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Abstract

The process of converting gas into stars underpins much of astrophysics, yet many

fundamental questions surrounding this process remain unanswered. For example –

how sensitive is star formation to the local environmental conditions? How do massive

and dense stellar clusters form, and how does this crowded environment influence the

stars that form within it? How do the most massive stars form and is there an upper

limit to the stellar initial mass function (IMF)? Answering questions such as these is

crucial if we are to construct an end-to-end model of how stars form across the full

range of conditions found throughout the Universe.

The research described in this thesis presents a study that utilises a multi-scale ap-

proach to identifying and characterising the early precursors to young massive clusters

and high-mass proto-stars, with a specific focus on the extreme environment in the

inner few hundred parsecs of the Milky Way – the Central Molecular Zone (CMZ).

The primary sources of interest that are studied in detail belong to the Galactic centre

‘dust ridge’ – a group of six high-mass (M ∼ 104−5 M�), dense (R ∼ 1–3 pc, n &

104 cm−3), and quiescent molecular clouds. These properties make these clouds ideal

candidates for representing the earliest stages of high-mass star and cluster formation.

The research presented makes use of single-dish and interferometric far-infrared and

(sub-)millimetre observations to study their global and small-scale properties.

A comparison of the known young massive clusters (YMCs) and their likely progen-

itors (the dust ridge clouds) in the CMZ shows that the stellar content of YMCs is

much more dense and centrally concentrated than the gas in the clouds. If these clouds

are truly precursors to massive clusters, the resultant stellar population would have to
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undergo significant dynamical evolution to reach central densities that are typical of

YMCs. This suggests that YMCs in the CMZ are unlikely to form ‘monolithically’.

Extending this study to include YMCs in the Galactic disc again shows that the known

population of YMC precursor clouds throughout the Galaxy are not sufficiently dense

or central concentrated that they could form a cluster that then expands due to gas

expulsion. The data also reveal an evolutionary trend, in which clouds contract and

accrete gas towards their central regions along with concurrent star formation. This is

argued to favour a ‘conveyor-belt’ mode of YMC formation and is again not consistent

with a monolithic formation event.

High angular resolution observations of the dust ridge clouds with the Submillimeter

Array are presented. They reveal an embedded population of compact and massive

cores, ranging from ∼ 50 – 2150 M� within radii of ∼ 0.1 – 0.25 pc. These are likely

formation sites of high-mass stars and clusters, and are strong candidates for represent-

ing the initial conditions of extremely massive stars. Two of these cores are found to be

young, high-mass proto-stars, while the remaining 13 are quiescent. Comparing these

cores with high-mass proto-stars in the Galactic disc, along with models in which star

formation is regulated by turbulence, shows that these cores are consistent with the

idea that the critical density threshold for star formation is greater in the turbulent

environment at the Galactic centre.
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Chapter 1

Introduction

Preface

This thesis presents a study of the Galactic centre ‘dust ridge’ – a group of six high-

mass (M ∼ 104−5 M�), dense (R ∼ 1–3 pc, n & 104 cm−3), and quiescent molecular

clouds that lie at a projected galactocentric distance of ∼ 100 pc, and span roughly

37 pc in projected longitude. The research presented focuses primarily on studying

these clouds observationally in the context of the very early stages of high-mass star

and cluster formation in this extreme environment.

The outline of this thesis is as follows: this chapter presents an overview of the cur-

rent understanding of the process of star formation (§1.1), with particular focus on

the fields that are pertinent to this research, namely young massive cluster (YMC)

formation, high-mass star formation and the environmental dependence of the star for-

mation process. Chapter 2 presents a study in which the properties of these dust ridge

clouds are derived. The properties of these clouds are compared with those of YMCs

in the Galactic centre and discussed in the context of YMC formation scenarios. These

results are published in Walker et al. (2015). Chapter 3 extends the research of the pre-

vious chapter to include YMCs and their likely precursor clouds in the Galactic disc,

the results of which are published in Walker et al. (2016). Chapter 4 presents high

1



1.1. Star formation – an overview 2

angular resolution observations of the dust ridge clouds using the Submillimeter Array

(SMA). These observations reveal a population of high-mass dust cores, ranging from

quiescent cores to young, embedded, high-mass proto-stars. Chapter 5 gives a brief

discussion of active projects to follow up the discovery of these high-mass cores using

ALMA, as well as a preliminary search for the quiescent precursors to YMCs in the

Galactic disc. A summary of this work and future directions in the field are given in

Chapter 6.

1.1 Star formation – an overview

The mechanisms by which stars form, evolve and deposit their energy, momentum and

enriched material into the interstellar medium influence processes across a huge range

of scales, from the formation of planets to the evolution of galaxies. The ultimate goal

of star formation is to develop a general theory of the process that describes the for-

mation of stars across the full mass range and as a function of their natal environment.

Significant advances in pursuit of this goal have been made over recent decades, partic-

ularly in understanding the formation of low and intermediate mass stars in the disc of

our own Galaxy, where we are able to resolve pre/proto-stellar cores on spatial scales

on which individual stars are forming. However, there remain many open questions

surrounding the nature of star formation outside of these circumstances. In the follow-

ing sections, a brief overview of the current understanding in the field of star formation

is presented.

1.1.1 Probing the structure of molecular clouds

Molecular clouds are the birthplaces of stars in galaxies. They are the coldest (10–

20 K) and densest (nH ∼ 102−5 cm−3) component of the interstellar medium (ISM)

(Larson, 2003). Though such properties are ideal for forming stars, they are not so
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ideal from our perspective as observers. The most abundant constituent of molecular

clouds – Hydrogen – is in its molecular form, H2. In this form, Hydrogen is very

difficult to observe as it does not emit efficiently at the low temperatures observed in

molecular clouds. One of the best proxies for tracing the bulk of the material in these

clouds comes in the form of thermal emission from dust grains. Dust is ubiquitous

in molecular clouds and is observed to be present at a roughly constant ratio of 1:100

with respect to the gas, though this will change with metallicity, and in regions like

the Galactic centre may be up to a factor of 2 lower than this (see e.g. Longmore

et al., 2013a, and references therein). The dust grains are able to absorb and emit

continuum radiation and therefore provide an excellent tool with which to observe the

bulk physical properties of molecular clouds.

To observe the dust emission from molecular clouds, we must target the most appro-

priate wavelengths. Given typical temperatures in molecular clouds of ∼ 10–30 K, the

dust emits most efficiently in the (sub)-millimetre regime. At shorter wavelengths, the

dust grains emit much less efficiently and they absorb background emission from stars

and stand out as absorption features. This can be demonstrated via inspection of the

equation of radiative transfer, which can be written as follows –

Iν = Iν(0)e−τν +Bν(T )[1− e−τν ] (1.1)

where Iν is the intensity, Iν(0) is the initial intensity, τν is the optical depth and Bν(T)

is the Planck function, which describes the intensity of radiation at a given frequency

that is emitted from a black-body at a temperature, T –

Bν(T ) =
2hν3

c2

1

exp(hν/kT )
(1.2)

Equation 1.1 can effectively be split up into multiple terms. Iν(0)e−τν describes the

intensity (Iν(0)) of background radiation that is incident upon the far side of the absorb-

ing material (from the observer’s perspective). This incident radiation is attenuated by

the absorbing material, the amount by which is given by the optical depth, τν , which
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depends on the amount of material along the line of sight (i.e. column density) and

the opacity of the material. The Bν(T )[1 − e−τν ] term describes the intensity of the

black-body emission at temperature T , and its attenuation due to the optical depth.

At short wavelengths (high frequency) and typical cloud temperatures of ∼ 10–20 K,

the exponential term in the Plank function is significant (since hν >> kT ) and hence

Bν(T) becomes negligible. Equation 1.1 can therefore be simplified and approximated

as Iν = Iν(0)e−τν , and hence a cloud would be observed as an extinction feature at

short wavelengths.

At longer (e.g. sub-millimetre) wavelengths and the same temperature, hν < kT and

so the Planck function is no longer negligible. However, typical dust opacities in the

sub-mm regime are κν ∼ 0.01 cm2 g−1, which means that the e−τν terms in Equation

1.1 are negligible (unless the cloud has extremely high column densities). The equation

can therefore be approximated as Iν = τνBν(T ). Given that τν = Σκν , where Σ is the

surface density, this means that if we have a measure of both the dust temperature and

opacity, it is possible to determine the surface density and related physical properties

such as the column density and cloud mass. Sub-mm/far-IR observations of molecular

clouds are therefore ideal for measuring bulk cloud properties via the thermal dust

continuum emission.

Observations of molecular clouds at these longer wavelengths has revealed that the in-

ternal structure of molecular clouds is not regular – it is clumpy, highly sub-structured

and hierarchical (e.g. Larson, 1981; Elmegreen, 2008). This complex morphology has

led to a non-universal nomenclature that is used to classify different structures within

molecular clouds. In general, over-densities on the scales on which clusters of stars can

form (∼ 0.1 – 1 pc) are referred to as ‘clumps’. Within these clumps, compact (<<

0.1 pc) over-densities in which individual stars/binaries/multiples form are referred to

as ‘cores’ (McKee & Ostriker, 2007).

Star formation in these cores occurs when self-gravity dominates and the core col-

lapses. Classically, Jeans analysis (Jeans, 1902), which describes the conditions in

which an over-density in a uniform isothermal medium is susceptible to gravitational
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collapse, has been used to describe this process. Jeans (1902) considered the growth

of plane-wave density perturbations in the medium. The density perturbations can be

described by the standard form of the wave equation: ρ = Aei(kx−ωt). The propagation

of such waves in the medium can be characterised by the dispersion relation –

ω2 = k2c2
s − 4πGρ0 = c2

s(k
2 − k2

J) (1.3)

where ω is the angular frequency, k is the wavenumber (k = 2π/λ), G is the grav-

itational constant, ρ0 is the volume density, cs =
√
kT/µ is the sound speed and

kJ =
√

(4πGρ0)/c2
s is the Jeans, or critical, wavenumber. If k < kJ , this means that

ω2 < 0 and ω must therefore be imaginary, with solutions of ω = ±iα. The positive

solution to ω yields a positive exponent in the wave equation, and k < kJ therefore

corresponds to exponential growth of the perturbations. Thus, Jeans instability occurs

if the wavenumber (k) is smaller than the critical wavenumber (kJ ). Expressed in terms

of the wavelength (λ = 2π/k), we obtain the Jeans length –

λJ =
2π

kJ
= csπ

1/2(Gρ0)−1/2=

(
πkT

Gρ0µ

)1/2

(1.4)

Assuming spherical symmetry the Jeans mass can be described as –

MJ =
4π

3
λ3
Jρ0 =

4π5/2c3
s

3G3/2ρ
1/2
0

=

(
π5k3T 3

G3ρ0µ3

)1/2

(1.5)

The Jeans analysis is a simplistic formulation and neglects many important physical

processes, including those of rotation, magnetic fields, turbulence, external pressure

and the detailed geometry of the medium. More detailed formulations exist (see Lar-

son, 2003, and references therein), but the Jeans analysis provides a useful framework

in which to make approximations for the formation properties of self-gravitating cores

in molecular clouds. It also presents a way of explaining the observed fragmented hier-

archical structure of the ISM. If regions that exceed the Jeans criteria collapse and re-

main isothermal, the Jeans mass will decrease as the density of the medium increases,
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and hence smaller regions that exceed this mass will be susceptible to collapse. As

regions fragment, they will at some point reach high enough densities that they will

become optically thick and the temperature of the fragments will begin to increase.

As the Jeans mass is more sensitive to the temperature than the density, this increase

in temperature leads to a significant increase in the Jeans mass, and hence no further

fragmentation should occur.

While gravity plays an obvious role in shaping the internal structure in molecular

clouds, it is not the only factor at play. Turbulence is known to be fundamental in

governing the properties of the ISM, and indeed all astrophysical phenomenon involv-

ing gas dynamics (see the review by McKee & Ostriker, 2007). Turbulence arises

when the inertial forces in a fluid are much greater than its viscosity. This results in

large scale instabilities that cascade energy down to smaller spatial scales. Turbulent

motions within molecular clouds are often found to be greater than the sound speed

in the medium, resulting in supersonic shocks that create regions of enhanced density.

Supersonic turbulence within the ISM leads to these post-shock density fluctuations

over a wide range of spatial scales, and if any density enhancements are significant

enough, they may be susceptible to gravitational collapse, and hence the formation

of (proto-)stars. However, unlike gravity, turbulent motions need not be conducive

to forming structures, and can equally disrupt the density structure of the gas. The

complex interactions between turbulent flows and gravity in the interstellar medium

are therefore fundamental in regulating the density structure and hence star forming

potential of molecular clouds.

Many numerical simulations have shown that the predicted distribution of densities –

the probability distribution function (PDF) – is well described by a log-normal distri-

bution (e.g. Nordlund & Padoan, 1999; Ostriker et al., 2001). This form of distribution

can be explained as being due to the gas experiencing many random, independent

shocks that change the density (Vazquez-Semadeni, 1994). As the shocks are random

and additive, the form of the PDF therefore approaches a log-normal distribution, as

per the central limit theorem. The mean of the density fluctuations grows asM2, where

M is the Mach number (Padoan et al., 1997). When self-gravity becomes important
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(i.e. the formation and subsequent collapse of self-gravitating cores), the density PDF

is expected to remain log-normal, with the addition of a power-law tail at the high

densities, corresponding to the dense, self-gravitating material (Nordlund & Padoan,

1999). These theoretical predictions have been shown to hold observationally. Mea-

surements of the column density PDF have shown that Galactic molecular clouds are

consistent with log-normal distributions due to turbulence (Padoan et al., 2014). It

therefore seems that turbulence may play a dominant role in seeding the multi-scale

structure of molecular clouds. It has also been predicted that turbulence alone may

be responsible for determining the stellar initial mass function, whereby the highest

density regions in the turbulent medium become self-gravitating, separate from the

flow and collapse as proto-stellar cores (e.g. Krumholz & McKee, 2005; Padoan &

Nordlund, 2011).

1.1.2 The stellar initial mass function (IMF)

The probability distribution of stellar masses at their birth (i.e. once they arrive at the

zero-age main sequence) is known as the stellar initial mass function (IMF). A fasci-

nating property of the IMF is that there is significant evidence that it is universal, in

that it does not appear to vary significantly as a function of the initial conditions of

star formation, though potential sources of variation have been found (see the review

by Bastian et al., 2010, and references therein). It is not immediately obvious why the

IMF should be invariant. It is seems plausible to assume that the different environmen-

tal conditions and varying elemental abundances in the media from which stars form

might have a significant effect on the resultant stellar population and its initial distri-

bution of masses. If the IMF is truly universal, this has wide reaching implications for

many areas of astrophysics. It would mean that a star of any mass (within the potential

mass limits) has some probability of forming in any stellar population, and the number

of high mass stars relative to low mass stars is crucial to the energy balance and evolu-

tion of galaxies. Thus, any endeavours to develop a unifying theory of star formation

must be able to replicate this apparent universality of the stellar IMF.
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There are multiple formulations of the stellar IMF. Initially, Salpeter (1955) proposed a

distribution of the form dN /dlog(M)∝M−1.35. This single power-law form describes

the stellar mass function for stars greater than ∼ 1 M�. However, it breaks down for

lower stellar masses. More recent measurements of the IMF, which are more sensitive

to the lower end of the mass spectrum, find that it is better represented by a multi-

component form. For example, Chabrier (2003) propose a log-normal distribution for

M . 1 M� followed by a power law, and Kroupa (2001) suggest a three-component

power law series that is characterised as dN /dlog(M) ∝M−α, with α = 1.3 for 0.5 <

M/M� < 50, α = 0.3 for 0.08 < M/M� < 0.5, and α = 0.7 for 0.01 < M/M� < 0.08.

In these models, the mean stellar mass at birth is of order 0.1 M�, with a steep drop-off

for stars & 1 M�.

Understanding how stars form across the mass range, and whether their formation

mechanisms differ as a function of mass, is crucial in understanding the apparent uni-

versality of the IMF. The following sections present an overview of theories of low-

and high-mass star formation.

1.1.3 Low-mass star formation

The form of the IMF means that in a given stellar population, the vast majority of the

stars will populate the lower end of the distribution. A consequence of this is that

low-mass stars and their progenitors are much more abundant in the Galaxy relative

to high-mass stars. Although the stellar mass distribution is continuous, a star is con-

sidered to be ‘high-mass’ when it is & 8 M�. This separation of low- and high-mass

stars is a physically motivated one. One reason for this separation is that a star of &

8 M� is sufficiently massive to be a type II supernova progenitor (Zinnecker & Yorke,

2007). In a more direct context of star formation, this low/high mass separation is also

motivated by the physical timescales involved. The Kelvin-Helmholtz timescale is the

approximate time that it would take for a star to radiate away its gravitational potential

energy at its current luminosity, and can be described as –
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tKH =
1

2

EG
L∗
≈ GM2

∗
R∗L∗

(1.6)

where EG is the gravitational potential energy, G is the gravitational constant, and

M∗, R∗ and L∗ are the mass, radius and luminosity of the star, respectively. This

timescale is roughly ∼ 10 Myr for a Solar-like star. For low-mass stars, the Kelvin-

Helmholtz timescale is significantly longer than the accretion timescale, and they can

therefore accrete all of their mass before they enter the ZAMS. For high-mass stars

(∼ 8–10 M�), however, the opposite is true – the accretion timescale is greater than

tKH . This means that high-mass proto-stars initiate nuclear burning and enter the main

sequence whilst still accreting, which has important implications for the continued

growth and evolution of the proto-star (e.g. because of the interplay between stellar

feedback and accretion).

The inherent abundance of low–intermediate-mass stars in the Galaxy means that there

are many of these stars much closer to us, which permits detailed studies of the differ-

ent phases of their evolution, and thus their formation is relatively well understood.

Low-mass stars are understood to form due to the collapse of self-gravitating proto-

stellar cores (see e.g. reviews by Larson, 2003; McKee & Ostriker, 2007). During the

early stages of the collapse, the dust is optically thin, and so the temperature of the

core is expected to change very little while the density of the core increases signifi-

cantly, and the proto-star is therefore often treated as being isothermal at this stage.

Once high enough central densities are reached, the dust becomes optically thick and

the core is opaque to its own radiation and can no longer be treated as isothermal

(Larson, 1969). The increasing core temperature provides internal support against the

global gravitational collapse and the core becomes hydrostatic at central densities of

∼ 10−10 g cm−3. Eventually, the increasing central temperature is such that molecular

hydrogen will begin to dissociate (T∼ 2000 K). This leads to a subsequent second col-

lapse within the first hydrostatic core, due to the fact that any compressional heating

will go into dissociating the molecular hydrogen, rather than heating the gas. The core

can then contract in an almost isothermal manner, until most of the H2 has been disso-
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ciated. This collapse halts once most of the hydrogen within the core has been ionised,

and a second hydrostatic core is formed. The formation of the second hydrostatic core

corresponds to the birth of the proto-star, which continues to grow towards its final

stellar mass via accretion of the outer core and extended envelope material. This is a

broad and overly-simplistic view of the process, and more thorough treatments include

the effects of turbulence, rotation and magnetic fields (see e.g. reviews by Larson,

2003; McKee & Ostriker, 2007, and references therein).

The most notable consequence of including rotation and magnetic fields is the for-

mation of a flattened accretion disc surrounding the proto-star. Indeed, discs around

low-mass proto-stars appear to be a common, and perhaps universal property (Hart-

mann, 1998; Hartmann et al., 2016, see Figure 1.1 for a schematic of this process)

that is thought to be responsible for the growth of mass towards the formation of the

eventual star. A subsequent result of this is the ubiquitous presence of proto-stellar

outflows and jets (see review by Bally, 2016). This is found to be a property in all as-

trophysical systems that are accreting via rotating, magnetised discs, from proto-stars

to galactic nuclei. Such jets are thought to be driven by rotating magnetic fields in

the inner accretion disk, and serve to remove angular momentum and energy from the

system.

1.1.4 High-mass star formation

The physics of star formation and stellar feedback play a leading role in shaping the

evolution of galaxies, and it is the most massive stars that provide a dominant source

of feedback that drives the physical and chemical evolution of galactic material. To

gain a complete understanding of how galaxies form and evolve across cosmic time,

it is therefore essential that we understand how massive stars form and how they

deposit their energy, momentum and chemically-enriched material into the interstel-

lar medium. Currently, the formation mechanism of high-mass stars remains uncon-

strained, particularly for very massive stars.

Our understanding of late-O and early-B type star formation has progressed substan-
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Figure 1.1: Schematic of the general view of low-mass proto-stellar accretion (Hartmann
et al., 2016). The inner disc is truncated by the magnetic field. The intersection of the
magnetic field and the inner disc channels the disc material on to the proto-star. The
inner disc region drives bi-polar jets and proto-stellar winds.

tially over the last decade (see e.g. reviews by Zinnecker & Yorke, 2007; Tan et al.,

2014). Many models seeking to explain the formation mechanism of high-mass stars

exist, for example via accretion from cores (McKee & Tan, 2003; Krumholz et al.,

2009; Kuiper et al., 2011), accretion from clouds/clumps (Bonnell et al., 2001), and

via proto-stellar mergers (Bally & Zinnecker, 2005). The former two of these scenar-

ios have been debated and explored extensively in the literature, and are often referred

to as core accretion and competitive accretion models, respectively.

The defining feature of the core accretion model is that high-mass stars form within

dense, massive and gravitationally bound pre-stellar cores, which themselves arise as

a result of the fragmentation of their natal cloud in a scaled-up version of low-mass

star formation (McKee & Tan, 2003). It is often also referred to as the turbulent core

model, due to the work of McKee & Tan (2003), where they presented a model in

which turbulent motions within the core are dominant. This high turbulence acts to

provide support to the core and means that any cores that become unstable to gravita-

tional collapse are very dense, and hence have high accretion rates. Though this model
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manages to produce the high accretion rates required to form high-mass stars, it is not

clear what the source of this turbulence should be. This condition also explicitly sug-

gests that all high-mass stars must form in regions of high-turbulence. One of the other

main problems with this scenario is in explaining why such massive, turbulent cores

should not fragment into a sub-set of smaller pre-stellar cores. One mechanism that

has been put forward to overcome this problem suggests that radiative feedback from

nearby low-mass proto-stars suppresses fragmentation (Krumholz & McKee, 2008),

though observations of high-mass cluster-forming regions suggest that this may require

an unusually large population of low-mass stars to form initially (e.g. Longmore et al.,

2011). It has also been argued that the presence strong magnetic fields (∼ mG) would

be sufficient to halt fragmentation within the core (Tan et al., 2013). A key prediction

of this scenario is that massive starless cores – the initial conditions of high-mass stars

in this model – should exist. Despite many observations of high-mass star-forming

regions, massive starless cores have not been unequivocally found, though potential

candidates that warrant further investigation have been found (e.g. Cyganowski et al.,

2014; Kong et al., 2017).

In contrast, the competitive accretion model predicts that high-mass stars begin their

proto-stellar lives at more moderate masses, but continue to accrete material from the

surrounding medium of the clump/cloud in which they are embedded. They would

therefore never exist in a massive starless core phase. This scenario also predicts that

the growing high-mass proto-star should be forming in a proto-cluster, in which it re-

sides towards the centre and is surrounded by a population of low-mass proto-stars.

This scenario reproduces the observational result that high-mass stars are often found

in star clusters (e.g. Lada & Lada, 2003). However, there are also known cases of

isolated high-mass stars (see e.g. Bressert et al., 2012a; Tremblay et al., 2015). It is

possible that such stars may have been ejected from clusters due to N-body interac-

tions, but if they truly formed in isolation, this presents a challenge for the competitive

accretion scenario. Simulations show that massive stars can grow via accretion from

their larger scale natal clumps, without ever existing in a massive pre-stellar phase,

and that a population of lower mass stars form within the cluster simultaneously (e.g.
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Smith et al., 2009). This has also been seen observationally, for example, Cyganowski

et al. (2017) recently reported the detection of simultaneous low- and high-mass star

formation in G11.92−0.61. However, this region also contains one of the best known

massive starless core candidates (Cyganowski et al., 2014), suggesting that the reality

of high-mass star formation is perhaps not so easily described by either one of these

models in isolation.

Simulations of massive and compact cores suggest that in the case of core accretion,

a core at an early evolutionary phase will be dominated by a central high-mass source

and contain a few lower-mass fragments. The central source is expected to dominate

the luminosity of the core and extend out to ∼ 1000 AU. [See e.g. Krumholz et al.

(2007a); here a simulated core of M = 100 M�, R = 0.1 pc fragments into a central

source of M∼ 10 M� and R∼ 1000 AU, along with 2 low-mass fragments of 0.05 and

1.2 M�.] Krumholz et al. (2007a) utilise mock ALMA observations to demonstrate

that, in the case of ‘core accretion’, kinematic signatures of rotation can be detected

and quantified on ∼ 1000 AU scales using different dense gas tracers. The competitive

accretion model, however, predicts that such a core would instead contain multiple

lower-mass fragments and not be dominated by a single source. Here, the crowding of

stars and competition for the surrounding material means that fragments are expected

to be truncated to a few tens of AU (Bonnell et al. 2003).

Though these two ‘competing’ scenarios have been studied considerably, it is likely

that the complex reality of high-mass star formation is not so clear-cut. Considerable

efforts in the field are being led to further develop the theoretical and numerical frame-

works, and compare these with high-resolution far-IR and (sub-)mm observations,

which are effective in probing dust cores throughout the Galaxy on proto-stellar scales.

However, these models remain largely untested in the most extreme mass regimes (up

to and greater than 100 M�), and thus, despite their obvious cosmological importance,

the formation mechanism of very high-mass stars remains a mystery.

One of the most challenging aspects of investigating the formation of the most massive

stars is that they, and hence their progenitors, are extremely rare. Given a population

of 10,000 stars sampled from a stellar IMF, we would expect to find only ∼ 1 star that
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is > 100 M�. To better understand the initial conditions and formation mechanisms of

such stars, it is essential that their precursors are discovered and studied in detail. But

this inherent rarity means that it is difficult to find the progenitors to such stars.

1.1.5 Star clusters

Stars are known to commonly form in clustered environments (Lada & Lada, 2003),

and stellar clusters can contribute substantially to the stellar population of a galaxy (see

e.g. Goddard et al., 2010; Silva-Villa & Larsen, 2011; Kruijssen, 2012). Classically,

they have been categorised into two distinct populations; globular clusters, which are

old (& 10 Gyr), massive (& 105 M�) and dense (& 103 M� pc−3) gravitationally bound

stellar populations that formed in the early Universe, and open clusters, which are com-

paratively younger (. 1 Gyr), less massive (. 103 M�), less dense (. 103 M� pc−3)

and not necessarily bound. More recently however, it has become apparent that young

massive clusters (YMCs; defined by Portegies Zwart et al., 2010, to be gravitationally

bound systems with M & 104 M� and ages . 100 Myr), whose stellar masses and

densities can reach and even exceed those of globular clusters, are still forming at the

present day (e.g. Holtzman et al., 1992).

Clusters are extremely useful laboratories for testing our understanding of many astro-

physical phenomena. The extreme stellar densities in massive clusters offers a unique

insight into the earliest stages of star and planet formation and evolution in extremely

dense environments, where feedback mechanisms and dynamical encounters are likely

to affect their subsequent evolution significantly. High-mass stars are also often found

in young stellar clusters. For example, Galactic clusters like the Arches and Quintu-

plet are seen to contain many high-mass stars, some of which even exceed 100 M�

(Figer et al., 1999a,b, 2002). This is likely a direct result of greater IMF sampling –

in a cluster containing > 104 stars, it is statistically likely that there will be several

hundred stars > 10 M� and a few extremely high-mass stars present. It may also be

the case that if competitive accretion or stellar collisions/mergers are common modes

of massive star formation, then this should be much more viable in dense, clustered
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environments and would lead to a greater presence of high-mass stars in dense star

clusters. It therefore follows that if we wish to identify and study the precursors to the

most massive stars, we are more likely to find them residing in the precursors to the

high-mass stellar clusters.

The most massive and dense clusters that are currently forming in the Galaxy are

YMCs. Understanding how YMCs form is crucial in addressing the formation and

evolution of stars, planets and clusters in the most extreme density regimes. The fol-

lowing section presents an overview of YMCs, their progenitors and potential forma-

tion mechanisms.

1.1.6 The formation of young massive clusters (YMCs)

The discovery that massive stellar clusters are still forming at the present day has rein-

vigorated the discussion of cluster formation mechanisms and spawned the idea that

perhaps all clusters form in a similar way. Observations show that the cluster mass

distribution is in fact continuous (Larsen, 2009; Portegies Zwart et al., 2010), extend-

ing from low-mass open clusters (∼ 100 M�) to high-mass YMCs that are seen to be

as massive as ∼ 108 M� (e.g. W3 in NGC 7252, Maraston et al., 2004; Cabrera-Ziri

et al., 2016). This has potentially important implications, suggesting that clusters form

in a similar way across this entire mass range. Additionally, it has been proposed that

high-mass YMCs may be local analogues to the old globular clusters that we see today

(e.g. Elmegreen & Efremov, 1997; Kruijssen, 2014). In this scenario, only the clus-

ters formed in the early Universe that belonged to the high-mass end of the continuum

would have been able to survive for a Hubble-time, whereas the lower mass clusters

would have been disrupted (e.g. Vesperini, 2001; Fall & Zhang, 2001; Kruijssen, 2015)

and dissolved into the field population. If these scenarios are indeed true, this places

YMCs in an important context – by understanding their formation and evolution, it

may be possible to gain an insight into the formation of clusters across the full mass

range, including that of globular clusters.

YMCs with ages greater than a few Myrs have been identified in significant numbers
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(see the review by Portegies Zwart et al., 2010, and references therein), and particu-

larly in galaxies with high star-formation rates (e.g. Whitmore, 2002). Several have

also been identified within our own Galaxy, such as the Arches, Quintuplet, NGC

3603, Westerlund 1 and red super-giant (RSG) clusters (Figer et al., 1999c; Goss &

Radhakrishnan, 1969; Clark et al., 2005; Davies et al., 2007).

The mechanism via which YMCs form is not yet entirely understood (see the review

by Longmore et al. 2014b). Much of the relevant discussion in the literature debates

the initial distribution of the stars in YMCs. There are two prominent theories on how

stars are born in these clusters.

One scenario suggests that the stars form in a bound, centrally-condensed population

in an extremely compact natal gas cloud. Feedback processes from the embedded

stellar population then remove the remaining gas, decreasing the global gravitational

potential and causing the cluster to expand towards its final, un-embedded phase (see

e.g. Lada et al., 1984; Boily & Kroupa, 2003; Bastian & Goodwin, 2006; Baumgardt &

Kroupa, 2007, and the recent review by Banerjee & Kroupa 2015). This is a monolithic

formation scenario for YMCs.

The other scenario is one in which stars and sub-clusters form in accordance with

the observed hierarchical structure of their natal gas clouds. Indeed, as outlined in

section 1.1.1 of this chapter, the interstellar medium is known to be hierarchical and

sub-structured (e.g. Larson, 1981; Elmegreen, 2008; Kruijssen, 2012). A heightened

star formation efficiency (SFE) towards the densest peaks leads to gas exhaustion on

local scales, causing stellar dynamics to eventually dominate (Kruijssen et al., 2012;

Girichidis et al., 2012; Longmore et al., 2014b; Dale et al., 2015). The subsequent

hierarchical merging of these stars and sub-clusters results in a centrally-concentrated,

bound cluster (Fujii et al., 2012; Parker et al., 2014a). This is a hierarchical mode of

YMC formation.

Note that the above scenarios can be confusing and can even co-exist. For example,

Banerjee & Kroupa (2015) show that a cluster may form monolithically from an ini-

tially hierarchical distribution of stars, given an initial high density and prompt merg-
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ing of sub-structure (< 1 Myr).

These ‘monolithic vs. hierarchical’ discussions on YMC formation also do not ade-

quately address the density evolution of both the gas and stars. One main difference

between these two scenarios is whether or not the stars are expanding or contracting

after their immediate formation – i.e. are the stars in YMCs born at initially higher

or lower densities than their final gas-free distributions? In order to address this, we

need to study and compare the spatial distribution of the stars in YMCs with that of the

gas in their gas-phase precursors. To date, there have been very few candidate YMC

precursor gas clouds identified. In order to constrain possible formation mechanisms,

it is essential that such clouds are found and studied in detail such that we can begin to

understand the initial conditions of YMC formation.

It is expected that the gas-phase precursors to YMCs should be molecular clouds of

order 105 M�, contained within several parsecs, such that a high-mass (104 M�) and

compact (Rcore ∼ 0.1 pc) cluster can form, given a star formation efficiency of . 30%.

Recent efforts to survey the Galactic plane at far-infrared and (sub)millimetre wave-

lengths, where these dense, cold clouds should emit brightly, have led to the identifi-

cation of a growing sample of potential YMC precursor clouds throughout the Galaxy

(see e.g. Longmore et al., 2013b, 2014a; Ginsburg et al., 2012, 2016a; Urquhart et al.,

2013; Contreras et al., 2017). Fig. 1.2 displays the currently identified Galactic YMC

precursors (Longmore et al., 2014a). All of the YMC precursor candidates that have

been identified in the Galactic disc are seen to be forming stars at a high rate (e.g. W49,

W51) and have therefore have lost much of their initial structure as a result of stellar

feedback (note that Urquhart et al. (2013) explicitly searched for star-forming clouds).

Whilst these clouds are of course important in understanding the YMC formation pro-

cess, if we wish to probe the true initial conditions then we require clouds that have yet

to initiate widespread star formation. Thus, in addition to the aforementioned criteria,

we would then also expect such progenitor clouds to be cold (T ∼ 10 - 20 K) and de-

void of widespread star formation. Given that none of the identified progenitor clouds

in the Galactic disc are quiescent, very little is known about the initial conditions from

which these massive clusters form.
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Longmore et al. (2012) recently identified a likely YMC precursor in the extreme

molecular cloud G0.253+0.016 (see e.g. Lis et al., 1994; Lis & Menten, 1998; Long-

more et al., 2012, 2013b; Kauffmann et al., 2013a; Rathborne et al., 2014a,b; Johnston

et al., 2014), and determined that it is cold (Tdust ∼ 20 - 30 K), high-mass (M ∼
1.3 x 105 M�), compact (r ∼ 2.8 pc) and other than a single region of weak water-

maser emission, exhibits little-to-no star forming activity – precisely the conditions

one would expect of a dense cloud that could form a high-mass cluster. Longmore

et al. (2013b) later identified three further potential YMC precursors in clouds known

as ‘d’, ‘e’ and ‘f’. These clouds are all high-mass (∼ 105 M�), compact (∼ pc-scale)

and other than a region of methanol maser emission towards cloud ‘e’, are all quies-

cent (Immer et al., 2012). Along with G0.253+0.016, they are situated in the Central

Molecular Zone (CMZ; inner ∼ 500 pc of the Galaxy, Morris & Serabyn, 1996) and

belong to the so-called ‘dust-ridge’ (Lis et al., 1999; Immer et al., 2012) towards the

Galactic centre, which itself appears to belong to a coherent circumnuclear stream of

gas that is orbiting the Galactic centre (Molinari et al., 2011; Kruijssen et al., 2015;

Henshaw et al., 2016). The fact that four of the most massive, dense and quiescent

molecular clouds known to exist in the Galaxy all lie at the same distance and re-

side within the same stream of gas is certainly very intriguing, but it also presents

an opportunity to study a sample of potential YMC progenitor clouds under the same

environmental conditions at similar sensitivity and resolution.

1.1.7 The environmental dependence of star formation

Star formation relations that describe the conversion of gas into stars provide the foun-

dation for many astrophysical studies, from local to cosmological scales. As such, an

end-to-end understanding of the star formation process as a function of environment

is crucial if it is to be applied to the vastly differing conditions found throughout the

Universe. To date, empirical star formation relations have largely been calibrated us-

ing detailed studies of star forming regions in the disc of our own and nearby galaxies.

Using observations of nearby star-forming regions, Lada et al. (2010a) proposed a gas

surface density threshold for star formation of ∼ 120 M� pc−2, above which stars
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Figure 1.2: Mass vs. radius for Galactic gas clouds and YMCs. Gas clouds are shown
as coloured symbols and the hatched rectangle shows the location of Galactic YMCs.
Dashed lines show the predicted critical density threshold for star formation to occur
under different environmental conditions. The dotted lines correspond to the criteria for
YMC formation put forward by Bressert et al. (2012b) – a critical mass (mcrit) of ∼
3×104 M�, rΩ is the radius for a given mass at which the escape velocity of the cloud is
greater than the sound speed in ionised gas, and rvir is the virial mass for a cloud crossing
time of 1 Myr. See Longmore et al. (2014a) for full details.

could form efficiently. This surface density threshold was argued to reflect an under-

lying volume density threshold of ∼ 104 cm−3. This was later shown to hold true over

a remarkably large range of masses (see Fig. 1.3; Lada et al., 2012). This empirical

result suggests an underlying physical process, whereby the rate of star formation in

molecular gas is simply determined by the amount of ‘dense gas’ that lies above the

empirical threshold. Krumholz & McKee (2008) also propose a column density thresh-

old of ∼ 1 g cm−2 for the formation of high-mass stars. As discussed in §1.1.4, this

threshold arises due to the fact that fragmentation to lower masses is predicted to be-

come suppressed in clouds with Σ> 1 g cm−2 due to the radiative feedback from lower

mass stars in the cloud that have high accretion luminosities. At these high densities

(and hence, opacities), this radiation from low-mass stars will heat up the cloud, which

will increase the Jeans mass (see Equation 1.5). One crucial assumption here is that

low-mass stars must form before high-mass stars for this mechanism to occur. Long-
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Figure 1.3: Star formation rate vs.
molecular gas mass for local molecu-
lar clouds and galaxies. Solid symbols:
cloud masses from extinction observa-
tions of galactic clouds and HCN obser-
vations of galaxies. Open symbols: to-
tal cloud masses of the same clouds and
galaxies, from extinction measurements
(clouds) and CO observations (galax-
ies). For the galaxies, pentagons are
normal spirals, while starburst galaxies
are represented by squares (LIRGS) and
inverted triangles (ULIRGS). Triangles
represent high-z BzK galaxies. Dashed
lines indicate the percentage of gas that
is above the empirical density threshold
of ∼ 104 cm−3. See Lada et al. (2012)
for further details.

more et al. (2011) showed that, at least in the case of the proto-cluster G8.68−0.37,

that this would require an unfeasibly large population of low-mass stars to have formed

in order to sufficiently heat the gas and halt fragmentation.

To enable the appropriate application of relations such as these across cosmic history, it

is critical that we understand how star formation is regulated by its environment down

to the scales on which individual stars are forming. The most extreme conditions for

star formation are in starburst galaxies at high redshift. However, it is impossible to

study such sources in detail due to the technical limitations of current facilities, and

regardless of future advances, we will always achieve higher resolution observations

of nearby regions. Fortunately, at a comparatively close distance of ∼ 8.4 kpc (Reid

et al., 2009a, 2014), the Galactic centre is known to be extreme compared to the So-

lar neighbourhood, with densities, gas temperatures, pressures, cosmic ray ionisation

rates and magnetic field strengths being several factors to orders of magnitude greater

(Kruijssen & Longmore, 2013).

It has been shown that there is something different about the criteria under which stars

form at the Galactic centre. Longmore et al. (2013a) showed that a significant fraction

of the gas in the CMZ lies above a volume density of ∼ 104 cm−3 – the threshold

proposed by Lada et al. (2010a). Despite this, they found that the star formation rate
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(SFR) in the CMZ is 1 – 2 orders of magnitude lower than predicted in this model. The

current understanding of this discrepant SFR is that the CMZ undergoes an episodic

cycle and is currently at a low point due to the high turbulent energy density there

(Kruijssen et al., 2014), as evidenced by the comparatively large line-widths of ∼ 10 –

20 km s−1 seen in the gas in the CMZ (Henshaw et al., 2016). This high turbulence will

act to drive up the critical volume density threshold for star formation (Krumholz &

McKee, 2005; Padoan & Nordlund, 2011). High-resolution observations of the CMZ

molecular cloud G0.253+0.016 with the Submillimeter Array (SMA) and the Atacama

Large Millimeter/submillimeter Array (ALMA) show that the internal density struc-

ture of the cloud is consistent with a log-normal distribution that is well described by

turbulent cloud models (Johnston et al., 2014; Rathborne et al., 2014b). This differ-

ence in star-forming activity highlights that this single volume density threshold for

star formation may not hold in the more extreme environment of the Galactic centre,

and this has recently also been found to be true in the centres of other galaxies (Usero

et al., 2015; Bigiel et al., 2016).

These results are all consistent with the idea that the process of star formation may

proceed differently in environments that are significantly different from those in Milky

Way-like discs. The extreme conditions therefore make the CMZ an ideal laboratory to

test to what extent our understanding of star formation from the limited range of con-

ditions seen in the Galactic disc still applies, and how it can be extended. Additionally,

the conditions of the gas in the Galactic centre are similar to those in high-redshift

star-forming galaxies (Kruijssen & Longmore, 2013). Given that the peak epoch of

star formation in the Universe occurred at redshifts of ∼ 2–3 (Hopkins & Beacom,

2006; Madau & Dickinson, 2014), this places studies of the Galactic centre in an im-

portant cosmological context – understanding how stars form here can provide insight

into how stars may have formed in the early Universe.
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1.2 The Central Molecular Zone – a laboratory for

understanding extreme star formation

Despite the seemingly low SFR in the CMZ, there are regions of substantial star for-

mation and stellar content. The star forming Sagittarius B2 complex is one of the

most active sites of (high-mass) star formation in the Galaxy, hosting dense clusters of

HII regions and dust cores (e.g. Gaume et al., 1995; Qin et al., 2011). There are also

two YMCs – the Arches and Quintuplet – which have formed in the CMZ recently,

with ages of ∼ 3.5 and 4.8 Myr, respectively (Schneider et al., 2014). These clusters

contain > 104 M� of stars, making them amongst the most massive clusters to have

recently formed in the Galaxy (Portegies Zwart et al., 2010), with the Arches being

the most dense young cluster known in the Galaxy, with central stellar densities of ∼
2×105 M� pc−3 (Espinoza et al., 2009).

Searching for the precursors to clusters like the Arches and Quintuplet, which contain

tens of thousands of stars, allows us to study the how these stars form in this extreme

environment. Sagittarius B2 is a likely candidate for such a precursor system. How-

ever, the intense ionising radiation from the forming high-mass stars has disrupted the

initial gas conditions.

As noted in §1.1.6, the CMZ hosts several quiescent molecular clouds that have been

identified as potential precursors to YMCs. These clouds are confined to a rela-

tively small region, which is situated in a gas stream spanning ∼ 37 pc in projec-

tion. This region, known as the ‘dust ridge’ (Lis et al., 1999), contains 6 promi-

nent infrared dark clouds. These are G0.253+0.016 (aka ‘the Brick’), G0.340+0.055,

G0.380+0.050, G0.412+0.052, G0.478−0.005 and G0.496+0.020. For the sake of

brevity, the nomenclature of Lis et al. (1999) is adopted and these clouds are hereafter

referred to as ‘a – f’, respectively. Of these, four clouds, ‘a’, ‘d’, ‘e’ and ‘f’ have

been identified as potential progenitors to YMCs (Longmore et al., 2013b; Rathborne

et al., 2015). Clouds ‘b’ and ‘c’, whilst not massive enough to be considered YMC

precursors, still contain tens of thousands of solar masses of gas and dust within only
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a few parsecs (Immer et al., 2012) and therefore still have the potential to form sub-

stantial star clusters. Given that a significant number of high-mass stars are expected

to be found in massive stellar clusters (inferred statistically via IMF sampling), these

dust-ridge clouds provide an excellent laboratory in which to probe the early, largely

unperturbed conditions of both massive star and cluster formation in the extreme envi-

ronment of the CMZ.

1.3 Goals of this work

The following chapters of this thesis present the results of the research that I have

undertaken in an effort to tackle some of the outstanding unsolved problems in the

field of star formation. Using the Galactic centre dust ridge clouds as a template for

understanding the early stages of star and cluster formation in the CMZ, this research

aims primarily to address the following questions –

(i) Are the global properties of the dust ridge clouds consistent with those expected of

a cloud with the potential to form a > 104 M� stellar cluster?

(ii) If these dust ridge clouds represent the initial conditions of YMC formation, how

does the distribution of mass in the clouds compare with the distribution of mass

in the intermediate and final stages of YMC formation? And can this comparison

inform our understanding of the mechanism(s) via which YMCs may form?

(iii) Do the properties of YMCs and their progenitors vary as a function of Galactic

environment?

(iv) Do the dust ridge clouds currently display dense structure on small spatial scales

(i.e. pre/proto-stellar cores)? And if so, are any of these cores likely to be the

precursors to high-mass stars?

(v) If the dust ridge clouds do harbour the initial conditions for high-mass star forma-

tion, how do the properties of the cores compare to those in other regions of the

Galaxy?
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1.4 Observing techniques: from far-IR to radio tele-

scopes

The aforementioned goals of the work presented in this thesis are achieved through

using a variety of observations. From archival to newly-acquired data, these obser-

vations consist of a combination of large-scale surveys and detailed observations of

specific targets, from space- and ground-based single-dish telescopes and ground-

based radio/sub-mm interferometers. Together, these observations provide a multi-

wavelength, multi-scale view of molecular clouds, from giant complexes that span

many 10s of parsecs, down to individual sites of star formation. This section presents a

brief overview of the techniques and advantages/disadvantages of these different types

of observations, with a specific focus on the technical differences between the facilities

used in this thesis (e.g. Herschel, CSO, APEX, SMA and ALMA).

1.4.1 Receivers: detecting long-wavelength light

The most common types of receivers that are used to detect light in far-IR/sub-mm/radio

astronomy (∼ 30 µm to > 1 m, hereafter referred to simply as ‘radio astronomy’, for

brevity) are bolometer and heterodyne receivers. Each have their own specific uses and

advantages, which are discussed in the following sections.

Bolometers

Bolometer receivers are incoherent detectors – their response is directly related to the

intensity of incoming radiation. Incident photons generate heat in the absorbing mate-

rial, which leads to a temperature increase that is directly proportional to the absorbed
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radiation via ∆T = E/C, where E is the energy of the radiation and C is the capac-

itance of the material. In practice, this is measured via a change in the voltage due to

the temperature increase changing the resistance in the material. The absorber is con-

nected via a weak thermal link (i.e. low conductance) to a heat sink. This ensures that

the temperature increase of the absorber decays as it is transferred to the heat sink, with

a characteristic decay time-scale of τ = C/G, where G is the thermal conductance.

Bolometers have large bandwidths, resulting in very high sensitivity. Though they are

broad-band receivers, it is possible to do pseudo-spectroscopy with bolometers that

are fitted with filters. As they measure thermal response in the receiving material,

bolometers must be cooled to very low temperatures (<< 1 K). Such low temperatures

are required as bolometers are often used to observe at sub-mm wavelengths, which

corresponds to the peak of the SED at low temperatures of ∼ 1-50 K.

Until relatively recently, bolometers were single element detectors. This meant that

imaging a single science target was very time consuming as the detector would have

to mosaic single-pixel observations. Thankfully, this has since been overcome with

the production of multi-element arrays. Examples of bolometer arrays that were used

to take data used in this thesis are Submillimetre Common-User Bolometer Array

(SCUBA 1&2) on the James Clerk Maxwell Telescope (JCMT), BOLOCAM on the

Caltech Submillimeter Observatory (CSO) and the Photoconductor Array Camera and

Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instru-

ments on-board the Herschel Space Observatory.

Heterodyne receivers

Heterodyne receivers are relatively complicated compared to bolometers. They are

coherent detectors, meaning that they preserve both the intensity and the phase of in-

coming radiation. The defining aspect of these receivers is that they utilise frequency

mixing to convert the frequency of incoming waves to an intermediate frequency (IF),

while maintaining the characteristics of the signal (i.e. heterodyning). The detected
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signal is mixed with the IF which is driven by a local oscillator (LO). This is a tech-

nique that is applied widely in the radio domain, as it allows hardware to be built

and optimised to handle specific frequencies rather than having to deal with a broad

range of frequencies. Typically the signal frequency is down-converted, as lower fre-

quencies are easier to handle from a hardware perspective, and so the performance of

components is better and the cost is lower. The signal is also amplified in the receiver.

Depending on the exact design of the receiver, this amplification may occur before or

after mixing, or at multiple stages throughout the signal processing.

The mixing and processing of signals in heterodyne receivers depends on many factors,

including the desired output, the performance of the hardware and the cost. One of

the crucial design elements is ensuring that only the desired observing frequency is

processed and output. While it is relatively simple to filter out only the chosen IF after

mixing, care must be taken to also filter out specific frequencies prior to mixing that,

while not at the observing frequency, can still produce signals at the IF as a result of

mixing with the LO. This occurs as the mixing process creates higher-order terms, and

given the right mix of input frequency and LO frequency, these higher-order products

may be at the desired IF and must therefore be identified and filtered out before mixing

to ensure that they don’t end up contaminating the output signal.

The first-order products from the mixing of the observed frequency result in the lower

and upper sidebands, which are centred on νobs − νLO (USB) and νLO − νobs (LSB),

and will have a specific bandwidth about these central frequencies. Depending on

the hardware and/or science goals, these sidebands can be handled in different ways.

Single sideband modes filter out one of the sidebands, double sideband modes process

both bands and superimpose them at the IF, and separate sideband modes process both

bands but instead of superimposing at a single IF, the sidebands are output at separate

IFs.

Heterodyne receivers are widely used in radio and sub-mm astronomy. Their ability to

achieve both large bandwidth and high spectral resolution means that they are excellent

detectors for continuum and spectral line observations. They are also used for inter-

ferometry, as their ability to preserve the phase of the detected radiation is crucial for
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correlating signals detected by multiple antennae. Examples of telescopes used in this

thesis that use heterodyne receivers are the Submillimeter Array (SMA), the Atacama

Pathfinder EXperiment (APEX) and the Atacama Large Millimeter/submillimeter Ar-

ray (ALMA).

Interferometry

At the long wavelengths of radio and sub-mm observations, we can peer into the cold

and dense molecular clouds that harbour the initial conditions for star formation. How-

ever, observing at these long wavelengths comes with the drawback that large diameter

telescopes (dishes) are required to achieve high angular resolution (θ ≈ λ/D, where

θ is the angular resolution, λ is the wavelength and D is the dish diameter). Con-

sequently, radio telescopes would have to be unfeasibly large to achieve very high

angular resolution (e.g. < 1 ′′) in the radio–sub-mm regime.

To overcome this limiting factor of dish diameter, the techniques of interferometry

and aperture synthesis have been used extensively in radio and sub-mm astronomy to

achieve extremely high angular resolution imaging. Interferometry involves using an

array of multiple telescopes with coherent detectors. In the specific context of radio

astronomy, this is an array of dishes/antennae with heterodyne receivers. The signals

from the receivers are correlated in phase to effectively achieve the resolving power of

a telescope with a diameter equal to that of the longest baseline within the array (i.e.

θ ≈ λ/B, where B is the longest baseline). As the array elements will be physically

separated and the incoming radiation will often be at some angle to the zenith, the

radio signals will arrive at different elements with a delay. This is corrected for by an

electronically-induced delay, which ensures that the signals from a given baseline are

correlated in phase. This technique of correlating and combining the signals from an

array of antennae is called aperture synthesis.

Interferometers therefore allow us to probe very small spatial scales at long wave-

lengths, without having to build extremely large dishes. However, there are significant
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limitations of this technique, the most notable of which is the inherent limited recov-

ery of flux as a function of angular scale. This is due to the fact that the interferometer

can only sample angular scales that correspond to the projected distances of the base-

lines in the array. Longer baselines are sensitive to smaller angular scales, and shorter

baselines are sensitive to larger spatial scales. The latter of these is problematic for

interferometers, as the shortest baselines possible are limited by the diameter of the

dishes, where it is necessary to ensure that the dishes are free to move and won’t cast a

shadow in front of other dishes. This ultimately means that large angular scales are not

well recovered by interferometers. This problem is solved by combining interferomet-

ric data with the appropriate single-dish or compact array data. For example, ALMA

has three main antenna facilities – a 12 m array, a 7 m array and a several 12 m single

dishes (total power). This means that when used together, the 12 m array can be very

extended and sample small angular scales, while the 7 m array can be in a compact

configuration to recover intermediate angular scales, and the total power dishes can be

used to recover the large scale (zero spacing) emission. The main interferometers used

for the work in this thesis are the SMA and ALMA. Single-dish data from Herschel,

CSO and APEX are utilised for combination with the interferometric data to recover

the large-scale emission.



Chapter 2

Comparing young massive clusters

and their gas-phase progenitors in the

extreme environment of the Central

Molecular Zone

Preface

The work presented in this chapter is based upon that of Walker et al. (2015). I led this

work as first author, and all of the contents (text, analyses, figures, tables) are my own.

2.1 Introduction

The work in this chapter extends the analysis of Longmore et al. (2012) (L12, here-

after) of G0.253+0.016, in which they conclude that this dust ridge cloud is likely a

precursor to a high-mass stellar cluster, to include dust ridge clouds ‘d’, ‘e’ and ‘f’.

29
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Continuum data from the Herschel infrared Galactic Plane Survey (HiGAL, Molinari

et al., 2010) are used to measure their global physical properties such as mass, radius

and temperature. HiGAL is a Galactic plane survey conducted with the Herschel Space

Observatory, covering the entire Galactic plane between |b|< 1◦. The survey observed

the dust continuum emission of this region in five separate bands – 70 µm and 160 µm

(observed with the PACS instrument, Poglitsch et al. 2010) and 250 µm, 350 µm and

500 µm (observed with the SPIRE instrument, Griffin et al. 2010). This wavelength

range of 70 – 500 µm was targeted specifically to cover the peak of the spectral energy

distribution (SED) of cold dust emission (T . 50 K). Sampling the SED in this way

enables estimation of cloud temperatures and column densities, which when combined

with distances estimates allows for mass determination (see next section). The angular

resolution of the survey is variable as a function of wavelength, yielding beam-sizes of

∼ [6, 12, 18, 24, 35]′′ for λ = [70, 160, 250, 350, 500] µm.

Spectral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT

90, Foster et al., 2011, 2013; Jackson et al., 2013) are used to measure the global kine-

matic properties of these clouds. The MALT90 survey provides spectral line data for

16 lines in the 90 GHz band. The data cubes for these transitions consist of 4096 chan-

nels with 0.11 km s−1 velocity resolution. Analysis of these data reveals that these

clouds – the most massive and dense quiescent clouds known in our Galaxy – have the

potential to form YMCs. Having shown that they are indeed candidate YMC precur-

sors, they are then compared to more evolved (proto)-YMCs to speculate how gas is

converted to stars on large scales in the early stages of YMC formation.

2.2 Results

2.2.1 Dust Column Densities & Temperatures

Figure 2.1 (upper panel) shows the HiGAL column density map of the ‘dust-ridge’

at the Galactic centre. The bottom panel displays the HiGAL temperature map of the

same region. These maps were generated by Cara Battersby, utilising the methods
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Figure 2.1: Top: Masked column density map of the dust ridge, derived from HiGAL
far-IR continuum observations (Battersby et al., 2011). A column density threshold
of 5 x 1022 cm−2 (red contours) is implemented and contours (white) are at 10, 15
... 55 x 1022 cm−2. Bottom: Masked temperature map of the ‘dust-ridge’, derived from
HiGAL far-IR continuum observations (for the techniques used to derive these maps, see
Battersby et al., 2011). Contours (white) are at 17, 18 ... 27 K (systematic uncertainties
in SED fitting are∼ 3–4 K). To display the correlation between dust column density and
temperature, the same pixels as in the top image are masked here. Clearly seen in all of
the clumps is an anti-correlation between column density and temperature of the dust –
consistent with them being centrally condensed with cold interiors (e.g. Longmore et al.,
2012).
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outlined in Battersby et al. (2011) (the reader is referred to this paper for an in-depth

discussion of how these maps were produced). The maps from the different wave-

bands are first projected on to the same grid, to ensure that they all have equivalent

pixel scales and angular resolution. The maps displayed here have a pixel size of ∼
5.5′′ and resolution of 25′′, or 0.2 pc and 1 pc, respectively, at the distance of these

clouds, which is taken to be ∼ 8.4 kpc (Reid et al., 2009a, 2014). Modified blackbody

fits are then performed to estimate the column densities and temperatures within the

map. For the production of the 25′′ map, the 500 µm data are not used, as they are lower

resolution (35′′). The 70 µm data are also not used, as the assumption that the emission

is optically thin is unlikely to be justified at this wavelength. In terms of unconstrained

observational parameters, the modified blackbody fits are dependent upon both the dust

temperature and the optical depth, which itself depends on the column density and the

dust opacity:

Sν =
2hν3

c2(e
hν
kT − 1)

(1− e−τν ) (2.1)

where

τν = µH2mHκνN(H2) (2.2)

and

κν = κ0

(
ν

ν0

)β
(2.3)

where h is the Planck constant, ν is frequency, c is the speed of light in vacuum, k is

the Boltzmann constant, T is the dust temperature, τν is the optical depth, µH2 is the

mean molecular weight, mH is the Hydrogen mass, κν is the dust opacity, N(H2) is the

H2 column density and β is the spectral index.

Battersby et al. (2011) use the models of Ossenkopf & Henning (1994) to estimate κ0

∼ 0.04 cm2 g−1, for ν0 = 505 GHz and a fixed β of 1.75. With these values fixed, the
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only unknowns in the previous equations are the dust temperature (T ) and the column

density (N(H2)). The modified blackbody fits leave the temperature and column den-

sity as free parameters, and return the best fit values on a pixel-by-pixel basis. While

the parameter fits are good, there are some important limitations. A significant source

of potential error is that the background emission in the radiative transfer equation

(Iν(0)e−τν ; see Eq. 1.1 in §1.1.1) is not accounted for. This is a more serious problem

in regions of strong IR background emission, such as the Galactic centre clouds that

are being studied here. The fixed value of β is also important – Battersby et al. (2011)

show that ranging β from 1.5 to 2.0 can lead to temperature variations of up to ∼ 4 K.

For the column density maps used in this chapter for the Galactic centre dust ridge

clouds, a column density threshold has been applied such that all pixels below 5 x 1022

cm−2 are masked. This threshold is chosen as it highlights the spatial extent of the

dense clumps well, whilst effectively masking the more diffuse emission across the

region. G0.253+0.016, ‘d’, ‘e’ and ‘f’ have peak column densities ranging from 2.6 –

5.3 x 1023 cm−2 and central temperatures ranging 17 – 19 K. Overall, the maps clearly

display an anti-correlation between the column density and temperature of the dust

in every cloud – consistent with them being centrally condensed with cold interiors.

The central temperature of cloud ‘c’ is slightly higher than might be expected given its

central column density – at 22 K it is ∼ 4 K warmer in its core than the other clouds,

despite all being at similar column densities. This may be due to the fact that this

cloud is likely forming high-mass stars that heat the cloud’s interior, as evidenced by

water and methanol maser emission (Forster & Caswell, 1999a; Caswell et al., 2010a).

It is interesting to note the discrepancy between the gas and dust temperatures at the

Galactic centre. The gas temperature towards the Galactic centre has been shown to

range from 50 K to in excess of 300 K (e.g. Ao et al., 2013; Johnston et al., 2014;

Ginsburg et al., 2016b; Immer et al., 2016). This is significantly higher than the low

dust temperatures of ∼ 20 K, suggesting that the gas is being heated by some non-

photon driven mechanism such as cosmic ray heating or turbulent energy dissipation

(e.g. Ginsburg et al., 2016b).
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2.2.2 Dust Mass

These column density maps are used to estimate the dust masses of the clouds, by

assuming a mean molecular weight of 2.8mH (where mH is equivalent to the proton

mass, 1.67×10−27 kg), multiplying each pixel by its physical area (assuming a distance

of 8.4 kpc) and summing over the cloud area. For G0.253+0.016 and cloud ‘d’, this

is straightforward given a visually-defined column density threshold of 5 x 1022 cm−2.

However, clouds ‘e’ and ‘f’ are not entirely distinct, are embedded in a higher density

region that lies above this threshold, and have two nearby distinct clumps at different

velocities. Any kinematically distinct emission (identified using MALT90 data; see

§2.2.4) is therefore masked to determine the masses of clouds ‘e’ and ‘f’. The masses

of G0.253+0.016, ‘d’, ‘e’ and ‘f’ are estimated to be 11.9 x 104 M�, 7.6 x 104 M�,

11.2 x 104 M� and 7.3 x 104 M�, respectively (see Table 2.1).

Note that these mass estimates are necessarily uncertain due to the ambiguity involved

in defining a distinct cloud area, particularly in a contiguous region such as this. This

effect is quantified in Figure 2.2, which shows how the estimated masses decrease as

the column density threshold that is used to define the cloud is increased. Increasing the

threshold from 5 - 10 x 1022 cm−2 decreases the mass estimates by approximately 20%

for G0.253+0.016, 40% for cloud ‘d’, 10% for cloud ‘e’ and 15% for cloud ‘f’. Given

the systematic uncertainties in estimating dense gas mass towards the Galactic centre

of a factor of ∼ 2 (Longmore et al., 2013a), any uncertainty in these mass estimates

is dominated by systematics rather than the threshold used. These estimates agree

well with those found by Immer et al. (2012) and L12. Note that the slight (<10%)

discrepancy between L12’s mass estimate for G0.253+0.016 and the one given here

is simply due to a slightly different column density threshold being used to define the

cloud.
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Figure 2.2: Mass as a function of column density threshold for clouds G0.253+0.016
(green), ‘d’ (black), ‘e’ (red) and ‘f’ (blue). The mass of clouds ‘d’, ‘e’, ‘f’ and
G0.253+0.016 changes by ∼ 40%, 10%, 10% and 15% over this range, respectively.

2.2.3 Radius

Defining characteristic cloud radii is further complicated by their non-spherical geom-

etry. The geometric mean of the minor and major axes of each cloud is measured to

derive effective radii, where cloud boundaries are defined by the aforementioned col-

umn density threshold. Radii of 2.9 pc, 3.2 pc, 2.4 pc and 2.0 pc are determined for

G0.253+0.016, ‘d’, ‘e’ and ‘f’, respectively.

To quantify how compact these clouds are, a characteristic radius within which 5× 104

M� is enclosed is determined for each cloud. This mass is chosen as all four clouds

exceed this mass and it is large enough that a 104 M� cluster could form from it, given

a star formation efficiency as low as 20%. Figure 2.3 displays this mass-radius relation

for the four clouds and black dashed lines indicate their characteristic radii – 1.0 pc,

1.12 pc, 0.78 pc and 1.0 pc, respectively for G0.253+0.016, ‘d’, ‘e’ and ‘f’. This

highlights the extreme nature of these clouds in that they harbour enough mass to form

a YMC within a radius of ∼ 1 pc and yet they do not show any signs of high-mass star
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Figure 2.3: Enclosed mass as a function of radius for G0.253+0.016 (green), ‘d’ (black),
‘e’ (red) and ‘f’ (blue). The legend gives the radii within which 5 x 104 M� are enclosed.

formation other than that inferred by the detection of maser emission in G0.253+0.016

and cloud ‘e’.

Using the data plotted in Figure 2.3, one can determine the underlying volume density

distribution that would be required to generate these mass profiles. As these profiles

correspond to the projected mass, 3D models of the density distribution must first be

constructed, and then projected into 2D. Under the assumption of spherical symme-

try, we constructed 3D spherical distributions according to ρ = ρ0R
−a, where ρ is

the density, ρ0 is a constant that represents the central density, R is the radius, and a

is the slope of the volume density profile. This 3D distribution is then collapsed into

2D by summing along the third axis, to generate a projected density distribution. This

distribution is then summed up in increasingly large circular apertures to yield cumu-

lative mass profiles in the same way as for the real data of the dust ridge clouds. This

was performed for a range of 3D models, each with different values of the slope, a.



2.2. Results 37

Through comparing the resultant mass profiles with those of the real data, we deter-

mine that the underlying volume density distributions of the clouds are best described

by a slope of a ∼ 1.8. However, at larger radii, the mass profile begins to turn over to

an eventual plateau, and so the density profile of the whole cloud is not well described

by a simple power-law relation. It is important to note that the assumption of spherical

symmetry is likely a vast oversimplification, but a justifiable one given that the three

dimensional geometries of these clouds are not known.

2.2.4 Gas Velocity Dispersion

Molecular line emission is used to characterise the global kinematics of these clouds

and assess their dynamical state. Any line analysis is complicated due to their location

in the CMZ, where the kinematic and chemical structure is known to be complex – with

large velocity dispersions, shock-enhanced chemistry and confusion due to unrelated

line-of-sight emission within the Galactic disc. It is therefore important to ensure that

sensible molecular tracers are chosen to isolate the emission from each cloud.

The MALT90 survey provides data cubes for 15 different molecular tracers, probing a

range of critical densities and excitation energies. Across clouds ‘d’, ‘e’ and ‘f’, emis-

sion from 11 of the 15 tracers is well detected. The same categorisation as Rathborne

et al. (2014a) is adopted here, separating these detected molecular transitions as: opti-

cally thick tracers – HCN (1–0), HNC (1–0), HCO+ (1–0) and N2H+ (1–0); optically

thin tracers – HN13C (1–0), H13CO+ (1–0) and 13CS (2–1) and ‘hot core’/shock trac-

ers – HNCO 4(0,4)–3(0,3), SiO (1–0), HC3N (10–9) and CH3CN 5(0)–4(0). As might

be expected of clouds in the turbulent environment of the CMZ, it is found that their

kinematics are complicated. The data cubes show complex line profiles, significant

velocity gradients, multiple velocity components, large line-widths and intense shock-

associated emission lines. Detailed analysis of these features, along with the full suite

of detected line emission, is deferred to future work. (See Rathborne et al. (2014a) for

an in-depth discussion regarding the molecular line emission from G0.253+0.016).

This work requires only estimates of the line-widths for each cloud. Of the detected
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Figure 2.4: Hanning-smoothed, spatially-averaged HNCO line profiles for clouds ‘d’
[left], ‘e’ [centre] and ‘f’ [right]. Each is fitted using the multi-component Gaussian-
fitting in the CASA software package. In the profile for cloud ‘d’, the component at ∼
7 km s−1 is attributed to emission from unrelated emission along the line of sight (see
Figure 2.5). In cloud ‘f’ the line profile is very broad. This may be the true line-width in
the cloud, however it is possible that it is broadened by emission from outside of what
we are considering to be the cloud area (see Figure 2.5 for integrated intensity maps
at different velocities). Fitting the components associated with the clouds yields the
following peak velocity and line-width estimates: cloud d: VLSR = 22.1 ± 0.3 km s−1,
∆V = 14.1 ± 0.5 km s−1; cloud e: VLSR = 29.3 ± 0.1 km s−1, ∆V = 14.9 ± 0.1 km
s−1; cloud f: VLSR = 29.0 ± 0.1 km s−1, ∆V = 22.5 ± 0.2 km s−1.

lines, the HNCO 4(0,4)–3(0,3) line emission is chosen to trace the underlying kine-

matics of the clouds. While it is not certain that this should be an optically thin line, it

has been shown to reliably trace the kinematics across the entire CMZ (Henshaw et al.,

2016). It is also detected with very high signal-to-noise in all of the dust-ridge clouds,

and indeed the CMZ as a whole. Figure 2.4 shows Hanning-smoothed HNCO spectra

that have been averaged over the spatial extent of the clouds (defined by the 5 x 1022

cm−2 column density threshold, see Figure 2.1), where each profile is fitted using the

CASA software package (McMullin et al., 2007). Cloud ‘d’ (left panel) displays two

velocity components, one at ∼ 7 km s−1 and another at ∼ 22 km s−1. Only the 22

km s−1 component is attributed to the cloud itself, as the morphology of the molec-

ular line emission corresponds to the dust emission well. The 7 km s−1 component

arises from an unrelated cloud along the line of sight (see Figure 2.5). The fit to the

associated component yields a peak velocity and line-width (FWHM) of VLSR = 22.1

± 0.3 km s−1 and ∆V = 14.1 ± 0.5 km s−1. Cloud ‘e’ (middle panel) shows a clear

singular component with VLSR = 29.3 ± 0.1 km s−1 and ∆V = 14.9 ± 0.1 km s−1.
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Cloud ‘f’ (right panel) also shows a single velocity component. This component has a

peak velocity and line-width of VLSR = 29.0 ± 0.1 km s−1 and ∆V = 22.5 ± 0.2 km

s−1. This line-width is significantly broader than in the two other clouds. Though this

may well be the true line-width, it is noted that there is significant emission at lower

velocities that peaks towards one of the nearby clumps in this cloud complex. It is

therefore possible that this line may be broadened by this nearby emission. Coupling

these results with L12’s results for G0.253+0.016: VLSR = 36.1 ± 0.4 km s−1, ∆V =

15.1 ± 1.0 km s−1, it is clear that all four clouds, whilst having slightly different peak

velocities, have very similar line-widths of ∼ 16 km s−1, with the possible exception

of cloud ‘f’, which is a few km s−1 broader.

2.2.5 Virial masses

To investigate the cluster-forming potential of these clouds, it must first be determined

whether they are gravitationally bound. This is done by estimating and comparing

their dust and virial masses to estimate the virial ratio. Taking the radii and line-width

estimates and assuming a spherical density distribution, the following equation is used

to estimate the virial ratio:

α = k
σ2R

GM
(2.4)

where σ = ∆V/2
√

2ln(2), ∆V is the line-width, R is the radius, G is the gravitational

constant, M is the mass, and k = (5 - 2a)/(3 - a) is a constant that relates to the volume

density profile (e.g MacLaren et al., 1988), where a is the slope in the relation ρ ∝
R−a (see § 2.2.3). α . 2 typically indicates gravitationally bound, though note that

this assumes that the clouds are in equilibrium. Under these assumptions, and using

the previously determined value of a ∼ 1.8 to obtain k ∼ 1.16, virial ratios of α =

{0.28, 0.40, 0.23, 0.68} are determined for clouds G0.25, ‘d’, ‘e’ and ‘f’, respectively.

Given that the clouds appear to be sub-virial, it is therefore concluded that all clouds

are likely gravitationally bound. Note that the effect of magnetic pressure has not been
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Figure 2.5: (Top) Integrated HNCO intensity maps of cloud ‘d’ showing emission inte-
grated between – 10 to 5 km s−1 (left) and 5 to 50 km s−1 (right). (Bottom) Integrated
HNCO intensity maps over clouds ‘e’ and ‘f’ showing emission integrated between 5
– 25 km s−1 (left) and 25 – 50 km s−1 (right). Overlaid in white are contours from
the HiGAL column density maps. These maps show that the emission over the lower
velocity range does not match the morphology of the dust emission toward these clouds
well. Thus, it is assumed that this emission arises from unrelated clouds along the line
of sight.
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accounted for in this analysis.

2.2.6 Time-scales

Using the derived masses, radii and line-widths, the sound crossing times, cloud cross-

ing times and free-fall times are determined for these clouds (see Table 2.1). Firstly

the sound speed is determined via cs =
√
kTg/µ, where k is the Boltzmann constant,

µ is the mean molecular weight (taken to be 2.8mH) and Tg is the gas temperature (as-

sumed to be 70 K in all cases (Ao et al., 2013), though note that this was only measured

for G0.253+0.016, and it is assumed that this is also true for the other clouds. Any

associated uncertainty in the sound speed is smaller as cs ∼ T 0.5). This is then used to

estimate the Mach number asM = σ/cs (where σ = ∆V/2.355). The sound crossing

time is estimated as tsc = R/cs and the cloud crossing time as tcc = R/σ. Finally, the

free-fall time is determined via tff =
√

3π/32Gρ, where ρ has been estimated under

the assumption of a uniform spherical distribution.

2.3 Discussion

Table 1 displays the derived global properties for clouds G0.253+0.016, ‘d’, ‘e’ and

‘f’, along with characteristic densities and time-scales for each cloud. These results

highlight that all of these clouds are extremely massive and compact objects, contain-

ing∼ 105 M� within only a few parsecs, resulting in correspondingly high column and

volume densities and short dynamical time-scales. Coupling these results with the fact

that the clouds are likely to be close to virial equilibrium, the conclusion of Longmore

et al. (2013b) is confirmed; that these clouds are all excellent YMC progenitor can-

didates. Intriguingly, there are no clouds yet known to exist in the rest of the Galaxy

that have such extreme masses and densities that are not forming stars prodigiously

(Ginsburg et al., 2012; Urquhart et al., 2013). The fact that clouds as massive and

dense as these currently exhibit minimal signs of active star formation may therefore

have important implications. For example, it may suggest that star and cluster forma-
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tion proceeds differently at the Galactic centre than in the disc (see Chapter 4, also

Longmore et al., 2014b, and references therein), or that we have simply caught the

earliest stages of YMC formation in four separate cases. Given that the environment

at the Galactic centre is extreme compared to the disc (Shetty et al., 2012; Kruijssen

& Longmore, 2013), it is plausible that star formation may be inhibited in some way

(Longmore et al., 2013a; Kruijssen et al., 2014). However, it is known that YMCs

can and do form near the Galactic centre since at least two YMCs, the Arches and

Quintuplet clusters, have formed there. The existence of YMCs at the Galactic centre

therefore adds further weight to the conclusion that these extreme clouds have the ca-

pacity to form YMCs. The following section explores how these clouds can be used to

gain insight in to the process of YMC formation.

2.3.1 Comparing Clouds & Clusters

Having derived the global properties of G0.253+0.016, ‘d’ ‘e’ and ‘f’ and confirming

that they are sufficiently massive and dense to potentially form YMCs, their properties

are now compared to the observed properties of the intermediate and final stages of

YMC evolution. The reasoning here is that comparing YMCs in their initial, inter-

mediate, and final stages serves to build up a coherent picture of how these different

stages connect to one-another and ultimately determine whether the process of YMC

formation is fundamentally different from that which forms low-mass clusters. Two

common cluster formation scenarios are discussed here, which can be distinguished

by comparing the initial gas sizes and densities (Rgas
init, ρ

gas
init) with those of the resultant

stellar population (R∗fin, ρ∗fin) (see Longmore et al., 2014b, and references therein for

a more detailed discussion):

(i) A bound, centrally-condensed stellar population forms in an extremely compact

natal gas cloud (i.e. Rgas
init < R∗fin; ρgasinit > ρ∗fin). Feedback processes gradually

remove the remaining gas, diluting the global potential and causing the cluster

to expand towards its final, un-embedded phase (see e.g. Lada et al., 1984; Boily

& Kroupa, 2003; Bastian & Goodwin, 2006; Baumgardt & Kroupa, 2007). This
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results in a bound, spherical cluster with R∗fin > Rgas
init.

(ii) Stars and sub-clusters form in a gas cloud with Rgas
init > R∗fin, ρgasinit < ρ∗fin. They

form throughout the spatial extent of their natal gas clouds, following the hier-

archical structure of the interstellar medium (Larson, 1981). A heightened star

formation efficiency (SFE) in the densest peaks leads to gas exhaustion on local

scales, causing stellar dynamics to eventually dominate (Kruijssen et al., 2012;

Girichidis et al., 2012). The subsequent hierarchical merging of these condensa-

tions results in a centrally concentrated, bound cluster (Fujii et al., 2012; Parker

et al., 2014a).

In essence, these two scenarios should be distinguishable by studying the most likely

progenitor systems – massive and compact molecular clouds. If scenario (i) is a com-

mon mode of YMC formation, it would require that there are & 105 M� clouds that

are more or equally as compact as Galactic YMCs. If instead scenario (ii) is favoured,

then one might expect to only find clouds with sizes larger than those of YMCs that

show fragmented sub-structure on small spatial scales that is distributed throughout

the spatial extent of the cloud (i.e. not strongly centrally-concentrated). Given that

G0.253+0.016, ‘d’ ‘e’ and ‘f’ represent the most extreme quiescent molecular clouds

known in the Galaxy, they offer an ideal sample of progenitor systems with which the

validity of these two scenarios can be examined, prior to the loss of initial structure

due to feedback from high-mass star formation. One can begin to distinguish between

these scenarios simply by looking at their mass distributions, to compare how the mass

is distributed in YMCs and their precursors.

The HiGAL column density maps are used to obtain mass surface density profiles for

clouds ‘d’ ‘e’ and ‘f’ by calculating the enclosed mass (see §2.2) within increasing cir-

cular apertures (centred on column density peaks) and dividing by the area of the cor-

responding aperture. For G0.253+0.016, ALMA Cycle 0 + single-dish data are used

(Rathborne et al., 2014b). These data consist of ALMA observations at 3 mm, with an

angular resolution of 1.7” (0.07 pc at a distance of 8.4 kpc). These data were combined

with Herschel 500 µm to recover the flux that is filtered out by the interferometric ob-
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servation. The resolution of the ALMA data allows us to investigate the surface density

profile of this cloud down to much smaller radii. Rathborne et al. (2014a) find evidence

for fragmentation and hierarchical small-scale structure in G0.253+0.016. Further-

more, the ALMA data (Rathborne et al., 2014b) directly reveals such sub-structure

within this cloud, showing that the gas is highly fragmented and contains a number

of dense cores distributed throughout the cloud (see Rathborne et al. 2015 for detailed

analysis of the cloud’s sub-structure). This suggests that if G0.253+0.016 truly is a

proto-YMC cloud, then the combination of its internal structure, lack of central con-

centration and radius of several parsecs are more consistent with a hierarchical view

of massive cluster formation. However, fragmented sub-structure alone does not mean

that this is necessarily true, as this is a known property of the ISM in general. Higher

resolution data for the other dust ridge clouds show similar sub-structure (see Chapter

4).

In all following plots, a multiplicative factor of 1/3 is applied to the data for G0.253+0.016,

‘d’ ‘e’ and ‘f’ such that it can be inferred what a resultant stellar population would

look like if it were to form with a star formation efficiency (SFE, ε) of 1/3 at the cur-

rent mass distribution of the clouds. In reality, SFE will of course vary throughout the

cloud, where it will be enhanced towards local density peaks – this factor is chosen to

represent a global SFE.

Identifying the Intermediate Phase

To investigate the active star-forming phase of YMC formation, the gas and stellar

content of the well-known star-forming Sagittarius B2 complex (Sgr B2, e.g. Qin

et al., 2011) is studied. Both Sgr B2 Main and North are studied, as these are po-

tential proto-YMCs in a deeply embedded phase and lie in roughly the same region

as G0.253+0.016, ‘d’ ‘e’ and ‘f’. Qin et al. (2011) use data from the Submillimeter

Array (SMA) to investigate the dense sub-structure within Sgr B2 Main and North.

Interestingly, they find that Sgr B2 Main contains many sub-mm sources that appear to

have a fragmented spatial distribution, whereas Sgr B2 North only contains two sub-
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mm sources. They propose that this may suggest that the main cluster is more evolved

and that northern cluster is less evolved and characterised by monolithic high-mass star

formation.

The emission from the gas and dust in Sgr B2 is saturated in the HiGAL data. To obtain

surface density profiles for the gas in Sgr B2 Main & North, data from the Bolocam

Galactic Plane Survey (BGPS, Rosolowsky et al., 2010; Aguirre et al., 2011; Ginsburg

et al., 2013) are used. These data are at a wavelength of 1.1 mm and provide an angular

resolution of ∼ 33′′ (∼ 1.3 pc at a distance of 8.4 kpc).

As these data are being used to generate mass surface density profiles for the clouds,

the data must be converted from units of intensity to units of mass. This is done via

the following relation (Kauffmann et al., 2008) –

M =
d2

κνBν(T )

∫
IνdΩ =

d2Fν
κνBν(T )

(2.5)

which can be written in the more-readily useable form –

M = 0.12M�

(
e1.439(λ/mm)−1(T/10 K)−1 − 1

)
×
(

κν
0.01 cm2 g−1

)−1(
Fν
Jy

)(
d

100 pc

)2(
λ

mm

)3 (2.6)

where M is the mass, λ is the wavelength, T is the dust temperature, κν is the dust

opacity, Fν is the integrated flux and d is the distance. The distance to all sources is

taken to be 8.4 kpc (Reid et al., 2009a, 2014). The dust temperature is assumed to be

20 K, though in a star-forming complex like Sgr B2, the dust temperature will not be

isothermal due to heating from the embedded HII regions and stellar population. Ad-

ditionally, it is known that the kinematic structure of Sgr B2 is complex, with multiple

velocity components towards the region. As a result, any mass and density estimates

for the gas in this region will be upper limits. Schmiedeke et al. (2016) model the
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region in more detail. The dust opacity (κν) is not observationally constrained towards

these clouds. This is estimated using the following relation (Battersby et al., 2011) –

κν = 0.04 cm2 g−1
( ν

505 GHz

)1.75

(2.7)

where ν is the frequency. Note that this contains the explicit assumption that the gas-

to-dust ratio is 100, which may not be valid in the CMZ (Longmore et al., 2013a).

Kauffmann et al. (2008) note that the uncertainties in both the dust temperature and

opacity mean that the systematic uncertainties in mass estimates obtained via Equation

2.6 are a factor of ∼ 2. See Longmore et al. (2013a) for a more in-depth discussion

regarding the systematic uncertainties in obtaining mass estimates from dust emission

in this environment.

Obtaining a mass surface density profile of the proto-cluster(s) within Sgr B2 is dif-

ficult due to the high column densities and hence extinction towards the region. To

overcome this, an indirect method is employed to estimate the embedded stellar mass

via observations of Ultra-Compact HII (UCHII) regions in Sgr B2. The positions and

zero age main-sequence (ZAMS) spectral classifications of the stellar sources embed-

ded in the UCHII regions are taken from Tables 2 and 3 in Gaume et al. (1995). Here,

the number of Lyman continuum photons are used to estimate the ZAMS spectral type

of the star that is powering the UCHII region. Lyman continuum photons are those with

sufficient energy to ionise neutral hydrogen (hν > 13.6 eV), and are abundant in the

radiation output from high-mass stars (& 8 M�). Under the assumption that the contin-

uum emission is optically thin, and assuming some form for the geometry and density

distribution, the number of Lyman continuum photons is calculated based upon the size

of the source, the recombination rate, and the electron temperature and density. Gaume

et al. (1995) calculate this following the equations given in Turner & Matthews (1984) ,

and assume a distance of 8.5 kpc and an electron temperature of 10,000 K. This is then

used to take an estimate for the spectral type from Panagia (1973), in which a number

of expected parameters (including Lyman continuum flux) were calculated for a range

of O and B stars. The spectral type of each source is then converted to a representative
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mass using the spectroscopic masses of ZAMS OB stars given in Table 5 (column 8)

of Vacca et al. (1996). These masses are derived from spectroscopic models of OB

stars, and it must be noted that these are systematically lower than the masses derived

from evolutionary track models (Table 5, column 9). This difference in mass estimates

can be as large as a factor of 2, and any mass estimates in the following analyses are

considered to be lower-limits.

Knowing the spatial distribution and masses of the OB stars within Sgr B2 and as-

suming a distance of 8.4 kpc, the total stellar mass enclosed within increasing circular

apertures is estimated to generate mass surface density profiles. Given that the obser-

vations in Gaume et al. (1995) are sensitive only to stars & 10 M�, the total mass is

estimated by applying a Kroupa-type IMF (Kroupa, 2001), for which the fraction of

mass >10 M� is ∼ 0.16. The total mass is therefore estimated by applying a mul-

tiplicative factor of 1/0.16 and normalising by the mean stellar mass of ∼ 0.5 M�.

Taking all 25 sources in Gaume et al. (1995), a total stellar mass of ∼ 3.5 x 103 M� is

estimated.

Comparison to Galactic YMCs

For comparison with Galactic YMCs, the Arches cluster is discussed here as it is mas-

sive (M ∼ 2 x 104 M�), compact (Reff ∼ 0.4 pc), young (Age ∼ 2 – 3 Myr) and

is situated towards the Galactic centre and therefore a similar environment to Sgr B2,

G0.253+0.016, ‘d’ ‘e’ and ‘f’ (Portegies Zwart et al., 2010; Schneider et al., 2014).

If YMC radii and central densities are related to the tidal radius, such that more com-

pact YMCs are most likely to survive in stronger tidal fields, it is important that we

compare clouds and clusters within the Galactic centre so as to eliminate any environ-

mental variations. The Quintuplet cluster is also situated towards the Galactic centre.

However, it is an older system than the Arches and it has been suggested that the dis-

ruption time-scale of clusters at the Galactic centre is short, occurring over ∼10 Myr

(Kim et al., 1999; Portegies Zwart et al., 2002; Kruijssen et al., 2014). As such, only

the Arches is considered for comparison here as it is more likely representative of an
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initial YMC distribution. The observed surface density profile is taken from Figure 16

of Espinoza et al. (2009), along with the given best-fit King density profile and param-

eters, correcting for the number and masses of stars below 10 M� with a Kroupa-type

IMF. The observed cumulative mass profile given in Figure 3 of Harfst et al. (2010) is

also used, again IMF-corrected for stars below 10 M�.

Figure 2.6 displays the enclosed mass as a function of radius for G0.253+0.016, ‘d’,

‘e’ and ‘f’ (solid lines) given ε = 1/3, the gas in Sagittarius B2 Main and North (dashed

lines) and the Arches cluster from Espinoza et al. (2009) (black, dash/dot) and Harfst

et al. (2010) (red, dash/dot). The plot shows that G0.253+ 0.016, ‘d’ ‘e’ and ‘f’ all

contain enough mass such that they can form a YMC of M > 104 M� given a SFE of

1/3. However, it is clear in all cases that the distribution of mass is much less centrally

concentrated than in the Arches, leading to the conclusion that these clouds cannot

form an Arches-like YMC at their current densities. Unless they were to condense

rapidly on global scales within a free-fall time (∼ 0.5 Myr) before the onset of any

widespread star formation, it seems implausible that these clouds will form clusters

monolithically. This is also true of the gas content of Sgr B2 Main and North. Despite

the high mass and density of these regions, the gas is too extended on global scales.

Figure 2.7 shows the resultant mass surface density profiles as a function of radius

for G0.253+0.016, ‘d’, ‘e’ and ‘f’ given ε = 1/3 (solid lines), the gas in Sagittarius

B2 Main and North (dashed lines), the proto-cluster(s) embedded within Sagittarius

B2 Main and North as calculated from the UCHII region distribution (blue and red

dash/dot, respectively) and the Arches cluster overlaid with the fit from Espinoza et al.

(2009) (black open circles, dash/dot). G0.253+0.016, ‘d’ ‘e’ and ‘f’ are less cen-

trally concentrated than the Arches’ stellar distribution, and further dynamical evolu-

tion would be required to condense any resultant stellar populations if they were to

form at the current densities of the clouds. This is also true for the gas content of

Sgr B2 Main and North. Even though they are significantly more massive, dense and

evolved than the other clouds, the gas has a fairly shallow distribution on global scales.

This is in contrast to the inferred stellar content in Sgr B2, where the HII regions of both

Sgr B2 Main and North are concentrated in a small volume (< 0.1 pc). This shows that
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Figure 2.6: Enclosed mass as a function of radius for G0.253+0.016, ‘d’, ‘e’, ‘f’ given
ε = 1/3 (solid lines), the gas in Sagittarius B2 Main and North (dashed lines) and the
Arches cluster from Espinoza et al. (2009) (E09; black, dash/dot) and Harfst et al.
(2010) (H10; red, dash/dot). G0.253+0.016* (red) ALMA cycle 0 + single-dish data
(Rathborne et al., 2014b). This shows that in all cases, the gas in the proto-cluster
clouds has a more extended distribution of mass, whereas the stellar population of the
Arches is more centrally concentrated.
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Figure 2.7: Mass surface density profiles as a function of radius for G0.253+0.016,
‘d’, ‘e’, ‘f’ given ε = 1/3 (solid lines), the gas in Sagittarius B2 Main and North (dashed
lines), the proto-cluster(s) embedded within Sagittarius B2 Main and North as calculated
from the UCHII region distribution (blue and red dash/dot, respectively) and Arches
cluster overlaid with fit from Espinoza et al. (2009) (E09; black open circles, dash/dot).
These profiles show that the final stellar distribution of the YMC is more compact than
the global distribution of stars and gas at any prior stage of the formation process. Note
that the variation of the profiles for the HII region distribution in Sgr B2 at small radii is
a result of the small number of sources detected there. The bump at R ∼ 1.0 pc is due to
Sgr B2 Main entering the aperture at that radius. G0.253+0.016* (red) ALMA cycle 0
+ single-dish data (Rathborne et al., 2014b).

dense, centrally concentrated proto-clusters are able to form in clouds that are not very

centrally concentrated, as predicted by hydrodynamical cluster formation simulations

(Kruijssen et al., 2012). Furthermore, it is found that, at least for this sample of clouds

towards the Galactic centre, the final stellar distribution of an Arches-like YMC is

more compact than the global distribution of stars and gas at any prior stage of the

formation process. Given that these are the most massive and dense quiescent clouds

yet found in the Galaxy, this leads to the conclusion that scenario (i) – a monolithic

formation event – is disfavoured as a likely mode of YM C formation.

Having investigated the absolute mass and surface density profiles, the shape of the
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radial mass distribution is now considered. Figure 2.8 displays the normalised mass

surface density profiles for G0.253+0.016, ‘d’, ‘e’ and ‘f’ (solid lines), the gas in Sagit-

tarius B2 Main and North (dashed lines), the Sagittarius B2 Main and North proto-

clusters (blue and red dash/dot, respectively) and the Arches cluster (black, dash/dot),

where all profiles have been normalised to unity at a radius of ∼ 0.3 pc (the resolu-

tion of the BGPS data at a distance of 8.4 kpc). This plot shows that in all cases,

the gas in the YMC progenitors is over-dense at large radii and under-dense at small

radii, compared to the stellar components in both the Arches cluster and the Sgr B2

proto-clusters. This suggests that if these clouds are to form YMCs, the resultant stel-

lar population would have to dynamically interact such that it would relax into a much

more centrally-condensed distribution. It is interesting that the gas distribution in both

Sagittarius B2 Main and North on global scales is very similar to that in the quiescent

‘dust-ridge’ clouds. It is well known that clustered massive star formation is underway

in Sgr B2, yet the global gas content looks similarly distributed to that in the quiescent

dust ridge clouds. This is in conflict with scenario (i), which requires the gas to be

more centrally concentrated prior to the formation of a YMC.

It is also interesting to note the high mass surface density of Sgr B2 proto-clusters on

scales smaller than ∼ 0.1 pc. The bulk of the stellar mass, though roughly an order of

magnitude lower than the Arches, is highly concentrated within a small core region. It

is difficult to determine whether this is consistent with scenario (i), in which case the

stars may have formed in a centrally-condensed distribution, or whether it is consistent

with scenario (ii), where the stars may be distributed in this way as a result of rapid

dynamical interaction. N-body simulations show that dynamical mass segregation due

to violent relaxation can occur in less than 1 Myr for clusters ∼ 103 M� (Parker et al.,

2014b). It is therefore possible that the high-mass stars powering the UCHII regions

in Sgr B2 need not have formed at their present locations. However, more thorough

analyses would be required to determine this.

The main result of this section is that none of the Galactic centre YMC-precursor

candidates could form an Arches-like cluster without further dynamical evolution, if a

stellar population formed at the current mass distributions within the clouds. However,
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Figure 2.8: Normalised mass surface density profiles as a function of radius for the gas
in G0.253+0.016, ‘d’, ‘e’, ‘f’ (solid lines), the gas in Sagittarius B2 Main and North
(dashed lines), the proto-cluster(s) embedded within Sagittarius B2 Main and North as
calculated from the UCHII region distribution (blue and red dash/dot, respectively) and
the Arches cluster from Espinoza et al. (2009) (E09; black dash/dot). Each profile has
been normalised to unity at a radius of ∼ 0.3 pc, as this is the resolution of the BGPS
data. G0.253+0.016* (red) ALMA cycle 0 + single-dish data (Rathborne et al., 2014b).
The shapes of the profiles at larger radii suggests an evolutionary progression on global
scales from a dispersed natal gas cloud to a centrally condensed stellar cluster as a
function of star formation activity.



2.3. Discussion 54

Figure 2.9: Mass surface density profiles as a function of radius for G0.253+0.016
(Rathborne et al., 2014b, solid red line, ALMA cycle 0 + single-dish data), and the
stellar content of the Arches cluster (Espinoza et al., 2009, (E09), dashed red line).
The solid black horizontal line shows the limit above which a star formation efficiency
greater than 100% would be required for G0.253+0.016 to form an Arches-like cluster
at it’s current mass distribution. The blue dashed curve display the mass-flow-rate that
would be required for a cloud like G0.253+0.016 to collapse to the mass distribution
of an Arches-like cluster within a global free-fall time (0.24 Myr, see Table 2.1). The
blue dash-dot curve shows the same, but for a local free-fall time, which is evaluated as
a function of radius. The corresponding values for these blue curves are given on the
inner right-hand y-axis. The black dashed curves show the infall velocity that would be
required to fall to the centre within a free-fall time. These are again calculated using a
global free-fall time (dashed) and a local free-fall time as a function of radius (dash-dot),
and the corresponding values are given on the outer right-hand y-axis.
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it is unlikely that stars will form with the exact distribution of the clouds. To test

whether this could affect our conclusions, Figure 2.9 shows a comparison between

the mass-surface density profiles of G0.253+0.016 and the Arches. To test whether

a radially-varying star formation efficiency (SFE) could enable G0.253 to form an

Arches-like cluster at its present distribution, a ratio of the two profiles is taken. As

the solid black horizontal line shows, below radii of ∼ 0.8 pc, the required SFE would

have to be greater than 100%. This is of course unphysical, and so it is concluded

that a radially-varying SFE alone would not be sufficient. The blue dashed curves in

Figure 2.9 show the rate at which mass would be required to inflow such that the mass

distribution of G0.253 would look like that of the Arches. This is calculated given a

global free-fall time (blue dashed line) and a local free-fall time that is estimated as

a function of radius (blue dash-dot line). This shows that mass-flow rates of up to

∼ 0.36 M� yr−1 would be required. However, this assumes 100% SFE, and would

require that global mass flows were convergent. Also plotted is the inflow velocity that

would be required for the gas to fall to the centre of the cloud in a free-fall time. This is

again calculated for the global (black dashed line) and local (black dash-dot line) free-

fall times. The maximum infall velocities required are ∼ 15 km s−1. Given the large

velocity dispersions in these clouds (10-20 km s−1), this does not seem unreasonable.

However, this assumes global infall, and the actual kinematics in G0.253 are much

more complex (e.g. Rathborne et al., 2015). In summary, this shows that while a

radially-varying SFE alone could not transform the mass distribution of these clouds

to look like that of the Arches, it seems plausible that the observed bulk motions of the

clouds would be sufficient to accumulate enough mass towards the centre of the clouds

within a free-fall time. However, without knowledge of the 3D motions of the gas

in the clouds it is not possible to say anything more definitive than this, and detailed

analyses of the global kinematics would be required to do so.
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2.4 Conclusions from Walker et al. (2015)

Using HiGAL far-IR continuum data and MALT90 millimetre spectral line data, the

global properties of four likely YMC precursors towards the Galactic centre are de-

rived. These clouds, G0.253+0.016, ‘d’ ‘e’ and ‘f’, are all found to be high mass

(M ∼ 105 M�), cold (Tdust ∼ 20 K) and dense (n ∼ 104 cm−3). They are all likely

close to virial equilibrium and are therefore likely to be gravitationally bound. These

results confirm that they are excellent YMC progenitor candidates – they are amongst

the most massive and dense molecular clouds known to exist in the Galaxy, yet they

are devoid of any widespread star formation.

Comparison of the mass surface density distributions of these clouds with the Sagit-

tarius B2 proto-YMC and the Arches YMC shows that these clouds are not compact

or centrally concentrated enough to form an Arches-like YMC in their current state.

If they are to form YMCs, dynamical evolution during the early formation must fur-

ther condense the resultant stellar population. Furthermore, we find that the stellar

content of both Sagittarius B2 Main and North is significantly more centrally concen-

trated than the global gas content. This shows that dense, centrally concentrated stellar

clusters can form from gas that is not very centrally condensed, thus disfavouring a

monolithic mode of YMC formation in which gas expulsion causes the YMC to end

up less compact than the progenitor gas cloud.



Chapter 3

Comparing young massive clusters

and their progenitors throughout the

Milky Way

Preface

The work presented in this chapter is based upon that of Walker et al. (2016). I led this

work as first author, and all of the contents (text, analyses, figures, tables) are my own.

3.1 Introduction

In the previous chapter, the properties of the quiescent dust ridge clouds were com-

pared with those of (proto)-YMCs at the Galactic centre in an effort to assess the

validity of cluster formation scenarios that are often discussed in the literature (Walker

et al., 2015). It is found that the YMC progenitors there are not dense enough nor

are they centrally-concentrated enough to form an Arches-like (M = 2x104 M�, Reff

57
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= 0.4 pc; Espinoza et al., 2009) YMC without further dynamical evolution, despite

them being the most massive and dense quiescent clouds found in the Galaxy. This

result suggested that, at the Galactic centre, a monolithic mode of YMC formation

is not viable given the present-day mass distribution within these clouds. Instead, a

hierarchical build up and merging of stellar mass is suggested to be more likely.

Given that the Galactic centre is an extreme environment – with density, temperature,

pressure, cosmic ray ionisation rate and magnetic field strength ranging from a factor of

a few to orders of magnitude greater than in the Galactic disc (Kruijssen & Longmore,

2013) – it seems plausible that our previous result may be one that is specific to such

an environment. Observing and characterising any environmental dependence of YMC

formation is crucial if a complete understanding of how they form and evolve as a

function of environment is to be obtained, and may also have implications for the

formation of all stellar clusters across the full mass range. Here, this study is therefore

extended out into the more benign environment of the Galactic disc, combining the

previous sample with the known YMCs and their likely progenitors in the disc.

In this chapter, revised potential formation scenarios for YMCs are discussed. Whilst

the discussion on monolithic vs. hierarchical formation may describe the initial stellar

distribution, it doesn’t sufficiently explain the concurrent density evolution of both

the gas and stars during the formation of a YMC. Instead, the work in this chapter

considers the following three general scenarios for YMC formation –

‘Conveyor-belt’: Gas and stars have initial density distributions that are lower than

that of an un-embedded YMC. Evolution is defined by the concurrent collapse

of the molecular cloud and on-going star formation.

‘In-situ’: Gas is initially at a similar density as the final YMC stellar distribution.

Stars can form at this density with little-to-no expansion or contraction.

‘Popping’: Gas is initially at a higher density than the un-embedded YMC. Once the

stellar population has formed, the cluster expels its gas content and expands

towards its final density distribution.
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Before significant star Embedded Un-embedded
formation (tgas,initial) cluster (t∗,initial) cluster (t∗,final)

‘Conveyor-belt’ Rgas,initial > R∗,final R∗,initial > R∗,final R∗,final
‘In-situ’ Rgas,initial ≈ R∗,final R∗,initial ≈ R∗,final R∗,final

‘Popping’ Rgas,initial < R∗,final R∗,initial < R∗,final R∗,final

Table 3.1: Summary of the global properties of the gas and stellar content at three dis-
tinct phases in three different proposed formation scenarios for YMCs. tgas,initial de-
notes the stage at which the YMC precursor cloud has not yet formed the majority of its
stellar population. Rgas,initial is the radius at this stage. The subscript (*, intial) refers
to these properties at the stage at which most of the stars in the cluster have been formed,
but the cluster is still embedded in the remaining gas. (*, final) indicates the final stage
of YMC formation, where the cluster is completely free of gas.

Table 3.1 summarises the relevant general properties of the stellar and gas distributions

in these different scenarios.

3.2 Data

For the Galactic YMC sample, all YMCs that are given in Portegies Zwart et al. (2010)

with M & 104 M� that have their surface density profiles published are selected. The

sample of Galactic YMC precursor clouds is taken from those currently reported in the

literature that satisfy the Bressert et al. (2012b) criterion – that the clouds have escape

speeds larger than the sound speed in ionised gas. (Ginsburg et al., 2012; Urquhart

et al., 2013; Longmore et al., 2013b).

3.2.1 Galactic Centre

Clouds

Following from the previous chapter, the four quiescent Galactic centre dust ridge

clouds – G0.253+0.016, ‘d’, ‘e’ and ‘f’ – are included, along with the gas content

surrounding the Sagittarius B2 Main and North proto-clusters. The analysis of these

clouds is given in the previous chapter. Data utilised are continuum data from the

Herschel infrared Galactic Plane Survey (HiGAL, Molinari et al., 2010), Bolocam
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Galactic Plane Survey (BGPS, Rosolowsky et al., 2010; Aguirre et al., 2011; Ginsburg

et al., 2013) and ALMA project: ADS/JAO.ALMA#2011.0. 00217.S (Rathborne et al.,

2014b, 2015).

Clusters

The Galactic centre is known to host at least two YMCs (Arches and Quintuplet) and

two possible proto-YMCs (Sagittarius B2 Main and North). The cluster disruption

time-scale in this environment is very short, occurring over only a few to 10 Myr as

a result of the strong tidal field and, most importantly, the disruptive tidal interactions

with the dense gas (e.g. Kim et al., 1999; Portegies Zwart et al., 2002; Kruijssen et al.,

2014). To compare YMC progenitor clouds with the initial conditions of the stellar

content of YMCs, the Quintuplet cluster is not included in the sample, as it is already

∼ 4–5 Myr old (Figer et al., 1999c; Schneider et al., 2014) and tidal disruption may

have influenced the stellar surface density distribution.

The global properties and observed mass surface density profile for the Arches stellar

cluster were obtained from Espinoza et al. (2009, Table 8 and Figure 16). Data for the

stellar population of Sagittarius B2 proto-clusters (Main & North) were extrapolated

from the Gaume et al. (1995) radio observations of the embedded ultra-compact HII

(UCHII) regions. See the previous chapter for a detailed explanation of how these data

were used to generate mass surface density profiles.

3.2.2 Galactic disc

Clouds

Ginsburg et al. (2012) and Urquhart et al. (2013) report a sample of potential YMC

precursor clouds in the Galactic disc. Of these, all clouds with M & 3x104 M� are

selected, as they could potentially form a 104 M� YMC with a global star formation

efficiency of ∼ 1/3. The clouds that meet these criteria are G043.169+00.009 (W49),
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G049.489+00.386 (W51), G010.472+00.026, G350.111+0.089, G351.774−00.537

and G352.622−01.077.

To assess the distribution of mass in these clouds and in particular whether they con-

tain enough mass on small spatial scales to form a YMC at their present distributions,

data with the highest possible angular resolution are required. For W49, high spatial-

resolution (2”) observations taken with the Submillimeter Array (SMA) are utilised.

These data were taken with the SMA at 230 GHz using the subcompact, compact,

extended and very extended array configurations. This combination of configurations

achieves good uv-coverage, and effectively probes angular scales from 0.5′′ – 31′′

(Galván-Madrid et al., 2013). Despite using all of the available configurations, the

interferometric observations inherently filter out the larger scale emission due to lack

of zero-spacing information in the uv-plane. To account for this, Galván-Madrid et al.

(2013) combined the SMA 230 GHz (1.3 mm) continuum data with 1.1 mm contin-

uum data from the BGPS (Rosolowsky et al., 2010; Aguirre et al., 2011; Ginsburg

et al., 2013). This combination followed the commonly applied technique of taking

the Fourier transform of the BGPS data and then combining the visibilities in the uv-

plane prior to cleaning. The full details of these observations and combination with

single-dish data are discussed in Galván-Madrid et al. (2013).

For both W51 and G010.472+00.026, 450 µm SCUBA observations of these clouds

are taken from the JCMT data archive. These data provide an angular resolution of ∼
7”. For the full details of these data, please refer to Di Francesco et al. (2008). Note

that the effect of spatial filtering with SCUBA is not a concern here, as the primary

interest is in the gas and dust distribution on small spatial scales, where such filtering

is not an issue.

For the remainder of the clouds in the sample, (sub-)mm continuum data for G350.111+

0.089, G351.774-00.537 and G352.622-01.077 are acquired from the archive for the

APEX Telescope Large Area Survey of the Galaxy (ATLASGAL, Schuller et al.,

2009). These data provide an angular resolution of ∼ 19”.

As these data will be used to generate mass surface density profiles for the clouds,
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they are converted from units of flux to units of mass. This is done in the same way

as in the previous chapter (see Equations 2.5 – 2.7). The dust temperature is not fully

constrained observationally for these clouds. As such, certain assumptions are made

regarding this parameter. These assumptions are as follows –

(i) The gas is isothermal throughout the extent of the cloud. This is a reasonable

assumption for the Galactic centre clouds G0.253+0.016, ‘d’, ‘e’ and ‘f’, as

they are quiescent. However the potential disc YMC precursors and Sagittarius

B2 Main and North are all highly star-forming, and so it is expected that there

will be significant temperature gradients throughout the clouds.

(ii) This single dust temperature is assumed to be 20 K in all of the quiescent Galac-

tic centre clouds. This is consistent with those measured from Herschel data

(Battersby et al., 2011; Walker et al., 2015). In all of the star forming clouds,

heightened dust temperatures of 40 K are assumed. The actual dust temperature

will be much higher towards sites of star formation. Hence, any masses quoted

are upper limits.

(iii) A constant gas-to-dust ratio of 100 is assumed. Though this may be lower by a

factor of ∼ 2 towards the Galactic centre (Longmore et al., 2013a).

Table 3.2 displays the general properties of the YMC precursor gas clouds in the sam-

ple presented here. This shows that all of the clouds have similar global characteristics,

with masses in the range of 104 – 105 M�, radii of ∼ 2 – 5 pc and volume densities of

∼ 104 cm−3.

Clusters

Any YMCs in the Galactic disc given in Table 2 of Portegies Zwart et al. (2010),

for which surface profiles are already published, are selected. These are NGC 3603,

Westerlund 1 and Trumpler 14.
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The data for NGC 3603 are taken from Figure 14 of Harayama et al. (2008). The data

and fit for the surface density profile are taken, and a distance of 6.0 kpc is used to

obtain their results in units of M� pc−2. Given that their observations are sensitive to

the mass range 0.5 – 2.5 M�, an IMF correction is made to extrapolate down to 0.1 M�

and up to 120 M�. Assuming a Kroupa IMF, a corrective multiplicative factor of∼ 2.8

is estimated. The observed stellar mass surface density profile is then multiplied by this

factor to retrieve the underlying total stellar mass surface density profile. Note that the

effect of mass segregation has not been accounted for when applying IMF corrections

to NGC 3603. Harayama et al. (2008) do report evidence for mass segregation in the

very inner regions of the cluster, as indicated by a steepening of the IMF. As this only

applies to the very centre of the cluster, they conclude that a single representative IMF

for the cluster is justified.

Trumpler 14 data are taken from Figure 10 of Sana et al. (2010). Their observations

cover a mass range 0.1 – 120 M� and so no IMF correction is applied, as the observa-

tions should sample the IMF well.

Westerlund 1 data are taken from Figure 8 of Brandner et al. (2008). The data are

sampled from a mass range of 3.5 – 32 M� – extrapolating using a Kroupa IMF yields

a multiplicative factor of ∼ 4.4. The observed stellar mass surface density profile is

multiplied by this factor to retrieve the underlying total stellar mass surface density

profile.

3.3 Results

Figure 3.1 displays the enclosed mass-surface-density profiles of the clouds. These

profiles are obtained by using CASA (McMullin et al., 2007) to take cumulative mass

measurements within apertures of increasing radii, which are centred on the dust peaks,

then dividing by the corresponding aperture area at each increment. As discussed in

the previous chapter, the Galactic centre clouds (solid lines) are similar in terms of

their surface distributions – flat (down to r ∼ 0.2 - 0.3 pc), with no prominent central
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Figure 3.1: Enclosed mass surface density profiles as a function of radius for the YMC
precursor clouds in the CMZ (solid lines) and in the Galactic disc (dashed lines). The
transition point from solid to lower opacity indicates the beam resolution of the data.

high-density region in the profile. ALMA data show that this continues down to ∼
0.015 pc for the cloud G0.253+0.016 (Rathborne et al., 2014b). Observations using

the Submillimeter Array (SMA) show a similar trend for clouds d, e and f (see the data

presented in Chapter 4).

Figure 3.1 also shows the YMC progenitor candidate clouds in the Galactic disc (dashed

lines). The enclosed mass surface density profiles of these clouds are similar to those

of the Galactic centre clouds, in that they are relatively shallow across all spatial scales.

Note that the profiles generated using the BGPS and APEX data may be affected by

the angular resolution (33” and 19”, respectively). However, there are no considerable

differences in the shapes of the profiles when compared to those taken with higher

resolution data.

In analysing the mass distributions in these clouds, it is important to reiterate the as-

sumptions that have gone in to estimating their masses. The assumption that the gas
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Cloud M D R n NH2 Reference
104 M� kpc pc 104 cm−3 1024 cm−2 –

G0.253+0.016 11.9 8.4† 2.9 1.7 0.6 1
d 7.6 8.4† 3.2 0.8 0.3 1
e 11.2 8.4† 2.4 2.8 0.9 1
f 7.3 8.4† 2.0 3.2 0.8 1

W49 12.0 11.4 2.2 4.2 1.2 2
W51 5.2 5.4 1.6 4.6 0.9 2

G010.472+00.026 3.8 10.8 2.1 1.5 0.4 2
G350.111+0.089 3.6 11.4 2.1 1.4 0.4 3

G351.774−00.537 27 17.4 4.8 0.9 0.6 3
G352.622−01.077 6.2 19.4 3.3 0.6 0.3 3

Table 3.2: Global properties of the sample of likely YMC progenitor gas clouds used
in this work. The columns show mass (M), distance (D), radius (R), average volume
number density (n), average column density (NH2) and the corresponding reference.
†Galactrocentric distance estimate from Reid et al. (2009a) – all Galactic centre clouds
are assumed to be at this distance. References: [1] Walker et al. (2015), [2] Ginsburg
et al. (2012) and [3] Urquhart et al. (2013).

Figure 3.2: Enclosed mass surface density profiles as a function of radius for the (proto-
)YMCs in the CMZ (solid lines) and in the Galactic disc (dashed lines). Note that the
bump in the profile for Sagittarius B2 North at R ∼ 1 pc is due to Sagittarius B2 Main
entering the aperture.
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Cluster Age M D Rcore Σ0 Reference
Myr 104 M� kpc pc 105 M� pc−2 –

Sgr B2 Main < 0.5 < 0.4 8.4 < 0.1 0.5 1
Sgr B2 North < 0.5 < 0.4 8.4 < 0.1 0.12 1

Arches 2.0 2.0 8.4 0.14 3.5 2
NGC 3603 2.0 1.0 – 1.6 6.0 0.14 0.15 3

Trumpler 14 > 0.3 0.4 – 1.1 2.8 0.14 0.12 4, 5
Westerlund 1 3.0 – 5.0 2.0 – 4.5 3.6 1.1 0.17 6

Table 3.3: Global properties of the sample of Galactic YMCs used in this work. The
columns show cluster age, mass (M), distance (D), core radius (Rcore), central mass
surface density (Σ0) and the corresponding reference. References: [1] Walker et al.
(2015), [2] Espinoza et al. (2009), [3] Harayama et al. (2008), [4] Sana et al. (2010), [5]
Ascenso et al. (2007) and [6] Brandner et al. (2008).

is isothermal is unlikely to be valid in the highly star-forming clouds in the sample

presented here. The energy injected into the gas via on-going star formation will cause

these clouds to be internally heated. The effect of this will be to steepen their surface

density profiles. The assumption of a single dust temperature is reasonable for the

quiescent clouds in our sample, but less so for the star-forming clouds, where temper-

atures will be higher towards star-forming sites. Hence, any masses quoted are upper

limits. The assumption of a constant gas-to-dust ratio of 100 may not be correct, and

may be lower by a factor of ∼ 2 towards the Galactic centre (Longmore et al., 2013a).

The result of these assumptions is that the steepness and mass-scaling of the profiles

shown in Figure 3.1 are likely over-estimated. For example, assuming that the dust

temperatures towards the star forming molecular cores are as high as 50 – 200 K (e.g.

Cesaroni et al., 1994), this would result in a mass estimate that is ∼ 2.5 – 10 times

lower towards these small regions. Note that the uncertainties in the W49 mass profile

are different from the dust derived measurements, since this measurement comes from

the ratios of CO isotopologues. Galván-Madrid et al. (2013) found that the effect of

a radially decreasing gas temperature acts opposite to the effect of saturation in the

innermost pixels (see their appendix D).

Table 3.3 shows the general properties of the YMCs in the sample. They all have

similar properties, in that they are all young (. 2 Myr), ∼ 104 M� and have core

radii of order 0.1 pc. Westerlund 1 is the exception here (see §3.4 for discussion).
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These similarities are seen clearly in Figure 3.2, which displays their enclosed mass-

surface-density profiles. Other than the differences in density and mass, all of the

clusters (except Westerlund 1) have near-identical profile shapes, characterised by a

prominent, compact central core region out to R ∼ 0.1 pc.

Taking Figs. 3.1 and 3.2 and comparing them at face-value, it appears as though many

of the clouds have equal or greater central mass surface densities when compared with

the YMCs. This seems to suggest that perhaps some of these clouds could form a

YMC at their current densities. However, note that the aforementioned assumptions

regarding mass estimates place these as upper limits. Both the central surface densities

and the slope of the gas profiles will likely be lower.

Comparing the shape of the profiles displays a general difference in the way that mass

is distributed in YMCs and the clouds. Except in the case of Westerlund 1, the stars in

the YMCs follow a comparatively simple, spherical Plummer-like distribution (Plum-

mer, 1911). They have very compact central regions that are surrounded by much

larger envelopes, which display a clear power-law drop-off in surface density beyond

the core scale (∼ 0.1 pc). In contrast, the molecular clouds have a much more uni-

form density over larger scales (i.e. no distinct central regions of high density). Their

mass distribution is much more flat, with significant fall-off at radii approaching 1 pc.

This flat profile does not imply a lack of sub-structure on smaller spatial scales. High

spatial-resolution ALMA and SMA continuum data reveal that clouds like those in the

dust ridge are highly sub-structured (e.g see Chapter 4 and Rathborne et al., 2015).

Figure 3.3 displays the enclosed mass as a function of radius for all of the clouds in

the sample. Solid and dashed lines correspond to Galactic centre and disc clouds,

respectively. To compare the data to simulations of monolithic, or ‘popping’ YMC

formation, also plotted are the initial conditions from several simulations in the liter-

ature. The triangle markers correspond to the initial conditions used by Banerjee &

Kroupa (2013) to simulate the monolithic formation of the R136 YMC. The circular

markers correspond to the initial conditions used by Banerjee & Kroupa (2014) to sim-

ulate the monolithic formation of the NGC 3603 YMC. The star markers correspond

to the initial conditions given in the fifth row of Table 1 in Assmann et al. (2011), in
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which they simulate the ‘popping’ formation of massive clusters from very dense ini-

tial conditions. This particular set of initial conditions is chosen as they are quoted to

be sufficient to form a 104 M� cluster with a SFE < 20 %.

The N-body simulations of Banerjee & Kroupa (2013, 2014) assume a global cluster

SFE of ∼ 33%, and so their initial conditions require that the gas mass once all of

the stars in the cluster have formed (t = 0 in their simulations) is twice that of the

initial stellar mass. They then evolve the system, and after a delay time (τd), the gas

is then effectively removed from the system via an asymptotic fall in the gas mass,

which occurs on a specific timescale (τg). This gas dispersal timescale is given by

τg = Rh(0)/vg, where Rh(0) is the initial half-mass radius and vg is the average radial

velocity of the gas. This velocity is taken to be the approximate sound speed in ionised

hydrogen, which is ∼ 10 km s−1 for a temperature of ∼ 10,000 K. The delay time is

chosen to be 0.6 Myr. They reason that the typical initial half-mass radii of clusters are

small – only a factor of a few larger than that typical of UCHII regions. Assuming that

UCHII regions survive for ∼ 105 years, then it would take a factor of a few times this

lifetime to ionise the gas within Rh(0). Both choices for τd and τg are fairly simplistic,

and do not incorporate more thorough treatment of stellar feedback and its interaction

with the gas. Nonetheless, they find that when they evolve the systems to roughly

match the ages of the observed clusters, they are able to reproduce their present-day

mass-surface-density profiles very closely.

While these models are able to reproduce the mass profiles of real clusters, this does

not necessarily mean that their initial conditions are representative of the true initial

conditions for YMC formation. Of particular interest for the comparison being made

here are the initial compactness and radial distribution of the gas in these models, and

how these compare to the known properties of Galactic YMC precursor clouds.

As these simulations are 3D models and the data are 2D projections, care must be

taken to ensure that a fair comparison is being made. In Banerjee & Kroupa (2013,

2014), they present their initial conditions as initial cluster mass, initial gas mass and

half-mass radius. They prescribe an equivalent half-mass radius to both the gas and the

stars, which is calculated via the empirical relation given in Marks & Kroupa (2012), in
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which Rh(0) ∝M0.13±0.04
cl , where the mass of the cluster is prescribed to be consistent

with the observationally-measured masses of the clusters. Using their assumed∼ 33%

star-formation efficiency, these masses are combined to obtain the total gas mass prior

to star formation. The following relation is used to convert the half-mass radius to the

Plummer radius (Heggie & Hut, 2003) –

RH =
Rpl√

22/3 − 1
, (3.1)

Assmann et al. (2011) already provide the Plummer radius. The total 3D gas mass for

all of the models is then converted to a projected mass (Heggie & Hut, 2003) –

M(d) = M

(
1 +

R2
pl

d2

)−1

, (3.2)

Fig. 3.3 shows that the initial projected masses within a given radius for these various

models is generally too high, particularly at smaller radii. The Banerjee & Kroupa

(2014) model for NGC 3603 appears consistent with observations at radii > 0.5 pc.

However, it is over-dense on smaller spatial scales. Whilst the models generally pre-

dict mass surface densities that are greater than the observed clouds, this is not unam-

biguously the case. The highly star-forming clouds such as Sagittarius B2, W49 and

W51 all lie very close to these models. Though it is worth reiterating that the mass

estimates, particularly in the highly star-forming clouds, are upper limits. Accounting

for temperature effects would create an even larger disparity between the observations

and simulations. The simulated models also assume that both the gas and stars are

initially distributed according to a spherical Plummer-like distribution, which is not

globally true for the gas in the clouds in our sample (see §3.4). This is a critical differ-

ence between the true conditions in the ISM and those assumed in these models. The

gravitational potential of the gas is dominant until a significant number of stars have
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formed within the gas, and it is clear that the initial global gravitational potential does

not arise from a Plummer-sphere distribution.

This comparison shows that while these N-body simulations of monolithically-formed

clusters can broadly reproduce the observed properties of real YMCs, the initial con-

ditions of the gas in such models are not consistent with the population of known

Galactic YMC precursor clouds. However, it must be stated that this does not mean

that a monolithic formation scenario can be ruled out, due to the small number of these

simulations, their limited physics (i.e. feedback) and the limited range of parameters

that they explore. More detailed simulations that explore a larger range of initial con-

ditions, incorporate more realistic feedback physics and its interaction with the gas,

and treat the gas in a more realistic manner (i.e. hierarchical in structure rather than

a Plummer sphere), would permit comparisons that allow for stronger conclusions to

be drawn. Though it is important to acknowledge that such a thorough treatment of

massive cluster formation with detailed feedback physics is currently very expensive

computationally.

3.4 Discussion

The previous chapter compared a sample of YMCs and possible YMC precursor clouds

at the Galactic centre to attempt to distinguish between two commonly discussed

modes of YMC formation – popping (monolithic) or conveyor-belt (hierarchical) modes.

Through comparing the surface mass distributions of the clouds and YMCs, it should

be possible to begin to distinguish between these two potential modes of YMC forma-

tion. If popping cluster formation is a common mode, we should expect to see YMC

precursor gas clouds that are highly centrally-concentrated, more-so than the YMCs,

such that once formed they may expand out to the observed YMC stellar densities as

a result of residual gas expulsion. If the conveyor-belt route is instead a viable mode

of YMC formation, we should expect to see gas clouds that are more extended than

YMCs and that show evidence for sub-structure on smaller scales.
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Figure 3.3: Enclosed gas mass profiles as a function of radius for the known potential
Galactic YMCs precursors. The transition point from solid to lower opacity indicates the
beam resolution of the data. The triangle markers correspond to the initial conditions
used by Banerjee & Kroupa (2013) to simulate the monolithic formation of the R136
YMC. The circular markers correspond to the initial conditions used by Banerjee &
Kroupa (2014) to simulate the monolithic formation of the NGC 3603 YMC. The star
markers correspond to the initial conditions given in the fifth row of Table 1 in Assmann
et al. (2011) to simulate a monolithically forming star cluster.
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Cloud MR=0.1 30% SFE

103 M� 103 M�

G0.253+0.016 0.29 0.09

W49 1.28 0.43

W51 2.71 0.90

Cluster

Arches 6.6 –

NGC 3603 0.3 –

Trumpler 14 0.2 –

Westerlund 1 0.5 –

Table 3.4: Mass contained within a radius
of 0.1 pc for the clouds (upper) and clus-
ters (lower). The right column shows this
with an assumed 30% global star forma-
tion efficiency (SFE) for the clouds.

In this previous work, it was found that in the Galactic centre, all of the candidate

precursor clouds were more extended and less centrally-concentrated than the YMCs

– seemingly consistent with a conveyor-belt formation mode being more likely. Now

that this has been extended to include YMCs and potential YMC precursor clouds in

the Galactic disc, the following sections discuss whether this conclusion holds true

outside of the Galactic centre.

3.4.1 ‘Popping’ and ‘in-situ’ clusters – can Galactic clouds form a

YMC at a high initial density?

Using the clouds for which high spatial-resolution data are available (. 0.1 pc), the

mass contained within a radius of 0.1 pc – the typical core radius of the YMCs in

the Galaxy – is estimated for both the clouds and the YMCs. This serves to assess

whether these progenitor clouds contain enough mass on this scale to form a typical

YMC stellar core at their present density distributions. The cluster core is by far the

most dense region in these clusters, and so it follows that if they form in-situ, then

the progenitors to such clusters should contain at least enough mass on the typical

core scale such that they could form a stellar population that is at least as dense as the

present-day populations in the central regions of Galactic YMCs.
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The results are presented in Table 3.4. For the clouds, this mass is also adjusted for

an assumed upper limit of 30% for the global star formation efficiency. Both W49

and W51 have comparable or greater central mass surface densities than NGC 3603,

Trumpler 14 and Westerlund 1 at the typical core radius scale. This is also true for

the highly star-forming Sagittarius B2 Main and North regions (Lu et al., in prep). In

the largely-quiescent G0.253+0.016, the cloud does not yet contain enough mass on

this scale to form even the least centrally-dense YMC in our sample (Trumpler 14).

A similar result is also found for the quiescent Galactic centre clouds ‘d’, ‘e’ and ‘f’,

which are also quiescent (Walker et al., submitted; see Chapter 4). It is also interesting

to highlight that the core of the Arches cluster is considerably more dense than anything

else in our sample. There are no known clouds in the Galaxy that would be capable of

forming such a core in-situ.

These results suggest that in the evolved, star-forming clouds, within∼ 105 years since

the onset of star formation, sufficient mass has accumulated such that they could form

a typical YMC stellar core in-situ. In contrast, the quiescent clouds have not yet had

time to build up a dense enough mass reservoir in their central regions. It must be

cautioned that in the Galactic disc, there is over an order of magnitude scatter in the

central mass concentrations in the gas clouds. The same is true for the YMCs across all

environments. This, coupled with the limited sample size of Galactic YMCs and their

potential progenitors, as well as the lack of high-resolution observations towards many

of the clouds, makes it difficult to infer any significant evolutionary trends. Nonethe-

less, it can be stated unequivocally that for the known sample there are no clouds that

contain significantly more mass than any known YMC in the central 0.1 pc. This is

not compatible with a ‘popping’ formation scenario for YMCs, in which clusters form

at initially higher densities, followed by a period of expansion due to gas expulsion.

Instead, the apparent evolutionary trend from quiescent and less dense, to star-forming

and more dense, suggests that we may be seeing evidence for a ‘conveyor-belt’ mode

of YMC formation.
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3.4.2 On the clumpy sub-structure of molecular clouds

As noted in §3.3, the simulations of monolithic cluster formation by Assmann et al.

(2011) and Banerjee & Kroupa (2013, 2014) invoke Plummer-sphere initial morpholo-

gies for distribution of both the gas and the stars in the simulated clusters. Indeed,

it is well established that the stars in YMCs are well described by Plummer models

(or more generally, EFF-models; Elson et al. 1987). Whether the stars were formed

according to this distribution, as per the ‘popping’ or ‘in-situ’ scenarios, is much less

certain. Furthermore, the assumption that the gas follows a Plummer-like distribution

is questionable, and inconsistent with what is typically seen in the interstellar medium

(ISM), which is observed to have a hierarchical structure (e.g. Larson, 1981). Indeed,

much of the data used in the sample for this chapter shows this. The ALMA obser-

vations of G0.253+0.016 reveal that it is highly sub-structured on small spatial scales

(spatial resolution ∼ 0.07 pc, Rathborne et al., 2015) and not at all Plummer-like. The

same holds true for clouds in the solar neighbourhood, which are highly filamentary.

Note that the radial surface density profiles of filaments within clouds have been shown

to be well described by Plummer-like model (e.g. Arzoumanian et al., 2011), but this

is only true locally (R ∼ 0.1 pc), and does not apply to the larger scale clumps taken

as a whole, as is the case with the profiles presented in this chapter.

Figure 3.4 shows the same mass surface density profile as given in Figure 3.1 for

G0.253+0.016. Also plotted is a range of Plummer spheres, with core radii in the

range of 0.5 – 2.0 pc. It is clear that, no matter the core radius, a Plummer sphere does

not represent the distribution of gas in this cloud. SMA observations (resolution ∼
0.15 pc) of clouds ‘d’, ‘e’ and ‘f’ also reveal complex sub-structure (see next chapter;

Walker et al., submitted). SMA observations of W49 (resolution ∼ 0.1 pc) show that

this region is also complex, with hierarchical structures and filaments (Galván-Madrid

et al., 2013). Given a spatially-varying star-formation efficiency, it is possible that

a Plummer-like stellar distribution could form from gas with a different distribution.

Nonetheless, the models for monolithic cluster formation use Plummer-like profiles

for the gas, and this is not seen in the observations.
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Figure 3.4: Mass sur-
face density profile of
G0.253+0.016. Shaded
area corresponds to
a range of Plummer
spheres with core radii
ranging from 0.5 – 2 pc.

It is not known what the nature of the small-scale structure is for the remainder of the

clouds in this sample, and data with higher spatial resolution are required to address

this. However, given that the structure of the aforementioned clouds, and the structure

of the ISM is well-established, it is expected that they will follow a similarly complex,

sub-structured distribution (i.e. not Plummer-like).

3.4.3 The peculiar shape of Westerlund 1

The stellar mass surface density profiles of the (proto-)YMCs displayed in Figure 3.2

are all extremely similar in shape. They are well characterised by a Plummer-like

profile with a core radius of∼ 0.1 pc. It is clear, however, that Westerlund 1 does not fit

this description. The cluster is much more extended than the others in our sample, with

a core radius of∼ 1.0 pc, almost an order of magnitude larger than the core radii of the

other YMCs. This ‘bloated’ appearance is further complicated by a reported elongation

that is characterised by an axial ratio of 3:2 (Gennaro et al., 2011). The source of this

extended morphology is not known. However, Gennaro et al. (2011) propose that it

may be a result of merging of two or more stellar sub-clusters that formed in the same

natal gas cloud. They reason that if this happened recently, the cluster may not yet have

had time to dynamically relax and that eventually, this elongated cluster will settle into

a more typical spherical distribution. If true, this may support the idea that a spherical,
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centrally-condensed cluster results through the merging of sub-clusters, as proposed in

hierarchical merging scenarios for YMC formation. A corollary of this scenario is that

all other YMCs in this sample have undergone violent relaxation. Irrespective of the

core radius, all YMCs including Westerlund 1 display central surface densities similar

to the proposed universal maximum surface density of Σ∗ ∼ 105 M� pc−2 observed in

dense stellar systems over 7 orders of magnitude in stellar mass (Hopkins et al., 2010).

3.5 Conclusions from Walker et al. (2016)

A comparison of the enclosed mass as a function of radius and the internal structure of

the sample of known Galactic YMCs and their likely progenitor gas clouds is made. It

is found that there are no known clouds with significantly more mass in their central

regions than the known Galactic YMCs. The observations also show that the quiescent,

less evolved clouds contain less mass in their central regions than the highly star-

forming regions. This suggests an evolutionary trend in which clouds continue to

accumulate mass towards their centres after the onset of star formation – consistent

with a ‘conveyor-belt’ mode of YMC formation.

When compared with simulations for monolithic ‘popping’ formation of YMCs, it is

found that the initial conditions for the cluster-forming clouds are not wholly con-

sistent with the observations – in general, they require more mass at a given radius

than is observed in the known YMC precursor clouds. Furthermore, the initial mor-

phology of the gas in both these simulations and the general model for monolithic

formation for YMCs is inconsistent with the observed morphology of YMC precur-

sor clouds. They require initially Plummer-like, highly centrally-concentrated clouds

– whereas the clouds in the sample presented here (for which high spatial resolution

data are available) display complex, hierarchical sub-structure and do not display the

prominent cores and power-law tails of Plummer profiles. It is therefore concluded

that a ‘popping’ formation scenario for YMCs is not consistent with the data that is

currently available for Galactic YMCs and their likely precursor gas clouds. Instead,

the data suggest that for the highly star-forming clouds, an ‘in-situ’ formation mode
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seems plausible. Coupled with the lower central densities of the quiescent clouds, this

suggests a ‘conveyor-belt’-like mode of YMC formation, whereby clouds contract and

accumulate more mass in their central regions along with concurrent star formation.



Chapter 4

Star formation in a high-pressure

environment: An SMA view of the

Galactic Centre dust-ridge

Preface

The work presented in this chapter is based upon that of Walker et al., (submitted). I

led this work as first author, and all of the contents (text, analyses, figures, tables) are

my own. I reduced, imaged and analysed all of the SMA data presented in this chapter.

The data that were used for this work were taken as part of a larger survey with the

SMA (CMZoom). I also spent considerable time reducing data for the wider survey

as part of the team responsible for data calibration. At the request of the survey PIs,

I also developed an imaging pipeline that is being used to obtain data products from

the entire survey, as well as to prepare the data for eventual public release. A more

detailed overview of the data calibration and imaging is given in Appendix A of this

thesis.
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4.1 Introduction

This chapter presents high angular resolution observations of the Galactic centre dust

ridge clouds from the Submillimeter Array Legacy Survey of the Central Molecular

Zone (CMZoom1, PIs: Eric Keto and Cara Battersby, see Battersby et al. 2017), the

details of which are discussed in section § 4.2, along with a discussion of the compli-

mentary single-dish data that is used to recover the large scale emission that is filtered

out by the interferometer. Section § 4.3 presents the analysis of the dust continuum

and a select few molecular lines, which are used to determine the number of dense

cores embedded within the clouds along with their general properties such as masses,

radii, gas temperatures, line-widths and virial ratios. The results of this analysis are

presented in Table 4.3. Section § 4.4 compares the properties of the dense cores that

have been identified in the CMZ with those of cores in the less extreme environment

of the Galactic disc to investigate any potential effects these differing environmental

conditions may have on the embedded core populations of molecular clouds. The con-

clusions and implications of this study are presented in sections § 4.4 and § 4.5. The

analysis of the molecular line data and methodology of the gas temperature modelling

are given in an appendix.

4.2 Observations & Data

4.2.1 CMZoom – An SMA Legacy Survey of the Central Molecular

Zone

In an effort to understand the physical, chemical and kinematic properties of the dense

structure in the CMZ, a large legacy survey (CMZoom, Battersby et al. 2017) of the

region has been performed with the Submillimeter Array (SMA). The survey consists

of ∼ 500 hours worth of mapping, corresponding to ∼ 240 arcmin2 of the CMZ at 230

GHz (1.3 mm). The survey was designed to target all regions within the CMZ that lie

1More details of this survey can be found at https://www.cfa.harvard.edu/sma/LargeScale/CMZ/



4.2. Observations & Data 80

Cloud Mass Radius n Reference
104 M� pc 104 cm−3

b 1.3 1.9 0.7 2
c 1.8 1.9 0.9 2
d 7.6, 7.2 3.2, 3.4 0.8 1, 2
e 11.2, 15.3 2.4, 4.5 2.8 1, 2
f 7.3, 7.2 2.0, 2.7 3.2 1, 2

Table 4.1: Masses, radii and mean number densities (assuming spherical geometry) of
the dust ridge clouds that have been observed with the SMA as part of the larger survey.
The relevant references for these quantities are also given. References: (1) Walker et al.
(2015) and (2) Immer et al. (2012).

above a column density threshold of & 1023 cm−2. The typical spatial resolution of

this survey is ∼ 4” (0.16 pc at a distance of 8.4 kpc) and the spectral resolution is ∼
1.1 km s−1.

The dust-ridge clouds from ‘b – f’ (see Table 4.1 for cloud properties) were observed

in the compact array configuration between the 24th May – 6th June 2014, and in the

subcompact configuration between the 25th – 27th July 2014 (see Table 4.2 for more

details of the observations). Cloud ‘a’ (G0.253+0.016) was not observed, as it is well-

studied and high-resolution data already exist (Kauffmann et al., 2013a; Johnston et al.,

2014; Rathborne et al., 2014b, 2015). Typical RMS continuum sensitivity achieved is

∼ 3 – 5 mJy beam−1. Figure 4.1 shows a 3-colour image of the dust-ridge, where white

circles correspond to the primary beam coverage of the SMA observations.

Data calibration was performed using MIR2, edge channel flagging and continuum and

line separation was done using MIRIAD (Sault et al., 1995) and all subsequent imaging

and analysis was performed using CASA (McMullin et al., 2007). See Appendix A of

this thesis for more details regarding these steps.

Once calibrated and prepared for imaging, the relevant compact and subcompact tracks

for each dust ridge cloud were concatenated in CASA and both the continuum and line

data were imaged using the CLEAN algorithm, which is the most common deconvo-

lution algorithm employed in radio astronomy. CLEAN works in an iterative manner

2MIR is an IDL-based package that has been developed to calibrate SMA data. The MIR package
and cookbook can be found at https://www.cfa.harvard.edu/∼cqi/mircook.html.
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to locate the maximum intensity pixel in the dirty image, the location of which is as-

signed as a clean component and is added to the model. This is then convolved with

the dirty beam and subtracted from the dirty image. This is repeated until some defined

threshold criteria are reached (e.g. number of iterations, RMS-based flux threshold). A

final cleaned image is generated via the convolution of the model image and the clean

beam (typically Gaussian with dimensions of the synthesised beam), which is added to

the residual noise map.

Although the clouds were observed in both compact and subcompact configurations,

the data still suffer from the inherent limited flux recovery due to the incomplete uv-

coverage of the interferometer. To account for this, the most appropriate single-dish

data have been obtained for combination with the interferometric data.

To recover the continuum emission from these clouds, data from the Bolocam Galactic

Plane Survey (BGPS, Rosolowsky et al., 2010; Aguirre et al., 2011; Ginsburg et al.,

2013) are used. These data are at a wavelength of 1.1 mm and provide an angular

resolution of 33′′ (∼ 1.3 pc at a distance of 8.4 kpc) and resolve a largest angular scale

of ∼ 120′′ (Ginsburg et al., 2013). Ideally, single-dish observations that were taken at

1.3 mm (the wavelength of the SMA data) would be used. Given that the single-dish

observations are at 1.1 mm, the data must be scaled to estimate the flux that would be

observed at 1.3 mm, which is determined by taking the ratio of the fluxes (Sν) at each

wavelength, with an assumed emissivity index of β = 1.75. The feather task in CASA

is used when combining the BGPS data with the cleaned SMA data. Any discussion

regarding the dust continuum hereafter refers to results obtained using fully combined

maps of compact, subcompact and single-dish data.

For the molecular lines, data from a recent survey of the CMZ performed using the Ata-

cama Pathfinder EXperiment (APEX) telescope are used (Ginsburg et al., 2016b). The

method3 used to combine the single-dish and interferometer line data are somewhat

more involved than for the case of the continuum. First the APEX data are formatted

correctly such that they are gridded to the same axes as the SMA data. A first iteration

of CLEAN is performed with the APEX data as a model, the output of which is then

3http://tinyurl.com/zero-spacing
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Figure 4.1: Three-colour image of the ‘dust-ridge’ at the Galactic centre. Green: 8 µm
data from the Spitzer/GLIMPSE survey (Churchwell et al., 2009). Blue: the column
density map from the HiGAL survey (Molinari et al., 2010; Battersby et al., 2011, range
displayed is ∼ 5 – 55 x 1022 cm−2). Red: Herschel 70 µm emission. White circles
correspond to the primary beam coverage of the SMA observations.

Cloud Central Resolution Npntg Nant Tobs RMS
coordinates (′′) (hours) (mJy beam−1)

b G0.340+0.055 3.18 × 3.13 9 7 2.36 2–3
c G0.380+0.050 3.15 × 3.10 9 7 2.30 2–5
d G0.412+0.052 3.19 × 3.08 13 7 3.04 3–5

e/f G0.489+0.010 3.04 × 2.93 44 7 11.35 2–6

Table 4.2: Details of the SMA observations of dust ridge clouds b – f. All clouds were
observed using the ASIC correlator with a total bandwidth of 8 GHz, between 217.05 –
232.83 GHz. Spectral resolution is 1.1 km s−1 in all cases.

used to create an updated model image. This updated model image is then used in a

final iteration of CLEAN to produce the combined data cube.

4.3 Results

4.3.1 1.3mm Continuum Emission

Figure 4.2 displays the individual 1.3 mm continuum maps for each of the clouds,

overlaid as black contours on top of Herschel column density maps (blue). Dense

substructure is clearly detected in each of these clouds. In order to describe this sub-

structure in a systematic way, dendrograms are produced (see e.g. Rosolowsky et al.,
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2008) for each of the clouds using the ASTRODENDRO4 software package. To do this, a

threshold of 5σ and an increment of at least 2σ between structures are used (see Table

4.2 for RMS estimates). The minimum number of pixels required is specified as –

Npix(min) =
2πθmajθmin
8ln(2)Apix

(4.1)

where θmaj and θmin are the major and minor axes of the synthesised beam and Apix

is the pixel area. For example, for respective values of 3.2′′, 3.1′′ and 1′′2 , we obtain

Npix(min) ∼ 11 pixels for the observation of dust ridge cloud ‘c’.

A total of 15 independent cores are detected throughout clouds ‘b – f’. These are

shown as red contours in Figure 4.2. These cores, along with their estimated fluxes,

effective radii (Reff ), positions and masses are given in Table 4.3. ASTRODENDRO

calculates the radius by taking the geometric mean of the major and minor axes of

the projection onto the position-position plane, computed from the intensity-weighted

second moment in the direction of elongation. However, the ellipses that are fitted to

the cores often appear to underestimate the radius. Instead, the total area of each core

is used here to calculate the effective radius of a circular source with an area equal to

that of the core. The difference between these radii can be as large as 30 – 40%. Any

radius estimates are therefore upper limits.

The masses of the cores are determined in the same way as for the clouds in the previ-

ous chapters (see Equations 2.1 – 2.3). Besides the uncertainty of the gas-to-dust ratio

in the CMZ, the only other parameter in Equation 2.3 that remains unconstrained is

the dust temperature towards these cores. At present, the temperature of the dust on

the scales that we are probing with our SMA observations (∼ 4”) is not known. The

best measure of the dust temperature is from the HiGAL survey (Molinari et al., 2010,

temperature estimates by Battersby et al. 2011). This provides dust temperatures that

are typically ∼ 20 K in these clouds on 33” scales. This dust temperature is assumed

4ASTRODENDRO is a Python package designed to compute dendrograms of astronomical data and
can be found at http://www.dendrograms.org/.
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Figure 4.2: Top: dust ridge clouds ‘b’ (left) and ‘c’ (right). Bottom: dust ridge clouds ‘d’
(left) and ‘e/f’ (right). Background image is a Herschel column density map, shown with
corresponding white contours. Black contours show the 230 GHz continuum emission
as seen with the SMA at the 5-σ level. They are 10 – 32, , 16 – 32, 16 – 460 and
20 – 72 mJy beam−1 for clouds b, c, d and e/f, respectively. The synthesised beam is
shown in the lower left of each panel. Red contours highlight the cores as determined
via dendrogram analysis.
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to provide an upper limit to the masses of these cores. This is an upper mass limit

due to the fact that a decrease in temperature results in an increase in the measured

mass, as can be seen in Equation 2.3. It is expected that the gas and dust may be in-

ternally heated towards some of these cores, which would consequently drive the mass

estimates down. Though it is also possible that a quiescent embedded core with no

internal heating may be even colder than the gas on larger scales due to being heavily

shielded from external heating sources.

Assuming this dust temperature of 20 K, the cores have upper mass limits ranging

from ∼ 50 – 2150 M� within radii of ∼ 0.1 – 0.25 pc (see Table 4.3) and have volume

densities ∼ 106 cm−3. As previously discussed, these are likely upper mass limits.

The following section discusses the molecular line emission, and how this is used to

determine gas temperatures and infer lower mass limits for the cores.

4.3.2 Molecular Line Emission

Currently, only a lower limit is known for the dust temperature from Herschel obser-

vations (∼ 20 K on 33′′ scales). It is known that on these larger scales, the gas and

dust temperatures in the CMZ are not thermalised and that the gas temperatures are

typically higher (see e.g. Ao et al., 2013; Johnston et al., 2014; Ginsburg et al., 2016b;

Immer et al., 2016). However, it is possible that the gas and dust may begin to ther-

malise at high volume densities. Clark et al. (2013) show this in Figure 4.3 of their

paper, in which they model the temperature of the gas and dust as a function of volume

density, showing that they begin to couple at densities > 106 cm−3 and converge at >

107 cm−3. Their models assume cosmic ray ionisation rates and interstellar radiation

fields in the CMZ that are much higher than those measured in the local interstellar

medium. For more typical, local conditions, the gas and dust would be expected to

couple at lower densities, ∼ 104 cm−3 (e.g. Goldsmith & Langer, 1978; Galli et al.,

2002).

The cores that are presented here are at volume densities of ∼ 105 – 106 cm−3, based

on their upper-limit mass estimates. It therefore follows that by estimating the temper-
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ature of the gas, this can be used to provide strong upper limits for the dust temperature

and hence lower limits for the core masses. However, note that based upon the models

of Clark et al. (2013), there may still be a difference between the gas and dust temper-

atures at these densities of several factors. Thus, any mass estimates made this way are

likely extreme lower limits.

For the purposes of this work, the following molecular lines that were covered in the

SMA bands are studied – the triplet of lines from the para-H2CO (Formaldehyde) tran-

sitions at 218.22219 (30,3-20,2), 218.47563 (32,2-22,1) and 218.76007 (32,1-22,0) GHz

as well as the J=12-11 k-ladder of CH3CN (Methyl Cyanide). These transitions are

chosen as their emission lines can be used as a thermometer to estimate the tempera-

ture of the gas from which they are emitted (see e.g. Ao et al. 2013; Johnston et al.

2014; Ginsburg et al. 2016b; Immer et al. 2016 for H2CO temperature measurements

in the CMZ and Longmore et al. 2011 for CH3CN temperature measurements towards

a high-mass star forming region). A more detailed description of how these transitions

are used for estimating temperatures is presented in the appendix of this chapter.

Of the 15 cores detected with the SMA, measurement of the gas temperature was pos-

sible for five of them. The remainder either had poor signal-to-noise or non-detection.

Table 4.2 gives the estimated gas temperatures (<Tgas>), which has been averaged

over the spatial extent of each core, as specified by their measured radii. This is then

assumed to act as a proxy for the average dust temperature, and core masses are re-

calculatd in the same way as in the previous section (MTgas). A varying degree of gas

temperatures is found in the cores, from ∼ 57 K up to > 240 K. Assuming equivalent

dust temperatures has a substantial effect on the mass estimates, decreasing by as much

as 94% in the most extreme case.

Though this provides strong lower-mass estimates for the cores, the significant varia-

tion in estimated mass highlights the need for accurate estimates of the dust tempera-

ture on these small spatial scales. The de-coupled nature of the gas and dust tempera-

tures in the CMZ makes this difficult observationally. Radiative transfer modelling of

the dust and line emission is required such that the volume densities of these cores can

be accurately determined. The density can then be compared with numerical models
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of the thermal coupling of the gas and dust in the CMZ as a function of volume density

(see e.g. Figure 3 of Clark et al. 2013). However, the necessary line data to do this

are not currently available for these cores. The ratio of the (32,1-22,0)/(30,3-20,2) lines

of H2CO, which are used as a primary temperature diagnostic here, often exceeds that

which can be reliably fit by any models at high volume density (see appendix). Thus,

only lower limits for the gas temperature can be quoted in such cases.

The line-widths obtained from the line-fitting are used to investigate whether the cores

are likely to be gravitationally bound. To do this the virial parameter is calculated via

α = 5Rσ2/GM , (where σ = ∆V/2
√

2ln(2), ∆V is the line-width and α . 2 typically

indicates gravitationally bound) for both the upper and lower mass estimates. Two

values for the line-width (∆V) are used. These two values come from fitting the H2CO

lines with and without single-dish data added. The single-dish APEX data are sensitive

to the larger scale emission in these clouds, which is known to display very broad line-

widths (10 – 20 km s−1). This means that in general, the single-dish combination tends

to broaden the lines. For the purposes of estimating whether or not the cores may be

gravitationally bound, it is not clear that including the single-dish data makes sense.

Both values for ∆V are therefore given, and used to estimate upper and lower limits

for α.

Of the five cores for which H2CO is well detected, only two of them, ‘c1’ and ‘e1’,

have α . 2 based on their upper mass limits. The other three cores have α ∼ 3 – 4,

suggesting that they may neither be strongly bound or unbound. Though the cores are

of high-mass and compact, they do not appear to be strongly sub-virial as a result of

their large line-widths of ∼ 5 km s−1. Re-calculating α with the lower mass and larger

line-width estimates puts it at much higher values, up to as large as 44, suggesting

that they are unbound. However, these are extreme lower limits for the mass and

upper limits for the line-width. This further reinforces the need for more accurate dust

temperatures on the scale of these cores.

Kauffmann et al. (2016a,b) present a survey of molecular clouds in the CMZ, and

conclude that objects on the scale of the cores presented in this chapter (∼ 0.1 pc) in

their sample have typical virial ratios of . 2 – 3, and should therefore be close to being
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gravitationally bound. This is broadly consistent with the lower values presented here,

based upon upper mass limits. The line-widths that are estimated here are typically

larger than those in the Kauffmann et al. (2016a,b) sample, though this may be a result

of the choice of molecular line tracer, as they use N2H+, not H2CO. Further studies

of the line emission from all of these cores, as well as those discovered in the wider

CMZoom survey, will provide a more detailed insight as to whether this difference is a

real one, or whether it is dependent upon the choice of tracer.

4.4 Discussion

4.4.1 Young precursors to high-mass stars?

As explained in the introduction to this thesis (§1), these dust-ridge clouds are in-

triguing in that their density lies at or above the threshold of density-dependent star

formation relations (∼ 104 cm−3, Lada et al. 2010a), yet they are devoid of widespread

star formation (Longmore et al., 2013a). Clouds with similar global properties in the

less extreme environment of the Galactic disc are all forming stars prodigiously (see

e.g. Ginsburg et al., 2012; Urquhart et al., 2013). This raises the question – if star for-

mation is being inhibited at these densities in the CMZ and pushing the critical density

for star formation up to higher values, will these clouds ever form stars/clusters? In-

deed, this has already been a subject of debate regarding G0.253+0.016 (cloud ‘a’, see

e.g. Longmore et al., 2012; Kauffmann et al., 2013a; Johnston et al., 2014; Rathborne

et al., 2014b).

Whether or not these clouds will form stellar clusters is still uncertain, but it is known

that star clusters have recently formed in the CMZ (e.g. the Arches and Quintuplet)

and that clusters are currently forming there (e.g. Sagittarius B2). It is also predicted

that the environmental conditions in the CMZ should lead to a higher fraction of stars

forming in bound clusters (Kruijssen, 2012). These (proto-)clusters must have an ear-

lier, quiescent phase, prior to the onset of widespread star formation. To date, these
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dust-ridge clouds are some of the best candidates for such a phase in the CMZ. If

these clouds are precursors to such clusters, then they are also expected to contain

the precursors to high-mass stars. The SMA observations presented here reveal 15

dense, high-mass cores within these clouds that may be the potential formation sites of

high-mass stars and sub-clusters.

Of these 15 detected cores, 13 are quiescent (i.e. they do not coincide with any known

star formation tracers). This was determined by searching the literature and data

archives for water and methanol masers, 24 µm and 70 µm emission and HII region

detection. Detailed analysis of the molecular line data is required to determine the fate

of these cores. Based on the analysis presented here, the properties of the star-forming

and the quiescent cores derived from the SMA continuum and line data are similar in

terms of their masses, sizes, densities and line-widths, suggesting that they all have the

capacity to form stars. In this case, they could represent different evolutionary phases

of the same type of object. The estimated ranges of the virial ratio (see Table 4.3)

would suggest that some of the cores are unbound and will therefore not form stars.

However, these are highly uncertain due to the lack of constraints on the dust tempera-

ture. It is also possible that some of the cores may be unbound on the scales probed by

the SMA observations, but that smaller scale structure (i.e. on which individual stars

form) within the cores could be gravitationally bound.

The two other cores – ‘c1’ and ‘e1’ – show signs of star formation activity. ‘e1’,

situated towards the south of cloud ‘e’, has the second highest peak brightness of all

15 cores (∼ 0.12 Jy beam−1) and has a mass in the range of ∼ 46 – 445 M� within

a radius of 0.16 pc. This source coincides with weak 70 µm emission as seen with

Herschel and both H2O and CH3OH Class II maser emission (Caswell et al., 2010a).

‘c1’, situated towards the south of cloud ‘c’, has the highest peak brightness in the

sample (∼ 0.6 Jy beam−1) and has a mass in the range of ∼ 136 – 2143 M� within

a radius of 0.26 pc. This source also coincides with strong 70 µm emission as seen

with Herschel and both H2O and CH3OH Class II maser emission (Caswell et al.,

2010a). Additionally, this core coincides with H2CO and SiO maser emission – both of

which are extremely rare in star-forming regions in the Galaxy (Ginsburg et al., 2015).
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Thus far, only eight H2CO masers have been identified in the Galaxy, all of which

are associated with high-mass star formation. Even more rare are SiO masers. They

are commonly detected towards evolved stars, but only rarely towards star-forming

regions, and then only in regions of known high-mass star formation (Zapata et al.,

2009a). Thus far, only five SiO masers have been identified towards such regions in

the Galaxy. Furthermore, H2CO and SiO masers have only been detected together

towards two regions – Sagittarius B2 and ‘c1’ – both of which are in the CMZ. This

may also suggest something different about the star formation and/or chemistry in the

CMZ.

Given the spatial coincidence of a number of star formation tracers towards both cores

‘c1’ and ‘e1’, it is concluded that they are very likely to be sites of active high-mass

star formation. Furthermore, there have been no UCHII regions detected towards them,

as revealed by deep VLA observations (Immer et al., 2012). Any star formation must

therefore be at a very early stage, before the high-mass star has ‘switched on’. Thus,

embedded within these cores may be the initial, largely-unperturbed conditions from

which high-mass stars form. Targeting these sources at higher spatial resolution and

with line surveys will provide valuable insight into how high-mass stars form in the

CMZ. I am currently leading multiple on-going ALMA projects to follow-up these

cores along with others presented in this paper at much higher spatial resolution (<

0.1′′, PI: D. Walker, see Chapter 5).

4.4.2 Do the properties of high-mass cores vary with environment?

In §1 it was highlighted that these high-mass CMZ clouds are vastly under-producing

stars when compared to clouds with similar properties in the less extreme environment

of the Galactic disc. Recent theoretical models indicate that the CMZ environment

drives high turbulent pressure in CMZ clouds. These models predict that the CMZ is

undergoing episodic cycles of bursty star formation and quiescence (Kruijssen et al.,

2014; Krumholz & Kruijssen, 2015; Krumholz et al., 2016). This heightened turbu-

lent energy density can be seen observationally, evidenced by the comparatively large
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line-widths of ∼ 10 – 20 km s−1 seen towards these clouds on parsec scales (Oka

et al., 2001; Walker et al., 2015; Henshaw et al., 2016). So it is known that on large

spatial scales, the gas in the CMZ looks different to that in the Galactic disc in that

it is generally orders of magnitude more dense and typical line-widths are an order of

magnitude larger – similar to the conditions seen in high-redshift galaxies (Kruijssen

& Longmore, 2013). But how do the properties of the small-scale, dense structures

(i.e. cores) compare to those in the disc of the Galaxy?

To compare the properties of cores in the Galactic disc and centre, the sample of high-

mass proto-stellar cores in Peretto et al. (2013) are taken, where they compiled a list

of masses and radii for a sample of high-mass proto-stellar cores in the Galactic disc

(Figure 6 in Peretto et al. 2013). Also used are the sample of high-mass proto-stellar

cores given in Table 2 of Louvet et al. (2014) for their data on the W43–MM1 ridge,

which is a likely precursor to a ‘starburst cluster’, along with those for several other

regions present in the literature. The masses of the cores are scaled such that they are

consistent with the spectral index of β = 1.75 that has used for mass estimates in the

analysis of the SMA cores.

Fig. 4.3 displays the data from the SMA dust ridge cores and the cores from disc

clouds. The plot shows that the high-mass cores in the CMZ fit within the mass-radius

relation of those in the disc reasonably well – i.e. they are not distinctly separated.

However, the cores in the SMA sample are best described by lower volume densities of

a few×105 – 106 cm−3, while many of the disc sources are at higher volume densities.

This is likely an effect of the spatial resolution of the SMA data, and more compact

fragments in these cores could approach the densities seen in regions of high mass

star formation. Initial inspection of on-going ALMA observations of some of these

dust ridge cores indicate that this is indeed the case (see Chapter 5). The grey shaded

region in Fig. 4.3 corresponds to the empirical massive star formation threshold that

was proposed by Kauffmann & Pillai (2010). Based upon a study of a sample of

Galactic molecular clouds, they determine an approximate threshold for massive star

formation to occur as – M(R) & 870M� × (R/pc)1.33. All of the sources are at or

above this threshold, which in the context the proposed scenario would suggest that
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Figure 4.3: Mass-radius plot for all of the SMA cores. Solid red squares correspond to
masses estimated assuming a dust temperature of 20 K and arrows indicate the possible
range of mass given strong lower limits assuming that the dust temperature is the same
as the measured gas temperature. Red points with black star markers indicate that these
cores are star-forming. Black points are high-mass proto-stellar cores in the Galactic
disc from Peretto et al. (2013) and blue triangles are from Louvet et al. (2014). The
open red square is the star-forming core in cloud ‘a’ as seen with ALMA (Rathborne
et al., 2014b). Dash/dot lines are constant column density. Dashed lines are predicted
critical volume density thresholds for both the CMZ and the Galactic disc. The grey
shaded region corresponds to the empirical massive star formation threshold proposed
by Kauffmann & Pillai (2010).

they are all likely to form high-mass stars. This is certainly true of the Peretto et al.

(2013) and Louvet et al. (2014) samples, but it currently unclear as to whether this is

true for the CMZ cores. As previously discussed, only two of the cores (‘c1’ and ‘e1’)

show signs of massive star formation. This difference in the star forming potential of

the cores in the disc and the CMZ may be linked to an environmental dependancy of

the star formation process.

To further investigate the effect of the different environmental conditions, the CMZ

cores are considered in the context of pressure confinement. To do this, the analysis

of Field et al. (2011) is replicated, where they take the sample of clouds from the

Galactic Ring Survey (GRS, Jackson et al. 2006) and study them in the context of
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the virial theorem for a self-gravitating isothermal spherical cloud that is subjected to

a uniform external pressure, Pe. They note that based upon analysis by Heyer et al.

(2009), the clouds are not consistent with simple virial equilibrium. They conclude

that this is corrected when accounting for external pressures ranging from Pe/k ∼ 104

– 106 K cm−3. Note that Heyer et al. (2009) calculated the properties of the GRS

sample using rough boxes. Analysis of the GRS clouds by Roman-Duval et al. (2010)

uses defined contours. This more defined approach results in the estimated virial ratios

being < 1 for most of the clouds, suggesting that they may be gravitationally bound

without the need for external pressure.

In Fig. 4.4 the plot given in Figure 3 of Field et al. (2011) is replicated, and both

the dust ridge clouds and their embedded cores that have been detected with the SMA

are plotted. The relevant parameters for plotting the dust ridge clouds can be found

in Table 4.1, and those for the cores in Table 4.3. The GRS data points (Heyer et al.,

2009) are shown as black crosses. The dust ridge clouds are shown as solid markers,

and the cores are shown as open markers, with their colours corresponding to the clouds

in which they are embedded. Note that there are fewer SMA cores displayed in this

figure as it requires a measure of the line-width, which was not possible towards all

of the dust cores. The dashed black line represents simple virial equilibrium, with no

external pressure. The curved lines represent pressure-bounded equilibrium. These

lines are described by the following equation, which is a reformulation of the pressure-

bounded virial equation –

V 2
0 =

σ2

R
=

1

3

(
πΓGΣ +

4Pe
Σ

)
(4.2)

where V0 is the size-linewidth scaling coefficient, σ is the velocity dispersion, R is the

radius, Γ is related to the density structure, Σ is the mass surface density and Pe is

the external pressure. Here we assume Γ = 0.73, which corresponds to a centrally-

concentrated density structure. This is likely valid for the SMA dust cores, but less

so for the dust ridge clouds on larger scales, as these clouds display relatively flat
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Figure 4.4: Comparison of the dust-ridge clouds and their embedded cores with the
GRS cloud sample. Black crosses show the GRS clouds as reported in Field et al. (2011)
(original data are from Heyer et al. 2009). Solid markers indicate the different dust ridge
clouds, while the open markers represent the core(s) associated with the solid markers
(i.e. their parent clouds). Arrows represent the range in surface densities given our upper
and lower mass limits. Curved black lines are those of constant external pressure, while
the dashed line is for Pe = 0.

surface density profiles as a result of their hierarchical internal structure (see previous

chapters).

Fig. 4.4 shows that, under the assumption that these cores and clouds are in pressure

equilibrium, the external pressures in the CMZ would have to be of order Pe/k ∼
108 K cm−3, which is 2–3 orders of magnitude greater than necessary for the GRS

clouds in the Galactic disc. This is consistent with the observed difference in large-

scale turbulent pressure between the disc and the CMZ, which for typical conditions in

these environments is P/k ∼ 105 K cm−3 and 107−9 K cm−3, respectively (Kruijssen

& Longmore, 2013; Rathborne et al., 2014b; Longmore et al., 2014a). The turbulent

pressure in the CMZ is therefore sufficiently high that the cores may be in equilibrium.
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Comparing Figs. 4.3 and 4.4 shows that despite such high external pressures, the em-

bedded cores in the CMZ have comparatively low densities, relative to the high-mass

proto-stellar cores in the Galactic disc. Also recall the previous discussion highlight-

ing that these cores generally lack signs of on-going star formation. Out of 15 detected

sources, only 2 show signs of ongoing star formation, despite being two orders of mag-

nitude more dense than the volume density threshold proposed by Lada et al. (2010a)

and under pressures that are several orders of magnitude greater than in the disc. This

leads to the conclusion that this is further evidence for star formation being inhibited

in the CMZ as a result of the high turbulent energy density, which drives up the critical

volume density threshold for star formation in this environment.

The role of the high turbulent pressure in driving the low star formation rate in the CMZ

is illustrated by the critical density lines in Figure 4.3 (dashed lines), which indicate

the density thresholds for star formation in the models of Krumholz & McKee (2005)

and Padoan & Nordlund (2011) under the pressures seen in the Galactic disc and in the

CMZ. These critical density thresholds in the context of these models are estimated as

(see Longmore et al. 2014a) –

ρcrit =
4π

3

αvirPturbµmH

kBT
(4.3)

where αvir is the virial ratio, Pturb is the turbulent pressure, µ is the molecular weight,

mH is the Hydrogen mass, kB is the Boltzmann constant and T is the gas temperature.

To estimate ρcrit in the CMZ and the disc, it is assumed that Pturb/k = 109 & 105 K cm−3

and T = 75 & 20 K, respectively. In both cases it is assumed that αvir = 1.

The resultant critical density thresholds differ by several orders of magnitude. While

the solar neighbourhood cores are all above their corresponding threshold for star for-

mation, all of the CMZ cores in our sample are currently below the threshold appropri-

ate for CMZ conditions. This suggests that these cores are indeed still coupled to the

turbulent flow and have not been able to become self-gravitating (as found in Figure
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4.4), thus inhibiting star formation (as concluded by Kruijssen et al. 2014 and Rath-

borne et al. 2014b). However, the high-mass core in dust ridge cloud G0.253+0.016 (as

seen with ALMA, Rathborne et al. 2014b) is the only CMZ core that lies close to the

critical density threshold. This may indicate that the comparatively low densities esti-

mated with the SMA data may be partially due to the limited spatial resolution. Also

note that, at least in the case of G0.253+0.016, the magnetic field across the cloud has

been shown to display little perturbation (i.e. it is highly ordered, Pillai et al., 2015).

If the same is true for all of the dust ridge clouds, then it is possible that the mag-

netic pressure could be of the same order as that due to turbulence and may therefore

be important in supporting the clouds against collapse and hence driving up the crit-

ical density threshold for star formation. Though, given the expected short lifetimes

of clouds in the CMZ of ∼ 1 – 2 Myr (1 –3 dynamical times; Kruijssen et al., 2015,

Barnes et al., submitted), it is not clear the magnetic field would have a significant

effect on such short timescales.

4.5 Conclusions from Walker et al. (submitted)

High-resolution observations of the Galactic centre dust ridge clouds ‘b – f’ with the

SMA at 1.3 mm are presented. A total of 15 individual dust cores are detected above

the 5σ level, many of which are new detections. The masses of these cores are substan-

tial – ranging ∼ 50 – 2150 M� within radii of ∼ 0.1 – 0.25 pc, with volume densities

∼ 106 cm−3. 13 of these cores do not coincide with known star formation tracers and

may represent a sample of potential pre-stellar cores that are possible precursors to

high-mass stars. Line emission is detected towards only 3 of these quiescent cores,

and virial analysis suggests that they are unbound. However, under the high external

pressures in the CMZ, it is possible that they may be in pressure equilibrium.

Two newly-discovered young, high-mass-star-forming cores are reported – ‘c1’ and

‘e1’. These are two excellent candidates for representing the early stages of high-mass

star formation in the CMZ, prior to the emission of ionising radiation.
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The emission of H2CO and CH3CN is used to estimate the temperature of the gas in the

cores, which ranges from∼ 57 – 240 K. The higher gas temperatures correspond to the

cores in which we detect signs of high-mass star formation, indicating internal heating.

This gas temperature is used to assume upper limits for the dust temperature and re-

calculate the core masses. This results in the mass estimates changing by an average

of 67%. However, it is cautioned that these masses are very strong lower limits, as the

gas is likely to be significantly warmer than the dust at these densities. This highlights

the necessity of accurate dust temperature measurements on these small spatial scales

in the CMZ.

The dust ridge clouds and the embedded cores are subjected to substantially higher

external pressures (∼ 108 K cm−3) – 2–3 orders of magnitude greater than typically

found in the Galactic disc. Yet despite their location in such a high-pressure environ-

ment, the cores are relatively low density and only two of them show any clear signs

of embedded star formation. Comparing the densities of the cores to the predicted crit-

ical density thresholds for star formation under the high pressures in the CMZ shows

that they fall below this threshold. It is concluded that this is further evidence that the

critical density for star formation is indeed higher in the turbulent environment of the

CMZ.

4.6 Appendix: Gas Temperature Modelling

Section §4.3.2 highlighted the fact that the dust temperatures on the spatial scales of

the SMA observations (. 4′′) are not constrained observationally. The best constraints

that are available are from Herschel observations (∼ 20 K on 33′′ scales). It is known

that the gas and dust in the CMZ are not thermalised on these larger scales and that

the gas temperatures are significantly higher (see e.g. Ao et al., 2013; Johnston et al.,

2014; Ginsburg et al., 2016b; Immer et al., 2016). However, it is possible that the gas

and dust may begin to thermalise at high volume densities. Clark et al. (2013) show

this in Figure 3 of their paper, in which they model the temperature of the gas and

dust as a function of volume density, showing that they begin to couple at densities >
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106 cm−3 and seem to converge at > 107 cm−3.

Since the cores that are presented in this chapter are at densities of ∼ 105 – 106 cm−3,

the molecular line emission is used to determine the gas temperature, and it is reasoned

that it may begin to couple to the dust temperature at these densities. However, the

densities of the cores are below those at which convergence occurs in the model of

Clark et al. (2013) and thus there may still be a significant difference between the gas

and dust temperatures of up to several factors. Any masses and subsequent calculations

are therefore strong lower limits. It is more likely that the actual dust temperature lies

somewhere between these limits. In this appendix, the fitting routines that are used to

fit line data to estimate gas temperatures and line-widths are described.

4.6.1 Line fitting

To estimate the gas temperature via the H2CO emission, the lines are fitted under as-

sumed LTE conditions, and best-fit parameters are estimated. Under the assumption

of LTE, the routine constructs line profiles with a range of input parameters including

peak velocities, temperatures, line-widths, and column densities, following the equa-

tions in Mangum & Shirley (2015). The peak velocities of the lines can be selected

manually and are fixed according to their known rest frequencies. It then minimises the

differences between the constructed lines and the observed line, using the non-linear

least-square fitting procedure lmfit5. The best fit is returned, along with the estimated

temperature, line-width, and column density and associated errors, which are taken as

the optimised fitting results6.

The primary diagnostic here is the ratio of 32,1-22,0/30,3-20,2 lines of H2CO, where

a higher fraction indicates a greater population of higher energy states and hence a

higher gas temperature. The upper energy levels of the three states of para-H2CO at

∼ 218 GHz are 20.9566 K, 68.0945 K and 68.1115 K, respectively (LAMDA database,

Schöier et al., 2005). Figure 4.5 shows a plot of gas temperature vs. 32,1-22,0/30,3-

5http://cars9.uchicago.edu/software/python/lmfit/index.html
6Python code for fitting 218 GHz para-H2CO lines can be found at

https://github.com/xinglunju/FFTL.
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Figure 4.5: Gas temperature estimation as a function of the ratio of 32,1-22,0/30,3-20,2

lines of para-H2CO for different models. The dashed/dotted lines correspond to RADEX

models for different volume densities and the solid line corresponds to an LTE model.

20,2. Plotted here (dotted/dashed lines) are several non-LTE models generated using

RADEX (van der Tak et al., 2007) for different volume densities. Also plotted (solid

line) is an LTE model7. This highlights the fact that temperature determination can

vary significantly depending on the assumed models and volume densities. Beyond

certain line ratios, the models become very sensitive to small changes and are thus

uncertain above certain ratios, particularly given the observational uncertainties. This

is a caveat of using an LTE approximation as has been done here. Figure 4.5 shows

that under LTE, the model becomes asymptotic beyond ratios of ∼ 0.4.

Of the 15 cores that have been detected with the SMA, H2CO was detected above 3σ in

only five of them. In the remainder of the sources, there was only very weak emission

7The code used to generate this plot can be found at
https://github.com/keflavich/h2co modeling/blob/master/ examples/h2co j%3D3 lte vs radex.py
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or complete non-detection. For those with line detection, the core mass is re-calculated,

this time using the derived gas temperature as an upper limit to the dust temperature.

Using the estimated masses (both lower and upper limits) and line-widths, the virial

parameter of each core is estimated (α = 5Rσ2/GM ). All of these quantities are re-

ported in Table 4.3. The line fitting of each of these five cores is discussed in the

following sections.

Core ‘c1’

The observations of dust ridge cloud ‘c’ reveal a dust core that is concluded to contain

embedded high-mass star formation. This is due to its high brightness in both the

continuum and many different molecular lines, as well as its coincidence with 70 µm

emission and being one of the most rich sites of rare maser emission known in the

Galaxy, showing SiO, CH3OH, H2CO and H2O maser emission (Ginsburg et al., 2015).

It displays strong emission in the para-H2CO 30,3-20,2 lines at ∼ 218 GHz.

Figure 4.6 (top) shows an integrated intensity map of the para-H2CO 30,3-20,2 line.

Black contours correspond to the SMA 1.3 mm dust continuum. There is good spatial

coincidence between the gas and dust towards this core.

Figure 4.6 (bottom) shows the para-H2CO spectrum averaged over the spatial extent

of the core, along with the best-fit and resultant temperature and line-width. While a

good fit to the H2CO emission is obtained for this source, it is not strongly-constraining

due to the large line ratio (∼ 0.6, see Fig. 4.5). A lower limit of ∼ 150 K is there-

fore provided, above which this temperature diagnostic is uncertain. This source has

strong emission in all three p-H2CO lines and in its central regions, the ratio of the

32,1-22,0/30,3-20,2 lines reaches ∼ 0.8. At these ratios, there are no models that can

reliably estimate the gas temperature. However, given that the core is high density (&

106 cm−3), the gas temperature must be high.

The J=12–11 k-ladder of CH3CN is also well detected towards this core, which can

also be used to estimate gas temperatures. The k = 0 – 8 components of the ladder

are detected, the upper energy levels of which are 69, 76, 97, 133, 183, 247, 326, 419
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and 526 K, respectively. It therefore traces higher temperatures more reliably than the

para-H2CO transitions. Using a similar LTE fitting routine8, the CH3CN spectrum is

fitted (see Figure 4.7) and a spatially-averaged gas temperature of 243.7 K (± 18.2 K)

is estimated. The fit isn’t ideal, primarily due to the heavy blending of the k = 0 & 1

components, resulting from the large line-widths. It is also likely that this emission,

particularly the higher k-components, is tracing the material closer to the forming star,

where the temperatures are higher and can evaporate the molecule off the dust grains

and excite them to high energy states. Thus, a beam-averaged spectrum may be aver-

aging over different components that trace different temperatures, densities and line-

widths. Despite this, the fit is reasonable and demonstrates that the gas is hot and likely

internally heated.

Core ‘c2’

This core is situated ∼ 0.6 pc away from ‘c1’ and appears to be connected to it by

a filamentary structure in the dust continuum. It is significantly less bright, with an

integrated flux almost an order of magnitude smaller (see Table 4.3). It also does not

appear to coincide with any star formation tracers and displays very little molecular

line emission. It does however have H2CO emission (Figure 4.8), though the only line

that is detected with any significance is the 30,3-20,2 line, indicating that the temperature

of the gas is relatively low. Given that this is the only line detected, an upper limit on

the gas temperature of 57.6 K is given, as this corresponds to the lower energy level of

the 32,2-22,1 line.

Cores ‘d2’ & ‘d6’

The SMA observations of dust ridge cloud ‘d’ reveal significant dense substructure

in the dust continuum, which spans the major axis of the cloud along a filamentary

structure containing at least seven cores. None of these cores display any signs of star

8Python code for fitting CH3CN J=12-11 k-ladder can be found at
https://github.com/xinglunju/emanon
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forming activity and have very weak line emission. Only cores ‘d2’ and ‘d6’ coincide

with significant H2CO emission (Figures 4.9 and 4.10).

‘d2’ shows clear emission in all three para-H2CO transitions at ∼ 218 GHz, with a

32,1-22,0/30,3-20,2 ratio of∼ 0.3, which yields a corresponding fit of 86.3 K (± 20.4 K).

‘d6’ has clear emission in the 30,3-20,2 transition, with signs of very weak emission

from the other two transitions. Given that these other transitions are around the noise

level, a constraining fit is not possible, and so again an upper limit on the gas temper-

ature of 57.6 K is given.

Core ‘e1’

Cloud ‘e’ is the most massive (1.1 – 1.5×105 M�) cloud along the dust ridge and is

seen to contain two dense dust cores in the SMA data. One of these, ‘e1’, stands out

as it coincides with both H2O and CH3OH Class II maser emission, as well as a 70 µm

source. It is therefore believed to be a potential site of young high-mass star formation.

The H2CO emission traces the dust core well (Figure 4.11). A reliable fit to the H2CO

lines is not possible, as the large line ratio of 32,1-22,0/30,3-20,2 cannot be fit by any

models. A lower limit of 150 K is assumed, since the LTE method cannot reliably

discern between temperatures beyond this. However, given that this core is dense, this

large line ratio means that the gas must be hot. There appears to be a slight excess

in the emission of the 32,1-22,0 line. The exact cause of this is not known, but it may

suggest that there are multiple components present and/or that there are significant

temperature/density gradients within the core.
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Figure 4.6: Top: Integrated intensity map of the para-H2CO 30,3-20,2 transition towards
‘c1’. Black contours are SMA dust continuum. Bottom: Spatially-averaged spectrum
of the para-H2CO lines (plus HC3N and CH3OH). Using an LTE line-fitting routine,
the H2CO lines are fitted. Due to the large line ratios, a constraining gas temperature
estimate is not possible (see Fig. 4.5). A lower limit of 150 K is provided, above which
our temperature diagnostic is uncertain.
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Figure 4.7: Top: Integrated intensity map of the CH3CN J=12–11 k-ladder towards ‘c1’.
Black contours are SMA dust continuum. Bottom: Spatially averaged spectrum of the
CH3CN J=12–11 k-ladder. The k = 0 – 8 components are clearly detected, the upper
energy levels of which are 69, 76, 97, 133, 183, 247, 326, 419 and 526 K, respectively.
This suggests significant internal heating, with high gas temperatures likely occurring
close to the embedded proto-star(s). Using an LTE line-fitting routine, a beam-averaged
gas temperature of 243.7 K (± 18.2 K) is estimated.
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Figure 4.8: Top: Integrated intensity map of the para-H2CO 30,3-20,2 transition towards
‘c2’. White contours are SMA dust continuum. Bottom: Spatially-averaged spectrum of
the para-H2CO lines. Given that only the 30,3-20,2 line is well detected, an upper limit
on the gas temperature of 57.6 K is placed, as this corresponds to the lower energy level
of the 32,2-22,1 line.
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Figure 4.9: Top: Integrated intensity map of the para-H2CO 30,3-20,2 transition towards
‘d2’. White contours are SMA dust continuum. Bottom: Spatially-averaged spectrum
of the para-H2CO lines. Using an LTE line-fitting routine, the H2CO lines are fitted to
derive a beam-averaged gas temperature of 86.3 K (± 20.4 K).
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Figure 4.10: Top: Integrated intensity map of the para-H2CO 30,3-20,2 transition towards
‘d6’. White contours are SMA dust continuum. Bottom: Spatially-averaged spectrum of
the para-H2CO lines. Given that only the 30,3-20,2 line is well detected, an upper limit
is placed on the gas temperature of 57.6 K, as this corresponds to the lower energy level
of the 32,2-22,1 line.
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Figure 4.11: Top: Integrated intensity map of the para-H2CO 30,3-20,2 transition towards
‘e1’. White contours are SMA dust continuum. Bottom: Spatially-averaged spectrum
of the para-H2CO lines. A reliable fit to the H2CO lines is not possible, as the large
line ratio of 32,1-22,0/30,3-20,2 cannot be fit by any models. A lower limit of 150 K is
assumed, as the LTE method cannot reliably discern between temperatures beyond this.
The cause for the apparent excess in the 32,1-22,0 line is not known, but may suggest that
the emission comes from more than one component, and may have a temperature/density
gradient.



Chapter 5

On-going and future work

Preface

The previous chapters of this thesis summarise individual self-contained projects that

have been completed. The following sections of this chapter provide a summary of

projects that are currently on-going and will continue to be worked on beyond the

submission of this thesis.

5.1 A time-line for high-mass star assembly with ALMA

As described in Chapter 4, the SMA observations of the dust ridge clouds ‘b’ – ‘f’ as

part of the CMZoom survey have uncovered a population of high-mass cores. These

cores range in mass from ∼ 50 – 2150 M� within radii of 0.1 – 0.25 pc. Cloud ‘a’

(aka ‘the Brick’; G0.253+0.016) also contains a core of ∼ 260 M� within 0.1 pc, as

revealed by ALMA Cycle 0 observations (Rathborne et al., 2015). In summary, it is

now known that the dust ridge harbours a substantial number of compact, high-mass

cores. Given this, plus the fact that they are all embedded in dense clumps that provide

110
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Figure 5.1: The four high-mass cores that are being targeted with ALMA at 230 GHz
and 0.13′′ resolution. From left to right they are: b1, a1 (Rathborne et al., 2015), e1 and
c1. Legends indicate the presence of any star formation indicators.

huge mass reservoirs from which they can accrete, makes these cores prime candidates

for the potential formation sites of (very) massive stars.

Additionally, many of the cores display different levels of star-formation activity, based

upon the presence of masers and 24 and 70 µm emission, all of which are pre-UCHII

formation (no centimetre continuum emission detected), as revealed by deep VLA

observations (Immer et al., 2012). We therefore have an unprecedented opportunity

to study a range of early stages of high-mass star formation prior to the disruption by

UCHII regions. As the cores all lie at a similar distance and in a similar environment,

any systematic uncertainties affecting their comparison are greatly minimised.

Furthermore, Longmore et al. (2013b) proposed a scenario in which star formation in

these dust-ridge clouds may have been triggered by their close passage to the minimum

of the Galactic gravitational potential along a common orbital stream (Kruijssen et al.,

2015; Henshaw et al., 2016). As the time since triggering is then known, the global

properties of these clouds allow us to estimate the number of free-fall times each cloud

has undergone since pericentre passage. Remarkably, there is tentative evidence that

the cores show increasing mass and signs of star-formation as a function of increasing

number of free-fall times since pericentre passage of the parent cloud.

In an effort to exploit the unique opportunity presented by this system of high-mass

cores, I am leading an ALMA Cycle 4 project (ID: 2016.1.00949.S) to target a sub-

set of these cores at much higher spatial resolution. I selected the most massive and

dense core in clouds ‘a’, ‘c’, ‘d’ and ‘e’ to target at higher angular resolution (0.13′′),

and at the same frequency (230 GHz) with an almost identical spectral setup to the

SMA observations. The reason for this is that by targeting the same lines at higher

spatial resolution, a multi-scale view of the cores and their dynamical interaction with
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Figure 5.2: ALMA 230 GHz continuum
image of cores ‘e1’ and ‘e2’ in dust ridge
cloud ‘e’ (G0.489-0.010). Black contours
show the SMA 230 GHz continuum emis-
sion. There is clear correspondence be-
tween the SMA and ALMA dust peaks,
and the ALMA observations reveal a high
degree of fragmentation. The centre of
‘e1’ is dominated by one bright core, con-
sistent with the fact that there is on-going
high-mass star formation there.

the larger reservoir of gas in the cloud can be obtained. These particular cores were

chosen as they display a range of star forming indicators, from totally quiescent (core

‘d6’), to a bonafide young high-mass proto-star (core ‘c1’). Using these observations,

I will analyse the gas and dust on ∼ 1000 AU (5×10−3 pc) scales to reveal the inter-

nal structure of these cores and address key open questions regarding high-mass star

formation (Tan et al. 2014) such as – what are the fragmentation properties in these

extremely high-mass cores, and how do they compare to theoretical predictions that

are motivated by different physical processes? Do such cores contain a clustered pop-

ulation of low-mass sources and if so, how do these compare to low-mass proto-stars

in the disc of the Galaxy? Or are the cores instead dominated by a single proto-star?

Are such extreme proto-stars fed via disc accretion as seen for low-mass stars? These

data will provide the first look into the earliest stages of the formation of the high-mass

stars in the CMZ and allow me to isolate the dominant physical mechanisms governing

their formation.



5.2. An ALMA view of a high-mass proto-star in the CMZ cloud G0.38+0.04 113

0.390 0.385 0.380 0.375 0.370 0.365

0.
04

8
0.

04
4

0.
04

0
0.

03
6

0.
03

2

Galactic longitude

G
al

ac
tic

 la
tit

ud
e

Figure 5.3: Three-colour
image of dust ridge cloud c.
Blue: dust column density
from HiGAL. Red: 70 µm
emission from Herschel.
Green: 24 µm emission from
MIPSGAL. Blue contours
show the SMA 230 GHz dust
continuum emission.

The observations for this project are still currently underway. So far, one science target

has been fully observed – core ‘e1’ in dust ridge cloud ‘e’ (see Table 4.3 in the pre-

vious chapter for properties). Figure 5.2 shows an ALMA pipeline calibrated image

of the 230 GHz dust continuum, overlaid with SMA 230 GHz continuum contours.

The ALMA data reveal a significant degree of fragmentation on smaller spatial scales.

Work is currently underway to estimate the masses and sizes of these cores, as well

as to identify which molecular lines are detected, and how they can inform our under-

standing of the chemistry, kinematics and temperature structure of the cores.

5.2 An ALMA view of a high-mass proto-star in the

CMZ cloud G0.38+0.04

Of the cores that have been detected with the SMA observations, one stands out in

particular. Core ‘c1’ in dust ridge cloud ‘c’ is situated towards the south of the cloud

and may contain up to 2150 M� in a radius of 0.25 pc. It is also known that strong

70 µm and 24 µm emission is coincident with the position of the core (see Figure 5.3).

From Herschel data, it is estimated that the luminosity of this source is∼ 6.5×104 L�.

This high luminosity, plus the fact that there have been no HII regions detected towards

this region in the centimetre continuum (Immer et al., 2012), means that this source

must be very young.
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The source also displays a rich amount of maser emission. Figure 5.4 shows the posi-

tion of all the known masers with respect to the dust core, along with their respective

velocities (Ginsburg et al., 2015). It appears to be the richest source of rare maser

emission in the Galaxy, coinciding with H2O, CH3OH, H2CO and SiO maser emis-

sion. Only eight H2CO masers have been identified in the Galaxy so far, all of which

are seen to be associated with high-mass star formation (see Ginsburg et al. 2015 and

references therein). Even more rare are SiO masers. These are commonly detected

towards evolved stars, but only rarely towards star-forming regions, and then only in

regions of known high-mass star formation. Thus far, only five SiO masers have been

identified towards such regions in the Galaxy.

Orion KL, Sagittarius B2 N, Sagittarius B2 MD5, W51N, and G0.38+0.04 (aka dust-

ridge cloud ‘c’) are the only known SiO maser sources associated with star formation

(Zapata et al., 2009b; Ginsburg et al., 2015). Each of these is in some way unique,

and so far no clear connection between them has been identified. SiO masers involve

rotational transitions inside excited vibration states, which lie well above the ground

state (e.g. Elitzur et al., 1983). In Orion KL, the modelling of their excitation is found

to be consistent with radiative pumping (Goddi et al., 2009).

One of the critical difficulties in understanding the origin of the SiO maser emission

has been confusion. In Orion, extensive VLBI observations show that the SiO masers

trace part of a rotating disk (Goddi et al., 2009; Greenhill et al., 2013). In Sagittarius

B2 and W51, however, it has only been observed that the masers are associated with

massive hot cores – in these regions, these hot cores are adjacent to extreme HII regions

that make resolving individual sources difficult (De Pree et al., 2011). Due to its unique

position in the CMZ, its relatively isolated location, its wealth of masers and its lack

of HII regions (Immer et al., 2012), core ‘c1’ is the ideal source to permit studies of the

origin and nature of rare maser emission towards high-mass star forming regions.

Given this, I am observing this source with ALMA in Cycle 4 (ID: 2016.1.00766.S) at

very high spatial (0.078′′, 3.1×10−3 pc or 650 AU) and spectral resolution (0.4 km s−1),

at ∼ 86 GHz (band 3). The primary motivation behind this observation is to simulta-

neously study these peculiar SiO masers and the high-mass proto-stars that drive them
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Figure 5.4: Overview of the masers detected towards G0.38+0.04, coloured by velocity
(Ginsburg et al., 2015). The positional errors on the SiO and CH3OH 70 – 61 A+

measurements are much larger than for the other data sets because the measurements
are low signal-to-noise from single-dish observations. The grey boxes show the pixel
size from the Mopra observations of these lines. The large X marks the centroid location
of dust core detected in the 1.3 mm continuum with the SMA.

Figure 5.5: ALMA 86 GHz continuum image of cores ‘c1’ and ‘c2’ in dust ridge cloud
‘c’ (G0.38+0.04). Black contours show the SMA 230 GHz continuum emission. There
is clear correspondence between the SMA and ALMA dust peaks, and the central bright
source fragments into at least 3 individual cores.
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down to very small spatial scales. The observations are partially complete. The source

has currently been observed at an angular resolution of ∼ 0.36′′, and I am currently

waiting for the remaining observations to be taken when the array is in a more ex-

tended configuration. Figure 5.5 shows an ALMA pipeline calibrated image of the

86 GHz dust continuum, overlaid with SMA 230 GHz continuum contours. There is

clear agreement between the dust emission from the SMA and ALMA. The central

bright source is seen to fragment into at least 3 separate cores, that are very close to

one another (few thousand AU) and ordered in an intriguingly linear fashion. Whilst

waiting for the final observation to be taken, preliminary analysis will begin to search

for the molecular lines detected towards this source, with a particular focus on search-

ing for the detection of vibrationally excited SiO emission towards the bright central

core.

5.3 Searching for proto-cluster candidates with HOPS

and ATLASGAL

In the introduction to this thesis (§1) it was noted that no starless YMC precursors have

been identified in the Galactic disc. This is in contrast to the CMZ, where the dust ridge

clouds that have been studied in this thesis appear to be largely starless, despite being

as massive and dense as similar star-forming clouds in the disc. Even so, it is found

that even these are not dense enough to form a typical YMC at their current density

distributions (see Chapters 2 and 3). Thus, despite dedicated observational searches,

no clouds have been found with a sufficient mass to form a YMC in-situ at their typical

stellar density distributions. The fact that more quiescent, less evolved clouds contain

less mass in their central regions than highly star-forming clouds, suggests an evolu-

tionary trend in which YMC progenitor clouds continue to accumulate mass towards

their centres after the onset of star formation (see conclusion of Chapter 3).

There are several natural consequences of this ‘conveyor-belt’ scenario for YMC for-

mation. Firstly, at the earliest evolutionary stages, the mass in the precursor clouds that
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ultimately ends up in the YMC is spread over a much larger radius. As such, potential

YMCs precursor clouds at the earliest evolutionary stages may have been excluded

from previous searches. Secondly, the gas at these larger radii must converge to the

eventual cluster centre in less than ∼ 1 Myr – the upper limit to the observed stellar

age spreads in YMCs (see e.g. Longmore et al., 2014a). Such converging gas flows

should be imprinted in the observed gas kinematics.

This section outlines a method to search for YMC precursor candidates in the Galac-

tic disc using the H2O Southern Galactic Plane Survey (HOPS, Walsh et al., 2011)

and APEX Telescope Large Area Survey of the Galaxy (ATLASGAL, Schuller et al.,

2009).

To search for potential YMC precursors in the HOPS catalogue, the sources are first

correlated with any corresponding dust continuum emission. In doing this, one can es-

timate the masses and global kinematics of the sources and examine the morphologies

of both the dust and gas emission to identify sources of potential interest. To do this,

data from ATLASGAL were utilised. ATLASGAL provides a map of > 400 square

degrees of the inner Galaxy at 870 µm, with an angular resolution of ∼ 19′′.

To match the sources in the HOPS catalogue with regions in the ATLASGAL map,

the full ATLASGAL map is smoothed to match the angular resolution of the HOPS

data. The 2D HOPS masks are then applied to the ATLASGAL map to extract the

data within each mask as an individual map. As the coverage of the two surveys are

different, it was not possible to obtain a masked dust map for every HOPS source. Of

the 687 sources in the HOPS catalogue, 605 corresponding dust maps were obtained.

Having correlated the gas and dust emission for the HOPS sources, their masses and

radii are then estimated. The mass of each source is calculated via the same method

outlined in Chapter 2 of this thesis. As the dust temperature is unknown for all of the

sources, a uniform value of 15 K is assumed in all cases. Though the true dust tem-

perature is likely to be non-uniform and vary between the regions, 15 K is consistent

with typical temperatures seen in molecular clouds (see e.g. Wienen et al., 2012). The

distance to each source is taken from those estimated by Urquhart et al. (2014). These
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distance estimates are then coupled with the estimated geometric radii of the HOPS

masks for each catalogued source to determine their physical radii in parsecs.

The mass and radius estimates for all of the HOPS sources are used to identify which

of these may be potential sources of interest in the context of YMC precursors. As

YMCs are typically > 104 M�, the search is limited to any sources that contain at least

this much this mass, such that when accounting for a star formation efficiency and the

systematic uncertainties (factor of ∼ 2), such a cloud could potentially form a 104 M�

cluster. Only clouds with radii of no more than a few tens of parsecs are considered, as

clouds larger than this are unlikely to dynamically evolve (collapse) on short enough

time-scales that they could form a dense, massive cluster.

Fig. 5.6 displays the mass vs. radius for all of the 605 ATLASGAL regions that were

extracted using the HOPS masks. The dotted horizontal line indicates the 104 M�

threshold. A total of 12 sources (marked as red points) are found to be above this

mass threshold. Many of the sources are found to be projected within a few degrees of

the Galactic centre. Inspection of the dust continuum emission and the NH3 (1,1) in-

tegrated intensity, velocity field and the velocity dispersion towards G001.374+0.112,

G002.826+0.048, G003.145+0.3014, G003.340+0.396 and G358.894-0.290, show that

these sources all have very broad line profiles, with FWHM in excess of 15 km s−1.

Inspection of the full HOPS NH3 data cubes show these sources are clearly associ-

ated with prominent features in the Galactic centre such as the 1.3 degree cloud and

Sagittarius C. The kinematic models used to determine distances from the VLSR are not

reliable for regions so close to the Galactic centre. Placing these sources at the correct

distance of ∼ 8.4 kpc (Reid et al., 2009a, 2014) and using a lower limit to the dust

temperature of 20 K, the mass of these sources drops below 104 M�. It is therefore

concluded that these are unlikely to be YMC precursor clouds. This leaves a total of 7

candidate sources. Table 5.1 summarises the properties of these sources.

To determine whether these sources are potential precursors to YMCs, both the dust

continuum and gas kinematics are inspected. This serves to identify sources that pos-

sess the qualities one would expect of a YMC precursor that may be forming via a

‘conveyor belt’ mechanism, i.e. centrally-concentrated with kinematic properties that
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Figure 5.6: Mass-radius plot for all of the 605 HOPS sources. The horizontal dotted
line denotes the threshold of 104 M� for selecting potential pre-YMC candidates. The
dashed line corresponds to a constant volume density of 100 cm−3 (assuming spherical
geometry), and the dash-dot line corresponds to a constant column density of 1022 cm−2.
Sources of interest are marked red.

Source M R FWHM dnear dfar dadopted (∆d) Prob.
104 M� pc km s−1 kpc kpc kpc

G003.432-0.351 1.2 17 3.08 ∗ ∗ 21.1 (3.7) 0.59
G316.752+0.004 1.5 18 2.95 2.6 9.8 9.8 (0.8) 0.54
G330.881-0.371 1.1 9 3.5 3.9 11.0 11.0 (0.4) 0.7
G338.464+0.034 1.6 10 11.8 3.1 12.7 12.6 (0.5) 0.74
G341.224-0.274 1.3 20 1.89 3.6 12.5 12.4 (0.5) 0.79
G350.170+0.070 1.8 17 5.66 5.8 11.0 10.4 (0.4) 0.72
G357.555-0.323 1.5 22 1.48 ∗ ∗ 16.8 (2.3) 0.79

Table 5.1: Properties of the HOPS sources that have been identified as candidate pre-
cursors to YMCs. Given are the estimated mass (M), radius (R), FWHM, near distance
(dnear), far distance (dfar), adopted distance (dadopted) with associated error (∆d), and the
probability the the source is at the adopted distance. ∗This indicates that near and far
distance limits for these sources are not constrained.
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may be suggestive of infall/global contraction. To do this, the dust continuum and

the integrated intensity, the velocity field and the velocity dispersion of the NH3 (1,1)

emission are all inspected. Additionally, data archives and catalogues are searched to

look for associated Herschel 70 µm emission, Spitzer/GLIMPSE 8 µm emission or

absorption and CH3OH and H2O maser emission (Walsh et al., 2011; Caswell et al.,

2010b, 2011).

The following discusses the characteristics of each of the 7 candidate sources. Please

refer to Appendix B for the corresponding images of each source.

G003.432-0.351

This source is centrally-condensed, has a velocity gradient across it of up to 8 km s−1

and has a high velocity dispersion that peaks towards its centre. Coupled with its high

mass estimate, this seems promising as a candidate YMC precursor. However, it stands

out as an absorption feature at 8 µm, and only has a 59% probability of being at the

adopted distance of 21.1 kpc. Given these factors, it is likely that the source is actually

at the near distance of 3.08 kpc. This would result in a mass estimate that is∼ 47 times

smaller, and thus would not qualify the source as a YMC precursor. It is also found

to coincide with a 70 µm source and a CH3OH maser (Caswell et al., 2010b) and is

therefore not quiescent.

G316.752+0.004

From the distance likelihood estimation (see Table 5.1), it is only marginally more

probable that the source lies at the far distance of 9.8 kpc, rather than the near dis-

tance of 2.6 kpc. The mid-IR images also show absorption features with a similar

morphology as the dust and NH3 emission, which would suggest this source is at the

near distance. Indeed, previous studies have concluded this source is at the near dis-

tance (see e.g. Longmore et al., 2007, and references therein). In which case, the mass

in Table 5.1 is overestimated by a factor 13. Thus, it is concluded that this source is
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unlikely to be a YMC progenitor cloud.

G330.881-0.371

This region shows two clearly distinct velocity components, with two clumps that

are separated by > 20 km s−1 (see Figure B.5). Masking out the unrelated clump

(lower left in Figure B.5) reduces the mass estimate by 11%, down to ∼ 9800 M�. It

stands out in absorption against the 8 µm and may therefore be at the near distance

of 3.9 kpc, which would further reduce the mass estimate to ∼ 1230 M�. It contains

a 70 µm source and CH3OH and H2O maser emission (Caswell et al., 2011; Walsh

et al., 2011), showing that star formation is underway, although at an early evolution-

ary stage. Whether or not this source is YMC progenitor candidate depends primarily

on correctly resolving the distance ambiguity. But even if it does lie at the far distance,

more detailed calculations of the mass (e.g. including the actual distribution of dust

temperature) are required to see if the mass reservoir is large enough for the cloud to

produce a YMC.

G338.464+0.034

The dust continuum and NH3 maps show two distinct peaks of roughly equal intensity,

offset by∼ 5–10 pc. The 8 µm emission shows significant nebulosity, although it is not

clear if this is physically associated with the dense gas. The northern gas component

has an embedded 70 µm source and CH3OH and H2O maser emission (Caswell et al.,

2011; Walsh et al., 2011), indicating that star formation is underway. The probability

that this source lies at the far distance is high (74%), and there is no evidence of 8 µm

absorption features with similar morphology to the NH33 and dust emission. At the

peak of the NH3 integrated intensity and dust emission the two gas clumps are offset in

velocity by ∼ 6 km s−1. Although there are clear signs of a velocity gradient along the

major axis of the two clumps, suggesting that they may be physically associated, the

angular resolution of the HOPS data is too coarse to see whether this velocity gradient

is unambiguously contiguous from one clump to the other. As such, it cannot be ruled
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out that these may be physically unassociated dense clumps. However, if they are

physically associated, it is intriguing that the velocity gradient is sufficient to bring the

two clumps together in 1 Myr – the maximum age spread observed for YMCs. This is

an interesting candidate to follow up as a potential YMC progenitor candidate.

G341.224-0.274

Both the dust and NH3 emission for show multiple components spread over a projected

radius of > 20 pc. The probability that this source is at the far distance is high (79%).

Both CH3OH and H2O maser emission is found (Caswell et al., 2011; Walsh et al.,

2011), along with several 70 µm sources and 8 µm emission that appears to be showing

signs of stellar feedback (Figure B.10), indicating intense star formation activity. The

NH3 (1,1) data cubes show that there is almost no change in velocity across the main

ridge of the source which contains most of the mass. Unless there are convergent gas

motions of > 10 km s−1 purely in the plane of the sky, there is no way that the gas in

this source can condense to a radius of∼ 0.1 pc within 1 Myr. It is therefore concluded

this is unlikely to be a YMC progenitor, and certainly not a quiescent one.

G350.170+0.070

This region is characterised by at least 3 separate clumps, and it is not clear how/if they

are associated. There is an abundance of CH3OH masers and one H2O maser (Caswell

et al., 2010b; Walsh et al., 2011), and 70 µm sources and 8 µm emission (see Figures

B.12 and B.13). It is therefore concluded to not be a quiescent YMC precursor. Further

analysis is required to assess the cluster forming potential of the bright, star-forming

clump at ∼ G350.1+0.100.

G357.555-0.323

This region displays the characteristics of a long, infrared-dark filamentary structure

(see Figure B.14). It stands out in absorption at 8 µm and contains one 70 µm source
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that is coincident with both CH3OH and H2O maser emission is found (Caswell et al.,

2011; Walsh et al., 2011). The NH3(1,1) integrated intensity and velocity dispersion

don’t appear to peak where the dust continuum peaks, and there is no obvious sign

of a coherent velocity gradient across the region. Again, unless there are convergent

gas motions of > 10 km s−1 in the plane of the sky, this region cannot condense to a

radius of ∼ 0.1 pc within 1 Myr. It is therefore concluded this is unlikely to be a YMC

progenitor.

Summary of HOPS sources

In summary, the search to find YMC progenitor candidate clouds using the HOPS data

has thus far proved inconclusive. The main limiting factor in determining whether

or not most of the sources are genuine YMC progenitor candidates is the uncertainty

in the distance, and hence mass. Although several sources may lie at the far kine-

matic distance, and therefore have sufficient mass to form a YMC, more detailed in-

vestigation is required to prove this conclusively. The most promising candidates are

G330.881-0.371, G338.464+0.034 and G350.170+0.070. If these do lie at the far kine-

matic distance, and all the gas is physically associated, the NH3 (1,1) velocity structure

suggests the magnitude of the gas motion is sufficient to bring the mass to a radius of

< 1 pc in under 1 Myr. However, the major caveat for this to occur is that these gas

flows must be convergent. Further analysis of these clouds is therefore required.

Regardless of whether these turn out to be YMC progenitor clouds or not, one thing is

clear – all the candidates that have been identified are already forming stars. Despite

relaxing the search criteria to find younger sources, and despite HOPS having sufficient

sensitivity and resolution to find quiescent progenitor clouds, none were found. This

leads to the conclusion that starless YMC progenitor gas clouds either do not exist

in the disc of the Galaxy, or that the quiescent phase is so short it is effectively not

observable given the small number of YMCs expected to be forming at any time in

the Milky Way. If any of these sources are YMC precursors that are forming via a

‘conveyor belt’ mode (see Chapters 2 and 3), then this could suggest that there is no
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truly starless phase, and that the cluster forms along with concurrent contraction of the

system.



Chapter 6

Conclusions

The aim of the work conducted in this thesis was to take a detailed look at the most

extreme quiescent molecular clouds in the Galaxy – the Galactic centre dust ridge –

in the context of high-mass star and cluster formation, and how their location in the

extreme environment of the CMZ may be used to help uncover the extent to which the

process of star formation is sensitive to the conditions of its natal environment. The

following provides a summary of the results of the work carried out in pursuit of these

goals.

6.1 Summary

The conclusions drawn from this research can be summarised as follows –

(i) Using the multi-wavelength continuum observations of the Herschel infrared Galac-

tic Plane Survey (HiGAL, Molinari et al., 2010) in combination with the spec-

tral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey

(MALT90, Foster et al., 2011, 2013; Jackson et al., 2013), the Galactic centre

dust ridge clouds are determined to be high-mass (104−5 M�), compact (1–3 pc)

and gravitationally bound. Given their lack of widespread embedded star for-

125
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mation, it is concluded that these are ideal candidates for representing the initial

conditions of YMC formation in the CMZ.

(ii) Comparing the distribution of the gas in the dust ridge clouds (YMC precursors)

to that of the stars in Sagittarius B2 (proto-YMC) and the Arches cluster (YMC)

reveals a stark contrast in the way the gas and stars are distributed. The stellar

content is characterised by central concentration, followed by a sharp density fall

off beyond the ‘core radius’. In contrast, the clouds have comparatively shallow

mass distributions, with no significant central concentration. ALMA observa-

tions instead show that the gas and dust is highly structured throughout. This

is concluded to be at odds with theories in which YMCs are predicted to form

from very dense initial conditions, followed by expansion due to the expulsion

of residual gas.

(iii) The previous result was found to be true in the CMZ. As this is an extreme region

compared to the Galactic disc, a follow up study was conducted to extend this

comparison between YMCs and their precursors throughout the Galaxy. This

showed that, in all but the case of Westerlund 1, YMC precursor clouds are

not sufficiently dense or centrally concentrated that they could form a typical

cluster that then expands due to gas expulsion. The observations also reveal a

possible evolutionary trend, in which clouds contract and accrete gas towards

their central regions along with concurrent star formation. This is argued to

favour a ‘conveyor-belt’ mode of YMC formation.

(iv) As part of the CMZoom survey with the SMA, the dust ridge clouds ‘b–f’ were

observed at 230 GHz, with ∼ 4′′ angular resolution and 1.1 km s−1 spectral

resolution. Dendrogram analysis reveals a population of high-mass pre/proto-

stellar cores throughout the dust ridge, with masses ranging from 50 – 2150 M�

and radii of 0.1 – 0.25 pc. Of the 15 cores detected, 2 of them are found to

contain newly discovered high-mass proto-stars. None of the cores have detected

radio continuum emission, leading to the conclusion that these sources are ideal

candidates for representing the very early stages of high-mass star formation in

the CMZ.
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(v) Comparing the properties of the cores discovered with the SMA with those of

high-mass proto-stellar cores in the Galactic disc shows that while they are of

comparable mass and size, only 2 of the CMZ cores are proto-stellar, and the rest

quiescent. This constitutes further evidence for an environmentally dependent

critical density threshold for star formation in the CMZ, which is thought to be

due to the high turbulent energy density there.

(vi) Determining the masses of pre/proto-stellar cores in the CMZ is currently very

uncertain. The dust and gas in the CMZ are known to be thermally uncoupled

on global scales, but it is not known how this translates on to smaller scales. No

direct measurements of the dust temperature exist on these scales, and it is not

clear that using the gas temperature as a proxy is appropriate. More detailed

models of the interplay between the gas and dust under these conditions and

as a function of density are required such that we can begin to place tighter

constraints on core masses via the dust continuum.

6.2 Concluding remarks

The work presented in this thesis constitutes a small step in what is a larger journey

towards understanding how stars and clusters form under extreme conditions, and ulti-

mately how this ties in with our knowledge of star formation as a whole.

Having shown that these dust ridge clouds are the best candidates for quiescent pre-

cursors to YMCs in the Galaxy, and that they harbour the likely initial conditions for

high-mass star formation in the CMZ, paves the way for more detailed studies of the

sources discovered, and how they interact with their natal environment. As noted in

the previous chapter, on-going observations with ALMA are providing an unparalleled

insight into the interiors of these cores. With facilities like ALMA, we are now able

to study the process of stellar mass assembly in the turbulent environment of the CMZ

at spatial resolutions and sensitivities that were previously only accessible for nearby

star forming regions.
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This work has primarily focused on a very specific region of the CMZ that spans only

∼ 37 pc in Galactic longitude. The CMZoom survey has provided a complete census

of the high-mass cores in the CMZ across a much larger range in longitude, and hence

distance from the Galactic centre. Future studies like those presented here that include

the full core catalogue promises to offer an unprecedented insight into the properties

of high-mass cores as a function of their position in the inner Galaxy. This will pave

the way for follow up studies with ALMA, and will significantly advance the current

understanding of the formation of high-mass stars and clusters as a function of envi-

ronment.



Appendix A

SMA data calibration and imaging

Chapter 4 of this thesis presented the 1.3 mm dust continuum and molecular line data

from SMA observations of the Galactic centre dust ridge clouds ‘b’ – ‘f’. These obser-

vations were taken as part of a large legacy survey of the CMZ (CMZoom1, PIs: Eric

Keto and Cara Battersby, see Battersby et al. 2017). The survey was designed to target

all regions within the CMZ that lie above a column density threshold of & 1023 cm−2,

with the aim of targeting the majority of the dense gas in the region, where it is most

likely that stars and clusters should form. The CMZoom survey was conducted from

May 2014 – September 2016, consisting of ∼ 500 hours worth of mapping, corre-

sponding to ∼ 240 arcmin2 coverage of the CMZ at 230 GHz (1.3 mm). The typical

angular resolution achieved is ∼ 4” (0.16 pc at a distance of 8.4 kpc) and the spectral

resolution is ∼ 1.1 km s−1. The target RMS is ∼ 3 mJy/beam in the dust continuum.

The dust ridge data that are discussed in Chapter 4 comprise only a small fraction

(4 tracks) of the total CMZoom survey. As part of the data reduction team, I was

responsible for calibrating 18 individual tracks. The following section outlines the

general method that was employed when calibrating all of the datasets.

1More details of this survey can be found at https://www.cfa.harvard.edu/sma/LargeScale/CMZ/
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Calibrating the SMA data

Data calibration for all SMA tracks was performed using the MIR software package.

MIR is an IDL-based package that has been developed explicitly to calibrate data from

the SMA. The general steps for calibrating the data in MIR are as follows –

Flagging: The data are initially loaded into MIR, and the continuum and spectra are

inspected to look for any anomalous data points. Such data points are typi-

cally single outliers in the continuum and/or narrow, high-amplitude spikes in

the spectra. These are most often caused by the electronics and must be flagged

out prior to calibration. There are many other possible sources of bad data, such

as atmospherhic absorption lines, which are particularly troublesome at low ele-

vation (high airmass).

Tsys correction: Prior to any further calibration, the data are first calibrated by the

‘chopper-wheel’ method. This corrects for variations in atmospheric opacity

and electronic gain throughout the observation. The Tsys (system temperature)

correction also weights the data by Tsys2. This correction provides an initial

method of flux calibration, which is typically found to be accurate to within ∼
20%.

Bandpass calibration: This step is important as it corrects for any variations in the

phase and amplitude as a function of frequency. The corrections are based upon

the observed phase and amplitude of a standard calibrator source. Ideal calibrator

targets have bright, flat and line-free spectra. Quasars are often used for this

purpose.

Gain calibration: This step corrects for any variations in the phase and amplitude as

a function of time. Quasars are again commonly used for this step.

Flux calibration: Though the aforementioned ‘chopper-wheel’ method does a good

job of calibrating the true fluxes of the observed sources, it can be improved

upon. This improved flux calibration is often performed using Solar system
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bodies (planets and moons) as calibrator sources, as their absolute fluxes are well

known. A comparison between the observed and true flux provides a corrective

factor – a single number that is ultimately used to scale the observed flux of the

science target to match the true flux.

The actual process of data calibration is of course more detailed and nuanced than the

above steps. The intent is to give a broad and general overview of the method.

Imaging the data

Once the data are calibrated and science-ready, they must be manipulated and imaged

to yield the desired data products, such as continuum images and data cubes. There

are several different software packages available for this. The method employed in this

thesis uses both MIRIAD and CASA for continuum-line-separation and imaging.

As part of the data team for the CMZoom survey, I have written an automated imaging

pipeline that is being used to take the calibrated datasets from the full survey and output

a standardised set of data products2. The following outlines the steps that this pipeline

employs to produce these data products –

(i) Any given science target in the survey will have at least 2 tracks covering it, one in

the compact array configuration, and one in the subcompact. For larger maps, or

those that were observed more than once (e.g. to improve noise or uv-coverage),

there may be several tracks corresponding to one source. The first step of the

pipeline is to load each track for the given source into MIR. This is done via

executing a shell script, followed by the source name and paths to the relevant

tracks, e.g. for a source with two tracks, the pipeline would be executed as –

pipeline.sh G0.123+4.567 track1.mir track2.mir

(ii) Once loaded into MIR, the idl2miriad routine is used to output the lower and

upper sidebands for all tracks as .miriad files.
2The pipeline can be found at https://github.com/danw27/SMA-Imaging-Script
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(ii) The .miriad files for both sidebands are loaded into MIRIAD. Here, edge channels

are flagged on both sidebands via uvflag, and the continuum subtraction is per-

formed using uvlin. As this is an automated process, only channels in which

very bright line emission (e.g. 12CO) is common are flagged for the continuum-

line-separation. The fits command is then used to output uvfits files for the

continuum and line data for each sideband, for all tracks covering the source.

(iii) All uvfits files are then loaded into CASA and imported as .ms files using the

importuvfits command. Both the upper and lower continuum sidebands

across all tracks are then concatenated into a single measurement set via concat.

The upper and lower sidebands for the line data (cubes) are separately concate-

nated across all tracks.

(iv) The concatenated continuum and LSB/USB data cubes are all separately imaged

(non-interactively) using the clean command in CASA. The clean parameters

are loosely set, but can be modified by the user in the relevant python script. The

resultant images are then output as .fits files via the exportfits command.

(v) To produce several data cubes of particular lines of interest for the survey, the

python package spectral cube is used to cut out slices of the LSB or USB

cubes about the rest frequency of the desired lines. Currently, the script out-

puts cut-out cubes of SiO at 217.10498 GHz, H2CO at 218.22219 (30,3-20,2),

218.47563 (32,2-22,1) and 218.76007 (32,1-22,0) GHz, and C18O at 219.56036 GHz,

with a width of 0.15 GHz either side of the rest frequency.

This is a first iteration of the imaging pipeline for the CMZoom survey. Current testing

is underway to improve the code, optimise clean parameters and automate more of

the user inputs.



Appendix B

Images of HOPS YMC precursor

candidates

This appendix presents images of the 7 HOPS sources that were identified as potential

YMC precursor candidates in Chapter 5, section 3 of this thesis. Though 12 sources

were initially identified, 5 of these were discarded as they are situated towards the

Galactic centre, and thus their distances, line-widths and masses are not well con-

strained.

The following pages present, for each of the 7 sources, (i) a four-panel image dis-

playing the dust continuum, integrated NH3(1,1) intensity, the NH3(1,1) velocity field

and the NH3(1,1) velocity dispersion, and (ii) a three-colour image of the source, con-

sisting of Herschel 70 µm (red), Spitzer/GLIMPSE 8 µm and dust continuum (blue),

overlaid with the positions of catalogued CH3OH (Caswell et al., 2010b, 2011) and

H2O (Walsh et al., 2011) masers. All images have contours of the ATLASGAL dust

continuum (smoothed to the HOPS angular resolution) overlaid.
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Figure B.1: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G003.432-0.351. Black contours
are from the dust continuum.
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Figure B.2: Three-colour image of G003.432-0.351. Blue: ATLASGAL dust emission.
Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. The white cross
denotes the position of CH3OH maser emission (Caswell et al., 2010b). White contours
correspond to the ATLASGAL dust continuum, smoothed to the resolution of the HOPS
data.
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Figure B.3: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G316.752+0.004. Black contours
are from the dust continuum.



137

316.900 316.800 316.700 316.600

0.
20

0
0.

15
0

0.
10

0
0.

05
0

0.
00

0
-0

.0
50

-0
.1

00
-0

.1
50

Galactic longitude

G
al

ac
tic

 la
tit

ud
e

Figure B.4: Three-colour image of G316.752+0.004. Blue: ATLASGAL dust emission.
Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. White contours
correspond to the ATLASGAL dust continuum, smoothed to the resolution of the HOPS
data.
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Figure B.5: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G330.881-0.371. Black contours
are from the dust continuum. Note that the clump to the lower left is unrelated.
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Figure B.6: Three-colour image of G330.881-0.371. Blue: ATLASGAL dust emission.
Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. The white crosses
mark the position of CH3OH maser emission (Caswell et al., 2011). The red cross marks
the position of H2O maser emission (Walsh et al., 2011). White contours correspond to
the ATLASGAL dust continuum, smoothed to the resolution of the HOPS data.
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Figure B.7: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G338.464+0.034. Black contours
are from the dust continuum.
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Figure B.8: Three-colour image of G338.464+0.034. Blue: ATLASGAL dust emission.
Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. The black cross
marks the position of CH3OH maser emission (Caswell et al., 2011). The red cross
marks the position of H2O maser emission (Walsh et al., 2011). White contours cor-
respond to the ATLASGAL dust continuum, smoothed to the resolution of the HOPS
data.
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Figure B.9: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G341.224-0.274. Black contours
are from the dust continuum.
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Figure B.10: Three-colour image of G341.224-0.274. Blue: ATLASGAL dust emission.
Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. Black and white
crosses mark the position of CH3OH maser emission (Caswell et al., 2011). The red
cross marks the position of H2O maser emission (Walsh et al., 2011). White contours
correspond to the ATLASGAL dust continuum, smoothed to the resolution of the HOPS
data.
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Figure B.11: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G350.170+0.070. Black contours
are from the dust continuum.
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Figure B.12: Three-colour image of G350.170+0.070. Blue: ATLASGAL dust emis-
sion. Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. Black and
white crosses mark the position of CH3OH maser emission (Caswell et al., 2011). The
red cross marks the position of H2O maser emission (Walsh et al., 2011). White con-
tours correspond to the ATLASGAL dust continuum, smoothed to the resolution of the
HOPS data.
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Figure B.13: ATLASGAL dust continuum, integrated NH3(1,1) intensity, the NH3(1,1)
velocity field and the NH3(1,1) velocity dispersion for G357.555-0.323. Black contours
are from the dust continuum.
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Figure B.14: Three-colour image of G357.555-0.323. Blue: ATLASGAL dust emis-
sion. Red: Herschel 70 µm emission. Green: GLIMPSE 8 µm emission. The white
cross denotes the position of CH3OH maser emission (Caswell et al., 2010b). The red
cross marks the position of H2O maser emission (Walsh et al., 2011). White contours
correspond to the ATLASGAL dust continuum, smoothed to the resolution of the HOPS
data.
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