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Abstract 

      Explicit negative attitudes towards obese individuals are well documented and seem 

to modulate the activity of perceptual areas, such as the Extrastriate Body Area (EBA) in 

the lateral occipito-temporal cortex, which is critical for body-shape perception. 

Nevertheless, it is still unclear whether EBA serves a role in implicit weight-stereotypical 

bias, thus reflecting stereotypical trait attribution on the basis of perceptual cues. Here, 

we used an Implicit Association Test (IAT) to investigate whether applying transcranial 

direct current stimulation (tDCS) over bilateral extrastriate visual cortex reduces pre-

existing implicit weight stereotypical associations (i.e. “Bad” with Fat and “Good” with 

Slim, valence-IAT). Furthermore, an aesthetic-IAT, which focused on body-concepts 

related to aesthetic dimensions (i.e. “Ugly” and “Beautiful”), was developed as a control 

condition. Anodal, cathodal, or sham tDCS (2 mA, 10min) over the right and left lateral 

occipito-temporal (extrastriate visual) cortex was administered to 13 female and 12 male 

participants, before performing the IATs. Results showed that cathodal stimulation over 

the left extrastriate visual cortex reduced weight-bias for the general evaluative (Bad vs. 

Good) but not specific aesthetic (Ugly vs. Beautiful) dimensions as compared to sham 

stimulation over the same hemisphere. Furthermore, the effect was specific for the 

polarity and hemisphere of stimulation. Importantly, tDCS affected the responses only in 

male participants, who presented a reliable weight-bias during sham condition, but not in 

female participants, who did not show reliable weight-bias at sham condition. The present 

results suggest that negative attitudes towards obese individuals may reflect neural 

signals from the extrastriate visual cortex.    

 

Keywords: anti-fat bias; Extrastriate visual cortex; tDCS; Implicit Association Test   
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Introduction 

 

      There is mounting research evidence that overweight and obese people experience 

social disadvantages in a multitude of social settings, such as interpersonal relationships, 

employment, education and healthcare (Puhl and Brownell, 2001; Schupp and Renner, 

2011). Indeed, various explicit measures have revealed that being overweight or obese is 

usually associated with a range of negative features, such as being unattractive, weak-

willed and sexually estranged (Crandall, 1994; Phillisp and Hill, 1998; Todorov and 

Uleman, 2003; Todorov et al., 2008). Furthermore, those negative attitudes towards obese 

individuals (anti-fat bias) seem to develop in early childhood and they have been even 

observed in children as young as 3 years old, gradually increasing after that (Cramer and 

Steinwert, 1998).  

     More recently, anti-fat bias has been detected (Teachman et al., 2003; Ahern and 

Hetherington, 2006; Schwartz et al., 2006) by applying “implicit” measures, such as the 

Implicit Association Test (IAT; Greenwald, Nosek and Banaji, 2003), which can provide 

an index of the automatic association between the face and body of an obese or slim 

individual and an evaluative dimension (e.g., Good vs. Bad). Interestingly, participants 

have shown higher levels of implicit, as compared to self-report measures of bias, thus 

suggesting that the IAT can reveal levels of prejudice that may not be otherwise apparent 

(Wang, Brownell and Wadden, 2004). These implicit negative attitudes toward 

overweight and/or obese individuals can then trigger a range of discriminative, non-

verbal behaviours, for example eye contact and spatial distance. Such immediate negative 

behaviours may take place in the absence of reflective thinking (Todorov and Uleman, 
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2003), thus providing a constant source of discrimination elicited by the mere sight of an 

obese person (Schupp and Renner, 2011).  

    Human beings naturally rely on fundamental cues, such as race, sex and age, in order 

to categorize others (Fiske, 1993); however these cues may elicit stereotypes about the 

groups they represent and, thus, yield person-perception processes (Kunda and Thagard, 

1996; Macrae et al., 1994). As such, body shape is an important cue to form impressions 

of other people on the basis of basic perceptual processing. It is still unclear, however, to 

what extent body-weight negative stereotypes entail only the activity of high-level brain 

areas involved in evaluative processing or also modulate the activity of brain regions 

involved in processing visual information conveyed by body shape. In spite of many 

studies investigating the underlying neural basis of stereotypical attitudes by 

administering the IAT (e.g., Cattaneo et al., 2011; Crescentini et al., 2014, 2015; Gallate 

et al., 2011; Gladwin, den Uyl and Wiers, 2012; Chee et al., 2000), only very few studies 

have so far used neuroimaging and/or neurophysiological techniques to focus on the 

neural bases of implicit obesity stigma. A seminal fMRI study of Krendl and colleagues 

(2006) investigated the neural basis of forming either explicit (“Do you like or dislike this 

person?”) and implicit (“Is this a male or female?”) judgments of people having well-

established stigmatized conditions, such as obesity. The authors of the study proposed the 

activation of an extensive neural network, including the amygdala, insula, anterior 

cingulate, and lateral prefrontal cortex that is involved in the processing of highly 

negative social stigmas. These brain areas have been shown before to be also involved in 

responding to aversive stimuli, as well as in modulating inhibition and cognitive control. 

More recently, Azevedo et al. (2014) reported decreased neural reactivity as a result of 

observing obese people’s pain in areas associated with the representation of sensory and 
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affective-motivational aspects of pain (i.e. bilateral insula, somatosensory cortices 

and thalamus), revealing diminished resonance with obese people’s pain.  

    In a similar vein, Schupp and Renner (2011) investigated the neural bases of 

implicit anti-fat bias by means of event-related potential (ERP) recordings. In this 

study, schematic portrays of underweight, normal weight, and overweight body 

shapes, as well as pictures of tools, served as stimuli. During a first passive viewing 

task, participants were asked to simply observe the stimuli, while in a subsequent 

distraction condition participants were asked to detect a specific tool. The authors 

reported that observing overweight in comparison to normal-weight or underweight 

body shapes elicited a positive potential shift over fronto-central sites and a relative 

negative potential over occipito-temporal regions in a time window from ∼190 to 

250 msec. No modulation was reported at later time windows. These findings are in 

accordance with those showing that an early differential ERP activity may be 

associated with the emotional processing of pictures, faces and words (Wieser et al., 

2010) and suggest that the perception of images of obese individuals can modulate 

early perceptual processing areas, reflecting the intrinsic significance of stimuli 

(Schupp and Renner; 2011; Wieser et al., 2010). In line with this view, a recent fMRI 

study of Quadflieg et al. (2011) investigated whether early perceptual aspects of person 

construal are sensitive to the individuals’ stereotype-related status. The authors found that 

the presentation of targets that violated stereotypic beliefs (e.g., male hairdressers and 

female airline pilots) increased neural activity not only in areas dedicated to executive 

control (i.e., DLPFC), but also in extrastriate areas related to person perception. These 

findings suggest that stereotypic beliefs modulate the activity of extrastriate areas 

involved in person percept in the brain.  
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Interestingly, neuroimaging evidence shows that perceptual signals in the ventral 

visual stream are linked with person-knowledge processing in the Theory-of-Mind 

network (Greven et al., 2016; Greven & Ramsey, 2017). Specifically, Greven and 

Ramsey (2017) have recently demonstrated that parts of the extrastriate cortex 

(EBA), which is involved in the processing of body shape and posture (Urgesi et al., 

2004; Downing and Peelen, 2011), exchange signals with areas involved in 

mentalising and making inferences about others’ thoughts and traits (i.e., temporal 

pole). These findings supports the notion that brain areas that represent aspects of 

another person’s physical appearance (person perception), such as body shape and 

posture, are coupled to brain circuits that respond when reasoning about another 

person’s trait-based character (person knowledge) (Greven et al., 2016). However, 

the functional significance of the contribution of person-perception areas to high 

level representations of other people’s traits is still unclear. In particular, previous 

studies have not provided evidence on how modulation of activity in person-perception 

areas contributes to the formation and reshaping of social biases.  

To address this issue, we applied transcranial direct current stimulation (tDCS), a non-

invasive brain-stimulation technique that can interfere with cerebral cortex processes by 

means of a weak electric current passed between two electrodes (anodal and cathodal) on 

the scalp. This way, decreased (cathodal) or enhanced (anodal) cortical excitability can be 

induced. We used tDCS to directly manipulate the cortical excitability of the extrastriate 

visual cortex, including the extrastriate body area (EBA), which has been shown to 

respond selectively to photorealistic depictions of whole human bodies or body parts, still 

images of human bodies or body parts extending to ‘stick figures’ and silhouettes, in 
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preference to human faces, images of objects parts and scenes (Downing et al., 2001; 

Candidi et al., 2008; Peelen and Downing, 2007; Urgesi et al., 2007a).  

     In two separated sessions, we applied anodal- (a-), cathodal (c-), or sham-tDCS over 

the extrastriate visual cortex in the right and left hemispheres of male and female 

participants with the aim of investigating its role in mediating implicit negative weight 

stereotypical associations (i.e. “bad” with overweight and “good” with slim) as 

measured with a weight-related valence-IAT (v-IAT). Furthermore, an ad-hoc IAT, 

which focused on perceptual dimensions related to body aesthetics (i.e. ‘ugly’ with 

overweight and ‘beautiful’ with slim), was developed as a control task (aesthetic-

IAT, ae-IAT). Importantly, while the v-IAT aimed at measuring general evaluative 

attitudes towards overweight individuals, the a-IAT referred to a more specific 

stereotype of ‘FAT-ugly’, which is more related to a perceptual rather than 

conceptual dimension. In particular, in these weight-related IATs, participants were 

required to classify the body of obese and thin people as Fat and Slim, respectively. 

In parallel, they were required to classify a series of adjectives along two dimensions 

(general evaluative, Good vs. Bad, or aesthetic, Beautiful vs. Ugly). In one 

(congruent) block, bodies and adjectives were randomly presented, while Slim 

categorization responses were mapped onto the same response key of Good (or Beautiful) 

categorization responses, whereas Fat and Bad (or Ugly) shared the same response key. 

In another (incongruent) block, response mapping was inverted, so that the Fat 

categorizations were mapped with the Good (or Beautiful) ones and the Thin with the 

Bad (or Ugly) categorizations. In keeping with previous studies (Teachman et al., 2003; 

Ahern and Hetherington, 2006; Schwartz et al., 2006), we expected participants to be 
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faster to respond in the first pattern than in the second one, which is taken as evidence of 

‘anti-fat bias’.  

        In line with Greven, Downing, and Ramsey (2016), Greven and Ramsey (2017) 

and Quadflieg et al. (2015), we expected that neural activity in extrastriate visual 

cortex (and particularly in EBA) should provide information about bodily 

appearance to person knowledge areas (Gobbini and Haxby, 2007; Weiner and 

Grill-Spector, 2010 and Greven et al., 2016), thus selectively modulating the 

associations between implicit personality judgments and weight-bias. Conversely, 

the effects of EBA stimulation are expected to be more limited on the association 

between two perceptual dimensions of body appearance, namely thinness and 

beauty, which do not require access to person-specific processing. Predictions 

regarding the direction of the after-effects of c- and a-tDCS on occipito-temporal areas 

should be cautious, as they appear to be task-dependent and are still controversial (Antal, 

Nitsche, and Paulus, 2006). However, based on the results of Quadflieg et al. (2011), 

showing increased activity of EBA for stereotype-incongruent depictions of human 

bodies, we expected that inhibiting excitability of extrastriate visual cortex with c-tDCS 

should reduce implicit anti-fat bias, whereas facilitating excitability of extrastriate visual 

cortex with tDCS should increase it. Furthermore, comparing the effects obtained for the 

two weight-related IATs may allow us to verify whether the role of the extrastriate visual 

cortex is merely related to the perception of body weight (i.e., with comparable effects of 

tDCS for the v- and ae-IAT) or reflects higher-level involvement in associating specific 

evaluative dimensions to body forms (i.e., with selective effects for one IAT). Finally, 

tDCS effects should be influenced by the interindividual differences in implicit and 

explicit weight-related stereotypes that are expected between men and women 
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(Lieberman, Tybur and Latner, 2012), with men reporting more negative general attitudes 

toward obese individuals than women and, consequentially, specific reduction or increase 

of implicit anti-fat bias after c- or a- tDCS, respectively. 

 

Methods 

 

Participants 

 

       A total of 25 students (13 women, range: 20-29 years old; 12 men, range: 20-28 

years old) from the University of Udine, Italy, participated in the experiment in return for 

course credits. Participants were naïve as to the purpose of the study and information 

about the experimental hypothesis was provided only during the debrief period, after all 

the experimental tests were completed. All subjects, but one male and one female, were 

right-handed as identified by means of a Standard Handedness Inventory (Briggs and 

Nebes, 1975). They were all native Italian speakers of Caucasian race and they all 

reported heterosexual orientation. Finally, all participants reported normal or corrected to 

normal vision, they were in good health, free of psychotropic or any other medication, 

with no past history of psychiatric or neurological disease and with no contraindication to 

tDCS (Poreisz et al., 2007). At the end of the experiment, participants filled two 

questionnaires: 1) the Sociocultural Attitudes Toward Appearance Questionnaire-3 

(SATAQ-3; 4 scales; Stefanile et al., 2011; Thompson et al., 2004) to measure multiple 

aspects of societal influence, such as the degree of mass media internalization of the 

models; 2) the Fat Phobia scale (short version from Bacon et al., 2001) in order to 

measure fat phobic attitudes. In particular, The Fat Phobia Scale – short form (Bacon et 
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al., 2001) assesses explicit negative attitudes and stereotyped perceptions of obese 

people. This scale consists of 14 pairs of adjectives that are sometimes used to describe 

obese individuals. For each pair, participants have to indicate, using a 5-point scale, the 

adjective that best describes their feelings and believes (e.g. 1 = Industrious/5 = Lazy). 

Higher scores reflect greater fat phobia. Furthermore, we estimated participants’ BMI 

from self-report measures of weight (Kg) and height (cm). The participants’ 

demographics and self-report questionnaire scores as a function of gender are reported in 

Table 1. Participants gave their written informed consent and all experimental procedures 

were previously approved by the ethics committee of the Scientific Institute (IRCCS) ‘E. 

Medea’ and were in accordance with the ethical standards of the Declaration of Helsinki 

(1964). 

 

-------------------------------- Please insert Table 1 around here -------------------------------- 

 

Materials and Methods 

 

Body Stimuli  

 

    All participants were shown a series of 6 virtual human models (3 females / 3 males) 

previously selected from a database of adult body stimuli created by means of Poser Pro 

2010 (e-frontier, Santa Cruz, CA) (for details see Cazzato et al., 2012). Virtual models 

rather than “real” persons were used in order to limit confounds related to differences in 

attractiveness, clothing, attire, and familiarity (Schupp and Renner, 2011). The coloured 

virtual models were rendered in two different static daily poses (e.g., standing). The body 
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weight was gradually increased or decreased in order to create two body size extremes for 

each model (fat/slim). All pictures were taken with the models standing in frontal-view, 

against a grey background and wearing identical black clothing (underwear). Following 

that, photorealistic textures were applied and the images were rendered with global 

illumination. Finally, in order to avoid the influence of any facial features, the pictures 

were imported into Adobe Photoshop 7.0 (Adobe System Inc. CA; 

http://www.adobe.com) and a circle region around the face was scrambled.  

 

IAT words  

 

       A pilot study was run to appropriately select words stimuli for the valence (good and 

bad) and aesthetic (beautiful and ugly) categories, which were used respectively in the v-

IAT and ae-IAT. The entire corpus of evaluative- and aesthetics-related adjectives was 

selected among a larger sample of words contained in the COLFIS database (CoLFIS 

database: Corpus and Frequency Lexicon of Written Italian, Bambini and Trevisan, 

2012). An independent group of 25 Italian subjects (9 males and 16 females; range: 18-36 

years old), who did not take part in the tDCS experiment, rated each word (n=94) on a 

series of 7-point Likert scale by judging: 1) familiarity (subjective report about how 

frequently a word occurs in the life of a person); 2) imageability (ease and speed of a 

word in evoking a mental image or a sensory experience); 3) concreteness (reference to 

objects, living things, actions and materials that can be experienced through the senses); 

4) valence (ability of a word to elicit in the speaker and listener positive or negative 

feelings) and 5) strength of association of each adjective with aesthetic and valence  

dimensions. Table 2 reports the mean values for each of the above-mentioned dimensions 
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for the four categories of stimulus words. A total of final forty-eight words (12 for each 

category) were selected as stimuli (see Table 3). A series of one-way ANOVAs on each 

dimension indicated that the categories were matched for familiarity [F(3,44) = 2.130, p 

= 0.110, ηp2 = 0.127], imageability [F(3,44) = 2.540, p < 0.069, ηp2 = 0.148], length of 

letters [F(3,44) = 1.321, p = 0.280, ηp2 = 0.083] and frequency of word use in Italian 

language (COLFIS database) [F(3,44) = 1.145, p = 0.341, ηp2 = 0.072], but not for 

concreteness [F(3,44) = 13.954, p < 0.001, ηp2 = 0.488]. Newman-Keuls post hoc tests 

for the concreteness measure showed that the words used in the aesthetic category 

(Beautiful and Ugly) were judged more concrete than the other two categories of words 

(Valence: Bad and Good) (all p < 0.001). Importantly, the analysis on valence ratings 

revealed a main effect of category [F(3,44) = 326.896, p < 0.001, ηp2 = 0.957], with 

Beautiful and Good words having more positive valence than the other two types of 

words (all p < 0.001). Finally, the analysis on the strength of association (difference 

between the association of each word with the aesthetic and valence dimensions) 

confirmed that Beautiful and Ugly words were more associated with the aesthetic than the 

valence dimension and that Good and Bad words were more associated with the valence 

than the aesthetic dimension [F(3,44) = 42.393, p < 0.001, ηp2 = 0.743; all p< 0.001]. 

Thus, the pilot experiment confirmed the validity of our measures of aesthetic and 

valence representations.  

 

-------------------------------- Please insert Table 2 around here -------------------------------- 

-------------------------------- Please insert Table 3 around here -------------------------------- 

 

Experimental Procedure  
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     During the experiment, participants were seated in a dimly light room at a distance of 

approximately 57 cm away from a LCD monitor (19 inches, resolution of 1024*768 

pixels, refresh frequency at 60 Hz). The experiment was designed and controlled with E-

Prime software (version 2.0 Professional, Psychology Software Tools, Inc., Pittsburgh, 

PA). At the beginning participants had to complete their demographic details, followed 

by brief written instructions about the task and, then, by the v-IAT. Participants were 

instructed to respond as fast and accurate as possible immediately after the onset of the 

stimuli (i.e., single words or images presented one at a time at the centre of the screen), 

by pressing a left (E) or a right (I) key on the computer keyboard with the index finger of 

their left and right hand, respectively. Each IAT lasted approximately 8 minutes and was 

administered in seven blocks, each consisting of both congruent and incongruent 

condition blocks (blocks 3, 4, 6, and 7) and familiarization blocks (blocks 1, 2, and 5) 

(Greenwald, 2003; Cattaneo et al., 2011; Crescentini et al., 2014). Before the first running 

of each IAT, participants were shown a list with all the words belonging to the two 

relevant categories and they were asked to carefully study all the stimuli. 

    In the first block of v-IAT, 12 images of Fat and 12 images of Slim people were 

presented and had to be classified as being either Fat (left key) or Slim (right key). Each 

of the 12 images of the two categories was presented only once for a total of 24 trials. 

The second block also consisted of 24 trials, in which Bad-related (requiring a left-key 

response) and Good-related (requiring a right-key response) words were presented. In the 

third block (24 practice trials) and in the fourth block (48 test trials), both Fat and Slim 

bodies and Good and Bad words were randomly presented and participants were 

instructed to press the left key for Bad-related words and images of Fat people, and the 
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right key for Good-related words and images of Slim people (congruent-stereotype 

condition). In the fifth block (24 trials), response key assignments were reversed in 

relation to the categorization involving images of fat people (right key) and images of 

slim people (left key). Finally, in the sixth block (24 practice trials) and in the seventh 

block (48 test trials), both Fat and Slim bodies and Good and Bad words were randomly 

presented and participants were required to press the left key for images of Fat people and 

Good words and the right key for images of Slim people and Bad words (incongruent-

stereotype condition) (see Table 3). Typically, participants are faster and more accurate in 

the congruent- than in the incongruent-stereotype blocks, thus demonstrating an 

automatic association between Fat and Bad categories and Slim and Good categories 

(Greenwald, Banaji and Nosek, 2003).  

    With regards to the control ae-IAT, the procedure was exactly the same as the v-IAT, 

with the exception that aesthetics-related words were presented and participants were 

instructed to classify the words as being related to Beautiful or Ugly categories (see Table 

3). The 12 images of fat and slim people presented during the v-IAT were also used in the 

ae-IAT. Stimuli within each block were presented in random order. Each stimulus 

(word/image) persisted on the computer screen until the participant gave a correct 

response. If participants made an error, then a red “X” appeared below the word stimulus 

in order to prompt them to correct the mistake and press the correct key. Following the 

response, the next stimulus appeared after 500 msec, during which only the category 

labels were visible on the screen. In two separate days (one per each hemisphere), the 

two IATs were presented to each participant in three blocks, one for each of the 

stimulation type (sham, a- and c-tDCS). Each block lasted for about 20 min (tDCS 

stimulation + task duration). Moreover, half of the participants performed first the 
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v-IAT and then the ae-IAT; the opposite order was used for the other half. Finally, 

after the tDCS experiment, participants were required to provide information about their 

weight and height (for calculating BMI) and to complete the SATAQ-3 and Fat Phobia 

Questionnaires.   

 

-------------------------------- Please insert Table 3 around here -------------------------------- 

 

tDCS 

 

        Anodal, cathodal or sham-tDCS (2 mA) was delivered by means of a battery-driven, 

constant-current stimulator (BrainStim, EMS, Bologna, Italy) through a pair of saline-

soaked sponge electrodes (5 × 5 cm, 25 cm2).  

     The electrodes were first firmly attached by elastic bands and saline solution was 

applied under the electrodes in order to reduce contact impedance before the montage. To 

comply with current safety regulations (Poreisz et al., 2007), a constant current of 2 mA 

intensity was applied. Specifically, the stimulating current was ramped up during a 10-sec 

fade-in phase, then held constant at 2 mA for 10 min, and then ramped down during a 10-

sec fade-out phase. We chose this specific duration of the tDCS stimulation on the basis 

of previously reported experimental protocols, which have described effects on cortical 

excitability, sufficiently enduring to cover the duration of the experimental task (Nitsche 

and Paulus, 2001; Mancini et al., 2012). The experimental task was initiated exactly in 

the last 2 min of tDCS. In each daily session, the participants received a-, c-, and s-tDCS 

on the same hemisphere in three separate blocks. The order of the hemisphere daily 

sessions and of the stimulation-condition blocks was counterbalanced across 
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subjects. An interval of 3-5 days was allowed between the two daily sessions and of 

at least 90 min between the three stimulation-condition blocks in order to avoid 

carryover effects and to guarantee a sufficient washout of the effects of the previous 

session (e.g., Mancini et al., 2012; Bolognini, et al., 2010; 2011). During the 90 minutes 

of break, participants were free to leave the laboratory and take some rest. During the 

three different experimental blocks, the location of the active electrode was identified by 

means of the 10–20 system for EEG electrode placement. In keeping with previous 

studies targeting the lateral occipito-temporal cortex with tDCS (Mancini et al., 2012), 

the active electrode was placed between O2 and PO8 to stimulate the extrastriate visual 

cortex, including visual body-specific regions (Mancini et al., 2012; Downing et al., 

2001). The reference electrode was always fixed on the vertex (Cz). Moreover, as in 

previous studies, for the sham condition, the electrodes were placed over the target sites 

(see Fig. 1), with the same parameters of a- and c-tDCS, but the stimulator was turned off 

after 30 sec (Nitsche and Paulus, 2000; Mancini et al., 2012). This ensured that 

participants could initially feel the itching sensation at the beginning of the tDCS 

protocol, but no effective modulation of cortical excitability could be elicited (Gandiga, 

Hummel and Cohen, 2006). Finally, in-house software switched the tDCS on and off 

without intervention from the participants or experimenters, allowing for successful 

blinding.  

 

-------------------------------- Please insert Fig. 1 around here -------------------------------- 

 

Data Handling 
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      Statistical analyses were performed on the mean D-scores, which measure the IAT 

effects by combining both accuracy and speed aspects of responses and were computed 

following the improved algorithm procedure described by Greenwald et al. (2003) and 

Cattaneo et al. (2011). In particular, we first checked that there were no trials with 

latencies greater than 10,000 msecs and no participants responded faster than 300 msecs 

in more than 10% of all the experimental trials. Then, for computing the mean reaction 

times (RTs), RTs of error trials were removed and replaced with the mean RTs of correct 

trials in the corresponding block plus an addition of 600 msec. To compute D-scores, the 

mean RTs of block 3 were subtracted from the mean RTs of block 6 and the difference 

was divided by the pooled SD of all trials in blocks 3 and 6; similarly, the mean RTs of 

block 4 were subtracted from the mean RTs of block 7 and the difference was divided by 

the pooled SD of all trials in blocks 4 and 7. Finally, the two quotients obtained in the 

previous two steps were averaged (Cattaneo et al., 2011). For the sake of clarity, error 

rates and RTs of correct responses are reported in Table 4, respectively for each IAT.  

    First, we tested whether male and female participants presented with significant weight 

bias in the two IATs at the baseline (sham) condition by comparing the corresponding 

mean D-scores to zero (where zero refers to the absence of any response bias). Then, to 

test the effects of tDCS on the implicit association of weight to good/bad attributes and to 

control beautiful/ugly attributes, the D-score data were entered into two separated mixed-

model Analyses of Variance (ANOVAs), one for each IAT, with gender group (male, 

female participants) as between-subjects factor and tDCS stimulation (anodal, cathodal, 

sham) and Hemisphere (left, right) as within-subject variables. Significant three-way 

interactions were followed up by separate 2-way ANOVAs in each gender group, while 
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the source of significant two-way interactions was analysed using the Newman-Keuls 

post-hoc test.  

    Finally, we calculated, for each condition, a measure of the change of v-IAT D-scores 

as the difference between the individual values after c- and a-tDCS and the corresponding 

values in the sham-tDCS condition [active-tDCS − sham-tDCS]. The change indexes 

were correlated, using Pearson correlations, with BMI and individual scores at the Fat 

Phobia Scale and SATAQ questionnaire.  

       All statistical analyses were performed with STATISTICA 8.0 (StatSoft Inc, Tulsa, 

Oklahoma). Effect sizes were estimated using the partial eta square variable (ηp
2). All 

data are reported as Mean (M) and Standard Error of the Mean (s.e.m.). A significance 

threshold of p < 0.05 was set for all effects.  

 

-------------------------------- Please insert Table 4 around here -------------------------------- 

 

Results  

 

Valence-IAT 

  

   One sample t-tests comparing the mean D-scores to zero showed that male participants 

showed a significant stereotypical anti-fat bias in both sham-tDCS conditions, indicating 

that they were more prone to associate fat people to the bad-related category and slim 

people to the good-related category than vice versa [t(11) = 3.56, p = 0.004 for right 

sham-tDCS and t(11) = 5.04, p < 0.001 for left sham-tDCS]. Conversely, the analysis of 

the female participants' mean D-scores revealed absence of the anti-fat bias in both sham-
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tDCS conditions, namely for right [t(12) = 1.15, p = 0.271] and for left sham-tDCS [t(12) 

= 1.61, p = 0.134]. 

     The 3-way ANOVA on the v-IAT revealed a significant 3-way interaction of 

hemisphere × tDCS stimulations × gender [F(2,46) = 3.356; p = 0.044; ηp2 = 0.127]. The 

follow-up 2 × 3 ANOVA on the mean D-scores for male participants revealed a 

significant 2-way interaction of hemisphere × tDCS stimulations [F(2,22) =7.522; p = 

0.003; ηp2 = 0.406], but no main effects of hemisphere [F =0.794, p = 0.392; ηp2 = 

0.067] or stimulation [F=0.924, p = 0.412; ηp2 = 0.077]. Newman-Keuls post-hoc 

comparisons showed that c-tDCS over left extrastriate visual cortex reduced the 

weight-bias for the v-IAT, as compared to sham [0.13 ± 0.7 vs. 0.44 ± 0.09, p = 

0.007]. The effect was specific for the polarity and hemisphere of stimulation, since 

the weight-bias after c-tDCS over the left extrastriate visual cortex was significantly 

lower than that after c-tDCS over the right extrastriate visual cortex [0.13 ± 0.7 vs. 

0.37 ± 0.06; p = 0.035; see Fig. 2A]. Crucially, the difference between the two sham 

conditions in the right and left hemisphere stimulation sessions was not statistically 

significant [0.26 ± 0.07 vs. 0.44 ± 0.09; p = 0.126]. Furthermore, the difference 

between a-tDCS over extrastriate visual cortex as compared to the relative sham 

condition was not statistically different for both right [0.30 ± 0.06 vs. 0.26 ± 0.07, p = 

0.568] and left [0.23 ± 0.08 vs. 0.44 ± 0.09, p = 0.096] hemispheres. Finally, non-

significant difference was observed between right and left a-tDCS conditions [p = 

0.637]. 

 

-------------------------------- Please insert Fig. 2 around here -------------------------------- 
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The 2 ×3  ANOVA on the mean D-scores of female participants revealed non-

significant main effects of hemisphere and stimulation and non-significant 

interaction [all Fs < 1.367, all ps > 0.274; all ηp2< 0.102] (See Fig. 2B).  

 

Aesthetic-IAT 

 

     At baseline, male participants showed a significant stereotypical anti-fat bias in 

both sham-tDCS conditions, indicating that they were more prone to associate fat 

people to the ugly-related category and slim people to the beautiful-related category 

than vice versa [t(11) = 0.29, p = 0.007 for right sham-tDCS and t(11) = 0.40, p < 

0.001 for left sham-tDCS]. The analysis of the female participants' mean D-scores 

revealed a significant anti-fat bias in both sham-tDCS conditions, namely for right 

[t(12) = 0.3, p = 0.015] and for left sham-tDCS [t(12) = 0.34, p = 0.010]. Thus, the 

aesthetic anti-fat bias was apparent in both gender groups. 

    However, the 3-way ANOVA on the ae-IAT D-scores (Fig. 3) revealed non-

significant main effects or interactions [all Fs < 0.724; all ps > 0.404; ηp2 < 0.031]. In 

particular, the non-significant 3-way interaction between gender group, hemisphere, 

and stimulation [F(2,46) = 0.199; p = 0.821; ηp2 = 0.009] suggests that the gender- and 

hemisphere- specific modulation of the weight-bias in the valence dimension was not 

reflected in the aesthetic dimension. 

 

-------------------------------- Please insert Fig. 3 around here -------------------------------- 

 

Self-reported questionnaires 
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     As shown in Table 1, independent sample t-tests indicated that male and female 

participants were matched for both age and BMI. The analysis of the SATAQ-3 data 

revealed that, compared to women, men had higher scores on the internalization-athlete 

SATAQ-3 subscale, thus indicating that they might have a stronger internalization of 

media influences related to the achievement of an athletic physique (Internalization-

Athlete); conversely, the two gender groups did not differ on the thin-ideal internalization 

score (Internalization-General), the perceived feelings of pressure to conform to the 

Western ideals exhibited by the media (Pressures) and the recognition of the social 

importance of the media’s messages about Western beauty ideals information 

(Information). Furthermore, no differences were found between men and women in the 

explicit phobic attitude towards fat people. Finally, no significant correlations were found 

between the tDCS change indexes and the BMI, Fat Phobia, and SATAQ subscales for 

both male and female participants (−0.612 < all rs < 0.433).  

 

Discussion  

 

      This study applied tDCS to examine whether non-invasive brain stimulation can 

modulate anti-fat bias, and we demonstrated that stimulation over the left, but not right, 

extrastriate visual cortex, where EBA has been previously located (Sadeh et al., 2011; 

Taylor et al., 2010), decreased negative attitude towards fat people. Importantly, we also 

developed a control ae-IAT, which focused on body-concepts related to aesthetic 

representations (i.e. “ugly” and “beauty”) and we found that inhibiting neural excitability 

in the left occipital cortex by applying c-tDCS diminished the anti-fat bias only for the v-
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IAT but not for the ae-IAT. Conversely, enhancing cortical excitability through a-tDCS 

did not exert any effects in either hemisphere. Interestingly, the effects of tDCS for the v-

IAT were found only in male participants, who displayed a significant anti-fat bias, but 

not in female participants, who did not show a reliable anti-fat bias. To the best of our 

knowledge this is the first study showing a causative role of the lateral occipito-temporal 

cortex in the anti-fat bias.  

    In keeping with the results of previous behavioral studies (Puhl, Luedicke, and 

Heuer, 2011; Musher-Eizenman, and Carels, 2009), our brain stimulation study 

found dominant implicit representations of obese individuals as dishonest, villain 

and immoral when sham stimulation was applied. The weight v-IAT effect, however, 

was only significant in male but not in female participants, suggesting a lack of 

implicit anti-fat bias in women even if no differences were found between men and 

women in their explicit fat phobic attitudes. Nevertheless, the absence of a 

significant implicit weight bias in female participants allowed for an indirect control 

for general effects of tDCS on the IAT performance in the absence of any reliable 

weight bias. Importantly, this result seems to be in agreement with previous 

experimental evidence suggesting a strong prevalence of negative attitudes towards 

overweight individuals and, in general, of social stigma in men as compared to 

women (Lewis, Cash and Bubb-Lewis, 1997). Most importantly, gender differences 

in obesity stigma may reflect different conceptions and attitudes toward obesity in 

the two genders: women usually report significantly greater fear of becoming fat 

than men do; in contrast, men are significantly more likely to attribute obesity to a 

lack of willpower and to report greater dislike of obese individuals as compared to 

women. This is true even after controlling for BMI (Lieberman, Tybur, and Latner, 
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2012). Hence, future studies should take into consideration specific subtypes of anti-

obesity attitudes that may show systematic sex differences, as this is particularly 

important for future intervention implications (Kelly, Jorm and Wright, 2007). 

      Importantly, after c-tDCS over left extrastriate visual cortex, the men’s negative 

bias for stereotype-congruent stimuli was reduced, revealing that the anti-fat bias 

involves the contribution of this brain area. That the inhibition of left extrastriate 

cortex induced a reduction of the weight-bias is in line with previous evidence about 

implicit processing of emotional faces (Cecere, Bertini and Ladavas, 2013). This 

study showed that presenting congruent/emotional vs. incongruent/neutral masked 

faces facilitated responses to emotional faces. However, inhibiting with c-tDCS the 

activity in the left occipital cortex suppressed this facilitation. This documents the 

crucial role of the left occipital cortex in mediating high-order implicit visual 

processes, such as the emotion congruency effects (Cecere, Bertini and Ladavas, 

2013).  

        It has been previously shown that the extrastriate visual cortex and the functional 

localized EBA is causatively involved in mapping morphological features of human 

bodies (Downing et al., 2001; Candidi et al., 2008; Urgesi et al., 2007a). This process can 

prove critical for maintaining constant the identity of others, even when body 

configurations change drastically during action sequences. Thus, the role of EBA may be 

fundamental for the identification of actors, particularly when facial cues are unavailable 

or ambiguous. Indeed, several studies have shown that EBA is sensitive to subtle 

variations of human body size and shape (Aleong and Paus, 2010) in healthy individuals 

and its neuro-functional alteration is associated with body image disturbance, such as 
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body size overestimation and negative evaluation of one's own body, in patients with 

Eating Disorders (ED) (Uher et al., 2005). The present study shows that neural activity in 

the extrastriate visual cortex, and possibly EBA, may play a role in contributing to 

implicit weight-stereotypical bias. This may reflect top-down modulation due, for 

example, to increased attention towards fat as compared to thin bodies. Hence, our results 

extended previous knowledge (e.g., Quadflieg et al., 2011) on the role of perceptual 

processing areas in social biases by showing that artificially modulating the neural 

excitability of extrastriate visual areas implicated in the evaluation of body shape (Urgesi 

et al., 2007b; Downing et al., 2001) can change prejudice towards fat people.  

It is worth noting that, while EBA c-tDCS significantly modulated the association 

between a specific perceptual dimension of the body (i.e., thinness) and general 

conceptual attributes of a person (i.e., honest, kind etc.), no effects were found on 

the association between the same perceptual dimension and an evaluative dimension 

(i.e., aesthetics) related to body perception, but not involving person-specific 

processing. Thus, EBA c-tDCS did not alter how thin or round bodies appeared or 

how beautiful they were judged. Its effects were rather specific when body 

perception involved forming representations about high-level traits of a person. 

Previous studies (Calvo-Merino et al., 2010; Cazzato et al., 2014a, 2016a) have 

shown that magnetic stimulation of EBA alters the judgements of how much an 

observer likes other people’s bodies. These judgements require using basic 

perceptual aspects, either static (i.e., thinness) or dynamic (Cazzato et al., 2012), to 

express a general evaluation about the appeal of an unfamiliar individual. Thus, 

these findings are in keeping with the suggestion (Greven et al., 2016; Greven and 

Ramsey, 2017; Quadflieg et al., 2015) that body perception processing in EBA (and 
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other body specific areas in the occipito-temporal cortex) is functionally coupled 

with person knowledge processing in the theory-of-mind network to form an 

integrated representation of other people. 

      In spite of the reliable effects of EBA c-TDCS, a-tDCS of the extrastriate visual 

cortex did not modulate the anti-fat bias. Anodal-tDCS has been shown to enhance 

perceptual (Falcone et al., 2007) and motor (Nitsche et al., 2003) learning, social ability 

(Santiesteban et al., 2012), and visual analgesia (Mancini et al., 2012). However, studies 

using tDCS in animal models (Bindman et al., 1964; Creutzfeldt, Fromm and Kapp, 

1962) have shown that the effect of cathodal stimulation may be stronger than the effect 

of anodal stimulation if identical stimulation parameters are used. This is in line with the 

general observation of asymmetric neuroplastic effects in the central nervous system, 

with excitability reductions being easier to elicit than excitability increases, as shown in 

animals in vivo (Froc et al., 2000; see Antal et al. 2006 for a review on tDCS effects on 

visual cortex). Part of the explanation of this asymmetry may reside in the fact that in 

some experiments the visual system is probably already optimally tuned in healthy 

subjects and, thus, an excitatory enhancement induced by a-tDCS cannot further improve 

the perception of visual stimuli (Antal et al., 2006). However, evidence with regards to 

the effectiveness of cathodal vs. anodal tDCS is still inconclusive and further 

experimental manipulations are deemed as necessary to further investigate the 

potential roles of these factors with respect to the absence of a-tDCS effects over 

occipital brain areas.  

Overall, these findings support the notion that additional factors, such as the orientation 

of the electric field (e.g., Nitsche and Paulus, 2000) and the background level of activity 

in the system when tDCS is applied, might have affected our results. Hence, some 
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features of the task-related activation may interact with the physiological state of the 

cortex and polarity of tDCS stimulation (Vallar and Bolognini, 2011; Antal and Paulus, 

2008; Antal et al., 2004).  

       A further result of the present study is that, despite differences between the two 

gender groups, no relation was observed between the changes of weight bias after c-tDCS 

and the individual level of explicit phobic attitude and internalization of Western ideals 

and BMI. This might be due to the fact that the range of observers’ BMI and self-report 

measures within our female and male samples was not large enough to disclose any 

relevant effects of interindividual differences. This finding, however, is in keeping with a 

study of Teachman and Brownell (2001) and Teachman et al. (2003), who found no 

evidence of statistically significant relation between the Fat Phobia Scale and implicit 

bias as detected with a bad/good weight-IAT that was similar to our task. Such 

dissociation between implicit and explicit measures of anti-fat bias might result from 

considering social undesirable the labelling of obese individuals as ‘bad’ (Teachman and 

Brownell, 2001).       

      The possible mediating role of perceived attractiveness of the body stimuli used 

during both IATs needs to be considered. Indeed, some researchers have claimed that 

anti-fat prejudice may stem from the perception of overweight individuals as unattractive 

or aesthetically displeasing (e.g., Morrison and O’Connor, 1999). However, we found 

gender differences in the v-IAT during sham stimulation, but both male and female 

participants showed reliable implicit weight-bias in the association of fat or slim bodies to 

the beautiful-ugly dimension in the ae-IAT. Furthermore, tDCS affected men’s v-IAT, 

but no specific tDCS modulation was found for the ae-IAT, suggesting that valence and 

aesthetic evaluations may be two independent judgement categories during person 
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perception and might be underpinned by different neural circuitry. Furthermore, during 

the IAT procedure, participants are explicitly required to classify stimuli according to 

their body weight. Thus, it is unclear whether body-related perceptual areas are 

similarly involved when anti-fat bias is prompted by the mere sight of an obese body 

independently from explicit focus on the weight dimension (Moors and De Houwer, 

2006; Schupp and Renner, 2011; see also Quadflieg et al., 2011). 

The present findings might have clinical relevance for the understanding and 

treatment of body schema disturbances in Eating Disorders (EDs). Although, there 

is currently large evidence to suggest that neuromodulation has potential for 

altering disordered eating behaviours, food intake and body weight, evidence of 

using tDCS (and/or TMS) on broader brain network responsible in sustaining ED 

symptomatology, are still scanty. In fact, much of the research on neuromodulation 

and eating behaviour has targeted the dorsomedial and dorsolateral prefrontal 

cortex (Brass and Haggard, 2007; Campbell-Meiklejohn et al., 2008; Khedr, Elfetoh, 

Ali, and Noamany, 2014; Ljubisavljevic, Maxood, Bjekic, Oommen, & Nagelkerke, 

2016; see also McClelland et al., 2013 and Hall & Vincent, 2017 for a recent review 

on non-invasive brain stimulation for food cravings, consumption, and disorders of 

eating), which have a key role in self-regulatory control mechanisms (Ochsner & 

Gross, 2008).  

     While the prefrontal cortex is very theoretically meaningful as a modulation 

target for food-related outcomes (Miller and Cohen, 2001), little attention has been 

paid to cortical areas that are involved in human visual body processing. Indeed, 

recent studies have shown that perceptual adaptation to model bodies may alter 

weight-related body preferences in healthy individuals and patients with EDs 
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(Winkler and Rhodes, 2005; Glauert et al., 2009; Mele et al., 2013, 2016; Cazzato et 

al., 2016b).   

Importantly, several studies have shown that EBA is active when subjects are 

engaged in viewing images of bodies through interconnections with other brain 

regions, also involved with body image (e.g., ventral premotor cortex; Kitada, 

Johnsrude, Kochiyama, & Lederman, 2009). Furthermore, Suchan and colleagues 

(2013), using an fMRI task that showed body images in contrast with images of 

chairs, found a reduced connectivity between middle occipital gyrus and fusiform 

body area (FBA) and between FBA and EBA in patients with AN. Some studies 

have shown that EBA is also activated by the selective display of images of bodies 

that express emotions (anger, disgust, happiness, fear), supporting a close 

correlation between extrastriate visual areas and the amygdala, which is involved in 

processing emotional information (Myers & Sowden, 2008). Furthermore, 

modulating neural activity of EBA with repetitive transcranial magnetic stimulation 

altered the hedonic value attributed to body figures by healthy individuals (Cazzato 

et al., 2014; 2016). In keeping with this view, our study documents the involvement 

of these areas in weight-related stereotypes about other individuals. Thus, brain 

stimulation studies targeting EBA and other relevant body image brain regions may 

open new horizons to understand the neural substrate of EDs and evaluate the 

therapeutic potential of tDCS for treating distortions of perception, conceptions and 

affects related to one's body weight or shape. 

 

Limitations 
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     There are a few limitations to consider when interpreting the current findings. First of 

all, we need to consider that the spatial resolution of tDCS, due to using large sponge 

pads positioned on the skull, can be relatively diffuse. Indeed, it has been previously 

reported that brain stimulation by means of tDCS protocols is unlikely to be 

constrained to the cortex underneath the electrodes (Datta et al., 2009; Bikson and 

Rahman, 2013; Bestmann, de Berker and Bonaiuto, 2015). In particular, a recent 

modelling study (DaSilva et al., 2015) estimated that, with a similar vertex-occipital 

cortex montage (with the anode over Cz and cathode over Oz), current flows mainly 

to the parietal and occipital lobes with the maximum electric field occurring in the 

primary and secondary visual cortices. However, current flow extended to the 

cingulate cortex, insula, central sulcus and thalamus. As such, we cannot rule out 

that that stimulation of extrastriate visual cortex might have affected nodes of a 

broader network involved in person perception and person knowledge. Indeed, it 

has been previously reported that the frontal cortex, anterior temporal lobes and the 

limbic system are key areas implicated in the forming of social prejudice. More 

specifically, the amygdala has been found to be critically involved in cognitive and 

affective learning, including implicit attitudes (Amodio and Devine, 2006; Dolan et al., 

2000; Phelps, Cannistraci, and Cunningham, 2003; Stanley, Phelps, and Banaji, 2008). 

Furthermore, recent experimental evidence has proposed a critical involvement of the 

anterior temporal lobes in expressing prejudice by means of conceptual processing 

(Snyder, Bossomaier, and Mitchell, 2004; Gallate et al., 2011). Finally, a study of 

Cattaneo and colleagues (2011) demonstrated the causal role of the prefrontal cortex in 

controlling gender stereotypical beliefs in men. Interestingly, they found that non-

invasive brain stimulation delivered at stimulus presentation over the prefrontal cortices 
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led to an increased gender-stereotypical bias for the D-scores of male participants, as 

compared to a control condition. It therefore remains to be determined how specific the 

current results are to the stimulation site and, for example, whether interfering with the 

activity of the extrastriate visual cortex might have in turn interfered with key areas 

important for the control of automatic (negative) associations, such as the prefrontal 

cortices.   

     In a similar vein, we cannot rule out that tDCS may have affected top-down control 

mechanisms, such as the ability to regulate bias (Conrey et al., 2005) and task-switching 

abilities (Klauer et al., 2010), which are involved in performing an IAT. Although the 

gender- and IAT-selectivity of the effects of c-tDCS over left extrastriate visual 

cortex would speak against general effects on IAT categorization performance, one 

may speculate that c-tDCS might have affected cognitive control abilities 

particularly in those individuals (i.e., men) who show higher anti-fat bias and, thus, 

need more cognitive control to moderate it. 

        Although the order of testing was counterbalanced across participants, one 

potential limitation of this study could rely on the repetition of the same IAT task 

under different tDCS conditions (anodal, cathodal, sham) within the same day/week. 

Indeed, it has been shown that the magnitude of the effect tends to decline with 

repeated administrations (Nosek, Greenwald and Banaji, 2007). However, the 

absence of any repetition effects for the control ae-IAT points against this 

possibility.  

    Finally, it cannot be determined to what extent the selective decrease in the anti-fat 

bias after EBA c-tDCS observed in this study can be generalised to other specific 

subtypes of anti-obesity attitudes and/or social stigma in general. Further studies are 
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required to systematically examine the effects of tDCS on various negative attitudes 

against stigmatized social groups.  

 

Conclusions  

 

     Overall, the present study may contribute to the growing social neuroscience literature 

on the neural underpinnings of person perception, thus extending previously reported 

work on explicit and implicit weight stigma as a function of first impression formation 

(e.g. facial attractiveness, trustworthiness, and competence). Previous neuroimaging 

studies (e.g., Quadflieg et al., 2011) have shown that early perceptual aspects of person 

construal are sensitive to the stereotype-related status of individuals. Here, we provided 

causative evidence that activity in body-selective occipito-temporal areas actively 

contributes to the formation and expression of implicit stigma based on body size. This 

pairing of functional responses between distinct brain circuits may indicate that person-

perception and person-knowledge neural networks are not entirely encapsulated from 

other neural brain systems. It has been proposed that the primary function of EBA is 

grounded on visually analysis of the bodies of conspecifics (Urgesi et al., 2004; 

Downing & Peelen, 2011). However, during this process EBA may exchange signals 

not only with other brain circuits that represent aspects of another person’s physical 

appearance (person perception), such as body shape and posture (Cazzato et al., 

2014), but also with brain areas (i.e., TPJ and temporal pole) that respond when 

reasoning about another person’s trait-based characteristics (person knowledge) 

(Greven et al., 2017). In keeping with previous neuroimaging findings (Greven, 

Downing and Ramsey, 2016; Ewbank et al., 2011; Quadflieg et al., 2011; 
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Zimmermann et al., 2013), the results of our brain stimulation study provide 

empirical support for this notion and enhance the belief that interactions between 

specific person perception and person knowledge neural systems underlie social 

perception abilities. 
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Figures Legends:  

 

Fig. 1: Schematic representation of tDCS electrodes montage over left and right 

Extrastriate visual cortex.   

 

Fig. 2: Effects of cathodal (c-tDCS), anodal (a-tDCS) and sham-tDCS (s-tDCS) on D-

scores as a function of gender (men, women) and t-DCS hemisphere (right EVC, left 

EVC) for the valence-IAT. A: male participants, B: female participants. Error bars 

indicate standard errors mean over participants * p < 0.05. Notes: tDCS. Transcranial 

direct current stimulation; EVC. Extrastriate Visual Cortex; IAT. Implicit association test.  

 

Fig. 3: Effects of cathodal (c-tDCS), anodal (a-tDCS) and sham-tDCS (s-tDCS) on D-

scores as a function of gender (men, women) and t-DCS hemisphere (right EVC, left 

EVC) for the aesthetic-IAT. A: male participants, B: female participants Error bars 

indicate standard errors mean over participants * p < 0.05. Notes: tDCS. Transcranial 

direct current stimulation; EVC. Extrastriate Visual Cortex; IAT. Implicit association test.  
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