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22

23 1. Introduction

24 Infection control is a diverse area of healthcare which evolved most rapidly in the middle of the last 

25 century, mainly to the benefit of Homo sapiens.  In the modern consciousness it is not an area 

26 associated with dyes.  Consider the following two situations.

27 Contemporary view

28 In 2017, a businesswoman attending her GP with suspected tonsillitis is expecting to be prescribed 

29 an antibiotic, to have the prescription filled at a local pharmacy and then to begin the self-

30 administered therapy at home.  The GP, having examined the patient’s neck glands externally and 

31 the back of her throat with a light and a tongue suppressor, suspects bacterial infection and 

32 prescribes the penicillin derivative, amoxicillin.

33 The woman has the prescription filled at the pharmacy and is supplied with a seven-day course of 

34 capsules.  These are taken for the first three days, by which time she no longer has a sore throat or 

35 swollen glands and, having many other important matters to deal with at the office, forgets about 

36 the situation with her throat and so discontinues the course.

37

38 Pre-antibiotic view

39 In 1932, a Sheffield (UK) steelworks’ foreman presents at a local hospital with a burn wound to his 

40 left forearm.  The wound is cleaned and then dressed with a greasy formulation containing the 

41 bright yellow dye acriflavine.  The foreman returns to work straight from the hospital.  As the wound 

42 eventually heals, there is no follow-up.
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44 The first scenario described is not untypical.  However, in terms of the fight against antimicrobial 

45 drug resistance (AMR) the discontinuation of therapy is a cause for concern which has, 

46 unfortunately, been with us since the general availability of antibiotics following the Second World 

47 War.  Moreover, it is only one of a number of causes for concern.

48 The second scenario, again, does not represent an unusual occurrence.  Because it is set in the pre-

49 antibiotic era, the conventional approach to local infection would often involve the use of an 

50 antimicrobial dye.  Methylene blue had been used in malaria (though probably not in Sheffield) for 

51 over forty years by this time; “Flavine therapy” - usually employing acriflavine, proflavine or brilliant 

52 green - had saved countless lives in the base hospitals in France during World War I; acriflavine, 

53 brilliant green and crystal (gentian) violet continued to be used in healthcare in controlling infection.  

54 Furthermore, occurrences in the industrial screening of derivatives of these dyes would shortly usher 

55 in the above-mentioned antibiotic era via the azoic dye Prontosil and the consequent sulphonamide 

56 ‘Gold Rush’ of the late 1930s [1].

57 While both situations describe effective infection control, there are obviously potential downsides in 

58 each case.  The former describes potentially sub-lethal dosing, which is accepted as bad practice, 

59 potentially leading to drug resistance development among the patient’s internal microbiota [2].  The 

60 latter approach was not always successful and, clearly, produced staining of the wound and, 

61 presumably, the surrounding tissue.  The application of acriflavine also required medical assistance.

62 Of the two approaches, antibiotic therapy has enjoyed generally unchallenged use since the mid-

63 1940s rapidly eclipsing the dyes which had been in widespread use in infection control for the 

64 previous 30 years.

65

66 1.1. Antimicrobial resistance
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67 There can be little doubt that straightforward dosing using antibiotic capsules or suspensions has 

68 allowed simple control of a high percentage of bacterial infections and that this control has required 

69 very little in terms of medical supervision.  Such end-user independence in the face of the 

70 pathogenic threat is logically highly desirable, and an aspirational hallmark of highly evolved, 

71 affluent civilisation.  A similar situation pertains to the food animal stock required by such a society.

72 However, such has been our over- and mis-use of antibiotics – against self-limiting or non-bacterial 

73 infection in humans, or as growth-promoters in livestock, for example – that bacterial drug 

74 resistance has now attained dangerous levels and without a productive pipeline of new antibiotics is 

75 now cited as a threat to civilisation in the same breath as global warming and international terrorism 

76 [3-5].

77 In terms of modern alternatives to antibiotics, the main coverage is given to vaccines, 

78 bacteriophages and other biological approaches [6].  The use of dyes in this respect seems to be 

79 promoted only by those working in the field of photoantimicrobials.

80

81 2. Dyes and photoantimicrobials

82 But why not use dyes in infection control?  As noted above, flavine therapy was not always 

83 successful, but the modern, targeted use of such - or related - dyes in conjunction with targeted light 

84 provides highly effective microbial killing via the intermediacy of reactive oxygen species (Figure 1), 

85 whether of penicillin-sensitive streptococci, meticillin-resistant Staphylococcus aureus or ESBL-

86 expressing Klebsiella pneumoniae [7].  Given that several articles have appeared recently reporting 

87 the apparent imperviousness of strains of the latter bacterium against any antibiotic [8], the 

88 photoantimicrobial approach (Figure 1) offers considerable benefit.

89
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90 [Figure 1]

91

92 So why aren’t dyes – and particularly photoantimicrobial examples – being introduced to support 

93 the conservation of our essential antibiotic arsenal?

94 The answer may lie a considerable way back, in the early part of the last century.

95 The purpose of flavine therapy was to stain selectively and thus inactivate the microbes present in 

96 the target tissue.  The application of sufficient quantities of dye to facilitate this effect inevitably led 

97 to staining of the tissue surrounding the target area.  Were this process to be carried out with a 

98 modern, colourless biocide, such as chlorhexidine, such staining - although present - would, of 

99 course, be invisible.  The comparison of dye and biocide action is covered below.  Tissue staining, or 

100 discolouration, is unpopular with patients, especially when visible in public, or when garments 

101 become stained.  In the period before sulphonamide introduction, when brilliant green was a 

102 common antibacterial, often used in obstetrics, the famous medic L.P. Garrod wrote of complaints 

103 from patients concerning the dye: “It is objected to on account of its staining propensities; whether 

104 stained linen or death from septicaemia is the greater evil is a question which seems to admit of only 

105 one answer.” [9]. This comment was made in the “pre-antibiotic” period, so often referenced by 

106 today’s media.

107 It is also well-known that Alexander Fleming was disparaging about the use of dyes in infectious 

108 disease.  He wrote in a 1917 Lancet article that “… the theoretical basis for the use of dyes [as 

109 antimicrobials] is thoroughly unsound” [10].  It should be noted that Fleming’s argument was based 

110 on in vitro laboratory work, rather than Browning’s successful clinical use of acriflavine and brilliant 

111 green.

112 In order to minimise the staining problem, the Australian chemist Adrien Albert carried out an 

113 enormous amount of acridine synthesis during the 1930s and 40s, developing possibly the first 
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114 properly organised molecular structure-activity relationships and delivering, among others, the non-

115 staining antibacterial drugs aminacrine and diflavine (9-amino and 2,6-diaminoacridine, 

116 respectively), as well as the (yellow) antimalarial mepacrine [11].

117

118 2.1. Methylene blue and malaria

119 It is of little surprise that the conventional drugs derived from medical dyes in the mid-20th Century – 

120 such as the sulphonamides or chloroquine - were colourless but, as our supply of effective, 

121 colourless contemporary drugs dwindles, can we really use a distaste for staining as a reason not to 

122 use effective, coloured alternatives?  And there is a modern, 21st Century precedent.

123 Drug resistance is not a new phenomenon.  Monotherapy of malaria produced significant levels of 

124 chloroquine-resistant parasites (plasmodia) by the early 1960s and in sub-Saharan Africa by the 

125 following decade [12].  This was, and is, a scourge, particularly among the young.  As a response, 

126 methylene blue was introduced – as a conventional antimalarial, rather than a photoantimicrobial - 

127 for the treatment of juvenile malaria in Burkina Faso in 2005 [13]. This represents the systemic 

128 administration of an intensely blue substance which leads to colouring of the urine and stool, as well 

129 as clothing and intimate apparel.  Furthermore, the population being treated belongs to highly 

130 structured and regulated tribal systems where a child producing strangely coloured waste might 

131 otherwise be ostracised.  This has been avoided by extended discussions with tribal elders prior to 

132 the commencement of therapy [14].

133 Such an approach might be seen by those in affluent societies with easy access to high-tech 

134 healthcare to be a retrograde step.  It is not.  Rather it represents the logical use of an effective, 

135 relatively inexpensive drug, taking into account an insignificant side-effect, in the face of widespread 

136 treatment failures with conventional therapeutics.
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137 The argument for the use of methylene blue - or another of the approved medical dyes which are 

138 also photosensitisers (e.g. toluidine blue or crystal violet) - as a photoantimicrobial in modern 

139 healthcare is very similar, save for the fact that treatment would be localised, rather than systemic.  

140 There is an understandable assumption that treatment using this approach must be limited to 

141 topical therapy.  This is not the case since, given access to endoscopic techniques and fibre optic 

142 technology, most regions of the body are accessible, both to the local delivery of a 

143 photoantimicrobial and also of light.

144

145

146 2.2. Advantages of the photoantimicrobial approach

147 In addition, one of the major strengths of photoantimicrobials is their broad-spectrum, truly 

148 antimicrobial action (i.e. against bacteria, viruses, fungi and protozoa), regardless of conventional 

149 resistance status. As noted, 21st Century resistance, for example to antibacterial drugs, is increasingly 

150 difficult – and expensive - to treat with other conventional agents (Figure 2).

151

152 [Figure 2]

153

154 3. Photoantimicrobial use in the clinic

155 Thus we have a combination of highly –effective and rapid antimicrobial action which works best 

156 against a localised infection, regardless of microbial type. How might this be used positively in 

157 modern infection control?
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158 Tonsillitis is a very common illness which may have a bacterial or viral aetiology.  Its treatment is 

159 often given as a good example of bad practice, viz. the prescription amoxicillin (typically, as noted 

160 above) by physicians before this aetiology is established, often leading to pointless – and ultimately 

161 dangerous – antibiotic exposure of the patient’s microbiota.  The application of a 

162 photoantimicrobial, such as methylene blue, to the tonsils, followed by a short illumination – about 

163 30 seconds – with a light probe should provide sufficient bacterial kill locally, with no effect further 

164 on the alimentary tract, or systemically.  Any photoantimicrobial swallowed during the procedure 

165 would have no effect, as only the illuminated area would be activated. Such a situation can be 

166 assumed for most local infections, in each case allowing the removal of conventional antimicrobials 

167 from the treatment protocol, and this would be possible regardless of the resistance status of the 

168 infecting microbes.

169 Photoantimicrobial application in this way could be of major impact if the infection is already 

170 difficult to treat using conventional agents – for example in drug-resistant cases or where a drug 

171 cocktail is required, as in pulmonary tuberculosis [18,19].  Other presentations include diabetic foot 

172 ulcers, which have been shown to be responsive to this approach (Figure 3) in cases where the 

173 standard option is amputation [20].  Even without the spectre of infection by multiple-drug resistant 

174 bacteria, this would be of enormous benefit to the patients involved, as well as offering enormous 

175 cost savings in terms of surgical procedures, rehabilitation and onward care.

176

177 [Figure 3]

178

179 The same approach is currently in use in patient decolonisation in Canada.  The effect of light-

180 activated methylene blue against meticillin-resistant Staphylococcus aureus (MRSA) is well 

181 established [21] and this has been applied to the decolonisation of elective surgical patients in a 
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182 Vancouver hospital, with subsequent decreases reported in post-op MRSA infection rates [22].  In 

183 such cases photoantimicrobials conserve the standard prophylactic drugs normally employed in 

184 addition to those required in an anti-MRSA capacity, post-op.  There is no reason why the 

185 prophylactic route cannot be applied to ‘lesser’ infections which commonly precede highly 

186 dangerous ones, such as pneumonia, meningitis and sepsis, thus blocking the progression from, for 

187 example, tonsillitis, otitis media or sinusitis to these high mortality-associated diseases.

188

189 3.1. Using directed light for therapeutic activation.

190 Clearly, effective photoantimicrobial action is only achieved with an efficient light source – i.e. of the 

191 correct wavelength range and of sufficient power output – and this may be another perceived hurdle 

192 to clinical acceptance.

193 An undoubted strength, in theory, of modern antibiotic use is that in most cases the drugs are self-

194 administered, usually via the oral route.  Ideally, the involvement of the clinician is solely in 

195 examining the sufferer and prescribing the requisite drug.

196 The addition of light activation to the therapeutic equation may require medical supervision or 

197 operation. There is, of course, a parallel - and absolutely routine - situation in many dermatology 

198 departments in the treatment of psoriasis, vitiligo and other skin disorders with psoralens, activated 

199 by ultraviolet-A radiation (PUVA therapy).  The dangers of UV-A are well documented, while there 

200 are none with red light [23], but the fact remains that the proper direction of illumination, as well as 

201 providing the correct light fluence (i.e. how much, for how long), might require trained personnel.  

202 This would certainly be the case for procedures requiring administration and optical fibre use inside 

203 the body.

204 Should the requirement for trained medical staff – typically general practice nurses are envisaged – 

205 be a sufficient reason to discount the approach?  Again, it is emphasised that photoantimicrobials 
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206 are effective against resistant bacteria, so a one-off treatment – e.g. again for an Ear, Nose & 

207 Throat/Upper Respiratory Tract infection - would be sufficient, regardless of resistance status.  

208 Surely the initial expense in training and equipment would far outweigh both the multiple 

209 treatments required for resistant disease and the deleterious effects on patients’ microbiota?  

210 Obviously, other alternative therapies, such as vaccines and bacteriophages would also require 

211 medical administration.

212

213 3.2. Photoantimicrobials vs. biocidal agents

214 What is the difference between a photoantimicrobial agent and a biocide?  Aside from the 

215 requirement for light activation, both types have multiple sites of action.  However, for biocides, 

216 such as bisguanides (e.g. chlorhexidine gluconate) or quaternary ammonium salts (e.g. benzalkonium 

217 chloride) this is mainly due to the extremely high concentration in which they are administered – 

218 usually at tens or hundreds of times the minimum inhibitory concentration for the target organism.  

219 While this is acceptable externally in terms of host toxicity, such concentration at internal sites could 

220 be dangerous [24].  As can be seen from Figure 4, cationic photoantimicrobials are active at much 

221 lower concentrations on illumination, and these concentrations fall far below safe levels for known 

222 vital stains, such as methylene blue, when used systemically – usually in 1 % w/v solution, equivalent 

223 to 32000 mol L-1.

224 [Figure 4]

225

226 4. Conclusion and ways forward

227 Various clinicians in the Pacific North-West and in Brazil are using methylene blue for local 

228 photodisinfection, for the most part in dental applications.  This successful approach allows the 
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229 conservation of antibiotics and should be both a clear demonstration of the utility of the approach 

230 and a strong argument for its wider introduction, both in local disinfection and in prophylaxis.  The 

231 approach is particularly relevant in the current – and likely lasting - period of widespread decreasing 

232 antibiotic efficacy and it now requires active participation from those with influence in both the 

233 healthcare and pharmaceutical/biotech lobbies in order to realise this.  In addition, the introduction 

234 of protocols requiring the administration of photoantimicrobials – and other, non-conventional 

235 approaches - must engender a new way of thinking about infection control.  As a modern society this 

236 should not be beyond possibility, and we have, of course, done it before.
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298 Figure legends

299

300 Figure 1. Adapted Jablonski diagram for photoantimicrobial action.  Key: S0 – singlet electronic 

301 ground state of photoantimicrobial molecule; S1 – singlet excited state; T1 – triplet excited state; A – 

302 photon absorption; F- relaxation by fluorescence; ISC – intersystem crossing; P – phosphorescence; 

303 3O2 – ground-state, triplet oxygen.  Reactive oxygen species: 1O2 – excited-state, singlet oxygen; O2
- - 

304 superoxide anion; HO. – hydroxyl radical; H2O2 – hydrogen peroxide.

305

306 Figure 2.  Minimum bactericidal or fungicidal concentrations (MBC or MFC, respectively,  in 

307 micromoles) of standard antimicrobial agents  and photoantimicrobials against: (a) Pseudomonas 

308 aeruginosa, (b) methicillin-resistant Staphylococcus aureus, (c) Propionibacterium acnes and (d) 

309 Candida albicans in vitro.  Light activation 660 nm LED array, light fluence = 6 J cm-2.  

310 Photoantimicrobial activity is shown by pale grey bars, black bars indicate dark activity, maximum 

311 concentration tested = 100 M.  Drug key: Levo – levofloxacin; fluclox – flucloxacillin; vanc – 

312 vancomycin; BPO – benzoyl peroxide; flucon – fluconazole.  Exemplar photoantimicrobial structures 

313 are given above [15-17].

314

315 Figure 3.  Successful photoantimicrobial treatment of the diabetic foot. (a) Initial presentation; (b) 90 

316 days’ post-treatment with methylene blue/toluidine blue/light (Courtesy of Dr J.P. Tardivo, Fundação 

317 Medicina ABC, Santo André, SP, Brazil).

318

319 Figure 4.  Minimum bactericidal concentrations (MBC, in micromoles) of standard biocidal agents 

320 (CTAB = cetyl trimethylammonium bromide) and photoantimicrobials against Staphylococcus aureus 
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321 (pale grey bars) and Escherichia coli (dark grey bars) in vitro. Light activation 660 nm LED array, light 

322 fluence = 6 J cm-2.  Black bars indicate dark activity, maximum concentration tested = 100 M.  

323 Photosensitiser structures are provided in Figure 2, above [15-17].

324
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