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ABSTRACT (217) 

 The presence of a light flash near to the body not only increases the ability to detect a 

weak touch but also increases reports of feeling a weak touch that did not occur. The Somatic 

Signal Detection Task (SSDT) provides a behavioural marker by which to clarify the spatial 

extent of such visuotactile interactions in peripersonal space. Whilst previous evidence 

suggests a limit to the spatial extent over which visual input can distort the perception of 

tactile stimulation during the Rubber Hand Illusion, the spatial boundaries of light-induced 

tactile sensations are not known. In a repeated measures design, forty one participants 

completed the SSDT with the light positioned 1cm (near), 17.5cm (mid) or 40cm (far) from 

the tactile stimulation. In the far condition, the light did not affect hit, or false alarm rates 

during the SSDT. In the near and mid conditions, the light significantly increased hit rates 

and led to a more liberal response criterion, that is, participants reported feeling the touch 

more often regardless of whether or not it actually occurred. Our results demonstrate a spatial 

boundary over which visual input influences veridical and non-veridical touch perception 

during the SSDT, and provide further behavioural evidence to show that the boundaries of the 

receptive fields of visuotactile neurons may be limited to reach space. 

 

Keywords: vision; touch; somatic signal detection task; rubber hand illusion; peripersonal 

space; reach space 
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INTRODUCTION 

 Our perception of touch not only depends on the presence and nature of tactile 

stimulation to the body surface, it can be influenced by information from other sensory 

modalities. For example, when a light flashes in close proximity to the body, people are faster 

to detect tactile targets at the same body location (e.g., Butter et al. 1989). When vision and 

touch provide conflicting information, however, the visual system can dominate and alter 

touch perception (Johnson et al. 2006). During the Rubber Hand Illusion (RHI; Botvinick and 

Cohen 1998), when a fake hand is positioned close to our body, and touched at the same time 

as our real hand is touched (but is out of sight), it can result in the feeling that the touch is 

coming from the fake hand. Similarly, during the Somatic Signal Detection Task (SSDT; 

Lloyd et al. 2008), presenting a light next to the body increases “hits” (correct reports of 

feeling a weak touch) but also increases “false alarms” (false reports of feeling touch). These 

tactile illusions demonstrate the potential for visual stimulation, occurring in close proximity 

to the body, to distort the perception of touch. However, there are limits to the spatial extent 

over which touch can be referred from the real to the fake hand during the RHI (Lloyd 2007). 

The purpose of the present study was to determine the spatial boundary over which visual 

input influences both veridical and non-veridical touch perception, to further our 

understanding of the limits of visually-evoked touch and peripersonal space. 

 

 Peripersonal space encompasses the space within reaching distance of the body, and is 

distinguished from personal space (the space directly on the body surface) and extrapersonal 

space (the area outside of reaching distance; Colby and Duhamel 1996; Colby 1998; Previc 

1998). The extent of peripersonal space has been defined based on the response properties of 

bimodal neurons in the premotor and parietal cortices, that are responsive to tactile 
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stimulation on the surface of the body as well as visual stimulation in the area surrounding 

the body (see Graziano et al. 2004). Evidence from functional magnetic resonance imaging 

(fMRI) and behavioural studies suggests that similar multisensory representations of 

peripersonal space exist in humans (e.g., Lloyd et al. 2003; Làdavas and Farnè 2004; Makin 

et al. 2007). 

 

 Although the visual receptive fields of bimodal neurons are partially bound to the 

space surrounding the tactile receptive field on the body surface, always remaining within 

reaching space of the monkey (Fogassi and Gallese 2004), they are flexible. They extend with 

tool use (Iriki et al. 1996; Farnè et al. 2005; Bassolino et al. 2010) and are responsive when 

we see touch on a fake hand during the RHI (e.g., Ehrsson et al. 2004; Ehrsson et al. 2005; 

Lloyd et al. 2006). Nevertheless, evidence from animal studies suggests that these neurons 

respond more strongly for visual stimuli positioned close to the body (within peripersonal 

space) as opposed to far from the body (Fogassi et al. 1996; Rizzolatti et al. 2002) and 

behavioural evidence is consistent with this. Studies with human participants have found 

stronger visuotactile interactions when a visual stimulus occurs near, as opposed to far from 

the body. For example, when a distracting light is presented at the same versus opposite 

location as a touch (at the finger versus the thumb), people are faster and more accurate in 

judging the location of the touch (Spence et al. 2004b). This effect is reduced when the 

distance between the tactile and visual stimulation is increased (e.g., Pavani and Castiello 

2004; Spence et al. 2004a). These studies only compared visuotactile interactions in two 

distance conditions, however, with the visual stimulus in the ‘far’ conditions often being 

positioned next to a different (unstimulated) part of the body, rather than in extrapersonal 

space.  
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 Behavioural paradigms, such as the RHI, have been used as proxy measures to 

investigate the neural representation, and spatial extent of peripersonal space (for a review 

see Makin et al. 2008). Lloyd (2007) positioned a fake right hand at six distances from the 

participant’s real right hand, from 17.5cm to the left of the participant’s real hand (in line 

with their right shoulder), to 67.5cm to the left of the participant’s real hand (across the body 

midline, at the limit of reach space for the right hand). Participants experienced the RHI (that 

is, agreed with the statement “it seemed as though the touch I felt was caused by the 

experimenter touching the rubber hand”), up to a distance of 27.5cm; beyond this distance, 

the strength of the RHI diminished, and the time taken to elicit the illusion increased. This 

result may reflect the spatial limits of peripersonal space surrounding the hand. Beyond 

‘reach space’ (which was approximately 30cm in this study) visual input may no longer have 

the potential to distort touch perception, perhaps due to the limits of the visual receptive 

fields surrounding the hand.  

 

 Zopf, Savage and Williams (2010) also investigated the effect of increasing the 

distance between the real and fake hands during the RHI. In their study, a fake left hand was 

positioned in the same location in front of the participant (close to the body midline), but the 

real hand (placed behind a screen) was positioned either 15cm, or 45cm to the left of the fake 

hand. Whereas in Lloyd’s (2007) study, the visual information (seen position of the fake hand) 

differed between conditions, in Zopf et al.’s study, proprioceptive information (felt location 

of the real hand) differed between conditions. Zopf et al. (2010) found no difference in 

illusion strength between the two distance conditions and argued that a similar re-coding of 

peripersonal space towards the seen fake hand occurred in both distance conditions. In Zopf 

et al.’s study, the fake hand was always placed within reaching distance of the participants, 

but in Lloyd’s study, the fake hand was positioned at the limit of reach space. This may 
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suggest that the occurrence of visual stimulation within reach space is required for vision to 

distort touch perception. An alternative explanation for Lloyd’s results, however, is that 

rotational differences between the real and fake hands accounted for the reduction in illusion 

strength, rather than the distance (Zopf et al. 2010). In Lloyd’s study, the fake hand was 

rotated to different degrees in each distance condition. Previous studies have found that 

rotational differences between the real and fake hands decrease the RHI (Pavani et al. 2000; 

Tsakiris and Haggard 2005; Holmes et al. 2006; Costantini and Haggard 2007). In the current 

study, we attempted to replicate Lloyd’s (2007) findings using a different paradigm, the 

Somatic Signal Detection Task (SSDT; Lloyd et al. 2008), which eliminated this 

distance/rotation confound and enabled us to also explore the effect of distance on light-

evoked touch (i.e., false reports of feeling a touch). 

 

 During the SSDT, participants are asked to detect a weak vibration presented to their 

fingertip, which occurs on 50% of trials. When a nearby light (positioned 1.5cm from the 

fingertip) flashes, participants make more “hits” but also more “false alarms” (reporting 

feeling the touch when it did not occur). As a result, there are small increases in sensitivity, 

but larger changes in response criterion in the presence of the light, that is, participants are 

more likely to report feeling the touch, regardless of whether it was presented (Lloyd et al. 

2008; Mirams et al. 2012; Mirams et al. 2013). As the strength of the vibration is at threshold 

(detectable on ~50% of trials), the presence of touch is ambiguous, and participants are 

unaware of whether or not their experience of a tactile sensation is ‘true’, or ‘false’. 

Therefore, performance on this task is less subject to demand characteristics compared to the 

RHI, during which participants are aware of experiencing the illusion. Furthermore, the 

SSDT enabled us to investigate the spatial limits of the influence of a visual stimulus on 

veridical (true) and non-veridical (false) touch perception, within the same paradigm.  
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 The light may influence the detection of touch during the SSDT because it occurs 

within the tactile receptive field surrounding the participant’s hand, i.e., within the boundaries 

of peripersonal space. We have previously found that the light influences touch perception 

during the SSDT even when the hand is covered (but the nearby light still visible; Mirams et 

al. 2010), which is consistent with the neurophysiological evidence that visuotactile neurons 

respond to nearby visual stimulation even when the body part is covered (e.g., Graziano et al. 

1997; Obayashi et al. 2000). The distance between the light and the body during the SSDT 

has been separated in one previous study. Durlik, Cardini and Tsakiris (2014) presented 

tactile stimulation to the face, and the light flash approximately 1m in front of the participant, 

at eye level. Durlik et al. still found a significant effect of the light on tactile sensitivity, hit 

rates, response criterion and false alarm rates. However, light-induced false alarm rates were 

much lower in their study (~4%), compared to the original SSDT paradigm, in which light-

induced false alarm rates are around 10-15%. Indeed, other evidence suggests that spatial 

correspondence is not always necessary for multisensory integration to occur. Spence (2013) 

reviewed the evidence for the importance of spatial coincidence for multisensory integration, 

and argued that spatial correspondence is only crucial when a task involves a spatial 

component (i.e., discriminating the location of a target), but is less important for tasks which 

involve temporal judgements, or the simple detection of a target. If so, we may not expect 

increased distance to reduce the effect of the light during the SSDT. In the current study, the 

distance between the hand and the light was varied in a within-subjects design to provide an 

alternative behavioural marker of the response properties of visuotactile neurons encoding 

peripersonal space around the hand. Following Lloyd’s (2007) findings, the effect of the light 

was expected to be reduced when the light was positioned more than 30cm from the 

participant’s hand. We also investigated potential distance condition order effects, given that 
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participants would have more or less experience of the light-touch contingency during the 

SSDT depending on which distance condition they completed first. Although increased 

experience of the light-touch contingency during the SSDT does not seem to increase the 

effect of the light (McKenzie et al. 2010; McKenzie et al. 2012), a training protocol to reduce 

the light-touch association has been found to decrease false alarms during the SSDT 

(McKenzie et al. 2012). Therefore, distance condition order was counterbalanced and 

included as a covariate in our analyses.  

 

MATERIALS AND METHODS 

 

Participants 

 Forty one right handed participants aged 18-51 years (M = 24.61 years, SD = 6.71, 27 

female) took part. Handedness was assessed using the Edinburgh Handedness Inventory 

(Oldfield 1971). All participants had normal or corrected to normal vision, and none reported 

any tactile sensory deficits. The study was approved by the Liverpool John Moores 

University (LJMU) Research Ethics Committee. Participants were recruited via poster 

advertisements and an online participation scheme website at LJMU. Informed consent was 

obtained from all individual participants included in the study.  

 

Study design 

 We used a 2 (light: present/absent) x 2 (touch: present/absent) x 3 (light-hand distance: 

1cm/17.5cm/40cm) repeated measures design. These three distance conditions are 

subsequently referred to as the near, mid and far conditions, respectively.  

 

SSDT Materials 
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 Participants sat in a light-attenuated room approximately 60cm in front of a stimulus 

array. This consisted of a polystyrene block into which was mounted a tactor with a diameter 

of 18mm (Dancer Design, St Helens, UK) and was attached to the underside of the 

participant’s fingertip with a double-sided adhesive pad. A 4mm red light-emitting diode 

(LED) was mounted into the bottom left hand corner of a small black box, which could be 

positioned in one of three locations at increasing distances from the tactor (1cm, 17.5cm or 

40cm). Tactile vibrations (20ms, 100Hz square wave vibrations) were produced by sending 

amplified sound files (using a Tactamp, Dancer Design), controlled via E-Prime software 

(Psychology Software Tools, Inc., Pittsburgh, PA, USA), to the tactor. Instructions were 

delivered on a computer monitor. Participants listened to white noise via headphones 

throughout the experiment to mask any sounds from the tactor (see Figure 1 for an illustration 

of the experimental set-up). 

 

Thresholding procedure 

Before beginning the main trials of the SSDT, a threshold was found for each 

participant using the Parameter Estimation by Sequential Testing (PEST; Taylor and 

Creelman 1967) algorithm, which is an adaptive method for quickly and efficiently 

estimating psychophysical parameters. The beginning of each trial was signalled by the 

appearance of a green arrow cue on the computer monitor (subtending approx. 18º × 7º of the 

visual angle) pointing towards the participant’s left index finger for 250ms. This was 

followed by two stimulus periods of 1,020ms. In one of the time periods, the 20ms tactile 

pulse was delivered with a delay of 500ms on either side; in the other time period, an empty 

1,020ms period occurred. An on-screen prompt then appeared, and participants were asked to 

report whether they had felt a pulse in the first or second time period by pressing the “1” or 

“2” key on the computer keyboard (a two alternative forced choice design). The PEST 
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procedure began by presenting an above threshold vibration which was the same intensity for 

all participants. If participants responded correctly on a series of trials (> 75% correct 

responses), the programme automatically reduced the strength of the vibration (by lowering 

the volume of the sound file used to produce the vibration). If they began to respond 

incorrectly (< 75% correct), it increased the vibration strength. This procedure was repeated 

until the stimulus intensity approached the participant’s 75% threshold (the intensity 

necessary for participants to identify the correct time period in 75% of trials). A Wald (Wald 

1947) sequential likelihood-ratio test was used to determine when to change the strength of 

the vibration. The thresholding procedure took approximately five minutes on average. Initial 

step size was set to 800 (as e-prime specifies volume in hundredths of decibels, this resulted 

in an initial decrease in the volume of the sound file equal to 8dB). Subsequent step size was 

determined using the following rules: 

 

1) On every reversal of direction, the step size is halved (unless it follows a double, see 

rule 3). 

2) The second step in a given direction is the same size as the first. 

3) If a sequence of three steps in the same direction occurs, then double the step size. 

4) The fourth and subsequent steps in the same direction are each double the step size of 

their predecessor. 

5) After each reversal that follows a double, no change to the step size. 

6) End when the minimum step size is reached (this was set to 50).  

 

If the minimum step size was not reached after 150 trials, the vibration strength was set to the 

average stimulus strength over the last 50 thresholding trials (this was the case for five 

participants). 
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SSDT design and procedure 

 The main blocks of the SSDT consisted of 80 trials with the following trial types: 

light only (light present/touch absent); light and touch (light present/touch present); touch 

only (light absent/touch present); and catch (light absent/touch absent) presented 20 times per 

block in a random order. The tactile stimulus was presented at the threshold level previously 

established. Each SSDT trial was preceded by the appearance of the green arrow cue on the 

monitor for 250ms. In touch only trials, a 20ms vibration was presented with a delay of 

500ms before and after. Catch trials consisted of an empty 1,020ms interval. In light and 

touch trials, the LED flashed for 20ms at the same time as the vibration. In light only trials, 

the LED flashed for 20ms alone. Participants were not told anything about the light and were 

only required to indicate whether or not they felt a touch after each trial by entering a number 

corresponding to one of four response options: “definitely yes” (1), “maybe yes” (2), “maybe 

no” (3), “definitely no” (4). Participants were instructed to keep their hand still throughout 

the experiment, including break and rest periods. Each participant completed the SSDT under 

the three hand-light distance conditions (80 trials per condition, 3 blocks of main trials in 

total) with a one minute break between conditions. The order of conditions was 

counterbalanced between participants. In each condition, the black box containing the LED 

was positioned in one of the three distance locations and was moved by the experimenter 

during the break between each block. After the final block, participants completed the 

thresholding procedure for a second time to determine whether threshold levels remained 

stable. No other instructions were given and participants were naıve as to the true purpose of 

the study. The experiment lasted 50 minutes in total. 

 

Analysis 
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 In order to calculate signal detection theory statistics d’ and c (Macmillan and 

Creelman 1991) responses were classified as hits (reports of feeling the touch on touch-

present trials), misses (reports of not feeling the touch on touch-present trials), false alarms 

(reports of feeling the touch on touch-absent trials) or correct rejections (reports of not feeling 

the touch on touch-absent trials). Some participants did not use all of the response options in 

all light/distance conditions, therefore ‘definitely’ and ‘maybe’ responses were combined and 

grouped into ‘yes’ and ‘no’ responses. Hit rates [(hits + .5)/(hits + misses + 1)] and false 

alarm rates [(false alarms + .5)/(false alarms + correct rejections + 1)] were calculated using 

the log-linear correction
1
 (Snodgrass and Corwin 1988). These were used to calculate the 

signal detection theory test statistics d’ [z(hit rate) -z(false alarm rate)] and c [-.5*z(hit rate) + 

z(false alarm rate)]. This provided estimates of each participant’s perceptual sensitivity (d’) 

and tendency to report stimuli as present (response criterion, c) in the light and distance 

conditions. Statistical analyses were conducted using SPSS version 15.0 (SPPS Inc., Chicago, 

IL). 

 

RESULTS 

 

Descriptive statistics 

Table 1 shows descriptive statistics for hit rates, false alarm rates, sensitivity (d’) and 

response criterion (c) in each SSDT light and light-hand distance condition. Threshold levels 

did not change significantly from the beginning (M stimulus level = -515.42, SD = 287.59) to 

the end of the testing session (M stimulus level = -593.98, SD = 344.33, t(40) = 1.48, p = .15). 

The false alarm rate data in each distance and light condition was significantly positively 

                                                           
1
 Adding the values of 0.5 and 1 in the hit and false alarm rate formulas is recommended as it eliminates any 

false alarm rates of 0%, or hit rates of 100%, which causes problems for the subsequent calculation of sensitivity 

and response criterion.  
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skewed. Log and square root transformations did not normalise the data, therefore, non-

parametric tests were used to analyse this data. 

 

Hit Rates 

A 2(light) x 3(distance) ANOVA with distance condition order (near first, mid first, 

far first) as a covariate was conducted. The main effects of light (F(1,39) = 1.32, p = .26) and 

distance (F(2,78) = .01, p = .99) were not significant. However there was a light x distance 

interaction (F(2,78) = 4.39, p = .02) and a light x distance x condition order interaction 

(F(2,78) = 4.43, p = .02). No other effects were significant (p’s > .79).  

 

To follow up these interactions, mixed design ANOVAs with light as a within-

subjects factor and condition order as a between-subjects factor, were conducted separately 

for each distance condition. In the near condition, there was a significant effect of the light 

(F(1,38) = 4.15, p = .04) with a higher hit rate in the presence of the light, but no effect of 

condition order (F(2,38) = .27, p = .76) and no light x condition order interaction (F(2,38) 

= .43, p = .66). In the mid condition, there was also a significant effect of the light (F(1,38) = 

12.81, p = .001), but no effect of condition order (F(2,38) = .18, p = .83) and no light x 

condition order interaction (F(2,38) = .18, p = .83). In the far condition, there was no longer a 

significant effect of the light (F(1,38) = 3.32, p = .08), no effect of condition order (F(2,38) 

= .65, p = .53) and no light x condition order interaction (F(2,38) = 2.33, p = .11). 

 

False alarm rates 

Separate Wilcoxon tests were conducted to investigate the effect of the light on false 

alarm rates in each distance condition (with the significance level lowered to p = .02 to 

correct for multiple comparisons). There was a tendency towards an effect of light in the near 
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condition (Z = 1.87, p = .06) but no effect of the light in the mid (Z = .30, p = .77) or far (Z 

= .43, p = .66) conditions, see Figure 2. 

 

Sensitivity (d’) 

A 2(light) x 3(distance) ANOVA with distance condition order (near first, mid first, 

far first) as a covariate, was conducted. The main effects of distance and light were not 

significant (F(2,78) = 1.65, p = .20, and F(1,39) = 2.86, p = .10, respectively). There was, 

however, a distance x light interaction (F(2,78) = 3.38, p = .04) and a distance x light x 

condition order interaction (F(2,78) = 3.66, p = .03, see Figure 3). No other effects were 

significant (p’s > .10). 

 

To follow up these interactions, mixed design ANOVAs with light as a within-

subjects factor and condition order as a between-subjects factor, were conducted separately 

for each distance condition. In the near condition, there was no effect of light (F(1,38) = .02, 

p = .88) or condition order (F(2,38) = .42, p = .66) and no light x condition order interaction 

(F(2,38) = .78, p = .47, see Figure 3). In the mid condition, there was a tendency towards an 

effect of the light (F(1,38) = 4.23, p = .05) and a light x condition order interaction (F(2,38) = 

3.94, p = .03). The main effect of condition order was not significant (F(2,38) = .10, p = .91). 

For participants who did the near condition first, d’ was significantly higher in the light (M = 

1.45) compared to the no light condition (M = 1.03, t(11) = 6.13, p < .001). For participants 

who did the mid and far conditions first, d’ was not significantly different in the light and no 

light conditions (t(16) = .57, p = .58, and t(11) = .57, p = .58, respectively, see Figure 3). In 

the far condition, there was no effect of the light (F(1,38) = 1.64, p = .21), no effect of 

condition order (F(2,38) = 2.42, p = .10) and no light x condition order interaction (F(2,38) = 

2.15, p = .13, see Figure 3). To summarise, the light affected d’ only in participants who did 
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the near condition first. For these participants, the light had a significant effect on d’ in the 

mid condition only.  

 

Response criterion (c) 

A 2(light) x 3(distance) ANOVA with condition order (near first, mid first, far first) 

as a covariate, was conducted. There was no main effect of light (F(1,39) = .00, p = .99), no 

main effect of distance (F(2,78) = 1.28, p = .28) but a light x distance interaction (F(2,78) = 

3.20, p = .04). Paired samples t-tests with the Bonferroni correction for multiple comparisons 

showed that response criterion was significantly lower in the light, than the no light condition 

in the near (t(40) = 2.51, p = .02) and mid (t(40) = 2.70, p = .01) conditions, but not in the far 

condition (t(40) = .94, p = .35). 

 

Results summary 

There were no significant multisensory effects of the light on hit rates, false alarm 

rates, d’ and c in the far condition, while there were effects for the near and mid conditions. 

In the near condition, the light increased hit rates and tended to increase false alarm rates, 

leading to a significant change in bias towards reporting a touch, but no significant increase 

in sensitivity. In the mid condition, the light significantly increased hit rates and shifted bias 

as well as increasing d’ for those participants who experienced the near condition first. 

 

DISCUSSION 

 

 Whereas previous evidence suggests that visual input affects the perception of an 

existing touch to a greater extent when the visual input occurs close, as opposed to far from 

the body (Lloyd, 2007), the spatial limits over which a visual stimulus has the potential to 
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evoke the perception of touch, is less clear. Altering the distance between the location of the 

tactile and visual input during the SSDT allowed us to get a clearer indication of the spatial 

limits over which a visual stimulus can affect the veridical perception of an existing touch, as 

well as the false perception of an absent touch. When the light was positioned next to the 

fingertip (1cm) or within reaching distance of the participant (17.5cm), we found significant 

effects of the light on hit rates, d’ and c. There was only a tendency for higher false alarm 

rates in the presence of the light in the near condition, but no effect of the light on false 

alarms in the mid or far conditions. As expected, beyond reaching distance (at 40cm), the 

light no longer influenced the perception, or misperception of touch.  

 

 Our results are consistent with previous behavioural evidence that visuotactile 

interactions are stronger for visual stimuli occurring close, as opposed to far from the location 

of tactile stimulation (Spence et al. 2004b; Shore et al. 2006), perhaps due to the response 

properties of visuotactile neurons, which respond more strongly for visual stimuli positioned 

close to the body (e.g., Fogassi et al. 1996; Rizzolatti et al. 2002). In the current study, 

participants made more hit responses (detected more weak touches), in the presence of a light 

positioned 1cm or 17.5cm from their fingertip. At these hand-light distances, participants also 

had a more liberal response criterion in the presence of the light, being more likely to report 

feeling the touch regardless of whether or not it was presented. Our results suggest a division 

between peripersonal space and extrapersonal space. The effect of the light on hit rates and 

response criterion did not decrease along a near to far continuum. Instead, the effect of the 

light on hit rates and response criterion was of a similar magnitude in the near and mid 

conditions, in which the light was within reach space. This may reflect the limits of the visual 

receptive fields of bimodal neurons, which have been found to remain within reaching 

distance (Fogassi & Gallese 2004). Our results also suggest that the effect of the light on 
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touch perception during the SSDT is due to spatial multisensory integration, rather than 

temporal integration (c.f. McKenzie et al. 2012) otherwise the light would have had the same 

effect in all conditions. Although Spence (2013) argued that spatial coincidence is only 

crucial in order for multisensory integration to occur when a task involves a spatial 

component, we found that some degree of spatial correspondence was necessary in order for 

visuotactile integration to occur, even though our task involved the simple detection of a 

tactile target. 

 

 According to signal detection theory (e.g., Macmillan and Creelman 1991), an 

individual decides whether or not a stimulus was presented depending on the strength of an 

internal decision signal, which is based on continuous output from the sensory system. Hits 

may have been higher in the presence of the light due to the activation of visuotactile neurons. 

Multisensory integration can produce neural activity greater than the sum of responses to two 

stimuli presented separately (e.g., Meredith and Stein 1986; Wallace et al. 1998). Therefore, 

the light may have boosted the strength of the internal decision signal when the touch was 

present (Pasalar et al. 2010), and also when the touch was absent, resulting in increased hits 

and a more liberal response criterion. Our finding that the light no longer increased hits at 

40cm (beyond reaching distance), provides further behavioural evidence to suggest that the 

boundaries of the receptive fields of visuotactile neurons may be limited to reach space (see 

Fogassi and Gallese 2004). To determine whether the limits of reach space do indeed account 

for the reduction in multisensory effects, hand-light distance could be manipulated differently 

in a future study, so that the light is always positioned in front of the participant, within reach 

space, but the hand is positioned at different lateral distances from the light, similar to Zopf et 

al.’s (2010) study.  
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 In the current study, the light only tended to increase false alarms when it was 

presented 1cm from the finger, although this effect was not significant, which contrasts with 

previous findings using this paradigm (e.g., Lloyd et al. 2008). Using the RHI paradigm, 

Lloyd (2007) found evidence to suggest that visual input can only distort the perception of 

touch when it occurs within reaching distance. In Lloyd’s study, self-reported experience of 

the RHI diminished when a fake hand was moved beyond 27.5cm from the real hand. It 

seems that the spatial boundary over which visual input can elicit a false report of touch, as 

opposed to distort the perception of existing touch is even smaller, and perhaps limited to the 

area immediately surrounding the body. In future studies it will be necessary to include 

additional distance conditions to determine whether a light does indeed have to occur right 

next to the body in order to elicit false reports of touch, or whether a light occurring between 

1cm and 17.5cm could still elicit false alarms.  

 

 The lack of effect of the light on false alarms in the mid condition suggests that light-

induced false alarms are driven by a different mechanism than the one responsible for 

increased hits in the presence of the light. Otherwise, we would expect the light to increase 

false alarms in the mid condition. Indeed, while it seems plausible that increases in the 

detection of touch in bimodal trials may be due to multisensory enhancement, light-induced 

false alarms cannot result from ‘bottom-up’ multisensory integration as only a single stimulus 

was presented (c.f. McKenzie et al. 2012). Alternatively, false alarms in the presence of the 

light may result from ‘top-down’ influences on perception. Vision can dominate and alter 

processing in other sensory modalities, particularly when the information from other sensory 

modalities is ambiguous (Johnson et al. 2006). Therefore, the light may be used to resolve 

uncertainty about the presence or absence of the vibration. This may be due to lifelong 

experience of a high correlation between spatially and temporally coincident multisensory 
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events (c.f. Johnson et al. 2006). As a result, when the light flashes, we expect to feel a touch 

at the same time, but only when it flashes right next to our body, perhaps due to the 

association between seeing a stimulus approach the body and feeling a touch at the same time. 

 

 We did not find effects of the light on sensitivity in the near and far conditions. This 

result is consistent with previous findings from studies using the SSDT and a similar 

paradigm (Johnson et al. 2006; Lloyd et al. 2008; Mirams et al. 2012). In these studies, the 

nearby light led to small, non-significant increases in sensitivity, because increased hits in the 

presence of the light were accompanied by an increase in false alarms. In the mid condition, 

sensitivity was significantly higher in the presence of the light, but only for participants who 

did the ‘near’ condition first. This may have been because false alarms were reduced in the 

mid condition (for reasons discussed above). It is also possible that experiencing a spatial and 

temporal contingency between the light and touch in the near condition made it more likely 

that the light affected sensitivity when participants subsequently completed the mid condition. 

However, we have previously found that increased experience of the light-touch contingency 

during the SSDT does not increase the effect of the light (McKenzie et al. 2010; McKenzie et 

al. 2012). Alternatively, experiencing a lack of a spatial contingency between vision and 

touch (in participants who did the mid and far conditions first), could have made it less likely 

that the light affected sensitivity in subsequent blocks. McKenzie et al. (McKenzie et al. 2012; 

Experiment Two) found that after a training protocol to reduce the association between the 

light and touch, participants made fewer false alarms during the SSDT (in both the presence 

and absence of the light). This suggests that experience of reduced light-touch contingency 

can indeed influence subsequent decision making during the SSDT. In McKenzie et al.’s 

study, the training protocol did not eliminate the effect of the light on hits, sensitivity and 
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response criterion, perhaps due to lifelong learning of a strong association between spatially 

and temporally aligned visual and tactile stimuli.  

 

 The condition order effects apparent in the sensitivity data could also account for why 

the effect of the light on false alarms in the near condition did not quite reach significance in 

the current study. For the two thirds of our participants who experienced a reduced spatial 

contingency between vision and touch (as a result of completing the mid and far conditions 

first), there may have been an overall reduction in false alarms during subsequent blocks of 

the task, which made it less likely to detect a significant effect of the light. Although a 

between-subjects design would have eliminated order effects, individual differences in the 

tendency to make false alarms (Brown et al. 2012) would have added variability to the data. 

 

 In our experiment, the light absent trials were physically equivalent in all distance 

conditions, but despite this, sensitivity in light absent trials was slightly higher in the near, 

followed by the mid and far conditions (see Table 1), although these differences were not 

significant
1
. In light present trials, however, sensitivity was similar in each distance condition, 

despite these trials being physically different. We suggest that the slight increase in 

sensitivity in the near and mid conditions in light absent trials could have been due to 

increased attention to the spatial location of the hand, due to the presence of the nearby light 

on other trials within the block. In light present trials, this increased attention may not have 

resulted in higher sensitivity because of the concurrent increase in false alarms. 

 

 In summary, our results suggest a spatial boundary over which visual input influences 

touch perception during the SSDT, which seems to be limited to reach space. Our results 

contrast with Durlik et al.’s (2014) findings that the light affected all SSDT outcome 
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measures when it was presented 1m in front of the participant (with the tactile stimulation 

presented to the face). In Durlik et al.’s study, however, the light was positioned in the centre 

of the participant’s visual field throughout the experiment, which may have increased its 

salience. Furthermore, Durlik et al. did not compare different light-body locations, which 

limits comparison with the current results. Instead, we show that visuotactile integration no 

longer occurred when the light was positioned 40cm from the location of touch, and an even 

higher degree of spatial correspondence seems to be necessary in order for a visual stimulus 

to increase false reports of touch, suggesting that we only expect a concurrent touch when 

visual stimulation occurs in close proximity to the body.  

 

FOOTNOTES 

1 Paired samples t-tests suggested that d’ in light absent trials did not differ between the near 

and mid conditions (t(40) = .78, p = .44), the near and far conditions (t(40) = .95, p = .35), or 

the mid and far conditions (t(40) = .27, p = .79). 
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TABLES 

Table 1       

Descriptive statistics for hit rate, false alarm rate, d’ and c in each distance and light condition 

  Hit rate False alarm rate d’ C 

 

  M (SD) M (SD) Mdn (Range) M (SD) M (SD) 

NEAR Light 52.32 14.92 7.14 1.32 .58 

  (29.14) (15.68) (57.00) (1.11) (.60) 

 No Light 48.61 12.95 7.14 1.35 .69 

  (27.93) (15.67) (62.00) (1.13) (.58) 

MID Light 51.28 12.37 7.14 1.38 .63 

  (26.60) (12.64) (48.00) (.95) (.53) 

 No Light 43.47 11.44 7.14 1.25 .77 

  (27.79) (13.12) (71.00) (1.09) (.53) 

FAR Light 47.68 12.49 7.14 1.32 .71 

  (29.89) (14.57) (57.00) (1.09) (.61) 

 No Light 43.84 11.56 7.14 1.20 .77 

  (29.99) (12.34) (57.00) (1.07) (.62) 

 

    

 


