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Abstract 

Current geographical information systems lack features and components which are commonly found 

within rendering and game engines. When combined with computer game technologies, a modern 

geographical information system capable of advanced rendering and data visualisations are 

achievable. We have investigated the combination of big geospatial data, and computer game 

engines for the creation of a modern geographical information system framework capable of 

visualising densely populated real-world scenes using advanced rendering algorithms.  

The pipeline imports raw geospatial data in the form of Ordnance Survey data which is provided by 

the UK government, LiDAR data provided by a private company, and the global open mapping 

project of OpenStreetMap. The data is combined to produce additional terrain data where data is 

missing from the high resolution data sources of LiDAR by utilising interpolated Ordnance Survey 

data. Where data is missing from LiDAR, the same interpolation techniques are also utilised. Once a 

high resolution terrain data set which is complete in regards to coverage, is generated, sub datasets 

can be extracted from the LiDAR using OSM boundary data as a perimeter. The boundaries of OSM 

represent buildings or assets. Data can then be extracted such as the heights of buildings. This data 

can then be used to update the OSM database. Using a novel adjacency matrix extraction technique, 

3D model mesh objects can be generated using both LiDAR and OSM information.  

The generation of model mesh objects created from OSM data utilises procedural content 

generation techniques, enabling the generation of GIS based 3D real-world scenes. Although only 

LiDAR and Ordnance Survey for UK data is available, restricting the generation to the UK borders, 

using OSM alone, the system is able to procedurally generate any place within the world covered by 

OSM. 

In this research, to manage the large amounts of data, a novel scenegraph structure has been 

generated to spatially separate OSM data according to OS coordinates, splitting the UK into 

1kilometer squared tiles, and categorising OSM assets such as buildings, highways, amenities. Once 

spatially organised, and categorised as an asset of importance, the novel scenegraph allows for data 

dispersal through an entire scene in real-time.  

The 3D real-world scenes visualised within the runtime simulator can be manipulated in four main 

aspects;  

 Viewing at any angle or location through the use of a 3D and 2D camera system. 



20 
 

 Modifying the effects or effect parameters applied to the 3D model mesh objects to visualise 

user defined data by use of our novel algorithms and unique lighting data-structure effect 

file with accompanying material interface. 

 Procedurally generating animations which can be applied to the spatial parameters of 

objects, or the visual properties of objects. 

 Applying Indexed Array Shader Function and taking advantage of the novel big geospatial 

scenegraph structure to exploit better rendering techniques in the context of a modern 

Geographical Information System, which has not been done, to the best of our knowledge. 

Combined with a novel scenegraph structure layout, the user can view and manipulate real-world 

procedurally generated worlds with additional user generated content in a number of unique and 

unseen ways within the current geographical information system implementations. 

We evaluate multiple functionalities and aspects of the framework. We evaluate the performance of 

the system, measuring frame rates with multi sized maps by stress testing means, as well as 

evaluating the benefits of the novel scenegraph structure for categorising, separating, manoeuvring, 

and data dispersal. Uniform scaling by n2 of scenegraph nodes which contain no model mesh data, 

procedurally generated model data, and user generated model data. The experiment compared 

runtime parameters, and memory consumption. 

We have compared the technical features of the framework against that of real-world related 

commercial projects; Google Maps, OSM2World, OSM-3D, OSM-Buildings, OpenStreetMap, ArcGIS, 

Sustainability Assessment Visualisation and Enhancement (SAVE), and Autonomous Learning Agents 

for Decentralised Data and Information (ALLADIN).  

We conclude that when compared to related research, the framework produces data-sets relevant 

for visualising geospatial assets from the combination of real-world data-sets, capable of being used 

by a multitude of external game engines, applications, and geographical information systems. The 

ability to manipulate the production of said data-sets at pre-compile time aids processing speeds for 

runtime simulation. This ability is provided by the pre-processor. The added benefit is to allow users 

to manipulate the spatial and visual parameters in a number of varying ways with minimal domain 

knowledge. The features of creating procedural animations attached to each of the spatial 

parameters and visual shading parameters allow users to view and encode their own 

representations of scenes which are unavailable within all of the products stated. Each of the 

alternative projects have similar features, but none which allow full animation ability of all 

parameters of an asset; spatially or visually, or both. We also evaluated the framework on the 

implemented features; implementing the needed algorithms and novelties of the framework as 
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problems arose in the development of the framework. Examples of this is the algorithm for 

combining the multiple terrain data-sets we have (Ordnance Survey terrain data and Light Detection 

and Ranging Digital Surface Model data and Digital Terrain Model data), and combining them in a 

justifiable way to produce maps with no missing data values for further analysis and visualisation. 

A majority of visualisations are rendered using an Indexed Array Shader Function effect file, 

structured to create a novel design to encapsulate common rendering effects found in commercial 

computer games, and apply them to the rendering of real-world assets for a modern geographical 

information system.  

Maps of various size, in both dimensions, polygonal density, asset counts, and memory consumption 

prove successful in relation to real-time rendering parameters i.e. the visualisation of maps do not 

create a bottleneck for processing. The visualised scenes allow users to view large dense 

environments which include terrain models within procedural and user generated buildings, 

highways, amenities, and boundaries. The use of a novel scenegraph structure allows for the fast 

iteration and search from user defined dynamic queries. The interaction with the framework is 

allowed through a novel Interactive Visualisation Interface. Utilising the interface, a user can apply 

procedurally generated animations to both spatial and visual properties to any node or model mesh 

within the scene.  

We conclude that the framework has been a success. We have completed what we have set out to 

develop and create, we have combined multiple data-sets to create improved terrain data-sets for 

further research and development. We have created a framework which combines the real-world 

data of Ordnance Survey, LiDAR, and OpenStreetMap, and implemented algorithms to create 

procedural assets of buildings, highways, terrain, amenities, model meshes, and boundaries. for 

visualisation, with implemented features which allows users to search and manipulate a city’s worth 

of data on a per-object basis, or user-defined combinations. The successful framework has been 

built by the cross domain specialism needed for such a project. We have combined the areas of; 

computer games technology, engine and framework development, procedural generation 

techniques and algorithms, use of real-world data-sets, geographical information system 

development, data-parsing, big-data algorithmic reduction techniques, and visualisation using 

shader techniques.   
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1 Introduction 

In this research we have investigated new techniques for Big Geospatial Data Rendering and 

Visualisation, leading to the development of new big data processing, correction, interpolation, 

rendering and visualisation algorithms; and new adaptive spatial data structures to manage 

efficiently these big-data data-set. In particular, we propose a novel framework called Project Vision 

Support (PVS) that provides an automated generation and visualisation of real world open data 

maps for the creation of procedurally generated, highly dense terrain, urban environments, utilising 

a rendering and game engine.  

Real world data-sets are very complex and a pipeline which can orchestrate, combine, and 

categorise big-data sources of real-world maps into an end product allowing a user to see only what 

they want to see, in the dimension they want to see it in, is needed for a modern geo-visualisation 

Graphical Information Systems (GIS). Many GISs are improving due to reduced cost in hardware and 

graphical processing capabilities, as well as open data provided by many private and public sources. 

Many GISs are web-based which restrict the real-time rendering capabilities found in modern AAA 

games which utilise direct access to the Graphics Processing Unit (GPU). They also restrict the 

interaction with the raw data ‘under the hood’ of the application, allowing only a window to peek 

into the data. Other issues are the limitations and restrictions modern GISs apply to the user through 

user-agreements and limited APIs. Utilising modules found in Computer Games Technology (CGT) 

such as; 3D and 2D camera systems, multiple projection types, animations, advanced real-time 

debugging features, custom model meshes, and advanced shader management for forward and 

deferred rendering techniques, can provide enhanced user interaction and visualisation capabilities. 

Combined with open data, which has been initially categorised, and the ability to further categorise, 

adds vast additional user interactions and engagement. 

GISs and GIS data have issues such as; complex data sets, limited interactivity with visualisations and 

simulations provided by the GIS, limited virtual view points within runtime simulations, erroneous 

data or missing data within data sets, minimal scalability of scenes and extensibility of frameworks. 

CGT can fix these issues within the GIS domain. 

The purpose of this research is to study the development of 3D GIS geo-visualisation and rendering 

techniques specifically concentrating on combining big-data data-sources of Ordnance Survey (OS), 

Light Detection and Ranging (LiDAR), and OpenStreetMap (OSM) for the procedural generation (PG) 

of additional enriched data for the improvement of each original data source, involving error 

correction using interpolation, and enhancing the realism of visualisations. After combination of big-
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data for improved data generation, we process and generate procedural geo-referenced objects in 

the form of; buildings, highways, boundary meshes, waterways, and bodies of water, as polygon 

meshes. A novel scenegraph has been developed for the organisation of assets within the virtual 

environment. Scenegraphs are a common structure used within CGT. We researched and developed 

a custom scenegraph structure for the organisation and categorisation of the different data-sources 

available. After the Procedural Content Generation (PCG) of geo-referenced assets, we focused on 

advanced rendering techniques and the utilisation of CGT. Advanced rendering techniques are 

employed in the form of Array-Index Shader Functions, splitting commonly used shader functions 

into individual modules. These shader functions are combined in multiple orders to produce realistic, 

but also interesting and dramatic visualisation results. The shader functions are applied to all geo-

referenced objects.  

The research culminates in the generation of two main pipelines and additional toolsets.  The first 

pipeline will be responsible to generating the list of geo-referenced objects using the data source 

e.g. OSM. The second pipeline is responsible for the rendering and visualisation of the geo-

referenced objects. Multiple toolsets are generated for the evaluation of novel data-structure and 

rendering algorithms, and the experimental analysis of the different data-sets. These toolsets are 

used for intermediate research into the best research and development path to take. 

This combination culminates in the improved rendering rates and scene visualisations of real-world 

data maps into 3D environment using big geo-spatial data. 

In this research area, there are similar projects, academic and commercial, which we wish to relate 

our research too. Extracting beneficial insights from the work already undertaken by the projects of 

SAVE (Sustainability Assessment Visualisation and Enhancement) [1]–[4], ALLADIN (Autonomous 

Learning Agents for Decentralised Data and Information) [5]–[7], SAGE (Simple Academic Game 

Engine) [8], OSMBuildings.Org [9], [10], SimCity Glass Box Engine1, and the popular commercial 

computer games Cities Skylines2 and Planet Rollercoaster3. We aim to improve on particular aspects 

of these projects, by combining the best of each project and developing novel visualisation and 

rendering features into a modern advanced GIS.  

1.1 Aims and Objectives 

The main aim of the project is the processing and visualisation of GIS data to generate a framework 

capable of parsing, and visualising larges real-world environments. Due to the scale of GISs, we are 

                                                           
1 https://www.giantbomb.com/glassbox-game-engine/3015-7404/ 
2 http://www.citiesskylines.com/ 
3 https://www.planetcoaster.com/ 
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investigating how to handle the vast amounts of geo-spatial data and specifically by allowing the 

processing and visualisation of many data sets at once and in combination, within a single 

framework; from raw data, to visualisations of complete large urban scenes using advanced 

rendering techniques. The use of the framework can potentially be used to view any environment 

within the world if data is available. This data would be obtained from OSM, and OS supported by 

terrain data from LiDAR data-sets. At a minimum, a single data-set can be used.  

The objectives of the research can be summarised by the following tasks: 

1. to review and consolidate the knowledge and state of the art on big geospatial data 

rendering and visualisation 

2. to identify and collect the real world data to generate complex real world 3D 

environment 

3. to design framework and software components in order to develop a big geospatial data 

rendering and visualisation system 

4. to create a novel data structure to combine several data sources and design new 

algorithms to process and visualise these data using a 3D game engine 

5. to implement the geospatial data rendering system 

6. to develop new metrics and benchmarks to evaluate performance of the system and the 

realism of the resulting 3D scenes 

The overall objective of this research and development project is to develop a novel framework for 

the production and visualisation of a real-world city’s worth of data.  

Many real-world products provide the visualisation and rendering of map data, but do not include 

many features which would prove advantageous. The features we speak of can be found in multiple 

projects and products, but not within a single self-contained framework. 

Having an open and scalable simulation engine, which automatically generate a city’s worth of data, 

can be ported to other languages and other engines with minimal of code changes. 

We justify the combination of CGT and GIS for the generation of a modern GIS capable of advanced 

rendering technique. Game engines provide many of the functionalities, features, and components 

needed to advance current GIS techniques. 

1.1.1 System 1 – Pre-Processor  

The first pipeline is responsible for pre-processing the multiple data-sets into an output object which 

can be used within the runtime simulation we propose. The output will also be able to be used 
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within external software applications such as game engines. The datasets will be parsed into data 

formats which can be utilised by novel algorithms to extract, organise, and infer data.  

Extracting data attributes for the PCG of 3D model mesh objects by algorithms which check the 

geospatial data, and if issues within the data arise, the algorithm will be able to reconcile the issues 

to produce data which can be used without additional error checks.  

The organisation of the data will be done by creating a novel scenegraph structure which will 

spatially organise assets within a 1 kilometre squared areas, and through custom layout depicting 

commonly found attributes within the data structures (buildings, highways, amenities etc.). The 

scenegraph has another benefit other than spatially organising assets; it allows processing of 

partitioned areas. These partitions can be processed individually, or used to remove data not 

needed for processing, increasing processing speeds. Nodes within the scenegraph can be written to 

data files, and using a middle-out loading mechanism, a large area can be processed, but only a small 

area needs be loaded at runtime.  

Due to the issues surrounding geospatial data, inference of data is needed. If an error exists, or an 

attribute does not exist, inference from alternative data sources is undertaken; e.g. the height of a 

building is extracted from the terrain data, whilst the boundary of a building is extracted from OSM. 

When data cannot be inferred, default attributes will be used. 

Parsing the datasets and merging them into a single output format is a key element to this pipeline. 

This issues the need for a modern GIS framework which can parse, combine, and extract data for use 

by a user, or by the second pipeline of this project.  

With the high-level processes stated, a game engine can provide initial development benefits. These 

benefits are further apparent within the runtime simulation. 

1.1.2 System 2 – Application 

The second pipeline is responsible for parsing the output data from the first pipeline into runtime 

assets, and rendering them in real-time to screen. The application will allow users to create and 

navigate a virtual environment, and interact with specific objects within the scene. The scenegraph 

structure used within the pre-processor can be reused within the runtime application, spatially 

organising assets, and providing iterative methods for searching, categorising and rendering assets 

over multiple branches. 

The application system must improve on the abilities of current GISs such as Google, Bing, and 

ArcGIS etc. This can be achieved by the combination of game engine technologies;  
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 2D and 3D cameras – 2D cameras for overlay systems, 3D cameras for projecting 3D model 

mesh objects. 

 PCG and 3D models loading. 

 Advanced lighting calculations and accompanying algorithms – setting the lighting 

calculations in a processed manner, and dynamically setting this in real-time manners. 

 User-interface to interact with the system - the ability to view and interact with GIS data 

which has currently been negated from many major GISs. 

 Input – take input and check for changes of state by the user. We iterate the potential for 

use of game controllers.  

Utilising the components stated, will provide a runtime application capable of utilising the data 

produced by the pre-processor pipeline will produce a modern GIS framework for an advanced 

usage.  

1.2 Evaluation 

The evaluation techniques will consist of iterative processes which takes place over multiple 

prototypes of the framework as a whole and also the individual modules which make up the 

framework. 

With each iteration of the prototype we will monitor; 

 Frames per second 

 Update time of each frame 

 Rendering time of each frame 

 Processing time of specific algorithms – this may consist of large algorithms, as well as the 

time of the individual methods/functions. 

 Rendering time of individual shading techniques 

We will screen capture pertinent information due to the visual nature of the project.  

To evaluate this against similar projects such as Google, ArcGIS, SAVE, ALLADIN, and the work of Bo 

Mao [11] with his Doctoral thesis work. The evaluation will compare multiple parameters; 

 Features – what features are present to the user? 

 Components – what components are found within the systems? 

 Scalability – can the framework be scaled up easily with varying data-sets? 

 Flexibility – can multiple data sets be added easily? 

 Realism of visualisations – how realistic does the visualisations appear? 

 Data representation – is the data represented accurate and clear? 
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 Usability – the use of the runtime simulation for multiple hardware configurations. 

We will also evaluate the framework on multiple hardware configurations, monitoring the 

framerate, polygon count, and vertex count. This will determine the scalability with various sized 

maps, and different hardware configurations. 

1.3 Scope and Limitations of Research 

We state the scope of the research within this section due to the large scale of the project. Research 

will be completed within the domain of GIS technologies, computer game technologies, as well as 

the combination of the two for the development and research of a framework to combine GIS data 

sets for the advanced rendering and interaction of real-world scenes. 

The areas of research within the GIS domain are; 

 Research current providers of GIS technologies and data sets. Research the functionalities of 

the frameworks/services, and research issues or benefits of the geospatial data sets which 

are open or private. 

 Big geospatial challenges with data sets used within GIS technologies and frameworks. The 

combining and inferring of geospatial data for the creation of complete data sets for use 

with data processing and visualisation.   

 Organisation of data sets for improved storage, and runtime simulation and advanced 

visualisations. 

The areas of research within the CGT domain are;  

 Procedural Content Generation techniques for building and scene generation, specifically 

that of terrain generation utilising real-world geospatial data as a base input. 

 Scene organisation to allow real-time rendering of dense scenes. 

 Applying CGT to the domain of GIS.  

The project will not research the big-data analytics, due to this not being an objective of the current 

research, but we issue that big-data analytics research is needed as an addition of the project; to be 

completed within our future work. We justify the reason to not undertake big-data analytics for this 

project due to the scale of the problem at hand. According to McAfee and Brynjolfsson [12], in 2012, 

2.5 Exabyte’s of data is produced daily. This figure is estimated to double every 40 months. We 

estimate that within 2017, 6.25 Exabyte’s of data is produced daily. Some of this data consists of GIS 

data, but also, user generated content such as geotagged images. Deciphering this large amount of 

data is too large of a task for this project, thusly we iterate that this problem is out of the scope of 

this project. 
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With this project, we do not intend to solve all problems within the domain of GIS with the aid of 

CGT. This is due to the size of the problem perspective, and vast variances of technologies available, 

as well as large number of various data sources and sets. Our work is limited by the current 

technologies available during the research stage. The choice of Microsoft XNA as a rendering engine 

is a limitation due to restrictions for using DirectX9. At the time, alternatives such as HTML5, and 

UnrealEngine4 were not developed to a satisfactory state for use with this project. 

1.4 Contributions 

The main novelty of this research is the framework and internal algorithms. The generation of novel 

data structures and a scenegraph to spatially organise and categorise assets user and procedurally 

generated from OSM. Algorithms are generated to combine the geospatial data sets to improve each 

data set and infer additional data to improve categorisations within simulations. The improvement 

to data, and the inference of data provides additional attributes to categorise procedurally 

generated 3D model assets. Using the attributes of assets allows advanced rendering of assets 

depending on the attributes; e.g. rendering buildings which are not fireproof red.  

The introduction of Indexed Array Shader Functions (IASF) has not been utilised within geospatial 

rendering systems or GISs. It is a method used to great success within many AAA commercial games 

and visualisations applications. The research in combining a static branching shader component with 

accompanying algorithms for the determination of shader index value for the chosen rendering 

technique applied to the model mesh component.  

Our research determines error reduction methods for LiDAR, and OSM data by combining them 

independently within iterative processes. The research also determines methods for creating 

additional data for the LiDAR and OSM data-sets by utilising novel algorithms. 

The research has developed a novel storage technique within a formatted texture file by employing 

parsing procedures to encode and decode the data. This alleviates the use of ASCII files to store the 

LiDAR and OS data sets, and provides a common format for the viewing of data files. 

The use of an Interactive Visualisation Interface allows users of the framework to interact with 

generated scenes to query combinations of assets properties, categories, and applied user 

generated procedural animations to both spatial, and visual properties of scene assets. This concept 

has not been used within GISs to this level of detail; exposing the algorithms and attributes of assets 

within a scene. 

The publications of this research are found in section 1.4.1 and referenced from the numbered list. 



29 
 

Within the journal shown in section 1.4.1, item 1, we present processes for the combination of 

geographical data-sets. The publication iterates the novelty and acceptance of our proposed 

framework. The acceptance of the proposed framework is also iterated in the published conference 

paper in section 1.4.1, item 5. 

Within the paper in section 1.4.1, item 2, we introduce our technique for the extraction of model 

meshes using adjacency matrices by utilising OSM boundary polygons projected from OSM 

latitude/longitude to 2D X, Y projection, overlaid onto the LiDAR digital terrain maps to copy and 

extract the data points. These data points are used to create 3D model meshes of individual 

buildings. A technique which has not been applied using adjacency matrices with LiDAR data and 

user generated open data. 

The utilisation of our framework has been tested by combining real-world noise levels captured 

within a city within the UK and visualised within the procedurally generated urban environment. The 

results have been published within in section 1.4.1, item 4. The purpose of the framework is to allow 

the utilisation of addition overlaid data easily added. This identifies that the framework works with 

multiple data-set domains.  

1.4.1 Publications 

1. David Tully, Abdennour El Rhalibi, Christopher Carter, Sud Sudirman “Hybrid 3D Rendering of 

Large Map Data for Crisis Management”, ISPRS International Journal of Geo-Information, 

ISPRS Int. J. Geo-Inf. 2015, 4, ISSN 2220-9964. 

http://www.mdpi.com/journal/ijgi/special_issues/disaster-manag  

2. David Tully, Abdennour El Rhalibi, Zhigeng Pan, Christopher Carter, Sud Sudirman “Mesh 

Extraction from a Regular Grid structure using Adjacency Matrix”, 8th International 

Conference on Image and Graphics (organised by Microsoft Research), Aug. 13-16, ICIG 

2015, Part III, Tianjin, China. Proceedings Published by Springer Verlag. 

http://link.springer.com/book/10.1007%2F978-3-319-21969-1 

3. David Tully, Abdennour El Rhalibi, Zhigeng Pan, Christopher Carter, Sud Sudirman 

“Automated Procedural Generation of Urban Environments using Open Data for City 

Visualisation”, 8th International Conference on Image and Graphics (organised by Microsoft 

Research),  Aug. 13-16, ICIG 2015, Part III, Tianjin, China. Proceedings Published by Springer 

Verlag. http://link.springer.com/chapter/10.1007/978-3-319-21969-1_49 

4. William Hurst, Graham Davis, Abdennour El Rhalibi, David Tully, Zhigeng Pan “Predicting and 

Visualising City Noise Levels to Support Tinnitus Sufferers”, 8th International Conference on 

Image and Graphics (organised by Microsoft Research), Aug. 13-16, ICIG 2015, Part III, 
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Tianjin, China. Proceedings Published by Springer Verlag. 

http://link.springer.com/chapter/10.1007/978-3-319-21969-1_53 

5. David Tully, Abdennour El Rhalibi, Madjid Merabti, Yuanyuan Shen, Christopher Carter 

“Game Based Decision Support System and Visualisation for Crisis Management and 

Response”, 15th Annual Postgraduate Symposium on the Convergence of 

Telecommunications, Networking and Broadcasting, June. 23-24 2014, Liverpool, England. 

Proceedings Published by Liverpool John Moores University. 

http://www.cms.livjm.ac.uk/PGNet2014/papers/1569961593.pdf 

6. David Tully, Abdennour El Rhalibi, Christopher Carter, Sud Sudirman, “Generating a Novel 

Scenegraph for a Modern GIS Rendering Framework”, IEEE DESE 2016 - Developments in 

eSystems Engineering, 31st August – 2nd September2016 Liverpool and Leeds England. 

 

1.5 Thesis Structure 

The thesis is laid out as such; 

Firstly, in Chapter 0, we will discuss the background research needed to understand and become 

familiar with the cross domain knowledge needed for the project. We discuss the areas of; real-

world map data-sets, modern GISs’, similar projects to this work as well as commercial products, 

CGT with visualisation and PG techniques as well as data structures commonly used within computer 

games, but not within GISs’.  

We then present, in Chapter 3, the completed literature review which compares, and analyses 

modern GISs and their platforms, features, and products. We also critique the work of similar 

research projects and commercial products, as well as data-sets of OS, LiDAR, Photogrammetry, and 

OSM for the use within a modern GIS framework. The analysis of games technologies and closely 

related algorithms/data-structures e.g. visualisation and spatial organisation techniques are justified 

for a modern GIS framework.  

Due to the limitation and issues surround big-geospatial data, we discuss these issues within its own 

chapter, in Chapter 4. Within this chapter to critique the need of data-sets over similar but 

consequently vastly different data sets. We discuss the OS data-sets provided freely by the UK 

Government, and the chosen data-set which is needed for the proposed framework. We also 

present the details and issues surrounding the 6.7 million pounds’ worth of LiDAR data we have 

obtained from the UK Government. This is followed by an in-depth look at the OSM data-sets and 

internal data-structures which are used for much of the PG of 3D assets. The restrictions and issues 

of 3D model mesh assets are presented next. 

http://www.cms.livjm.ac.uk/PGNet2014/papers/1569961593.pdf
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After the background research, the critical analysis and discussion of others work and related 

research, as well as the data-sets to and issues of geospatial data we discuss the specifications 

needed to overcome these issues, Chapter 5. The specification will be discussed from the 

perspective of the framework which will be developed, and the needs to overcome the problems 

and issues. 

Using the specification, the design section can be completed.  

The design section, presented in Chapter 6, is used to showcase the novel techniques and data 

structures which we have created to complete the project and the design of two pipelines which 

build up the framework. We introduce the designs for the novel scenegraph data structure, and the 

novel IASF data structure. When combined these two data structures allow the user to modify a 

scene to change the look and feel of the scene as a whole, or only subsets of the scene, by the 

dispersal of a single numerical value. Currently this technique has not been used within a GIS. 

After designing the individual components and algorithms needed for the framework, Chapter 7 

discusses the implementation of the pre-processor algorithms and APIs used within the framework 

to parse, combine, infer, and generated big geospatial data.  

Chapter 8 presents the implementation of the runtime algorithms used for searching, and rendering 

the visualisations. Within this chapter we also cover the development of search techniques for the 

custom objects we have created by parsing the data-sets we have. Combined with the searching of 

assets within the simulation, the use of a Dynamic Expression Library is used. This allows users to 

search for objects within a scene using any combination of properties or attributes attached to an 

asset; given great flexibility for search technique on a large scene. We state how the separate 

libraries of; input, camera systems, interpolation library, triangulation algorithms, dynamic 

expression library, pre-processor and runtime simulation, an Interactive Visualisation Interface (IVI), 

novel scenegraph and IASF interact with each-other. This is also covered within the design section, 

but the implementations picture the intricate cohesion needed between systems.  

Due to the large domain spread of the project, we state the issues and problems which arose during 

the implementation phase, and specify the issues which need to be researched further.  

To conclude, if project and framework is to be successful, the evaluation chapter is presented in 

Chapter9. Within this section we evaluate the framework against that of professional and real-world 

GISs as well as similar research projects. We justify the framework by comparing the features of our 

framework against the features provided by the alternative GISs, frameworks, projects, and pieces of 

software. We also evaluate the stress testing of the framework by uniform scaling analyse. The 
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frame rate parameters are also captured for 5 maps which are also visually compared with the 

alternative GISs. 

Once the evaluation of the framework is completed, we reach a conclusion in Chapter 10. Chapter 

10 includes the future work and directions of our research. 

The reader can also find the publications of this project within section 1.4.1. Each publication will be 

referenced as item 1 to 6. 
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2 Background 

Within this chapter, we discuss our background research and related topics. We concentrate our 

research on the state of the art modern GISs and the relevant technologies, techniques, and data-

sets included within them. We discuss the uses of PCG, and rendering capabilities of similar projects 

as well as data organisation techniques, how other researches use data commonly found within 

GISs, and how they combine and exploit this data with CGT and rendering algorithms.  

This chapter contains a discussion about visualisation techniques used within similar areas of 

research, and a short discussion on modern GISs and similar projects as well as data used within 

GISs. We also review commercial projects which we will compare to our project framework 

highlighting similarities and improvement, which will bring us upon computer game technologies 

and what they provide for a project of this type. Within computer games technologies, particular 

rendering structures are used with varying effect, some needed, while others are not needed for the 

creation of a modern GIS. Data is needed to be spatially organised which brings the chapter to a 

close with a discussion of scenegraph structures.  

2.1 Map Data 

Within this section we will discuss the possible data sets we utilise within this research. The data sets 

will be discussed as to where the data is being used within the research, the issues (if any) 

surrounding the use of the data, and the need to incorporate the data into a modern GIS. We start 

by discussing the OSM mapping platform. After this, we discuss terrain data in the form of LiDAR 

which can be used in a multitude of ways, primarily the generation of terrain model meshes for 

visualisation. LiDAR data is also used for information extraction and analysis to combine with other 

data sets such as the UKs OS data set. This data can provide a base data-set to use when errors are 

found within the LiDAR data set. 

We must evaluate, and be aware of the implications of using map data, be it, volunteered, or open, 

due to the possibility of errors within the captured data. Droj, Suba, and Buba in [13] state in their 

opening statement that for centuries of map data capturing, the data is subject to random, 

systematic, and gross errors. They include their main concerns with using GIS data, and its spatial 

data quality: 

1. There is an increasing availability, exchange and use of spatial data. 

2. There is a growing group of users less aware of spatial data quality. 

3. GIS enables the use of spatial data in all sorts of applications, regardless of the data quality. 

4. Current GIS offers hardly any tools for handling spatial quality. 
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5. There is an increasing distance between those who use the spatial data (the end users) and 

those who are creating the spatial databases. 

They also presume that the use of GISs will prevail even if the data used if erroneous, leading to 

misled decisions, and error prone results of the processed artefact. Although we agree with this 

statement, we do believe that efforts are being made to reduce errors within data capture and 

processing. The OSM platform, for example, has many tools and standards for checking data within 

their data-bases. These include the following systems: 

 MapDust4; a bug tool operated by Skobbler GmbH (a German company), is a bug reporter 

tool which allows users to submit problems with the OSM navigation results. This itself is 

allowing users to submit changes, but they are checked manually. 

 JOSM Validator5; a data validation system which checks many subsets of data. It checks for; 

duplicated nodes, duplicated nodes within ways, unconnected coastlines, incomplete ways, 

nodes with the same name, overlapping areas, and many more. We will need to implement 

similar techniques, or implemented a data processing technique which includes parsing the 

data through JOSM or a similar format.  

Pringle [14] states that processing of spatial data can incur errors. The author suggests specific 

situations from converting from raster files to vector files; two commonly used data structures for 

storing spatial data pertinent to GIS. Converting one data structure to another needs specifically 

designed, and tested parsing algorithms. Even with testing, conversion of one data type to another 

still has erroneous issues which can distort the validity of said data set. When parsing open data 

within the framework, vigorous iterative testing must be undertaken to prevent future errors. 

With the intentions to test the presumable need for parsing algorithms, to convert open-data and 

spatial data to runtime class object for the framework, we have created novel techniques to reduce 

errors within the data-sets use. 

2.1.1 Open Street Map 

OSM is a worldwide open data mapping project using over 1.7 million volunteers to map local 

environments. This includes Topological Integrated Geographic Encoding and Referencing system 

(TIGER) which includes road data for almost all of the USA, which has been donated to OSM.  

Within a comparative study done by Haklay [15] from the Department of Civil, Environmental, and 

Geometric Engineering, University College London, comparing OSM data-sets and OS data-sets, the 

author states that OSM information is accurate to within average of 6m to that of OS data. Within 

                                                           
4 http://www.mapdust.com/ 
5 http://www.giscorps.org/documents/UsingJOSM.pdf 
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the research they state that 29% area coverage of England has been captured. This result was from 

2008 to 2012. We estimate this number to have increased with the popularity of current OSM affairs 

and what are known as ‘OSM mapping parties6’. The author reiterates the needs of volunteered 

geographical data from Oort’s Doctoral Thesis [4]. These qualities needed by open spatial data, 

specifically volunteered are: 

 Lineage/historical: accuracy of data and data capture techniques. 

 Positional accuracy 

 Attribute accuracy 

 Logical consistency 

 Completeness 

 Semantic accuracy 

 Usage, purpose, and constraints 

 Temporal quality 

These are further iterated by Droj, Suba, and Buba in [13].  

OSM data has been used in several GIS projects and used in the early research of Togelius with his 

Open Games [16][17][18][19]. In [16], the author discusses games which have Open Data as the base 

of the projects. Interesting uses of this data have been made to generate real-world simplistic city’s 

and highway structures for use in a racing game, and generating interesting real-world Monopoly7 

board game layouts, as well as early Civilisation8 style computer games which use the boundary data 

from OSM to generate the terrain map layouts for the game. The racing game which utilises 

procedural techniques is of particular interest. This work shows that OSM data can be used for the 

creation of simplified urban scenes, which resemble real-world locations. 

OSM has four main elements:  

 OSMNode (a latitude and longitude location on the Earth’s surface);  

 OSMWay (a group of ordered Nodes. If the first OSMNode is the same as the last OSMNode 

in the ordered list then this denotes a boundary, else it is a Highway. The direction of the 

Highway is the order of the Nodes in the list);  

 OSMRelations (a list of nodes or ways, but not both, which explain some kind of connection 

such as a group of buildings, or outlines of buildings which are contained within one 

another);  

                                                           
6 http://wiki.openstreetmap.org/wiki/Mapping_parties 
7 https://en.wikipedia.org/wiki/Monopoly_(game) 
8 http://www.civilization.com/en/home/ 
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 OSMTag (extra information describing the OSMNode or OSMWay, for example 

Tag=Building) which is a key/value pair.  

Using only these 4 data-types, a world full of mapping data can be generated. Parsing this data for a 

custom system used to generate 3D structures of 2D latitude and longitude locations with 

descriptions is a difficult process; a process which is needed for a novel modern GIS framework.  

There are currently a few projects which are tackling the procedural uses with generating more 

accurate realistic environment.  

OSM-3D.org9 combines OSM with elevation data captured by the Shuttle Radar Topography Mission 

(SRTM) for the development of a 3D Geodata Infrastructure (GDI-3D). They intend the project to be 

a world-wide mapping scheme utilising open web service standards of the Open Geospatial 

Consortium (OGC). Although web technologies are progressing and becoming capable of reaching 

real-time rendering speeds which closely matches that of desktop GPUs, they currently lack the 

hardware capabilities. A modern GPU can vastly outperform web technologies for real-time 

rendering. We plan to take procedures and experience from the OSM-3D.org project, and combine 

them in a desktop application with use of high a performance GPU and game engine specifically 

designed for real-time rendering. 

 

Figure 1 OSM-3D.org project. Image shows 3D procedural buildings with height captured from the Shuttle Radar 

Topography Mission data. Image obtained from http://wiki.openstreetmap.org/w/index.php?title=OSM-

3D.org&oldid=1395279 

OSM-3D.org is also working towards generating 3D building models from the OSM data. They utilise 

simple primitives extruded from the data points given. If a building outline satisfies simplistic rules, a 

premade rooftop is scaled, orientated and placed on top of the building. This is a basic pitched roof 

structure. Other projects are working specifically on the procedurally generation of rooftop 

structures, as well as the mapping techniques needed.  

                                                           
9 http://wiki.openstreetmap.org/wiki/OSM-3D.org 
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Although OSM-3D utilises SRTM, the terrain is untouched and only the heights of the buildings are 

used as shown in Figure 1. Integrating accurate terrain models will improve the visual accuracy of 

these scenes. 

Although to create further realism within a scene, accurate building models are needed. If a user’s 

camera perspective is above a city, as most GIS allow a user to do, the roof tops play a major part for 

the realism of a scene. For this research we will not focus on the generation of techniques to 

develop procedural techniques for building tops, but do insist that this is an area which needs 

completing to generate a complete modern GIS. 

We focus primarily on the generation and visualisation of building models. Using the work from 

OSM-3D.org, we have a good starting point into what OSM can be used for with regards to 3D 

building model meshes. 

To generate building model meshes, and other model meshes from the open geo-data of OSM, 

processes are needed to arrange and gather specific information from the database. This is a large 

task due to the large databases of OSM which classify it as Big-Data. 

Currently OSM map data contains over: 52,971 different key items10. A key is a description which can 

be entered by a user. A key is user generated and a large issue with OSM due to the fact that a key 

can represent anything, and multiple keys can correspond to the same instance due to multiple 

languages, local dialects, and spelling mistakes or variant grammar layouts. 

The complexity of deciphering the massive data sets and intricate naming’s for seemingly similar 

objects in the world is demanding and needs vast attention to detail to compare names and split 

corresponding data sets into more manageable groups of data. For example, the Key: Building has 

7512 Tags to describe it, many of which are repeated but with slightly different spellings. Many fuzzy 

text matching algorithms have been created to fix this problem [20]. Another option would be the 

manual selection of the most commonly used Key and Tag data.  

Within the OSM database there are:  

 2.8 billion objects 

 1.1 billion tags 

 2.5 billion nodes of which 3.73% have at least one Tag description 

 255 million Ways, half of which are closed (boundaries) 

 2.8 million Relations 

                                                           
10 https://taginfo.openstreetmap.org/keys 
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At the time of writing, the global data storage of OSM data is 498Gb. Pre-processing and separating 

this big-data set can greatly reduce storage space needed for a real-time application. This can be 

done by utilising scenegraphs commonly use computer games.  

As shown in Table 1 and Figure 2, the OSMNode density of the chosen locations varies and gives 

surprising results. Table 1 depicts 2 city locations; Liverpool UK for its familiarity, and New York City – 

New York due to the common global thought that it is a large and dense city. Within the Table 1 is 

also a selection of country side from the UK.  

The OSMNode count is the number of Nodes within a file. The OSMWay count is the number of 

Ways within a file. The building count is the number of buildings within a map. 

We can notice the difference between the cities of Liverpool and New York 1km2 maps file size. This 

shows that even though an area may small in terms of coverage, the density of data within these 

areas can be large. Utilising spatial partition trees, and parsing techniques to remove data which is 

not pertinent to the generation of a modern GIS is needed. We bring the reader’s attention to the 

OSMNode density within the various maps of Liverpool UK, Manhattan New York, and the selection 

of UK country-side at the location of Latitude -1.8697 to -1.8461, and Longitude 53.5048, 53.4900, 

an area right of Manchester UK. The OSMNode density of the selected country-side file is large 

compared to an OSMNode density rich area of Manhattan New York. The reason for this is selected 

maps of OSM include all nodes of a boundary, and if a selected area contains a boundary which is 

not completely contained within the selected area, all nodes of that boundary are downloaded. For 

example, downloading a map on the coastal line of the UK will include the nodes which depict the 

coastline of the complete UK. 
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Figure 2 Bar Chart comparing Liverpool UK and New York USA areas depicting OSMNode density, OSMWay density, and 

Building density. 

Name Area Coverage File Size on 

Disk 

Node Count Way Count Building 

Count 

 Liverpool 100x100 64.1 kb 209 24 15 

 200x200 108 kb 383 53 33 

 300x300 198 kb 747 105 57 

 400x400 304 kb 1152 197 103 

 500x500 474 kb 1842 300 157 

 800x800 1.09 Mb 4338 750 367 

 1000x1000 1.74 Mb 6794 1236 679 

Manhattan 100x100 24 kb 66 7 2 

 200x200 159 kb 333 58 19 

 300x300 323 kb 903 149 51 

 400x400 579 kb 1756 307 128 

 500x500 898 kb 2881 490 261 

 800x800 2.63 Mb 6740 1259 722 

 1000x1000 3.61 Mb 9827 1875 1043 

UK Country-side 1000x1000 843kb 3824 106 0 

Table 1 OSMNode density maps within Manhattan New York American, Liverpool UK, and randomly selected country-side 

within the UK. 
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An issue with the data is lack of information attached to a building boundary. For this reason, 

utilising OSM for the PG of accurate city model meshes for a modern GIS is currently not the best 

choice. Creating a realistic and accurate city skyline where the buildings are of accurate height is the 

pinnacle of what is needed for a modern GIS. Currently OSM is unable to provide a city’s worth of 

height data.  

Combining OSM with terrain mapping data, specifically that of photogrammetry or LiDAR can 

produce this eagerly needed data. The next section covers LiDAR. We will discuss in a later section 

the issues surrounding photogrammetry, and why we wish to not pursue it for this research. 

2.1.2 Light Detection and Ranging – LiDAR 

LiDAR is the capturing of height data from laser scanning cameras commonly aboard low flying 

aircrafts (800meters); some as small as commercial drones. Pulses of light are shot from the camera, 

and the time taken for the light photons to travel back to the cameras light sensitive sensor is 

recorded. Using this time fragment with the addition of gyroscope technology, and GIS coordinates, 

highly accurate data can be captured; to within a few centimetres of accuracy with 0 – 15cms of 

error.  

There are two types of LiDAR map, Digital Surface Model (DSM), and Digital Terrain Model (DTM). A 

DSM contains all points captured but with minimal processing from the provider to correlate raw 

data-points. The DTM holds a processed version of the DSM which contains only height data for 

terrain with removed buildings, trees, or other artefacts within a scene. The LiDAR data maps are 2-

dimensional grids of height points, thusly only the surface of a landscape, from a top down 

perspective can be captured using this type of LiDAR capturing. This implements errors due to not 

being able to record inside openings such as caves, or the underside of bridges. When visualised, the 

high density data maps of LiDAR can produce realistic top-down representations of city models when 

generated as a 3D model meshes. Combining these city models with a 3D camera system, users can 

navigate areas of these 3D visualised 2D grids of height points. What cannot be done from visualised 

LiDAR alone is to depict object information such as, buildings, trees, vehicles etc. This needs further 

processing and analysis techniques. Combining with other descriptive data sets such as OSM, chunks 

of data can be extracted.  

LiDAR has other issues due to the cost of capturing the data. Although, small aerial drones with 

LiDAR equipment attached is considerably bringing down costs.  Capturing data at multiple 

resolutions varies the cost of data fragments, thusly many providers provide low resolution LiDAR 

maps. In this instance, low resolution data capturing stipulates that the distance between the data 
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points are 2 meters squared. This is still highly accurate compared to freely available DTMs provided 

by the UK government in the form of Open Survey (OS). See the next section on OS.  

Many of the areas of the UK have been captured with LiDAR; see Figure 3. As stated, the varying cost 

of areas has led to the situation of various areas being mapped at different resolutions; high 

resolution capture for dense urban environments, low resolution for forest areas and none-built 

areas. These resolutions vary on a company/provider basis. This is an issue for a modern GIS. The UK 

needs full coverage at high resolutions. If this is not possible then procedures must be put in place to 

produce accurate data from combining with other sources such as OS or by interpolation techniques 

to produce additional height data points for higher resolution maps. 

LiDAR also has another issue of being incomplete, error prone, and even missing large data-sets. This 

is for a multitude of reasons. The beams of light do not reflect off organic matter such as vegetation, 

nor does it reflect accurately off water; producing errors or a complete lack of data. If small parts of 

LiDAR data are missing, interpolation techniques can be used to generate missing data. If a larger 

part of a map is missing, then procedures are needed to combine other data-sets for the 

combination and generation of additional data. OS data can provide a base data-set for the 

combination. OSM can provide additional data to improve area classification. Area classification can 

be used to lower height points of LiDAR or OS if it’s determined that the area is terrain or water; 

producing further accurate data and reducing/removing errors. Capturing data above urban 

environments is thwarted with further issues. Cities are not still at capturing time; they are a 

constantly moving entity. This movement is an issue, especially if a flock of birds are flying at time of 

capture. The beams of light bounce of the birds inflight and data depicts the heights of the birds. 

When visualised, this introduces huge spikes into the terrain data. Firstly, this is not accurate, but 

technically the LiDAR capturing equipment is not to fault. Procedures can be put in place to detect 

this error and flag the situation for manual editing. To create a procedural technique, OSM data can 

be queried, and if this spike in height data is within bounds of some sort, e.g. a building boundary, 

then the data can be classified as accurate, else, either we can remove the data within the OSM 

boundary from the LiDAR map, or pass the issue to a manual operator. 

Within the next section we introduce the UK’s OS data, specifically the height data for which they 

provide freely because there are multiple forms of data and provider. 
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Figure 3 Area coverage of LiDAR data at 2m (Purple), 1m (Green)), 50cm (Red), and 25cm (Blue) resolution. Image obtained 

from now disbanded government sector. 

2.1.3 Ordnance Survey 

There are many providers of OS data, but we concentrate on the freely available UK government 

generated DTM. An official UK government generated guide is available [21]. We discuss shortly the 

other providers and the issues with the data they provide as well as the reason we have selected the 

freely available version provided by the UK government. We also discuss the issues surrounding OS, 

and what can be done to fix these issues.  

OS is a mapping scheme provided and updated by the UK government. Its resolution is low 

compared to that of the LiDAR data; 50ms between each height point. This data is of too low a 

resolution to use with a modern GIS due to lack of realism generated maps brings to a project. We 

plan to use interpolated OS maps in place of missing LiDAR maps. OS can also be used to fill in 

missing data points of the LiDAR which do not satisfy certain classifications; i.e. is the missing chunk 

of data too large to interpolate? - and thusly needs to be plugged with outside data. 

2.1.4 Combining Map-Sets Together to Reduce Erroneous Terrain Data 

Utilising OS as a base map resolution and combining with the LiDAR DTMs, then the DSM’s realistic 

maps with improved accuracy of data points can be generated. When specific errors within the data-

sets are found, procedures can be triggered to fall-back on procedural techniques, or gather input 

from a human.  



43 
 

The various maps of raw data and procedurally generated content can be visualised on top of one 

another to view the errors or differences between the maps. This is achievable with modern game 

engines; another reason to utilise computer game technologies. 

The improvement combining of relevant geospatial data sets contributes to the knowledge of GIS 

data visualisation by the improvement of raw processed data sets. The contribution of algorithms 

specifically designed to combine and generate accurate geospatial data sets improve rendering of 

real-world virtual scenes.  

2.2 Modern GISs 

What is GIS? It is stated that GISs allow users to visualise a number of data sets relating to 

geographical locations11. GISs have many purposes for data; capturing, storage, manipulation, 

analysis, management, data-inference, and spatial depiction of geographical assets.  

The Environment Systems Research Institute (ESRI) states that GISs’ contain 3 main elements; 

Geoprocessing, Geovisualisation, and Geodatabase as depicted in Figure 4. 

Geovisualisation Geodatabase

Geoprocessing

 

Figure 4 Components of a GIS according to ESRI. 

Common datasets used within modern GISs are complex and varying, proving difficult for none 

domain specialists. Structured topological data, such as OS and LiDAR as well as descriptive 

geospatial data such as OSM can prove a familiar data set for none domain experts. 

                                                           
11 http://www.esri.com/what-is-gis 
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Topology schemes must be stated to show the spatial relationships between assets within a scene. 

These topologies share many resemblances to network topologies, as they can be thought of as 

having similar structures, but represent different data. Both types of topologies still reference real-

world locations. With multiple data sets being geotagged with real-world geolocations, the data-sets 

can be layered together. This is especially interesting for different visual textures such as aerial 

images, of varying types. A common list of layers can be; aerial satellite images, postal codes and 

boundaries, buildings and artefacts, user defined data, land use, or transportation. Within the OSM 

web portal, a user can view many types of maps, but the base images for a majority of the maps are 

grey-scale satellite images.  

As stated, user defined data can be textures, layers, or visualisations depicting particular information 

such as; pollution, population, crime rates, noise levels, and many others. This is the main ability for 

which we believe modern GISs’ need to improve upon and allow users to view scenes with 

customisable data views through encoding and binding data to spatial or visual parameters. 

Combining GIS data with modern CGT can be achieved using this.  

GIS data is a complex confusing set of large volumes of data, varying by many types, and structures. 

The volume of data GIS process to create data for viewing is taxing on many computational 

resources. We wish to create our own internal processes to provide assistance and at the least 

improve data sets for visualisation. The processing of data, once an algorithm has been created, is 

not a significant problem due to the constant lowering costs of hardware, the problem is the 

creation of an algorithm which can depict and unravel those large volumes of data-sets with their 

particular specific relationships between each other. When working with real-world data, especially 

openly generated by untrained or trained users or volunteers, errors will inevitable be introduced to 

the data-sets. Procedures must be put in place to detect these errors. This in itself is a daunting task. 

How do we create an algorithm which can detect errors, when one does not know of the error we 

are looking for? 

As stated by ERSI, compilation of data is an advanced and specialised technique. They issue the 

statement that geographic rules and commands are necessary to create correct and accurate data, 

but this is expensive. They state that this is why GIS data-sets are shared between companies and 

users. Although this is true, with that of TIGER giving their highway data-set of most of America to 

OSM. Currently, due to the expense of data capture, the reluctance to share has driven a wedge 

between advancements and collaborations. We wish to create algorithms to infer data from open 

sources to generate data which we are unable to obtain. 
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The obvious GISs which people think of first are those in the main stream news outlets; Google 

Maps, Bing Maps, and Apple Maps. This is partly due to their infrastructure, and their mobile 

applications being supported in many modern devices. These large corporations provide their assets, 

applications, and data to users through online web portals. Applications on smartphones and tablets 

can also be construed as online web portals, due to the data being pulled down from a server, just 

like a desktop web-browsing program. We will focus on the largest map provider, Google Maps12, for 

our discussion of issues surrounding these types of GISs. Google Maps provides many different 

varieties of map data, in a large number of applications; Google Maps, Google Earth13, and Google 

Street-View14 etc. 

2.2.1 Comparison of GIS Providers and the Data they provide 

Before we discuss the differences between the different GIS providers and applications, we wish to 

state common functionalities with the GIS platforms, and what makes a GIS platform. 

2.2.1.1 What is a GIS platform? 

A GIS platform comprises of many separate systems interconnected to provide many services. Figure 

5 is obtained from a release document from the ESRI website15.  

The platform shown in Figure 5 shows the combination of a desktop application and a lightweight 

web application. Modern hardware is providing advanced web support, and porting techniques used 

within desktop applications such as visualisations and 3D software interactions is capable, yet 

limited. 

For our work, we will not utilise web technologies, but we acknowledge the potential need due to 

the wide scale usage of web technologies. DirectX or OpenGL within a desktop application, with 

direct access to the GPU, has the potential for further advanced visualisations. 

Next, we present the high level functionalities and issues with many of the current GISs relating to 

this work and thesis. 

                                                           
12 https://www.google.co.uk/maps 
13 https://www.google.co.uk/intl/en_uk/earth/ 
14 http://www.google.com/maps/streetview/ 
15 http://downloads.esri.com/support/documentation/ao_/698What_is_ArcGIS.pdf 
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Figure 5 ESRI Comprehensive GIS Platform designed to facilitate geographic requirements. Image obtained from the 

document downloaded form 'http://downloads.esri.com/support/documentation/ao_/698What_is_ArcGIS.pdf' 

2.2.1.2 Google Maps 

Google maps is commonly known to the general public and provides access to automated 

navigations, and simple overlays of data, and can have custom elements overlaid if the license 

agreements allow them.  

When a map is zoomed above a certain value, the user is allowed to rotate the angle of the camera 

(or viewing angle) in increments of 45°. The user can also arc/tilt the camera viewing angle 

downwards. This only allows a user to see an environment in a limited number of angles. Using a 

modern rendering engine, utilising multiple virtual cameras, a user can navigate an environment in 

any angle, arc, or perspective they wish. We wish to build upon this notion to allow a user to 

navigate an environment in whichever way they wish through the use of 3D camera systems 

commonly used within CGT. The integration and definition of 3D camera systems will be discussed 

later in this work. 
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Figure 6 Google Earth and Satellite screen captures. Top has 3D building with images. Bottom is 3D primitive building with 

no textures. Image obtained from https://www.google.co.uk/maps/@53.405743,-2.9958568,19.25z 

Figure 6, shows the un-textured 3D model of the Liverpool Liver Building (bottom), and the textured 

version (top). This is proof that a 3D approach to GIS is becoming more relevant and needed. The 

image also shows the overlay of highway data in the form of a grey strip and yellow strips to the 

right. They also have single node placeholders within the building, easier to depict in the bottom 

image of companies housed within the Liver Building. This data is also available within other GIS such 

as OSM. Although information is shown to the user within the web-browser, a user is unable to 

manipulate data in any form, apart from changing the visuals from satellite imagery to grey-scale 

form and camera angles. 
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Figure 7 Google Maps 3D vision of Liverpool Liver Building. Image captured within running Google Earth.exe application. 

Figure 7 , shows the 3D representation of the Liverpool Liver Building. This is an impressive 

representation of the building in question. As shown in Figure 8 and Figure 9, the procedure of 

generating this asset is error prone. 

 

Figure 8 Google maps tilt of 3D city. Errors persist within image. Image captured within running Google Earth.exe 

application. 

Within Figure 8, we can see the camera tilted to view a city landscape containing 3D buildings. After 

waiting a considerable amount of time, the errors within the image mapping persists within the 

scene. Users may not be able to recognise a scene. Having buildings pre generated and loaded from 

disk would remove the procedural nature of this view and texture splattering. 
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Another issue with the Google tilt view environment is the texturing of the 3D building assets. Due 

to the perspective and arc of the viewing angle, textures are used from their aerial 45° captures. 

These textures are interpolated across the building model mesh structures, creating a shearing 

effect which resembles an oil effect filter over the image. This removes realism from a scene; a 

realism which can be improved on with other games technology module pipelines; pipelines which 

utilise PCG. Procedurally generating building assets, and applying appropriate textures can alleviate 

this problem. We will need to use PCG techniques combined with additional data for the querying of 

specific building information. This is to determine the appropriate textures to apply to a PCG 

building with correct mapping schemes to reduce potential visual artefact errors, and to improve 

visual realism.  

Google Maps utilise a technique of multiple Level-of-Detail (LoD) tile sets, which are loaded as 

needed within the multiple zoom levels.  The tile sets are primitive, or low resolution images/data 

sets which are temporary assets which act as placeholders while the higher resolution assets are 

being loaded, or procedurally generated. The waiting time by the user is not large, and is becoming 

increasingly faster due to hardware advancements. Pre-processing GIS data can improve loading 

times by creating all levels of the LoD pre-runtime. This will increase visualisation times but may 

incur larger storage needs. 

Map services provided by Microsoft, Google, Apple, and other private companies implement 

stringent legal restrictions with relation with their products and data. The data with the map 

providers can also be out of date, by up to 3 years. Figure 9 shows that the street view image was 

captured within July 2014. This is partly due to the expense of capturing aerial or satellite 

photographs, and also the fact that it also is a world mapping scheme and would need further 

funding to achieve up to date data and imagery. User generated content can alleviate this ‘out of 

date’ issue. For the reasons stated, we aim to use a dedicated platform for world mapping, with 

standard data generation procedures which allow user generated content to be added in real, or 

close to real-time. The need for a platform which allows for user generated data is the fact that the 

users of this framework we wish to research and develop, can input their own data constructs for 

visualisation. As well, data entered can work in tandem to improve visualisations for our work, but 

also for the platform itself. The obvious choice of platform is OpenStreetMap.Org. See the section on 

OSM later in this chapter. 
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Figure 9 Google Map images capture date. Image captured from https://www.google.co.uk/maps/@53.4051016,-

2.9964405,3a,90y,39.16h,89.41t/data=!3m6!1e1!3m4!1sQwIFrWOnhWhqmqqpqg6wlQ!2e0!7i13312!8i6656 

Google Maps, and other map providers allow users to view multiple layers, in place of, or over the 

aerial images, or vector images. These layers are commonly; routing paths for vehicles, bicycles, and 

pedestrians, traffic data, terrain elevation data, place names, highway names, and others layers. 

These data layers are often unable to be combined within one visualisation, or rendering window. 

The use of advanced rendering techniques which are commonly utilised within modern rendering 

engines, will allow multiple layering of multiple maps, containing multiple rendering shader effect 

compositions. This will be discussed further in the implementation phase of this work.  

Creating 3D GISs which improve on the 2D aspect need to be built from the ground up. Many 

navigation systems use 3D virtual scenes with procedurally generated simplified building models, 

and 2D projected alerts for speed cameras, or road side services. They also place these assets above 

simplified large polygonal terrains, or even flat planes. This is due to many reasons. The extremely 

large price for LiDAR data, which can be used as realistic terrain heights model meshes. As well as 

the lack of full coverage of LiDAR data at high resolutions for full coverage of the UK, let alone the 

world. The low resolution terrain meshes of 3D navigation systems can be made from OS data for 

the UK, which is provided freely by the UK government. OS data covers the complete UK. To create a 

higher resolution terrain mesh for use with an advanced rendering GIS will need complete terrain 

coverage of the area being visualised. LiDAR data is of high resolution, but incomplete for the UK, 

whereas OS is complete for the UK but of low resolution. LiDAR data being of higher resolution is a 

clear choice to use for a high resolution modern 3D GIS. The issue with it being incomplete for many 

areas is a problem which needs to be overcome. We cover further discussions and how to analyse 

and fix incomplete errors within LiDAR in a later section. 

2.2.1.3 ArcGIS 

ArcGIS is the most advanced visualisation and mapping project which relates closely to our work and 

research. The data and techniques which they utilise have been used by commercial projects and 
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emergency services for the prolonged productivity benefits. This GIS provider provides data 

visualisations for many sectors; business, defence and intelligence, education, government, health 

and human services, mapping and charting, natural resource management, public interests and 

safety, and transportation visualisations. This is a large company with many years’ worth of 

experience. Although they provide many simulations and visualisations of data overlays and layers, it 

is cumbersome to understand what is being shown. Partly this may be due to the lack of experience 

from ourselves, or it could be a design flaw by only allowing users to view data which they have 

processed already; data such as land value prices, and house prices which are advertised to the 

‘Business’ sector to plan future expansions etc. It is this restriction of singular layered processed data 

which is simply added in a multi-layer visualisation which we wish to adopt and build upon. Providing 

a 3D view, instead of the glossy 2D overlays, will allow users to be comfortable viewing and 

understanding real-world scenes. ArcGIS can benefit majorly with the added open data provided by 

OSM. It is this open data which has extremely helpful, but over-looked data which can be useful for 

property developers. For example, if a business needed a new office and wanted views from its 

windows and be situated with large pedestrian traffic presence, utilising the current ArcGIS may not 

give enough information to provide the user with as much information they need. Using open data 

with positions of tree structures can add realism to a scene so the user knows that a tree will or will 

not cover the view from the building. Adding more data has multiple benefits; a user may not know 

they miss the data until it is presented to them, and they can always remove objects from a 3D scene 

if needed.  

2.2.1.4 Additional GISs 

The other GIS providers consist of; Microsoft Bing Maps, Apple Maps, and MapQuest. These 

providers are not as relevant as that of Google for its wide spread use, and its large cartographic 

data and images, nor are they as developed as ArcGIS in terms of data visualisation techniques. 

2.3 Features of GISs 

Within this section, we state the features of modern GISs researched from application web portals, 

research papers, and utilisation of the applications. 

ArcGIS16 website states the features of their application. The application utilises; 

 Apps for Everyone – the application works on many devices; tablet, smartphone, desktop, 

laptop. We take not that an application/framework should work not only on multiple 

devices, but also, various ranges of hardware specifications. 

                                                           
16 https://www.arcgis.com/features/features.html 
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 Ready-to-Use Maps – this represents that maps should be available for use or editing, or 

further development. We take from this that scalability is an essential feature for GISs. 

 Visualisation – the visualisation of data, and big data is needed for a modern GIS. The 

utilisation of 3D and 2D rendering techniques, as well as functionality to apply multiple 

rendering techniques to single or multiple data sets for real-time rendering is needed. 

 Analytics – the application states that analytics of data is utilised to make sense of the vast, 

varying data sets for the quantifying and impact of decisions made from the data. We take 

from this statement that some form of analytics is needed to improve accuracy of the 

original data sets, or infer information. 

 Administration – ArcGIS states administration is a feature of their application. We state that 

administration is not needed for a modern GIS. If sensitive information is utilised, then 

administration is needed to restrict data access. 

 Marketplace – ArcGIS application utilises a market place to share techniques, maps, and data 

sets. We take from this that scalability is needed, and plugin data is needed to be allowed 

within a framework. For example, components should be able to be placed within the 

codebase to extend the functionality of a GIS framework.  

 ArcGIS Solutions – ArcGIS states a feature is solutions, i.e. premade maps with data 

associated with the map. We disagree with this implementation of a feature. This is a 

product and not a feature. 

 Secure and Trusted – The utilisation of sensitive information needs security which is why 

administration is needed. We state that trusted data sets come in two forms; trusted 

provider, and complete and accurate data set. The latter is more important than that of the 

former. 

 Tools for Developers – this feature references to allowing access to the API of the 

framework. We state that this feature is needed for open projects as our project is. 

Other features from alternative data sets, GIS providers, and GIS applications are as follows; 

 Multiple viewing angles, projections, and navigations of viewings. This can be implemented 

with the utilisation of CGT camera systems by allowing 3D scene navigation and the viewing 

of perspective and orthographic projections. 

 Utilisation of satellite imagery, or OS imagery. We state this is a feature needed to combine 

previously used 2D maps, and reference the viewing inside a 3D scene. This allows 

transitioning to a new form of GIS framework. 
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 Highly detailed 3D model assets in the form of procedurally generated, and user input. 

Google Maps provide procedurally generated models, and also streamed model objects from 

web servers. They do not allow user generated content. 

 Modify objects/maps in real time, running queries, selecting object, and modify the 

properties of said objects singular, or as a group. 

 Animate objects to bring attention to objects. The animation of both spatial, and visual 

parameters should be a feature.  

 ArcGIS, Google Maps, and other GIS application provide visualisations of data. The 

applications do not access the GPU of a desktop machine. This is a feature which CGT can 

provide and improve GIS visualisations. 

 Viewing large scenes is needed as a feature. To complete this feature, LoD techniques are 

needed. This may be multiple model objects within a scene, or a data structure which can 

swop assets out in real-time to keep a steady framerate. 

 Real-time framerates are needed to keep a user immersed. 

In short, we conclude that the features needed for a GIS should include the following; 

 2D and 3D Camera system with multiple viewing projections, and controllable by user 

 Using satellite imagery, and other 2D/3D content to bring realism to scenes 

 LoD to improve large scene rendering. 

 Real-time framerates 

 Scalable development tools/API 

 Allow importing of user generated content 

 Realistic procedural assets 

 Advanced rendering techniques applied to scene and individual objects 

 Object selection and modification 

 Geospatial data visualisation 

2.4 Projects within the Domain of this Project 

Similar projects to our work utilise real world GIS map data or a variant as a test beds for 

simulations. Within this section we will discuss these projects, and the similarities to our project. We 

analyse the projects on multiple levels; from their end visualisations, and the data they have used 

within the system. We also discuss which aspects we wish to include in our work, and which we 

intend to improve upon.  
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2.4.1 Autonomous Learning Agents for Decentralised Data and Information 

Autonomous Learning Agents for Decentralised Data and Information (ALLADIN) [5]–[7] is a research 

project, in which the main investigation was into MAS and in particular: studies of data-fusion 

techniques, decision making, reinforcement learning, streaming data, resource allocation, 

distributed coordination, coalition formation, and decentralized control. The simulation is split into 

three domains; Situational Awareness, RoboCup Rescue, and Evacuation. 

Artificial agents are out of the scope of our project, but we wish to improve on the 2D 

representation of the maps for which AI agents used in projects such as ALLADIN can be situated in.  

 

2.4.2 SAVE 

The SAVE (Sustainability Assessment Visualisation and Enhancement) project visualises the 

interactions between society, environment, and economics, as well as the future possible 

consequences of the current behaviours through mathematical modelling of materials used in 

construction [2] [1]. The simulation uses the Analytic Network Process (ANP) methodology [22], a 

network built of elements, each having individual attributes (numerical interaction values with the 

world), and creates a super matrix containing initial judgements of these attribute values, and then 

using a pair-wise comparison against a fundamental scale (basically a table of judgments of the 

priority of the elements) to create a comparison matrix which is used to create the eigenvectors of 

each element. The eigenvectors are combined with the super matrix to create an unweighted super 

matrix which is then calculated with a final pair-wise matrix representing the interactions of the 

clusters of elements and the eigenvectors to give the final weighted matrix. This becomes the 

measurable priorities of the sustainability factors corresponding to objects in a real world. This 

matrix can be applied to objects in a virtual world through shader programs to visualise colour 

changes applied to model meshes. This project is beneficial, and highlights the need to have 

functionality for users from many domains, setting properties within the system for the area they 

are interested in. What is meant by this; a user, who is concerned with the flammability of assets 

within a building, can set original scores to each model mesh which represent particular parts of the 

building. The framework then highlights these model meshes by utilising the techniques stated 

already, and creating an eigenvector representing a colour RGBA parameters, which is applied to the 

real-time rendering pipeline to manipulate, or modify the final visualisation of the rendered model 

mesh. 
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Figure 10 Image obtained from [2]. Image shows 3D city with user generated colouring of buildings depicting sustainability 

options. 

 

Figure 11 Image obtained from [2]. Image shows multiple renders of a 3D building according to the sustainability of 

individual floors of a building. Each image shows varying matrix priority inputs. 

Figure 11 shows a building shaded using two different blending parameters. The left has a high 

environmental interest parameter, where the left has a low environmental interest parameter.  

The project also introduces sustainability factors into other sectors in the form of individual projects: 

 Sustainable River Pollution Management 

 Sustainable Land Use 

 Sustainable Regional Planning 

 Sustainable Coastal Zone Management 

We would like to implement similar techniques with our modern GIS visualisation system. Creating a 

matrix representation is an interesting, but advanced domain for the visualisation of user defined 

data. We suggest a technique, which is explained further in a later section, which allows a user to 



56 
 

apply data straight onto objects within a scene, at runtime. Allowing users to visualise any data, on 

any part of a scene. We will state that this technique requires users to convert data values to a 

limited number of parameters which are obtainable through a CPU to GPU buffer object. 

We contribute to the domain of GIS by applying the techniques of data encoding into algorithms, 

and data structures applied visualisation of object within large virtual scene selected by user 

generated queries. 

2.4.3 Projects of Significant Scope 

In the work by Fritsch and Kada [23], they state the parsing of the geo-data into a data format for 

use with a game engine was one of the largest obstacles they had. Their work concluded in 

visualisations of outdoor and indoor. Our work will not deal with indoor visualisations, only outdoor 

to begin with. Visualisation of individual floors of a building can be presented in a multitude of ways, 

taking into account the specific details of each floor. 

In the work by Kada et.al [24] for the real-time visualisation of urban landscapes, they use open data 

for the generation and rendering of a 50km2 area of Stuttgart containing 36,000 building models. 

Even though this work is over a decade old it is a high benchmark to achieve with modern hardware 

and software. They state that the simulation allows for interaction with the simulation, but the 

results state that the frame rates were between 2-11 FPS. We state that this low framerate is not 

acceptable for modern graphic capabilities and intend to reach at least 30 FPS with large scenes. 

They use a continuous LoD approach and implement an imposter technique. The imposter technique 

swaps out models for higher or lower polygon counts and sometimes billboards. The project allows 

fly-by and walk through animations, but lacks adaptation for a user. The user only sees what the 

creators of the simulation want them to see. We will improve upon this and allow manipulation of 

assets within the scene. Another issue with the work by Kada et.al is the lacking of additional 

information and visualisations. The project does not contain highway systems, or additional 

boundary data or amenity visualisations. Utilising the open data found within OSM, we wish also to 

include this extra data to provide a more in-depth representation of urban environments. We wish 

also to generate a procedural algorithm which can generate urban environments anywhere within 

the UK, to begin with, but adapt the framework so it can produce any urban environment within the 

world. 

In the Master’s thesis of Abhishek Sood from the faculty of San Diego State University, he uses the 

Microsoft XNA framework to generate the NEEVENGINE, an engine specifically designed for the 

generation of multiple types of serious games. Serious games, by definition, are games which are 

designed and generated to teach or train a specific subject. The objective of the work is to generate 
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a flexible game engine for creating multiple types of serious games. The engine is generated with a 

modular architecture, which he states allows for fast prototyping. We will keep this in mind and 

consider a modular approach to our framework architecture. 

A closely related Doctoral Thesis of Bo Mao, ‘Visualisation and Generalisation of 3D City Models’, has 

many similarities to our research,  whereby the author explains the need for a modern GIS which 

integrates 3D objects for improved realism [11]. CityGML17 is used to generate building model mesh 

data, rendered using X3D18. The work and research is built for mainstream web browsers. Due to the 

lack of infrastructure and rendering capabilities of modern web browsers, he employs a LoD 

technique which renders a scene in different scales; block, building, and building with façade to 

improve rendering speeds and scene realism. Shell representations of buildings are used which are 

generalisations of the higher polygonal building meshes. Textures of the façade are projected onto 

the building as separate polygonal quadrilaterals. These include windows, doors, and other facades. 

The textures are stored within compressed formats.  

The compressed textures are used with UV coordinate mapping. This allows textures to be stored as 

texture atlases. A common technique with CGT but not of GIS or visualisation systems. Within this 

project we will not use texture atlasing but will consider the technique for future work. 

The author utilises a LoD technique through their novel scenegraph structure, CityTree, which culls 

buildings which are not adjacent to the street for which the viewer is looking, while the user is in 

street view mode. This is a very interesting technique, but instances where taller buildings in the 

distance are culled prematurely; a situation which removes realism from a scene. Our framework 

will also cull objects in the distance, due to categorising assets to spatial 1kilometer squared tiles. 

This is a limitation in the work, and procedures need to be put in place to minimise the removal of 

assets in distances. 

Within the published work of Bo Mao and Lars Harrie [25], they iterate the previous work of Bo Mao. 

They still conclude that a main problem with the use of 3D city models is the large volume of data. 

Within the paper they experiment with the process as whole, organising procedurally generated 

buildings models at a variety of levels-of-detail, in a scenegraph structure called ‘BuildingTree’ and 

then storing the individual assets within the NoSQL database for dynamic visualisation requests. For 

our work we will not utilise database storage for our prototypes but will store assets on hard disk as 

                                                           
17 http://www.citygml.org/ 
18 http://www.web3d.org/x3d/what-x3d 
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individual files for dynamic loading. The use of a database to store and retrieve the needed assets is 

a possibility for future work. 

2.5 Commercial Influences and Game Simulators 

Commercial products are created for entertainment and the production of money for the company. 

The popularity of simulator games has risen significantly in the past decade as stated by 

Techreviewer19 and Gamasutra20. Popularity of commercial computer games, and serious games 

have also increased. We justify the discussion of such products here due to their relation to our 

project and the insights which we can obtain.  

An ability which the commercial products utilise is the ability to manipulate the terrain. The 

interesting issue with the terrain is not the technique of manipulating the model mesh representing 

the area, but the ability to texture splat the terrain. Texture splatting is when multiple textures are 

applied to a model, normally terrain due to the high memory costs, and weights are used to state 

the blending or use between these textures. For example, stating terrain to be rendered with a grass 

texture with weight 0, and sand with weight 1, a user can change the look and feel of an 

environment by manipulating the value. More than 1 texture can be used to build a more realistic 

and varying terrain. If the slope value between two vertex points are within or out of bounds, then a 

rock texture can be used or a ground texture. This creates a procedurally textured terrain with cliff 

faces. 

2.5.1 Cities Skylines 

Cities Skylines, created by Colossal Order Ltd21, is a commercial product which simulates the building 

and running of virtual cities. The complexity of this simulator is significant because they utilise a 

complex urban eco-system. Each decision the user makes has an impact on the whole simulation and 

city. The humans within the game are Artificial Agents (AAs) and each have their own needs, desires, 

and impacts on their local environments. Thousands of AAs can be running simultaneously and 

rendered at real-time rates. This shows that cities the size of real-world small cities can be 

simulated. 

With each decision having an impact on the simulation, the user can view a scene in many different 

views; or data-overlays. Cities Skylines has 23 data-overlays: Electricity, Water, Garbage, Education, 

Citizen Happiness, Health, Levels, Wind, Traffic, Pollution, Noise pollution, Fire safety, Crime, 

                                                           
19 http://www.techreviewer.co.uk/why-are-simulation-video-games-so-popular/ 
20 
http://www.gamasutra.com/view/news/188054/Whos_buying_all_these_niche_simulation_games_anyway_
We_found_out.php 
21 http://www.colossalorder.fi/ 
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Transportation, Population, Outside connections, Land value, Natural resources, Districts, Leisure, 

Heating, Road maintenance, and Snow. 

Screenshots of these are found in Figure 12. 

Viewing this type of data, but with real-world generated data is an aim of this project. We wish to 

make similar visualisations within our case study. The image on the top left and top right can be 

done in single pass rendering pipelines, whereas the bottom left utilises a multi-pass rendering 

pipeline. These techniques will have to be researched further to determine the justification of 

including such techniques within the PVS framework.  

 

Figure 12 Cities Skylines22 visualisation overlay screen shots. Top left is population. Top right is fire safety. Bottom left is 

noise pollution. Bottom right is crime. 

2.5.2 Planet Coaster 

Planet Coaster by Frontier23, is a theme park simulator and rollercoaster building game. The reason 

we discuss this game which is currently in Alpha release is its use of Physically Based Rendering (PBR) 

techniques, and other advanced rendering techniques, for its in game assets. They model the assets 

separately and shade them according to their physical attributes such as plastic, metals, and 

concretes. They also utilise multiple lights within the scene and shadow rendering techniques. 

Combining the techniques to run in real-time is a difficult task but brings a high level of realism. 

                                                           
22 http://www.citiesskylines.com/ 
23 https://www.frontier.co.uk/home/ 
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Utilising techniques similar within the PVS framework will bring improved realism, and advanced 

rendering capabilities to a framework of this type. 

 

Figure 13 Promotional shots of Planet Coaster24 by Frontier Games. 

Another aspect which we wish to adapt within our framework, which is in Planet-Coaster, is the user 

navigation through mouse and keyboard. The user can select multiple cameras (First-Person, Orbital, 

and Free-view). These camera views seamlessly translate between the selected. This is an aspect of 

many simulations drawbacks, especially with real-world mission critical simulators. Seamless 

animations to different camera views, or to view a selected item which translates and orientates the 

camera to the coordinate’s states adds additional information to the user’s knowledge of a scene. If 

a camera was to simply snap to a selected item, then the user may become confused as to where 

exactly they are in relation to other artefacts within a scene; potentially leading to misjudgement 

and wrong decisions being made. 

2.6 Urban planning and Maintenance 

The creation of 3D visualisations of real-world locations has the capability of being used for urban 

planning. Research is underway for the generation of realistic urban environment visualisations, but 

much of it overlooks the potential for urban planning, the generation and visualisation, or depicting 

the interdependencies between infrastructure elements.  

                                                           
24 https://www.frontier.co.uk/home/ 
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By utilising real-world data to generate virtual cities, the properties of individual assets within the 

scene, which have been extracted or inferred from the raw data, can be used to visualise and 

categorise a scene for specific purposes and visualisations. Within OSM, a building can be tagged as 

fire-proof or not. Having a framework to allow a user to select and see all potential none fire proof 

buildings within a scene can provide great insight for emergency services as the fire-brigade. The 

fire-brigade and then position assets accordingly to prevent potential disasters. 

Overlaying additional data-sets pertinent to the police force can achieve a greater understanding of 

large areas of urban environments. Combining maps with crime data, 3D heat maps can be created. 

Cities Skylines (a commercial simulation game) has this type of overlay visualisation within the 

application as shown in the bottom right in Figure 12.  

The image shows mostly green which states that there is a low crime rating. The police stations are 

highlighted with vertical purple streaks. The highlighting of emergency building is available within 

the game. Utilising this technique with a modern GIS can achieve greater understanding of scenes 

through categorisation and visualisation of OSM objects. 

2.7 Visualisation for Crisis Management 

We have already stated the use of a modern GIS for highlighting of procedurally generated 3D 

objects created from OSM data to understand complex and dense scenes. This brings the discussion 

onto crisis management.  

Visualisation of urban environments is crucial for disaster management. To represent real-world 

environments, realism is a key. User created building models as well as procedurally generated 

buildings are needed, as well as techniques to categorise data within scene using queries generated 

by the user.  

By generating virtual scenes of real-world environments, disaster control and management can be 

undertaken. When disasters such as flooding, fire, or mass evacuation occur, they can be visualised 

and managed. A modern GIS using games technologies have the potential to be adapted for the 

visualisation and simulation of evacuation techniques by use of the terrain data we propose to use 

and the highway structures found within OSM.  

2.8 Procedural Content Generation Definition 

Procedural Content Generation (PCG) is the process of creating data using programmatic techniques. 

There are various versions of PCG; purely computer based, and taking user input to guide the 

process of procedural algorithms and generation techniques. 
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PCG is used heavily within the computer games industry, and is starting to be used within other 

domains of research and commercialism. The reason for this is the reduction of cost that computer 

processing brings to the domains and companies. For example, within the games industry, creating a 

single level of a game can take a team time to generate in a level-editor, to then have a paid artist to 

create the level itself. The speed at which the levels can be generated is directly correlated to the 

speed at which the artist can work. This is the same for a 3D modeller, and a 2D texture artist. 

Having programmatic procedures to replace the artists can greatly reduce costs, and time for 

creating assets and levels. The drawback of this technique is the knowledge, experience, skill, and 

time needed to create these algorithms which can produce what an artist can produce. 

PCG has been used to create a large, varying palette of 2D and 3D assets, as well as complete 

virtualised worlds for use within modern computer games. The issue with the generated assets is the 

lack of realism. An artist can create an asset by sculpting, and modifying the object until a 

satisfactory result occurs. A programmatic technique needs to be iterated and tested vigorously 

before real-world deployment. Combining both artist (or user) and programmatic algorithmic 

techniques can increase production; the programmatic approach creates a base object which is 

generic, and then the user can either regenerate the assets but with various parameters modified to 

create a new base object, or modify the result by hand to create what is needed. 

Creating a framework which can visualise real-world locations, generated from real-world map data 

needs procedural methods. The assets which are needed for real-world scenes are: vegetation, 

buildings, highways, terrain, waterways, human created assets (benches, post boxes, telephone 

boxes etc.). 

The majority of assets can be procedurally generated, and vast amounts of open source software are 

available for the vegetation algorithms. Freely available software for procedurally generated 

buildings, highways, terrain, and the other mentioned assets are technically available (Unreal Engine 

4) but do not take real-world data into consideration. We will need to create algorithms which can 

parse, and combine multiple real-world data-sets to achieve the project goals. 

PCG is used already in many commercial projects such as Google Maps. Google uses procedural 

techniques to generate 3D building assets, and to procedurally cut texture images from their 

databases and wrap the textures onto the buildings. The reason the procedural techniques are used 

are for data-storage issues. It may be more beneficial to procedurally generated assets and data at 

runtime than to store said data or assets. 
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PCG techniques are utilised within computer game projects for the reduction of production costs. 

We iterate that these same issues are abundant within the GIS domain. CGT PCG techniques have 

overcome many issues with improved production times by offsetting artistic creation to algorithmic 

processes. CGT PCG does not utilise real-world geospatial data sets due to the size of the data sets 

requiring much resources which is not currently available within computer games due to other 

subsystems requiring processing (AI, quest systems, physics etc.). We contribute PCG techniques to 

offset processing of GIS data for improved production times, and generation of virtual real-world 

scenes for the domain of GIS. We also contribute to domain of CGT by the creation of PCG utilising 

real-world geospatial data sets. 

2.9 Architectural Models for High level rendering 

This section introduces game engines, and their usage within a project as we propose. The engines in 

question will be a small selection of all game engines available. Each will need to be carefully chosen 

for their many different functionalities, attributes, and productivity requirements. The learning curve 

into deciding which engine to utilise must also be taken into account for fast prototyping and final 

artefact development. 
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Functionality Unity3D UnrealEngine4 XNA MonoGame Cocos2D CryEngine 3 

3D Support 1 1 1 1 0 1 

DirectX 9 1 1 1 1 0 1 

DirectX 10 1 1 0 1 0 1 

DirectX 11 1 1 0 1 0 1 

DirectX 12 0 0 0 1 0 1 

Input / Output 1 1 1 1 1 1 

Keyboard/Mouse 1 1 1 1 1 1 

2D Support 1 1 1 1 1 1 

Forward 

Rendering 

1 0 1 1 1 1 

Deferred 

Rendering 

1 1 0 0 0 1 

Middleware 

Support 

1 1 1 1 1 1 

Screen System 1 1 0 0 0 1 

Audio 1 1 1 1 1 1 

Windows OS 1 1 1 1 1 1 

Mobile Support 1 1 1 1 1 1 

Open 1 1 1 1 1 1 

Free 0.5 0.5 1 1 1 1 

Networking 1 1 1 0 1 1 

Touch Screen 1 1 1 1 1 1 

OpenGL 1 1 0 1 0 1 

Mac OS 1 1 0 1 1 1 

HTML5 1 1 0 1 1 1 

 

Table 2 Game Engine Functionality Comparisons 

Within Table 2; blue represents that the engine has the capability of said function with a value of 1, 

red represents that it does not have the functionality with a value of 0, yellow represents that it has 

the ability but under certain circumstances with a value of 0.5. Some blue represents pseudo ability. 

The pseudo ability in this case is the 2D support. The engines do not have support for 2D, but create 

the illusion of 2D by generating 3D assets but only projecting them within a 2D world; i.e. the Z plane 

(depth) will always be set to 0. 
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Table 2 is also organised in order of value for which the functionality is needed, from highest to 

lowest need. 3D support is having the highest need, while HTML5 support has the least functionality 

need. The use of 3D rendering is needed for 3D virtual scenes. Frameworks which showcase 

geospatial data are commonly shown within 2D projects; ALLADIN, Google Maps, Satellite 

Navigation Systems etc. 3D project will improve realism and engage users further.  

The project revolves around the rendering of real-world scenes. The utilisation of the DirectX 

rendering APIs allow for complex and realistic rendering calculations. DirectX 9 has a higher ranking 

than that of DirectX 10, 11, and 12. This is due to technologies which utilise DirectX 9 rendering 

pipeline have already been implement, and thusly can be utilised within our proof of concept work. 

Forward rendering is ranked higher than deferred rendering due to its functionality and ease of 

creation. Deferred rendering does allow multiple lights within a scene, but also decouples scene 

lights from objects. 

The latter functionalities; screen system, audio, mobile support provide future support for future 

research avenues. Network functionalities provide additional interaction with the proposed 

prototype framework by allowing multiple users to utilise a single simulation instance.  

HTML5 support is a functionality which would greatly benefit this work by providing visualisations of 

real-world environments through web browser support, but the current implementation of HTML5 

will not support this projects, thusly a desktop application is preferred. HTML5 is included as a future 

needed functionality. 

From Table 2 we can see that the majority of commonly used engines all have use of common 

functionalities and thusly the use of any of these game engines can be a good choice for creating 

modern games and modern GIS.  
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Figure 14 Spider Diagram of Game Engine Functionalities 

The graph in Figure 14 shows that the CryEngine3 contains all functionalities needed for our project, 

and for potential future work. Notice that the proceeding MonoGame engine of XNA has additional 

functionalities which may benefit a framework of this type. 

Unity3D is a common engine, but restricts use to a C# language. For a real-time rendering system 

C++ would be a better choice due to its low level memory management which if implemented 

correctly will prove beneficial to rendering times and techniques. For this reason, UE4 is the better 

choice than Unity3D. UE4 utilised Blueprint technology and additional functionalities which prove 

beneficial for rapid prototyping. The issue between these are the licensing issues and potential 

money pit for the future publication of our framework. 

Microsoft has ended support for XNA, and although it is still useful as a rendering engine capable of 

large scene visualisations, the limited support is an issue. MonoGame is the open-source successor 

of the XNA framework. It allows porting from XNA to MonoGame framework with minimal of code 

changes, but sadly, as of writing this work, MonoGame is currently not fully implemented to a 

standard which XNA is. MonoGame does allow DirectX12 rendering techniques, whereas XNA is 

restricted to DirectX9 and simulated CPU generated DirectX10 techniques. As a proof of concept 

project, the use of XNA is still a valid choice. The benefits it provides by allowing MS-Build 

capabilities is functionality which other engines do not provide. The MS-Build allows precompiled of 

assets used at runtime simulations and rendering. 
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We contribute CGT, specifically that of computer game engine, to GIS for improved and advanced 

rendering of real-world virtual scenes.  

2.10 Rendering Techniques 

When discussing rendering techniques, we must introduce and compare rendering techniques 

commonly used within CGT and GIS. Next we discuss individual rendering techniques commonly 

used within visualisation systems and CGT. We introduce possible benefits and drawbacks of the 

techniques. They are not ordered in any specific order due to the complexity of implementations of 

the techniques. 

2.10.1 Forward Rendering 

Forward Rendering [26], [27] is the technique of rendering objects in one at a time.  

Creating the illusion of many lights can be achieved by using static light maps, or baking lighting 

calculations within a scene. This is a technique done by applying additional textures to a scene which 

has a predefined light image on it. Think of a car in the dark with its lights on. Having a single car 

with 2 dynamic lights as headlights can be done easily, many car objects with multiple lights would 

tax resources and processing power. Early artist got around this issue by creating 2D light ray texture 

and combining the texture with a transparency blend function within the shading technique, the 

texture gave the illusion that lights are on within a scene. This would greatly reduce lighting 

calculations to a single draw call and a blend function.  
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Figure 15 Forward Renderer Process 
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2.10.2 Deferred Rendering 

Deferred rendering [28], [29], as the name applies, leaves rendering to a later stage. The process 

splits rendering into two passes; a geometry pass, and a lighting pass. The geometry pass renders 

the geometry, particularly the individual properties of geometry into render targets; position, diffuse 

colour, normal etc. A render target is a buffer which stores data for later use. Normally a texture 

buffer is used in this case, and the data is encoded within the RGBA pixel of the texture. The 

decoupling of the geometry rendering from the lighting calculations gives the ability for a large 

number of lights to be applied to a scene. 

The algorithm in simple terms creates a bounding box or bounding circle around point lights, and it is 

these bounds which are checked against the stored pixel buffers and used to light the area of 

radiance from the light. If using spot lights, then cone or pyramid bounds are used. 

Deferred rendering can be used within city models by creating many lights within a scene. These 

lights are instantly thought to be used with street lights. They can also be used for any point or spot 

lights within a scene such as emergency vehicular lights. Deferred rendering may not be the best 

choice due to its issues and drawbacks of flexibility.  

Issues with deferred rendering consist of; needing a GPU which can generate multiple render 

targets, and contain high bandwidth parameters due to the passing of the large buffers of data. 

Transparent objects cannot be used unless specialised algorithms have been implemented. This is 

normally platform and application specific due to the effects it has on the rest of the rendering 

pipeline. Using forward rendering for the transparent objects only can alleviate this problem.  

A major problem is the use of multiple materials within a scene. Normally a single material is used. 

Multiple materials can be used but this requires a large amount of video card memory to store the 

large number of render targets. Another issue with deferred rendering is the inability to use anti-

aliasing techniques which are commonly automatically applied within the rendering pipeline. When 

using deferred rendering, the results of the anti-aliasing produces incorrect results. This can be 

overcome by using edge detection techniques and blurring the results. Modern techniques utilise 

post-processing techniques such as Morphological Anti-Aliasing (MLAA), Fast Approximate Anti-

Aliasing (FXAA), Subpixel Reconstruction Anti-Aliasing (SRAA), and Multisampling Anti-Aliasing (MAA) 

[30]. We will utilise techniques which are built into the game engine which we decide to use.  
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Figure 16 Deferred Rendering Process 

2.10.3 Deferred Lighting / Light Pre-Pass 

Deferred lighting or Light Pre-Pass is a modification form of deferred rendering. It adds an additional 

pass than deferred rendering, going from 2 passes to 3 passes. The first renders the geometry to a 

buffer containing the Z depth and normal’s. This data is used for the lighting equations. The second 

renders the attributes of diffuse, specular, and material properties. The third pass re-renders the 

geometry and reads in the material properties combining with the lighting results, outputting the 

final per-pixel shading values. This technique greatly reduces the memory footprint by the reduction 

of buffers, but at the code of rendering each model twice. Within certain situations this technique is 

faster than deferred rendering, but in other deferred rendering is faster. 

Deferred lighting can be used with MSAA on DirectX9 hardware, something which cannot be done by 

deferred rendering. This is appropriate due to the relevance that DirectX9 still has within rendering 

technology. 

2.10.4 Conclusion of which Rendering Pipeline to use 

The right renderer depends on the project itself, and the results for which is needed. For complete 

realism then ray tracing would be the preferred method but current technology restricts the use of 

ray tracing within real-time parameters. If using many dynamic lights within a scene, then deferred 

rendering or light pre-pass may be a better choice than forward rendering.  

To summarise, the use of appropriate rendering techniques applied to GIS will contribute to 

overcoming the issues with current GIS renderings and visualisations. CGT implements many options 

of rendering techniques. We will contribute these options to GIS. The use of advanced rendering 
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option of IASF contributes to GIS to allow multiple rendering options applied to single assets, or 

large scenes. 

2.11 Spatial Data Organisation Techniques – Scenegraph 

The need to organise large data sets into smaller groups for ease of processing to increase speed of 

algorithm completion as well as implementation of novel search techniques is paramount to a 

project working with data sets on a global basis.  

A tree contains nodes, and connections between those nodes. The nodes can contain explicit data 

such as values, or from a high-level contain references to objects. The connections between the 

nodes are commonly called the edge. Using the edges multiple types of trees can be generated; a 

linear, acyclic, cyclic, directed, and undirected.  

We will discuss the uses of acyclic directed trees with a parent/child relationship. Utilising these 

types of trees, recursive search techniques can be utilised. 

When separating spatial data with tree structures, they are commonly called scenegraphs. A 

scenegraph is employed in many GISs and computer games for the organisation of spatial assets 

within the virtual worlds. A scenegraph lends itself to a framework we propose because of the 

benefits and ease of advanced search techniques, and algorithmic exploitation which can be applied 

to a whole tree, branches of a tree, single nodes within the tree, or leaf nodes. Each node structure 

can contain a reference to its parent, and have reference to its children.  

With spatial trees such as a scene graph, each node is positioned relative to its parent; where ever 

the parent is translated, rotated, or scaled, the child will use this data and update itself. This is not 

true for all types of scene graphs but is true for the ones which are not are custom implementations. 

Using the translation, rotation, and scale a World matrix is generated which is used by the graphics 

pipeline to render the model mesh data normally contained within the spatial node to screen. We 

will not go into detail about World matrix generation here, but state that the ordering of the 

translation, rotation, and scale multiplication with each other has varying results. Multiplying the 

translation, rotation, and scale will result differently is multiplying scale, rotation, and translation. 

The latter process is called SRT order and is used within many computer games and visualisations. 

This order lends itself for creating visualisations which can draw a user’s eye to a branch of the tree. 

Manipulating the scale parameter of a parent, all children will be scaled as well, highlighting objects 

within a scene making them larger.  
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There are many scene graph libraries other than OpenSceneGraph such as FreeSG25 and other 

codebases from popular code sharing web domains as GitHub, BitBucket, and NuGet etc. A short 

evaluation of open scene graph implementations can be found in [31].  

The scene graph libraries presented are a good starting point to understand the abilities of a 

scenegraph but for the framework proposed, and the organisation of large amounts of data, both for 

processing and visualisation, a custom scene graph structure will be needed. Experimentation into 

finding the right balance between ease of use, ease of implementation, search capabilities, and 

benefits a custom structure will bring is needed. The scene graph will need to be custom in layout, 

splitting large scenes up into manageable smaller chunks for processing. For example, the root of a 

scenegraph can be the World or environment being depicted, the next node a country, the next child 

node can contain all buildings within that country. See Figure 55 for a visual representation. 

The structure of a tree used within the proposed framework must allow modification, and allow 

future search algorithms to be used with the tree structure. The tree structure in question must be 

open enough to act as multiple types of tree structures; directional, bidirectional, acyclic, cyclic. This 

will ensure that future usage of the framework and adaptively will be justified.  

To use a scenegraph for a modern GIS framework or game engine, it must be mutable, and provide 

the user to initialise multiple search techniques; Depth-First, Breadth-First, Iterative etc.  

To summarise our contribution, we wish to apply a scenegraph technology, which is commonly used 

within CGT, to spatially organise, and categorise geospatial data. The use of scenegraph technologies 

overcome issues of GIS data organisation, and scene traversal techniques for object querying and 

data dispersal. The contribution allows scalable virtual scenes, and a base platform for further 

algorithms to be implemented from. 

2.12 Conclusion 

Within the Background discussion we have introduced the domains needed for the generation of a 

modern GIS. We have presented the map data available and initial discussions on how the data will 

be used within the framework and research. We have also discussed areas of interest within the 

domains and already implemented commercial and scientific projects: SAVE, ALLADIN, Cities 

Skylines, and Planet Coaster. We have discussed different popular GISs which resemble our research 

and framework proposal very closely; Google, ArcGIS. We then introduced the standards of game 

engines currently available. The section on game engines highlighted that there is not a game engine 

which is deterministically better suited to be used for generating a modern GIS. Some provide 

                                                           
25 http://freesg.org/ 
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various implementations of rendering systems, each suited for varying types of visualisations as 

discussed. Forward rendering is suitable for rendering artefacts which include transparency, 

deferred rendering is best suited when more than an estimated 3 lights are needed within a scene. 

Ray tracing and Ray casting rendering systems are stated to be too advanced and unrealistic to work 

in a real-time parameters needed for a modern GIS. To organise large scene and to visualise them 

within this framework, we discuss the use of spatial and data organisation techniques, specifically 

the need to pre-process large maps into manageable areas. A novel spatial-graph structure used to 

organise the data is needed. The scenegraph will need to include multiple segments to organise the 

data not only spatially but also data dependently. 

For our project we will utilise forward rendering and restrict the number of lights used within a 

scene.  

The next section presents the literature review of our work, critiquing others research which is 

similar to our own and within the same domains as our research.   
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3 Literature Review 

This section covers the related work of other scholars and researches. Due to the large domain 

coverage of our work, this is the reasoning to split the segments into separate chapters of 

Background and Literature Review. These chapters will reference each other and be partially mixed.  

Figure 17 shows our research and experience with the current commercial and open GISs. From the 

specifications of functionalities, we state is needed, we notice that none of the GISs allow direct 

access to the GPU, nor do they allow custom GPU programmes to be applied to the data within the 

GISs.  Providing access to the GPU will allow improvements to visualisations by tapping into the 

hardware acceleration of modern GPUs.  

 

Figure 17 GIS Functionalities implemented from the specification we state is needed for a modern advanced GIS 

3.1 Why use a Game Engine? 

Within the work of [32], Baare and Grigg compare the productivity between game engines. We take 

from this work the speed at which the productivity took place from the experiments they undertook. 

They stated that the game engine of Unity3D was 1.9 times faster than that of using UnrealEngine4s’ 

Blueprint mechanisms for development purposes. The Blueprints mechanism we speak of can be 

thought of as a ‘drag and drop’ component architecture used for rapid prototyping of commonly 

used assets/components/games types. Although the work was comparing the two game engines 

against each other, it emphasised the abilities of modern games engines which contain many user 

interfaces to commands, and the additional functionalities the game engines provide the user. They 

issue the statement that C++ knowledge should be known. This is not a knowledge trait expressively 

needed within modern computer game development; especially with the use of the drag and drop 
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components of Unreal Engine 4 Blueprints and the use of other scripting languages such as Boo or 

JavaScript in Unity 3D.  

For our project, knowledge of programming is needed to develop novel data structures, algorithms, 

and mechanisms. 

Herwig and Paar [33] state the suitability of using a games based API for terrain and landscape 

visualisation. They discuss what problems game engines can overcome in relation to the visualisation 

of landscape virtual scenes. They state that 3D game engines require fundamental knowledge and 

expertise in 3D designs and level construction. They state working with geo-terrain data is commonly 

a trial-and-error approach for visualisation when loading into a game engine. We agree with this in 

regards to the large amounts of geo data available in many different formats that a considerable 

large amount of development is needed, but a trial-and-error approach is a derogative approach. 

We do however agree with their statement that game engines are a low-cost alternative than GIS 

and CAD software. For this reason, we will utilise game engine API which is either free to use, or has 

an open source licence.  

Within many commercial game engines, scenegraph structures are implemented but restrict the 

data attributes attach to each node. Moa [11] creates a scenegraph to organise the buildings within 

his virtual city. He uses an open source scene graph implementation; OpenSceneGraph26. Combined 

with X3D27 he generates and organises large amounts of data to be viewed within real-time 

standards. This proves that custom scenegraph data structures, specifically designed and built for 

virtual urban environment organisation and visualisation are viable. Although scenegraph structures 

have shown to be a viable solution to organising a city’s worth of data, a novel data structure is 

needed to apply attributes from the more complex OSM data. 

An example of a rendering API which can be utilised for academic research as well as game engine 

development is the Microsoft XNA API. 

The XNA API has been used in many other projects for visualisation, training and many other 

domains. Ouch and Rouse use the API to generate a mobile driving training game to teach uses safer 

driving skills [34]. Denninger and Schimmel [35] utilise XNA for the teaching of complicated 

paradigms. They state the reasons to use XNA is for language simplicity being C# and not C++ which 

is difficult for beginners to understand. XNA is also a wrapper for the underlying DirectX making it a 

managed DirectX API. XNA has also been used on a similar project to this in [36]. Herrlich et.al. use 

                                                           
26 http://www.openscenegraph.org/ 
27 http://www.web3d.org/x3d/what-x3d 
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CityGLM data to produce virtual scenes. Assets are loaded in via COLLALDA, a mesh representation. 

We are unsure as to why they utilise COLLALDA as XNA has built in model processing capabilities. 

Alternatives to the XNA API is JMonkey. At the time XNA was maintained by Microsoft, it was the 

more powerful of the two APIs according to the results of [37]. From the results, JMonkey has faster 

frame rates with low numbers of objects within a scene. Increasing the number of objects in a scene, 

XNA becomes the faster of the two. At 50 objects, JMonkey ran at 598.41 FPS, where XNA ran at 

235.29 FPS. With 4000 objects, JMonkey ran at 4.95 FPS, whereas XNA ran at 29.13 FPS. XNA can still 

handle 16,000 objects at 4.69 FPS where JMonkey cannot. For this reason, XNA is still the better 

choice due to the expectation of large scene visualisation. 

To summarise the contributions of our intended work, the utilisation of game technologies can fill 

the gap of knowledge and current issues within the domain of GIS, issues such as procedural content 

generation, and visualisation. These contributions can enhance virtual scene visualisations of current 

GIS standards.  

3.2 Visualisations  

In this section we introduce the current research within the domain of visualisation and concurrent 

domains which visualisation techniques and technologies have been applied to. 

Robinson and Shapcott [38] attempt to improve data-mining understanding from non-domain 

experts of analysts by introducing visualisation techniques. They state to improve data-mining 

understanding that visualisation needs to;  

1. Support the whole of the data mining process.  

2. Are usable by domain resident data miners who are not expert analysts. 

3. Support data miners who are from a diverse range of backgrounds. 

4. Allow interaction with the data mining tool.  

Remove the domain of data mining from the list stated and the statements are current for the 

domains of this project. 

They state that visualisation needs not only bar charts or graphs but visualise relatable objects, and 

be directly integrated into an interface for the user to interact with as well as manipulate the scene 

or data. We agree with this. Having relatable objects, and manipulating them in many manners 

within a simplified user interface is needed for a modern GIS. The relatable objects need to be 

objects which many individuals encounter on a daily basis; buildings, highways, paths, amenities, 

transport routes and many other interconnections within modern cities.  
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Visualisation techniques can be used for example, to portray potential failures within critical 

infrastructures. Wilde and Warren [39] discuss how visualisation techniques can be applied to critical 

infrastructure protection and to visualise potential un-foreseen domino failures. They specifically 

focus on the interdependencies of internal infrastructures and of interconnected infrastructures. The 

paper is a research description of a wider research project but states the use of visualisation 

techniques to explain the characteristics and complexity involved in critical infrastructure protection 

and interdependency connectivity. This reinforces the need for a modern GIS which can visualise 

multiple data-sets within a real-world visualisation simulation. It also reinforces that visualisation 

techniques can be applied to portray complex interconnections and data to users. We will create a 

framework which can visualise 3D Big-Data city models, and allow the interaction from users to 

manipulate individual objects within a virtual scene spatially and visually. 

Generating 3D urban environments lends itself for project managers and urban planners, both 

private and governmental, to advance the understanding of familiar and unfamiliar territories. The 

work by Falconer et.al. [1] does exactly this. They produce a virtual environment of a city within the 

UK and allow users to view the scene by procedurally generated visualisations with each component 

of the visualisation corresponding to a specific criterion the user is most interested in. The project is 

discusses in section 2.4.2. The components of the visualisations are parameters which the user can 

set values for e.g. a user can state the importance of price for components of building should be 

rendered from white to red, lowest value to highest value respectively. We will utilise this technique 

of applying attributes to rendered objects within a scene which are set by a user. The user can assign 

their own schema to the visualisations; creating the same effect to the visualisations as the SAVE 

project. Visualisations do not and should not only be colour based, and animations both spatially and 

colour based can provide an additional layer of information. For example, increasing the scaling of a 

building dependent to depict the value of a building, bringing the attention of a high valued building 

to the user. 

Urban planning is a complex activity with many unforeseen issues. Modern hardware and software 

can alleviate the traditional methods of urban planning and be used for the visualisation of potential 

developments within urban areas. These visualisations can be used to encourage residents within an 

area to be on-board with the idea to change. This notion is discussed in [33], [40]. Our project can be 

utilised for micro and macro urban visualisations. Details of areas will need to be encoded as 

attributes or from lookup tables for each of the assets within the visualisations we propose; 

buildings, highways, amenities, etc. for this we will create data structures which will extract attribute 

data and create 3D model mesh objects which can contain this data. These attributes can then be 

utilised by a user to query the objects within a scene. The generation of a queryable algorithm for 
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use with various types of objects is needed. We plan on using the .Net Language-Integrated Query 

(LINQ)28 API for this task. 

In the work of [41], the visualisation of cascading failures within critical cyber infrastructures is 

discussed. The framework provides the understanding of possible cascading failures within the 

networks, combined with the organisation of large amounts of GIS data. Combined to generate 

further understanding of the topological considerations of real-world network structures to provide 

awareness with past and future decisions. 

An early prototype application built from our work has been utilised for visualisation of real-world 

urban environments for use by tinnitus sufferers, projecting procedurally generated 3D primitive 

model mesh objects created by data-driven techniques with real-world noise levels, section 1.4.1, 

item 4. The use of the prototype has shown the scalability and adaptiveness a game-engine can 

bring to visualisations. 

Visualisations of urban environments, and the accompanying techniques used can be found in [42]–

[44].  

Visualisation techniques can be implemented with game engines for visualisation of scientific data as 

stated in [23]. Visualisations of other data types can be found in [38], [41], [44]. The wide domain of 

where visualisation techniques have been employed to portray complex and confusing datasets is 

encouraging. 

The framework proposed will need the ability to adopt all the visualisation topics of the stated 

research. This is justifiable due to the similarities between the domains. With small changes and 

adaptations of the framework, plus additional data, the needed visualisations can be achieved, if not 

improved on by utilising the rendering techniques we propose. 

Visualisation techniques for disaster management are also a domain which can benefit from a 

modern advanced GIS. Within the work of Kwan and Lee [45] they examine the potential of using 

real-time 3D GIS for GIS-based intelligent emergency response systems. Their framework allows the 

potential for the reduction of delays within multi-level structures. The framework also supports 

pathfinding algorithms between emergency service buildings such as fire-stations, and the disaster 

sight, taking into account traffic speeds, blocks, and stops. The framework is a fine example of what 

can be done with real-world data for 3D visualisation of cities for data overlay and data 

                                                           
28 https://msdn.microsoft.com/en-us/library/bb308959.aspx 
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management. It proves that the framework which we have proposed is achievable in relation to 

visualisation technology for displaying data to improve the understanding of real world data maps. 

To summarise, the issues of rendering and visualisations within the domain of GIS’s can be alleviated 

by employing the algorithms and techniques currently used within CGT. We contribute our work by 

the implementation of advanced rendering techniques applied within the domain of GIS. 

3.3 Spatial Analysis with Visualisations and 3D Models 

Lv et.al. [46] present a big city visual analysis platform based on Web Virtual Reality Geographical 

Information System (WEBVRGIS). Within the platform there are extensive analysis functions which a 

user can select; spatial, terrain, sunlight, traffic, population, and community. The purpose of 

WEBVRGIS is to create a dynamic visualisation of geographic information, transforming GIS data into 

a more intuitive, and user realistic 3D experience. The analysis functions are intended for use by 

external domain experts. We wish to include spatial analysis techniques into the framework but for 

use within a data-inference algorithm which will calculate specific attributes about assets within a 

scene; e.g. calculating a buildings height from OSM if only the number of floors are present within 

the attribute description. Using a pre-defined value for the average height of a floor, the height can 

be estimated, improving data visualisations.  

Utilising spatial analysis techniques can be combined with 3D generated cities for the creation of 

interesting and novel pathfinding techniques used by a multitude of vehicular structures and sizes. 

For instance, pathfinding for a person on foot will be different for a car, which will be different for an 

oversized vehicle which will need roads larger than a given width.   

Pathfinding techniques commonly used by AI systems within computer games are spatial analysis 

functions. Many pathfinding techniques are available as stated by [47], [48]. We wish to highlight 

path finding techniques used for finding paths for multi-sized agents (vehicles, none player 

characters, water flow, etc.) through 3D virtual scenes. Harabor [49] present clearance-based 

pathfinding, a technique which generates paths for multi-sized vehicles within real-time strategy 

game Command and Conquer. The algorithm takes into account the destructible buildings, which 

when changed will update the 2D grid map representation used to generate the clearance-based A* 

path. This technique can be used with virtual scenes generated from real-world data to generate 

input maps for the clearance-based pathfinding technique. Using LiDAR and spatial analysis 

functions, a similar result could be generated for real-world users and real-world vehicles of varying 

size. A form of this is presented in [50] by using explicit corridors to generate obstacle avoidance 

paths. We are currently not utilising the framework for this purpose. A framework which can use 

geospatial data for the input for AI algorithms has not been implemented within the domain of GIS.  
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Hagelback and Johansson [51], [52] use potential-fields for creating input maps for pathfinding 

algorithms. We highlight this work because of its similarities with using textured LiDAR maps; 

converting height points to pixel colour values of the 2D texture can give similar results to that of 

potential fields. Utilising ‘depth rendering’, a technique to render objects according to the distance 

they are from the 3D camera, potential fields, or height maps can be created. We plan on utilising 

this shading algorithm within the framework. This allows for further visualisation combinations and 

potential avenues for future work and research.  

Utilising texture formats, we discuss in section 6.8 a technique to store all height data within the UK 

within a novel storage technique within a formatted texture file by employing parsing procedures 

within the algorithm. 

Within the body of knowledge, the use of spatial analysis techniques applied to real-world data sets 

to infer information. The contribution of procedural techniques to analyse and query the data for 

the generation of additional data for the improvement of visual accuracy of real-world virtual 

scenes. 

The next section discusses the literature and techniques of Procedural Content Generation (PCG).  

3.4 Procedural Content Generation 

To introduce PCG we refer to the work of Khaled, Nelson, and Barr [53] who present metaphors 

commonly used with PCG. PCG has input into many domains and thusly various names are used for 

the same techniques.  

Many of the projects, which create 3D city representations use a form of PCG for the creation of 

data or visual assets [36], [54]–[58]; buildings, highways, terrain, etc. Muller et.al. [55] present their 

procedural modelling techniques used to generate realistic, theme inspired, buildings. We state 

theme inspired because their technique can be tuned to create buildings which represent various 

characteristics of well-known and distinct cities, new and old. Figure 18 shows a procedural 

representation of the ancient city of Pompeii. We show this image from the paper [55] because we 

wish to highlight the realism it portrays. The human eye is adapted to spotting patterns within 

scenes, especially scenes which represent real-world instances. Errors, or repeating patterns are 

easily spotted. Within [55] each building is different in some way, be it textures, rooftop styles, 

shape of the building, and the height of each building. This is achieved through the use of rule-based 

comprising of 190 manually written shape rules. What is great about this work is the fact that each 

buildings blueprint is accurate from archeologically documents. Using shape rules to create, and 
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augment a building is an interesting technique to generate realistic, but procedurally devised 

buildings.   

 

Figure 18 Screen grab of a procedural representation of Pompeii from the work of Muller et.al  [55]. 

Games set within real-world parameters: Friberger et.al [18][19] use open GIS data to create 

interesting variations of well-known games; Monopoly with real-world place names, Top Trumps 

with real-world countries with accurate states, and using real-world maps to create 2D tile maps for 

a Civilisation style game. The interest with this work is not the end-results but the intuitive nature 

for which the games suggest; taking real-world map data and integrating that map data within 

popular implemented commercial games.  

PG of buildings for city models are discussed within the SIGGRAPH course proposal [59]. Within the 

work of Parish and Muller [55], [60], they discuss their techniques for generating 3D buildings by 

extruding primitive polygons by multiple heights, as well as attaching primitive model meshes 

(cubes, rectangles, and most commonly tubes) to create complex and realistic buildings. They also 

discuss the techniques for attached facades to the buildings. Within the research, the facades have 

effect on the building structure and vice-versa. Their work also includes generation of highway 

structures commonly found within real-world instances, but are procedurally generated not taking 

into account of real-world data. The generation, like the building generators utilise rules for 

particular instances of error/issue to resolve constraints. The highway generation utilises a self-

sensitive L-System to great success.  

Our work will not need the use of L-Systems for the highway generation due to highway data already 

described in the OSM data. Our work proposes to implement procedural techniques to generate 

highway structures, parsing from OSM data to 3D model mesh data.  

A survey paper discussing the procedural techniques for city generation is found in [61]. They 

present the work of [62] who use primitive polygons for the combination and generation of 

floorplans which are then extruded to create buildings. Some polygons are extruded at different 
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levels. Using a similar technique combined with OSM building boundary data, we can generate 

extruded buildings. Reducing the scale or the boundary, we can create roof tops for the buildings, 

just as [62] have.  

Their work takes into account the population density, creating highly dense building structures and 

road systems to where the population is higher. This creates high-rise buildings and a limited 

number of large road ways between the populations which act as separate cities. This technique 

works to great success and produces city landscape similar to real-world cities. We are not 

interested in procedurally generating large cities, but procedural techniques are needed to generate 

objects and assets within a scene. Procedural estimations are also needed to calculate estimate 

parameter values for said objects; the number of floors within a building.  Knowing the number of 

floors within a building can improve visualisations by texture mapping accordingly. 

Evaluating the realism of this work with the results of the proposed framework can take place. With 

a procedurally generated city made of real-world data and comparing the results of a procedurally 

generated city which is generated by pre-defined terrain layout and rules is a starting comparison 

point for our work.  

Martinovic and Gool [63] utilise Bayesian Model Merging but within a 2D textural domain to 

resample and generate stochastic façade textures to replicate buildings with the same style. 

Resampling images of real-world facades and locations is an interesting approach to create none-

repeating city structures. As stated the human eye is very adapt to spotting repeating instances. An 

issue arises within this instance of increased memory footprint, or if the data is procedurally 

generated when needed then extra processing is needed. For our work, this would be a future 

parameter of the work needed. Currently we will focus on the use of advanced IASF and the user 

ability to integrate additional data within the visualisations. 

A survey paper discussing search-based PCG is found in [64]. Togelius et.al. discuss many features of 

PCG and we wish to highlight some of them. They discuss the need for either pre-processed or 

runtime content generation; what needs to be done before the application is used by a user or can 

be done in the background as the user interacts with the system. They state it is done pre runtime, 

then manual editing of the final artefact can take place which cannot be done at runtime generation. 

We agree with this and stipulate that PCG of assets such as buildings/highway/terrains should be 

done pre-runtime. Other content which can be done procedurally at runtime may be debugging 

features such as creating the bounding box mesh objects to view the spatial scenegraph bounds we 

described earlier.  
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The use of seed values for PCG is one of the benefits of creating large assets but only storing a single 

seed value. Togelius et. al. discuss the differences random seeds versus parameter vectors [64]. An 

issue arises with the generation of this seed value. Creating complex 3D structures which are unique 

in nature and still classifiable to be ‘correct’ is difficult. Trial and error techniques are normally 

employed with these algorithms. The preferred method for commercial companies is to combine 

procedural techniques with manual editing done by artists. The artist will generate multiple versions 

of the asset, and pick the one they think is best and work manual from thereon. The alternative to 

this is to create a parameter based algorithm which takes into account the parameters listings. With 

procedural city generation techniques, this could be to limit the number of buildings, or limit the 

height of the build or the textures used. Although the writers of the survey paper split sections of 

‘Random seeds versus parameter vectors’ and ‘stochastic versus deterministic generation’, we state 

that although they are vastly different, they also overlap vastly. Utilising a seed value to create 

assets is a form of deterministic PCG, and is a form of data compression. Stochastic techniques can 

be thought of as the process to create the assets in the first place. Within a city generation 

framework, the deterministic approach will be the best approach, combined with parameter based 

inputs for the PCG algorithm. This will prove efficient in terms of development as well as flexibility.  

Combining this with the addition of manual editing is also needed, but not for prototypes of the 

framework but for the final product. 

The framework of Galin et.al [65] creates procedural highway structures such as roads, tunnels, and 

bridges by analysing terrain data and descriptions of their geometric characteristics. Their research is 

still in the early stages in this field. The cost function to determine the trajectory of a path is 

calculated taking into account the slope of the landscape. Their results are positive and realistic. 

Combining this with real-world data, future planning of highway structures can be calculated 

accurately.  

3.5 Photogrammetry 

Photogrammetry techniques can be utilised for the generation of many GIS data-sources. In the 

work of [66], Enem et.al utilise photogrammetry to determine the height of buildings from a 

multitude of angled aerial images; top-down, 2.5D, and 3D perspective images. They state that in 

spite of the horizontal and vertical accuracies of photogrammetric maps, it is not possible to use 

them directly in 3D city modelling. Current techniques introduce errors which have to be edited 

manually by a data analyst specialist, or a 3D modelling artist. Thusly photogrammetric map images 

need to be processed further to create accurate 3D building blue-prints. Their system still uses 

manual editing of errors, but is one of the most advanced 3D modelling GIS we have seen during this 
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research. Although the data produced, and in which produces procedural buildings, the realism is 

lost due to the non-textured and simplified extruded building structures. Another weakness within 

this work is the lack of additional assets within a 3D city modelling GIS. They only utilise 2 tree 

models, and 1 street lamp. We wish to improve on this by not only adding additional model assets, 

which is not a novel technique, but utilising other mapping data sources such as OSM to gather 

further information into the style of city being generated and the placement of additional assets; 

post-boxes, vegetation, bins etc. This extra information can be utilised by not only the visual 

inspection and realism of a scene, but also used by council and private officials. Post office workers 

can analyse the routes taken to gather assets, and see cause and effect of altering postal routes.   

According to Dhonju [67], building outlines can be determined more accurately than that of LiDAR 

and aerial laser scanning. This is due to two issues. The angle that the laser is shot from the aircraft 

added with the angles and orientations of a building’s roof or sides. This issue can add noise to the 

data. And low resolution laser techniques in relation to the distance between lasers, not capturing 

close enough to a rooftops edge. We agree with these issues, and with LiDAR data which we have 

analysed, this is a large problem with LiDAR, especially LiDAR data with is captured at low 

resolutions. We present initial techniques later to reduce this error.  

The use of photogrammetric methods is determined to be out of the scope of this research due to 

the benefits in which modern LiDAR data provides. 

3.6 LiDAR 

To counter the claims of Dhonju [67] about photogrammetry, within the paper of [68], claims that 

LiDAR is rapidly replacing the photogrammetric approach. We add to this claim with the research of 

[69] Montoya et.al. whom use LiDAR equipment attached to drones. This removes the huge cost of 

capturing aerial imagery needed by photogrammetry. Due to this low cost, data capturing can be 

completed on a smaller budget, and can capture high resolution contours of buildings and other 

real-world artefacts; something photogrammetry techniques currently cannot do. 

LiDAR can be accurate to a few centimetres when captured from 800 meters above ground. Using 

building locations from OSM, we can extract the height of said building from the LiDAR data-set, 

doing away with complex photogrammetric procedures. Combining the two data-sets can bode well 

for each; the LiDAR is used to create height values for the OSM building, while the OSM boundaries 

of buildings can be used to check the accuracy of the LiDAR data points. 

LiDAR has been used within many analysis, and visualisation projects such as the project stated in 

[70]. Within this paper the authors use Mannings' coefficient of ground texture and roughness to 
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determine water flow for flood control. Using LiDAR data removes the need to visit sites in person, 

proving the relevance that LiDAR can bring to crisis management, visualisation, and scene analysis, 

and giving an insight into real-world environments.  

Errors within LiDAR capturing is presented in the survey paper [71]. The multiple authors present the 

errors within different domains which contain the use of LiDAR. The errors stated within our 

background research of the use of LiDAR, and within the later sections discussing the issues of big 

geospatial data. The errors within the LiDAR data is an issue for our work, and this is why we 

introduce procedural algorithms to remove the errors. 

3.7 Conclusion 

Within this section we have discussed the relevant projects and research of others which our work 

can either improve, or we can use as a comparison for evaluation, or as a starting point for our own 

research. We have covered the use of game engines and why to use them for this project, and the 

research and uses of visualisation, specifically the frameworks and projects which are using 

visualisation techniques to view real-world big data-sets. We have discussed the standards of PCG in 

relation of GIS and visualisations of real-world locations. We have also presented issues surrounding 

photogrammetry and the techniques which have been used for. The successor, and popular 

alternative to photogrammetry is LiDAR which is cheaper to produce and accurate to a few 

centimetres when captured from 800meters above ground, and a few millimetres when using 

handheld equipment capturing technology. This proves well to create realistic virtual scenes for a 

modern GIS.  

To summarise the issues stated within the literature review, photogrammetry has issues which can 

be removed by the use of LiDAR. LiDAR has issues and errors which can be filled by the use of OS 

data. OS data has issues due to low resolution and thusly the need for interpolation techniques and 

algorithms are needed to increment the low resolution to a higher resolution to combine with LiDAR 

to create a complete terrain data set. This is a form of PCG. Other forms of PCG have been utilised 

for building generation of Pompeii, but this work has issues. The issues can be overcome by the 

utilisation of real-world modern data describing properties of the assets being procedurally 

generated, i.e. buildings and highways. Visualising these assets within large scenes, scenes as large 

as a modern city has issues with rendering within real-time constraints. Techniques and algorithms 

are needed to overcome these issues. Techniques such as, LoD, advanced rendering categorisations, 

and scene organisations. The SAVE project utilises Eigen vectors to encode user specified interests. 

This is encoded into effect parameters, but are done offline. We iterate the need to allow this 

functionality at runtime. 
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The literature reviewed in this section have all been single instances of algorithms, or techniques. 

None tackle the issues within a single framework, processing the datasets to produce accurate real-

world model sets for visualisation and interactions. 

The next section covers the big-geospatial challenges. The chapter delves deeper into the data 

parameters and issues with each of the geospatial data-sets we have decided to utilise.  

We wish to include spatial analysis techniques into the framework but for use within a data-

inference algorithm which will calculate specific attributes about assets within a scene; e.g. 

calculating a buildings height from OSM if only the number of floors are present within the attribute 

description. Using a pre-defined value for the average height of a floor, the height can be estimated, 

improving data visualisations. 
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4 Big Geospatial Data Challenges 

This section will cover all the difficulties and issues with data we propose to use. Multiple types of 

data available from multiple providers; government and private sector will be discussed. At the end 

of the chapter we discuss our final decision to what data we will be utilising and how it will be used 

in conjunction with the spatial data structures and algorithms we propose. 

4.1 Ordnance Survey 

There are multiple data sets relating to OS which vary slightly provided by the UK Government, and 

associated third parties. These variances are problematic when combining these data with other 

data sets such as LiDAR e.g. the sea level point for which all other points are referenced from are 

different for each data-set. The base sea level point is called the datum. 

The multiple maps we have are; Digimap DTM, Profile DTM, Panorama DTM, OS Panorama DTM, OS.  

Digimap DTM has issues being 4 to 6 centre meters’ higher that the LiDAR data available. Profile 

DTM has an additional point of data for each column and row, resulting in duplicated data, but may 

improve model mesh generation techniques through filling the space between maps. Panorama 

DTM and OS Panorama DTM also have this issue. The metadata for each of the map types are 

different to the LiDAR data available, and thusly, additional processing is needed for which ever map 

type chosen.  

With the OS map type, additional data checking shows that the height points are within 1cm of error 

with the LiDAR files we wish to use. The fact that the data is freely available is another benefit. 

The properties of the map types are shown in Table 3.  

Map Type Data points in map 

(column and rows) 

Cell 

Size 

Area 

Coverage 

Digimap DTM 2002 50m2 10km2 

Profile DTM 5012 10m2 5km2 

Panorama DTM 4012 5m2 2km2 

OS Panorama DTM 4012 50m2 20km2 

OS 2002 50m2 10km2 

Table 3 Ordnance Survey map variation comparisons. 

The OS mapping scheme needs to be discussed further. This is for the issue that if all of the OS 

mapping scheme is to be mapped, as a consequence, the number of maps, and data storage, would 
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be very large. If mapping for the complete UK at a resolution the same as the highest resolution of 

the LiDAR maps we have (20002 data points at 25cm cell size), a large data storage problem occurs. 

See section 4.3 for further details.  

The mapping of OS can be thought of as layers. The lowest resolution of OS names each tile of area 

coverage with a single prefix letter; layer 1. Each tile represents 500km2 area coverage. Figure 19 

shows the coverage.  

 

Figure 19 OS lowest resolution single prefix mapping scheme. Each tile represents a square 500k area coverage. 

Layer 2 tiles represents 100kilometers squared area coverage and splits the layer 1 tiles into another 

5*5 grid and they are named by inheriting the name of the tile which they are in, and utilising the 

same prefix as before, e.g. tile S in N would have the name NS.  

Layer 3 tiles represent 10kilometer square area coverage and splits the layer 2 tiles into a 10*10 

grid. Each of these tiles is named from the bottom left to the top right tile with respect to the easting 

and northing (or the X and Y coordinate).  

 

Figure 20 OS Reference scheme layer naming explanation for a 1kilometre tile location. 

Layer 4 tiles represent 1kilometer squared area coverage and splits the layer 3 tile into 10*10 grid 

and adds an additional easting and northing naming parameters.  
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This is the end of the official OS reference scheme, but we can further this by increasing the easting 

and northing values. Extending the layers will incur projections in base 10 format. See Figure 21 for a 

visual explanation. 

 

Figure 21 OS Layers and corresponding Distances. 

An issue is the fact that the OS map files are only released at 10km2 area coverage. Additional 

processing will be needed to extract and then interpolate the maps to the same resolution as the 

LiDAR maps.  
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Figure 22 OS double préfix resolution. Each tile has a double prefix and represents 100km2 

The total number of tiles in the multiple resolutions is stated next; 

 Layer 1 500km2 = 25 tiles 

 Layer 2 100km2 = 25 * 25 tiles = 625  

 Layer 3 10km2 = 100 * 25 * 25 tiles = 62,500 

 Layer 4 1km2 = 100 * 100 * 25 * 25 tiles = 6,250,000 

The total number of titles within the mapping scheme is equal to 25 + 625 + 62,500 + 6,250,000 = 

6,313,150. 

Many of the tiles from each layer cover only sea. From Figure 22, only the shown 100km2 maps can 

be made or processed. This will have improved processing time. The maps shown in Figure 22 

equate to 55, giving 550,000 tiles at 1km2, a reduction of ~=5.7 million tiles. We state 550,000 tiles 

represent land coverage, but as Figure 22 shows, not all areas of the tiles are mapped, only the 

yellow areas shown are actually mapping with OS data, thus further reductions can be achieved. 

4.1.1 Ordnance Survey Conclusion 

Given this information of the multiple data files available, the OS data provided by the UK 

Government is the preferred data format to use. This is due to a multiple of reasons; freely available, 

minimal metadata differences, row and column numbers are devisable by 10, as with the LiDAR 

data-sets. This proves well for extracting subsets of the map which can be interpolated to the higher 
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resolutions of the LiDAR maps. The maps will have to be pre-processed to either introduce additional 

metadata separately in an individual tool, or introduce the metadata during the processing and 

combining toolset.  

4.2 LiDAR 

Regarding LiDAR data, there are many issues which may affect their accuracy. 

LiDAR data is currently incomplete and inaccurate for the UK. It is unlikely it will ever be complete 

for the UK; high cost of capture, ever changing urban environments.  

The LiDAR terrain errors are classified as; missing data, false data capture, and errors produced in 

initial processing from the LiDAR providers. Missing data is when data cannot or has not been 

captured. This can be caused by vegetation or water for which the laser used does not reflect of the 

object correctly. False data can be captured from dynamic objects; vehicles, flocks of birds, swaying 

trees etc. Any errors produced from the provider cannot be verified due to none-disclosure 

agreements.  

LiDAR data can be provided by a number of companies and within a number of data formats at 

multiple resolutions. The data which we have obtained has been issued from the UK Government. 

We can confirm from contact with the providers of the LiDAR dataset available, that the process 

contains a combination of: Optech LMS Manager29, Bentley Microstation30, Terrasolid31 / 

Terrascan32, QT Modeler33, ArcView 3.334, ArcMap 10.135, and many bespoke tools for each of the 

pieces of software stated to create the DTM. This shows that processing LiDAR is a complex and 

processing intense procedure. The many steps may incur errors, which are processed through the 

pipeline. Additional checks should be made; algorithmically, or by human interaction. 

Stated in the book [72], the authors states that LiDAR produces improved results of data capture in 

daylight hours. The issue with this is if capturing in daytime hours, multiple moving artefacts are 

more frequently found within the data-source. 

The data parameters for the LiDAR data-sets provided by the UK Government consist of; 

 Coverage: 98,255km2 (65%) England and Wales (81% of all urban areas) 

                                                           
29 http://www.teledyneoptech.com/index.php/product/optech-lms/ 
30 https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/microstation 
31 https://www.terrasolid.com/home.php 
32 https://www.terrasolid.com/products/terrascan_versionhistory.php 
33 http://appliedimagery.com/ 
34 http://www.esri.com/software/arcgis/arcview 
35 http://www.esri.com/software/arcgis/arcgis-for-desktop 
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 Resolution: 2m, 1m, 50cm, 25cm 

 Vertical accuracy: 5cm – 15cm 

 Type: DTM and DSM 

 Version of data-set: 1998 to present 

 Formats: ASCII and Geo-referenced JPG 

 50cm resolution data is typically flown at 850M altitude above ground  

 1M resolution data is typically flown at 1000m altitude above ground 

Another issue with the LiDAR data is the none-efficient storing format of ASCII. Section 6.8 discusses 

how a novel design can contain every possible height point of the UK, including below sea level 

within a formatted png texture. Each pixel of the texture represents the height for which is 

corresponds. 

The resolution of the LiDAR maps proves troublesome in respect to processing and also data storage. 

Each resolution and data point count contained within each map is stated within Table 4. 

Resolution Dimensions Total points contained Area Coverage 

2m 5002 250,000 1km2 

1m 1000 1,000,000 1km2 

50cm 10002 1,000,000 500m2 

25cm 20002 4,000,000 500m2 

Table 4 LiDAR data resolutions, dimensions, point count, and area coverage. 

What is not shown in Table 4 is that the 50cm and 25cm maps represent the corners of the 1km2 

maps of 2m and 1m resolutions. To have a map at resolution 50cm, the dimensions will be 20002 at 

total point count of 4,000,000. The 25cm map which covers 1km2 will have dimensions at 40002 and 

contain 16,000,000 points.  

These maps at even the small resolution and lower point count will still prove troublesome when 

processing and converting to a 3D model mesh object to be rendered within a game engine. The 

storage capabilities needed as well will be an issue. 

To explain further into the data available, and the amount of data which constitutes this to be big-

data, we bring attention to Table 5. 
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Resolution Size on Disk 

including textures 

Total size on 

Disk: DTM 

Total size on 

Disk: DSM 

Typical DTM 

file size 

Typical DSM 

file size 

2m 476 GB 234 GB 232 GB 1.81 MB 1.62125 MB 

1m 1.23 TB 620 GB 614 GB 5.81 MB 6.585 MB 

50cm 663 GB 324 GB 321 GB 6.33 MB 6.1125 MB 

25cm 738 GB 364 GB 356 GB 22.6 MB 21.5625 MB 

Table 5 Lidar data file size on disk and attributes 

Table 5 shows the properties of each resolution of the LiDAR data files; 2m, 1m, 50cm, and 25cm. It 

shows the total amount of storage on disk for each resolution we have, and the sample size of 

typical selected maps for the DTM and DSM.  

An issue which needs to be stated is area coverage of the LiDAR maps. Unlike the OS mapping, the 

LiDAR maps are only generated for 1km2, or 500m2 tiles, and within flight paths. This creates missing 

maps in the positions adjacent and diagonally with neighbouring maps. This is problematic with 

creating a process which combines OS maps, with LiDAR maps, and the multiple resolutions of LiDAR 

maps we have. A process necessary needs to check the neighbouring maps, and if corresponding 

data is available, interpolate between the maps, or data points.  

4.2.1 LiDAR Conclusion 

With the lack of full coverage of LiDAR data for the UK, and where data is available being of multiple 

resolutions (2m, 1m, 50cm, 25cm), we conclude that addition OS data is needed to create terrain 

model mesh data for visualisations. Where LiDAR data is not available, OS data will be used. Where 

LiDAR data is available, but not of high resolution, interpolation techniques will need to be utilised to 

interpolate to the higher resolutions.  

Procedures are also needed to check which neighbouring maps are missing, and load lower 

resolution maps for combining. Procedures are also needed to check for missing data within the data 

files, and combine with lower resolution maps which have been interpolated to the higher resolution 

for combining.  

4.3 Total Storage Needs for Complete Coverage 

The sections of 4.1 and section 4.2 have shown the size of area coverage for the OS reference 

scheme, and the number of data-points within the LiDAR data files and the current amount of data 

we have. This section shows the total amount of storage needed to store the data within its current 

ASCII format. 
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Firstly, we state the total coverage of the OS scheme. Due to a majority of the OS mapping scheme 

covers the water surrounding the UK, and not land, creating a full data set which covers this is 

unnecessary; see Figure 19 for a depiction. 

As stated before, the LiDAR coverage is incomplete for the UK within the resolutions of 2m, 1m, 

50cm, and 25cm. We give our findings for the full coverage of the OS mapping scheme as shown in 

Figure 19. The 50cm and 25cm resolution maps will be spoken as if they have been combined to 

create an area coverage of 1km2 as to easily be processed in base 10 format. The reason is that the 

lower resolution maps of 2m and 1m can be devisable by 10, and this will make it easier to develop 

for and use with interpolation techniques. To do this, the results of the average DTM and DSM file 

size for the 50cm and 25cm maps need to be quadrupled to produce the average for a map which of 

same area coverage of 2m and 1m maps. The results are shown in Table 6. 

Map Average File Size Partitions Total File Size 

50cm DTM 6.33 MB 4 25.32 MB 

50cm DSM 6.1125 MB 4 24.45 MB 

25cm DTM 22.6 MB 4 90.4 MB 

25cm DSM 21.5625 MB 4 86.25 MB 

Table 6 Average size of theoretical 1km squared maps at 50m and 25cm resolution. 

The total number of maps from the OS scheme is Layer 1 count * Layer 2 count * Layer 3 count * 

Layer 4 count. This will be 25 * 25 * 100 * 100.  This will produce the value at layer four. We do not 

need the amount of tiles at the previous layers to be included because we are only calculating the 

need for 1km2 tiles. 

The result will be shown as ‘R’ = 6,250,000. To generate the size needed for each resolution of maps, 

the equation will be R * A, where A is the average for each of the resolutions of the LiDAR at 1km2 

coverage, either the DTM, or DSM. This gives: 
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Map Calculation Size 

2m DTM R * 1.81 MB 11.3125 TB 

2m DSM R * 1.62125 MB 10.1328125 TB 

1m DTM R * 5.81 MB 36.3125 TB 

1m DSM R * 6.585 MB 41.15625 TB 

50cm DTM R * 25.32 MB 158.25 TB 

50cm DSM R * 24.45 MB 152.8125 TB 

25cm DTM R * 90.4 MB 565 TB 

25cm DSM R * 86.25 MB 539.0625 TB 

Table 7 Storage needs for full Ordnance Survey Coverage at multiple resolutions. 

This gives a total need, which does not include the images of 1514.04 TB of storage. This is the 

justification to state that this work involves big-data. 

Giving the 55 layer 2 tiles we stated, which cover the UK as shown in Figure 22, the storage needs 

are calculated from the equation 55 * L3 * L4 * A; where A is the average map file size on disk.  

Map Calculation Size 

2m DTM 55 * L3 * L4 *  1.81 MB 0.9955 TB 

2m DSM 55 * L3 * L4 * 1.62125 MB 0.8916875 TB 

1m DTM 55 * L3 * L4 * 5.81 MB 3.1955 TB 

1m DSM 55 * L3 * L4 * 6.585 MB 3.62175 TB 

50cm DTM 55 * L3 * L4 * 25.32 MB 13.926 TB 

50cm DSM 55 * L3 * L4 * 24.45 MB 13.4475 TB 

25cm DTM 55 * L3 * L4 * 90.4 MB 49.72 TB 

25cm DSM 55 * L3 * L4 * 86.25 MB 47.4375 TB 

Table 8 Reduces file storage for maps within the boundary of the UK Ordnance Survey reference scheme. 

The total storage needs shown in Table 8 is 133.23 TB. This amount of data is an issue and will need 

algorithms designed to process the data.  

To deal with the issue of the large amounts of data, we propose an algorithm which can split the UK 

into manageable 1kilometer squared areas of data. A novel scenegraph structure will be utilised to 

spatially partition OSM locations to align with the terrain partition. Using this technique, processing 

only maps which are selected can be achieved using the same scenegraph structure.  
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To summarise, the issue with data storage needs for LiDAR, and OS, as well as OSM need improving 

by algorithms, and pre-processors. We contribute to the storage techniques of geospatial data sets, 

improving, and reducing the need for expensive storage hardware. 

4.4 OpenStreetMap 

As stated, OSM is a worldwide volunteered mapping platform. It allows anyone with an internet 

connection to contribute to the geospatial database.  

The graph shown in Figure 23 shows the statistics of OSMNodes, OSMWays, and the OSMRelation. 

The number of OSMNodes within the OSM database is ~= 3.2Billion for the world. Our work will 

include a subset of this, but the number of nodes per kilometre squared are still large.  

 

Figure 23 Open Street Map database Statistics. Image obtained from  http://wiki.openstreetmap.org/wiki/Stats. 

The openness of the platform introduces possible errors. After evaluation of small segments, we 

have found that errors are included with the downloaded data-sets. To reiterate, OSM contains four 

main types of data; OSMNode, OSMWay, OSMTag, and OSMRelation. An OSMNode is a single 

geographical location which can have additional Tag information. An OSMWay is an ordered array of 

Nodes which represent highways or boundaries; either closed or open. An open OSMWay normally 

represents a highway or a wall and is stated by the first and last OSMNode not being the same 

reference. A closed OSMWay normally represents boundaries such as buildings, the first and last 

OSMNode reference should be the same. A Tag attaches data onto an OSMNode, or an OSMWay 

and is a key/value pair. A Relationship is a group of Nodes, or Ways, or a mix of both. An example of 

a Relationship is a building with multiple layers, or with holes within the building. See Figure 24 to 

view the Liverpool Liver building. Notice the inner cut-outs of the buildings within the figure.  

http://wiki.openstreetmap.org/wiki/Stats
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Figure 24 Google Earth and Satellite screen captures. Top has 3D building with images. Bottom is 3D primitive building with 

no textures. Image obtained from https://www.google.co.uk/maps/@53.405743,-2.9958568,19.25z 

The errors which we have identified with the data of OSM are: 

 An OSMNode reference IDs are duplicated for multiple Nodes. 

 An OSMWay may produce overlapping polygonal boundaries. This issue creates exceptions 

within the triangulation algorithms when procedurally generating polygonal meshes. 

Exceptions in this case will crash the program. 

 An OSMWay may have additional OSMTags to state that it is a building, but the OSMWay is 

open; therefore, it cannot be a boundary of a building; this defies usage agreement of OSM. 

 An OSMRelation may contain Ways which contain out of order descriptions. For example, a 

building such as the Liverpool Liver Building within Figure 6 contains cut-outs (the inner 

boundaries). A relationship which describes this type of building will contain an OSMWay 

with a Tag with value of ‘Outer’, and two Ways with Tag value of ‘Inner’. The first OSMWay 

in the array of Ways will be the ‘Outer’ OSMWay, and the rest will be ‘Inner’. Any ‘Inner’ 

ways will need a parent of type ‘Outer’. Multiple hierarchies of ‘Outer’ and ‘Inner’ 

relationships may occur as well; producing a tree structure. We have witnessed the first 

OSMWay within the array being of type ‘Inner’. Figure 25 shows a representation of this. 

When processing, checks must be made to remove relationships of this type. 

 Tag data can be a great descriptive feature of the database. It can also be a troublesome 

data type to process due to the ability for volunteers to enter any type of string 
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representation for the datatype. For example, a colour Tag can be entered in many formats; 

RGB hexadecimal value and string value. 

 Because OSM is a world mapping scheme, it allows many languages to be entered which 

brings many language parsing issues. We have noticed that the buildings tag information is 

particularly troublesome. This is accurate with the types of colours attached to a building. 

The key/value pair of colour is different between English and American English. Users from 

the UK will use ‘Colour’, while American English users will use ‘Color’. The Key for this needs 

to be checked. 

 

Figure 25 An OSMRelation depicted as a tree structure and visual representation. 

The data within the database is stored within the Extensible Mark-up Language (XML) format as 

stated. Although XML is a regular form to store large amounts of descriptive data, it is unsecure 

without additional signatures and encryptions, and alternative storage formats are better choices for 

data storage. One of these formats is binary. XML is a widely used format and already has a wide 

parsing usage, but binary format will need a custom parsing algorithm. Although binary format will 

provide improved readability speeds, XML allows widespread usage within other game engines and 

frameworks. 
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Due to the 2D nature of the OSM data point locations, procedures need to be put in place to extrude 

the boundaries to create 3D model mesh objects to view within a virtual environment. Additional 

procedures are needed to convert from the projection used by OSM to the projection used by OS 

and LiDAR. 

OSM is projected using either Mercator (EPSG 3857) or WGS84 (EPSG 4326) spatial reference 

system. The Mercator projection is used for tiled web maps such as the OSM website, and that of 

Google maps. The map area of such maps is a square with x and y coordinates both between -

20,037,508.34 on the x axis and 20,037,508.34 on the y axis in meters. As a result, data north of 

about 85.1° and south of about -85.1° latitude can’t be shown and has been cut off. For our research 

we will only focus on data within the confines of the UK.  

The WGS84 projection is used within many Global Positioning Systems (GPS). It uses geo-coordinates 

between -180° and 180° longitude, and -90° and 90° latitude. Figure 26 shows the mapping of the 

latitude and longitude upon the globe. It is this projection which is used for converting to alternative 

projection spaces. This is the projection which will be best suited to project to the X, Y, and Z 

projection used within a 3D game engine. We will need additional libraries to convert from one 

projection to another; which proves difficult.  

After extensive research, converting from one geospatial projection to another with accurate results 

is unobtainable. This is due to the curvature of the Earth, specifically the fact that the Earth is non-

uniform in nature and ‘egg-shaped’. There is currently no software which can accurately convert 

from the projection used by OSM to X, Y, Z coordinates used by OS and LiDAR data which we have. 

We aim to monitor the displacement error of the different projections, and create a list of error 

percentages to improve projection conversion.  

The information of the projection system has been researched from OSM projection webpage36, and 

a blog webpage37. 

OSM contains limited terrain information stored within its attributes. Additional terrain data is 

available in part with OSM by SRTM or OpenDEM. OpenDEM is similar to OSM in providing a 

platform to collect and generate open elevation data. 

                                                           
36 http://openstreetmapdata.com/info/projections 
37 https://alastaira.wordpress.com/2011/01/23/the-google-maps-bing-maps-spherical-mercator-projection/ 
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Figure 26 Latitude and Longitude example. Image obtained from http://www.learner.org/jnorth/tm/LongitudeIntro.html 

4.5 Conclusion 

To conclude this chapter, we iterate the issues of big geospatial data. 

The OS format and provider we plan on using will be the OS data provided by the UK government for 

its similarity with LiDAR data that we have chosen; both use the same coordinate projection of base 

10 columns and rows. To generated additional data to fill in the missing data of LiDAR, interpolation 

techniques need to be utilised. Procedures are to be employed to combine the data sets starting 

with the low resolutions, interpolate to a higher resolution, and then combine to generate a 

complete high resolution terrain map. A novel scenegraph structure is needed to partition the 

terrain maps which total 1514.04 TB of data; or 133.23 TB if creating maps for a subset of the OS 

projection scheme. The same scenegraph structure is needed to spatially organise the procedurally 

generated 3D model mesh objects generated from OSM data. Using the two data sets of terrain and 

3D model mesh assets from OSM, the conversion between the projection systems can be modified 

to improve the conversion algorithms which we will utilise from a 3rd party API DotNetCoords38 

Given the issues with the data held within the OSM geospatial database, additional checks will need 

to be made either directly on the XML data file or while processing the data within the pipeline. 

The next section will discuss the specification needs of the project.  

                                                           
38 https://www.doogal.co.uk/dotnetcoords.php 

http://www.learner.org/jnorth/tm/LongitudeIntro.html
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5 Specification 

Within this section we will discuss the specification needs for the project. The specification states 

what is needed to achieve the aims and objectives of the project, and to overcome the issues we 

have identified within the background, literature review, and the big geospatial challenges chapters.  

We iterate the aims and objectives of this project, which are as follows; 

1. To review and consolidate the knowledge and state of the art on big geospatial data 

rendering and visualisation. 

2. To identify and collect the real world data to generate complex real world 3D environment. 

3. To design a framework, and software components to develop a big geospatial data 

rendering and visualisation system. 

4. To create novel data structure to combine several data sources and design new algorithms 

to process and visualise these data using a 3D game engine. 

5. To implement a geospatial data visualisation system. 

6. To develop new metrics and benchmarks to evaluate performance of the system of the 

resulting 3D scenes. 

We discuss the specifications from a high-level point of view, then the needs of processing data, the 

needs for 3D city visualisations, the data structures needed to manage the big geospatial data, and 

then the algorithms which will be applied to the data structures. Finally, we discuss the use of the 

Interactive Visualisation Interface (IVI).  

5.1 High-Level Specification 

This section introduces the high level specification of the framework. The specifications will 

culminate in the generation of a framework which can process geospatial data into a procedurally 

generated realistic 3D virtual environment which can be manipulated both spatially and visually by a 

user. 

To generate visualisations for a modern GIS, datasets are available for use, but need additional 

processes and algorithms to combine the datasets. The combination of datasets is to infer data 

where data is erroneous or missing. If data is missing, inference algorithms are to be created and 

used. The use of private and open data will justify the combination as both private and open data 

has multiple varying errors within the sets. The dataset chosen will guide the development of 

algorithms and data structures needed for the inference of additional data, as well as the 

visualisations of real-world assets. As of yet, the combining of this data has not been achieved within 
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industry nor research domains, for the generation of virtual scenes projected and rendered within a 

game engine visualisation. As stated within the literature review section, similar research is 

underway but use alternatives to game engines for processing, and visualisations. The generation of 

3D assets is the key component, and for this, novel algorithms need to be created. Due to the 

complexity of asset generation, it is unlikely and inefficient to employ a 3D model artist to generate 

all possible locations within the UK, or the world; thusly PG algorithms are needed. The algorithms 

will utilise the data extracted from the datasets, to create procedurally generated 3D assets, or if 

available, load corresponding user generated content in place of procedurally generating assets. 

To allow flexibility with the processing pipeline, from data input, data fusion, data inference, and 

data generation, a scalable and flexible procedure is needed to allow processes to be removed or 

added to improve processing speeds, or visualisation outcomes. The flexible nature will allow 

additional visualisation layers to be added with future iterations, and allow layers to be removed or 

used within various projects and domains.  

Due to the large number of assets and the large number of common rendering techniques employed 

within computer games, but not yet implemented within GIS frameworks or visualisations of real-

world scenes, a flexible rendering pipeline is needed. The flexible rendering pipeline should allow all 

2D and 3D model assets to be rendered with any rendering technique with the various lighting 

calculations. This specifies a unified model object is needed, and the use of a unified rendering 

pipeline.  

To reduce latency with both processing, rendering, and interaction with the virtual scenes, processes 

must provide techniques to skip processing for the generation of assets. During runtime, algorithms 

must be employed to organise large scenes to reduce latency during the updating, and rendering of 

the scene. 

The use of the processes within alternative frameworks, or projects is not only needed, but the 

output of the processes should be flexible enough to use within alternative projects, rendering 

engines, game engines, or frameworks of the like. A common output schema is needed; binary, XML, 

GML, etc. 

The functional and non-functional requirements are stated next, but first we iterate some use cases 

for the framework from the perspective of potential stakeholders. 

A fire department may wish to view a virtual scene which contains the visualisation of real-world city 

environments at crisis time. If a building is on fire, the fire department may wish to query a scene, or 

the objects around a fire to render the likelihood that the queried object will also catch fire. Using 
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this data, the planning of fire engine placement can commence. This same scenario can be utilised in 

training at non-crisis time. 

The police can utilise a virtual real-world scene by overlaying additional data onto processed maps. 

These data can be visualised by the procedural generation of virtual spheres. The spheres can 

represent potential incidents, and the size of the spheres represent the severity of the incident. This 

technique has been implemented for sound level mapping within real-world location within the 

paper in section 1.4.1, item 4. 

The functional and non-functional requirements are stated as follows; 

Functional Requirements 

 Utilise real-world open and private data. If data is error prone, or missing, then infer and 

generate data. 

 Create a flexible visualisation pipeline. 

 Geospatial data parser. This functionality converts between data structures. For example, 

converting OSM XML format to a runtime class object which can be processed further. 

 Geospatial data combiner. 

 Geospatial data interpolator. 

 Allow scalable and flexible processes and algorithms to combine real world big-data datasets 

for the reduction of errors and generation of additional data for visualisation. 

 Combine big-data data-sets using novel algorithms. 

 Procedurally generate 3D assets generated from real-world geospatial data sets. 

 Use user generated content in place of procedurally generated assets. 

 Data structures to organise a city, country, and a world worth of data. 

 Interaction techniques with GPU parameters. 

 Advanced rendering techniques. 

 Allow users to navigate a scene utilising common 3D camera systems. 

 Scene traversal and searching of user generated queries. Traversal and searching of scenes 

for user satisfied queries should be within real-time, and thusly should not take longer than 

2 seconds. This is required by the use case scenarios stated.  

Non-Functional Requirements 

 Use of commonly used input devices (keyboard, mouse, gamepad) through a framework 

specific interface. 

 3D model importer.  



103 
 

 3D model processor. This is stated as non-functional because model assets can be imported 

through many open APIs. A custom 3D model processor is needed to reduce data storage 

and apply needed data parameters if the 3D model mesh is imported without them (UV 

coordinate, tangent and binormals, etc.) 

Within the rest of the chapter we will discuss details and issues of each component of the 

framework. We start by discussing the specification needs for the processing of data. 

5.2 Processing Data 

We remind the reader that the data sets which we have available are OS terrain data, LiDAR DTM 

and DSM terrain data, and OSM data.  

The issues stated for the LiDAR shows that additional processing is needed to combine the 

erroneous LiDAR sets with a complete set. The complete set we speak of is OS. A process, or multiple 

processes are needed to combine the two data sets together. The multiple resolutions of the LiDAR 

sets mean interpolation procedures are needed to interpolate the low resolution OS set to the high 

resolution LiDAR sets. Interpolations between resolutions are needed, as well processes to combine 

terrain sets together, and extract subsets of terrain sets.  

In order to determine the most appropriate interpolation function to use, an evaluation of 

interpolation functions is needed. 

The errors which are needed to be checked are; incomplete maps, missing maps, errors such as 

spikes in height data. Incomplete maps are maps which have data points missing, normally large 

areas of the map. Missing maps are maps which have not been captured yet; either due to cost, or 

no need to capture the area (mountains, non-populated areas, seas/lakes). Spikes in height data may 

represent flocks of birds or mobile artefacts within a scene at capture. Procedures are needed to 

mathematically model and present these potential errors. Combing OSM may give the additional 

data needed to query irregular spikes in height data. 

The data held within OSM is vast, extensive, and user-generated. The data is also erroneous, lacking, 

and vastly different depending on the area chosen due to multiple languages, dialects, and 

understandings of scene being mapped. To utilise the data of OSM, additional checks are needed to 

ensure the data extracted is suitable for use for asset generation and visualisation. Initial prototypes 

show that although the OSM API does error check data entered by users, errors are still within the 

database when downloaded.  

The XML file which is used to describe the OSM objects is unreadable and unmanageable without 

the aid of parsing algorithms. Objects within OSM are referenced with a unique ID, which we have 
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found to be wrong; multiple objects have been found to utilise the same ID, or an object may be 

entered into the XML file multiple of times. This may lead to additional and unneeded processing 

and data generation. Another issue is the formatting of input from the users. For this reason, 

additional checks are needed to remove these errors as to minimise the system failures or 

duplications of data. 

The OSM objects depict assets within the real-world. Parsing the assets into usable data structures 

are needed. Designing the data structures is also needed.  As stated OSM has numerous errors or 

incomplete data, as the same with the terrain data sets. Data generation techniques are needed to 

create data where there is no data; through inference or defaulted values created by domain experts 

i.e. the height of a floor can be estimated through government sectors or private companies39. 

The projections of the terrain data and OSM data are different.  An algorithm is needed to convert 

between the projections; Longitude Latitude to X, Y coordinates as to be used within a game engine. 

The information held within OSM used to describe the object lacks information which can be used 

for analysis and examination. The minimum information to state which OSM boundary outline 

represents a building is a single Tag object with the key from a key/value pair of ‘Building’.  

Techniques which analyse the spatial parameters and location of the assets can infer relevant data 

which can be inputted into the OSM database. This need states that inference algorithms are 

needed. The inference algorithms will need to be checked by domain experts. For the prototype we 

will generate our own conclusions on the success of the inference algorithms. If data is not available, 

nor can it be inferred, then default parameters are needed; again a domain expert should be 

consulted to determine these default parameters. 

To create a visualisation of real-world locations, the generation of 3D model data is needed. Due to 

the large number of assets, and the need to visualise any location within the UK, or the World, 

employment of a 3D artist would be expensive, thusly PG processes are needed. The processes will 

need to convert the information extracted from the datasets into runtime 3D model mesh objects. 

Organising the assets within scenes, and within internal processes needs the use of a spatial 

organisation technique. This is needed to allow data organisation and quick look up of location 

referenced data. 

                                                           
39 http://www.ctbuh.org/TallBuildings/HeightStatistics/HeightCalculator/tabid/1007/language/en-
US/Default.aspx 
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The processing of the data needs to output objects into a format which can be used within runtime 

simulations; a complete processing environment which combines, extrapolates, and generates data 

from the datasets available to be rendered and interacted with by a user, or a multiple of users. 

To improve testing, and remove data which a user may not need, removing unneeded processing, 

trigger arguments are needed. If only buildings and terrain are needed within the runtime 

simulation, the removal of processes not used for the creation of buildings will optimise the speed of 

generation. 

We conclude that many algorithms and processes are needed to combine the various geospatial 

datasets into a single pipeline. Processes are needed to combine the terrain data of OS and LiDAR 

together, while separate processes are used to convert OSM data assets into model mesh objects 

utilising PG techniques. To generate accurate and complete data, inference algorithms are needed 

to improve pre and post model mesh generation which is needed   

After the generations of assets, runtime processes are needed to organise and modify assets both 

spatially, and visually. 

Due to the time scale of processing; combining, and interpolations of terrain data, processing the 

large database of OSM, we specify the ability to allow pre-processing for the creation of runtime 

assets. 

To summarise, the processes needed are; 

 Process LiDAR to remove errors/missing data points. 

 Processes to combine LiDAR and OS data sets if errors persist within the LiDAR datasets. 

 Processes to interpolate through the resolutions of the LiDAR datasets we have. 

 Evaluate interpolation functions for accuracy and processing pros and cons. 

 Processes to check OSM data parameters and data types, as well as duplicated data. 

 Generation of data structures to store and process OSM objects parsed from XML. 

 Utilise 3rd party software processes to convert between the projections of LiDAR/OS and 

OSM. 

 Inference algorithms to generate additional data where data is missing. 

 PCG processes are needed to create 3D model mesh objects depicting OSM objects; 

highways, buildings, amenities etc. 

 Allow user interaction through an IVI. 

 Allow user generated content to be inputted during pre-processing and runtime. 
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 Allow users to remove unneeded objects at pre-processing time to improve processing 

speeds. 

Utilising the processes stated, a single pipeline can be created to overcome the issues stated within 

the background, literature review, and big geospatial challenges sections. This data can be used 

within a number of algorithms and real-time visualisation procedures; creating a large dynamic, and 

intractable 3D virtual scene which a user can modify within real-time. 

5.3 City Visualisation 

To visualise modern city’s and urban environments, objects stand out as common elements; 

buildings, highways, amenities, terrain, and objects such as street lamps, post boxes, cars, benches 

and many others. 

To view these objects on a multiple of screens, computers, phones, or TVs, a commercial API is 

needed to render the objects and manipulate them for interaction needs. A commercial game 

engine combines a rendering API and the components needed.  

A 2D and 3D camera system is needed. The camera system must not only provide an eye within the 

3D environments, but must allow the interaction to navigate the scene in a multitude of ways. 

Common 3D camera systems are built of multi-functional cameras which provide specific interaction 

capabilities. We will specify the use of the multi-functional cameras. 2D cameras are also needed to 

view and project overlays within the 3D virtual environment. These are usually Heads-Up-Display 

(HUD) overlay.  

Many commercial GIS platforms provide one of two projections; Orthographic, or Perspective. We 

specify that a 3D city visualisation must be viewed in both projections. 

Before objects are rendered to the screen, a flexible rendering technique is needed. Due to the large 

amounts of various physical objects needed to create a modern city visualisation, various rendering 

and lighting techniques, as well as algorithms are needed as to allow the realistic rendering of 

physically based objects. The rendering techniques needed to render, with realism are; water, glass, 

plastic, and reflective elements.  

The framework should allow all 3D data structures to be rendered with all rendering techniques 

specified as to minimise the system errors and crashes.  

To generated 3D city visualisations, 3D model mesh objects are needed. Creating custom handmade 

models by a 3D artist is impractical due to many reasons; costs, time, ever changing environments of 

cities etc. Procedural techniques and algorithms have shown a feasible alternative for the generation 
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of real-world assets. The algorithms stated within the background and literature review sections 

have been used to generate building models from grammar techniques to a high standard of realism 

but does not utilise real-world data, while some have created buildings of limited realism and 

minimal variance in visual representation which is generated purely, or partially of real-world data.  

Procedural techniques are needed for the multiple types of assets needed, and the types of objects 

which are commonly found within real-world locations. Common assets which do not vary are to be 

generated by a 3D artist; benches, phone boxes, lamp-posts. This is due to their simplicity and 

constant similar looks. The addition of hand-made models is also needed. These will be used in 

placement of procedurally generated assets.  

To allow the importing of user created model mesh objects, importing, parsing, and processing of 

the external model datatypes, algorithms which convert the model are needed. This will guarantee 

the model can be used within the flexible rendering pipeline needed. 

To organise all assets spatially within a scene, as well as organise the assets dependent of their type, 

is needed. Rendering large scenes may not be achievable if the scenes are dense and tightly packed 

without additional spatial organisation techniques; which many modern urban environments are. 

Assets should be spatially organised into manageable chunks for improved processing and rendering. 

A scenegraph structure is commonly used within commercial products and many commercial 

computer games to spatially organise assets of both static and dynamic nature, from macro to micro 

elements. The scenegraph structure should provide spatial organisation and categorisation within a 

single scenegraph structure used for the complete scene. The scenegraph structure can be utilised 

by other algorithms to infer data, as well as inject data or user input into a single, or a group of 

nodes.  

Rendering objects in a scene for visualisation needs light sources. Within city visualisations, the main 

light source is the Sun. A global illumination technique is needed as to apply the light source to 

models, be it sunlight, or spot lights around a virtual environment. To provide flexibility and 

additional rendering capabilities, assets, specifically the model mesh objects, should be allowed to 

utilise their own lighting parameters, or utilise the global scene lights. This allows the unique 

rendering of asset by modifying their spatial or visual parameters, or by modifying their internal 

reference illumination lights. Modifying the global illumination lights will modify the entire scene 

and all assets, creating realistic environments. 

We conclude a modern GIS visualisation framework which showcases assets within a city requires 

the use of a commercial rendering API and potential game engine which encapsulates components 
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needed. Before visualisation of city assets, processing of the datasets is needed to convert the data 

into representations which are apparent within real world city scenes; 3D model mesh objects 

depicting buildings, highways, amenities etc. The components needed are 2D and 3D camera 

systems to allow rendering of assets in multiple projections. A scenegraph is needed to position 

assets within the 3D virtual world, and organise the assets depending on their internal state, and 

type. To render objects which are imported or procedurally generated, a custom model 

representation is needed. To utilise and render objects to screen using a large number of rendering 

and lighting calculations, a flexible rendering algorithm is needed. 

We specify that the visualisation of real-world urban environments, light structures are needed. The 

number of lights corresponds to the rendering technique we specify is needed. We state that 

forward rendering is needed for this prototype pipeline. It allows flexibility with rendering 

techniques, and is appropriately chosen for its implementation ease. Deferred rendering may 

provide a higher number of lights within a visualisation but is unneeded for this prototype. 

If these specifications are met, large virtual 3D scenes can be visualised, manipulated, and used to 

present real-world locations inside virtual scenes. 

5.3.1 Evaluation of an IASF and multi-branched Shader Effect 

The visualisation of large numbers of vertices and polygons needs techniques which do not rely on 

the high price of dedicated hardware configurations. Scenes to be generated for a modern GIS need 

high rendering speeds for large, dense scenes. An IASF improves the rendering speeds of large 

number of vertices over branched shader effects. A multi-branched shader function relies on the 

Boolean flags of if-statements within the function code of a GPU HLSL shading function. Creating 

branches is expensive for the GPU and increases rendering speeds due to the increased overheads of 

each function call. Removing branches from the code base is the roll of the IASF. This increases 

program duplication, but allows increased rendering speeds. The experiment undertook compared 

the two techniques. The selected functions of the IASF are chosen CPU side, with each function 

representing a branch, or series of branches as generated within a shader function with if-

statements.  

The results shown in Figure 27 show that the use of an IASF to render large buffers of vertex data 

increases the rendering speed. The experiment to find these results compares a low, medium, high, 

and very high polygonal scene bring rendered with both the dynamic branching shader, and the 

IASF. The dynamic branching shader consisted if-statements which chose the lighting calculations; 

textured, Blinn-Phong, Phong, per-vertex, or per-pixel dependent on the shader technique chosen. 

The technique would send then pre-defined parameters depicting the needs of the shader. The IASF 
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utilised an indexed array data structure which point to specific functions, which would not pass 

parameters from technique to function, but simply call separate functions, thusly, removing all if-

statements.  

Figure 28 shows the percentage gains from using an IASF over the branching shader. Figure 28 shows 

that the larger number of vertices being processed, the higher the framerate will be compared to 

that of the dynamic branching shaders which are commonly used. We iterate again that an IASF has 

not been used within the domain of GIS visualisation and real-time interactions before. With a small 

number of vertices, the IASF is still beneficial. Figure 28 does show that the draw call is a drawback 

but the overall framerate is higher, which is the main benefit to utilising the IASF for our work. 

 

Figure 27 Runtime rendering rates between IASF and Dynamic Branching. 
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Figure 28 Percentage of Improvement between IASF and Dynamic Branching. 

5.4 Algorithms Needed 

We have specified many needs for this project. To complete these specifications and to generate the 

data needed to visualise a virtual 3D city, algorithms are needed; generated specifically or obtained 

from open sources. The generation of these algorithms is an essential part for overcoming the 

problems stated with the datasets available, and the current techniques used by commercial 

projects and researchers. 

To combine the datasets of OS and LiDAR, an algorithm is needed to make the datasets consistent 

with each other. Interpolation techniques are needed within an algorithm to produce missing data 

within the terrain data. 

An algorithm is needed to extract and infer information from the OSM dataset for the use with PG 

algorithms. The extraction of OSM data needs domain expertise to create default attributes for OSM 

assets which have little to no additional data attached. Algorithms to infer information relevant to 

each asset can be used during extraction, and after generation. For example, the building height can 

be inferred by defining a constant height for a single floor and multiplying it by the number of floors 

stated within the description of the building. Algorithms to infer data after generation of assets are 

to be used to check the spatial relations between assets. Spatial analysis techniques can be 

employed on 3D assets through the use of commercial physics engines, or collision checks 

algorithms. Checking if a building is within an OSM boundary, the boundary’s type can be used to 

classify the building; if the building has no type. 
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Algorithms are needed to procedurally categorise the OSM assets. As stated, the common assets 

found within modern cities are; buildings, highways, amenities, boundaries, and objects such as 

benches, post boxes etc. The highways of OSM encompass waterways, and railways. To do this, the 

algorithm must loop over the OSM dataset, extracting and checking the relevant data. As stated, 

assets can be categorised, and data can be inferred from other assets within the dataset, such as 

classification of buildings dependent on their location within the world and if they are within a 

specific type of boundary, the organisation and categorisation needs to process and generate assets 

within a specific order. This is to reduce processing and duplications of data. 

During classification and processing branching; each branch will generate either a building, highway, 

amenity etc. additional checks are needed within the algorithm to make sure data has not been 

duplicated with the OSM dataset.  

Once classified, the asset is branched to be procedurally generated. To allow hand-made models, an 

algorithm is needed to check the hard disk whether a model exists for the currently processed asset. 

If a model does exist, the algorithm should load and process the model to use it in place of the 

procedurally generating asset. This should be done for all objects. With OSM unique identifying 

assets with their own ID number, the lookup of models can be procedurally checked within the 

algorithm.  

If a model object is not referenced on disk to be used instead of procedural generating assets, an 

algorithm is needed to check the type of the object, and if it is a common type, such as a residential 

building, a general purpose model should be used. This removes the limitation of primitive 

procedural assets needed custom complex algorithms.  

If no model object is to be used, procedural algorithms are needed to create the 3D model mesh 

objects. Procedural algorithms are needed for each asset to be generated. 

The algorithm to generate boundary model mesh objects will need to utilise a triangulation 

algorithm to generate the model mesh object from an arbitrary array of points.  

The algorithm for the PG of buildings needs to account for a building which is generated by a 

multiple of parts. The roof tops of buildings will utilise the triangulation algorithms used to create 

polygonal model mesh objects. 

The algorithm for the PG of highways, waterways, and railways will need to utilise interpolation 

techniques to interpolate between the data points. We reiterate the highway structures held on 

OSM are represented by a limited number of points when visualised create angled lines. Figure 29 

represents the procedure needed. 
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Figure 29 Highway mesh generation. Step 1 is OSMWay representation. Step 2 is the result of the interpolated points. Step 3 

shows the points generated from the interpolation. Step 4 generates the perpendicular sides of the highway. 

During the runtime simulation, rendering algorithms need to provide optimisations to categorised 

assets depending on their rendering needs; translucent, opaque, and others. The algorithms must 

also allow the changing and procedural setting of rendering techniques depending on the needs of 

the model mesh object. For example, to render reflective water, the model mesh asset must be set 

to utilise reflective rendering techniques. This type of rendering technique is process intensive, so an 

algorithm is needed to monitor runtime simulation details such frame rate and procedurally set the 

rendering technique to a lower process intensive technique to improve rendering rates to allow for 

real-time visualisation. 

For a group of nodes within the scenegraph structure, or a group of model object to be modified, 

search techniques must be employed to allow the procedural querying of assets within a scene. The 

user will create a query, which an algorithm will interpret and search a scene for objects which 

satisfy the query. This leads to multiple needs from the algorithm; search techniques to be created 

which work with the scenegraph layout, the PG of queries, and the need to do something with the 

assets satisfy the user generated query. 

Once an asset or assets are found from the query, controllers will be employed to modify specific 

properties of the spatial parameters, or the visual parameters. From our background and literature 

review, the animation of properties of assets within a virtual scene depicting geospatial data has not 

been used as of yet. An algorithm which exposes all properties of the spatial parameters, and visual 

parameters is needed to allow the animation, interpolation, and modification of the properties. The 

algorithm will allow users to encode their own datasets and meanings onto a cities worth of assets. 

For example, querying for buildings which are over 20 meters, and not fire-proof will search the 
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scenegraph for building which satisfy this query, and a user can state to render the assets in red, or 

pulsate the assets scaling, bringing the attention of the user to the returned assets. 

To animate objects, controller objects should be employed to update the parameters of the asset 

which the controller is attached to. This will improve the processing of assets; if an asset does not 

have a controller attached, then it does not need to be processed.  

Various optimisation algorithms are needed to improve the rendering and batch processing of 

assets. For example, the scenegraph structure can be searched for assets which have a controller, 

and put these assets within a referenced array used to linearly update the assets, instead of 

recursively traversing a scenegraph checking if assets need updating. 

We conclude that generating the algorithms stated will remove or partially remove the issues 

surrounding modern GIS visualisations and allow for large, accurate rendering and interactions with 

procedurally generated 3D city scenes. We have stated the need for algorithms to parse, process 

and combine terrain datasets to be utilised with the inference of data for the assets which are 

procedurally extracted from OSM datasets. The inference of data is also programmatically checked 

within the processing of OSM data creating further accurate asset objects. The assets are then 

procedurally generated to create 3D model mesh objects. If a model is already available and suitable 

to be used in place of the procedurally generate asset, then it will be processed and referenced 

accordingly. Once PG of assets is completed, they are to be used within a post-processing algorithm 

to infer further information. During runtime visualisations, algorithms are utilised for animating and 

modifying assets within the scene, allowing the flexible rendering techniques to be applied to single 

assets, or complete scenes of assets. These techniques are to be encoded and dispersed through the 

scenegraph structure, allowing a flexible, single pipeline process for a modern GIS visualisation 

framework. Dispersing data through the scenegraph from the top to the bottom can change a scene 

visually within a single recursive function call. 

Next we discuss the requirements for the User Interface.  

5.5 Interactive Visualisation Interface Requirements 

The requirements of the IVI system will provide interaction with the algorithms and runtime 

simulations, modifying the spatial and visual properties of assets within the scene, and allow user 

defined queries to be applied to scenes. This will improve overall functionality of the framework, 

searching, and provide flexibility with the visualisations of scenes. As well as visualisation flexibility, 

the interaction of the IASF parameters is achieved, extending the functionality and benefits that the 

IASF brings to large scale scene visualisation. The use of the IVI will also allow inspection of the PCG, 
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and specification of the procedurally generated models which need to be visualised first, and then 

inspected. 

The IVI system must allow multiple functionalities and interactions. We have stated a scenegraph 

structure is needed to spatially organise and classify assets within the scene, the IVI system must 

allow interactions with that scenegraph structure. The creation and deletion of nodes, and the 

spatial modification will allow adaptation of the scenegraph to alternative needs.  

The IVI system must also allow the searching of the scenegraph for a single or group of nodes 

selected by the user’s procedural queries; querying the various data structures or information 

attached to a node. Allowing queryable functionality on a scene, or an individual asset, the 

framework can be utilised within a number of domains, regardless of the background knowledge of 

the user; the fire brigade can utilise the framework to search for none fire-proof buildings, while the 

police can use it to search for highways of specific width to navigate large vehicles through a city. 

As stated, once an asset or a group of assets has been chosen, the generation of control units which 

modify the properties of assets such as spatial parameters, and/or the visual parameters are 

needed. Allowing the generation through an IVI system, where the user can select the parameters to 

change, the animations of that parameter, and the values to modify the property too is needed.  

To allow modification of the global lighting system, the attributes of the lights must be presented to 

the user to allow the changing of properties of lights such as; colour, position, direction etc. Assets 

within the environment may have their own internal lighting parameters, which must also be 

presented and modified if needed.  

The modification of individual assets concludes that an IVI system depicting all asset parameters, 

attached objects, and interactions is needed. 

For development, and further analysis techniques, debugging IVI systems are needed for the internal 

components of the system; cameras, assets, global lighting, timers for rendering, GPU processes, 

frames per second and others. This will provide insights into issues within the system. Also they can 

be used as teaching aids for new users of the framework. 

To allow the selection of areas with the UK, the system needs to complete multiple tasks to enable 

the user to select a 1km2 area tile to load from the pre-processed data. The selection of the tile will 

navigate the user through the OS reference scheme from 500km2, 100km2, 10km2, 1km2 area tiles. 

At each stage of selection, the hard disk will be scanned for areas which have been created, and the 

tiles which are available on hard disk will be highlighted for the choosing by the user. Once a 1km2 

tile is chosen, the middle out loading algorithm will load that 1km2 area of assets for viewing and 
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interaction by the user. We issue this will allow the user to know which areas are already processes, 

and guide their selection of areas.  

The selection of assets/objects within a scene, a user must be able to query the objects on the 

properties of the object. For example, a user may wish to find a building which is fire-proof and over 

20m’s in height. A system must allow the querying of said properties of an objects, in any order they 

wish. The query should state that properties return true. If any of the query parameters are false, 

the objects will not be returned. An example of the query may be similar to using unary operator to 

query the properties of an object; 

building.height > 20 && building.fireproof == true 

The query will check if the building has a height about 20, and the fireproof property is equal to true. 

This is a common querying definition. The framework must also allow a user to type the query in, 

and procedurally convert the text to a valid query. 

In conclusion, the IVI system must present information of the assets in the 3D virtual scene, and the 

nodes within the scenegraph structure. If a component interacted with either a node or nodes of the 

scenegraph, or the model mesh, then component properties must be presented to the user, and 

modifications must be allowed. The same is said for the node of the scenegraph and the model mesh 

object. Users of the framework can then manipulate the scene in a manner which suits them, and 

allows the encoding of their own data to be rendered within the scene by the PG of custom 

controllers. 

The use of the IVI will provide functionality not available with the alternative GISs; Google maps, 

ArcGIS, SAVE etc. The IVI also allows real-time interactions with scenes, allowing the modification of 

properties on a frame-to-frame basis. 

5.6 Software Development Life Cycle 

This section discusses the need for a development lifecycle model for the project. Balaji [75] gives a 

discussion between the Waterfall model versus the V-Model versus the Agile model. The author 

states that the project itself determines the life cycle needed.  

 The Agile [76], [77] lifecycle should be chosen if changes are frequent and the need to 

deliver small subsets of a larger framework. 

 The Waterfall model [78] should be chosen if the requirements are fully known before 

development begins. 
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 The V-Model should be chosen for larger project which requirements may change after 

development, testing, and delivery of each phase of a project. 

We state that the Agile model would be a sufficient model for this project. This is due to the need to 

rapidly prototype sections of the framework, and to further prototype the combination and 

interaction between multiple prototype for the generation of a working prototype framework.  

5.7 Conclusion 

We have specified the needs of the project for the creation of a single pipeline to combine, 

extrapolate, infer, and generate data from available geospatial datasets. We have presented the 

processes needed to combine the datasets. We have also presented the novel spatial data structure 

and algorithms needed to combine and organise the data during visualisation and rendering 

processing. The algorithms are responsible for the generation of additional data and assets, 

specifically the generation of 3D model mesh assets used for visualisations. To interact with the 

runtime simulation, an IVI system is needed to modify assets and object within the scene. The IVI 

system is also needed to present data to the user, as well as data to the developers.  

Table 9 shows the specification requirements conclusion. 

Object Description 

Agile development 

lifecycle 

The Agile development lifecycle is chosen due to its benefits of 

design patterns it brings to projects with known unforeseen 

issues. 

Geospatial data parser The geospatial data parser is needed to load various geospatial 

data sets into runtime objects for data analysis.  

Geospatial data 

combiner 

The need to combine various data sets is needed to fill missing 

data, and amend errors. 

Geospatial data 

interpolator 

Interpolation algorithms are needed due to the characteristics of 

the terrain maps, and model mesh generation techniques. LiDAR 

maps have missing data which can be generated by interpolating 

between know data height points. 

Geospatial data 

inference algorithms 

Inference algorithms are needed due to the characteristics of the 

datasets at hand. OSM has data which can infer alternative data; 

the height of a building can be calculated by multiplying the 

number of floors by a default floor height value. 
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Data structures to 

organise a countries 

worth of data 

Due to the size of the area we wish to tackle, a single kilometre, a 

country, and potentially a global mapping schema, the 

organisation of assets is needed. The organisation of location, and 

also the data type is needed to be encoded into a single data 

structure. 

3D model importer To limit issues with rendering techniques, all model mesh objects 

needs to contain the same data needed for rendering (Normal, UV 

coordinates, Tangent, BiNormals etc.). This removes issues at 

runtime to check if a model can be rendered using a chosen 

rendering technique. Default data should be applied if data is 

missing while importing. 

3D model processor The processing of procedural model mesh objects created from 

geospatial data is needed. The output will be the same as a user 

generated 3D model assets, containing the same data 

requirements for rendering. 

Procedural algorithms 

for model mesh 

generation 

Due to the differences with the geospatial data; terrain, buildings, 

boundaries, etc. procedural generation algorithms are needed for 

each type of object. The algorithms are determines by the 

attributes of the imported geospatial data. 

Advanced rendering 

techniques 

Advanced rendering techniques corrispong to the use of an Array 

Indexed Shader Function structure, but also the shader effects 

applied to the model objects; normal mapped, textured, 

refractions, hemispherical ambient lighting and many others.  

Allow user generated 

content importing 

The inclusion of user generated assets (3D model meshes) is 

needed to improve scene renderings.  

Interaction techniques 

with GPU parameters 

The use of materials used by models is needed. These materials 

are exposed to the user to allow the interaction with GPU settings 

and material parameters. 

Table 9 Specification requirements conclusion. 

Given the specifications listed in Table 9, the high-level overview of the framework is shown in 

Figure 30. The pre-processors contribute to the generation of data which is imported by pre-

processor and runtime libraries into the runtime simulation. The data is stored within separate data 

storage devices and combined to procedure virtual scenes organised by a runtime scenegraph 

structure.  
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Figure 30 High level framework overview 

Designs of the novel PVS framework and related data-structure and algorithms to overcome the 

issues discussed will be presented in the next chapter.  
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6 Design 

Within this section we discuss the high-level overview of the design of the PVS framework and 

design of components needed as identified within the specification.  

Objects created for the framework, will be named with the subscript of PVS. This is to remove 

confusion between OSMNode, PVSNode, and node. An OSMNode is a single location within the OSM 

database. The PVSNode is a node within the Scenegraph used within the PVS framework. A node is 

used for discussion of scenegraphs, and tree structures.  

6.1 High-level Overview 

Figure 31 shows the high-level overview of the framework. Each block represents a library. Within 

the libraries, classes are stored. The class objects, and the connections are coloured differently as to 

easily depict the interactions and connections between them.  

TweenerLibrary

OSMEnumerationLibrary PVSCameraLibrary

PVS

PVSInputManager

PVSPreprocessor

PVSRuntime

PVSXmlSerialiser

TriangulatorLibrary

KeyboardKeyboard MouseMousePVSNodePVSNode PVSModelPVSModel 3D Camera3D Camera2D Camera2D Camera

ScreenManagerScreenManager WinForm UIWinForm UIPVSNode PVSModelContent

<<Enumeration>>

OSM Types

<<Enumeration>>

Building Types

 

Figure 31 High Level Overview of PVS Libraries 

Figure 30 depicts the high-level over-view of the framework with further visualisations of the 

connections between libraries, and data structures, including input data. The framework is split 

between a pre-processor, and runtime simulation.  

Pre-processes are run before user simulation. The pre-processes are to be used by the user to 

generate the input for the runtime simulation. The processes are designed to be run in succession or 

individually. The pre-processes contain parsers, importers, and processors to load the datasets, 

convert user generated model mesh objects, and it contains the PG algorithms for the PG of data 

and model mesh assets. Pre-processing data has many benefits. When data is modified daily, as with 

OSM, pre-processing can be triggered to generate up to date runtime data for accurate simulations. 

This leads to the need for a pre-processor pipeline, which can export assets for use within a runtime 

simulation. 
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Figure 30 shows algorithms, processes, and libraries which are categories to be used within both the 

pre-processor and the runtime simulation. These consist of PCG algorithms, utility classes such as 

the OS references, as well as the flexible and modular libraries. The libraries consist of; interpolation 

functions, triangulations algorithms, XML serialisation, access to the pre-processor components, and 

the content either procedurally generated or user created (textures, models, animations). 

The Runtime processes shown in Figure 30 are algorithms and processes which are to be utilised 

within the runtime simulation. This consists of flexible custom rendering algorithms utilised within 

the novel scenegraph structure for rendering a large number of various model mesh objects. The IVI 

is utilised within the runtime simulation to allow interaction with the scene from the user. To allow 

users to view scenes, the modular 3D camera system is only instantiated within the runtime 

simulation. Combined with the modular 3D cameras are the input libraries to allow keyboard, 

mouse, and gamepad input. The dynamic querying library allows a user’s query to be applied to a 

scene, searching assets which match the query criteria.  

The scenegraph and the PVSNode within a scenegraph are referenced throughout the design, and 

are a key component to the framework. Thusly, we highlight first the design of the PVSNode within 

the scenegraph, and the interconnections that the PVSNode will have with other components of the 

framework such as; spatial controllers, material controller, tag information, 3D model meshes and 

model mesh parts, model materials, IASF, global light manager, IVI, data importers, parsers, 

processors, writers and readers, 2D and 3D camera system, and user input API. 

The design within Figure 32 shows the PVSNode within the scenegraph. It shows an inheritance from 

the PVSSpatial to the PVSNode which has an affiliation with the Search Helper which will be a 

collection of search techniques and algorithms. In short, the PVSSpatial contains the model mesh 

object, and spatial parameters (translation, rotation, scale). The PVSNode extends the functionality 

to contain an array of child PVSSpatial objects. Within a PVSNode of the scenegraph, a PVSTag is to 

be attached, as well as possible spatial controllers, and a possible model object. We state that a 

spatial controller and model mesh object are attachments, thusly, a node without these attributes 

can still function. Pictured to the top right of Figure 32 is the affiliation to the global light manager. 

The light manager has restricted effect on the light conditions of models attached to PVSSpatial. The 

OS Ref object is a reference to the OS tile name lookup-table which will be used to look up 

neighbour nodes of the scenegraph used within loading and bounding volume culling techniques. 

The model object contains model parts; each have a material for storing parameters used by the 

GPU for rendering. The parameters are passed to the GPU using the Material Helper. The Material 
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Helper optimises parameters, group objects together CPU side, then passes the parameters to the 

effect object on the GPU. 

 

Figure 32 PVSNode scenegraph node. 

We have stated in the specification stage that a flexible rendering pipeline is needed. A technique 

which can encapsulate all shading techniques needed to render common materials found within 

real-world urban environments is a requirement. We state the use of an IASF design will satisfy the 

specified needs. The common name for this technique is an UberShader (US). The IASF will contain 

all vertex shader and pixel shader functions, each indexed into an array lookup table. This allows an 

object to be rendered by modifying a single index value, instead of creating and referencing a 

complete effect object; improving flexibility, scalability, and optimising data usage.  

There are two design decisions when utilising an IASF which encapsulates all rendering options 

within a single effect file. The first is; the need for generation of complex algorithms to check the 

model mesh data and assign an appropriate rendering technique, and also check that a model object 

is not forcing a render technique inappropriate for itself which will cause system failure. The second 

is; check if all model mesh objects contain default parameters needed for rendering, using any of the 

rendering techniques within the effect file. The latter is the better choice due to its simplicity, 

although the duplication of shader code may incur maintenance issues, but it will allow for many 

types of model mesh objects to be rendered. It also allows for future rendering techniques to be 

quickly implemented. 
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Developing a framework depicted in Figure 30 and a scenegraph node structure shown in Figure 32, 

large scene visualisations of cities can be achieved. We discuss further the designs of the 

components. 

6.2 Input Data 

We have described the input data for the framework in the sections of Background, Literature 

Review, and Big Geospatial Data Challenges. The input data consists of OS, LiDAR, which represent 

the terrain data needed to create terrain model meshes. OSM is used for the creation of buildings 

and individual assets within visualised scenes. User generated content is also imported, and 

accompanying text based schemas which apply translations, rotations, and scaling to imported user 

generated 3D models. 

The terrain data of OS and LiDAR consists of ASCII based text files which contain Meta data. OS and 

LiDAR Meta data differ slightly, but both contain map resolution, width and height. LiDAR contains 

missing data values of -9999 which can be exploited within algorithm to check for errors.  

The ASCII files consists of rows and columns of ASCII based numbers separated by a space character. 

Figure 33 shows the ASCII text format and corresponding terrain representation. The red dots 

represent missing data values.  

 

Figure 33 LiDAR data input. Left is ASCII text file. Right is terrain map representation with red points as missing data values. 

The OSM data is in XML format which needs to be serialised into a runtime class object. The OSM 

data file is extracted from the OSM web portal40 which contains the information within the selected 

section. The XML consists of; OSMNode, OSMWay, OSMRelation, and OSMTag. As stated the XML is 

serialised to a runtime object which will contain arrays of OSMNodes, OSMWays, OSMRelation, and 

                                                           
40 http://www.openstreetmap.org/ 
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OSMTags. This data is then used within algorithms to infer or create data. The locations of the nodes 

are referenced with Latitude and Longitude, which need to be converted to X and Y coordinates.  

The user generated 3D model assets are of FBX format41 and parsed into a custom format. The files 

consist of 3D model mesh vertices, diffuse textures, normal map textures and specular map textures, 

as well as a material object and possibly an effect object. The effect of the FBX model needs to be 

analysed and the appropriate effect functions need to be applied within the parsing of the model. 

This removes the need to store various effect objects, using only the IASF. If textures are not applied, 

then default textures are to be applied during parsing. This allows the 3D models to be rendered 

using common rendering and lighting calculations. 

With user generated content, the translation, rotation, and scaling may differ to that of OSM 

bounds, thusly additional user generated content is needed. This is in the form of a text file with a 

schema of; 

<OSM ID> <File Name> <X, Y, Z Translation> <X, Y, Z Rotation> <X, Y, Z Scale> 
 

Using this schema, data can be stored on a per-model basis. This data can then be used during 

content creation. Figure 34 shows a user generated 3D model mesh of the Royal Liver Building. This 

is translated to the location of 0, 0, 0 due to simplicity of generation, but using the scheme, it can be 

translated, orientated, and scaled accordingly without need to modify the model within an external 

3D modelling software. 

 

Figure 34 FBX user generated model input, wireframe and model. 

                                                           
41 http://www.autodesk.com/products/fbx/overview 
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User generated animations of spatial and material parameters are input at runtime. The user 

generated controllers extend the functionality of the visualised scene; applying visualisations to 

assets within a scene.  

OSM data is represented and stored as binary and XML. Utilising XML the generation of custom 

parsers are achievable. The snippet of XML shown in Figure 35 represents the Royal Liver Building as 

depicted in Figure 34 and Figure 36.  

Objects within OSM are represented using single latitude and longitude locations stored in 

OSMNodes. Grouping OSMNodes create OSMWays which represent lines, or boundaries. Grouping 

lines or boundaries are achieved by OSMRelation. To describe the OSM object, OSMTags are stored 

within the OSM objects. OSMTags are a <Key, Value>. It is from the OSMTag objects which assets can 

be queried and classified.  

<?xml version="1.0" encoding="UTF-8"?> 

<osm version="0.6" generator="CGImap 0.5.8 (1016 thorn-01.openstreetmap.org)" copyright="Open-

StreetMap and contributors" attribution="http://www.openstreetmap.org/copyright" li-

cense="http://opendatacommons.org/licenses/odbl/1-0/"> 

 <bounds minlat="53.4053900" minlon="-2.9963400" maxlat="53.4054900" maxlon="-2.9961900"/> 

 <node id="1676134606" visible="true" version="1" changeset="10992179" timestamp="2012-03-

15T19:58:17Z" user="UniEagle" uid="61216" lat="53.4061925" lon="-2.9954691"/> 

 ... 

 <node id="1676134609" visible="true" version="1" changeset="10992179" timestamp="2012-03-

15T19:58:17Z" user="UniEagle" uid="61216" lat="53.4062037" lon="-2.9955510"/> 

 <node id="267535473" visible="true" version="5" changeset="10992179" timestamp="2012-03-

15T19:58:45Z" user="UniEagle" uid="61216" lat="53.4062223" lon="-2.9954991"/> 

 <way id="24611033" visible="true" version="10" changeset="32552498" timestamp="2015-07-

10T20:18:30Z" user="Med" uid="88164"> 

  <nd ref="267535473"/> 

  <nd ref="1676134606"/> 

  ... 

  <nd ref="1676134609"/> 

  <nd ref="267535473"/> 

  <tag k="building" v="yes"/> 

  <tag k="building:colour" v="#786B56"/> 

  <tag k="building:material" v="stone"/> 

  <tag k="building:part" v="yes"/> 

  <tag k="height" v="51.60"/> 

  <tag k="layer" v="1"/> 

  <tag k="name" v="Royal Liver Building"/> 

  <tag k="tourism" v="attraction"/> 

  <tag k="wikipedia" v="en:Royal Liver Building"/> 

 </way> 

 <relation id="2084603" visible="true" version="1" changeset="10992179" timestamp="2012-03-

15T19:58:32Z" user="UniEagle" uid="61216"> 

  <member type="way" ref="24611033" role="outer"/> 

  <member type="way" ref="155196231" role="inner"/> 

  <member type="way" ref="155196230" role="inner"/> 

  <tag k="type" v="multipolygon"/> 

 </relation> 

</osm> 
 

Figure 35 OSM XML file example. 
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Figure 36 Royal Liver Building representation on OSM.org 

6.3 Pre-processing Data 

The primary goal of the pre-processors’ is to generate output files for use within the runtime 

framework and within other frameworks, game engines, and simulations. Each output file will 

represent a PVS Node from the scenegraph which will be loaded at runtime.  

 

Figure 37 Input and Output from Processors. 
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Due to the complexity and novelty of the algorithms we propose, the processes intertwine between 

each other in a multi-stage procedure as shown in Figure 30 and Figure 32. The reason for a 

multistage possessor is due to the additional checks needed to combine or infer error prone 

user/public generated content. To capture the height of a building made from OSM attribute data, 

which does not contain the height of the building, terrain data from LiDAR data can be used to 

extract this information. Terrain data can only be used if the terrain data is accurate and has 

potential errors removed, errors such as missing data points. The terrain datasets need to be 

processed first, utilising interpolation algorithms to fill small holes within the datasets. If holes 

cannot be filled, combining LiDAR with OS data can fill the missing data. To improve the terrain 

datasets produced from combing the OS and LiDAR maps, OSM can further be used to classify areas 

of the terrain; river ways, coastal lines, highways etc. Using this data, the terrain data can be altered 

to remove potential errors such as vehicles on the road at capture time, or missing data due to 

LiDAR not detecting water correctly. The multi-state pipeline is needed for this reason.  

Figure 37 shows the inputs of geospatial data and other data sets, processing this data through 

combining algorithms and PCG techniques to produce the multiple output files needed. The output 

file for the process is initially an XML file which represents a single PVSNode of the scenegraph. The 

XML file can then be used within alternative frameworks, game engines, or applications, or be 

reprocessed to convert them into an optimised binary format for improved loading at runtime. 

Figure 38 presents the sequence diagram which shows the interactions between processes shown in 

Figure 37. 
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Figure 38 Sequence diagram of PVS data processor 

We describe further the algorithms needed and the designs of these algorithms. We also describe 

the data sets available as the base input for the algorithms, processors, and parsers. 
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6.3.1 Process LiDAR and OS Terrain 

Within this section we will discuss the processes needed to generate a complete terrain data set. We 

state that complete data set represents a terrain map which contains no missing data values. If a 

point is uncaptured, its index if populated with the missing data value of -9999. To make the terrain 

map complete, but may still contain errors, the correction of this value is needed. 

6.3.1.1 Combining Maps to fill Missing Data 

Within this section, we present the design and algorithm to combine terrain data sets of OS and 

LiDAR together to create a complete coverage data set. We state that complete means no missing 

data values are contained within a terrain map. Erroneous data may still be within the map.  

The algorithm stated next assumes a base map is available. The base map will be either; a map of 

lower resolution which has been interpolated to the current resolution, or in the case of the LiDAR 

DSM, the base map will be the DTM map at the same resolution. The order of base maps needs to 

be for OS at 2m resolution, LiDAR DTM at 2m resolution, and then DSM at 2m resolution. These 

terrain files will be the base terrain maps for the proceeding terrain generation techniques.  

The algorithm is shown within Figure 39. Within the pseudo algorithm, the variables stated are; user 

defined iteration count, map width, map height, gap size, and user defined gap size limit. The input 

data is a 3*3 matrix of the current data maps with the centre map the one being processed. 

The user defined iteration count is a value stated by the user before the processing commences. This 

value iterates how many times the algorithm will process the horizontal and vertical processes. The 

default value is 10. The map width and map height are defined by the current LiDAR map being 

processed; 2m, 1m, 50cm, 25cm which corresponds to 500, 1000, 1000, and 2000 for both the width 

and the height.   

The gap size is a running total of the current missing data points. When a point is missing, the gap 

size variable is incremented and stops incrementing when a none-missing data value is found. If the 

gap size is less than or equal to the user defined gap size limit, interpolation through the points 

commences. 
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Figure 39 Pseudo algorithm for DTM and DSM LiDAR map interpolation to create terrain data files with no missing data 

values of -9999. 

The algorithm to interpolate and combine terrain datasets is pictured in Figure 40. The black sections 

in image 1 represent the missing data. Image 2 and 3 represent the iteration of horizontal and 

vertical checks and interpolation. Image 4 shows that missing data still persists within the terrain 

map. Image 5 represents the base map which has been interpolated from a lower resolution to the 

current resolution; in this example, from 2m to 1m. Image 6 represents the combining of terrain 

data. Image 7 represents the interpolation of the now complete map to the higher resolution. It also 

brings attention to the need to interpolate between neighbouring maps at the edges.  

The importance of the interpolation function to be used needs to be considered. The next section 

will investigate the appropriate interpolation function to use with this algorithm. 



130 
 

1. 2. 3. 4.

5. 6. 7.
 

Figure 40 Interpolating and combining terrain maps to create complete datasets. 

6.3.1.2 Evaluations of Interpolation Functions to create base terrain data-sets 

LiDAR terrain data has issues with being error prone and incomplete. The erroneous data can be 

removed through hand editing, but creating a complete data set in relation to have not ‘missing data 

values’ within a LiDAR map can be generated programmatically. To generate data to replace the 

missing data values of height values at indices, interpolation between available points needs to take 

place. Data from external sources may be used to extract data from, but if the data sets are not of 

the same resolution as the map being checked, interpolation will still have to take place. 

Within this section, the comparison between interpolation techniques as to find which is the most 

appropriate to use for this data set.  

The evaluation will consist of utilising a LiDAR map which is complete and satisfies common terrain 

characteristics; containing water, moderately flat landscape with smooth hills, and some sharp drop-

offs. The LiDAR DTM 2m map which contains these characteristics will be used. The total average 

height will be calculated and used as comparison. An OS map will then be interpolated to the same 

resolution and point density. The average height will be calculated for the interpolated OS map, and 

compared against the LiDAR DTM average. Figure 40 shows the characteristics stated are needed 

and which are found in a majority of the terrain maps within the image on the bottom right. 

The experiment compares the interpolation techniques of; quantic, quartic, exponential, Catmull-

Rom, quadratic, sinusoidal, cubic, circular, and linear. The equations have 3 functions which are 

1. 2. 3. 4.

5. 6. 7.
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used; EaseIn, EaseOut, and EaseInOut. EaseIn eases the values into the interpolation. EaseOut eases 

out of the interpolation value. EaseInOut eases in and out through the interpolation between two 

values. Each function generates different interpolation values between the two values. Figure 41 

shows the differences between the functions. Each function may be beneficial for terrain data 

generation. EaseIn may be useful for creating values which represent the height change between the 

floor and a wall. EaseOut may suggest the exit between walls to the roof of a building. EaseInOut 

may be used where the two height points being interpolated represents the side of a tall building. 

The benchmarking of the individual functions of each interpolation equation is found. Benchmarking 

the interpolation functions is created by recording the time taken for each function to be executed 

10,000 times and shown Figure 43 and within Table 10.  

As well as benchmarking, the comparison between a 1m resolution 10002-point map with has 

complete coverage, i.e. it has no missing data values, and a map which has been interpolated from a 

2m resolution 5002-point map to a 1m resolution 10002-point map has been recorded for each 

interpolation equation. The average height error in meters for the complete map is calculated. This 

is found by summing all values, and dividing the summed value by the total number of points.  

The comparison between interpolation functions are found within Table 11 and Figure 43.  

From the results, we can infer that the Quintic equation is the most accurate, but also uses the most 

calculations. The use of this function should be kept to processes where accuracy is more important 

than speed, and therefore a less intensive equation may be appropriate. 

We have included Catmull-Rom interpolation into the experiments. The functions available do not 

include the EaseIn, EaseOut, or EaseInOut. It is included due to the importance of the entering and 

leaving tangents angles of the interpolation as shown in Figure 44. 

For terrain generation, Quintic, or Catmull-Rom interpolation is sufficient. 

 

Figure 41 EaseIn, EaseOut, and EaseInOut interpolation functions. 
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Figure 42 Benchmarking of interpolation functions from the XNATweener library bar chart. 

Function Ease In 

milliseconds 

Ease Out 

milliseconds 

EaseInOut 

Milliseconds 

Other 

Milliseconds 

Back 0.2491291 0.2754739 0.3353423 0 

Bounce 0.4878453 0.3152747 0.6101821 0 

Circular 0.3842962 0.3789251 0.4644622 0 

Cubic 0.2414599 0.2671496 0.322852 0 

Elastic 1.2005921 1.2189915 1.2708431 0 

Exponential 0.7750527 0.7597306 0.8145901 0 

Linear 0.1602594 0.1478687 0.1437446 0 

Quadratic 0.2287326 0.2267471 0.3215284 0 

Quartic 0.2572451 0.2809173 0.3421836 0 

Quintic 0.2671735 0.2986885 0.3517596 0 

Sinusoidal 0.6025026 0.5901671 0.5922018 0 

Catmull-Rom 0 0 0 0.368244 

Table 10 Benchmarking of interpolation functions from the XNATweener library. 
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Interpolator Error in metres 

Quintic 0.06115 

Quartic 0.06162 

Exponential 0.06176 

Catmull-Rom 0.06191 

Quadratic 0.06223 

Sinusoidal 0.06224 

Cubic 0.06224 

Circular 0.06237 

Linear 0.06294 

Table 11 Interpolation results of 50m resolution OS map to 2m resolution LiDAR map. 

 

Figure 43 Graph showing the total mean error of interpolation functions used to interpolation a 50m resolution OS map to a 

2m resolution LiDAR map. 

 

Figure 44 Catmull Rom interpolation representation. 

6.3.2 Processing OSM 

While processing OSM data, multiple procedures must be undertaken.  
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Each OSMWay will have its OSMNodes analysed and classified. The OSMTag attributes will be 

extracted from the OSMWay, and the OSMNodes referenced by the OSMWay. Using the attributes, 

PG techniques are utilised in tandem with the attributes to classify, and create content. 

The algorithm for the OSM processor is shown in Figure 45. The input for this algorithm is the user 

generated content schema which states which assets need to be processed; buildings, highways, 

amenities etc. as well as the OSM XML file which is parsed into runtime objects. The output of the 

algorithm is an array of serialised XML files. Each file represents a single node of the scenegraph 

containing the model mesh data, and the spatial and visual parameters. 

 

Figure 45 Pseudo algorithm for the processing of OSM Data 

The generation of OS name references is needed for the lookup of neighbouring maps. The names 

are used in a later process to calculate the bounding box of OS tiles used for categorisation within 

the scenegraph. The pre-generation of bounding boxes for full UK coverage is unwise due to the 
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large amount of memory needed, and processing time needed to procedurally create all bounding 

boxes at the multiple levels of OS mapping schema. The names will be used as the input to 

procedurally generated bounding boxes. This improves memory and processing consumption. 

The user generated content schema file is a text file which contains the ID of an OSMWay which the 

user wishes to swap the procedurally generation techniques for user generated content; i.e. the 

procedurally generated building model mesh is substituted for a pre-made 3D model mesh. The 

issue with this is the user generated 3D model mesh content may not be set to the correct 

translation, rotation, or scale. This data is included along with the user generated content name on 

disk. This allows for user generated content to be compiled and parsed into the scene correctly for 

visualisation at runtime. This removes the need for PG of assets. Depending on the complexity of the 

user generated model mesh, processing time may be increased, but the visual realism will be 

improved. The OSMNodes and OSMWays are added to individual Dictionary<Key, Value> data 

structures. This is used for quick lookup due to a Dictionary having a BigO time of O(1) complexity. 

The checking of duplicated data is also applied during the insertion of elements to the dictionary 

data structures. As stated, OSM has procedures to check for duplication of data, or objects within 

the database which reference the same unique ID. Our check will add OSM objects to the 

dictionaries on a first-come first-served basis. The conversion from Latitude and Longitude to X, Y, Z 

coordinates are calculated and added to the OSM objects. This reduces potential extra calculations 

in later processes. 

Due to OSM maps having OSM objects outside of the selected map area, this creates a dilemma; 

only create a scenegraph hierarchy which contains objects within the selected bounds, or increase 

the bounds to include all objects. We choose the latter as to not miss information or objects which 

may be useful. An example of this may be a boundary which can be used to classify unclassified 

assets.  

Using the bounds, the Scenegraph bounding hierarchy can be created. Attached to the leaf nodes of 

the bounds, the OSM categorisation subtrees. Using the bounds of the scenegraph, the terrain 

model mesh objects can be created from the terrain input data. Once PG of the terrain model mesh 

objects is completed, they are added to the subtree. Figure 46 shows the pipeline for creating a 3D 

model mesh for terrain. 

This technique splits the Scenegraph into two sections; the first is the spatial bounds, and the latter 

is the OSM and terrain categorisation. This is explained further in a later section. In essence, this 

design choice can improve search techniques by spatial queries, and categorisation queries. 
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The looping of the OSMWay objects is processed next. Within the loop, each OSMWay is checked. 

The checking of the OSMWay type is done in a specific order. The boundary objects are processed 

first. This is to allow the classification of assets in a later process by querying the location of an asset, 

and whether it intersects with a boundary. If true, then the unclassified asset will be classified 

further. For example, a building which has no type, may lie inside a ‘residential’ boundary asset, 

thusly the building asset can be inferred to be of type ‘residential’. 

The building assets are created next, checking if a user generated model mesh object is on disk. 

We state that only leaf nodes of the scenegraph should contain model mesh objects. We also state 

that nodes of the tree which happen to be leaf nodes and do not contain a model mesh object 

should not be removed due to its importance as a lookup node.  

Due to the depth of the PG of 3D model assets from OSM and other input data, we extend the 

discussion in the following section about the procedure with PG techniques to be used. 

 

Figure 46 3D terrain model mesh creation algorithm. 

6.3.3 Procedurally Generate 3D Assets 

Within this section we will discuss the algorithms needed to generate the individual assets from 

OSM data.  

We will start by presenting the design for the algorithm which creates the PVSTag objects which hold 

the attributes extracted or inferred from OSM. Next we discuss the generation of the boundary 

model mesh objects. Boundaries are created first to allow classification of other assets if those other 

assets lie inside or near a boundary. After this, we state the processes to generate the buildings, 

highways, amenity locations, and water ways. 

6.3.3.1 PVSTag 

3D model assets will have a PVSTag object. The PVSTag object will contain the attributes for the 

asset. The attributes will be pertinent to the specific assets; a ‘building tag’ for a building, a ‘highway 
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tag’ for a highway etc. The attributes will have default values which will be overwritten within the 

generation process. The default values will need to be consulted by a domain expert. For example, 

the default value of a single floor height of a building is 3.1meters according to the Council on Tall 

Buildings and Urban Habitat42. Each PVSTag will have similar default data; number of lanes for a 

highway, the textures to use, shader parameter settings etc. 

Figure 47 shows the UML diagrams with accompanying Reader objects for the OSMTags. A Reader 

object is used to read in and parse the binary data at runtime. An example of the attributes for a 

building are; Address City, Address Postcode, Name, Alternative name, Capacity, Cladding, Fireproof, 

and many more. 

The PVSTagInterface is used as an interface object so a PVSNode can store any type of PVSTag. 

 

Figure 47 UML Diagram of OSMTag objects attached to nodes and models. 

6.3.3.2 Triangulations for model meshes 

The use of triangulation software is needed. Many mesh objects require the use of triangulation to 

generate model mesh objects created from an arbitrary array of points. Figure 48 shows the process 

of the triangulation needed. The input of an arbitrary of points extracted from OSM, the 

triangulation algorithm will output the indices buffer, and the vertex buffer. The indices are used as 

optimisations within the rendering pipeline.  

                                                           
42 http://www.ctbuh.org/TallBuildings/HeightStatistics/HeightCalculator/tabid/1007/language/en-
US/Default.aspx 



138 
 

 

Figure 48 Triangulation input of arbitrary point and output of indices array, and vertex array. 

6.3.3.3 Boundaries 

The boundaries are to be generated by looping through the OSMWay nodes and creating a polygon 

triangulated by the triangulation library. During the generation process, the boundaries will have the 

attribute extracted from the OSM dataset.  

6.3.3.4 Buildings 

The building assets will have many checks within the algorithm to categorise the type of the building. 

There are two main buildings we check for; a single building which is generated with a single 

OSMWay, and a building which is made with multiple OSMWays by checking the OSMRelation. 

Buildings which are made of multiple OSMWays have multiple parts to the building.  

The process is as follows; 

 Between two points of the OSMWay, extrude a vertical polygon to represent the side of the 

building. Repeat this process through each point within the OSMWay. 

 While creating the polygons, texture UV coordinate will also be generated by measuring the 

length between the two points. This will wrap a texture around the building.  

 A triangulation algorithm will be utilised to generate the roof structure. 

Utilising these processes, basic building model meshes can be created.  

The type of a building is stored within the OSMTag. Buildings are made of multiple OSMNode objects 

or multiple OSMWay objects. In this situation, a building may have multiple classifications, or various 

data which can be inferred. For example, a building which is classified as religious can have multiple 
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religious’ descriptors; Christian, Catholic, Hindu etc. A counting system is needed to count the 

descriptor tags, and apply the highest value as the dominant type for the building. This should have 

effect on the diffuse texture used on the model mesh object. In short, it counts how many descriptor 

tags are of type Christian, Catholic, Hindu and the one with the highest count sets the buildings type, 

and changes the diffuse texture embedded into the model mesh. 

6.3.3.5 Highways 

The highways of OSM are rigid and angular due to the single line nature of the ways. To produce 

highway model mesh objects, the sides of a highway will have to be generated. The OSMWay has 

the node locations within the centre of the highway structure it is representing. Using this, the width 

of the highway can be queried within the OSM data, or inferred by calculating the width by the 

number of lanes. 

Figure 49 show the process needed. Step 1 is the OSMWay representation of the angular highway. 

Step 2 is the interpolation of the points from the OSMWay. We have chosen Catmull-Rom 

interpolation given its entering and exiting tangents. Quintic interpolation a 0.001% improvement on 

Catmull-Rom, whereas Catmull-Rom improves on processing speed.  Step 3 shows the points. Step 4 

is the production of the sides of the highway structure. The process in step 4 is repeated for the 

length of the interpolated line. 

 

Figure 49 Highway mesh generation. Step 1 is OSMWay representation. Step 2 is the result of the interpolated points. Step 3 

shows the points generated from the interpolation. Step 4 generates the perpendicular sides of the highway. 

6.3.3.6 Amenities 

The amenities are locations within the world of particular significance. The locations will be 

represented by procedurally generated models at runtime. This is due to the number of amenities 
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found within built up city environments, and the fact that the model meshes to be used are primitive 

and thusly create extra data. Rendering techniques such as instanced-rendering can be used to 

render the same primitive model at multiple locations, reducing the memory consumption needed 

for duplicated data. 

6.3.3.7 Texturing Polygons 

To allow texturing of polygons, procedural methods are needed to calculate the UV coordinates the 

polygon should have to overlay textures clearly and accurately. The process is pictured within Figure 

50. Step 1 is to the vectors of the polygon which are furthest left, furthest right, furthest top, 

furthest bottom. Using these locations, the UV coordinates can be generated by negating the 

positions from one another. Using the UV coordinates at rendering time, the texture can be overlaid 

as shown. 

 

Figure 50 UV coordinate generator process. 

6.4 PVS Model Object 

We have stated in the specification that a model mesh must be capable of storing multiple mesh 

parts. This is to allow flexibility and manipulation of appropriate parts of a model, and the 

parameters of the materials for each model part. The parts will store the vertex buffers and index 

buffers used for rendering. Each model part stores a material object which stores the rendering 

parameters; ambient colour, diffuse colour, specular colour etc. 

The attributes which the model will use are: bounding box, bounding sphere, an array of model 

parts, a name attribute, and a reference to the node it is attached to. Additional functions are 

needed to disperse data to each of the model parts, and create connections between the model 

parts and the node the model is attached to. 

The UML Class diagram within Figure 51 shows the structure of the model class needed. We have 

emitted the functions and will list them here with a brief description of what the function does. 
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The data and data-structures which need to be passed are; effect object, material object, referenced 

or unreferenced, graphics rendering state, referenced or unreferenced, light descriptions, 

referenced or unreferenced. 

Other functions are also needed to reset objects to the original values; materials, light descriptions, 

shallow copy, and deep copy. Other functions may become apparent during the implementation 

phase. 

 

Figure 51 UML Class diagram of the PVSModel and nested model part object. 

6.4.1 Model Part 

A model part represents different parts to a model; sides, rooftop, window etc.  

The justification of having model parts is for visualisation purposes. An asset such as building within 

real-world scenes are made of various parts and structures, and thusly they should be represented 

the same. This also allows multiple visualisations and animations to be applied to a single model but 

on separate model parts. 

Figure 52 shows the UML Class diagram of the properties and functions within the class. The model 

part may contain duplications of attributes and references such as the original material object, and 
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the current object. This allows for temporarily modifying the material attributes but revert to the 

original. This is imported as to limit loading of original data, but will increase memory usage.  

 

Figure 52 UML Class Diagram of the Model Part object. 

The property definitions are show in Table 12. 
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Fields Definition 

Bounding Box The cuboid bounds generated from the vertex points. 

Bounding 

Sphere 

The spherical bounds generated from the vertex points. 

Effect The effect used to render the object on the GPU. This is built of vertex shader, 

and pixel shader functions. 

Original 

Material 

The immutable material object. In some cases, the material parameter may be 

required to change and be saved to improve future renderings. 

Material The mutable material object. 

Index Buffer The array of indices used for optimised rendering.  

Vertex Buffer The array of vertex object used for rendering the model mesh. 

Parent 

Reference 

The reference to the parent model. It allows passing of messages from material 

to parent or the rest of the scenegraph. 

Vertex count The count of how many vertices are in the model. Used for monitoring.  

Triangle 

count 

The count of the triangles within a model. Used for monitoring. 

Table 12 Model part properties and definitions. 

6.4.2 Model Material 

The material which is used to pass parameters to the GPU effect file will store the parameters 

needed for rendering. To create efficient updating of the GPU, helper functions will be designed. 

Various structures which combine parameters are created to ease development and categorisations 

of similar parameters. The material also contains a list of controllers. These controllers can be 

attached to the material to modify the parameters. Default controllers are needed which create a 

connection between the material and the camera of the scene to check when the view and 

projection matrices of the camera has been changed. The controller will force an update of the 

relevant parameters, and pass the parameters to the GPU. See section 6.4.2.3. 

6.4.2.1 Material Light Description 

Parameters passed to the GPU represent a light; position, direction, colour, spot angle, constant 

attenuation, linear attenuation, and quadratic attenuation. A structure is needed to contain these 

parameters for querying and passing to material objects of models.  

A Light Description structure is used to contain these parameters, as well as others; light type, and 

whether it is enabled. The UML class diagram is pictured in Figure 53.  
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The light type is an enumeration of two parameters; directional or spot. A point light is a commonly 

used light structure. The equation for the point light can be collapsed into a spot light, thusly, a 

dedicated point light is unnecessary. 

To accompany the light description structure is a static helper class. This class will contain pre-made 

light descriptions. The premade light description will consist of; red light, blue light, green light as a 

proof of concept. Future users of the framework can create additional light descriptions. 

Passing the light description parameters to the GPU for rendering, the individual parameters are 

extracted and passed.  

We have stated the framework is to only utilise 3 lights, and the light type depicts the structure of 

the IASF. An algorithm is used to order the three lights into an ordered list from the possible 

combinations.  
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Figure 53 PVSLightDescription and light description helper class used to contain the parameters of a light used for 

rendering. And the material description and helper class. 

6.4.2.2 Material Description 

As with the light description explained in section 6.4.2.1, a material description is to be utilised to 

ease the development and the dispersal of material parameters. The UML class diagram for the 

material description and helper class is shown in Figure 53. 

The static helper class is used for the creation of common colours and materials e.g. black rubber, 

chrome, red rubber etc. These materials not only state the visual parameters of an object but also 

the material matter of an object. This is a basic version of PBR. 

The use of the material description is to change one or more objects material properties with a 

single update. For example, a material which modifies the colour of model mesh object to red can be 
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used on multiple objects within a scene. In the relation to buildings, none-fireproof buildings can be 

modified with a red material description. 

6.4.2.3 Material Controllers 

To allow the modification of a material, and also remove the need to update materials which do not 

need modifying, thusly saving small amounts of processing each frame, the use of controllers which 

target the needs of materials are needed. Each material object will contain an array capable of 

storing zero or more controllers. The controllers will allow the procedural animation, interpolation, 

and modification of all parameters of the material. The controllers will have a reference to the 

material object it is attached to. To reduce reference calls between additional objects from the 

scenegraph, the model object, model parts, and the material object, a reference to the node which 

the model and model parts are attached to may be needed. This will allow the skipping calls 

between objects.  

The controllers are used to update parameters of the material. The class utilises an interface class 

which states that a controller will need an attached object, i.e. the reference to the material it is 

connected too. The use of the interface is the ability to store multiple types of controllers within a 

single array structure. It will also need to create an update method. The class is then inherited by 

specific controller objects. The connection between the material controller and other objects is the 

notification that the camera has been moved. This will trigger the updating of the parameters such 

as the eye position, view direction, and the WorldViewProjection (WVP) matrix used to render the 

model mesh object in the virtual world. An example of the connections is the 

‘ShaderWorldDirtyHookUp’ controller. This controller has a connection to the material it is attached 

to, the material has a reference to the parent node object it is attached to (PVSSpatial). Within the 

PVSSpatial class, it has a Boolean flag which states whether the nodes translation, rotation, or scale 

has been modified. If it has, a ‘Dirty’ flag is set to true. Within the update of the controller, this flag is 

checked, and if true, then parameters within the material will be recalculated, e.g. its lighting 

parameters, and view and projection matrices. The same technique is used for the 

ShaderCameraHookUp controller, but that looks for a static flag within the camera library to check if 

the camera has moved. If true then the view and projection matrices are recalculated. Other 

parameters are also updated such as the view direction, and the cameras position.  

This technique allows for animations and interpolations created using the Interpolation/Tweening 

library, to be attached to any appropriate datatype of the material object; allowing for any property 

to be animated. 
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Figure 54 UML Diagram of Material Controllers 

6.5 Scenegraph Design 

We discuss the design for the scene graph. The scene graph will be utilised within system 1 and 

system 2 of the PVS pipeline. 

After deliberation into the best structure to store objects within the virtual scenes we have 

concluded that a tree structure is needed. The tree will use the OS reference scheme to subdivide 

the UK into manageable 1km2 tiles.  Within each of these tiles, the objects created from the OSM 

data-set will be placed within this branch in a specific order. The objects created from OSM will be 

organised by specific properties. The scene graph can be thought of as two separate scene graph 

structures which are combined together. The first part of the scene graph is the bounding volume 

hierarchy (BVH), while the top half is a collection of objects pertinent to each tile.  
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Figure 55 Spatial and Object Scene Graph structures 

This divides the tree structure into manageable branches categorised by common features. A branch 

of the scene graph will be used for buildings, and that branch will have branches containing buildings 

specific to emergency services; hospitals, police stations, ambulance stations. The reason for this is 

for increased branch traversal speeds. Knowing the location of specific nodes within the scene graph 

structure will allow increased speeds of manipulation of emergency service centres. Additional 

nodes can be added if needed. The other categories which we state are needed are;  

 Buildings; contain branches for emergency buildings and a branch for all other types of 

buildings – normally unclassified buildings. This can be seen in Figure 58. 

 Highways; contain branches for highways of type: roads, link, paths, special, railways, and 

unclassified. This branch is shown in Figure 59 and the types of highways are shown in Figure 

60, Figure 61, Figure 62, and Figure 63 

 Boundaries; contain emergency boundaries such as hospitals and police areas, waterways 

such as rivers, streams etc., and other types of boundary such as parking. 

 Single; this branch will contain a collection of single node locations which provide 

information about object within a world. This can be a landmark, or a buildings details. 

The terrain will contain its own dedicated branch. This branch will contain the two types of LiDAR 

maps; DTM and DSM. These will also contain the different resolutions of maps from; 2m, 1m, 50cm, 

and 25cm.  

The branching between the OSM assets and the terrain assets held within a 1km2 tile are shown in 

Figure 57. 
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The base of the tree structure will represent the OS reference scheme as stated. The base node will 

be named ‘PVS’ and this will act as the World node which every other node is branched from. The 

child branches in relation to the OS scheme represent the same projections; each child of the World 

node represents a 500km2 area, the same as the OS reference scheme at its lowest level of 

projection. Covering the UK is a 5*5 grid of 500km2 areas. Each of these grid locations are subdivided 

into a 5*5 grid of 100km2 areas. Each of these is then subdivided into 10*10 grid of 10km2. And 

finally, each of these is subdivided again into 10*10 grid of 1km2 areas. The structure for the OS 

representation in tree form is visualised in Figure 56. For simplicity sake, we do not display all nodes 

possible for the tree because this will be 6,250,000 nodes at layer 4. A total of 6,286,151 are needed 

to create full coverage. We show a subcategory. The letter ‘I’ is not used with the OS reference 

scheme, thusly our representation assumes this fact. 

With this scenegraph design, a world of assets generated from OSM, and terrain from OS and LiDAR 

can be categorised, and used within our framework. The scenegraph structure is custom for this type 

of data but can be used within other frameworks and game engines within minimal of changes, if 

any changes. 

To generate the scenegraph, a factory design construct will be utilised. Within this construct, 

functions are used to create and combine empty nodes of the scenegraph. When we state empty we 

mean nodes which do not contain a model mesh object.  

The factory construct will utilise procedural functions. Creating a scenegraph which contains all 

nodes that contain the whole UK is unneeded. Passing the bounds of the selected OSM region to the 

procedural function for the factory to only generate the nodes necessary. 

Before processing the OSM map, lookup tables of 2D array structures are generated. The multiple 

lookups represent the different resolutions of OS; 500km2, 100km2, 10km2, and 1km2. The look ups 

are only the names of the tiles. The bounding boxes are to be procedurally generated to save 

storage and processing.  

Processing the selected OSM map, the bounds of the map are checked. The check loops through the 

nodes within the map file, and will check for the furthest left, furthest right, furthest top, furthest 

bottom by converting the longitude and latitude to OS X, Y coordinates. A bounding box is created. It 

is this bounding box which is checked against the procedurally checked OS reference maps. The 

algorithm for creating the list of tiles which the OSM bounds collide with is listed next; 

 Loop through the array of 500km2 entries. Procedurally generate a bounding box from the 

name of the tile.  
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 Check if the OSM boundary intersects the procedurally generated tile bounds. 

 If this is true, then do the same procedure for the 100km tiles of the 500km2 tile it has just 

intersected with. Repeat this through the 10km2, and 1km2 tiles. 

The OSM scenegraph branches are to be generated within single functions. A function to generate 

the buildings branch, a function to generate the OSM highway branch etc. 

Using multiple function calls we can string the function calls together to generate a scenegraph. If no 

buildings are contained with the OSM selected area, a branch does not need to be generated, and 

thusly we don’t need to store or process empty nodes.  

The total number of nodes within each 1km2 tile which depicts the terrain and OSM assets, is 93. 

This adds the total number of nodes to (6,250,000 * 93) + -36,151 = 581,250,000. This is a minimal 

number of nodes needed for the UK.  

PVS

S

SJ

SJ38

SJ3585

SA SZ

A Z

SJ00 SJ99

SJ3080 SJ3989

 

Figure 56 Scene Graph for OS representation and scene subdivision 
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Figure 57 Scene Graph representation for a 1km node. Contains root of the OSM scene graph and the Terrain scene graph. 
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Figure 58 Representation of the node hierarchy for the Buildings branch. 
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Figure 59 Representation of the node hierarchy for the Highways branch. 
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Figure 60 Representation of the node hierarchy for the Roads branch. 
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Figure 61 Representation of the node hierarchy for the Link branch. 
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Figure 62 Representation of the node hierarchy for the Paths branch. 
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Figure 63 Representation of the node hierarchy for the Special branch. 
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Figure 64 Representation of the node hierarchy for the Waterway branch. 
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Figure 65 Representation of the node hierarchy for the Railway branch. 
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Figure 66 Representation of the node hierarchy for the Boundary branch. 

6.5.1 Scenegraph Node 

We have stated that the framework utilises the same scenegraph structure, but also stated that the 

pre-processor scenegraph does not need all functionalities needed by the runtime simulation.  

Here we discuss the design for a node of the scenegraph structure. The node is designed to contain a 

reference to its parent, and a list of children. If a parent is not available, the design should account 

for this as to minimise potential crashes, and to check while recursively searching up or down a tree.  
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A node must allow a 3D model mesh object to be attached, or set to null. If the reference is null 

additional checks should be made when searching for models of particular type; building, highway, 

stream etc.  

The node of the scenegraph must allow many recursive functions which allow the dispersal of data 

and data-structures. The data and data-structures which are apparent are; Spatial controllers, 

Material controllers, Effects, Materials, Parent references, and Child references. 

Scene nodes of the scenegraph need the functionality to be removed, added, or be reconfigured. 

Utilising an IVI will provide the functionality to do this, as well as the need for functionalities to 

reconfigure the parent/child reference relationship. 

6.5.2 Spatial Controller 

The use of controllers is needed to modify the parameters of the material object stated previously. 

The same need is apparent for use with the nodes and specifically the spatial parameters of a node; 

translation, scale, rotation. Controllers are needed, which a node can subscribe to, to allow the 

updating of its internal data structures and spatial parameters. 

6.6 Indexed Array Shader Function Design Structure 

The use of an IASF is needed for the benefits it brings to visualisations. An IASF is designed to reduce 

the use of branches within the GPU processing within the effect. A branch is when an if-statement 

occurs within the effect, which produces additional overheads, and calculates both sides of the if-

statement. An IASF removes these issues by creating separate functions, and determines the 

function to use on the CPU and not the GPU; thusly removing the need for if-statements. This 

creates a large number of functions and duplications of program code. The number of rendering 

techniques and number of lights directly impacts the number of functions which have to be written. 

This is a small price in development time, which improves rendering speeds and removes processing 

overheads.  

Within computer games, and other applications, a model mesh object will be rendered within a 

single effect. This effect and the model mesh are tightly coupled, and data passed within the vertex 

buffer need to match the data to be used within the effect. The data needed for different effects 

may differ by UV coordinates, tangent and binormal values, which are held within the vertex buffer. 

If an effect is used on a model without this data, then one of two things may occur; system failure, 

or the model will not be rendered.  

Figure 67 shows the processes of combining multiple effect files into a single referenced file. This 

means the model mesh objects which will use the IASF effect file will need all data pertinent to all 
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shading techniques. This will increase the overall memory needed for the model mesh, but will allow 

greater flexibility with rendering large varying assets. This is justifiable within a real-world 

visualisation system. 

 

Figure 67 Indexed Array Shader Function Effect File 

The IASF will need to combine the following techniques in specific orders, and allow up to 3 lights 

which are of direction and point style of light to be utilised. 

The combination of; per-vertex lighting, per-pixel lighting, Blinn-Phong shading, Phong shading, 

diffused textured, normal mapped, specular mapped, reflection, refraction, and hemispherical. 

Per-vertex is less process intensive than per-pixel, but per-pixel lighting produces higher realism. The 

use of both allows for the shading model to be dropped from per-pixel to per-vertex to preserve 

processing. The same justification is made for Blinn-Phong and Phong shading. Diffused texturing, 

normal mapping, and specular mapping are used to increase realism and effects within the 

visualisation. These are standard rendering techniques within the computer game industry. 

The use of reflection is to be used with water, and the sky box. It is also to be used within the 

rendering of windows and reflective surfaces. The use of refraction is to be used with objects such as 

glass for windows of buildings. 

Hemispherical rendering is used to apply a blend between two colours of the ground and the sky 

colour. For example, the reflection of the bottom of the building within a field will be given a green 

tint, while the top will be given a blue tint which represents the reflection from the sky.  

The design of the algorithm will allow users to pick and choose any combination of the individual 

rendering techniques.  

The use of per-vertex and per-pixel is not to be used within the same rendering pass. The same is 

true for Blinn-Phong and Phong shading. 
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6.7 GPU Render State Selection Design 

Rendering models by the GPU will need to put the GPU into a specific state. The state of the GPU 

needs to be set for the BlendState, CullState, RasterizerState, and DepthBufferState.  

The BlendState has 4 settings; opaque, translucent, additive, and non-premultiplied alpha. The 

CullState has 3 settings; cull none, cull clockwise, and cull counter clockwise. The RasterizerState can 

be put into 2 states; solid, or wireframe. The DepthBufferState can be put into 3 states for common 

rendering techniques; disable depth writing, enable depth writing, and depth test but no writes.   

To select the render state for each object to be rendered, there are a number of approaches; 

 Approach 1 - Every rendered object for itself. 

o This states that every object to be rendered, sets the GPU to its own rendering state 

without taking into account the previous state of the GPU. This procedure may be 

suitable for a small number of objects but for a large number will be exhaustive and 

waste processing setting the GPU rendering states. 

 Approach 2 - Reset all GPU states. 

o After setting the current needed states for the GPU, the object being rendered will 

reset all states of the GPU regardless of what has and has not changed. This is a very 

slow approach but allows certain freedoms when creating new objects to be 

rendered. 

 Approach 3 - Objects reset only state which have changed. 

o The object changing the GPU states, will reset only the states that it has changed; 

theoretically setting the GPU to its default state. 

 Approach 4 – Every object changes state only when states are different from previous the 

object. 

o Each object checks whether any GPU states have changed from the rendering of the 

previous object.  

We have chosen approach 4 for our procedures. The implementation of choosing these is stated in 

the next chapter. 

Assets within the scene can be grouped together depending on the render state which it uses. This is 

depicted in Figure 68. This reduces the changes to the GPU. The grouping of assets with the same 

GPU states will minimise the changes in graphics state, improved rendering rates. 
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Figure 68 Organising render states of objects for the generation of an ordered array of objects to reduce GPU state changes. 

6.8 Improved LiDAR Data Storage Techniques 

Textures have been used to store data other than pixel colours. Data is encoded into the binary bits. 

As stated, the storage needed to store a country’s worth of terrain data in ASCII format is vast. We 

have designed an RGBA texture format and accompanying process which terrain data can be 

encoded into.  

The highest point within the UK is 1344 meters above sea level. The lowest point is 300 meters 

below sea level. Having a negative number needs a bit from the data structure used for the plus or 

minus sign. Modifying this value so it cannot be a negative number removes this cost. The value 

which points can represent will not be between 0 – 1644 meters. With data points of the terrain, as 

the LiDAR data points we have, are represented with up to 6 points of precision e.g. 7.000001 

meters. Only up to 2 points of precision should be encoded giving the meters and centimetres. To 

improve the data further, the removal of the decimal point from the point value is needed. To 

remove the decimal point, multiplying the height value by 100 will be sufficient. This will give the 

value of any data height point to between 0 – 164,400 centimetres. This value can be encoded into 

18 binary bits. Within a texture format of 4 bytes, 1 byte for red, 1 for green, 1 for blue, and 1 for 

alpha, the 18 bits will use the red byte, green byte and 2 of the blue bytes. The highest value for the 

18bits is 262143. This leaves 14 bits for use with other encoding parameters.  

The process to encode data is shown in Figure 74. The input is the terrain data file, and each data 

point is parsed and converted to an RGBA pixel data structure. The output of the algorithm will be a 

texture object which can be used in alternative applications.  
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Figure 69 Pseudo algorithm for parsing terrain height data to a texture format. 

The other 14 bits of data are free to encode other data such as colour, shader techniques, or 

parameters for shader effect files. For example, the processing of the terrain data files into model 

mesh objects, data can be decoded to state the colour of the created vertex value. Due to the fact 

that a number of bits have been already used, the colour values need to be encoded again, i.e. a 

single bit states that the colour is green, which is used as the vegetation of the ground, a bit can be 

for the colour blue, used for buildings etc.  

Figure 70 shows a representation of the encoding which we have stated here. Next, we discuss the 

comparison between the already used ASCII format, and the format which we have stated above. 

 

Figure 70 Binary encoding of height points within the UK for use within texture objects. 

Using the 32 bit, 4 byte method discussed, the data can be encoded into colour pixel values of a 

texture object. The data can be further improved by removing the 14 bits. This encoding is a 

common technique for texture formats. We explain the situations on using the 4 byte method as 

stated.  

The LiDAR data is currently stored as ASCII format, as already stated. ASCII writes data as individual 

bytes for each character of data. Height points written to file can be up to 4 characters to the left of 

the decimal point, a character for the decimal point and up to 6 characters to the right of the 

decimal point, and a character of white space separating the height values. This gives 12 possible 

characters which is 12 possible bytes for each height point written to disk. The maximum storage 

need for the 25cm resolution 40002 points which is used for representing 1km2 area coverage would 

equate to; 40002 * 12 bytes = 192 MB. The maximum value for a texture object would be 40002 * 4 = 
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64 MB. This value will be a constant value, whereas the ASCII format is a changing value. This has the 

potential saving of 66%. 

6.9 Interactive Visualisation Interface Design 

We have stated the need for an IVI. The IVI will allow access to the algorithms and data structures 

exposed to the user. Algorithms and data structures such as; scenegraph, PG of queries applied to 

nodes of the scenegraph, the parameters of the materials attached to the model parts, access to 

models, the lighting manager, the camera systems, and many helper functions which create and 

disperse data through the scenegraph. The IVI will also be utilised as a form of debugging for both 

development, and user interaction and teaching. Details of the components should be provided as 

well. 

Allowing users to add textures, or 3D model mesh objects, the IVI needs to allow access to the user’s 

desktop PC.   

The design of the IVI is to combine similar components together within the same overlay window.  

The similar components within the main for are; tree view pane, the lights interface, the camera 

interface, query search pane, and the location tracker. The tree view pane shows the scenegraph of 

the scene allowing users to click on a node and bring up information on the node. The light’s 

interface gives access to the three lights within the scene. The lights can be modified spatially and 

visually as well as change the type of the light; directional or spot. Model mesh objects can get 

access to the scene lights. Changing the values on the interface form, will change the values upon 

the model mesh who references the lights. The lights form will also give the user to force the light 

references onto all models within the scene by overriding the locally stored light references held 

within the material object. The camera interface allows minimal interaction with the camera system 

allowing change in properties such as field-of-view, position, view direction, and camera type; 

perspective or orthographic. The search tab allows searching of user generated queries applied to 

the scenegraph which will return all nodes which satisfy the search result. The location tracker will 

navigate the virtual camera to a location specified in latitude and longitude coordinates, as well as X 

and Y Cartesian coordinates. 

From the main overlay form, the access to sub-components, or components which need large screen 

coverage.  

The sub-components are; node form and the material form. The node form gives access to the 

spatial properties of the node as well as the allow access to the model mesh data. The generation of 

the spatial and material controllers which is provided on this form. As well as the controllers applied 
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to the node, the setting of the graphics state and IASF is provided. A separate form is used for the 

material of each of the model mesh parts which gives access to all HLSL properties.  

The model-part material form is only accessible from the node form, which in turn is only available 

from the main form. 

The use of sliders, check boxes, buttons, combo-boxes and many other features will be needed. 

Sliders will provide increased speed with changing variable values.  

Figure 71 shows the design flow between the components. A number of screens will be available. 

The tabs of the screens will allow similar components to be grouped, or easily navigated.  

 

Figure 71 Interactive Visualisation Interface Design. 

6.10 Conclusion 

Within this section we covered the high-level design of the framework. We have stated the external 

libraries, and internal libraries which are needed. We have designed the pre-processes which are 

needed, along with the runtime processes.  

The algorithms which are to be used within the pre-processor have also been shown. These 

algorithms involve the processing of terrain map data, and the geospatial data of OSM for the PG of 

data and 3D model mesh assets.  

A novel scenegraph structure is designed to be used in the pre- processes and the runtime 

processes. Slight differences are present between the pre-processor and runtime scenegraph 

structures. Within the nodes of the scenegraph a custom model object can be attached. The model 

contains model parts which also contain the material object. The material object is used to 

communicate and pass data to the effect file. The effect file is used to encode a large number of 
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rendering techniques into a single effect file which is called an IASF. The use of an IASF has not been 

applied within the domain of GIS and geospatial visualisation. The designed IASF allows for 

automated shader selection to be done during simulations with the monitoring of simulation 

parameters. 

The designed IVI will allow user interactions with algorithms, and components of the framework.  

The implementation of the designed algorithms will provide a framework which allows from start to 

finish a single, customisable pipeline for the visualisation of real-world urban environments using big 

geospatial data. 

Implementing the algorithms and data-structures is presented in the next chapter. 
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7 PVS Pre-Processor 

This chapter presents the external API’s utilised within the PVS framework and their impact on pre-

processing algorithms. The pre-processing algorithms used to generate real-world virtual scenes of 

big geospatial data sets is also presented. 

7.1 Software 

We utilise the Microsoft XNA43 rendering pipeline. Although Microsoft has stopped maintaining the 

API, it is still relevant for this work and research. The XNA API is to be chosen for its pre-processing 

capabilities. It allows assets commonly found within computer games and visualisation software to 

be compiled into a purpose built binary format which is then loaded at runtime.  

Visual Studio 2013 Professional is used as the IDE. The use of Visual Studio allows the input of 

parameters at compile time through the IDE itself. These parameters can adjust, or modify the 

internal processes of the pre-processor. 

The hardware for which the framework is developed on is a mid-range laptop - a 64bit Windows10 

Operating System, 8GB of RAM, Intel Core i7-3630QM 4 (2 logical cores per physical) core CPU at 

2.40GHz, and an Intel HD Graphics 4000 Chip with an additional NVIDIA GeForce GTX 660M. The 

hard-drive of the computer is a Solid State Drive (SSD). An SSD has faster read and write properties 

than HDD. 

We discuss further in the next section the intricacies of the Microsoft XNA API. 

7.2 MS Build – Compiling Assets 

MS Build is needed for the compilation of large number of assets, and the PG of model meshes. The 

pre-runtime compilation is needed for due to the time it takes to compile assets. 

The use of MS Build allows the compilation of assets for games applications and Abstract Data Type 

(ADT). This ability is a major factor why Microsoft XNA44 API is still a viable option for professional 

development and academic research. 

The MS Build45 process allows for a single pipeline to compile and optimise XNB46 files format to be 

read by default content importers, or by custom content readers at runtime. 

                                                           
43 https://www.microsoft.com/en-gb/download/details.aspx?id=23714 
44 https://msdn.microsoft.com/en-us/library/bb203940.aspx 
45 https://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx 
46 http://xbox.create.msdn.com/en-US/sample/xnb_format 
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The process incurs the following functions; import, process, write, and read. The import function 

imports objects into the processor. The processor either converts the object to another ADT, or pass 

the object to the writer. The writer will write the ADT to a file. A custom binary writer is needed for 

generated ADTs. The role of the reader is to read in the data at runtime. A binary reader is needed to 

read the ADT into a runtime class object. 

7.3 External Libraries 

Within this section we state the external libraries chosen to utilise. The libraries chosen are open 

source and free from restricting licences. The libraries consist of an animation and interpolation 

library, triangulation library, a dynamic LINQ query library, and DotNetCoords. 

7.3.1 Animation / Interpolation library 

The animation/interpolation library is called ‘Tweener’47. This library is open source which allows the 

extension methods of Catmull-Rom interpolation, which is needed for the PG of terrain points and 

highway structures. The library also allows interpolations of; linear, quadratic, cubic, quartic, quintic, 

sinusoidal, exponential, circular, elastic, back, and bounce. 

Within the pre-processors, it is used for the PG of additional data points, e.g. Vector2 or Vector3 

positions for terrain and highway interpolations. Within the runtime simulation it is to be used to 

animate the spatial properties of nodes, and the visual properties of a models material properties. 

The library works dominantly by using C# delegates48 . The constructor of the Tweener object takes 

in the start value, the end value, the duration time it takes to interpolated from the start value to the 

end value, and the function to use (the interpolation functions we stated previously). 

The library allows basic animations; start to finish, and looping from start to finish. The latter repeats 

the animation when it reaches the end value. We have extended the library to allow for additional 

looping features; repeat in reverse. This feature allows the backwards and forwards animation, 

creating a pulsating effect. Using these three adapted functions, a large amount of effects can be 

achieved. 

The library also contains functions for easing-in, easing-out, and ease-in/out. We will utilise the 

latter. The easing methods will smooth out the beginning or ending of the interpolation.  

Each function have four parameters passed in;  

 Elapsed time - the total elapsed time of the current simulation. 

                                                           
47 https://xnatweener.codeplex.com/ 
48 https://msdn.microsoft.com/en-us/library/ms173171.aspx?f=255&MSPPError=-2147217396 
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 Start value – self-explanatory. 

 Change value - value is calculated using the total elapsed time and a time value from the 

previous frames elapsed time. 

 Duration value - how long the interpolation will take. 

The class diagram is shown in Figure 72. 

 

Figure 72 TweenerLibrary Class Diagram 
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7.3.2 Triangulation Library 

The Triangulation49 library is used to create triangular vertex and index arrays to be generated from 

an arbitrary array of 2D points. This includes cut-outs of the 2D polygons; needed to create rooftop 

structures of real-world buildings. The triangulation algorithm is an implementation of David Eberly’s 

ear clipping algorithms presented in [79]. The implementation allows the inputting of 2D vertices 

and returns a triangulated 2D polygon from the array of 2D vertices in the same order, as well as the 

indices needed for optimisations in the rendering pipeline. Other triangulation algorithms which are 

free to use such as the Triangle.Net50 library does not provide this heavily needed utility.  

We have extended the source code with additional overloaded functions which will convert inputted 

properties of varying datatypes used within the XNA library.  

A limitation to the algorithms is if the polygonal structure has overlapping lines sourced from the 

OSM data; e.g. a hole in a polygon overlaps the outside polygonal structure. We will not check this 

issue programmatically for the prototype, but issue that it may cause visual errors within the 

rendering at simulation time. 

This library satisfies the needs of the specification for the creation of procedural model mesh assets 

of real-world objects; buildings, highways, boundaries etc. 

 

Figure 73 Triangulation Library Class Diagram 

                                                           
49 https://triangulator.codeplex.com/ 
50 https://triangle.codeplex.com/ 
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7.3.3 System.Linq.Dynamic 

The System.Linq.Dynamic51 library is an extension to the .Net LINQ library. It is utilised for the 

creation of user generated queries. The library allows for the dynamic creation of string queries 

which are applied to types of object within the framework. This allows a user to query any number 

of permutations of parameter checks of objects within the framework and .Net library. The library 

exposes the parameters of the object using reflection. Searching the scenegraph for a node with the 

name of ‘Liverpool Liver Building’ can be undertaken. The string representation needed for this 

would be PVSNode.name == “Liverpool Liver Building”; the class object, then the property of the 

class, and then the expression. Multiple expressions can be queried; ‘PVSTagBuilding.Fireproof == 

true and PVSTagBuilding.Height > 10’. This example checks if the tag of the node which is a building 

has a property called Fireproof, and Height, and checks if true and over 10 respectively.  

Combining the expression library with the novel scenegraph structure allows searching complete 

scenes for user queried assets. 

 

Figure 74 System.Linq.Dynamic Class Diagram 

7.3.4 DotNetCoords 

The DotNetCoors52 library is used to convert from one mapping coordinate system to another. This 

will be used to map from Latitude and Longitude to X, Y, Z coordinates used by the XNA API. 

7.4 PVS Camera Library 

The Camera Library satisfies the specification stated. It contains many 3D camera systems, and 2D 

camera systems with the addition of extra 2D cameras than stated within the specification needs.  

                                                           
51 https://www.nuget.org/packages/System.Linq.Dynamic/ 
52 https://www.doogal.co.uk/dotnetcoords.php 
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The library contains the following 3D camera systems which can be employed within the simulation; 

Arc Ball camera, Chase camera, First-Person camera, Free roaming camera, Target camera. 

The specification section covers the characteristics of the individual cameras. 

The 2D cameras contained are;  

 2DCameraBasic - this camera allows the viewing and projection of 2D elements which are 

always facing the screen. The projection of the 2D camera can be translation, and scaled, but 

not rotated. 

 2DCameraParallax - this camera is attached to a 2D object within the world. If the object 

moves then the camera will follow. The Super Mario games and earlier 2D platformer games 

use this type of camera. The effect is that the object stays within the centre of the screen 

and the world translates around the object. 

 2DCameraYawPitchRoll - this camera allows the same functionalities as that of the 

‘2DCameraBasic’ and the addition of rotation. 

Each of the cameras stated has an update method to update its internal parameters.  

Figure 75 shows the inheritance between the camera class objects and their interfaces. The 

interfaces consist of;  

 IPVSView – a helper interface which states that complying classes need to implement a 

method which returns the ‘view’ matrix of the camera. 

 IPVSCamera – This interface combines the ‘IPVSView’ interface to save additional coding. It 

is also the base for all 3D cameras and holds data such as; the GPU reference, the view 

matrix, projection matrix, the bounding frustum of the camera, the field of view, near plane, 

far plane, as well as the aspect ratio of the screen being rendered too. The interface updates 

the camera settings, and creates the perspective view matrix from the field of view, aspect 

ratio, near plane, far plane, and the projection matrix. It also states that complying classes 

need to implement specific functions such as returning the current position and direction of 

the camera. These are critical to the rendering of objects within the rendering pipeline. 

 IPVSCamRotatable – this interface states that complying classes need to implement a 

function to allow the rotating of the camera and update the relevant view and projection 

matrices appropriately.  

 IPVSCamMovable – this interface states that complying classes need to implement a 

function to allow the translation of the camera and update the relevant view and projection 

matrices appropriately. 
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 IPVSCamMoveRotate – this is an interface which combines the ‘IPVSCamRotatable’ and 

‘IPVSCameMovable’.  

Using the interfaces, the large number of varying cameras needed for a modern GIS can be achieved. 

The implementation satisfies the needs set out within the specification. 

 

Figure 75 Camera Library Class Diagrams. 

7.4.1 Camera Helper Classes 

Within the library, the interfacing between application/simulation and the cameras, a helper class is 

used. These helper classes employ static properties, and static methods. Each property or method is 

used as a single point for updating multiple cameras easily, or receive data from the cameras 

without needing to know the object types. 

The 3D camera helper utilises static methods to update the cameras regardless of the type of 

camera it is; Arc Ball, Free, etc. Using the .Net and C# Generics this can be achieved. The helper 

functions can be applied by varying inputs (keyboard, mouse, gamepad) through the inputted 

reference to the ‘Input Manager’. The basic functions check whether certain buttons or keys have 

been pressed within the last frame and adjusts the camera accordingly. This can be translating the 

cameras, rotating, or a combination of both.  

The helper class also contains constant variables which limit the rotation, and movement speed 

applied to the camera being updated. Figure 76 show the UML of the camera class helper. 
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The helper class has static properties of ‘IsCameraDirty’ along with the current ‘EyePosition’ and 

‘EyeVector’. The static values are updated when the camera is modified. The IsCameraDirty flag is 

used in conjunction with the spatial and material controller. The controller will have a reference to 

the camera helper class, and monitors the state of the ‘IsCameraDirty’. If true, the controllers will 

force an update to the WorldViewProjection matrix used for placing objects in 3D space at rendering 

time. The EyeVector, and EyePosition is also used for rendering.  

This technique removes the need for multi object passing from the camera system to the material 

system for rendering. Although initial initialisation is needed to hook the camera system and the 

material system together through the use of the controllers, but if the controller is removed, the link 

is severed. This proves beneficial to improve the latency between checks and optimises calls 

between material and camera system and only updates parameters when they need to be updated. 

Figure 77 shows the connection between the static properties of the 3D camera helper and how it 

links between the material controllers used by each material. 

A 2D camera system and accompanying helper class is available. The helper class extends the 

functionality and provides access to the mouse position in screen coordinates, as well as a pointing 

direction derived from the mouse position and the view direction. This leads to ray casting within a 

virtual scene for object picking.  

 

Figure 76 The UML of the implemented camera helper class 
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Figure 77 Camera and Dirty flag material hook-up. 

7.5 PVS Input Manager Library 

The Input Manager Library is made of 2 class objects; the main input manager, and a helper class.  

The input manager contains references to; current keyboard state, current gamepad state, and 

current mouse state. Keeping reference to the previous keyboard state, gamepad state, and mouse 

state is also tracked. Single keypresses can be tracked, and keys which are held down.  

The keyboard helper class allows for adding of additional key char codes so it can be adapted for use 

around the globe using additional languages. 

The library limits the number of controllers and keyboards to inputs to 4. This means that the 

framework can have multiple users using the simulation at once. This quality satisfies an aspect of 

the specification. We stated that a modern GIS needs to accommodate multiple users for cross 

collaboration.  

Figure 78 shows the class diagrams of the PVSInputManager class library. 
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Figure 78 PVSInput Manager Class Diagrams. 

7.6 PVS XML Serialiser and Deep Copy Library 

The XML Helper library has been created as its own library to improve flexibility and code reuse 

within the project and external projects. The function of Serialise and Deserialise utilise .Net 

generics53. Generics allow any object type to be serialised and de-serialised to XML and other 

schema defined output files. The files will include all references and properties of the object.  

The library also contains a function to DeepCopy an object in memory. The function creates a binary 

stream in memory, and it is from this stream a new object containing a binary copy of all parameter 

values and references is created.  

                                                           
53 https://msdn.microsoft.com/en-gb/library/512aeb7t.aspx 
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Alternatives to this is the MemberwiseClone54 function which is classed as a ShallowCopy. This will 

not create a copy of the referenced objects, thusly the copied object will contain references to 

external objects, creating multiple references to external objects.  

The library concludes the need specified within the specification chapter to allow the copying and 

generation of assets which are the same, but allow separate modifications. The library also allows 

the serialisation of runtime objects to external files which is needed to bypass the limitations of MS 

Build which only allows single input and single output. 

The depiction between the shallow copy and deep copy is show in Figure 79. 

 

Figure 79 Shallow and Deep copy outputs. 

 

Figure 80 PVSXML Serialiser Helper Class Diagram. 

7.7 OSM Enumeration Library 

Given the large number of key words held in the OSM data-base, we have generated a comparison 

library filled with C# enumerations of these keywords which are used throughout the framework. 

The enumeration values have been put into its own library because of the cross dependence 

between the pre-processor and the runtime system. The library contains the categorisations of 

keywords; buildings, highways, sidewalk types, types of barriers etc. 

                                                           
54 https://msdn.microsoft.com/en-us/library/system.object.memberwiseclone(v=vs.110).aspx 
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Due to the nature of working with real-world names for objects, some characters of the alphabet are 

used as the first character of a word which may be illegal within the .Net framework or C# language. 

Words as this can be “_lock”, or “concrete: plates”. For this we use the C# ‘DescriptionAttribute’ 

mechanism55. This allows substitution of the illegal words for legal words. For example, if we use the 

term “lock”, the enumeration will return the alternative attribute of “_lock”.  

We also use enumerations for coding standards. Due to the large amount of variations of keywords 

within the OSM data-base, errors may occur when developing code to search for a certain type of 

object. Using the enumerations, spelling mistakes like this can be kept to a minimum.  

Another reason for utilising enumerations is the ability to save only the index of the enumeration 

during the pre-processor writing of assets. A model object of a certain type has the enumeration 

converted to an unsigned integer and this is saved as binary. As long as the runtime enumeration 

layout structure is the same, it will assign the same enumeration value to the object. Being that we 

have put the enumerations within one library which is used within the pre-processor and runtime 

library, this should not be an issue.  

The full list of currently implemented enumerations used as shortcuts and lookups are listed in Table 

13. The generated class diagram is too large to fit into this document. 

  

                                                           
55 https://msdn.microsoft.com/en-
us/library/system.componentmodel.descriptionattribute.description(v=vs.110).aspx 
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NodeNames OSM_K_VALUES OSMTagWaterway 

OSMTagPublicTransport OSMTagBarrier OSMTagFootway 

OSMTagSidewalk OSMTagAerialway OSMTagAeroway 

OSMTagCycleway OSMTagLeisure OSMTagRailway 

OSMTagCondition OSMTagJunction OSMTagLanduse 

OSMTagMilitary OSMTagCraft OSMTagPlace 

OSMTagPlacement OSMTagNatural OSMTagPower 

OSMTagRoute OSMTagShop OSMTagReligion 

OSMTagSurface OSMTagTourism OSMTagTrackType 

OSMTagSport OSMTagHistoric OSMTagOffice 

PVSTagBuildingType OSMTagRelationTagValue OSMTagTurnLanes 

OSMTagTurnLanes PVSTagAmenityType OSMTagRoofOrientation 

OSMTagGeological OSMTagMan_Made PVSTagBuildingCladding 

OSMRelationTagKey OSMTagEmergency PVSTagHighwaySidewalk 

OSMTagRoofShape OSMTagSmoothness PVSTagBuildingMaterial 

OSMTagRoofMaterial PVSTagHighwayType PVSTagBoundaryType 

Table 13 Enumeration library constructs. 

7.8 Terrain Map Generation Algorithms 

OS terrain data is not of high resolution. The data removes large areas of detail through the low 

resolution. It is however a complete dataset covering the entire UK at 50m resolution. Complete in 

this essence means that the maps do not contain missing data values. As stated throughout this 

work, errors of height values may still persist. This is justifiable as a base for interpolation and 

combining with erroneous LiDAR data sets. LiDAR suffers from missing data, error prone results, and 

areas which are mapped but at varying resolutions; 2m, 1m, 50cm, and 25cm.  

We discuss the generation of the algorithm used to combine OS and LiDAR DTM, DSM data-sets 

within an external program to be included within the pre-processing pipeline. We utilise a separate 

program.  

The algorithm is stated in Figure 81. The input for the algorithm are the OS, and LiDAR DTM, DSM 

terrain map files. The output will be complete data sets at each resolution for the LiDAR DTM and 

DSM and OS 1km2 maps at 5002 point resolution. 
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Figure 81 Pseudo algorithm to combine and interpolation terrain maps of OS, LiDAR DTM and DSM at 2m, 1m, 50cm, 25cm 

resolutions. 

Within the algorithm, a default map is generated by analysing the LiDAR terrain maps at the coastal 

line of the UK. The default value for all points within this map is -2.7 meters. This map is also used to 

extract tangent values which are edge lines of maps, used within the Catmull-Rom interpolation 

function. Figure 82 shows the default maps needed for the UK in green. 

With complete maps, data can be inferred. This is especially pertinent by using the DSM maps to 

gather information for height of buildings on the terrain. Using this process will also guarantee a 

country’s worth of terrain data is available in all 3 formats; OS, LiDAR DTM, and DSM. Data storage 

techniques for OS, LiDAR DTM and DSM is needed. 
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Figure 82 British Isles and the default edge maps in green. 

7.9 PVS Pre-processor 

Due to the size of the subsystem we will split this section into separate parts consisting of the high-

level overview of the pre-processor with its components and connections to external libraries. This 

will include a flow diagram of the input data, and the outputs of the processor to create the scenes. 

Extracting the OSM data structures and information. The PG of the model mesh objects for buildings, 

highways, amenities, boundaries, and terrain. LiDAR and OS terrain combination for improved 

terrain model mesh data. Parsing external 3D models converting them to the designed format. 

7.9.1 High-level overview of the Pre-processor 

This will include the flow of data within the processor which includes the importing and processing 

of external assets, as well as serialisation of procedurally generated scenegraph nodes to be 

reprocessed in an external processor to convert them from XML to XNB. The reason for the 

additional process is that XNA is a single-input, single-output pipeline. Thusly, the serialisation of 

assets to XML, and then reprocessing the XML files can alleviate this problem.  

The algorithm shown in Figure 83 is the high-level process of the pre-processor algorithm to 

generate scenes. We discuss the steps of the algorithm in the following sections. 

The algorithm is also shown in Figure 84 as an activity diagram.  
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Figure 83 Pseudo algorithm for high-level overview of the pre-processor. 
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Figure 84 Activity diagram of algorithm for high-level overview of the pre-processor. 

7.9.2 PVS Importer 

To trigger the processing of the user selected OSM files, a custom file format is imported with a .pvs 

extension. Within the file, the OSM file is referenced, as well as data used within the algorithms. The 

additional data can be entered in as Visual Studio parameters, but if Visual Studio is not utilised, the 

data within the file is imported. This data consists of content root path, and other path directories. 

The Visual Studio parameters are explained in section 7.9.5. The imported object serialises from XML 

to a runtime object.  

Originally we created many lines of text which encodes the flow of the processor, and tells the 

processor which LiDAR and OS terrain maps to create. We abandoned this approach to a procedural 

method which analyses the terrain maps which data from OSM coincides with; only then are terrain 
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maps processed. This is due to our decision to convert and combine the LiDAR and OS maps, with 

data from OSM in a different program application.  

7.9.3 Create OS Map References 

The creation of the OS reference tile names at 500km, 100km, 10km, and 1km and additional 500m 

resolution is needed for quick look up and PG techniques for bounding box creations. Using the 

references, a scenegraph is generated as shown in Figure 56. Generating the scenegraph is 

procedurally done by querying the current tiles name. For example, creating a scenegraph from the 

name SJ3638, the name is processed through an algorithm which analyses the length of the name. If 

length is equal to 1 then tile is 500km. If length is equal to 2 then tile is 100km. If length is equal to 4 

then tile is 10km. If length is equal to 6 then tile is 1km.  

A switch-case is used with the length value of the name; branching to the correct bounding box PG 

procedure. PG is needed to increase processing speeds by removing the need of processing all 

bounds within the UK. It is also used to prevent memory wastage. Translation offsets are used to 

place the bounding boxes to the correct translation.  

This process creates the full UK OS schema tile names at 500km, 100km, 10km, and 1km and 

additional 500m resolution stored as 1D List<string> structures.  

7.9.4 Import 3D Model Mesh List 

This is the importing of a text file which contains comma separated values of the OSMWay ID and 

the model name on disk. When imported the text file is converted to a key/value pair and stored in a 

C# Dictionary data structure.  

Each OSMWay is checked against the list imported during processing and if the OSMWay is matched 

with the ID with the list, an external model mesh objects is imported, processed, and referenced in 

place of the procedurally generated process. This is explained further in a later section. 

This improves scene realism due to current limitations of procedural techniques within the 

framework. An example to the document is shown in Table 14. 
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OSMWay ID Model Name Translation Rotation Scale 

5099086 St_Georges_Hall Vector3 Vector3 Vector3 

25694396 Liverpool_Museum Vector3 Vector3 Vector3 

31294107 Our_Lady_&_Saint_Nicholas Vector3 Vector3 Vector3 

24611033 Liver_Building Vector3 Vector3 Vector3 

Table 14 Building model list key/value pairs used for importing premade model mesh objects 

 

Figure 85 User Generated Model list class object and importer. 

7.9.5 Set Visual Studio Input Parameters 

Visual Studio allows the extension to import additional parameters into the processor. This allows 

users to modify the algorithms within the pre-processor. The parameters are explained in Table 15. 

They are primarily used within the Factory56 classes which are used for the PCG of many similar types 

of model mesh objects; Building, Highway, Amenity, Boundaries, and primitives. 

The parameters have default values and all processes are set to run. As stated within the 

specification section, the need for this technique is optional. It provides benefits to both 

development and user. Removing unneeded procedures will reduce processing time. 

  

                                                           
56 https://msdn.microsoft.com/en-us/library/ee817667.aspx 
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Datatype Name Definition and Use 

Boolean Generate Boundaries Flag to create boundary assets. 

Boolean Generate Buildings Flag to create building assets. 

Boolean Generate Highways Flag to create highway assets. 

Boolean Generate LiDAR 

Terrain 

Flag to create LiDAR terrain assets. 

Boolean Generate OS Terrain Flag to create OS terrain assets. 

Boolean Generate Single 

Nodes 

Flag to create single nodes primitives 

Boolean Generate Waterways Flag to create waterways. 

Integer Highway 

Interpolation Value 

The interpolation value assigned to the highway generation 

process. 

Boolean Include 3D Model 

Assets 

Flag to include user generated 3D models in place of 

procedurally generated assets. 

Float Texture Repetition 

Amount 

How much a texture should rap a model mesh. 

Float Vertex Merge 

Distance 

The distance between two vertex points. If distance between 

two points, the points will be combined. 

Table 15 Visual Studio Parameter Input definitions and uses. 

7.9.6 Import OSM XML to Class Object 

The importing of OSM XML is imported using its own importer which returns a de-serialised XML 

object to a C# class object. Using this, the OSM objects can be queried and used within the novel 

algorithms of the framework. This process utilised the PVSXMLSerialiser Library and the OSM class 

objects.  

During the serialisation, the .NetCoords library explained in section 7.3.4 is used to convert the 

Latitude and Longitude of the OSMNode, and the OSMWay to X, Y, Z coordinates. The centroid 

translation for the OSMWay is also calculated at this stage.  

The OSMNode, and OSMWay are added to Dictionary<OSMNodeID, OSMNode> 

Dictionary<OSMWayID, OSMWay> respectively. This improves lookup speed from O(n) of the array, 

to O(1) of the Dictionary<Key, Value>.  

The class diagram is shown in Figure 86. 
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Figure 86 OSM Class diagram for OSM XML serialisation. 

7.9.7 Create Bounding Box from OSM Bounds 

A bounding box structure is created from the OSMBounds. The bounding box has basic collision 

techniques applied to them to determine the 1km2 tile areas that it intersects with. This is explained 

in the next process section. 
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Due to the true bounds being different from the user selected area, reprocessing the bounds is 

needed. This is because user selected areas may select half a building, or part of a highway. OSM 

includes all of the data for any object intersected. Thusly creating bounds within house all OSMNode 

locations is needed. This will increase the size of the bounds, and potentially the size of the 

scenegraph and possible add additional terrain maps to be processed. The scenegraph within the 

pre-processor is created by analysing the OSNodes which the bounding box intersects at each level 

of the OS reference scheme. A Dictionary<tile name, bounding box> which contains all 1km2 tiles 

names for which the OSMBounds bounding box intersects is generated. Using the Dictionary, the 

base of the tree is generated, as well as attached the empty OSM and terrain categorisation subtree 

to the 1km2 OSNode. Figure 56 and Figure 57 show the tree base, and the OSM top. 

With the names within a Dictionary structure, the keys are used to create terrain model mesh 

objects. If data is not available, a rectangular procedural polygon is created as a placeholder. The 

terrain mesh is textured using the corresponding OS textures.  

Figure 87 shows the class diagram for creating the OS references needed.  

 

Figure 87 OSMapReference and OSNode class diagram. 
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7.9.8 Loop over Ways in OSMWay Dictionary 

This process is where the individual model mesh assets are created by either loading user generated 

models, or PG techniques. The extraction and inference of OSM data is processes by the 

OSMInformationExtractor class, and the OSMHelper class shown in Figure 88.  

OSMWay objects are iterated and processes in a specific order. The generation of boundary model 

mesh are completed first, then multi-part buildings, then single part buildings, highways, waterways 

and amenities. The boundary model mesh objects are created first as to allow the categorisation of 

unclassified assets such as buildings, or a highway. If a building has no classification, and intersects a 

boundary which is classified, the building object will inherit the boundary classification. This 

improves data representation and final visualisations as appropriate textures can be chosen. 

Each OSMWay processed is checked against the user generated models assets on disk. If user 

generated content is available, then it is imported, processes, and PG can be skipped. 

The use of the OSMInformationExtractor class and OSMHelper class are used to classify attribute 

data which is used to describe the assets being generated or loaded. For example, OSM allows any 

string representation to describe the colour of an object, or OSMNode. This ranges from the words 

“black”, or the hexadecimal variant. The OSMInformationExtractor checks the input data and 

determines the validity, and returns a parse value, or a default value. This data is used to generate a 

PSVTag object. Each asset has its own PVSTag; PVSTagBoundary, PVSTagBuilding, PVSTagHighway, 

PVSTagAmentity. Figure 88 shows the currently implemented tags and the data parameters which 

they contain. They all derived from the interface class of PVSTagInterface. This allows updating and 

iteration of all types of OSMTag attached to any node within the pre-processor or runtime system.  

The PVSTagHighway has derived children types which are used for the varying types of road 

categorisations. 

The details of how each asset is created are presented next. The use of the Factory57 design pattern 

is employed for the generation of model mesh objects. After an asset is generated, the OSMWay is 

removed from the Dictionary data structure.  

                                                           
57 https://msdn.microsoft.com/en-us/library/ee817667.aspx?f=255&MSPPError=-2147217396 
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Figure 88 OSMTag class object which are created, and inferred from OSM data and attached to assets. 

7.9.8.1 Generate Boundary Models 

To determine if an OSMWay is of type boundary, the OSMTags attached to the OSMWay are 

checked for the key value of ‘Boundary’. If true, the generation of the model mesh, and 

PVSTagBoundary are started. The check is only done on the Key, and not the Key/Value pair as is 
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done for other assets. This due to the building types have values of ‘Boundary’, which will trigger the 

generation of a building mesh, and not a flat polygon.   

The model mesh is a 2D polygon. The height translation will be set in a later process, placing the 2D 

polygon correctly on the terrain. The utilisation of the Triangulator library discussed in section 7.3.2 

is used for converting the array of OSMNodes references within the OSMWay to an array of 2D 

locations in 3D space. These are the vertices. The Triangulator library produces the indices as well. 

The classification of the boundary is checked. If it is the boundary of a hospital, police, fire station, 

education type, appropriate textures are applied to the procedural model mesh. If user generated 

content is available, the diffuse texture is not applied. The PG of UV coordinates are also created. 

7.9.8.2 Generate Building Models 

The iteration of OSMWays is undertaken to create the building model assets. 

The building generation is built of two parts; checking if a building has multiple parts, and then 

checking if it is a single building. As stated, a relation is a linkage between different data types within 

the OSM database. Within the case of a building, an OSMWay represents the outline of a building 

and may have a relation to another OSMWay, or a number of additional OSMWays. These additional 

OSMWays which the first OSMWay are linked too, are connections between building parts. The most 

common is the relation between an Outer OSMWay type, and an Inner OSMWay type. This is 

pictured within Figure 89. The ordering is of the relations determines the structure of the building. In 

Figure 89, it creates a scenegraph structure which we exploit to create our building model mesh 

objects which have multiple buildings within one another. 

OSM does its best to make sure buildings which contain multiple OSMWays comply by not having 

OSMWays overlap each other, or have the first OSMWay within a relationship be of type ‘Inner’. 

Errors are still within the database. Additional checks for these types of errors are needed. If an error 

occurs, we do not create any asset for that building. Future work will include messaging the user to 

determine what should happing in this case. 

The information of that building is extracted and inferred to create a PVSTagBuilding object. Using 

this, the 3D building mesh can be created. The algorithm traces around the points of the OSMWay, 

creating plains between the current node and the next node vertically to the specified height of that 

building part. During this time, the UV coordinates are generated. Future work is to extract the 

building height data in an automatic process by utilising the LiDAR DSM as explained within our 

paper, “Mesh Extraction from a Regular Grid structure using Adjacency Matrix” in section 1.4.1, item 
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2. If no height value is available, and cannot be inferred, the default height will be the height of a 

single floor which is 12 feet or 3.6576 meters as stated within the design section. 

The roof structure is created using the same techniques utilised within the boundary generation 

process. The Triangulation library allows for holes to be cut out of the polygon. This allows rooftops 

to be generated for both a multi-part building, and a regular building.  

The addition of a randomly added height value between 0 and 1 is added. This adds variation to the 

rooftops of the buildings which improves realism within scenes by modifying the output of the 

lighting calculations. 

The algorithm stated allows the PG of any building within the OSM database, and thusly any building 

structure in the World. Initial prototypes have successfully created scenes from Manhattan New 

York, and Liverpool, Manchester, and London in the UK. Figure 90 top left is the OSM map of 

Manchester UK and the procedural scene produced top right, bottom left is Liverpool UK, and 

bottom right is Manhattan New York USA.  

To categories the model mesh objects into specific nodes which is stated by the specification, the 

PVSTagBuilding object is queried to state whether the building is a hospital, police, fire station, 

military, educational, and attached to the appropriate PVSNode within the scenegraph. If not any of 

these they are attached to the ‘other’ PVSNode which is used for the classification of all other types 

of buildings.  
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Figure 89 Building Relation explanation. Shows Outer OSMWay, Inner OSMWay, and Outer OSMWay. The order determines 

which buildings are within one another. 
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Figure 90 Prototype building images. Top right is Manchester UK with accompanying OSM screen capture to the left. 

Bottom left is Liverpool UK specifically Liverpool Women’s Hospital highlighted with red boundary. Bottom right is 

Manhattan New York. Top left image obtained from 

https://www.openstreetmap.org/search?query=trafford%20centre%20manchester%20uk#map=14/53.4719/-2.3126 

7.9.8.3 Generate Highway Models 

If an OSMWay is of type ‘highway’, then a highway model mesh structure is created as well as the 

PVSTagHighway object. Due to the large amounts of highway structures (Roads, Link Roads, Paths, 

Waterways, Specials etc.), the PVSTagHighway has alternative tag structures which have default 

values applied to the data, dependent on the classification of the highway. Many highway structures 

are unclassified. If they are classified then much of the information needed is missing. This 

information may be the width of the highway, number of lanes, road markings, names etc. Each 

PVSTagHighway object is created with default values. The information extracted from the OSM data-

base overwrites this default data. The default data is populated by research, and recommendations 

from professionals, and OSM. 

The use of Catmull-Rom interpolation in conjunction with the ‘HighwayInterpolationValue’ are used 

to generate additional points along the OSMWay to increase the model tessellation. This improves 

realism by removing sharp corners which come with working with low resolution highway 
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representations. The higher the ‘HighwayInterpolationValue’, the increased number of vertices will 

be created and the smoother highway model mesh objects will be. 

The interpolation of points are used as the centre of the highway structure along the path. Using the 

mathematical function of the Cross-Product58, the edges of the highway structure are created by 

taking the width of the highway from the PVSTagHighway object, halving this value, and multiplying 

the Cross-Product vector direction by this amount. Negating this process creates a point the 

opposite side. Vertices are created using these two Cross-Product generated points. Polygons are 

created like this through the highway structure. See Figure 49 for visual representation of this 

algorithm. 

The model mesh object is attached to the appropriate node within the scenegraph by classification 

from the PVSTagHighway. 

7.9.8.4 Generate Single Models 

We currently use procedural cube mesh objects which have varying textures applied to them for 

depicting certain areas, or assets; bars, banks, parking etc.  

The single nodes have attached the PVSTagAmenity.  

7.9.8.5 Generate Waterway Models 

The water OSMWay models are a cross between a boundary and a highway. The boundaries can be 

lakes of water, whereas rivers are classified as highways. We have created methods to determine 

the classification of the waterways or water boundaries and place them within the scenegraph 

accordingly. They have the same processes of generation as that of a boundary model mesh or a 

highway model mesh dependent on their type. The rendering technique and textures are predefined 

for this type of object.  

7.9.9 Create and Assign PVSNode attributes for serialisation 

A PVSNode is created with a unique ID. If a PVSNode does not have a name attached to it, the ID will 

become its name. The name otherwise will be populated by the OSM data. The importance of the 

name is for reference by other PVSNodes; its parent, or its children. This is needed, along with the 

full path of the PVSNode within the scenegraph due to the inability for the PVSXMLSerialise to 

serialise cyclic references. The path name is built by traversing the scenegraph to the root node, 

returning a concatenated string of PVSNode names. It is this path which the serialised XML file, and 

                                                           
58 http://mathworld.wolfram.com/CrossProduct.html 
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the formatted XNB file is save as. An example of this is; 

“world.s.sj.sj38.sj3189.osm.buildings.other.Royal Liver Building”. 

The bounding boxes are generated by combining all bounds higher in the scenegraph, starting with 

the model part bounds, and reclusively back tracking to the base of the scenegraph combining the 

bounds together. 

Once all attribute parameters are referenced between parent and child relationships of the 

scenegraph, the XML serialisation of each PVSNode of the scenegraph is processed. As stated, the 

MS Build process XNA uses allows only a single input, single output pipeline. XML serialisation side 

steps this drawback. The files are reprocessed to write the nodes to the optimised XNB format.  

7.10 Conclusion  

To conclude this chapter, we have presented the implementation of internal APIs’ used within the 

PVS framework. We have stated the software of choice and presented the advancements which MS 

Build provides PVS to compile objects pre runtime. External animation and interpolation, 

triangulation, projection conversion of Dot.NetCoords, and the Microsoft LINQ language APIs’ are 

also presented for their use within the pre-processor as well as the runtime application. Procedural 

generation algorithms are presented which in turn check error prone big geospatial data, for the 

generation of 3D model mesh data. The pre-processing of this data allows for improved loading 

speeds at runtime. The internal APIs’ of PVS Camera Library, PVS Input Manager, PVS XML Serialiser 

and OSM Enumeration are also used within the runtime application processing.  

The next chapter discusses the implementation of the runtime application, specifically the 

algorithms used for processing and rendering, combined with the IVI.  
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8 Processing and Rendering with Interactive 

Visualisation Interface 

Within this section of the chapter we discuss the implementation of the runtime algorithms used 

visualise the processed big-geospatial data in a real-time application. Interaction of the application is 

performed through the IVI which allows dispersal of shader index values to change a scenes visual 

parameters within milliseconds. The IVI also allows data searching on a scene basis, searching for 

user defined queries and applying user generated spatial or visual controllers to depict objects from 

a breath of big geospatial data renderings. 

8.1 PVS Runtime 

The runtime system is built of many components, class objects, managers, hierarchies, helper classes 

and functions. Figure 32 shows the high-level design and interconnection between objects within the 

runtime system. The system resolves around PVSSpatial and its inheriting object of PVSNode which 

creates the scenegraph structure which all assets will be attached, or loosely affiliated with. An 

example of an affiliated object is the Light Manager which is explained next. We also explain the 

implementation of the components of spatial controllers, material controllers, model and model 

part objects, with the accompanying material object each model part contains. The material is used 

to pass parameters to the IASF which we will discuss with the accompanying GPU render state 

selection algorithm. The IVI system is also explained for its role in varying input and scene 

visualisations. 

8.1.1 PVSSceneLightManager 

The PVSSceneLightManager is responsible for the creation, updating, and rendering of 3 light 

structures. A light structure holds the relevant information needed for rendering; position, direction, 

colour, and linear, constant, and quadratic attenuations. These are the global lights which can be 

stored within each of the model parts PVSMaterial object as a reference, or the model can choose to 

use its own light structures, or copy light structures of the scene. This provides flexibility with the 

lighting parameters of a scene. Instead of creating a material controller which changes the material 

properties of selected models, a PVSLightDescription can be created and attached to the 

PVSMaterial as a reference. Changing the parameters of the PVSLightDescription will change the 

renderings of all models which reference that PVSLightDescription. This allows scalability and 

flexibility to scene manipulation and visualisation. 



192 
 

The PVSSceneLightManager has a reference to the base PVSNode of the scenegraph. This allows the 

PVSSceneLightManager to manipulate the scene as needed. An example of this is forcing the current 

3 PVSLightDescriptions onto every model within a scene; unifying the visualisation of the scene.  

The PVSLightHelper is a static class which contains regenerated PVSLightDescriptions. 

The PVSLightDescription contains attributes needed to for lighting calculations, and to manipulate 

the light parameters by input controls. Figure 91 shows the PVSLightDescription structure. It 

contains attributes which are used to describe both directional and spot lights. As stated, a point 

light is not utilised due to the point light equation can be encapsulated into the spot light equation. 

The attributes are duplicated on the IASF effect HLSL file except the enabled Boolean and light type 

enumeration. These are utilised CPU side to select the shader index of the IASF array lookup 

variable. This is explained more in section 8.5. 

Due to the scene allowing only 3 lights, the encoding of the lights within the IASF needs to be 

considered. Please see section 8.5.2. 
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Figure 91 PVSSceneLightManager class diagram and supporting class objects. 

8.1.1.1 Light Data-Structure 

As with the material structure, we have created and used a light structure. This structure contains 

parameters pertinent to describing common light definitions. These lights we cover are; ambient 

light, spot light, and point light. We state that a spot light and a point light calculation can be 

collapsed into one another. The data structure contains; position, direction, colour, spot angle, a 

constant attenuation, linear attenuation, and quadratic attenuation. These are stored as an array 

within the effect object. During updating and passing of light data to the effect object from the CPU 

to the GPU, the lights are reordered dependent on which lights are enabled or disabled.  
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8.1.2 Middle-out Loading of the Scenegraph at Runtime. 

In the runtime simulation, the loading of the scenegraph is created using a middle-out technique. A 

user can select a 1km2 tile with the node name of “world.s.sj.sj38.sj3189”. Its parent node of “sj38” 

with path name of “world.s.sj.sj38” is loaded next, and recursively loops until the node being loaded 

does not have a parent. The node which does not have a parent will be the base of the scenegraph. 

The node of “sj3189” will have an array of child node path references which it will load accordingly. 

Because the parent node and children nodes of the node being loaded are stored in separate 

references, the scenegraph structure can be generated using a multithreaded approach.  

With nodes being loaded from the middle to the base of the tree, the children of the nodes to the 

left of the currently selected node will not be loaded. This is to reduce the number of objects loaded. 

Figure 92 shows the middle out loading starting at the SJ3189 node. The green nodes are the nodes 

which represent OS nodes; 1km2, 10km2, 100km2, 500km2, and the base node which represents the 

world. The nodes in red are ones which may be generated and stored but are not loaded. The blue 

nodes represent the OSM objects. 

If additional nodes are loaded, they are checked to see whether they are held within the scenegraph. 

This allows for adjacent tiles to be loaded, and removed with minimal of processing.  

 

Figure 92 Middle out loading. Green represents the OS nodes of the scenegraph, red are nodes which are not loaded, and 

blue are nodes which represent the OSMNodes. 

8.1.3 PVSSpatial and PVSNode 

The PVSSpatial is a node object which the scenegraph is built from. It inherits from 3 interface 

classes of;  
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 IInputUpdatable – inherited classed implement an update function which takes in the time-

per-frame, the total passed time, the PVSInputManager, the current cameras view matrix, 

and the current cameras projection matrix. This guarantees the classes which utilise this 

interface can update the most common user controlled objects. 

 I3DRenderable – demands inherited classes implement the render function which takes as 

parameters the current cameras view matrix, and projection matrix. This will be used to 

render objects without passing a reference of the currently used camera. Technically the 

camera may not even be used and a custom view or projection matrix may be entered. 

 I3DCamRenderable – demands inherited classes implement a rendering function which takes 

as a parameter of the IPVSCamera interface. This allows the passing of many of the 

implemented camera object types. The view and projection matrices will be extracted in the 

calling function. The reason for multiple render functions is because not all cameras utilise 

the IPVSCamera interface. 

Figure 93 shows the class diagram of PVSSpatial and PVSNode. 

The PVSSpatial object stores a reference to the current graphics device which is used for rendering. 

The reference pointer improves efficiency within the render function than passing the object 

through as a parameter. The PVSModel may be stored as a null attribute. The original translation, 

rotation, and scale vectors are stored and these will not be modified. The modification to the 

translation, rotation, and scale will occur on the separate variables references. This removes the 

need to load the data from file when the scene is set back to an original state. The PVSSpatial object 

stores the current world matrix which is a combination of the translation matrix, rotation matrix, 

and scale matrix used for rendering the object within the world. This data is normally processed on 

the GPU, but offsetting it CPU side improves rendering framerates. The identity matrix is used for 

normal mapping shading techniques. The class stores a reference to another PVSSpatial object which 

will be its parent in the scenegraph. If a parent reference is null, the assumption that it is the base of 

the scenegraph can be made. The PVSSpatial also stores a List<IControllerSpatial> which stores the 

spatial controllers attached to the object. Within the update call, the iteration of the controllers will 

be updated which modify the parameters of the PVSSpatial object they are attached to. When a 

spatial controller is attached, the function attaches a reference of the PVSSpatial object to the 

controller. This allows communication through the objects. A Boolean value is stored to state if it 

uniformly scaled. If it is not, then further calculations are needed as non-uniform rendering of 

models using normal mapping techniques will present issues. The PVSSpatial has Boolean flags to 

skip the rendering, and updating calls. This is used to cull objects from a scene, but not to remove 

them from memory, nor from the scenegraph. 
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An initialisation Boolean flag is triggered after instantiation. This function call creates references 

from the object to the PVSMaterial object held within the model parts of the attached model. This 

allows communication between PVSMaterial objects and the hierarchy it is contained in. Some 

material controllers rely on communication between the PVSMaterial, and the PVSSpatial object, 

thusly this reference between them allows for skipping of additional function calls between objects 

within the scenegraph between PVSMaterial, to model part, to PVSModel, to PVSSpatial object. 

An additional Boolean flag is used to state that the PVSSpatial has not been modified. This will skip 

the updating of parameters, and recalculation of the world matrix. This is also communicated to the 

PVSMaterial object attached to model parts which will not recalculate lighting parameters, or other 

material properties. 

The PVSSpatial node is intended to act as a leaf node of a scenegraph. If a node is intended to 

contain children, then the class is inherited by the PVSNode.  

Using the two classes of PVSSpatial, and PVSNode, large scenes can be created, updated, and 

visualised.  
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Figure 93 PVSSpatial and PVSNode class diagram. 

The initialise method is used to initialise the PVSSpatial node by attaching the graphics card for 

rendering, attaching the node to the model mesh object, and attaching the model parts to their 

respective material objects. It internally updates its bounding box and sphere volumes, and 
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combines its parents world matrix with its own as to translate, rotate, and scale the node properly, 

setting the ‘_world_transform_is_correct’ to false to force an update of the complete tree on its first 

update. This creates a new reference of the controller list, setting whether the object is uniformly 

scaled, and then setting the ‘initialised’ parameter to true. 

8.1.3.1 Additional Functionalities of the PVSSpatial and PVSNode Object 

The other functions within the PVSSpatial class consist of; 

 Attach controller – attaches a spatial controller to the list of controllers controlling this node. 

The parameters passed allow the user to check if a controller of the same type is contained. 

If it is already contained it can either be added again or not.  

 Remove controller – if the list of controllers contains an instance of a controller then it will 

be removed. This does not work on the ‘type’ of a certain controller, only the referenced 

object.  

 Check controller list contains controller type – this function checks if the controller list 

contains a certain ‘type’ of controller and return true or false. 

 Apply material to all model parts – this function checks if a model object is attached; if true 

then it will iterate the model parts within the model and apply the material to each. 

 Apply material controller to model – if a model object is attached this will iterate over the 

model parts and attach a material controller to each part.  

 Reset default material – each model part contains the currently used material and its original 

material loaded from disk. This function will reset the currently used material to its original. 

 Reset material controllers – this function clears the list of material controllers for each 

model part of the attached model object and removes the no default controllers. 

 Delete all spatial controllers - removes all the spatial controller attached to the node. This 

does not reattach the defaulted needed controllers. 

 Reset default spatial parameters – this resets the currently used parameters to their original 

values. This allows the user to translation a node and then to reposition it to its original 

parameters. 

 Apply lights to model – this function applies user defined lights and applies the lights to each 

part of the model object. 

 Attach world matrix – attach a new world matrix. 

 Attach parent – attaches a parent reference to this node 

 Attach parent set child – attaches a parent reference to this node, and then attaches the 

current nodes to its parents’ child list. 
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 Restore material to original – restores each model parts material to its original parameters. 

 Delete all material controller – deletes all material controls within each of the model parts 

within the attached model object. 

The virtual functions which are intended to be overridden by the inheriting class of PVSNode are 

listed; 

 Update – explained in next section. 

 Render – explained in next section. 

 Attach spatial controller to tree – attaches a spatial controller to every node within the 

scenegraph. 

 Attach material controller to tree – attaches a material controller to all model parts of the 

model held in each node within the scenegraph. 

 Apply material to all of tree - attaches a material to all model parts of the model held in each 

node within the scenegraph. 

 Apply effect to all of tree – applies a HLSL effect object to each model part of the model of 

each node.  

 Apply graphics state to all of tree – applies a graphics state enumeration value to each 

model of edge node. 

 Apply shader index to all of tree - applies the rendering shader index to be used by all model 

parts of each node within the scenegraph. 

 Reset default material to tree – resets all material object to its original parameters for the 

model parts of each model of each node within the scenegraph. 

 Delete all material controllers to tree – deletes all material controllers within each model 

part of the model in each node of the scenegraph. 

 Delete all spatial controllers to tree – deletes all spatial controllers within each node of the 

scenegraph. 

 Reset default spatial parameters to tree – this deletes all the spatial controllers within each 

node of the scenegraph and then applied the default needed spatial controllers to each node 

of the tree. 

 Apply lights to tree – attaches lights to each model part of the model attached to each node 

of the scenegraph.  

There are two virtual functions which are intended to be overridden within the derived class of 

PVSNode. These are the update function, and the render function. On the update of a PVSNode, its 

spatial controllers are updated. If the PVSNode needs updating, the spatial matrices will be updated. 

The update will update the material parameters of all model parts attached. Each update call on a 
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PVSNode will call into its children’s update functions. This is a recursive function. This allows the 

updating of the scenegraph. A check is made during the update to see if the PVSNode should update 

its children, or itself. This allows pruning of branches of the scenegraph. The same technique is used 

for the rendering of the model data within the PVSNode; pruning branches of the scenegraph which 

do not need to be rendered.  

8.1.3.2 PVSNode connections and links through framework 

Figure 94 shows the reference connections between the objects within the scene with the 

PVSSpatial and attached objects of PVSTag, PVSModel, model parts, and PVSMaterial as well as the 

spatial controllers and material controllers.  

The culmination of these references allows for the rendering of large scenes, and customisable 

controllers to be attached to both PVSSpatial node objects, and the material object. This allows for 

every object be it spatial parameters to the visual representation of objects, to be modified, 

animated, or user defined.  

 

Figure 94 Referenced objects between each other. 
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8.1.4 Controller: Spatial and Material 

We discuss the controllers of both spatial and material due to their similarities and main difference 

is the object for which they are attached; PVSSpatial or PVSMaterial. 

Figure 95 and Figure 96 show the class diagrams for the material and spatial controllers. Controllers 

come in two forms; a tweener controller, and a non tweener controller. The use of the interface 

which controller inherit from is to allow storing of various types of controller within a single array 

structure, and allows updating of all controllers by calling the overridden update function.  

The controllers have references to the objects for which they are attached. If additional references 

to objects are needed, the constructor is extended to input these references. As a minimum, the 

application timer, and input manager is referenced. 

The tweener controller has a reference to a tweener object which is used for 

interpolation/animation. See section 7.3.1 for an explanation of the animations and interpolations 

provided by the tweener object. It also has an array of parameters passed through the constructor 

and a string name reference used to connect to a property of the attached object. The use of the C# 

params59 keyword is used to pass through an array of objects. For example, an array of numerical 

values. The values are used in tandem with the property name. The property name will be used to 

extract the corresponding property from the attached class object type. For example, passing the 

string representation of DiffuseColour will query the attached object type, in this example the 

Material object, and return a Get/Set property, allowing the getting and setting of the diffuse colour 

variable which is a Vector4 type holding the RGBA values used on the GPU. The array of integers act 

as the indices to the RGBA or XYZW of the Vector4 object. A switch case is used to state which 

parameters of the property are to be modified. A switch statement is used to allow combinations of 

the parameter indexes to be used. i.e. if [0, 1, 2, 3] is passed through as an array, then the XYZW 

components of the Vector4 will be updated according to the interpolated value of the tweener. If [0, 

3] are passed, then only the X, and W components are altered.  

This functionality allows for any property of both the PVSSpatial, and the Material object to be 

modified, updated, animated, and interpolated. The PVSSpatial, and Material objects can have any 

number of controllers attached to create interesting effects, and encode user defined data onto 

single or multiple objects within a visualised scene. For example, objects which need to be brought 

to the attention of the user can be animated by pulsating the scaling of a building, as well as 

pulsating the R component of the diffuse colour. 

                                                           
59 https://msdn.microsoft.com/en-GB/library/w5zay9db.aspx?f=255&MSPPError=-2147217396 
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We highlight the alternative use of the controllers next by stating the connections between the 

controllers and other components such as the 3D camera system for the reduction of processing and 

parameter passing by only updating and recalculating world matrices if either the camera or the 

PVSSpatial have been modified.  

 

Figure 95 PVSMaterial Controller class hierarchy for the two default controllers for each model part of each model object. 
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Figure 96 Spatial controller class diagrams. 

8.1.4.1 Shader Camera Hook-up 

This class is responsible for setting Boolean properties within the Material object. It checks the static 

Boolean ‘IsCameraDirty’ contained and set within the PVSCameraLibrary. If the ‘IsCameraDirty’ is set 

to true, then the parameter is passed to the Material Object, as well as setting the view vector, and 

the camera position parameters within the Material object. These are also retrieved by the static 

Boolean properties held and set within PVSCameraLibrary of EyeVector and EyePosition respectively.  

Additional research is needed to determine whether this approach is appropriate and also the 

fastest in terms of processing and rendering speeds. We assume that the processing of setting three 

static members with one update call to the currently employed 3D camera, if the properties change, 

only then update the PVSMaterial object, will be faster than extracting the view vector and view 

position within the IASF in either the Vertex Shader function or Pixel Shader. 
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8.1.4.2 Shader World Dirty Hook-up 

If a PVSNode has moved by translation, rotation, or scale, the lighting calculations are needed to be 

updated. The PVSNode has a Boolean value ‘IsWorldTransformCorrect’, which is checked and set on 

each frame. If the PVSNode has translated, rotated, scaled from the previous frame, the 

‘IsWorldTransformCorrect’ is set to false. On the update of the ‘ShaderWorldDirtyHookUp’ 

controller, it checks this Boolean value, and if the attached PVSNode has been translated, the 

controller will pass the message to the PVSMaterial object, stating to update the lighting calculations 

of the model. This will recalculate the WorldViewProjection matrix, World matrix, and EyePosition, 

and pass them to the IASF effect object.  

Using this controller as a default releases the need for a direct connection between the PVSSpatial 

and the PVSMaterial objects of each model part. Not all PVSSpatial objects have an attached 

PVSModel, hence do not need the attachment of this type of controller, saving processing where not 

needed.  

8.2 PVSModel 

The PVSModel object implemented as the specification and design sections states. It contains a list 

of model parts, which in turn contains the PVSMaterial and IASF effect reference. The PVSModel 

object has additional functions to allow data dispersal between the nodes of the scenegraph 

structure, and the model parts. The functions are omitted from the class diagram shown in Figure 

97.  
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Figure 97 PVSModel and model part class diagram 
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8.3 PVSMaterial 

The PVSMaterial class diagram is shown in Figure 98. The class is large, and thusly the image shows 

the fields to the left, properties in the middles, and the methods to the right. The PVSMaterial 

contains information needed for all lighting and effect techniques which the IASF is capable of. 

Addition of more shading techniques or effects may incur the need to update the PVSMaterial class. 

The class has been designed to contain data needed for a majority of common lighting and shading 

techniques. 

PVSMaterialDescription class shown in Figure 99 is used to quickly set the basic parameters needed 

for basic rendering techniques. The PVSMaterialDescription contains the ambient, diffuse, emissive, 

specular colours, and the specular power. The PVSMaterialDescription is duplicated within the IASF 

effect HLSL file, thusly the data can be passed to the effect file. Before data is uploaded to the IASF 

effect file, it passes through an optimiser as depicted in Figure 100. Figure 100 shows the flow of 

data from the model parts PVSMaterial, updated by the optimiser, to the effect to render the model 

part. The optimiser is responsible for updating only the properties which need to be updating, as 

well as compressing data, and removing unneeded data. For example, the ambient and emissive 

colour values can be combined CPU side and passes as a single colour. The outcome is the same. 

Only the sum of three Vector4 objects occurs for a model part, instead of summing the value for 

each vertex or each pixel. We discuss further the HLSL effect object and the optimiser next. 
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Figure 98 PVSMaterial class diagram. Left is fields, middle is properties, and right are methods. 
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Figure 99 PVSMaterialDescription structure. Used to group material parameters commonly used on model mesh rendering. 

 

Figure 100 Material data flow from model part material, through the optimiser, to the effect object for rendering. 

8.4 HLSL Effect Object and Effect Optimiser 

We have utilised the HLSL effect object used for the XNA API. The effect file is to be used for all 

objects within a scene for rendering which reduces the effect count of; many to 1 instance. The 

effect file contains all the parameters, properties, functions, and structures needed to implement 

multiple rendering techniques. As stated, the name of this type of effect file is called IASF. Models 

being rendered using the effect file need the vertex data structures to contain correct data; position, 

UV coordinate, binormal, and tangent value. 

The effect optimiser tracks which effect parameters need to be recomputed during the OnApply 

function call. It utilised flags in the form of an enumeration. The enumeration type allows for the 

testing of the values in switches and if-statements. They are used as bit-fields, bit 1 is a flag which 
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states the WorldViewProjection matrix needs updating, whereas bit 8 states the material colour 

needs to be recomputed. The enumeration values need to have the values assigned. 

The enumeration representations are shown in Table 16. 
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Name Value Bit Representation 

WorldViewProj 1 1 

World 2 10 

EyePosition 4 100 

MaterialColor 8 1000 

Textures 16 10000 

ShaderIndex 32 100000 

EyeVector 64 1000000 

ViewPort 128 10000000 

Material 256 100000000 

Lights 512 1000000000 

MaterialIntensity 1024 10000000000 

ClipPlane 2048 100000000000 

Alpha 4096 1000000000000 

Bumppower 8192 10000000000000 

TotalTimer 16384 100000000000000 

Water 32768 1000000000000000 

Farplane 65536 10000000000000000 

AmbientEmissiveAlpha 131072 100000000000000000 

All -1 -1 

Table 16 Effect dirty flag enumeration representation. 

The enumeration is instantiated in the PVSMaterial object. Within the update of the PVSNode, and 

the material controllers, various properties may be modified. Within the setter functions, the 

property is updated, and the corresponding flag is modified to be declared as ‘dirty’. For example, 

setting a new diffuse colour will set the MaterialColor flag to 1, and the translation of the model will 

set the WorldViewProj, and World flags will be set to 1. This gives; 1011.  

The combination of dirt flags are sent to the effect helper and checked. If a flag is set as dirty, the 

parameters are recalculated, and uploaded to the GPU. The binary flags are removed from the dirty 

flag enumeration. The checks are completed by utilised binary bitwise operations. To check if the 

flag has been set, the dirty flag is compared using the single bitwise AND operator. If the value is not 

equal to 0 then the recalculation and upload to GPU will commence. After recalculation, the dirty 

flags variable will have the current flag removed using the bitwise complement. 
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We utilise this technique to group commonly changing properties such as the WorldViewProjection 

matrix along with the separate World, View, and Projection matrices together. They are then 

recalculated together, optimising the calculations to only be done when needed. 

The other parameters which are passed through to the effect file are shown in Table 17. We also 

state the intentions for the parameters. 
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Datatype Name Description 

Matrix 4x4 World World matrix of the model 

View View matrix of the camera 

Projection Projection matrix of the camera 

WorldViewProj Combined matrix of the World, View and Projection 

matrices. 

WorldInverseTranspose Inverse world matrix. 

Vector4 ClipPlane Used for depth tests. 

Vector3 EyeVector View direction. 

EyePosition The 3D position of the camera. 

Float Ambient Intensity Intensity value between 0-1. 

Diffuse Intensity Intensity value between 0-1. 

Specular Intensity Intensity value between 0-1. 

Emissive Intensity Intensity value between 0-1. 

Alpha Alpha value between 0-1. 

Bump Power Intensity of the normal-mapping. 

Total Timer Total simulation passed time. 

Wave length The length of wave used for water rendering. 

Wave Height The height value of the wave for water rendering. 

Wave Speed The speed value of the wave for water rendering. 

FarPlane Distance to farplane. 

Int ShaderIndex The index value for choosing the rendering technique. 

Viewport Width Width of the viewport. Used for occlusion techniques. 

Viewport Height Height of the viewport. Used for occlusion 

techniques. 

Mip Level Used for sampling of mip-mapped textures. [80] 

Material 

Structure 

_Material  Material structure used for storing the ambient colour 

and others.  

Light Structure Lights[n] An array of light structures used to store the multiple 

lights applied to a scene.  

Table 17 Properties within the effect file. 
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8.4.1 Texture rendering for unified Terrains  

Graphical programmers often do not combine per-vertex rendering with textures. When rendering a 

model mesh with a texture, the texture is sampled for the given pixel, so is often used with per-pixel 

rendering. It is uncommon enough that some GPUs do not allow this functionality of sampling a 

texture within the vertex function of the effect file, and will often default to a pre-defined colour; 

normally black. We stated that this is a large issue, especially with rendering terrains utilising real-

world map textures. We state that utilising per-vertex shading sampling textures within the vertex 

function is needed for the instance that a model mesh can be the same width and height of a 

texture, i.e. terrain maps are often square, and textures can be placed on top of that model mesh. If 

the texture is the same width and height in pixels as the terrain is with vertices, using per-vertex 

texture sampling will be less processing than that of per-pixel, but with the same result.  

8.4.2 Vertex Texture Fetch 

Stated in the specification, the IASF will contain a configuration which uses per-vertex Blinn-Phong 

and per-vertex Phong shading with ‘vertex texture fetch’, which is available within shader model 3, 

and with certain NVIDEA graphics cards.  

The keyword is ‘tex2Dlod’60,61 is used to extract texture information within a vertex shader function. 

This is limited to the pixel location, which is suitable for placing textures onto model mesh object 

with the same width and height of vertices as the textures pixel. The terrain data and terrain texture 

overlays are of equal parameters, and this technique is suitable. 

Although this is possible, it would be unjust due to the increased processing needed; which negates 

the use of an IASF. We reserve the need to use this technique in special case circumstances. 

8.5 Indexed Array Shader Function Implementation 

This section discusses how the IASF has been implemented within the PVS framework. This is how 

IASFs are intended to be implemented, but our version has supporting classes to streamline 

development and increase performance.  

Table 18 shows the bit-field representation used for combining the varying rendering techniques 

which can be combined and applied to a model mesh. Table 18 also contains ‘Special’ instances of 

techniques; flat shading, and texture only. These techniques cannot be combined with other 

techniques. These types of special values can be referenced bit values higher than needed for the 

techniques which can be combined. Table 18 shows that per-vertex and Blinn-Phong both have the 

                                                           
60 https://msdn.microsoft.com/en-us/library/windows/desktop/bb509680(v=vs.85).aspx 
61 http://http.developer.nvidia.com/Cg/tex2Dlod.html 

https://msdn.microsoft.com/en-us/library/windows/desktop/bb509680(v=vs.85).aspx
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same bit value which is 0 in decimal. This is because all model mesh objects will be rendered as 

default per-vertex Blinn-Phong shaded. Combining other techniques (Diffuse mapped, Normal 

mapped, Specular mapped, reflection, refraction, hemispherical) with per-pixel rendering will only 

need the addition of ‘2’ added to the shader index. To improve rendering quality and realism, but 

increase processing, adding ‘1’ will shade objects using the Phong lighting equation instead of Blinn-

Phong equation. This proves interesting because, if framerates are below an acceptable value, then 

selected assets can negate a value of 1 from the shader index and be rendered using the Blinn-Phong 

lighting calculation instead of Phong (if Phong lighting was already selected). Reducing calculations 

further, negating 2 from the shader index will convert the models rendering from per-pixel to per-

vertex. This is a form of LoD. There are 255 combinations of shading effect we can utilise; this does 

not include the use of different lights. 

Table 19 shows a subset of the index value and the corresponding lighting calculations and rendering 

techniques used. With the large amount of combinations, we have not displayed them all. 
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Technique Bit Value Binary Representation 

Per-Vertex 0 0000000000000000 

Blinn-Phong 0 0000000000000000 

Phong 1 0000000000000001 

Per-pixel 2 0000000000000010 

Diffuse Mapped 4 0000000000000100 

Normal Mapped 8 0000000000001000 

Specular Mapped 16 0000000000010000 

Reflection 32 0000000000100000 

Refraction 64 0000000001000000 

Hemispherical 128 0000000010000000 

Light 1 A 0 * 256 = 0 0000000000000000 

Light 1 P 1 * 256 = 256 0000000100000000 

Light 1 A Light 2 A 2 * 256 = 512 0000001000000000 

Light 1 A Light 2 P 3 * 256 = 768 0000001100000000 

Light 1 P Light 2 A 4 * 256 = 1024 0000010000000000 

Light 1 A Light 2 A Light 3 A 5 * 256 = 1280 0000010100000000 

Light 1 A Light 2 A Light 3 P 6 * 256 = 1536 0000011000000000 

Light 1 A Light 2 P Light 3 P 7 * 256 = 1792 0000011100000000 

Light 1 P Light 2 P Light 3 P 8 * 256 = 2048 0000100000000000 

No Lights Special User defined 

Flat Shader Special User defined 

Texture Only Special User defined 

Environment Mapped Special User Defined 

Table 18 Bit-field layout structure for our Indexed Array Shader Function. Special values are for unique rendering techniques 

which cannot be combined with other techniques. 
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Shader Index Value Vertex or Pixel Shaded Lighting Calculation Diffuse Textured Binary 

0 Per-Vertex Blinn-Phong  0000 

1 Per-Vertex Phong  0001 

2 Per-Pixel Blinn-Phong  0010 

3 Per-Pixel Phong  0011 

4 Per-Vertex Blinn-Phong True 0100 

5 Per-Vertex Phong True 0101 

6 Per-Pixel Blinn-Phong True 0110 

7 Per-Pixel Phong True 0111 

Table 19 Shader index subset representation showing index value and correspond rendering technique and binary 

representation. 

8.5.1 Indexed Array Shader Function Index Selection 

Within this section we show the technique we will use to determine the shader index needed for 

rendering objects by a specific shading technique. 

Due to the size of the number of permutations of shader we need to develop, maintain, and adapt, 

we will focus on the most common permutations of techniques; per-vertex, per-pixel, Blinn-Phong, 

Phong, texture 01, texture 02, texture 03, reflection, refraction, and hemispherical. Texture 01, 02, 

and 03 represent diffuse, normal, and specular texturing. This section will not state all the 

permutations of the techniques shown in Table 18. but introduce the technique for combining the 

techniques to generate the permutations.  

To represent the technique to use, a bit-field will provide the flexibility needed to create the number 

of permutations needed; 255 with initial estimates. The bit-field is used to encode states of 

rendering. Per-vertex is a state, while per-pixel is another state. Textured is a state, while non-

textured or normal textured are other states. These can be used together or separately; for which a 

bit-field is best suited. 

To encode 10 functions, 8 bits will be needed. The bits we are representing are as stated in Table 20. 
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Technique Binary Representation Index 

Per-Vertex 00000000 0 

Blinn-Phong 00000000 0 

Phong 00000001 1 

Per-Pixel 00000010 2 

Diffuse Textured 00000100 4 

Normal Textured 00001000 8 

Specular Textured 00010000 16 

Reflection 00100000 32 

Refraction 01000000 64 

Hemispherical 10000000 128 

Table 20 Technique and Binary representations with shader indexes for use with the Indexed Array Shader Function. 

The reason why we use 0 for per-vertex and Blinn-Phong is because this will be the default rendering 

technique for all models. Offsetting the Per-pixel techniques to bit 2 instead of laying it next to 

related per-vertex function allows for equal offsetting of techniques between per-vertex and per-

pixel rendering. 

Table 21 displaying the per-vertex and per-pixel layouts from 0 to 31. Each value between these 

represent a technique, or a combination of techniques. There are 255 combinations for the 

techniques shown in Table 20. Additional values are needed for custom techniques; rim-lighting, 

post-processing.  

Table 21 shows the 31 permutations and the binary representations they are encoded as. During the 

implementation phase, the rest of the permutations will be encoded.  

The next section shows how we intend to encode the light structures for improved rendering, and to 

minimise the branching within the GPU. 
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Shader 

Index 

Shader 

Function 

Lighting 

Model 

Diffuse 

Texture 

Normal 

Texture 

Specular 

Texture 

Binary 

Representation 

0 Per-Vertex Blinn-Phong    00000000 

1 Per-Vertex Phong    00000001 

2 Per-Pixel Blinn-Phong    00000010 

3 Per-Pixel Phong    00000011 

4 Per-Vertex Blinn-Phong Yes   00000100 

5 Per-Vertex Phong Yes   00000101 

6 Per-Pixel Blinn-Phong Yes   00000110 

7 Per-Pixel Phong Yes   00000111 

8 Per-Vertex Blinn-Phong  Yes  00001000 

9 Per-Vertex Phong  Yes  00001001 

10 Per-Pixel Blinn-Phong  Yes  00001010 

11 Per-Pixel Phong  Yes  00001011 

12 Per-Vertex Blinn-Phong Yes Yes  00001100 

13 Per-Vertex Phong Yes Yes  00001101 

14 Per-Pixel Blinn-Phong Yes Yes  00001110 

15 Per-Pixel Phong Yes Yes  00001111 

16 Per-Vertex Blinn-Phong   Yes 00010000 

17 Per-Vertex Phong   Yes 00010001 

18 Per-Pixel Blinn-Phong   Yes 00010010 

19 Per-Pixel Phong   Yes 00010011 

20 Per-Vertex Blinn-Phong Yes  Yes 00010100 

21 Per-Vertex Phong Yes  Yes 00010101 

22 Per-Pixel Blinn-Phong Yes  Yes 00010110 

23 Per-Pixel Phong Yes  Yes 00010111 

24 Per-Vertex Blinn-Phong  Yes Yes 00011000 

25 Per-Vertex Phong  Yes Yes 00011001 

26 Per-Pixel Blinn-Phong  Yes Yes 00011010 

27 Per-Pixel Phong  Yes Yes 00011011 

28 Per-Vertex Blinn-Phong Yes Yes Yes 00011100 

29 Per-Vertex Phong Yes Yes Yes 00011101 

30 Per-Pixel Blinn-Phong Yes Yes Yes 00011110 

31 Per-Pixel Phong Yes Yes Yes 00011111 

Table 21 Shader Index permutation combination and binary representations 
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8.5.2 Encoding Lights into the Indexed Array Shader Function 

Section 8.5.1 states the encoding of rendering permutations using bit-fields. We have not stated the 

design to encode lights into the IASF, but we have specified within the specification section that the 

framework will utilise forward rendering with three lights.  

The use of lights within the scenes can be encoded into the permutations by offsetting the values of 

the encoded rendering techniques by the total number of encoded techniques. To optimise and 

restrain the use and design of the IASF with respect to the lights passed from the PVSMaterial, the 

order of the lights is important. We have stated the two lights are needed; ambient and point. An 

algorithm is needed to organise the combinations of these lights. The organisation of the lights will 

put the ambient lights before the point light. This will create a unified offset which is used to 

determine the rendering technique and functions chosen. Figure 101 shows the IASF techniques to 

the left, and the light combinations in the middle which provides the offset. The algorithm is needed 

within the material object or the material helper, and will organise the lights when passing to the 

GPU, or when a light is modified. 

 

Figure 101 Light encoding offset description. Left is the Indexed Array Shader Function techniques, right is the offsets of the 

light types and combinations. A is ambient light type, P is point light type. 

8.6 GPU Render State Management Implementation 

To generate the large varying amounts of render states used for multiple and permutated rendering 

shading techniques we utilise bit-fields similar to the technique used for selecting the IASF functions 

to use stated in section 8.5. The IASF selection technique accounts for a majority of permutations 

and combinations of the commonly used rendering techniques.  

As stated in the design section, four techniques can be employed when changing the state of the 

GPU for rendering model meshes. We iterate that the choice to choose option 4 is valid. The 
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technique is to allow model objects to only change the state of the GPU which is different from the 

previous render.  

The bit-fields are shown in Table 22. 

As stated, the generation of pre-defined enumerations are easily generated. This proves well for 

future additions and combinations of render state selection.  

Blend Mode Value Binary 

Opaque 0 0000,0000 

Translucent 1 0000,0001 

Additive 2 0000,0010 

NonePremultipliedAlpha 4 0000,0011 

CullNone 8 0000,0000 

Cull CounterClockwise 16 0000,0100 

CullClockwise 32 0000,1000 

Solid 64 0000,0000 

Wireframe 128 0001,0000 

EnableDepth 256 0000,0000 

DisableDepth 512 0010,0000 

DepthTestButNoWrites 1024 0100,0000 

StencilShadowMode 2048 1000,0000 

Table 22 Graphics render state calculator bit-field representation. 

8.6.1 Pre-built render state functions 

To allow users to select a rendering technique and accompanying set the GPU render state 

concurrently without the knowledge of setting individual parameters needed, we create pre-

selected rendering options for a user to choose from. This includes default GPU render states, and 

some pre-made render state collections used for transparency, and other techniques. The functions 

are split into two varying techniques; some functions create the GPU render state ‘BlendState’ 

function and return said GPU parameter, while others create a bit-field representation which then 

selects the individual options within the ‘SetRenderStates’ function within the ‘GraphicsStateHelper’ 

class. 

The pre-built GPU render states can be dispersed through the scenegraph to change the visuals of 

assets of single or multiple objects. 
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8.7 Interactive Visualisation Interface 

To aid development, and allow users to utilise the framework coherently, the development and 

implementation of an IVI system is needed.  

The IVI system allows the interaction with the main aspects of the framework; the scenegraph and 

access to individual nodes, the global light manager, search capabilities upon the scenegraph, user 

generated query searches, location trackers, access to models within nodes and their model parts, 

access to the material of model parts to allow modification to GPU properties, and the ability to 

generate controllers which can be attached to properties, or individual components of properties i.e. 

the XYZW components of a Vector4 object.  We will discuss the development of the controller 

generation, the GPU render state generation, and the shader index value calculator. 

8.7.1 Controller Generation 

We have two types of controller to generate; spatial and material. We will depict the creation of a 

material controller as to include the use of the Tweener object which is used to animate the object 

or property it is attached to. 

Properties which of the Material object are either a float, or a float component of a Vector4 object. 

The user can select either. If the Vector4 datatype is chosen, they can choose to which component 

they wish to apply the animation too. The properties are listed in the middle. The user can choose to 

make the animation loop from start to finish, or loop from start to finish back to the start again. The 

multiple functions can be chosen as well from ease-in, ease-out, or ease-in-out, along with the type 

of function; linear, quadratic, elastic etc. The start value, end value, and the timespan which it will 

animate through. The controller can be attached to a single part, the whole model, or applied to all 

nodes of the subtree which are below the selected node. 

This allows for a large number of animation controllers to be applied to many of the properties of 

the material object. 
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Figure 102 Material Controller IVI. 

8.7.2 GPU Render State Generation 

The GPU render states are generated by checking the subsets of the four subset categories; Blend 

Mode, Depth Buffer, Cull Mode, and Fill Mode. All values are contained within an enumeration bit-

field. The default values are set to zero within the enumeration bit-field flag. The subset categories 

are shown in Figure 103. 

All subsets have a default of zero; Opaque is equal to 0, so is: disable depth, no culling and solid. This 

allows for the default settings to be quickly generated. When the user applies the GPU render state 

to either a single model part, or attaching to all model parts of the mode, or to the subtree from this 

node, the check boxes are added together by retrieving the unsigned integer from the enumeration. 

During the rendering, the GPU state which is attached to the material object of the model part is 

checked against the current GPU render state. If the value is different from the current GPU state, 

the GPU state is updated. The check between the current GPU state, and the GPU state needed by 

the model part is done by X-OR operation. If the value is not zero then a render state is different. 

Each subset is checked by using the operation of AND to check if a component in the subset is not 

equal to zero. If it is not, then an element has been changed, and will go through a switch case to 

modify the component which has changed.  
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This technique allows for a large permutation of render states to be applied to all models, or subsets 

of models within a scene.  

 

Figure 103 GPU render state generation and shader index calculator. 

8.7.3 Shader Index Value Calculator 

The choosing of the shader index which in turn chooses the vertex and pixel shader function is also 

shown in Figure 103. The shader index design is shown in section 8.5. The check boxes contained 

within the boxes; per-vertex, per-pixel, Blinn-Phong, and Phong are housed together because the 

design of the IASF uses these values as offsets. The per-vertex and per-pixel cannot be both chosen, 

as with Blinn-Phong and Phong. Texture mapping as will the disuse, normal, and specular maps are 

normally done with per-pixel shading, but as stated in the specification and design section, a user 

may wish to use per-vertex texturing; the model vertices must align with the texture correctly for 

this to be a suitable option for rendering. This does allow for greater flexibility, but must adhere to 

the knowledge and understanding on how the rendering pipeline works. The other elements; 

textured, normal mapped, specular mapped etc. can be combined in any order. This IVI allows the 

modification of the shader index to a single model part, to a whole model, or a subset of the 

scenegraph. This allows great flexibility with specifying the shading parameters of all models within a 

scene. 
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8.8 Conclusion 

We conclude the current framework satisfies the specification needs stated throughout this work. 

The pre-processing pipeline allows the pre-processing of the data sets available, producing outputs 

for use not only within the runtime simulation but within alternative frameworks and projects. The 

pipeline generates data where there was not data, and uses the base and inferred data to generate 

procedural model mesh objects for the visualisation within the runtime environment. To organise 

the data, a scenegraph is implemented. The novel scenegraph structure allows the adaptation, 

organisation, and visualisation of large dense urban environments, while allow dispersal of user 

commands and runtime data structures. Data which is passed through the scenegraph can be used 

for setting material parameter within the custom model object. The material will optimise the 

property settings, calculating results CPU side, before passing them to the IASF effect model on the 

GPU. The IASF utilised with the custom model mesh object allows improved rendering speeds 

through the reduction of HLSL branching, and flexibility with shader indexing allow all model objects 

to be rendered with any combination of lighting and rendering techniques. 

To determine if the project and framework is successful, the evaluation of the framework is needed. 

The evaluation is discussed next. 
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9 Evaluation of Big Geospatial Data 

Framework 

Within this chapter, we evaluate the framework in regards to the evaluations stated within section 

1.2. We remind the reader that the evaluations will include; recording the frame rate of the runtime 

simulation, the update time during a frame, as well as the rendering time of a frame and GPU render 

time. The processing time of selected algorithms will also be presented and evaluated.  

The visual appearance of a scene will also be critiqued, and compared against similar GIS 

applications, frameworks, and platforms. We will compare against a single platform, OSM2World for 

which we have obtained source code. This allows the comparison of many parameters; processing of 

scenes, and visual appearances. 

The processing, and traversal search time will also be recorded from user-generated queries.  

The dispersal of data through the scenegraph will also be recorded.  

The features and components of the framework will be critiqued and compared against; Google 

Maps62, Arc GIS63, OSM64, SAVE[1], ALLADIN[5]–[7], and the work of Bo Mao[11], [25]. 

To evaluate our framework further, we compare the performance of the simulation on multiple 

machines, a low-range PC, mid-range laptop, and a high-end gaming laptop. The main differences 

between the systems are the CPU, and GPU. This will produce a scalability chart against scenes of 

various sizes, and densities.  

We start by stating the hardware configurations used for the comparison scalability evaluations.  

9.1 Experiments’ Hardware Configurations 

We will evaluate the system on a number of computer configurations. We have access to a number 

of hardware ranging from a low range PC, a mid-range laptop, and a high-end gaming laptop. 

Low Range PC – a 64bit Windows7 Operating System, 4GB of RAM, Intel Core i3-2120 CPU @ 

3.3GHz, Intel HD Graphics Card. 

Mid-Range Laptop - a 64bit Windows10 Operating System, 8GB of RAM, Intel Core i7-3630QM 4 (2 

logical cores per physical) core CPU at 2.40GHz, and an Intel HD Graphics 4000 Chip with an 

                                                           
62 https://www.google.co.uk/maps 
63 https://www.arcgis.com/ 
64 https://www.openstreetmap.org 
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additional NVIDIA GeForce GTX 660M. The hard-drive of the computer is a Solid State Drive (SSD). An 

SSD has faster read and write properties than HDD. 

High-End Gaming Laptop – an Alienware 15 64bit Windows10 Operating System, 16GB of RAM, Intel 

Core i7-4710HQ. An additional desktop GPU block is used which is a GTX 980 8GB. 

The next section discusses the 5 maps. 

9.2 PVS Framework Class and Line count 

The PVS Class and Line count can be found within Table 23. This is shown to highlight the various 

library and development needed for a modern GIS framework. The total number of classes for the 

framework totals 356. The total number of line totals 20,128. This does not include the rendering 

API of XNA, nor the .NET framework API. 

Library  Line Count Class/Structure Count 

Dynamic Expression Library 874 10 

OSM Enum Library 1070 0 

PVS Camera Library 372 17 

PVS Main 14,386 209 

PVS Input Manger Library 101 2 

PVS Runtime Library 2,927 97 

PVS XML Serialiser 21 1 

Triangulator Library 237 7 

Tweener Library 140 13 

Total 20,128 356 

Table 23 PVS Framework Line and Class count. 

9.3 Processing Maps of Varying Size 

Table 24 shows the details of the maps we have chosen. The processing time is recorded as well as 

the number of nodes generated within the novel scenegraph structure. The number of nodes are 

counted as the nodes serialised to XML and then to XNB files. The number of OSMNodes are 

recorded within the processor, as well as the number of OSMWays. We record the number of 

buildings within the OSM files, and check this against the number of buildings generated within the 

processors. The number of highways is extracted from the OSM file by hand, and checked against 

the number of highways generated within the processor. We extract the number of highways by 

hand from the OSM file because we need to remove the number of highway crossings and number 

of traffic signals. The reason for this is because searching for the text of <tag k="highway" will return 
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the number of found but include traffic signals, crossings, bus stops, and mini roundabout locations. 

We will search for these and negate them from the result. The reason we don’t search for a type of 

highway is due to the large number of highway types.  

Our first generation of Map 01 led to an issue of a large amount of unneeded scenegraph nodes are 

being generated. This is due to the resizing of the OSM bounds to include all nodes of OSM, as 

already stated. The reason this is an issue for this map is that the water boundary and boundary for 

an area of Liverpool is contained within the OSM file. This results in 27,998 nodes being generated 

for a small map. A huge number of these nodes are the empty subtrees which we have stated are 

not needed. A boundary model mesh is created which is the size of Liverpool county, thusly all the 

tiles and subtrees which this boundary includes are created.  

The changing of the boundary size is a justifiable alteration, but a process in placing an asset is to 

calculate its centroid and use that as the translation to calculate which tiles to generate. Alterations 

to this calculation are needed. During the check to see which node of the scenegraph to attach the 

model asset to, if a node does not exist then the model will be removed. This may lead to assets 

being prematurely removed; but will fix the issue. 

The generation time will be evaluated. In this evaluation, we will monitor how long it takes to 

process the OSM map in terms of creating the model mesh objects, and saving the data into the XML 

files. The process incurs two parts; the generation and serialisation of XML files (1 for each node of 

the scenegraph), and then processing the files into formatted XNB binary files used within the 

runtime simulation. The average processing time cannot be determined either due to the variable 

file size of the XML file sizes; the model mesh is the major variance in this case.   

Table 25 shows the polygon count and the vertex count for each map. Table 26 shows the Latitude 

and Longitude coordinates of the 5 maps used for the evaluations. Figure 106 shows the map images 

of the areas used for evaluation. 
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Map  Scenegraph PVSNode Count OSMNodes  OSMWays OSM Building OSM Highways 

1 331 1974 242 32 101 

2 631 3520 524 141 219 

3 1427 6729 1095 405 452 

4 2982 12570 2208 936 845 

5 4495 20270 3752 1705 1338 

Table 24 OSM Map Details. 

Map Polys Verts 

01 1,992,117 1,041,570 

02 1,999,972 1,062,968 

03 4,001,002 2,139,886 

04 8,987,450 4,740,352 

05 NA NA 

Table 25 Map properties at runtime. 

Map MinLat MinLon MaxLat MaxLon 

1 53.4040000 -2.9994000 53.4079000 -2.9919000 

2 53.4029000 -2.9994000 53.4092000 -2.9876000 

3 53.4017000 -2.9994000 53.4109000 -2.9823000 

4 53.3995000 -2.9994000 53.4132000 -2.9765000 

5 53.3972000 -2.9994000 53.4153000 -2.9680000 

Table 26 Map bounds of the 5 maps, used for evaluation. 
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Figure 104 5 OSM Maps used for evaluation overlapped on one another. Images obtained from 

https://www.openstreetmap.org/search?query=trafford%20centre%20manchester%20uk#map=14/53.4073/-2.9623 

9.4 Uniform Scaling of Nodes 

Within this experiment, we generate a squared function which duplicates a type of node to monitor 

the memory usage. The monitoring of 3 types of node will be undertaken; an empty node which 

does not have a model mesh object applied, a node which contains a procedurally generated 

building of type ‘house’, and a user generated 3D model mesh of a typical UK terrace home. The user 

generated model mesh will contain diffuse textures and be of low to medium polygon count. 

The experiment will evaluate the memory usage with a subset of common type objects which are 

uniformly placed within a geospatial location; a terrace home. This will provide information into the 

limits of how many buildings of a particular type can be loaded. Within Figure 106, 641 buildings are 

of type ‘house’ are shown. This will be used as the scaling format. The area of the chosen location is 
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0.6km2. Increasing the average number of buildings to 1km2 will result in 0.4% increase of number of 

buildings. This will create an extra 256.4 building objects; resulting in 897.4 buildings of type ‘house’ 

per km2. This is a rough estimate as the nature of geospatial data is not uniform. This can be seen 

within Figure 106 with part of the map being park land at the top right.  

The experiment will compare n2 objects. n will initially be set to 1, and then increased to; 2, 4, 8, 16, 

and 32. Figure 105 is a visual representation of the uniform scaling procedure.  

Before we present the evaluations for the experiment; two issues arose with the underlying 

architecture of the rendering engine which the framework is built upon; Microsoft XNA. XNA utilises 

object referencing, so the model mesh object is loaded once but referenced multiple times. This is 

beneficial when dealing with model mesh objects which are repeated within a scene. This is not the 

same as hardware instancing65. 

Procedural model mesh objects are created as individual assets, even if they are of the same type, or 

same configurations. This is apparent when creating similar building models such as homes. These 

model assets are referenced individually, and therefore, the memory should be significantly larger, 

even though the triangle, indices, and vertex count is much lower.  

Table 27 shows the comparison between the procedurally generated house model and the user 

generated house model. The percentage comparison is also shown. The procedural model polygon 

count makes up 1.37% of the number of polygons within the user generated model mesh. The 

indices count and vertices count make up 1.37% and 3.19% respectively. 

The user generated model mesh object has been obtained freely from a web platform; TurboSquid66. 

The procedural building structure is shown in Figure 106.  

 Polygons Indices Vertices 

Procedural Model 17 51 45 

User Generated Model 1240 3720 1411 

Procedural vs User Generated Model % 1.37% 1.37% 3.19% 

Table 27 Procedural model and user generated model comparison of polygons, indices, vertices, and percentage 

comparison. 

                                                           
65 http://xbox.create.msdn.com/en-US/education/catalog/sample/mesh_instancing 
66 http://www.turbosquid.com/ 
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Figure 105 N squared representation of uniform scaling of nodes. 

 

Figure 106 OSM map image of buildings of type 'house'. 641 house objects are within the extracted XML object. Image 

obtained from 

https://www.openstreetmap.org/search?query=trafford%20centre%20manchester%20uk#map=18/53.38993/-3.03696 

9.4.1 Uniform Scaling Results 

Within this section we discuss the results of the uniform scaling experiment. Table 28, Table 29, 

Table 30, Table 31, Table 32, and Table 33 show the results of the experiment. Within the 

experiment, issues arose which data is unable to be captured. This is shown with the result of NA. 

The reasons for this are due to Operating System restrictions with memory consumption. 

Enough data is captured to extrapolate further results.  

Table 28 shows the memory usage for each experiment. The amount of memory for empty nodes is 

minimal usage. The memory usage is recorded as a whole running program. This means additional 
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assets are stored in memory, and instantiated classes. Before running the experiments, the memory 

usage is 328.2Mb. 

As stated within section 4.1, the total number of tile within the OS mapping scheme equal 

6,313,150. Generating PVSNodes which represent each tile will need large amount of memory. Using 

the results from Table 28 show that 1024 PVSNodes produce 419.4MB memory consumption. A 

single PVSNode produces 414.1MB memory consumption. This is a difference of 5.3MB. Dividing this 

by 1024 PVSNodes calculates 5.17578125 KB of memory is needed per empty node. Multiplying this 

value by the total number of tiles of the OS mapping scheme for the UK will produce; 

6,313,150 tiles * 5.17578125KB = 32.675GB.  

This calculation only contains the PVSNodes which represent the OS tiles. Adding the 93 PVSNodes 

for each 1km2 which differentiate the OSM and terrain categorisations will produce; 

6,250,000 1km2 tiles * 93 categorisation PVSNodes = 860,250,000 plus the lower tile layers of 

63,150. The total will equal 860,313,150. This value multiplied by the memory consumption for a 

single PVSNode will equal; 

860,313,150 * 5.17578125KB = 4,452,792,670.8984375KB = 4.4529TB. 

This is unrealistic that all PVSNodes would be loaded.  

Section 4.1 also states the tile coverage of the UK will contain ~550,000 tiles. The memory needed 

for the empty nodes at this level will equal; 2.846GB. This is a more realistic memory consumption 

because as already stated, the OS mapping scheme includes a vast area of ocean which is not 

needed for our work.  

The data attributes of a PVSNode is explained in chapters 6 and 7. The limit of the number of 

PVSNodes within regards to memory usage is still a concern when loading a country worth of data, 

but for small scenes of 10km2 is reliable for even with a low hardware configuration. The memory 

usage for the procedural model mesh is encouraging. The duplication of 1024 nodes containing the 

duplicated procedural model mesh of a house model shown the memory usage is 1252.3 megabytes.  

The user generated model mesh is considerably larger in terms of vertex count and indices count. 

The memory usage is considerably larger than that of the procedural model mesh. This is 

understandable due to the procedural model polygon count accounting for 1.37% of the user 

generated model, and 3.19% of vertex count. 

The issue of out of memory exceptions is problematic for the 162 number of user generated models.  
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Table 28 and Figure 107 show a steady increase when n increases. At n = 1, the memory 

consumption is 427.5 for the user generated model.  

The base memory consumption of the program runs at 298.7MB. Is has engine default assets loaded 

which is common for game engines and rendering engines. 

The assumption of negating the base memory consumption of 298.7MB from the experiment base 

of n = 1 which is 427.7MB for the user generated model, the models memory consumption would 

have assumed to be 427.7MB – 298.7MB = 129MB. This is a wrong assumption due to scene set up 

attributes being populated. The model memory consumption can be inferred by dividing the 

difference between n=1 and n=2 which is 462.1 - 427.5 = 34.6 and divide this value by 22 which 

equals 34.6MB / 4 = 8.65MB.  

Table 29 shows the percentage difference between increasing values of n with the user generated 

model mesh object. 

Table 28 and Figure 107 show that when n = 16, the simulation runs out of memory when dealing 

with user generated models. The procedural generated model mesh does not run out of memory, 

even when n is equal to 32, resulting in 1024 separated model mesh objects. Having a scene which 

utilises both types of objects would improve memory performance. Careful consideration is needed 

as to how many user generated model mesh objects are to be loaded. A combination of many 

procedural model mesh objects and a few user generated models would be ideal. A LoD technique 

which swopped models for the user generated models which are closest to the virtual camera, or 

within direct eye line is needed. Models which are in the distance would be swopped for the 

procedural model mesh. This would improve realism, and improve memory consumption.  

The FPS is a benchmark used for many real time applications. The FPS shows virtually no difference 

when dealing with nodes which do not contain a model mesh object. This is not surprising due to the 

aim of the evaluation is to investigate the changes in frame rates in relation to the use of model 

rendering. Table 30 and Figure 108 show the results of the FPS for the uniform scaling evaluation. If 

using only user procedural model mesh objects, the simulation can run at 27.3 FPS rendering, 1024 

separate model mesh objects. This is an improvement than rendering the user generated model 

mesh object, which due to memory issues, the results could not be captured when the value of n = 

16 or higher. 

Within the user generated model evaluation, the FPS drops by 2.64% with each model added. This 

value is calculated by finding the percentage difference between the n = 1 and n = 2, which is 

10.5812% and dividing this by the higher value of n2 which is 22. 10.5812 / 4 = 2.64%. Calculating the 
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same for when n = 2 to n = 4 states that the FPS for added model mesh object is 3.13. Additional 

overheads within the rendering pipeline may be the cause of the increase, or the architecture of 

buffering the vertex and index buffers. 

Figure 108 shows the graph generated from Table 30. Using the graph, the maximum value of n 

which can be used to mimic the frame rates of the procedural generated model, when n = 32, is ~=  

We have included the update of the scenegraph within this evaluation as shown in Table 31 for 

completeness. The results are the same for all maps due to members not being updated. Due to the 

optimiser for the material of the model mesh, eliminating updating of camera parameters if the 

virtual camera has not been modified from the previous frame, and combined with no need to 

update child nodes if parent nodes have not spatially modified, the update skip a majority of internal 

node updates; hence why the updating of a scene is vastly improved for many sized maps. 

Table 32 and Figure 109 show the draw call in milliseconds. The table and graph show the increase in 

milliseconds of each draw call. Within the draw call the passing of the vertex and index buffers 

occurs. The passing of this data increase the draw call time when increased number of buffers are 

passed. Table 32 and Figure 109 show when rendering 322 procedurally generated model mesh 

objects takes 32.89 milliseconds. Using the user generated model mesh object, the draw call time 

increased by 87.5% when comparing the results of n = 8. 

The GPU draw call shown irregular results. Table 33 and Figure 110 show that the GPU draw call for 

empty nodes to be irregular. The GPU draw call for the procedural model mesh shows an initial 

increase in call time, but then drops when n approached 8, and then increases as expected. The user 

generated model mesh starts at a high GPU call time, drops, and then rises from n = 4 to n = 8. 

The irregular nature of the GPU call may be subject to OS background processes interfering. This was 

an initial concern, and all none essential processes where disabled during capture time. 

We can conclude from this evaluation technique that the total number of procedural models which 

can be rendered at an interactive frame rate on a medium spec laptop is when n ~= 32. The use of 

roughly equals is justified due to the number of model mesh object can be increased, if only by a few 

more to keep the framerate to a reasonable 20 FPS and higher. As stated, the estimate of house 

models within a 1km2 area is 897.4. Using this estimate calculated, the area coverage when n = 32 is 

1.14km2. (1024/897.4 = 1.14) 

The recommended area coverage for the user generated model when n=8 equals 0.07km2 area 

coverage. The use of n=8 for this evaluation is chosen because results are not obtainable for n=16 or 

higher. Looking at the tables and graphs, the memory consumption, and FPS would still allow 
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additional models to be loaded and rendered. Thusly n=8 for the recommended maximum size can 

be increased to a value between 8 and 16.  

Both of these values are small compared to alternative applications. We state however the 

interactive nature of the members of the PVSNode, and model objects, along with the material 

objects attached to the model parts allow for greater interaction from a user point of view. 

 1^2 2^2 4^2 8^2 16^2 32^2 

Memory Usage Empty Node 414.1 409.14 415.9 419.07 419.8 419.4 

Memory Usage Procedural Mesh 447.7 449.6 454.5 464.4 629.8 1252.3 

Memory Usage User Generated Mesh 427.5 462.1 544 919.2 NA NA 

Table 28 Memory usage in megabytes for 3 types of objects; empty node, procedural model of a home, and a user 

generated model of a home. Object duplications are raised to the power of 2. 

 

Figure 107 Memory usage graph. 
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 Values Percentage 

n = 1 and n = 2 427.5 to 462.1 8.09% 

n = 2 and n = 4 462.1 to 544 17.72% 

n = 4 and n = 8 544 to 919.2 68.97% 

n = 8 and n = 16 919.2 to NA NA 

n = 16 and n = 32 NA to NA NA 

Table 29 Percentage difference between memory consumption and increase of n with user generated model mesh objects. 

 1^2 2^2 4^2 8^2 16^2 32^2 

FPS Empty Node 410.79 415.6 411.86 404.88 406.91 413.14 

FPS Procedural Mesh 410.01 405.24 438.05 356.02 110.3 27.3 

FPS User Generated Mesh 387.76 346.73 169.1 50.21 NA NA 

Table 30 Frames per Second for 3 types of objects; empty node, procedural model of a home, and a user generated model of 

a home. Object duplications are raised to the power of 2. 

 

Figure 108 Graph for frames per second. 

 1^2 2^2 4^2 8^2 16^2 32^2 

Update MS Empty Node 0.01 0.01 0.01 0.01 0.01 0.01 

Update MS Procedural Mesh 0.01 0.01 0.01 0.01 0.01 0.01 

Update MS User Generated Mesh 0.01 0.01 0.01 0.01 0.01 0.01 

Table 31 Update in milliseconds for 3 types of objects; empty node, procedural model of a home, and a user generated 

model of a home. Object duplications are raised to the power of 2. 
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 1^2 2^2 4^2 8^2 16^2 32^2 

Draw Call MS Empty Node 0.31 0.24 0.33 0.24 0.24 0.34 

Draw Call MS Procedural Mesh 0.44 0.89 1.28 2.35 8.8 32.89 

Draw Call MS User Generated Mesh 0.59 1.41 4.55 18.8 NA NA 

Table 32 Draw call in milliseconds for 3 types of objects; empty node, procedural model of a home, and a user generated 

model of a home. Object duplications are raised to the power of 2. 

 

Figure 109 Draw call in milliseconds graph. 

 1^2 2^2 4^2 8^2 16^2 32^2 

GPU Call MS Empty Node 2.12 2.08 2.65 2.74 2.07 3.09 

GPU Call MS Procedural Mesh 1.42 1.5 1.7 0.63 0.93 2.51 

GPU Call MS User Generated Mesh 1.88 1.32 0.76 1.89 NA NA 

Table 33 GPU call in milliseconds for 3 types of objects; empty node, procedural model of a home, and a user generated 

model of a home. Object duplications are raised to the power of 2. 
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Figure 110 GPU call in milliseconds graph. 

9.5 Scenegraph Evaluation 

Within this section we will discuss the dispersal of data and data structures through the scenegraph 

structure. The data passed through the scenegraph will be a shader index value, and data structures 

used for light descriptions, materials, graphics state descriptions and effects. 

The monitoring of the processing time taken to search for assets by user-defined queries will be 

undertaken.  

Searching for an asset, a query is checking against nodes, and the type of PVSTag attached to the 

node. Searching a node, the properties of the node will be checked, i.e. all nodes of the scenegraph 

can be checked. If the user knows the type of the object (building, highway, amenity, and boundary) 

they can search by that type by selecting the OSMTag which has been applied to assets of that type. 

This allows the checking of whether a node has that OSMTag applied; if not, then checking does not 

have to commence. 

Within the experiments which compare the 5 maps on the different platforms, the memory 

consumption would rise and fall dependent on which objects are being rendered. The terrain model 

mesh buffers holding large numbers of vertices, and having large polygonal meshes, the framerate 

drops when they are being rendered which is not a surprising fact. What is surprising is the memory 

consumption drops considerably. For this reason, we find it pertinent to record the rendering 

parameters of frames per second, update call in milliseconds, draw call in millisecond, and GPU call 

in milliseconds, and memory consumption, for rendering everything within a scene, and everything 

but the terrain.  
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9.5.1 Search Cases upon the Scenegraph 

The scenegraph is a valid choice when working with geographical nodes and nodes of spatial 

parameters. The combination of allowing users to search for objects within the scene, from node or 

model mesh, or a node which has an OSMTag attribute pertinent to a particular type (Building, 

Highway, Amenity, Boundary), by single or multiple parameters is problematic: depending on the 

size of the dataset. 

The extraction time for map 3 which contains 1427 nodes takes: 0.0003603 milliseconds. We can 

extrapolate this result to estimate the time for larger Scenegraph structures.  

Within this section we will discuss the search cases which the scenegraph is suited for, or where a 

various type of data structure may be an optimised choice. 

The fire brigade may wish to search for buildings which are over 50 meters tall and fireproof. The 

police may wish to visualise highway structures which are at least 3 lanes wide as to allow oversized 

vehicles through.  

Table 34 shows the processing time of functions used upon the scenegraph structure. The nodes 

traversed is also counted and referenced. Map3 is used due to maps 4 and 5 throwing out of 

memory exceptions. The time recorded shows that searching relatively large scenes allow for real-

time searching. 

Classifying objects by type allows the iteration of extracted nodes. The extraction and sort function 

takes 0.0005657 milliseconds for this map size to complete. 

The searching for the Building is by name “Royal Liver Building”. The searching for high way will be 

an unclassified type with name of 849. This will also be searching by PVSNode only.  
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Function Processing 

time in Second 

Disperse shader index to all of tree 0.0007791 

Disperse light description to all of tree 0.0008727 

Disperse graphics render state to all of tree 0.0005148 

Disperse a material controller to all of tree 0.0221018 

Disperse a spatial controller to all of tree 0.0006565 

Search and return assets from query on referenced nodes 0.29225 

Search and return buildings from query on all of tree on 

referenced nodes 

0.14099 

Search and return highways from query on all of tree on 

referenced nodes 

0.24391 

Table 34 Processing time of scenegraph functions for real-time look up. 

The algorithm for the dispersal of the shader index value is shown in Figure 111. The input for the 

algorithm is the integer shader index value and the node for which the integer value will traverse 

from through the scenegraph, as well as the model mesh hierarchy to the PVSMaterial objects of 

each model part. The node acts as the base of the scenegraph structure dispersing the data down 

through the tree, allowing any node to act as a category which can have the shader index value set. 

Each child within the node will have its internal setShaderIndex function called. The output of the 

algorithm is all sub nodes of the scenegraph have their shaderIndex values set on the material of any 

model part. Allowing the changing of a scenes rendering within a single function call. 

 

Figure 111 Pseudo recursive algorithm for dispersal of shader index upon scenegraph structure. 
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The algorithm for the dispersal light description is shown in Figure 112. The input for the algorithm is 

a PVSLightDescription which hold the information pertinent for a virtual light. Along with this is the 

index to input the lightDescription data structure into the internal array of PVSLightDescription’s. 

The node is the base of the scenegraph for which the algorithm will recursively disperse the 

PVSLightDescription through the sub nodes of the scenegraph. A Boolean is used to check if the 

lightDescription should be cloned. Cloning the object will create a new instance of the light 

description, meaning each light clone will be independent of each other. If the lightDescription is not 

cloned, then it will be passed by reference meaning updating of a single lightDescription, through 

the IVI for instance will update the light parameters on all model parts which reference the 

lightDescription object. 

 

Figure 112 Pseudo algorithm for dispersal of a PVSLightDescrition structure through the scenegraph. 

The algorithms for the dispersal of the graphics render state, material controller, and spatial 

controller are the same as the algorithm to disperse the light description struct but removes the 

setting at a specific index of an array. This is because the data passes is stored as a single object, or 

stored in a List<T> structure and thusly, no indexing is needed. 

9.5.2 User Case Queries and Scene Features 

Within this section we will discuss and present the evaluations for common uses for domain experts; 

fire-brigade, police, ambulance service. We present initial cases of realistic searches upon the 

scenes.  
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Firstly, we highlight some screen captures from the simulation. Figure 113 highlights the use of 

shared lighting on model assets. Top left shows all assets rendered using a basic shading effect with 

the light a predefined position. Top right shows the same assets but rendered slightly differently due 

to the change of direction from the scene light. Bottom left shows a scene without the DSM terrain 

assets. Bottom right shows the DTM, and procedural assets rendered with textures. 

Figure 114 shows the comparison between user generated models and the terrain DSM and DTM 

models. Top left shows only the terrain of DSM and DTM. Top right shows the combined user 

generated model of the Royal Liver Building. Notice the positional differences. The differences can 

be used to modify the original user generated model mesh. The middle right shows the textured 

model textured terrain. The bottom image shows a higher view point and the Royal Liver Building at 

a large scale to showcase the ease at bringing attention to a single asset.  

The police may search for all highways which lane count is equal or over the value of 3. Within map 

3, the search produced 24 highways which satisfy this query. The search took 0.0646034 seconds. 

The dispersal of a material controller and spatial controller took 0.0000949, 0.0000222 respectively. 

The highway highlighted is shown in Figure 115. 

The fire-brigade may wish to search and highlight all buildings which allow a capacity of 100 or more, 

and is over 50 meters tall. 

The fire-brigade may wish to search and highlight all buildings which are over 50meters tall and are 

not fireproof. Within map 3, 5 buildings are found using this query, and took 0.00745775 seconds to 

find through iteration of extracted nodes. The dispersal of a material controller took 0.00009771 

seconds to complete, and dispersal of a spatial controller took 0.0005738. The buildings found are 

shown in Figure 117. 
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Figure 113 PVS simulation. Top left is basic rendering. Top right shows the difference when a light position is modified. 

Bottom left has DSM terrain removed. Bottom right has terrain and assets textured. 
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Figure 114 Screen capture of simulation. 
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Figure 115 Highlighted highway structure from user generated query. 
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Figure 116 Wire frame scene. 

 

Figure 117 Material and spatial controller applied to fire brigade query. 

9.6 User Interface Evaluation 

Due to the integrity the IVI brings the application and interactivity to the framework and the 

algorithms we state that the IVI is determinately needed. A user can interact with scenes, changing 

properties of individual models, as well as change the rendering techniques and render states 

applied to each of the models.  
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Multiple IVI screens have been developed to gain access to the assets within the scene, and gain 

access to the data structures used to organise, structure, and visualise the scene; novel scenegraph, 

novel designed IASF, global lighting manager, and materials of models. 

There are a number of forms which act as main elements of the IVI; main form, node form, and 

model form.  

The main form contains tabs which allow access to the scenegraph visualised as a listed tree view. A 

tab allows access to the global light manager and its 3 lights. These lights can be modified in both 

spatial properties and descriptive properties. The lights can be dispersed to the model part materials 

for use within rendering the model, through the scenegraph. Another allows access to the camera 

system used for modifying the projection parameters of the camera within the scene as well as 

extracting information from the camera used for debugging. The main form contains a search tab 

which allows users to generate queries and search the scenegraph. This tab provides the generation 

of spatial and material controllers to be applied to the searched for nodes. Within the main form is a 

location tracker.  

A node is selected from the Main form tree representation of the scenegraph which displays a form 

containing the information of the node. The nodes spatial properties can be modified, and prebuilt 

controllers can be applied to it. User generated spatial controllers can also be applied to the node. 

Material controllers and GPU render stated can be created and applied to all model parts of the 

attached model. The model information is displayed in a tab within the form. This allows access to 

individual model parts which in turn displays a form for the Material object. 

Within the material form, a user can modify all properties which are applied on the GPU; ambient 

colour, diffuse colour, intensities, and shader index and others. This allows the display of GPU 

parameter data used for testing. It also allows individual material controllers to be applied to the 

model part. 

The reliance of the .Net framework restricts the development of the IVI to only .Net framework 

availability. This dependency should be removed in future iterations of the framework. A custom IVI 

library should be created. This will improve scalability and flexibility, as well as code reuse for 

alternative applications and APIs. The use of WinForms application is still a valid option for proof of 

concept and rapid prototyping which was needed for this project.  

9.7 Comparison 

Within this section we state the comparisons between the PVS framework to that of Google Maps, 

ArcGIS, OSM, SAVE, the ALLADIN project, and the results of OSM2World. The comparison of 
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features, components, scalability, flexibility, realism of visualisations, and data representation will be 

shown where applicable. If a competitor does not contain a feature we will state that we have no 

comparable evidence. If the PVS does not contain a feature, or component found in a competitor, 

we will issue what needs to be done to acquire such a feature, or if the feature would not be 

needed. 

We will keep this section brief and give bullet points with small explanations into the comparisons 

between PVS and competitors. If we have already stated the benefit of our system over a 

competitor’s component or feature, we will not repeat ourselves for the other applications. 

9.7.1 Google Maps 

 Google maps limit the interaction with the camera placement and navigation, PVS does not.  

 Google maps allow for satellite 2D top-down images and OS style 2D top-down images, as 

well as zooming of tiles. PVS technically can have this if the camera is positioned above the 

scene pointing down and putting the camera into orthographic projection state. PVS system 

has more dynamic camera system which allows cameras to be translated, and modified to 

how a user wants, viewing scenes in a large number of angles.  

 Google uses LoD techniques to remove objects from a scene. If PVS is to view as large a 

scene as Google maps then it must implement LoD techniques to reduce the terrain vertex 

buffers to not overwhelm the hardware or software. 

 Traffic views for major roads are available for Google maps. In PVS, only coloured lines are 

available at four settings from fast to slow. This data can be incorporated with additional 

coding through OS traffic data. If this data is incorporated into the PVS framework, single 

lines depicting the speed of traffic at varying times can be shown. With PVS, the highway 

model meshes can be animated with pulsating colours, highlighting real-time changes in 

data. Google Maps currently do not have this ability. Only data and a parser function are 

needed for PVS. 

 2D buildings have a shadow effect added which sometimes does not line up with the 2D 

building representation. Additional shadow rendering techniques can be added to the PVS 

framework with the addition of Deferred Rendering. Only a vertex and pixel shader function 

is needed to be added to the IASF, as well as creating a render target. The setting of the 

graphics card state to record depth can already be set. 

 3D view of scenes can only be projected using the satellite images. We state that this would 

not be sufficient enough to be classed as 3D, but 2.5D projection. The camera can only be 
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set to 90° intervals. The PVS framework allows 3D viewing at any angle or direction the user 

wishes, as well as in any projection; orthographic or perspective at variable field of view.  

 PVS does not currently include satellite imagery. When using Googles Street View, the user 

can jump to locations, and the projections of images captured from moving vehicles are 

used. PVS allows street view, but by use of a fully movable camera system, and 3D 

generated scene. Googles street view may provide accurate images, but PVS provides 

further flexibility with viewing a real-world scene from a high level perspective, manipulating 

assets in real time. 

 Both systems lack the complete global coverage of data; streets, buildings, amenities, 

images, geo-data, and many others. Google does not contain all street view images, but it 

does contain a large portion of satellite images, whereas OSM contains much user generated 

content; thusly the PVS simulation output will contain this user generated content and 

therefore present much more informal data which is relevant to users. 

 Google maps provide a terrain view with the retraction of buildings and other information 

not projected using satellite imagery. The image on screen is modified to add shading 

corresponding to heights of terrain. The variance is most noticeable when zoomed out to a 

high level. This is limited. PVS with the use of OS or LiDAR data provides improved terrain 

visualisations up to 25cm points; if interpolated as the UK government does with its OS 

terrain maps.  

 Google maps allow the addition of user generated photos. This function extends the 

information available to the user, giving insight into the different views of a building or a 

structure. This functionality is not available in PVS. The framework does allow the addition of 

textures to model asset parts. 

Google maps is a main competitor to this work. In conclusion the PVS framework allows for 

improved interactions with assets generated from GIS data sources, and allows data overlay in the 

form of animations and visualisations, where Google maps do not. 

9.7.2 ArcGIS 

The ArcGIS slogan on their webpage is ’Mapping Without Limits’. Their framework works as a cloud 

based platform. Being cloud based, their simulations are scalable and capable of real-time 

calculations due to increased hardware and software availability. The PVS is scalable in the confines 

of the UK, but is adaptable with additional development.  
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They also provide many individual apps which can run within browsers, desktops, and mobile 

devices. The PVS framework is developed for desktop only. The PVS framework does not work on 

mobile devices or web platforms without conversion from XNA to MonoGame67. 

ArcGIS provides many base maps; Shaded Relief with Labels, OSM, Imagery Hybrid, National 

Geographical Map. All these base maps have 1 thing in common; they are all 2D top-down map 

representations. PVS advances this by creating the 3D environment needed for visualisations. 

ArcGIS allows open access too many of their libraries for further custom development by users. The 

ArcGIS is a platform which allows users to used premade maps, or allows the definition of their own 

maps. Prior knowledge is needed to configure the ArcGIS to generated maps needed. Our 

framework allows the customisation of maps at runtime, for a pre-made scenes. PVS is designed to 

mimic real world interactions with objects and employ game controller inputs which allows users to 

quickly become familiar with the interactions of the simulation. Our approach allows greater 

flexibility, with minimal of domain knowledge; unlike that of ArcGIS.  

9.7.3 Open Street Map 

The framework and simulation is built utilising OSM data as its main data-source for which scenes 

are built. The web portal allows the viewing of data in a top-down 2D perspective, same as Google 

Map, with additional layers of information and additional maps specifics; cycle maps, highway maps, 

and the ability to highlight selected boundaries to bring up additional information. Multiple maps 

need to be viewed as separate maps and cannot be hierarchically layered together to view on top of 

one another. As stated, the PVS framework allows the viewing of scenes but not as a 2D perspective, 

unless the camera system is specifically parametrised and set as orthographic, and can view multiple 

user selected data sets within a single scene visualisation. 

PVS can highlight varying assets within a scene to create layers within the visualisation to mimic the 

multiple map layers of OSM such as cycle paths. This is done by querying the assets within the scene 

by user defined parameters. A user can select cycle paths of OSM, or search all Highway type roads 

which allows bicycles and highlight them green. An added benefit of the PVS framework is the multi 

highlighting of selected assets. If a user wanted to add a theoretical layer, they would just search for 

the assets they want, and change the colour of said assets. This would create a multi-layered 

visualisation. This combines the multiple maps provided by OSM, but within one single visualisation.  

                                                           
67 http://www.MonoGame.net/ 
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9.7.3.1 3D OSM 

There are many 3D platforms building from the 2D and 3D geospatial data within the OSM database. 

These platforms focus mainly on the generation of buildings. Some are used within desktop 

applications (OSM2World68, OSM-3D69), while others are through web-browsers (OSMBuildings70). 

We compare the features and renderings of our framework with that of OSM2World, OSM-3D, and 

OSMBuildings. The applications vary by developer and features contained, as well as the age of 

development.  

The PVS framework is superior to the applications stated by the allowance of individual assets 

modifications and shader augmentation. The applications allow users to view scenes as a whole but 

limit the users’ interactions with a scene and assets. 

OSM2World does utilise Ray tracing (POVRay71) rendering techniques whereas the PVS framework 

does not. This feature does allow reflections of scenes within water and windows. The PVS 

framework cannot do this as yet due to its forward rendering. The addition of deferred rendering 

and additional vertex and pixel shader functions added to the IASF is capable. This is a feature which 

will improve the visualisations of real-world virtual scenes. The scenes of OSM2World can be 

exported and imported in external 3D modelling assets; Blender. The current implementation of PVS 

does not integrate highway markings which a small number of highways within the OSM database 

contains, whereas the OSM2World generates highway 3D models with markings which direct traffic. 

The PVS framework will need further development to include markings on the highway, but the 3D 

highway models are generated by querying data within the OSM database. The visualisations of 

OSM2World are limited but do allow a ‘debug’ view which views the wireframe models of the 

terrain and assets within the scene. The PVS framework provides many visualisation permutations 

through the use of the IASF, the material parameter animations, the spatial parameter animations, 

and the ability to change GPU device state (wireframe, transparent, opaque, etc.).  

9.7.4 SAVE 

The visualisations of the SAVE project are considered our main competitor in respect to user 

generated visualisations. The SAVE project allows users to create visualisations of particular needs 

and wants depending on the user’s individual wants and needs which are assign to Eigen vectors as 

percentages. The scenes of SAVE are created through manual model mesh creation, and the 

individual model parts of buildings material shader parameters are assigned the values created by 

                                                           
68 http://osm2world.org/ 
69 http://www.osm-3d.org/home.en.htm 
70 https://osmbuildings.org/ 
71 http://www.povray.org/ 
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the Eigen vectors and parsed to shader parameters inputs. We state the PVS framework is capable of 

the same but through a varied pipeline. The user can combine textures (diffuse, normal, specular), 

and other shader parameters and apply them to models. We have extended the techniques of the 

SAVE project to include animations of varying styles to create a large number of effect animation 

permutations. 

PVS can create scenes of any location within the UK if data permits. The SAVE project concentrated 

on creating a model mesh scene of one location and work solely on a single building. The PVS can 

apply the effects onto any model mesh asset within a scene; terrain, buildings, highways, etc. If the 

model mesh data is available from the SAVE project, the same scene can technically be generated 

and compared further. This is not the case.  

9.7.5 ALLADIN 

The comparison between the ALLADIN project and the PVS framework is slim. We evaluate that the 

combination of both systems within a future project will benefit both ALLADIN style projects and 

real-world visualisation projects as PVS.  

The ALLADIN project allows users to view agents working within the world space of real-world 

highway structures only in 2D top-down. The PVS framework can and should be extended to include 

artificial agents and view them simulating within real-world virtual environments.  

9.7.6 OSM2World 

To generate elevation terrain models, OSM2World utilises the object attributes of OSM, such as the 

‘incline’, ‘layer’, ‘tunnel’, ‘bridge’, as well as the absolute elevation attribute held within OSM.  

Generating a 3D model with OSM2World takes some knowledge of computer systems due to its use 

of the command prompt and lack of IVI. We state the process to create an .OBJ model mesh 

structure using OSM2World using a Windows Operating System. To create a 3D model mesh, the 

documentation states that the Java Runtime Environment (JRE) be installed and to unzip and merge 

multiple downloads from the OSM2World website. The user must use the command prompt to 

invoke the building from OSM xml file to an .OBJ model mesh file. Multiple command prompt 

configuration invocations can be called to vary the output.  

We will generate and compare 5 maps; each map increases is dimensions. The maps are of Liverpool 

UK and contain a mixture of characteristics; contains water, gradual incline in sections but a large 

drop from land to the river, and contains a mix between primitive buildings and complex building 

structures, and a multitude of highway structures. 
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Table 35 shows the statistics for the model mesh object exported from OSM2World through the 

command line. All elements are pooled into a single vertex buffer for rendering. 

Figure 119 shows the processing OSM files by OSM2World visualised within 3DS-Max. OSM2World 

does not include a model viewer and thusly 3DS-Max is used to view the scene. 3DS-Max shows the 

information within the model; polygons, triangles, edges, vertices, and we have extracted the FPS. 

This information for each of the maps is shown in Table 35. OSM2World pools together the vertices 

of all objects within a scene into a single model mesh object. This restricts the use of and 

identification of individual assets; a benefit which is included with the PVS framework. 

We have not included the time it takes for processing the OSM maps using OSM2World due to the 

fact that the speed is significantly faster than that of PVS. We are also unable to monitor the speed 

of the processor apart from monitoring the time is takes from starting the process, and waiting until 

a file is outputted within the directory. The time we monitored for the processing of the largest OSM 

map was roughly 30 seconds. We iterate as well the use of Visual Studio will reduce processing 

speeds of our pipeline, and the additional checks that our work makes against the data within OSM.  

OSM2World does not check and extract information from OSM to the degree which we do. We also 

use random selection techniques as to make sure models within an environment do not share the 

same texture or material parameters as other models within a scene. The noise added to the default 

data adds an element of realism to a scene. We iterate, as stated within our background research 

that the human eye is adapted to seeing repeated patterns and elements within a scene. 

OSM2World uses the same colour values for the sides of the buildings for all buildings, disregarding 

their type.  

Z-fighting is an issue with polygons which overlap each other, especially highway model mesh 

objects upon a flat terrain. Within PVS, noise generation techniques are used for our models to 

remove, or limit the issues of z-fighting. The addition of random decimal values less than 0.001, are 

added to polygons ahead during processing, as to limit polygons lying exactly on top of each other. 

OSM2World places polygons within the same parameters, and thus popping between the polygons 

occurs; especially within a dense area of individual buildings such as shopping centres. 

Figure 119 shows the visualised OSM maps within 3DS-Max. Figure 118 shows the issues we wish to 

highlight in the model mesh object generated by OSM2World. 

Within the figures we can see issues and alternatives from PVS. 

 Building’s rooftops coloured red, and are flat. Within our results, the rooftops have a 

random element to them, varying the height position of the vertices the rooftop is made up 
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of. This adds an element of variation to the visualisation and environment. We also add 

textures applied to the rooftops. Each rooftop is a model part, and thusly can be modified, 

and altered, or have a controller applied to the rooftop to highlight the building.  

 The railway highways are placed on the same height plane as all other model mesh objects. 

Within our visualisations, we check the OSM level attached to the highways. If the level is 0, 

it is placed on the terrain. If the level is 0 to -5 then it is placed below the terrain. 0 to 5 is 

above ground.  

 Within Figure 118, the trees shown are made of primitive models. Handmade model mesh 

objects used in place of the procedural generated primitive models.  

 The top middle image shows a large gap within the terrain not present. This is not shown 

within other generated models shown in Figure 119. 

 The top right image shows a floating building part. This is an issue, and it not this single 

instance. We noted 3 floating building parts. Allowing custom model assets to be used will 

alleviate this issue. 

 Within the bottom left and bottom middle images, the highway structure issues are shown. 

The highway polygons are set at the same Y value, and thusly z-fighting occurs.  

 The issue shown within the bottom right image, the model mesh is shown to be using per-

vertex lighting.  As OBJ files do not contain information pertinent to stating whether per-

vertex or per-pixel rendering should be utilised, we assume that 3DS Max is using per-vertex 

shading. This is an issue. Within our framework, the algorithms try to render objects using 

per-pixel shading. If this is too intensive, then rendering techniques all are altered 

accordingly. This provides the initial high resolution of rendering, before opting for the lower 

realism of per-vertex shading. 
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Figure 118 Issues within the OSM2World visualisation. Images obtained from OSM2World.exe application results. 

Map Polys Verts FPS 

01 20,980 11,950 57.587 

02 49,766 25,793 45.694 

03 97,815 56,851 33.244 

04 178,188 101,587 29.298 

05 260,049 144,641 16.195 

Table 35 OSM2World and properties. 
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Figure 119 OSM2World models within 3DSMax. From top left, to bottom the maps increase in area coverage. 

9.8 Feature Comparison 

Within this section we will discuss the features which are provided by the alternatives, and within 

our framework. Table 36 shows the comparisons between PVS and similar projects, platforms, or 

frameworks.  
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We reiterate the features of a GIS stated within section 2.3; 

 2D and 3D Camera system with multiple viewing projections, and controllable by user 

 Using satellite imagery, and other 2D/3D content to bring realism to scenes 

 LoD to improve large scene rendering. 

 Real-time framerates 

 Scalable development tools/API 

 Allow importing of user generated content 

 Realistic procedural assets 

 Advanced rendering techniques applied to scene and individual objects 

 Object selection and modification 

 Geospatial data visualisation 

We state the division of the features into sub features. For example, ‘traffic views’ can be 

categorised under geospatial data visualisation. Scalable development and scalable implementation 

is categorised as an open API which the framework is. We have entered the feature of ‘Browser 

Support’ due to a majority of providers have browser support. 

Green boxes are for features which the project has. The yellow is where there is ambiguity into the 

feature, e.g. the PVS framework can have satellite imagery within the visualisations, if they are 

available. Red is for features which the platform does not have. We have included the totals. The 

most features available is within the PVS framework, with ArcGIS have 1.5 features less, and 

ALLADIN having the least. The OSM2World framework provides the least amount of features. Figure 

34 shows the feature count.  

We have stated that Google have ambiguity with a 3D camera, with perspective and orthographic 

projections. This is due to the maps are projected which the camera being angled, this does not 

allow full 3D viewing of buildings. The SAVE project resembles our visualisations and animations 

applied to mode parts through shader manipulations. Table 36 shows that the SAVE project lacks 

many features which are available within the PVS framework. The increased number of features 

available to users allows the flexibility to view virtual scenes in an increased number of perspectives 

and visualisations; further than the SAVE project, and OSM2World, and the others. 
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Features PVS Google ArcGIS 3D OSM SAVE ALLADIN OSM  

2World 

2D 0.5 1 1 0 0 1 0 

3D 1 0.5 1 1 1 0 1 

Perspective Camera 1 0.5 1 1 1 0 0 

Orthographic Camera 1 0.5 0.5 0 0 0 0 

Satellite Imagery 0.5 1 1 0 0 1 0 

Traffic Views 0.5 1 0.5 0 0 0 0 

Scene LoD 1 1 0.5 0 0 0 0 

Model LoD 0.5 0 0 0 0 0 0 

Realistic Buildings 1 0.5 1 0.5 1 0 1 

User Navigation 1 0.5 0.5 1 1 0.5 0 

Scalable Development 1 0 1 0 0 0 0.5 

Scalable Implementation 1 1 1 1 0 0 1 

User Generated Content 1 0.5 1 0.5 0 0 0.5 

Browser Support 0 1 1 1 0 0 0 

Interpolated Highways 1 0 0.5 0 0 0 0 

PGC 1  1 0.5 1 0.5 0 1 

Advanced Rendering 1 0 1 0 1 0 0 

User Applied Animations 1 0 0.5 0 0.5 0 0 

Real-Time User Modification 1 0 1 0 1 0 0 

Visualisation 1 1 1 0 1 1 1 

Total 17 11 15.5 7 8 3.5 6 

Table 36 Feature comparison between PVS and competitors. 

9.9 Evaluation Conclusion 

Within this section we have stated the comparisons between the competitors and the PVS 

framework, and presented as well as discussed the evaluation techniques/results of the PVS 

framework. 

We state that OSM is a valid option to use for the creation of real-world urban virtual environments. 

The data set is suitable if the data is thoroughly checked and altered. Alternatives to our framework 

which give similar results are OSM2World and the SAVE project as well as the commercial GIS of 

Google maps. OSM2Worlds advantage over the PVS simulations is its speed of processing. While our 

processing takes longer, the results allow greater flexibility with scene rendering, and user 
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interaction. Assets within the world are separate entities, and can be modified, as well as 

information extracted and shown to the user. OSM2World outputs a single pooled model mesh 

object which allows a high-level overview to real-world scenes. Our work goes a further step into the 

LoD into a scene. The LoD may not be as detailed as the work of Bo Moa[11], [25] in its current state, 

but the addition of further user generated content will alleviate this issue. Bo Moa work does not 

allow for user interaction within the scene as does PVS and that of the SAVE project. The PVS 

framework allows further interaction than that of the SAVE, and allows encoding of user weighted 

data and values by the use of spatial and material controllers which can be applied to any and all 

model objects within a scene; a scene which can generate any location within the UK. 

The uniform scaling evaluation gave initial values for the number of empty nodes, procedurally 

generated model mesh objects, and user generated models, which can be rendered within a scene. 

The results determined that a mix of procedurally generated assets and user generated content can 

provide realistic scenes of over 1km2 with terrain models. This does not seem large compared to 

OSM2World, but the increased overhead of storing individual small model mesh buffers, and 

PVSNodes restricts the number of assets to be rendered to screen. The pooling of vertex buffers for 

objects which store the same data is needed to increase framerates, and reduce rendering 

overheads. Hardware instancing should also be included to render the same model multiple times to 

reduce overheads. 

The use of the IASF improves the rendering capabilities as stated in section 5.3.1. The structure 

layout allows additional shader functions to be added to the effect shader file, and small changes to 

the code base of the framework. It improves rendering rates, and allows dynamic reconfiguration 

depending on real-time monitoring parameters, such as frames-per-second. 

We conclude that the algorithms in place allow visualisations of real-world urban environments in 

real time and allow non domain users to quickly interact and visualise queried assets within virtual 

scenes.  
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10 Conclusion and Future work 

Within this work, we have under gone much research into different domains of GIS, and Computer 

Games Technology for the combination and generation of two systems which when together, 

creates a framework to combine erroneous GIS data for the generation of inferred procedurally 

generated 3D virtual scenes. 

From the objectives of the project, we state that all aims of the project have been either partially 

met or fully met.  

Aim 1, “to review and consolidate the knowledge and state of the art on big geospatial data 

rendering and visualisation”. This objective has been met within the background and literature 

research carried out through the project. The Agile methodology chosen, benefitted the project by 

re-planning, and researching into issues found during the development process. 

Aim 2, “to identify and collect the real world data to generate complex real world 3D environment”. 

This aim has been satisfied by the use of OSM data providing a large amount of detail and relational 

geospatial as a base for virtual scene generation. The additional of LiDAR data improves scene 

visualisation by the addition of rigid terrain data in the form of DTM and DSM. LiDAR being 

erroneous needed additional data as a base to combine and override the erroneous or missing LiDAR 

data. Combining complete terrain data with OSM boundary data, sub data sets representing 

buildings, and locations can be extracted and converted to model mesh representations of the 

primitive OSM data representations.  

Aim 3, “to design framework and software components to develop a big geospatial data rendering 

and visualisation system”. This aim is satisfied by the generation of both the pre-processing system, 

and the runtime simulation system.  

Aim 4, “to create novel data structure to combine several data sources and design new algorithms to 

process and visualise these data using a 3D game engine”. This aim has been satisfied by the 

creation of multiple algorithms to process the big geospatial data sets into complete data sets for 

the combination, extraction, and inference of additional data for the creation of 3D model assets to 

visualise and render real-world virtual worlds. To generate model assets, procedural generation 

techniques have been utilised for the creation of primitive building structures. Combination 

algorithms have been generated to fill missing data to create complete data sets for model mesh 

extraction by utilising OSM data. This data is parse through a custom model creation algorithm 

specifically designed for use within the runtime system. The runtime system utilises a novel Array 
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Indexed Render Function data structure. To organise this data, a novel scene graph data structure is 

utilised to improve update and rendering speeds within the runtime system. Search techniques are 

also employed upon the scenegraph capable of retrieving objects which satisfy user generated 

procedural queries within a pool of 405 building models in than 0.14099 seconds. 

Aim 5, “to implement the geospatial data rendering system”. This aim is satisfied by the unique Array 

Indexed Shader Function structure which gives improved rendering rates with virtual scenes, and 

improved interactivity and scalability of simulations. The framework surrounding the AISF allows 

interaction with the DirectX API through novel material objects allow procedural generation of 

controller objects to dynamically update the spatial and visual properties of the attached object. 

Aim 6, “to develop new metrics and benchmarks to evaluate performance of the system and the 

realism of the resulting 3D scenes”. This aim has been partially met. Our evaluation techniques to 

determine the scalability of the algorithms and data sets proved promising, but we believe that 

further research is needed to determine the successfulness of all components of the framework. To 

do this, case studies are needed and user groups are needed. This includes ethical implications and 

thusly should be carried out for future work. 

We also reiterate the contributions of the project. 

Utilising an Indexed Array Shader Functions into the domain of GIS to improve rendering speeds over 

commonly used Branching Shader Functions. 

The research conducted into the creation of algorithms and methods for the detection and 

reduction of errors within OS, LiDAR, and OSM datasets. The combination of these dataset have also 

contributed to the creation of complete datasets which procedural generation techniques have been 

applied for the creation of 3D model assets. The extraction of 3D model meshes from rigid grid 

structures of LiDAR  

The utilisation of OSM boundary polygons for the extraction of 3D model meshes from rigid grid 

structures of LiDAR as published in 1.4.1, paper 2. 

To improve storage for the large geospatial datasets, a novel encoding format has been developed 

to potentially save 66% of storage needs of LiDAR. Encoding the data into texture formats allows for 

importing of said files into many game engines, and rendering engines. This removes issues of 

creating additional parsers for the raw ASCII formatted LiDAR maps. 

The use of an IVI to allow data encoding for objects within a scene and procedural generation of 

controllers applied to said objects.  
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The organization scenes are generated by the creation of a novel scenegraph structure. This allows 

spatial partitioning by using OS reference scheme for the base of the scenegraph structure, with 

object categorization for the top of the scenegraph structure. This allows quick data dispersal and 

retrieval through large scenes. 

Additional aims of the project are to produce a working prototype capable of rendering real-world 

environments using GIS data, and compute game technologies. We state this this has been 

successfully implemented. We also state that further work is needed to improve the framework. 

The future work needed is as follows. 

Improved rendering of scenes is needed. Within this work, emphasis on realistic scenes has been a 

main focus on the work. Due to issues during the development, the realism of scenes is not as 

advanced as hoped for. To improve this, future work is needed to improve the realism of rendering 

for real world virtual scenes. This includes. Improved PCG algorithms to generated improved faceted 

building meshes. PCG was not the focus of this research, but an integral part of it. Utilise high quality 

texture assets. High quality texture assets need additional resources and potential graphic artists to 

develop, or buy. Deferred rendering is needed to allow further lights to be added to a scene, as well 

as provide a platform for future advanced shading functions which rely on the multistage processes 

of deferred rendering. The natural step towards this would be to remove the use of Microsoft XNA 

rendering pipeline, and utilise a modern advanced game engine such as Unity3D72, or 

UnrealEngine473. These engines provide advances culling techniques to improve rendering, and 

provide advanced shading techniques such as environment mapping and reflections. 

Scenegraph optimisations are also needed. We have stated that the searching of nodes and assets 

will check the type of OSM asset against the PVSTag attached to it. If no PVSTag is attached, checking 

of the PVSTag Building attributes will not be checked. The initial check to see if the PVSTag is of a 

certain type is expensive due to the use of the .Net reflection. An improvement to this is to contain 

all attribute within a single object which all nodes will have. The generation of this object will set all 

values to zero, or null, and only set the pertinent attributes. For example, if a building asset is to be 

generated, a Tag object is to be applied containing all previous Tag attributes (Building, Highway, 

Amenity etc.). This removes the check against the type, and checks against attributes only searched 

for. This improves search technique flexibility, and the dynamic querying of assets by removing 

                                                           
72 https://unity3d.com/ 
73 https://www.unrealengine.com/what-is-unreal-engine-4 
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additional checks against object types. It also removes the need for specialised procedures to be 

created for each type. 

Effect cloning became an issue with larger maps. Within the evaluation section, experiments were 

undertaken for 5 increasing sized maps. Issues arose with map 4 and map 5 due to out of memory 

exceptions. The reason for the memory exception is not the amount of model mesh data as 

previously thought, but duplication of the effect file. During scene initialisation, the effect object is 

loaded and copied to every model part within the scene. It is the duplication of the file which 

increases memory consumption and produces an out of memory exception. 

To remove duplication means to create a single instance which all model parts within a scene will 

share. Sharing an effect file means the parameters of the effect need updating for each mesh being 

rendered. This may have incurred significant bandwidth issues with the increased data passing. 

Another issue is the updating of PVSMaterial parameters. The algorithms in place utilise bit-fields to 

only update parameters which have been modified from the previous frame. If data has changed, 

the data will be uploaded to the effect file. Further research is needed into the benefits between the 

two techniques. The first duplicates the effect file, but incurs increased memory usage. The second 

removes the memory consumption issue by sharing a single instance of the effect file, but will 

increase bandwidth between the CPU and GPU.  

The project has potential to be a base platform for the research into the following areas; 

 Crisis Management is an overarching domain which many research objects. A platform  

 City Visualisation provides stakeholders to view real-world scenes and interact with them as 

they see fit. The stakeholders in question are as follows, but not limited too; fire and rescue, 

police, city planners, property developers.  

 Traffic Simulation and Visualisation technologies can be inputted into 3D geometry 

rendering engines to analyse and simulate real world traffic simulations.  

 Classification methodologies applied to OSM object classification. Given the attributes of 

objects within the OSM data base, classification techniques can be utilised to determine the 

type of an object to an accurate representation. Adding additional data sets can improve 

these classifications; data sets such as LiDAR, and OS. Procedurally generated objects of 

OSM buildings and boundaries provide additional input for classification techniques (building 

size, building type by boundary type classification).  

As state within section 1.3, the scope of the project does not include big-data analyse and analytic 

approaches are needed for future work. As stated in the [12], as of 2012, roughly 2.5 Exabyte’s of 

data is created a day, and doubles every 40 months. It is difficult to state how much of this data is 
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GIS data, but with geotagging images, and advanced LiDAR point clouds, big-data processing is 

needed to construct understanding of this amount of data. Given the amount of data produced in 

modern day, big data processing has three possible techniques; scale-up, scale-down, or scale-out. 

Scale-up is the addition of resources (memory, processing power etc.) on a node and apply parallel 

processing techniques. Scale-down the amount of resources applied to processing e.g. create 

specific queries applied to a set. Scale-out add additional nodes onto the system, creating a 

distributed cluster of processing. We state that given the GIS data sets, parallel processing of the 

data and algorithms would be an appropriate area of research for the datasets and algorithms of our 

project. 

Intel’s Hadoop [81] supports the processing and storage of large data sets over a distributed network 

of computers. Thousands of nodes are organised to processing terabytes of data. Hadoop has 

recently been implemented to process real-time data of Facebook74 [82]. Further advances into big-

data processing has led to MapReduce75 [74]. Hadoop, and MapReduce can improve the querying of 

large datasets faster due to parallelisation techniques by distributed computing. These 

frameworks/applications need to be researched further in the future. 

We state the Map Reduction Paradigm [73][74] should be implemented within our future work. Map 

reduction paradigm is the development and process of parallel distributed processing of large 

volumes of data. The data is grouped, sorted, and processed into key/value pairs which are 

distributed over multiple resources. Map Reduce is appropriate for this work and the data sets 

available (LiDAR, OS, and OSM). The data can be organised within key/value pairs and be processed 

independently of neighbouring nodes within the datasets. 

We state that if the project is to be redone, the experiences and knowledge gained suggest that 

further research into already implemented algorithms and applications, is needed, and to build upon 

them. The utilisation of Epic’s UnrealEngine4 would benefit the project more than using Microsoft 

XNA’s API, or the newly implemented Monogame API. 

We conclude that this project has been a moderate success and a base platform for future exciting 

research. 

 

                                                           
74 https://www.facebook.com 
75 https://www.ibm.com/analytics/us/en/technology/hadoop/mapreduce/ 
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