numerical solution for the model inputs
and output by applying the Levenberg-Marquardt technique (LM). The adopted (LM) approach is a second order non-
linear optimization tool. In addition, the (LM) algorithm is employed in this study as it is more reliable and a faster
approach than all other Artificial Neural approaches [7].

Furthermore, the typical ANN structure comprises of a series of processing elements, or nodes, that are usually
assembled in different layers: an input layer, one or two hidden layers and one output layer. The connection weight
wij is used to linear link the processing elements between each specific layer. Each of the model input parameters, Xi
form each processing element and is multiplied by a connection weight. The weighted value from each of the model
input parameters and a threshold value, 0i is either subtracted or added [14]. The combined model input is then passed
to the next layer through a specific transfer function (i.e. liner, or non-linear) to generate the adjustable output passed
as input to the other certain node for the next layer [15].

In the present study, the optimum number hidden layers and the output layer is 1 with 10 hidden nodes. In addition,
the activation functions utilized in the hidden layer and the output layer are log-sigmoid and linear function as
described in Equations (1 and 2).

The Levenberg-Marquardt (LM) algorithm has to be trained in order to get the best approximate values of the
biases b j and the connections weights w i j. It should be noted that a bias is much like connection weights except that
they have a value of 1, but they are not necessarily to be included in Equations 1 and 2. The main objective from the
training of the ANN is to reduce the mean square error (MSE) between the measured (target) and the estimated (output)
values, as described in Eq. 3 [16]. In this study, the optimum (MSE) is selected during the training process at the best
validation performance of 0.0040617.

> 1
y=) w® z +b®
1
1
Z = 5. (M) ) 2
1+ exp (Zliwi]. x; + bj )
3

n
1
MSE = - (Z(measured(ij) - predicted(ij))2>
1

5. Pre-processing and data classification

The experimental database used comprises 374 recorded load-settlement curves obtained from 9 pile load-tests. To
construct the ANN model and to eliminate the over-fitting, the database is randomly divided into three subcategories:
training, testing and validation [15]. The training set objective is to create the network and fit the model, the testing
set have no effect on training and so provide an independent check of network performance during and after the
training process and the validation set is used to estimate the prediction error for the optimum ANN model as reported
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by Shahin [15]. In total, 70% of the database (262) was used for the training and 15% (56) was taken for the testing
and the remaining 15% (56) was utilized for the validation set respectively.

6. Model inputs and output

Five factors were considered the most significant inputs parameters affecting the pile bearing capacity and the ANN
model architecture. These factors were, applied load (P), pile slenderness’s ratios (Ic/d), pile axial rigidity, (EA), pile
effective length, (I), sand-pile friction angle, (), the model output was the pile settlement. A summary of the model
inputs and output are illustrated in Tab. 1.

Table 1: Input and output statistics for the ANN model

Input Variables Output
Statistical Pile axial Sand-pile
Data Set Parameters Load Slepderness Pile length, (m) rigidity, (EA), friction Settlement,
(kN) ratio Lc/d (MN) angle, & (mm)
Maximum 6.533 25 1 251.2 30.2 14.243
Minimum 0.031 12 0.48 47.2 246 0.002
All data Mean 3.506 12.989 0.719 195.018 26.142 6.558
Std. dev 1.796 5.376 0.215 91.252 2.504 4376
Range 6.502 13 0.52 204 5.6 14.241
Maximum 6.533 25 1 251.2 30.2 14.2435
» Minimum 0.031 12 0.48 47.2 246 0.0025
Trzgt'”g Mean 4012 18.023 0.721 196.696 26.097 6.555
Std. dev 1.97 53 0.212 90.44 24827 4568
Range 6.502 13 0.52 204 5.6 14.241
Maximum 6.521 25 1 251.2 30.2 1376
_ Minimum 0.087 12 0.48 47.2 246 0.0267
Testing Set Mean 411 1218.625 0.745 192,914 262 6.08
Std. dev 1.96 5.535 0.2214 93 2,552 3.905
Range 6.435 13 052 204 56 13738
Maximum 6.533 25 1 251.2 30.2 13.888
_ Minimum 0.0652 12 0.48 47.2 246 0.0026
Ygrl]'gitt Mean 3.8941 17.196 0.688 189.271 26.3 75121
Std. dev 1.9 5.577 0.223 94.648 2.598 4.1365
Range 6.4677 13 052 204 56 13.885

7. Results and discussion

A compression between the experimental pile-load tests and the predicted ANN model results is discussed in this
section. The ANN model used in this study is based on the Levenberg-Marquardt (LM) training function. As
mentioned earlier, the database is divided in three subsets, training, testing and validation. However, for validation
the accuracy of the ANN model has been independently checked using the testing database. The ANN model yielded
good agreement between the observed and the predicted pile load carrying capacity, and the performance of the model
in the training and validation are illustrated in Figs 3, 4and 5 respectively. The ANN output results reveal that there is
excellent agreement between the observed and simulated results for all model piles (steel open-ended, precast concrete
piles and the steel closed ended with aspect ratios varying between 12, 17 and 25. The results also prove that the
adopted ANN approach has the ability to predict the high non-linear relationship of the pile-load settlement.
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Fig. 3. Comparison between measured and predicted (ANNs) model for the concrete piles.
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Fig. 4. Comparison between measured and predicted (ANNs) model for the steel close-ended piles.
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Fig. 5. Comparison between measured predicted ANN models for the steel open-end model piles.

Moreover, the generalisation ability and efficiently of the ANN that best matched of the measured pile-load
settlement for the testing set is expressed in terms of the correlation coefficient, R and root mean square error, RMSE
as shown in Fig 6 at a 5% level of significance. It can clearly be realized that the developed neural network model is
successful in its ability to simulate the high nonlinear relationship between the target and the fitted value with R and
RMSE values of 0.97095 and 0.074025 respectively.

RMSE = 0.074025, R = 0.97095, p = 3.7777e-233
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Fig. 6. Regression calibration curve between targets versus fitted values for the optimum ANN model at a 5% level of significance.
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