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Abstract: 

Rugby is a complex, high-intensity, intermittent, collision sport with emphasis placed on 
players possessing high lean body-mass and low body-fat. After an 8-12 week pre-season 
focused on physiological adaptations, emphasis shifts towards optimizing competitive 
performance and recovery through periodising player’s diets and training. 
 
In Chapter 4 the physiological demands and nutritional intakes of 45 elite rugby players 
were assessed during a pre-season through a battery of strength and conditioning tests, 
quantification of training demands using global positioning system (GPS), and two 24-
hour diet recalls. Mean weekly distance covered during training was 9774 ± 1404 and 
11585 ± 1810 m with a total mean weekly session RPE (sRPE) of 3398 ± 335 and 2944 ± 
410 arbitrary units (AU) for forwards and backs respectively. Mean daily energy intake 
was 14.8 ± 1.9 and 13.3 ± 1.9 MJ, carbohydrate (CHO) intake was 3.3 ± 0.7 and 4.14 ± 0.4 
g·kg-1 body mass, protein intake was 2.52 ± 0.3 and 2.59 ± 0.6 g·kg-1 body mass, and fat 
intake was 1.0 ± 0.3 and 0.95 ± 0.3 g·kg-1 body mass for forwards and backs respectively. 
Markers of physical performance (1-RM strength, speed, and repeated sprint tests) and 
anthropometry (body fat, and estimated lean mass) significantly improved in all players, 
despite players’ self-selecting a ‘low’ CHO ‘high’ protein diet. It may be speculated 
therefore that ‘low’ CHO ‘high’ protein intakes are appropriate to fuel the pre-season, 
although whether these intakes are sufficient to fuel the in-season is unknown.   
 
Once the demands of the pre-season were established, the next aim of the thesis was to 
examine if requirements changed during the playing season, as well as quantifying energy 
expenditure. In Chapter 5 in-season training load using GPS and sRPE, alongside six-day 
assessments of energy intake (EI) and energy expenditure (EE) was measured in 44 elite 
Rugby Union players. Mean weekly distance covered was 7827 ± 954 m and 9572 ± 1233 
m with a total mean weekly sRPE of 1776 ± 355 and 1523 ± 434 AU for forwards and 
backs, respectively. Mean daily EI was 16.6 ± 1.5 and 14.2 ± 1.2 MJ, and EE was 15.9 ± 
0.5 and 14 ± 0.5 MJ for forwards and backs respectively. Mean CHO intake was 3.5 ± 0.8 
and 3.4 ± 0.7 g·kg-1 body mass, protein intake was 2.7 ± 0.3 and 2.7 ± 0.5 g·kg-1 body 
mass, and fat intake was 1.4 ± 0.2 and 1.4 ± 0.3 g·kg-1 body mass for forwards and backs 
respectively. All players who completed the food diary self-selected a ‘low’ CHO ‘high’ 
protein diet during the early part of the week which increased in the days leading up to a 
match. EI and EE followed an inverse trend, with expenditure exceeding intake during the 
first four-days of the training week and then reversed in the day leading up to competition 
with intake exceeding expenditure. Despite this, mean EI exceeded EE which alongside no 
micronutrient deficiencies, suggest that the current dietary practices of these elite rugby 
players seem sufficient to fuel training during the in-season, providing energy intake and 
CHO are increased leading up to a match. Given that intakes reported in this study are still 
below recommended CHO intake for elite athletes (Burke et al 2011), however, it is still 
possible that such intakes are not optimal for match day performance. 

 
Given that in Chapters 4 and 5 it was found that elite Rugby players appear to deliberately 
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select a low carbohydrate intake, it was deemed important to assess match-play glycogen 
demands following a low (the amount self selected in chapter 4) and higher (the amount 
self selected leading in to competition in chapter 5) carbohydrate diet. Therefore, in 
Chapter 6 the metabolic and physiological demands of rugby competition was assessed in 
16 professional Rugby League players following either a 6g·kg (HCHO) or 3g·kg (LCHO) 
CHO diet for 36-hours. Muscle biopsy and blood was collected, alongside monitoring 
internal and external load through GPS and heart rate. Mean distance covered was 93.7 ± 
12.4 and 89.4 ± 9.8 m·min-1 in the first, and 85.3 ± 13.1 and 86.9 ± 9.7 m·min-1 in the 
second half for HCHO and LCHO conditions respectively. Mean %HRpeak was 82.9 ± 6.1 
and 81.9 ± 7.2 % in the first and 82.5 ± 7.5 and 78.4 ± 10.5 % in the second half for HCHO 
and LCHO conditions respectively. Mean muscle glycogen was 448.6 ± 50.8 and 444.2 ± 
81.1 mmol·kg d·w-1 pre-game, and 243.4 ± 42.5 and 297.7 ± 130.5 mmol·kg d·w-1 post-
game for HCHO and LCHO conditions respectively. Results demonstrate that a 
competitive RL match can result in ~40% muscle glycogen depletion and that match-day 
performance variables did not differ between conditions. It was postulated that an absolute 
amount of ~600 g CHO consumed 36-hours pre-match is a recommended strategy for 
rugby league players, although optimal dietary strategies to refuel after rugby competition 
are unknown.  
 
The final aim of the thesis was to examine if the current post exercise CHO guidelines are 
appropriate for rugby players. In Chapter 7 the magnitude of muscle glycogen repletion 
after consuming an immediate, or delayed re-feed post Rugby League Match Simulation 
Protocol (RLMSP) was assessed in 16 university rugby league players using muscle biopsy 
and blood letting techniques. Muscle glycogen very likely increased 48-h post-simulation 
(272 ± 97 cf. 416 ± 162 mmol·kg-1d.w.) after an immediate re-feed, but changes were 
unclear (283 ± 68 cf. 361 ± 144 mmol·kg-1d.w.) after a delayed re-feed. Creatine Kinase 
(CK) almost certainly increased by 77.9 ± 25.4 % (0.75 ± 0.19) post-simulation for all 
players. Player Load (8 ± 0.7 AU) and %HRpeak (83 ± 4.9 %) were consistent with 
professional RL match-play. Time to exhaustion performance test revealed no difference 
between conditions. This study found that simulated RL match-play elicits lower muscle 
glycogen utilisation (21 cf. 40 %) despite similar player load and metabolic demands to a 
professional RL match. This may be attributed to the difficulties of replicating extensive 
structural damage and physical exertion from collisions during a simulation. It was also 
found that substantial muscle glycogen resynthesis was possible in the immediate dietary 
re-feed group despite evidence of muscle damage via increased blood proteins, indicating 
that with appropriate feeding strategies it is possible to replenish a damaged muscle.  
 
Taken together, this thesis has characterized the training demands and energy balance of 
elite rugby players during the pre-season and in-season, alongside quantifying the 
metabolic demands of elite rugby match-play, and the most appropriate strategies to load 
and replenish muscle glycogen around such exercise. Future studies must now further 
titrate these studies and assess muscle glycogen utilisation over a number of games whilst 
assessing the glycogen content of individual muscle fibre types.  
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This chapter contains a general introduction to the area together with the aims and 
objectives of this thesis. 
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1.1 Background 

Following the 1895 split in rugby football, Rugby Union (RU) and Rugby League (RL) 

differed in administration only. Modifications were made to the rules of RL soon after 

which resulted in two distinctly different forms of rugby. Since the professionalism of RU 

in 1995 and the advent of the RL Super League in 1996, pressures from the media and 

public for teams to succeed have increased, accelerating research in to rugby for optimal 

performance. Given that both games are now professional there are many similarities 

between the 2 games with an increasing numbers of players transferring between codes. 

For the purpose of this literature review the term rugby will be used for generic purposes 

with RL or RU used when it is specific to the individual code. 

A RU team is comprised of 15 players split in to forwards (props, 2nd row, flankers, and 

number 8) and backs (scrum-half, fly-half, centres, wingers and fullback), whereas RL is 

comprised of 13 players split in to forwards (props, 2nd row and loose forward), adjustables 

(scrum-half, stand-off, hooker) and outside backs (fullback, wingers and centres). In-

season, rugby players will typically train 4-5 days a week and, if selected, play in one 80-

minute competitive match, split into two forty-minute halves with a 10-minute half-time 

break. Players are required to perform repeated bouts of relatively short, high-intensity 

efforts such as sprints, high-impact collisions, and sudden changes of direction, 

interspersed with low-intensity activities such as standing, walking, and jogging. RU 

match-play also involves set-pieces such as scrums and line-outs, alongside aggressive 

contests for the ball during mauling and rucking (Roberts et al., 2008) not seen in RL 

(although RL does involve scrums which are largely non-contested). 

The rugby season is split in to two components; pre-season, and in-season. A typical pre-

season in rugby lasts between 8-12 weeks and usually follows 3-6 weeks of rest time. A 
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player’s ability to acquire high levels of muscular power is considered an essential 

component of success in collision sports such as rugby (Bevan et al., 2010, Kilduff et al., 

2007). Many rugby players therefore use the pre-season to optimize their body 

composition, either gaining lean body mass, or reducing body fat ready to begin the 

competitive-season as physically fit as possible. To optimize physiological adaptation and 

body composition during the pre-season, it is vital to understand the day-to-day training of 

the player in order to prescribe an appropriate dietary programme. Research on the internal 

and external loads experienced, alongside the assessment of energy intakes of elite rugby 

players during the pre-season is currently lacking and therefore warrants investigation. 

Following the pre-season, a typical rugby in-season lasts approximately 34-36 weeks 

followed by 3-6 weeks of rest time depending on whether play off stages are reached. The 

central focus of the in-season is to prepare players for peak performance during 

competition. Strategies to prepare for and optimally recover from competition are therefore 

the objectives of this period with emphasis also placed on the maintenance of body 

composition to values attained at the end of pre-season. An understanding of players’ daily 

energy expenditure and energy intake is therefore essential to avoid residual fatigue 

(Gamble, 2006), in the identification of appropriate recovery strategies, and to maximise 

performance (Fowles, 2006). Furthermore, monitoring training load throughout the rugby 

season may be crucial to determine whether an athlete is adapting to their training 

program, for the assessment of fatigue, and minimizing the risk of injury and illness 

(Quarrie et al., 2016, Foster, 2017). To date, no study has assessed internal load in rugby 

players combined with a measure of energy expenditure (EE), which in the authors opinion 

would provide a much more detailed picture of training loads experienced by players and 

potentially aid in the identification of injury risk. Moreover, information relating to the 

energy intakes of rugby players alongside measures of internal load would further improve 

our understanding of the appropriatness of dietary intakes for performance and recovery.  
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While researchers have investigated the movement patterns and physiological demands of 

rugby competition (Gabbett et al., 2012, Cunniffe et al., 2009, Duthie et al., 2003, Waldron 

et al., 2011, Austin et al., 2011, Jones et al., 2015, McLellan et al., 2011c, Roberts et al., 

2008, Sirotic et al., 2009, Twist et al., 2014), the metabolic demands of rugby match-play 

are still unknown. Although these data have been reported after soccer match-play 

(Bangsbo et al., 2006, Krustrup et al., 2006, Krustrup et al., 2011), given distinct 

differences in match-play activities such as greater distances covered in football and 

numerous collision events in rugby, these data may not be transferable. Without this 

information, it is difficult to ascertain precise nutritional requirements of rugby 

competition, although current guidelines suggest consuming 6-10g.kg carbohydrate (CHO) 

for team-sport competition (Burke et al., 2011). For large athletes such as rugby players 

however, these quantities would be difficult to consume (~1.3 kg CHO for some) and may 

increase body fat. Whilst clearly warranted, no study to date has assessed the metabolic 

demands of rugby match-play, and only one has attempted to extract muscle samples from 

rugby players for glycogen analysis around match-play (Jardine et al, 1988). However, due 

to the invasive nature of a muscle biopsy, ‘pre-match’ samples in this study were extracted 

on a day with no match, and dietary intakes were very poorly controlled, resulting in 

inaccurate and unreliable data. It is still therefore unclear how dietary manipulation may 

affect baseline muscle glycogen concentrations, the magnitude of utilisation during a rugby 

match, or the effect on match-play activity and fatigue.  

Strategies to recover after rugby competition are currently based on suggestions informed 

by studies in soccer and endurance exercise (Burke et al., 2011), but with numerous 

collision events experienced by rugby players (Austin et al., 2011, Cunniffe et al., 2009, 

Gabbett et al., 2013, Jones et al., 2015) which are known to cause tissue trauma (Cummins 

et al., 2013, Smart et al., 2008, McLellan et al., 2011a, Jones et al., 2014, Twist et al., 2012, 
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Takarada, 2003), it is currently unknown how the associated muscle damage might 

influence player recovery or indeed whether these suggestions are appropriate. A study by 

Costill et al, (1990) revealed impaired muscle glycogen resynthesis after eccentrically 

damaging the quadriceps on a bike ergometer, indicated by a large increase in serum 

creatine kinase (CK) and were similar to findings in rugby union (Jones et al., 2014) and 

rugby league (Twist et al., 2012) after match-play. Despite similar observations in all of 

these studies, the exercise demands of rugby are vastly different to cycling. Whilst it could 

be speculated that muscle glycogen replenishment may be impaired, it is currently 

unknown how such muscle damage responds to CHO provision post-rugby match-play, or 

indeed what refeeding strategy is necessary to optimize recovery. 

 

1.2 Aims, objectives and structure of thesis 

The overall aim of this thesis is to assess the nutritional requirements of elite rugby players 

during pre-season, in-season, and competition, to identify the most appropriate feeding 

strategies to fuel these demands. It is envisaged that the data achieved will assist players 

and coaching staff to further understand the demands of rugby training and competition 

allowing more informed decisions regarding nutritional intakes for adaptation, 

performance and recovery. This will be realised by the following objectives: 

 

1) Characterise the training demands of a typical twelve-week rugby pre-season using 

GPS technology as well as reporting the changes in anthropometry, markers of 

physical performance, and typical macronutrient intakes including supplement use. 

2) Characterise the training demands of a thirty-six week rugby in-season using GPS 

technology whilst establishing the typical macronutrient and micronutrient intakes, 

and energy expenditure using SenseWear armband technology.  
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3) Establish the metabolic requirements of a competitive rugby match by assessing 

muscle glycogen and blood metabolites prior to and post game using muscle biopsy 

and blood collecting techniques. 

4) Determine the metabolic demands of a simulated RL match protocol compared 

with those established during a competitive match.  

5)  To assess the magnitude of muscle glycogen resynthesis after consuming either an 

immediate or delayed re-feed, using muscle biopsy and blood collecting techniques. 

 
It is the author’s hypothesis that: 
 

1) Rugby players consume less than the recommended CHO intake for team-sport 

athletes (Burke et al., 2011) whilst consuming high protein intakes throughout the 

season.  

2) Mean energy expenditure for rugby players will match energy intake, and energy 

intake (CHO) will surpass energy expenditure in the days leading up to rugby 

competition.  

3) Rugby match-play will elicit similar muscle glycogen utilisation rates to those seen 

in soccer, although lower distance covered, and greater repeated high intensity 

efforts due to multiple contacts experienced. 

4) Simulated RL match-play will elicit similar muscle glycogen utilisation rates to 

competitive match-play. 

5) Immediately refeeding with carbohydrates after simulated RL match-play will 

result in a greater magnitude of muscle glycogen repletion. 
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2.1 Movement demands of rugby  

The following section aims to outline the movement demands of two codes of rugby; 

rugby union (RU) and rugby league (RL). Playing position heavily dictates the 

predominance of activity performed during rugby match-play which will be discussed for 

each code in turn (see figures 2.1a and 2.1b for a visual representation).  

 

2.1.1 Rugby Union 

The main role of the forwards in RU is to gain and retain possession of the ball, whereas 

the backs control possession of the ball to gain territory and score points (Duthie et al., 

2003, Quarrie et al., 2013). Research has shown that RU players cover total distances 

between ~4600 and ~7200 m during match-play, with significant differences reported 

between forward and back positional groups (Roberts et al., 2008, Cunniffe et al., 2009, 

Quarrie et al., 2013, Jones et al., 2015). Cahill et al. (2013) investigated the movement 

characteristics of 120 rugby players from eight professional English Premiership clubs and 

analysed differences between individual playing position and forward and back positional 

groups. Backs were shown to cover greater total distances (~6500 m) at higher average 

running speeds (71.1 m.min-1) than forwards (~5900 m and 64.6 m.min-1, respectively). 

More recent research by Jones et al. (2015) revealed similar findings for relative distances 

covered (67.3 m.min-1 and 60.7 m.min-1; backs and forwards respectively), although 

reported  lower total distances (~6000 m and ~5000 m; backs and forwards respectively) 

due to reduced playing time. Interestingly, in this study backs covered greater distances 

walking compared to forwards, (30 m.min-1 cf. 26 m.min-1 respectively), while covering 

greater distances at high-speed (6.1 m.min-1 cf. 2.7 m.min-1 respectively). Given differences 

in sprinting ability between the backs and forwards and the absolute speed thresholds used 
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in these studies however, these data must be interpreted with a degree of caution (see 

section 2.3.1).  

Studies have shown that very distinctive physical collision demands are experienced by 

RU players based on playing position (Deutsch et al., 2007, Jones et al., 2015). Forwards 

spend approximately 2.5 times longer in high-intensity activity than backs (Duthie et al., 

2005, Roberts et al., 2008, Austin et al., 2011), up to 90% of which is in static exertion 

(Deutsch et al., 2007, Roberts et al., 2008). This is attributable to increased time involved 

in set-piece plays (scrums and line-outs) and contests for the ball (rucks and mauls;  Duthie 

et al., 2005, Roberts et al., 2008, Austin et al., 2011), important elements of RU match-

play that can account for up to 11 ± 4 % of match-time for forwards, with the same activity 

accounting for only ~2 % of match time for backs (Duthie et al., 2005, Roberts et al., 

2008). Recent studies using GPS have reported forwards to be involved in a considerably 

higher number of heavy physical collisions (Cunniffe et al., 2009, Jones et al., 2015), 

performing a significantly greater number of contacts (~32-38) compared to the backs 

(~16-21 respectively; Jones et al., 2015). Furthermore, due to large amounts of time spent 

rucking and mauling, forwards spend substantially less time performing high-intensity 

running or sprint efforts, and more time running at a moderate-intensity (Cahill et al., 

2013). Similarly, backs who may be further from the breakdown experience considerably 

less static exertions and collisions, but much greater high-intensity running loads and 

longer recovery periods (Cahill et al., 2013). Interestingly, despite variability in match-play 

characteristics between positional groups as described by Cahill et al, (2013), player 

work:rest ratio’s evaluated by McLellan et al. (2011c) indicate that overall work was 

similar between forwards (1:5.8) and backs (1:5.7).  

Studies investigating the repeated high intensity effort (RHIE) demands of RU show that 

on average, forwards perform significantly more RHIE bouts than backs (~12 cf. ~6 
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respectively; Jones et al., 2015). Furthermore, research has shown that mean RHIE bout 

duration is significantly longer for forwards (~45-52 s) compared with backs (26-28 s), 

with great variability in the relative contributions of high-intensity running and physical 

collisions to RHIE demands between positional groups (Austin et al., 2011). Position 

specific conditioning of RHIE and running load is therefore crucial for the preparation of 

the professional rugby player for competition, and although numerous studies have 

quantified these during match-play, these data are currently unknown for RU training. 

 

Figure 2.1a  – Schematic representation of a Rugby Union team formation.  
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2.1.2 Rugby league 

The main role of the forwards in RL is to carry the ball forward into collisions making 

positive ground, and the adjustables and outside backs travel greater distances, run more 

into open spaces and support offensive plays (Twist et al., 2014). Research has shown that 

outside backs cover greater absolute (~7100 m) and high-speed (~550 m) distances than 

adjustables (~6800 m; ~410 m) and forwards (~5700 m; ~320 m; Twist et al., 2014), 

although other studies have shown considerable variance in total distances covered ranging 

between ~3600 – 9700 m, which may be due in part to the methodological differences with 

video-based studies (4300-9700 m; Sirotic et al., 2009, Sykes et al., 2009), compared with 

GPS analysys (~3600-8000 m; Sykes et al., 2009,  Waldron et al., 2011, McLellan et al., 

2011c, Gabbett et al., 2012, Cummins et al., 2013, Twist et al., 2014). Varied playing times, 

grouping of players, and playing standard may all contribute to this large variability, and 

data must therefore be interpreted with a degree of caution. Similar mean running 

velocities have however been reported between positional groups (hit-up forwards ~94 

m.min-1, wide-running forwards ~96 m.min-1, adjustables ~101 m.min-1 and outside backs 

~93 m.min-1; (Cunniffe et al., 2009, Waldron et al., 2011, Gabbett et al., 2012). This data is 

consistent with other research suggesting that mean running intensities are indeed similar 

between playing positions in elite RL (Sirotic et al., 2009, Gabbett et al., 2012, Austin and 

Kelly, 2013). This being said, the intensity and frequency of collisions and RHIE demands 

of RL have been shown to vary significantly between positions (Austin et al., 2011, 

McLellan et al., 2011, Gabbett et al., 2012). Furthermore, player work:rest ratios evaluated 

by McLellan et al, (2011c) indicate that forwards (1:6) perform more work than backs 

(1:7), but less than RU players (1:5.7) which is likely due to the lack of physically exerting 

set-pieces seen in RU and not in RL. 

Observations by Austin et al, (2011) revealed greater numbers of RHIE bouts (12 bouts) 
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and shortest mean recovery time (367 s) for hit-up forwards, compared with adjustables (6 

and 442 s respectively) and outside backs (5 and 820 s respectively). Further analysis of 

RHIE bouts revealed a greater percentage of tackling for hit-up forwards compared with 

outside backs (55 % cf. 40 % respectively) although a lower percentage of sprinting (45 % 

cf. 60 % respectively). Research has previously shown that sprinting and tackling (RHIE) 

is associated with greater physiological cost (i.e. perceived exertion and heart rate) than 

repeated-sprints alone (Johnston and Gabbett, 2011, Johnston et al., 2015), suggesting that 

the forwards who perform more frequent bouts of RHIE comprised of a higher percentage 

of collisions, experience greater RHIE demands than backs. Although locomotor activity 

has been shown to maintain over both halves of a RL match, reductions in heavy physical 

collisions and RHIE ability have been observed in the second half of match-play 

suggesting fatigue (Gabbett, 2013). A player’s ability to cope with RHIE demands is 

crucial for performance and can easily influence the outcome of a game especially when 

occurring near the try line during defensive or offensive play (King et al., 2009, Austin et 

al., 2011). Strategies to improve a player’s RHIE capability should therefore be explored. 

One candidate may be the provision of energy (muscle glycogen) to help support RHIE 

efforts during the latter stages of a match, yet despite the importance of energy availability 

for performance, the energy demands of elite RL match-play are currently unknown and 

warrant investigation. A summary outlining the differences in match-play running 

demands between rugby codes can be seen in table 2.1. 
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Figure 2.1b – Schematic representation of Rugby League team formation.  

 

 

 

 

 



 

Table 2.1. Match-play movement demands of RU and RL. Back – RU Backs/RL Outside Backs, Fwd – RU forwards/RL forwards, Adj – RL 

adjustables. U indicates studies conducted in rugby union, L indicates studies conducted

 Total Distance (m) 
Relative Total distance 

(m.min-1) 
High Intensity (HI) 

Distance (m) 
Relative HI distance 

(m.min-1) 

Study Back Fwd Adj Back Fwd Adj Back Fwd Adj Back Fwd Adj 

Austin et al., (2011)U 5434  4962  67.1 56.4  738  524   9.1 6.0  

Cahill et al., (2013)U 6545  5850  71.1 64.6        

Cunniffe et al., (2009)U 7227 6680   72.9 66.7  524  313    6.2 3.7  

Gabbett et al., 2012)L 6819  4565  6411  93 96 101       

Gabbett et al., (2015)L 6633  5216  7154  79.1 87.3 86.9 485  251 453 5.8 5.2 5.5 

Jones et al., (2015)U 6029  4995   67.3 60.7  528  225   6.1 2.7  

McLellan et al., (2011c)U 5573 4982     321 153     

Roberts et al., (2008)U 6127 5581     448 298     

Twist et al., (2014)L 7133  5733  6766  85.6 101.7 104.4 550 320 410 6.6 5.6 5.9 

Waldron et al., (2013)L 6917  4184  6093 89 95 94 316  119 196  4.1 2.7 3.0 
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2.2 Physical Characteristics of Rugby Players 

Body composition of rugby players naturally fluctuates throughout the season due to 

periodisation in the training programme, and none moreso than during the pre-season, a 

time which players use to optimize their body composition. It has previously been found 

that rugby players can reduce their sum of 8 skinfold thickness by ~11 mm during a pre-

season (Argus et al., 2010), although nutritional intake was not recorded during this study. 

Strategies to prepare for, and recover opimally from competition whilst maintaining body 

composition attained during the pre-season also see body composition fluctuate during the 

in-season. Positional demands dictate player body composition, with some 

anthropometrical attributes more suited to certain playing positions where it is 

advantageous to fulfill positional requirements (Sayers, 2011). The marked differences in 

physical characteristics across RU playing positions appear less pronounced in RL. To 

accommodate a faster style of play, RL players across all positions require a high level of 

mobility. Simultaneously, the reduced incidence of set-piece plays such as line-outs and 

scrums during RL match-play further increases the homogeneity of anthropometric 

characteristics among positions. Despite the apparent importance of body composition to 

success in rugby, appropriate nutritional strategies to compliment a periodised training 

programme and elicit body composition/physiological adaptation, have yet to be defined in 

either code of the game. 

 

2.2.1 Body Mass 

Due to the physical nature of rugby, a large emphasis is placed upon body-mass, and 

specifically lean body-mass (LBM) in all positions, compared with other team-based sports 

such as soccer (Drust et al., 2000). Higher body-mass has been shown to positively impact 

many aspects rugby performance such as collisions and impacts (Barr et al., 2014), which 
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since the professionalism of the sport and increasing pressures to succeed, has lead to a 

progressive linear shift in the size and physical profile of rugby players exceeding that of 

the general population (Olds, 2001, Quarrie and Hopkins, 2007, Smart et al., 2014). While 

overall body-mass is important to perform at the elite level, the actual composition of 

body-mass is becoming crucial for optimal performance. Players possess increasingly 

higher lean mass and lower body fat than ever before (Morehen et al., 2015), significantly 

improving players power:weight ratio. Interestingly however, relative to body mass, 

centres and back 3 elicit higher peak power output (PPO) than forwards (59.8 cf. 49.4 W) 

which may reflect a necessity for these playing positions to possess higher muscle power 

relative to body mass (Heffernan et al., 2017). Variation in positional anthropometry 

illustrates the heterogeneity of contact sport such as rugby, with each position requiring a 

unique set of physical qualities (Gabbett and Seibold, 2013, Meir et al., 2001, Holway and 

Garavaglia, 2009). Anthropometric and physiological variations are evident between 

forwards and backs, with forwards tending to be heavier and stronger compared with backs 

who tend to be leaner and faster (Duthie et al., 2006, Morehen et al., 2015). These 

differences are further pronounced in distinct sub-groups of playing positions in RU, due 

to the requirement for forwards to carry extra weight to compete during RU specific 

match-play demands such as scrummaging, line-outs, rucking and mauling (Duthie et al., 

2006). For example; in the 2011 Rugby World Cup, the tight five forwards (front row, 

113.3 ± 7.9 kg; second row, 114.2 ± 6.1 kg; mean ± SD) were heavier than the back-row 

forwards (107.3 ± 5.7 kg), who were heavier than backs (92.8 ± 8.2 kg; Fuller et al., 2013). 

Within the backs, halves were the lightest (87.8 ± 6.7 kg) and centres the heaviest (97.2 ± 

6.9 kg). Due to a slightly more uniform style of play, RL players possess a more 

homogenous body mass across positions, the heaviest being the forwards (Prop, 102.2 ± 

8.5 kg; Back row forwards 93.3 ± 5.5 kg) followed by the adjustables (Halfback, 81.1 ± 
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8.0 kg, Hooker, 83.7 ± 9.5 kg) and outside backs are the lightest (Fullback and Wingers, 

85.9 ± 8.2 kg, Centre, 91.2 ± 6.6 kg; Morehen et al., 2015). 

 

2.2.2 Height 

With progressing levels of competition there is also a linear increase in the height of rugby 

players (Duthie et al., 2003, Gabbett et al., 2008). A positive correlation between mean 

team height and final ranking in RU Rugby World Cup tournaments is evident, with taller 

teams performing better (Olds, 2001). Marked differences in the height of forwards and 

backs are also displayed due to distinct positional demands. For example, greater height is 

advantageous for RU second row players who are required to compete for the ball up to 

3.5m from the ground during line-outs (Sayers, 2011) and have been shown to be the 

tallest playing position (1.98 ± 0.03 m; Fuller et al., 2013). The remaining forwards are all 

shorter than the second row players, with back-row forwards (1.90 ± 0.04 m) taller than the 

front-row forwards (1.84 ± 0.04 m; Fuller et al., 2013).  Differences in height amongst the 

backs are more homogenous (1.83 ± 0.06 m; Fuller et al., 2013). Similar to body mass, RL 

players are generally shorter than their RU counterparts due to the lack of necessity for any 

specific height advantage over their opponents, and height is more uniform across 

positions with the forwards (Prop, 1.87 ± 0.04 m; Back row forwards 1.86 ± 0.04. m) taller 

than the outside backs (Fullback and Wingers, 1.81 ± 0.06 m, Centre, 1.85 ± 0.06 m) who 

are taller than the adjustables (Halfback, 1.77 ± 0.7 m, Hooker, 1.76 ± 0.05 m; Morehen et 

al., 2015). 
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2.2.3 Body Composition 

Forwards from both codes are typically comprised of higher lean mass (~8 %) and body fat 

(~25 %) than backs (Brewer and Davis, 1995, Quarrie et al., 1995, Quarrie et al., 1996, 

Gabbett, 2000, Meir et al., 2001, Scott et al., 2003, Gabbett, 2005b, Duthie et al., 2006, 

Morehen et al., 2015) which probably highlights a larger strength demand placed upon 

forwards during contacts (Bell, 1973, Quarrie et al., 1996, Lundy et al., 2006). It has been 

proposed that the higher body fat observed in forwards may be considered advantageous 

when withstanding the impact forces associated with tackles and collisions (Bell, 1973, 

Gabbett et al., 2008), although it is now believed that excess body fat has a detrimental 

effect upon performance due to a reduced heat dissipating ability, and increased metabolic 

demands (Meir et al., 2001). It has also been reported that lower lean mass and higher 

skinfold thicknesses are associated with reduced tackling ability (Gabbett, Jenkins, & 

Abernethy, 2011a). Higher lean mass contributing to total mass is therefore considered a 

more appropriate physical attribute for the modern rugby player, translating to increased 

strength and power during competition (Duthie et al., 2006, Gabbett et al., 2008). Given 

the greater running volume and increased high-intensity running of RL competition 

compared with RU (Suarez-Arrones et al., 2012), it is unsurprising RL players have 

comparatively lower body-fat levels.  

Studies assessing body composition in rugby players (Table 2.2) have typically utilised 

measures of skinfold thickness (as a proxy marker of body fat) and predictive equations, 

which have obvious limitations (Reilly et al., 1995, Doran et al., 2014). Measurements of 

skinfold thickness have been shown to differentiate between playing standards (Gabbett et 

al., 2011a, Till et al., 2011) and are often utilised as a selection tool in senior elite National 

Rugby League (NRL) players (Gabbett, 2009, Gabbett et al., 2011b) although this 

selection process has yet to be reported in RU. Dual Energy X-Ray Absorptiometry (DXA) 
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has also been used to assess the body composition of rugby players (Harley et al., 2011, 

Morehen et al., 2015), however this method comes with many limitations including 

repeated exposure to radiation, time required to conduct and assess a scan, and financial 

burden incurred. Another method commonly used to assess body composition is 

bioelectrical impedance analysis (BIA). This method sends a low intensity electric current 

through the body and measures the magnitude of the body’s resistance (opposition to the 

electric current flow) and reactance (opposition to the electric current flow caused by the 

capacitance produced by cell membrane) to the current. There are many limitations with 

this method however which reduce the ability to replicate testing conditions including and 

not limited to; hydration status, physical activity, use of diuretics, fasting, age, ethnicity, 

menstrual period, body shape, health and nutritional status (Pinheiro Volp et al., 2011, 

Barbosa et al., 2001). Skinfold thickness measurements may therefore provide a cheaper 

and more efficient means of body composition analysis that can be repeated regularly.  
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Table 2.2 - Body composition of professional rugby players; Sum of Sevens skinfolds, 
Sum of Eight Skinfolds, mean ± SD. u indicates studies conducted in Rugby Union (n = 
191), L indicates studies conducted in Rugby League (n = 132). 

 

Source Position  
(# of players) 

Body Composition 

Skinfold DXA  
Sum of Seven 

(mm) 
Sum of Eight 

(mm) 
Lean mass 

(kg) 
Body Fat 

(%) 

Appleby et al, 
2012u Forwards (n = 12) 

Backs (n = 8) 66 ± 16 - - - 

Argus et al, 
2010u 

Unspecified (n = 33) - 82 ± 23 - - 

Duthie et al, 
2006u Forwards (n = 40) 

Backs (n = 32) 
84 ± 19 
60 ± 13 

- - - 

Gill et al, 
2006u 

Unspecified (n = 23) - 88 ± 22 - - 

Harley et al, 
2011L Unspecified (n = 20) - - 77.4 ± 9.4 15.2 ± 3.6 

Morehen et al, 
2015L Forwards (n = 60) 

Backs (n = 52) - - 77.1 ± 5.3 
71.5 ± 5.5 

15.2 ± 2.2 
12. 4 ± 2.6 

Slater et al, 
2006u Forwards (n = 9) 

Backs (n = 11) 74 ± 22 - - - 

Smart et al, 
2008u 

Forwards (n = 12) 
Backs (n = 11) - 88 ± 22 - - 

 

 

2.3 Match-play demands of rugby  

2.3.1 Global Positioning System 

At the time of data collection for Chapter’s 4 and 5 of this thesis, absolute speed thresholds 

were well documented in the literature and therefore utilised. In recent years however, 
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studies have begun to favour the use of relative rather than absolute thresholds. The 

literature will now be reviewed and limitations discussed in this section and Chapter 8.3.   

Technological advancements over the last decade have seen the gradual introduction of 

micro-technologies (global positioning systems), enabling data collection from numerous 

players simultaneously whilst instantaneously providing feedback. This has lead to a 

decline in the use of the time consuming methods such as time motion analysis (TMA) 

post-match or training (Roberts et al., 2006). Given that the accuracy of this technology 

hinges greatly on the positioning and number of satellites interacting with the receiver 

however, information relating to the measurements recorded by the receiver should be 

reported for clearer interpretation (Witte and Wilson 2004). Quantification of the satellites 

distribution across the horizon is normally presented as the horizontal dilution of precision 

(HDOP), with a HDOP figure of 1 representing the ideal distribution of satellite in the sky 

and those above the receiver in a tight cluster approaching the maximum value of 50 

(Witte and Wilson 2004).  

The use of global positioning systems (GPS) have now become commonplace in elite 

rugby, helping practitioners understand the objective movement demands of training and 

competitive match-play. Developments in technology have seen the incorporation of tri-

axial accelerometers (motion sensors) embedded in the latest versions of GPS devices 

(GPSport - SPI Elite, Wi SPi, SPI Pro; Catapult – MinimaxX; VXsports). These motion 

sensors are capable of measuring movement in three planes of movement (forward, lateral 

and vertical) simultaneously (Krasnoff et al., 2008), with movements, accelerations and 

decelerations (m.s-1) measured in reference to gravitational forces (“G” forces equating to 

9.81 m.s to 1G; McLellan and Lovell, 2012). These advancements in GPS technology have 

enabled practitioners to establish impacts in team sports (Cunniffe et al., 2009, Austin et al., 

2011, McLellan et al., 2011a, McLellan et al., 2011b, Dwyer and Gabbett, 2012, McLellan 
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and Lovell, 2012, Boyd et al., 2013), with a high level of reliability (r=0.96, P< 0.01) when 

compared with expert video coding (Gabbett et al., 2010), particularly indoors where GPS 

cannot connect to satellites. However, a more recent study by Reardon et al, (2016) 

revealed that manipulating the G force thresholds required for detection of an impact does 

not provide a valid tool for the accurate coding of impacts in RU. The use of gyroscopic 

data in addition to accelerometer data seems to have mitigated the research trend of over-

reporting collisions in the case of RL, explaining the reliability reported by Gabbett et al, 

(2010). Importantly, types of impacts were not separated in this research (tackle, ruck, 

maul, carry) meaning that it is unknown whether the GPS and associated software is better 

able to accurately code certain types of contacts. Therefore, due to limited research 

existing regarding the validity or reliability of these devices (Gabbett et al., 2010, Tran et 

al., 2010, Boyd et al., 2011, Waldron et al., 2011, Kelly et al., 2012, Cummins et al., 2013, 

Rearden et al., 2016), data should be interpreted with caution. A recent review has 

demonstrated however that 10 Hz units provide more accurate and reliable data compared 

with lower sampling frequency devices (Cummins et al., 2013). Indeed, the 10 Hz units 

used in this thesis are two to three times more accurate at detecting changes in velocity, 

and up to six-fold more reliable than devices sampling at 5 Hz (Varley et al., 2012). The 

CV of these units across a range of speeds have been reported as 3.1 to 8.3 % at a constant 

velocity, 3.6 to 5.9 % for accelerations and 3.6 to 11.3 % for decelerations (Varley et al., 

2012). 

The measurement of different movement intensities during training or match-play requires 

specification of speed zones, enabling the practitioner to analyse running volumes at 

different intensities. Pre-determined speed zones are typically assigned to different 

locomotive movement classifications, however, many practitioners have created their own 

‘in house’ categories, reporting an array of different speed zones causing inconsistencies in 
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the literature. There have been attempts in recent years to standardise these speed 

categories for different sports (Dwyer and Gabbett, 2012), however, these are still based on 

absolute speed thresholds, and moreover, rugby was not amongst the team-sports assessed 

in this study. Furthermore, it is important to consider the arbitrary use of the ‘sprint’ 

threshold used in studies examining the match demands of professional rugby. The amount 

of sprinting performed by an individual player may not be accurately reflected using a 

predefined sprint threshold e.g. a player with a peak running speed of 7.1 m.s-1 (such as a 

forward) may never reach a predefined sprint threshold of 7 m.s-1, they may however 

perform substantial amounts of sprinting at velocities <7 m.s-1. Any difference observed in 

relative distances covered at a predefined sprinting velocity could therefore be explained in 

part by differing sprint abilities of players (Gabbett et al., 2013), or the opportunity to 

reach sprinting velocity. For example, a forward who typically has little ground to cover 

before colliding with the opposition, would rarely be exposed to a situation where 

maximum locomotive speeds are possible. Rather, a forward would usually maintain a low 

to moderate running intensity in-between performing high volumes of RHIE and static 

exertions (Roberts et al., 2008, Austin et al., 2011, Jones et al., 2015). Moreover, backs 

would typically have a larger distance to produce locomotion before reaching their 

opposing player compared with the forwards, impacting speeds attained (Deutsch et al., 

2007). Given the highly individualized nature of the exercise intensity continuum (Whaley, 

2006), there may be potential for errors in the measurement of the distance run at high-

intensity based on absolute speed thresholds, and it could be speculated therefore that 

players should be considered on an individual basis (Reardon et al., 2015).  
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2.3.2 Training load  

Due to the highly intermittent nature of the training activities in rugby, it is difficult to 

accurately monitor training loads experienced. Moreover, due to multiple physical contacts 

and static exertions experienced by rugby players (Cummins et al, 2013, Jones et al., 2014, 

Jones et al., 2015, Smart et al., 2008, Twist et al.. 2012) and other conatct sports, 

quantification of these actions is harder still. There are currently a number of methods 

utilised to quantify training loads by athletes (Borresen and Lambert, 2009) which can be 

categorized as internal or external. Internal training loads can be defined as subjective 

markers of physiological or psychological stress imposed on an athlete during competition 

or training, with measures commonly used such as blood lactate, heart rate, ratings of 

perceived exertion (RPE) and oxygen consumption (Foster, 2017). External training loads 

can be defined as objective measures of the work performed by the athlete during 

competition or training, with measures commonly used including GPS (velocity, distance 

covered, accelerations/decelerations), time motion analysis, power output and speed 

(Foster, 2017). Theory suggests that internal load may be the most appropriate measure for 

monitoring training load, whereas external load is generally considered important for the 

prescription and periodisation of training (Scott et al., 2012). It was proposed in a review 

of aerobic training in football players (Impellizzeri et al., 2004) that although internal load 

may provide a more acute marker of training load, it is more effective and gives a much 

greater insight in to training load and injury risk when combined with external measures. 

For example; an athlete completing the exact same work load as a previous exercise 

session may elicit quite different measures of internal load due to a number of variables 

and not limited to; recent training history, energy expenditure, state of fatigue, dietary 

intake, or illness, which may lead to increased injury risk.  
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Meeuwissee et al, (2007) identified a model of injury causation such that interactions 

between activity-related (external) and athlete-related (internal) risk factors modify the 

likelihood of injury. High competition and training loads as a risk factor for injury have 

previously been identified in RU (Brooks et al., 2008) RL, (Gabbett, 2004b, Gabbett and 

Jenkins 2011, Killen et al., 2010), football, (Dupont et al., 2010) and Australian Rules 

Football (Rogalski et al., 2013). It was recently postulated by Gabbett (2016) that the 

relationship between acute (recent) and chronic (longer term) training load is important in 

the determination of injuries. Higher injury risk is associated with players who have had 

minimal exposure to match-play due to a lack of conditioning, whilst high levels of 

exposure to match-play and training also increase the likelihood of both acute and gradual 

onset injuries due to factors such peripheral and transient fatigue.  

Alongside the more commonly utilised measures of external load such as GPS, power 

output, and speed, it may be pertinent for athletes to keep a log of foods consumed and 

where possible, energy expended, resulting in a far greater insight into the causality of  

fatigue. This information may be valuable for the coach and nutrition support staff  

enabling a more informed decision when planning or adapting a training or nutrition  

programme. For example; HR and RPE data may reveal greater values for an identical 

exercise session, analysis of the players food diary reveals a restricted energy intake and 

energy expended is high away from the club. Armed with this information, appropriate 

nutritional guidance can be provided alongside a potential manipulation of training load 

enabling the athlete to recover, reduce the risk of injury/illness, and aid in preparation for 

competition.   

 

 



 
 

26 

2.3.3 Physiological and metabolic demands of rugby   

The underlying mechanism behind a reduced exercise performance at the end of a rugby 

game is unclear. Numerous well-controlled lab based studies have reported that early 

fatigue can also result from dehydration and concomitant hyperthermia through reduced 

muscle blood flow, reductions in cardiac output and perfusion pressure, and by reducing 

oxygen supply and oxidative metabolism (Gonzalez-Alonso et al., 1999, Hargreaves et al., 

1996, Montain & Coyle, 1992, Sawka et al., 1979). The deleterious effects of mental 

fatigue on cognitive performance have also been reported in football players after 

performing the stroop task (mental fatigue) followed by a football specific decision making 

task (Smith et al., 2016). It is the authors opinion however that the depletion of muscle 

glycogen stores is the principle contributor to fatigue, since development of fatigue during 

prolonged intermittent exercise has a strong association with reduced muscle glycogen 

(Bangsbo, 1994, Hawley et al., 1997). Peripheral and cognitive fatigue resulting from low 

muscle glycogen concentration leads to reductions in both physical and technical 

performance (Sykes et al., 2011, Kempton et al., 2014). It is thought that a decline in 

calcium (Ca2+) release from the sarcoplasmic reticulum reduces muscular force production 

(Ortenblad et al., 2011, MacLaren and Morton, 2012, Gejl et al., 2014), which may 

attenuate maximal high intensity efforts such as single and repeated sprints, accelerations, 

contacts, and sudden change of direction. Furthermore, it has been demonstrated that by 

elevating muscle glycogen before prolonged intermittent exercise using a high CHO diet 

improves performance (Bangsbo et al., 1992, Balsom et al., 1999a). Observations by 

Jardine et al. (1988) in club level RU players showed that a 3-day CHO load increased 

‘pre-match’ muscle glycogen content (non-loaded - 420 mmol·kg d·w-1 cf. CHO-loaded - 

580 mmol·kg d·w-1), but was not necessary since severe muscle glycogen depletion did not 

occur during a match. It is important to highlight however, that since it was believed 
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players could not participate in a rugby match after such invasive measures, the ‘pre-

match’ muscle biopsies in this study were extracted on a day on which no match was 

scheduled. Post-match biopsies were then collected completely independently of this 

control and no time scale reported between measures. There is an incorrect assumption 

therefore that muscle glycogen would increase to relative concentrations after a separate 3-

day CHO load or 3-day habitual diet (non-loaded). Moreover, limited specification of 

dietary intakes (~70% CHO or habitual intake for 3 days preceding muscle biopsy; CHO 

loaded and non-loaded respectively) offer little insight in to the dietary conditions under 

which participants were subjected, and as such, these findings must be interpreted with 

caution.  

Saltin (1973) observed in soccer that muscle glycogen stores were almost depleted at half-

time when the pre-match muscle glycogen concentration was low, and those starting the 

game with normal muscle glycogen concentrations had rather high values at half-time but 

still below 215 mmol·kg d·w-1 at the end of the game. Others have reported concentrations 

of 200 mmol·kg d·w-1 after a match (Jacobs et al., 1982, Krustrup et al., 2006), indicating 

that muscle glycogen stores are not always depleted in a soccer game, which is in line with 

work by Jardine et al. (1988). The extent to which muscle glycogen is depleted heavily 

influences the magnitude of resynthesis (Zachwieja et al., 1991). Moreover, numerous 

eccentric muscular contractions and physical collisions experienced during rugby match-

play can cause significant skeletal muscle membrane damage, and the extent to which this 

affects muscle glycogen repletion may impact CHO feeding strategies around competitive 

rugby match-play.  
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2.4 Exercise-induced muscle damage (EIMD) 

EIMD is a common condition following (unaccustomed) exercise activities involving 

repeated muscular contraction or highly eccentric movements (Del Coso et al., 2012, 

Kyrolainen et al., 1998) and is characterized by myofibrillar disruption, followed by the 

inflammatory response and alterations in excitation-contraction coupling. This can present 

as tender or aching muscles (Cheung et al., 2003), muscle swelling and increases in blood 

myofibre proteins (e.g. creatine kinase and myoglobin). Moreover, low frequency 

neuromuscular fatigue which can be characterized by a relative loss of force at low 

frequencies of muscle stimulation is also evident. This is believed to be most significant 

for the athlete (Byrne et al., 2004). Evidence from intracellular measurements suggest that 

low-frequency fatigue is due to a reduction in Ca2+ release, and may inhibit recovery for 

up to days after exercise. Plasma Creatine Kinase (CK) is regularly used as an indirect 

marker of skeletal muscle damage following contact sport competition (Takarada, 2003, 

Kraemer et al., 2009). During homeostatic conditions, CK is located within the myofibrils 

and it is thought exercise induces varying degrees of mechanical muscle damage resulting 

in the release of CK into the extracellular fluid (Baird et al., 2012). Circulating CK levels 

are known to increase to different extents, depending on exercise type and intensity, 

muscles involved, as well as individual factors, with some authors defining subjects as 

‘high responders’ or ‘low responders’ to CK activity following muscular exercise (Hody et 

al., 2011).  

Significant increases in CK have been observed 30-min (+56%) and 24-hr (+91%) post RL 

match-play and remained elevated up to 96-hr post-match (Twist et al., 2012, McLellan et 

al., 2011b), supporting previous findings in RU (Takarada, 2003, McLellan and Lovell, 

2012) and soccer (Russell et al., 2015). A significant link has also been established 

between tissue trauma and number of collisions in RU (Cummins et al., 2013, Jones et al., 
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2014, Smart et al., 2008, Takarada, 2003) and RL (McLellan et al., 2011a, Twist et al., 

2012) match-play, suggesting these data reflect blunt trauma as well as mechanical 

damage. Additionally, larger increases in CK have been observed following small-sided 

games involving contact compared with non-contact small-sided games (Johnston et al., 

2014).  Multiple/repeated accelerations, decelerations and rapid changes in direction are 

known to result in structural damage of skeletal muscle (Howatson and Milak, 2009) and 

are fundamental components of rugby match-play (Evans et al., 2015a) and training 

(Gabbett et al., 2012). In addition to locomotive eccentric damage, large physical stress 

experienced during static exertions, (scrummaging/mauling/rucking in RU) and high-

impact collisions associated with gravitational forces (G) from impact zone 4 (7.1 - 8.0 G) 

to zone 6 (>10.1 G) (McLellan and Lovell, 2012) cause extensive tissue trauma (Johnston 

et al., 2014) and associated inflammation (Cunniffe et al., 2010). Resulting muscle 

soreness peaked at 24-hr post-exercise and remained elevated from baseline for several 

days (Fletcher et al., 2016, Oxendale et al., 2016, Twist et al., 2012).  Similar observations 

have been reported in AFL (Cormack et al., 2008) and soccer (Magalhaes et al., 2010) and 

provide strong evidence that such sports are characterized by tissue damage and low 

frequency fatigue in the days after a game. Despite the significance of optimal recovery 

from rugby match-play for subsequent performance, it is currently unknown how the 

resulting muscle membrane damage (Proske and Morgan, 2001) affects muscle glycogen 

repletion in the following days.  
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2.5 Substrate requirements for high-intensity exercise 

During all-out exercise of 1-2 minutes in duration, the supply of ATP from PCr utilisation 

is greater than that from glycolysis, and contributes to ~70 % of the ATP formed during 

the first ~3 s of maximal muscle contraction (Hultman and Sjoholm, 1983). The rate of 

PCr breakdown then diminishes after a few seconds of maximal muscle contration, and 

thereafter, glycolysis and aerobic oxidation of carbohydrates (and fats at lower intensities) 

become the primary source of ATP provision. Most glycogen in humans is made and 

stored in cells of the muscles (~350 – 700 g; depending on training status, diet, muscle 

fibre type composition, sex and bodyweight) and also stored in the liver (~100 g), and can 

be reduced by low intake of dietary CHO, fasting, and/or by exercise. Distribution of 

glycogen is different across muscle fibres (subsarcolemmal ~5-15 %, intermyofibrillar 

~75 % and intramyofibrillar ~5-15 %; Ortenblad et al., 2011), and it appears that 

subsarcolemmal, intermyofibrillar and intramyofibrillar glycogen fuels different 

mechanisms in muscle contractions. It is believed that intermyofibrillar glycogen fuels the 

release of Ca2+ stored in the sarcoplasmic reticulum activating tropomyosin active sites. 

High-intensity exercise seems to favour the use of intramyofibrillar glycogen (Nielsen et 

al., 2011) alongside lipid oxidation contributing to energy production (See figure 2.2 for an 

overview of fatty acid and glucose metabolism) during team-sports such as soccer 

(Bangsbo, 1994, Bangsbo et al., 2006, Krustrup et al., 2006).  The intensity and duration of 

an exercise bout, alongside an athlete’s training status will determine the relative use of 

energy source during exercise (Cermak and Van Loon, 2013). During moderate intensity 

exercise (30-65 % of VO2peak), fat is the most dominant energy source, whereas the relative 

contribution of CHO oxidation to total energy expenditure increases simultaneously 

alongside exercise intensity, with muscle glycogen becoming the most important substrate 

(van Loon et al., 2001). It is important to understand that CHO alone can be mobilized and 
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oxidized rapidly enough to meet the energy requirements of high intensity exercise, despite 

relatively small stores within the body (muscle and liver) when compared with 

endogenously stored fat (Tsintzas and Williams, 1998).  

A systemic release of amino acids from the muscle and simultaneous increase in fatty acids 

mobilization occurs whilst exercising in a state of low glycogen availability, resulting in a 

reduction in exercise intensity to a rate sustainable for lipid oxidation. This has been 

observed during the latter stages of a soccer match (Bangsbo, 1994, Krustrup et al., 2006), 

indicated by an increase in free fatty acids signifying an increased reliance on lipid 

oxidation as a fuel source with declining muscle glycogen concentrations. Because of the 

importance of muscle glycogen for sustaining prolonged intense exercise, maximising 

performance, and preparing athletes for subsequent activity, considerable research has 

been undertaken to establish the most efficient means to load (and replenish) glycogen 

stores (Ivy, 2004, Burke et al 2011), however, this research is lacking in contact sports 

such as rugby.  
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Figure 2.2 - Depicts the major routes for ATP production from catabolism of fatty acids 
and glucose. Abbreviations: FATP, fatty acid transport protein; FAT/CD36, fatty acid 
translocase; FABP, fatty acid binding protein; ACS, acyl-CoA synthetase; GLUTs, glucose 
transporters; CPT, carnitine palmitoyltransferase; TCA, tricarboxylic acid; ANT, adenine 
nucleotide translocator; GPA, glycogen phosphorlyase A; PGM, phophoglucomutase; 
HEX, hexokinase; LDH, lactate dehydrogenase.  

 

2.5.1 Glycogen and fatigue 

The proficiency of skeletal muscle to exercise at high intensities is impaired when muscle 

glycogen is reduced to low concentrations, even with sufficient quantities of other fuels 

available (Bergstrom and Hultman, 1967). Muscle glycogen concentrations below ~200 

mmol·kg-1 dry weight (d.w.) have been associated with reductions in power output and 

impaired muscle function due to reductions in the release rate of Ca2+ from the 

sarcoplasmic reticulum (Dunhamel et al., 2006, Ortenblad et al., 2011). Moreover, skeletal 
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muscle fatigue correlates strongly with reductions in glycogen (Nielsen et al., 2010) 

through decreased Na, K-ATPase activity leading to decreases in ATP cleavage, and 

subsequently a lower energy production to fuel high-intensity exercise (Ortenblad et al., 

2013). Furthermore, a paralleled perception of fatigue has been reported with declining 

muscle glycogen concentrations (Bergstrom and Hultman, 1967). Observations in 

competitive soccer have revealed such performance impairments with decreasing muscle 

glycogen concentrations (Krustrup et al., 2006), and subsequent repletion of muscle 

glycogen over the following 2-3 days (Krustrup et al., 2011). While no study has 

considered glycogen depletion after a rugby match, the evidence from other team sports 

with similar game durations (Krustrup et al., 2006, Krustrup et al., 2011), indicates that 

reductions in muscle glycogen is a potential mechanism of post-match fatigue. The study 

of the rate of glycogen utilisation and resynthesis, and the causal relationship between 

muscle glycogen concentration and fatigue during rugby competition is therefore 

warranted for the determination of appropriate nutritional strategies to fuel rugby 

competition.  

 

2.5.2 Muscle glycogen synthesis 

Glycogen synthesis (glycogenesis) is the formation of glycogen from glucose precursors in 

the cytosol (Jentjens and Jeukendrup, 2003b). To enable diffusion of glucose molecules 

into the muscle cell, glucose transporters (GLUT4) located intracellularly, translocate to 

the sarcolemma. This GLUT4 translocation is stimulated by skeletal muscle contraction, 

via activation of adenosine monophosphate (AMP) by activated protein kinase (AMPK) 

and/or increased levels of insulin (as a result of increased blood glucose levels following 

CHO consumption). This occurs via different intracellular signalling pathways, which have 

additive effects on translocation (Jensen and Richter, 2012, Richter and Hargreaves, 2013). 
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Once inside the muscle cell, the glucose molecule undergoes a series of reactions before 

being attached onto a glycogen molecule (see figure 2.3); a reaction catalysed by the 

enzyme glycogen synthase (Jentjens and Jeukendrup, 2003b, Bouskila et al., 2010).  

Figure 2.3 – Muscle glycogen synthesis: Glucose is phosphorylated by hexokinase or 
glucokinase to glucose-6-phosphate (G6P). G6P is then converted to glucose-1-phosphate 
(G1P) via phosphoglucomutase (PGM). G1P is then "activated" for glycogen synthesis via 
the addition of uridine nucleotide catalyzed by UDP-glucose pyrophosphorylase 2 (UGP2). 
The resultant UDP-glucose can then be use as a substrate for the self-glucosylating 
reaction of glycogenin, or if pre-existing glycogen polymers exist, the UDP-glucose is 
utilised as the substrate for glycogen synthase.  

 

2.5.3 Muscle glycogen replenishment post-exercise 

Post-exercise glycogen resynthesis occurs in a biphasic manner (Price et al., 1994). The 

initial rapid phase lasts up to 2-hr in undamaged skeletal muscle and occurs independently 

of insulin (Price et al., 1994, Jentjens and Jeukendrup, 2003b; see figure 2.4). Research has 
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suggested that this phase may only occur if muscle glycogen concentrations are <150 

mmol·kg d·w-1 (Price et al., 2000), with lower concentrations resulting in greater rates of 

glycogen resynthesis post exercise (Price et al., 2000, Yeaman et al., 2001). The second 

insulin dependent phase can last up to 48-hr post exercise in undamaged skeletal muscle, 

and is characterized by an increase in insulin sensitivity in the muscle (Jentjens and 

Jeukendrup, 2003b, Beelen et al., 2010; see figure 2.4). In damaged skeletal muscle 

however, glycogen resynthesis may be reduced as glucose uptake into the muscle cell is 

impaired (Costill et al., 1990, Asp et al., 1995, Zehnder et al., 2004). This was speculated 

to be in relation to a reduction in GLUT 4 (Asp et al., 1995), however, a more recent study 

by Asp et al. (1996) measured a delay of muscle glycogen resynthesis after a muscle 

damage inducing marathon run in which GLUT 4 concentration was unaltered, meaning 

other factors must be involved. A potential explanation involves the cytokine-inducible 

enzyme (Kapur et al., 1997), one of three nitric oxide synthase isozymes most prevalent in 

fast-twitch extensor muscles (Reid, 1998). This activity causes impaired insulin-stimulated 

glucose uptake, reducing muscle glucose uptake and therefore glycogen resynthesis 

(Zehnder et al., 2004). Additionally, large increases in intramuscular inflammatory cells 

after exercise induced muscle damage (EIMD) have been found to reduce the amount of 

glucose available for glycogen synthesis due to an affinity for glucose oxidation (Costill et 

al., 1990). In this study by Costill et al., (1990), an eccentrically damaging cycling protocol 

was utilised and significant (~25 %) reductions in muscle glycogen repletion were 

observed when compared with a control. Studies in soccer have also shown that muscle 

glycogen concentrations did not replenish after 48-h of a high CHO diet following match-

play (Jacobs et al., 1982, Bangsbo et al., 2006), which is in contrast to earlier observations 

after prolonged concentric exercise where supercompensation was possible with immediate 

ingestion of CHO post-exercise (Bergstrom and Hultman, 1967, Sherman et al., 1981, 

Tarnopolsky et al., 1997, Kiens and Richter, 1998, McInerney et al., 2005). This may be 
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explained in part by muscle damage from eccentric exercise during soccer match-play, 

which is known to impair post-exercise glycogen resynthesis (Costill et al., 1990, Pascoe 

and Gladden, 1996, Asp et al., 1998, Zehnder et al., 2004).  

 

It is important to understand that a number of intrinsic factors such as training status 

(trained or untrained) or sporting event (endurance, power, team-sport etc) may heavily 

influence the ability of an athlete to synthesize muscle glycogen. For example, it has been 

reported that glucose uptake is augmented in trained vs. untrained individuals when 

working at the same high relative workload, which is speculated to be in relation to an 

increased GLUT-4 carrier protein content in the muscle (Kristiansen et al., 2000). This 

training adaptation also correlates with increased mitochondrial biogenesis, (Hawley and 

Morton, 2014) increased ability of insulin to increase glucose transport (Dela et al., 1993, 

Ebeling et al., 1982) and increased action of glycogen synthase (Christ-Roberts et al., 2004) 

which will vary on an individualised basis. Moreover, high intensity intermittent athletes 

(such as rugby players) require a phenotype that features a high oxidative capacity 

combined with large levels of strength/power to achieve maximal performance (Knuiman 

et al., 2015) resulting in a very specific ‘conditioning’ of energy systems and substrate 

metabolism unique to the given sport. Therefore, given that unique movement patterns and 

great physical loads are experienced during rugby match-play through repeated high speed 

collisions and static exertions, (Austin et al., 2011, Gabbett et al., 2015, Jones et al., 2015), 

how the associated skeletal muscle damage affects muscle glycogen repletion after rugby 

competition is curently unknown and demands investigation.  
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Figure 2.4 - Insulin-mediated effects on glycogen homeostasis: Insulin activates the synthesis of 
glycogen, while simultaneously inhibiting glycogenolysis, through the combined effects of several 
insulin receptor activated pathways. Shown in this Figure are the major insulin-regulated activities 
and how they can rapidly exert their effects since all the activities are closely associated through 
interactions with protein targeting to glycogen (PTG). As indicated above PTG is actually a 
regulatory subunit of the heterotetrameric PP1. There is a muscle-specific PTG (PPP1R3A) and a 
liver-specific PTG (PPP1R3B). Also illustrated is the response (to insulin) of glucose transport into 
cells via GLUT4 translocation to the plasma membrane. PDK1: PIP3-dependent protein kinase 1. 
GS/GP kinase: glycogen synthase: glycogen phosphorylase kinase (PHK). PP1: protein 
phosphatase-1. PDE: phosphodiesterase. Arrows denote either direction of flow or positive effects, 
red T lines represent inhibitory effects.  

 

2.5.4 Timing of carbohydrate intake on muscle glycogen replenishment 

Resynthesis of muscle glycogen post-strenuous exercise is negligible until adequate CHO 

is made available (Ivy et al., 1988a, Ivy et al., 1988b, Zawadzki et al., 1992). Furthermore, 

muscle glycogen replenishment is known to be more efficient when CHO is consumed 

immediately following exercise, due to a rapid provision of substrate to the muscle whilst 
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simultaneously taking advantage of the increased insulin sensitivity and membrane 

permeability of the muscle to glucose (Ivy et al., 1988a). The rate of glycogen resynthesis 

when CHO is ingested immediately post-exercise averages between 26 – 34 mmol·kg 

d·w·h, whereas delaying by several hours reduces this by ~50 % (Maehlum et al., 1977, 

Blom et al., 1987, Ivy et al., 1988a) which may be detrimental for athletes with short 

recovery periods between competition. Levenhagen et al. (2001) reported that leg glucose 

uptake was found to increase 3-fold above basal with immediate supplementation of CHO 

post-exercise, whereas a smaller 44 % increase above basal was observed when CHO was 

ingested 3-h after exercise. This disparity occurred despite no differences in leg blood flow, 

or blood glucose and insulin concentrations between the two treatments suggesting that 

immediately consuming CHO is important for optimal muscle glycogen replenishment and 

subsequent exercise performance. Despite these findings, the aforementioned studies all 

reported findings in non-damaged muscle (steady state cycle ergometer utilised for all 

studies) which may not be applicable to contact sports such as soccer or rugby due to 

skeletal muscle damage incurred. Observations from elite soccer (Krustrup et al., 2011) 

showed that despite players consuming a diet comprising very high CHO (9.5 g.kg-1) for 5-

days post-match-play, and refeeding with CHO ~60 min post-match-play, muscle glycogen 

resynthesis was restricted (Asp et al., 1998, Zehnder et al., 2004), possibly through muscle 

damage incurred during the game. Moreover, rugby players who experience greater and 

more numerous muscle damaging collisions and impacts during match-play (Duthie et al., 

2003, Cunniffe et al., 2009, Twist et al., 2014) may display an augmented reduction in 

muscle glycogen repletion compared with soccer, and investigation into the replenishment 

of muscle glycogen following rugby match-play is therefore warranted. 
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2.6 Nutrition and Rugby – Methods to assess energy balance 

An athlete’s daily nutrition should meet the fuel requirements of training in order to 

support high training intensities (Burke et al., 2004b), facilitate growth and repair (Tipton 

and Wolfe, 2001) and provide essential micronutrients for general health. To allow diets to 

be designed whilst accommodating these requirements, it is also important to understand 

the energy demands of the sport, and which substrates are utilised during competition for 

optimal performance. Although there have been many studies on the energy intakes of 

endurance sports such as cycling, running and swimming (Maughan, 1997), as well as a 

growing number studies in soccer (Maughan and Shirreffs, 2007, Russell and Pennock, 

2011, Ono et al., 2012), there are few studies on the nutritional demands of non-soccer 

team sports (Mujika and Burke, 2010). With emphasis placed on body composition and 

physiological adaptation during the pre-season, transition to in-season shifts focus from 

physiological adaptation to competition preparation and recovery, with training 

programmes modified to reflect this transition. Consequently, nutritional intakes must also 

be modified to meet training and competition requirements. To the authors’ knowledge, 

there is limited research evaluating the nutritional intake of elite rugby players and, as 

such, evidence based recommendations regarding the nutritional intake and composition 

required to fuel rugby players throughout the season are hard to produce.  

In order to maximise performance (Fowles, 2006), improve body composition (Morehen et 

al., 2015), and potentially accelerate recovery from accumulative muscle soreness incurred 

during training and match-play (Fletcher et al., 2016), an appropriate nutrition programme 

must be implemented. It is therefore important to obtain accurate, valid and reliable 

methods of energy intake (EI) and energy expenditure (EE) to implement an effective 

nutritional plan. These data are of great importance to allow informed decisions to be made 

with regard to players’ diets whilst complimenting a periodised training programme. 
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2.6.1 Energy Intake (EI) 

The assessment of EI has been described as the most difficult of all physiological methods 

due to the difficulty of obtaining accurate and reliable data (Hackett, 2007). Given that 

there is no gold standard tool to assess EI (Hackett, 2009), the choice of method is 

dependent on the population being measured (Magkos and Yannakoulia, 2003). 

Furthermore, evaluating an athlete’s diet requires special expertise and is often time-

consuming and labour intensive (Magkos and Yannakoulia, 2003). The most common 

tools used to assess the dietary intake of an athlete can be roughly classified into two 

categories; retrospective and prospective. Retrospective methods (diet recall, food-

frequency questionnaires [FFQs], and diet history) depend on the individual’s memory and 

honesty to assess recent, or less recent food intakes. Prospective methods (duplicate 

portion and diet records) monitor current and ongoing food consumption, but due to the 

degree of subject cooperation required and burden incurred, players may under report their 

total EI (Bingham, 1987a, Deakin, 2000) which raises concerns over the accuracy of the 

data collected from professional athletes (Hackett, 2009). A major issue faced by 

practitioners is the underreporting of dietary intake (~30 % of total energy intake), which 

can be explained by intentionally or unintentionally omitting some of the food consumed 

and/or intentionally or unintentionally reducing food intake during the study period 

(Magkos & Yannakoulia, 2003, Hackett, 2009). Consequently, as suggested by Magkos 

and Yannakoulia (2003), the best option is to select the most appropriate method that suits 

the situation whilst clearly acknowledging the limitations of the chosen method alongside 

careful interpretation of the data. A summary outlining the advantages and disadvantages 

of each of these methods can be seen in table 2.3 
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Table 2.3. Dietary assessment methods: description, advantages, disadvantages, and major 
applications in clinical practice and research, adapted from Magkos and Yannakoulia, 
(2003) 

2.6.2 Estimated Diet Record 

Estimated diet record, or food diaries are considered accurate enough for dietary 

assessment of individuals and groups (Magkos & Yannakoulia, 2003), but different time-

frames of recording are required in each case. The subject is asked to keep a detailed 

Method Description Advantages Disadvantages Applications 

Retrospective     

Diet history 

Subject describes all 
food and drinks 
consumed on a typical 
day, completes a FFQ, 
and reports usual menus 
(originally it also 
incorporated a 3-day 
diet record, see below) 

Provides information 
on both quantitative 
and qualitative 
aspects of usual diet. 
Captures day-to-day 
and seasonal 
variations inherent of 
professional sport. 

Requires highly skilled 
interviewer. Time 
consuming and resource 
demanding. Depends on 
memory. Relatively 
expensive to conduct and 
analyse.  

Mainly used to assess 
usual intakes of 
individuals in clinical 
practice. Good for 
longitudinal studies.  

Diet Recall 

Subject describes all 
food and drinks 
consumed over the past 
24-hr, or in the 
preceding day.  

Easy to administer. 
Fast to complete. 
Low respondent 
burden. 
Minimal distortion of 
food intake. 

May not be representative 
of usual intake. 
Requires a trained 
interviewer. 
Relies on memory. 

Mainly used to rank 
food or nutrient 
intakes of groups of 
people. May not be 
suitable for individual 
assessment. Useful to 
gather information on 
groups of athletes. 

Food-frequency 
questionnaire 
(FFQ) 

Subject describes the 
frequency of 
consumption of specific 
food items on a 
predetermined list. 

May be self-
administered.  
Inexpensive. Believed 
to assess usual diet. 
Can also provide 
quantitative 
information.  

Respondent burden rises 
as the food list increases. 
Difficult quantification of 
portion sizes. Each 
questionnaire is 
population-specific and 
requires validation. 

Mainly used to detect, 
measure or rank 
specific nutrients or 
food intakes in groups 
or individuals. Used 
for cross-checking 
data obtained from 
other methods. 

Prospective     

Weighed food 
inventory 

Subject weighs items on 
a scale and records (at 
the time of 
consumption) all food 
and drink consumed; 
plate waste is also 
weighed. 

Increased accuracy 

High respondent burden. 
Usual intake may be 
altered. Expensive and 
time-consuming. Possible 
underestimation of actual 
energy intake by 10-30%. 

Mainly used to 
determine eating 
habits for 1-7 days. 
Used for validating 
other methods. 

Estimated diet 
record 

Subject estimates 
portion sizes and 
records (at the time of 
consumption) all food 
and drink consumed. 

Acceptable accuracy. 
Increased compliance 
compared to weighed 
record. 

Compliance decreases as 
period of diet recording 
increases.  Possible 
underestimation of actual 
energy intake by 20-50%. 

Mainly used to 
determine eating 
habits for 1-7 days. 
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record of all food and drinks, and the amount of each consumed on a daily basis or on 

specified days. Quantification is achieved by describing portions in terms of household 

measures (cups, spoons), in dimensions, or by reference to items of predetermined size 

(estimated or semi-weighed diet record). In general, increasing the recording period 

undeniably increases the reliability of collected data, but demands greater subject 

cooperation and may lead to reduced compliance, or to deliberate alteration of eating 

behaviour to simplify the recording process. The number of days needed to measure 

dietary intake reliably varies among subjects and for different nutrients, and also depends 

on the level of precision required. Group assessment requires considerably fewer days of 

data collection than individual assessment, as does the estimation of macronutrient intakes 

(protein, CHO, fat) in comparison with micronutrient (vitamins, minerals) intakes (Beaton 

et al., 1983, Marr and Heady, 1986, Basiotis et al., 1987, Basiotis et al., 1989, Nelson et 

al., 1989). Research has suggested that the self reported total EI bias can be as high as 34% 

(Ebine et al., 2000, Hill and Davies, 2002, Fudge et al., 2006), although a 7-day food diary 

has been shown to be 2-3 times less variable than a 1-day diary (Braakhuis et al., 2003). 

Furthermore, nutrients such as vitamin A, C, and cholesterol require a longer sampling 

period than macronutrients due to a three-fold increase in variability (Braakhuis et al., 

2003).  A 3–7-day diet monitoring period is believed to provide reasonably accurate and 

precise estimations of habitual energy and macronutrient consumption (Braakhuis et al., 

2003), and additionally is less-onerous than the weighed food inventory method (Hackett, 

2009). 

2.6.3 24-hr diet recall 

24-hour recalls involve low subject burden, minimal distortion of food intake and are easy 

to administer (Hackett, 2009), and as such are a useful tool when working with 

professional athletes. Furthermore, they can be scheduled around daily activities, 
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conducted by a single face-to-face short interview (15–30 min) or by telephone, meaning 

multiple recalls be collected, and a large number of athletes can be studied.  One study 

using the multiple recall method found that 8 days of dietary records were required to 

minimize the effect of random error (day-to-day variation in dietary intake) in a cohort of 

overweight and obese men and women. Other similar studies found that a minimum of 6 

days of dietary intake records were required for adult males and 11 days for adult women 

(Domas et al., 1997); 6 days for both women and men (Basiotis et al., 1987); and between 

2 and 6 days for both women and men, depending upon the nutrient of interest 

(Palaniappan et al., 2003). Caution must be taken whilst comparing between these studies 

however given that different dietary intake methodologies were used for each, thereby 

presenting different sources and magnitudes of random error. Furthermore, the 

aforementioned studies utilised only non-athletic subjects, and limited studies exisit on 

athletic populations. One review by (Magkos and Yannakoulia, 2003) postulated that 24-hr 

diet recalls are effective in assessing the EI of a group of athletes given that increasing the 

number of subjects measured decreases the variability, and they have even been shown in 

some situations to be more accurate than food diaries (Sawaya et al., 1996). This is likely 

due to the ability of a practitioner to extract more thorough and finer details from an 

athlete, compared with an athlete working independently. It is also common for coaching 

staff in professional clubs to keep an athletes training schedule, meaning even a single diet 

recall of the preceding 24-h may provide adequate energy/macronutrient intake data for 

assessment together with exercise activity, although this hypothesis has never been tested.  

2.6.4 Food frequency questionnaire 

Food frequency questionnaires (FFQs) provide a low burden method of dietary assessment 

due to self-administration. Briefly, FFQs consist of categories or lists of foods, with an 

option to select how often each is consumed within a specified period of time together with 
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a quantitative questionnaire to extract typical portion sizes. FFQs have been shown to 

provide reasonably accurate quantitative and qualitative estimations of selected nutrient 

intakes (Andersen et al., 2002, Kristjansdottir et al., 2006), and have been utilised within 

athletic populations (Fogelholm et al., 1992, Braakhuis et al., 2011), collegiate athletes 

(Sunami et al., 2016 Validity), and also validated for assessing antioxidant intakes of 

athletes when compared to a 7-day food-diary (Braakhuis et al., 2011). Sunami et al. 

(2016) found that a FFQ designed and validated for use with middle-aged persons had 

similar validity when used with young collegiate athletes (soccer, volleyball, track and 

field, judo, basketball, tennis), however, due to the logistic and technical requirements of 

appropriate questionnaire design and validation (Cade et al., 2002), the development of 

athletic group specific FFQs is lacking. Moreover, given the unique physical and training 

demands faced by rugby players, alongside a prerequisite for very high lean body mass 

(Duthie et al., 2006, Morehen et al., 2015), it would be difficult to utilize a non rugby 

specific FFQ within a rugby population who possess very particular dietary requirements. 

Furthermore, assessment of diurnal variation in energy intake is not possible with this 

method, meaning days with fluctuating energy intakes, such as carbohydrate loading in 

preparation for competition, would be incorporated into the mean total and overlooked. 

 

2.6.5 Weighed food inventory method: 

The weighed food inventory method is possibly more accurate than estimated diet records 

(Magkos and Yannakoulia, 2003). Precise measurements of foods are recorded before 

consumption alongside any food left after consumption to calculate total food consumed, 

allowing the practitioner to reasonably accurately analyse daily food intakes. Generally 

this method of dietary record is kept for 7-days and if the participant follows the 
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guidelines, can provide a appropriate quantitative log of food intake (Hackett, 2009). 

However, given the irregular training and eating schedules of athletes alongside the 

frequency of eating, availability of appropriate equipment to weigh food whilst at training, 

and lack of time around training, this method may prove difficult. It would require a highly 

motivated participant to keep an accurate account, especially for athletes who eat while on 

the move or those who eat at appropriate opportunities around their training schedule, 

which makes weighing food a large burden. It also makes eating out a near impossibility 

for athletes, altering their normal eating behaviours and reducing validity of the data.  

 

2.6.6 Dietary analysis 

Once information on dietary intake has been collected, the next step is to analyse the 

specific components of the diet. Methods of dietary assessment were traditionally 

developed as arduous hand written calculations, but with the advent of computerized 

technology, subject and practitioner burden was substantially reduced. Still, even for the 

most experienced practitioner, variable or erroneous coding is commonplace when 

analyzing dietary intakes due to the numerous methodological steps involved including; i) 

Interpreting the diary inputs or survey instrument ii), selecting the best fit item from the 

available choices and iii), quantifying the amount of each food or drink item (Braakhuis et 

al., 2003). Moreover, it is estimated that food diaries take a minimum of 45-min/day for 

the practitioner to analyse. Each additional day analysed reduces variability (~27%, 15% 

and 9% variability for energy intakes during 1-, 3- and 7-day food diaries respectively) 

although increases the likelihood of coding error (Braakhuis et al., 2003). Despite a large 

inventory of different foods and drinks detailed in modern food databases, a large number 

of foods consumed by the population are omitted. For example, meals containing 

numerous ingredients (e.g. curries, stir fries, stews), packaged meals or sport 
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supplements/foods, are often not listed within these databases (Braakhuis et al., 2003). 

Some modern software such as ‘Nutritics’ (Nutritics LTD, Dublin, Ireland) which has been 

utilised recently in elite sport (Robinson et al., 2014, Robinson et al., 2015), allow manual 

addition of new food, meals, and sport supplements/foods, including their nutrient 

composition. In some cases where manual entries are not possible, a practitioner may 

substitute the recorded food with another judged to have similar nutritional characteristics, 

or enter a group of ingredients that are judged to contribute to the total nutritional profile 

of the meal, although this practice further augments variability between practitioners. 

Professional interpretation, especially when quantifying food intakes to match foods from 

a computerized database, may also cause a difference to arise (Braakhuis et al., 2003). It is 

therefore imperative that the practitioner is trained and experienced in using computerized 

software in order to make accurate recommendations based on dietary analysis. 

 

2.6.7 Total Energy expenditure (TEE) 

Total energy expenditure (TEE) is comprised of three key components; 

1. Exercise - contributing to ~50 % TEE in humans which will vary from person to 

person and depend on intensity and duration of exercise (Binns et al., 2015). 

2. Thermic effect of food (TEF) – energy expended through increased metabolism 

whilst breaking down food in to utilizable components (Halton and Hu, 2004) 

accounting for ~10 % of TEE in humans (Halton and Hu, 2004, Stob et al., 2007). 

3. Resting metabolic rate (RMR), comprised of three further sub-components - basal 

metabolic rate (BMR) + Non-exercise activity thermogenesis (NEAT) + Non-

exercise physical activity (NEPA) contributing to ~60-75 % of TEE in humans. 

(Ferro-Luzzi, 2005, Shetty, 2005, Genton et al., 2010). 

• BMR – energy expended while laying stationary on an empty stomach at a 
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comfortable room temperature (Ferro-Luzzi, 2005, Shetty, 2005, Genton et al., 

2010). 

•  NEAT – energy expended through subconscious movement such as fidgeting 

(Levine et al., 2000). 

• NEPA – energy expended through non-formal, yet intentional movement, such as 

carrying a bag (Levine et al., 2000). 

 

2.6.8 Methods to assess TEE 

RMR is often estimated using prediction equations (Cunningham, 1980), some which have 

been validated in athletic populations (Cunningham, 1991, ten Haaf and Weijs, 2014, 

Thompson and Manore, 1996) and are dependent on the procurement of accurate lean body 

mass data (LBM) i.e. LBM x 22 + 500 (Cunningham, 1991). Given the LBM of athletes in 

the original validation studies was ~46-63 kg (Cunningham, 1991), the appropriateness of 

these prediction equations for larger athletes such as rugby players is questionable. RMR 

has since been measured in elite RL players using indirect calorimetry (Moxus modular 

metabolic system; AEI Technologies Inc, Pittsburgh, USA), which reported an 

overestimation in the prediction equation of 16.5% (7.9 ± 0.4 cf. 9.2 ± 0.4 MJ; indirect 

calorimetry and Cunningham equation respectively; Cunningham, 1991). Given this 

discrepancy alongside the impracticality of sports teams performing RMR with indirect 

calorimetry, future studies might wish to develop prediction equations more suitable for 

athletes with large muscle mass. The measurement of TEE in contact sports is somewhat 

difficult given the suitability of the tools available. The most precise method of analysis is 

direct calorimetry (< 2% accuracy; Blaza and Garrow, 1983), however given the difficulty 

of application outside of a laboratory setting, this is rarely used in athletics studies. The 

most common methods to assess TEE in athletics studies therefore involve indirect 

calorimetry including; doubly labelled water (DLW) stable isotope method, commercial 
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heart rate monitors  (CHRM), accelerometers, combined HR and activity monitors, and 

wearable micro-technology (summary of each can be seen in table 2.4). 

  

Table 2.4 Methods to assess energy expenditure: Advantages and limitations of each. 
Adapted from Pinheiro Volp et al. (2011). 

Method Advantages Limitations 

Direct calorimetry 
Highly sophisticated method, considered 
a gold standard for measuring total 
energy expenditure (TEE). 

High complexity method, high cost 
and requires the confinement of the 
subject for 24-hr or more. 

Indirect calorimetry 

This method is considered a gold 
standard for measuring resting energy 
expenditure (REE) and resting metabolic 
rate (RMR). It is a non-invasive method, 
reasonably accurate and has high 
reproducibility. It also allows to quantify 
and to identify energy substrates 
oxidation. Allows short-term 
measurements of EE 

High cost, relatively complex. 
Requires trained personnel for its 
correct use and would be difficult to 
administer in the field  

Doubly labeled water 

This is a gold standard method with 
accuracy between 97-99%. It measures 
TEE precisely in free living subjects and 
because it uses deuterium (H2) and 
oxygen-18 (O18), is a safe method.  

It is costly and requires both 
sophisticated equipment and trained 
personnel. It does not provide 
information on energy expended 
during physical activity neither does 
it give information about substrate 
oxidation. Cannot analyse day-to-day 
variations in EE. 

Accelerometers and heart 
rate monitors. 

Inexpensive and lightweight method to 
assess total distances covered, distance 
covered at varied speeds, and duration of 
exercise.    

Accuracy depends largely of 
calibration of individual devices. 
Unable to detect changes in direction 
or collisions or eccentric contractions. 

Wearable micro technology 
i.e. SenseWear Armbands. 

A relatively cheap and reusable 
alternative to DLW. Day-to-day 
variations in EE can be observed, 
alongside specific snapshots in the day 
such as around a tough training session.   

Potential damage to the device and/or 
subject whilst performing contact 
based exercise means it must be 
removed during these periods. 
Similarly, device must be removed 
when bathing or if exposed to water.  

Physical activity records 

Low cost method that estimates EE from 
an extremely detailed registry of all 
physical activity performed daily. 
Wide variety of types of activities listed 
which is frequently updated allowing the 
correction of or inclusion of typical 
activities from specific regions or 
countries.  

The comparison of results between 
different studies if limited due to 
various existing codes for activities. 
The estimated EE does not consider 
inter-individual differences which 
may affect the energetic cost of a 
movement.  
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2.6.8 Portable commercial devices:  
 
 
Given the reasonable financial cost and practicality of use, a number of portable 

commercial devices are commonly employed by both athletic and non-athletic populations 

to assess daily EE. A commercial heart rate monitor (CHRM) may provide an inexpensive 

and lightweight means to assess EE, although accuracy of these monitors largely depends 

on individual calibration (Strath et al., 2005), alongside other variables that can elevate HR 

such as thermoregulation (Brage et al., 2005). Accelerometers that can monitor duration of 

physical activity and distances covered at a variety of speeds are also commonly used in 

athletic populations. These devices are however restrictive as they are unable to detect 

changes in direction or collisions, and importantly, isometric exercise and physical 

exertions that are inherent of rugby match-play and contribute to EE. Given these 

difficulties, a combination of both devices has been proposed by several researchers to 

improve estimations of EE (Brage et al., 2005, Strath et al., 2005).  

Multi-sensor wearable body monitoring technology such as the Actiheart (AH; Camntech 

Ltd, UK) or SenseWear armband (SWA; BodyMedia Ltd, Pitssburgh, US) may provide an 

effective alternative means of assessing TEE in rugby players allowing day-to-day 

comparisons and individual sessions to be analysed. The AH is a HR sensor with recording 

range between 31-250 bpm combined with a triaxial accelerometer, which has been 

reported to be technically valid and reliable in accurately monitoring EE in walking and 

running when compared with gas analysis (Brage et al., 2005, Crouter et al., 2008). 

Similarly, studies have demonstrated that the SWA provides accurate results for EE during 

low-to-moderate intensity physical exercise with a threshold for accurate measurements at 

intensities of around 10 METs (Drenowatz and Eisenmann, 2011). Given that the 

compendium of physical activities indicates an intensity of 8.3 METs for rugby 

competition (Ainsworth et al., 2011), the use of SWA for rugby appears appropriate. 
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Further the SWA using software version 5.1 (Bodymedia v 5.1, UK) has been shown to 

reliably estimate TEE, whereas SWA using software version 6.1 (Bodymedia v 6.1, UK) 

and AH both reported slight underestimations in TEE when validated against DLW 

(Farooqi et al., 2013).  

 

2.7 Current dietary recommendations for rugby competition  

Despite significant importance placed on the pre-season for physical development, and in-

season strategies for optimizing competition, there is currently a lack of research into the 

training demands and nutritional intakes of elite rugby players during these periods. 

Metabolic and match demands data have been used to devise training programmes and 

nutritional strategies to enhance performance and/or delay fatigue in soccer (Maughan and 

Shirreffs, 2007), and such studies have also formed the basis of nutritional position stands 

(Burke et al., 2011). However, given the distinct differences in the both training and game 

characteristics between soccer and rugby, translation of these data for use in rugby may not 

be appropriate. Greater distances covered by soccer players (Varley et al., 2014, Bangsbo, 

1994), multiple physical collisions observed in rugby that are not seen in soccer (Gabbett 

et al., 2013), rugby player’s larger body masses, and the large inter- and intra-positional 

physiological characteristics of rugby not seen in soccer (Duthie et al., 2003, Morehen et 

al., 2015) mean the suitability of using such studies to inform nutritional practices of rugby 

is questionable. Accordingly, to understand the energy/nutritional requirements of elite 

rugby training for physiological adaptation (pre-season), and optimizing competition (in-

season), quantification of the training loads and energy balance of rugby players during 

these distinct periods warrant investigation. 
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While limited empirical evidence exists, traditional nutritional practice in rugby has been 

to load with CHO in the days leading up to a game (Burke et al., 2011), including doses 

between 6-10 g·kg-1 body mass. Many professional rugby players might not strictly adhere 

to this advice, possibly because their large body mass makes such large CHO volumes 

difficult to consume (potentially ~1.3 kg of CHO per day for some larger players). 

Additionally, immediate consumption of CHO after team sport has been advised (Burke et 

al., 2011, Williams and Rollo, 2015) with current recommendations advising consumption 

of ~1.2 g.kg-1.BM.h-1 of CHO in the first 3-hr post-exercise to maximise the rate of muscle 

glycogen resynthesis (Ivy, 1998, Burke et al., 2011). Further, co-ingestion of protein (~0.3 

g.kg-1.BM) post-exercise will not only aid in repair and remodelling of skeletal muscle, but 

may also accelerate the rate of glycogen resynthesis due to an additional increase in 

circulating insulin concentrations (Tipton and Wolfe, 2004, Beelen et al., 2010, Moore, 

2015). However, although not documented in the literature, anecdotal evidence suggests 

that some rugby players struggle to consume food and liquids immediately after match-

play. Moreover, delaying CHO intake by ~2-hr post exercise may attenuate glycogen 

resynthesis (Ivy, 1998) which may impact subsequent performance, especially when 

recovery periods are short between competition. Accordingly, the effects of an acute CHO 

load on muscle glycogen concentration and performance in professional rugby warrants 

investigation. Similarly, the effects of delaying CHO consumption on the magnitude of 

muscle glycogen resynthesis post rugby match-play must be explored. As such, there is a 

definitive need to better understand muscle glycogen utilisation and repletion around rugby 

match-play thereby having practical implications for optimal CHO feeding strategies.  
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GENERAL METHODS 

 

 

 

 

 

 

 

 

 

 

This chapter provides details of methods that were employed in every subsequent study. 
Methods that were unique to a particular study are presented in the methods section of that 
particular study chapter. 
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3.1 Ethical approval and location of testing 

The local ethical committee of Liverpool John Moores university approved all of the 

studies in this thesis. All subjects were fully informed of the nature of the testing verbally 

and in writing and were free to withdraw at any time during the studies. Exercise testing 

for studies 1 and 2 took place at Munster Rugby training facilities in Cork, S.Ireland 

(Figure 3.1) the competitive rugby match and tissue sampling for study 3 took place at 

Widnes Vikings training facilities (Figure 3.2) and the Rugby League Match Simulation 

Protocol (RLMSP) and tissue sampling for study 4 took place at Warrington Wolves 

training facilities (Figure 3.3) and also in the laboratories at Liverpool John Moores 

University. Gatekeeper consent was attained and risk assessments were thoroughly 

conducted for all venues.   

Figure 3.1 – Munster Rugby training facilities for studies 1 and 2, Cork, S.Ireland. Indoor 
facilities with professional lifting platforms and running track allowing for consistent 
exercise and weather conditions.   
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Figure 3.2 – Widnes Vikings training facilities used for study 3. 4G field allowed for a 
consistent playing surface.  

 

 

Figure 3.3 – Warrington Wolves indoor training facilities used for study 4. Indoor 
facilities allowed for controlled weather conditions and 4G field similar to the one used in 
study 3 for consistent exercise conditions.    
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3.2 Players 

All players were male, and at the time of testing were free from any known illness or 

injury with no player under any pharmacological treatment (either prescribed or self-

prescribed). The total number of players participating in these studies was 76; 61 of whom 

were professional rugby players and 15 of whom were university players. The 

characteristics of the players for the 4 studies can be seen in Table 3.1. 

 

Table 3.1 – Summary of participant characteristics from all four studies. * denotes 
professional players. 

 

3.3 Quantification of player loads  

GPS technology was used to calculate total distance covered and average weekly training 

loads for RU forwards and backs during four ‘typical’ pre-season weeks, and four ‘typical’ 

in-season weeks. Seventeen GPS units were rotated around the team with each of the eight 

 N Age (yrs) Height (m) Weight (kg) 

Study 1 

(Chapter 4) 
45* 25.5 (3.4) 1.86 (0.05) 90.6 (6.6) 

Study 2 

(Chapter 5) 
44* 26.0 (3.3) 1.86 (0.05) 90.6 (6.5) 

Study 3 

(Chapter 6) 
16* 18.1 (1.2) 1.82 (0.06) 88.4 (12.4) 

Study 4 

(Chapter 7) 
15 20.9 (2.9) 1.77 (0.06) 87.3 (14.1) 
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positions represented by two units every session. The last unit was allocated to a player of 

interest selected by coaching staff. GPS technology was also used to analyse the match 

loads of RL game-play during a competitive fixture. Sixteen GPS units were fitted to a RL 

squad representing all playing positions. The minimax S4 (chapters 4 and 5) and S5 units 

(Chapters 6 and 7; Optmieye S4/S5 Catapult Innovations, Melbourne, Australia) were 

worn in a custom designed neoprene vest positioned between the scapulae (Figure 3.4), 

and movements were recorded sampling at 10 Hz. GPS units were used to collect data on 

total distance (m) and relative distance covered for standing/walking (0-0.2 m·s-1), 

jogging/cruising (2-4.4 m·s-1), striding (4.4-5.6 m·s-1), high-speed running (5.6-7.5 m·s-1) 

and sprinting (7.5 + m·s-1) based on in-house classification of speed zones, similar to those 

reported by O’Hara (2012). The exclusion criteria included a minimum of 8 satellite locks 

although our data report 12 or more for triangulated for most sessions, and a HDOP of 

<1.5. Data was downloaded <60 minutes post training and analysed (Catapult Sprint 

Software, Catapult Sport, Melbourne, Australia). 

 

Tri-axial accelerometers and gyroscopes sampling at 100 Hz, also provided data on the 

number of maximal accelerations (>2.79 m·s-2), physical collisions, and repeated high-

intensity efforts (RHIE). A RHIE was defined as three or more high acceleration (>2.79 

m·s2), high-speed (5 m·s-1) or contact efforts each separated by less than 21 s (Austin et al, 

2011). Accumulated PlayerLoad™, derived from the micro-technology device’s embedded 

tri-axial accelerometer was collected and presented as an arbitrary value based on the 

combined rate of change of acceleration in three planes of movement; forward, lateral and 

vertical. Heart rate was also monitored (in chapters 6 and 7) using a coded transmitter unit 

(Polar, Oy, Finland) strapped to the chest with data transmitted and recorded to GPS units 

for later download and analysis. 
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Quantification of gym and pitch session training loads in Chapters 4 and 5 were assessed 

using the session rating of perceived exertion (sRPE; Foster et al., 2001). sRPE has been 

found to significantly correlate to internal (HR, r = 0.89; plasma lactate concentration, r = 

0.86; Gabbett and Domrow, 2007) and external (total distance and varying speeds using 

GPS, and accelerometers) measures, and has been validated as a mean of quantifying 

training loads in rugby (Sirotic et al., 2014) and soccer (Alexiou and Coutts, 2008, 

Impellizzeri et al., 2004). Using a modified 10-point Borg Scale (Borg et al., 1987) 

individual RPEs were provided by each player ~20 minutes after a training session from 

which sRPE (AU) was calculated by multiplying RPE by total training time for field and 

gym sessions accumulatively. sRPE was also reported after performing a Rugby League 

Simulated Match Protocol (RLMSP) in Chapter 7, calculated the same as previously by 

multiplying RPE by total simulated match-play time.  

 

 

Figure 3.4 – Catapult minimax S5 unit fitted in neoprene vest attached to players back 
during study 4.  
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3.4 Anthropometry assessment  

The athletes were weighed (Seca Robusta 510, Hammer Steindamm, Hamburg, Germany) 

weekly in the morning prior to the commencing of training wearing a tee shirt and a pair of 

shorts only. Body fat was estimated using International Society for the Advancement of 

Kinanthropometry (ISAK) guidelines. Skinfold measurements were taken by two trained 

ISAK members of staff. One member of staff marked all players using a hypoallergenic 

eyeliner pen, a measuring tape (Bodymorph, Portsmouth, England) and a segmometer 

(Bodymorph, Portsmouth, England). The other member of staff took the skinfold 

measurements using skinfold callipers (Harpenden, Baty Intl, England). This remained 

consistent for all testing.  Measurements included seven different skinfold sites (Tricep, 

Subscapular, Bicep, Supra-spinale, Abdominal, Thigh and Calf) and the right side only 

was measured.  The mean of two measurements was taken. If the two measurements 

differed by more than 10 %, a third measure was taken and the median value taken. Data 

were reported as the sum of 7 sites although the percentage body fat was calculated using 

the method of Jackson et al. (1978) to allow for estimation of lean body mass.  

 

3.5 Muscle Biopsy collection 

Using a surgical pack (Nu-Care Products, UK) and sterile gloves (Nu-Care Products, UK), 

the area over the outside of the vastus lateralis muscle was carefully cleaned using a 

surgical scrub (Hydrex, Nu-Care Products, UK).  A small amount of anaesthetic (Marcain 

0.5%, Kays Medical Supplies, Liverpool, UK) was injected into and under the skin. A 

small, 4 – 5 mm incision was made in the skin using a surgical scalpel (Swann-Morton, 

Nu-Care Products, UK) in order to create an opening for the biopsy needle (Monopty 12g, 

BARD, Brighton, UK). The biopsy needle was inserted through the incision into the vastus 
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lateralis muscle and a small piece of muscle (20 – 50 mg) was quickly removed (Figure 

3.5). A maximum of 4 samples were taken from each incision. The wound was cleaned and 

closed using steri strips (Nu-Care Products, UK) and dressed with a tegaderm film dressing 

(Nu-Care Products, UK). All muscle samples were immediately transferred to eppendorph 

tubes (Fischer Scientific, UK), snap frozen in liquid nitrogen and stored at -80°C for later 

analysis.  

 

 

 

 

 

 

 

 

 

Figure 3.5 – Muscle being scraped from Microbiopsy needle (Monopty 12g, BARD, 
Brighton, UK) into eppendorph (Fischer Scientific, UK) after extraction from player. 
Picture taken in Widnes Vikings Changing room during Study 3.  

 

3.6 Blood collection  

Blood samples (5ml) were drawn from a superficial vein in the anticubital crease of the 

forearm using standard venepuncture techniques (Vacutainer Systems, Becton, Dickinson). 

Samples were collected in three vacutainers; Serum separating, EDTA and Lithium 

Heparin tubes (Nu-Care Products, UK), and were stored on ice (apart from serum) until 
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centrifugation (Sigma 4- 16KS, SIGMA, Germany) at 1500 RCF for 15min at 4° C (Figure 

3.6). Following centrifugation, aliquots of serum and plasma were stored at -80° C for later 

analysis. All samples were recorded and tracked using the ProCuro database. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Blood ready for centrifugation in LJMU physiology laboratory at 1500 RCF 
(Sigma 4- 16KS, SIGMA, Germany). 

 

3.7 Muscle glycogen analysis 

Muscle glycogen concentration was determined according to the method described by van 

Loon et al, (2000a).  Eppendorphs containing muscle samples were carefully punctured at 

the top with a scalpel and placed into a freeze dryer (Mini Lyotrap, LTE Scientific, 

Oldham, UK) which subjected the samples to a temperature of -55 degrees under vacuum 

for a period of ~72-h. Approximately 2-3 mg of freeze dried samples was dissected free of 
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all visible non-muscle tissue, cut roughly in half with a scalpel, transferred to separate pre-

weighed eppendorphs, and then reweighed for determination of sample weight (Figure 3.7). 

Samples were subsequently hydrolyzed by water bath incubation in 500 µl of 1 M HCI for 

3-h at 100°C. Samples were removed and vortex mixed (Analog Vortex Mixer, Fischer 

ScientificTM, Pittsburgh, USA) at approximately 2500 rpm at 30-min intervals before 

returning to incubation. After cooling to room temperature, samples were neutralized by 

the addition of 250 µl 0.12 mol·L-1 Tris/ 2.1 mol·L-1 KOH saturated with KC1. After 

centrifugation at 10,000 RCF for 10 min at 4° C, 200 µl of the supernatant was analysed by 

spectrophotometry in duplicate using Randox Daytona (Randox Laboratories, Antrim, UK) 

for glucose concentration according to the hexokinase method at 340 nM using 

commercially available kit (GLUC-HK, Randox Laboratories, Antrim, UK). Intra-assay 

coefficients of variation was <5%. Glucose concentrations were expressed as nM and 

converted to mmol·kg-1 d·w-1.  

0.75 x glucose concentration (nM) x 1000 

               Muscle weight (mg) 
 

 

 

 

 

 

 

 

 

Figure 3.7 – Cutting freeze dried muscle sample in half and weighing eppendorph  
(Fischer Scientific, UK) with/without freeze dried muscle sample for determination of 
weight.   
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3.8 Blood metabolite analysis 

Blood was analysed spectrophotometricaly for glucose, NEFA, and glycerol concentrations 

in chapter 6, and NEFA, glycerol and CK concentrations in chapter 7. Blood metabolites 

were analysed according to the hexokinase and colorimetric methods using commercially 

available kits (Randox, Laboratories, Antrim, UK) and expressed as mmol·L-1, mmol·L-1, 

umol·L-1and U·L-1 respectively.  

 

3.8.1 Glucose assay (Hexokinase method): 

Glucose is first phosphorylated by hexokinase in a reaction with ATP. The product, 

glucose-6-phosphate (G6P), is then oxidised to 6-phosphogluconate in the presence of 

NAD+ in a reaction catalysed by glucose-6-phosphate dehydrogenase (G6PDH). During 

this oxidation, an equimolar amount of NAD+ is reduced to NADH. Therefore the reaction 

can be monitored by measuring the increase in absorbance at 340 nM and this increase is 

directly proportional to the original glucose concentration.  

 

                        Hexokinase 

Glucose + ATP      Glucose-6-phosphate + ADP 

 

 

        G6PDH 

G6P + NAD+     6-Phosphogluconate + NADH 
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3.8.2 NEFA assay (Colorimetric method): 
 

NEFA was first converted to Acyl-CoA, AMP and pyrophosphoric acid (PPi) by the action 

of Acyl-CoA synthetase (ACS) in the presence of coenzyme A (CoA) and adenosine 5-

triphosphate disodium salt (ATP).  The resulting Acy-CoA was then oxidised by the action 

of Acyl-CoA oxidase (ACOD) to yield 2,3-trans-Enoyl-CoA and hydrogen peroxide.  In 

the presence of peroxidase (POD) the hydrogen peroxide yields a blue-purple pigment by 

quantitative oxidation condensation with 3-Methyl-N-Ethyl-N-(beta-Hydroxyethyl)-

Aniline (MEHA) and 4-aminoantipyrine (4-AA).  The concentration of NEFA in the 

sample is determined by measuring the absorbance of the blue-purple pigment at 546 nM.  

 

              ACS  
RCOOH + ATP + CoA    Acyl-CoA + AMP + PPi 
 
 
 
            ACOD 
Acyl-CoA + O2    2,3-trans-Enoyl-CoA + H202 

 

 
 
              POD 
2H2O2 + 4-aminoantipyrine + MEHA    OH + 3H2O 
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3.8.3 Glycerol assay (Colorimetric method): 

Serum triglycerides are hydrolyzed to glycerol and free fatty acids by lipoprotein lipase. In 

the presence of ATP and glycerol kinase (GK), the glycerol is converted to glycerol-3-

phosphate, which then is oxidized by glycerol phosphate oxidase (GPO) to yield hydrogen 

peroxide (H2O2). In the presence of peroxidase (POD) the hydrogen peroxide yields a 

purple-blue pigment by quantitative oxidative condensation of 4-Chlorophenol and (4-

AAP) 4-aminophenazone. The concentration of glycerol is subsequently determined by 

measuring the absorbance of the blue-purple pigment at 546 nM.  

 

    LPL 
Triglycerides + 3H20     Glycerol + 3 R-COOH 
 
 
 
          Glycerolkinase 
Glycerol + ATP     Glycerol-3-phosphate + ADP 
 
 
 
        GPO 
Glycerol-3-phosphate+O2   Dihydroxyacetone+ phosphate+ H2O2 
 
 
 
           POD 
H2O2+ 4-aminoantipyrine + 4-chlorophenol              2H2O + HCl + dye 
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3.8.4 Creatine Kinase assay (modification of the IFCC method) 

The CK procedure is a modification of the IFCC method (Horder et al., 1991). CK 

reversibly catalyzes the transfer of a phosphate group from creatine phosphate to adenosine 

diphosphate (ADP) to give creatine and adenosine triphosphate (ATP) as products. The 

ATP formed is used to produce glucose-6-phosphate and ADP from glucose. This reaction 

is catalyzed by hexokinase (HK), which requires magnesium ions for maximum activity. 

The glucose-6-phosphate is oxidized by the action of the enzyme glucose-6-phosphate 

dehydrogenase (G6P-DH) with simultaneous reduction of the coenzyme nicotinamide 

adenine dinucleotide (NADP) to give NADPH and 6-phosphogluconate. The rate of 

increase of absorbance at 340/660 nM due to the formation of NADPH is directly 

proportional to the activity of CK in the sample. 

 

                       CK 
Creatine-phosphate + ADP                         Creatine + ATP 

 

           HK,Mg2+ 

ATP + D-Glucose                   Glucose-6-phosphate + ADP 

 

    G-6-PDH 
G-6-P + NADP+      6-phosphogluconate + NADPH + H+      
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3.9 Statistics 

Given the applied nature of this research, magnitude-based inferential statistics (MBI) 

were employed to provide a standardized means of statistical analysis and information on 

the size of an effect. This allows for a more practical and meaningful explanation of the 

data that can be easily interpreted by practitioners and coaching staff (see section 8.3 for 

further detail). Differences in data (see specific study) were analysed using Cohen’s effect 

size (ES) statistic ± 90% confidence limits (CL) and magnitude-based inferences, as 

suggested by Batterham and Hopkins (2006). Thresholds for the magnitude of the observed 

change for each variable was determined as the between-participant standard deviation (SD) 

in that variable and were considered 0.2, 0.6 and 1.2 for a small, moderate and large effect, 

respectively (Hopkins et al., 2009). The smallest worthwhile change was estimated as 0.2 x 

between-subject standard deviation (small ES). Effects with less certainty were classified 

as trivial and where ±90% CI of the ES crossed the boundaries of ES -0.2 and 0.2, the 

effect was reported as unclear (Hopkins et al., 2009). Threshold probabilities for a 

meaningful effect based on the 90% confidence limits (CL) were: <1%, almost certainly 

not; 1-5%, very unlikely; 5-25%, unlikely; 25-75%, possibly; 75-97.5%, likely; 97.5-99%, 

very likely; >99%, almost certainly (Hopkins et al., 2009). All calculations were completed 

using a predesigned spreadsheet (Hopkins, 2006). 
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CHAPTER 4 
 

QUANTIFICATION OF TRAINING LOAD, ENERGY 
INTAKE AND PHYSIOLOGICAL ADAPTATIONS 

DURING A RUGBY PRE SEASON: A CASE STUDY 
FROM AN ELITE EUROPEAN RUGBY UNION SQUAD 

 
 

 

 

 

 

 

 

 

 

This study was published in the Journal of Strength and Conditioning Research in 2014.  

Bradley, W., Cavanagh, B., Douglas, W., Donovan, T. F., Morton, J. P., & Close, G. L. 
(2014). Quantification of training load, energy intake and physiological adaptations during 
a Rugby pre season: A case study from an Elite European Rugby Union Squad. J Strength 
Cond Res, 29, 534-44. 
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4.1 Abstract 

 

Objectives: Rugby Union is a high-speed collision sport consisting of an intermittent 

activity profile. Given the extreme physical demands of the sport, significant emphasis is 

placed on players possessing high lean body-mass whilst minimising body-fat. 

Anecdotally, the most significant changes in body composition are observed during the 

pre-season, however there are no objective data on the physiological demands and energy 

intake during this time. Forty-five (mean ± SD: age 26 ± 3.4 years, body-mass 101 ± 6.6 

kg, height 185 ± 5 cm) elite professional rugby union players were monitored over a 10-

week pre-season period. Training load was assessed using GPS and session RPE (sRPE), 

whilst also assessing changes in anthropometry and physical performance. Energy intake 

was assessed using 2 x 24-h diet recalls and analysed using Nutritics dietary analysis 

software. For forwards and backs respectively, mean weekly distance covered was 9774 m 

(1404) and 11585 m (1810) with a total mean weekly sRPE of 3398 (335) and 2944 (410) 

AU. Mean daily energy intake was 14.8 (1.9) and 13.3 MJ (1.9), carbohydrate intake was 

3.3 (0.7) and 4.14 (0.4) g.kg-1 body mass, protein intake was 2.52 (0.3) and 2.59 (0.6) g.kg-

1 body mass, and fat intake was 1.0 (0.3) and 0.95 (0.3) g.kg-1 body mass for forwards and 

backs respectively. Markers of physical performance (1-RM strength, speed and repeated 

sprint tests) and anthropometry (body fat, and estimated lean mass) improved in all players. 

Interestingly, all players self-selected a ‘low’ carbohydrate ‘high’ protein diet. Based on 

physiological improvements the training load and energy intake seems appropriate, 

although further research is required to evaluate if such energy intakes would also be 

suitable for match day performance.  
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4.2 Introduction 

 

Although there have been many studies on the energy intake of endurance sports such as 

cycling, running and swimming (Maughan, 1997), as well as a growing number of studies 

in soccer (Maughan, 1997, Russell and Pennock, 2011, Ono et al., 2012) there are few 

studies on the nutritional demands of non-soccer team sports (Mujika and Burke, 2010) 

and to the authors knowledge, no data evaluating the nutritional intake of elite RU players 

during training.  Consequently, evidence based recommendations regarding the nutritional 

intake and nutrient composition required to fuel a rugby players training plan are currently 

lacking.  

The daily carbohydrate (CHO) intake of athletes is perhaps one of the most controversial 

areas of modern sports nutrition. Whereas traditionally high CHO diets were unanimously 

supported for athletes engaged in team sports such as rugby, there is a modern trend 

towards lower CHO intakes in attempts to reduce body fat (Morton et al., 2010) as well as 

maximizing adaptations to exercise training (Morton et al., 2009, Hawley and Morton, 

2014). The majority of studies that have suggested high CHO diets for team sports are 

based upon preventing exhaustion during simulated match play (Bangsbo et al., 1992, 

Akermark et al., 1996, Balsom et al., 1999b) rather than fuelling a training programme. To 

date there are no data on typical CHO intakes of elite RU players during training.  

A review of literature surrounding protein ingestion in athletes reported that unlike 

carbohydrates, athletes usually meet (or exceed) the suggested daily intake of protein 

(Tipton and Wolfe, 2004, Tipton, 2011). Infact, it is common practice for athletes involved 

in strength and power sports such as rugby to consume amounts of protein well in excess 

of the amount required to maintain nitrogen balance (Alway et al., 1992) reflecting a desire 

to increase lean muscle mass and meet the physical requirements of the sport. Moreover, 
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the timing of protein intake in relation to exercise and other nutrient intakes may be 

equally important considerations for athletes wanting to increase their body mass (Tipton 

and Wolfe, 2004, Tipton, 2011). Despite this, there are currently no data available on the 

timing or total protein intakes of elite RU players.  

Dietary supplements are becoming part of everyday life for the modern athlete. 

Supplements are generally used to aid an athlete to reach a macronutrient target, reverse a 

nutritional deficiency, or the belief that large quantities of a specific product can enhance 

performance or health. Although anecdotally supplements are routinely used in sports such 

as rugby, data on the specific supplements used, and more importantly if supplements are 

indeed required to fuel a training programme is currently lacking. Such data are essential to 

allow nutrition consultants to make informed decisions on the need for dietary supplements. 

There is currently a lack of research into the training demands and nutritional intakes of 

elite RU players specifically during the pre-season, a crucial time in the year for physical 

development. These data would be of great importance to strength and conditioning 

research, allowing practitioners to make informed decisions with regards to players diets 

during this critical time of the year.  Therefore the aim of this study was to 1) characterise 

the training demands of a RU pre-season using GPS technology and session RPE (sRPE), 2) 

report the changes in anthropometry and markers of physical performance over the (ten-

week) pre-season and 3) evaluate the typical energy intakes and macronutrient intakes of 

elite RU players during the pre-season period, including the use of nutritional supplements. 

It was hypothesised that elite RU players consume less than the recommended dietary 

CHO intakes for team sports.  
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4.3 Methodology 

4.3.1 Players 

Forty-five elite RU players currently playing in the European Rabo Direct Pro 12 league 

volunteered for this study. The sample population was collected on the first team squad 

which included 12 current international players and 4 British & Irish Lions. Ethical 

approval was granted by the local ethics committee of Liverpool John Moores University. 

A summary of the participant characteristics can be seen in Table 4.1.  

 
 

4.3.2 Experimental design 

Players returned to training at the rugby club following a 4-week off-season. The first 

week back in training was in early July and this was classed as week-1. All baseline tests 

including strength, speed, and anthropometry were performed during week-1 (see Chapter 

3.4 For methods of anthropometry assessment). Players then began a 10-week pre-season 

training programme prescribed by the club (a summary of the pre-season plan can be seen 

in Table 4.2.). During the 10-week pre-season, running activity was monitored at every 

session using GPS technology (see section 3.3) with players prescribed the same unit every 

session. At the end of the pre-season (week-10) all tests were retaken to monitor changes 

over the pre-season. All performance tests were performed as part of the club’s normal pre-

season training regime and were routinely performed by all of the players who were 

therefore familiar with each test. At the end of the pre-season players performed a 24-h 

diet recall of two typical training days. Of the 45 players that completed the pre-season, 20 

players completed the diet recall analysis due to time pressures on the players and 17 

completed the GPS analysis due to limited equipment.  
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Table 4.1. Mean (SD) Summary of the characteristics of the participants at the start of the 
study including the number that took part in each phase of the research. * Indicates almost 
certainly different from Backs. FWD = forwards.  

 

 

 

 

 

 

 

 

Table 4.2. Typical Pre-season training week. Only the field based sessions were tracked 
using GPS.  

 

 

4.3.3 Maximal strength and power  

Upper and lower body maximum strength were determined using free weights (back squat, 

bench press, Romanian Dead Lift and weighted chins) during a normal training session in 

the team’s gymnasium. Each player warmed up (stretching and mobility for 1-hr) prior to 

weight training, and once warmed up performed a 3-5 repetition max test on the selected 

exercises. The 1-repetition max was then calculated using the prediction equation of 

 N Age (y) Height (m) Weight (kg) 

 FWD Back FWD Back FWD Back FWD Back 

Anthropometry 
& Performance 

Tests 
25 20 

26 
(3.6) 

25 
(3.1) 

1.89* 
(0.06) 

1.83 
(0.05) 

109.3* 
(6.9) 

91.7 
(6.6) 

Diet Recall 10 10 
24.4 
(4) 

24.2 
(2) 

1.92* 
(0.05) 

1.82 
(0.05) 

108.1* 
(7.5) 

89.6  
(5) 

 Monday Tuesday Wednesday Thursday Friday Sat Sun 

AM 
Lower Body 

gym (60 
mins) 

Upper Body 
gym (60 

mins) 
OFF Lower Body 

gym (60 mins)  OFF OFF 

Mid-AM   OFF Gym Circuit 
(30 mins) 

On Feet 
Conditioning  

(45 mins) and 
rugby (1hr) 

OFF OFF 

PM 

On Feet 
Conditioning  

(45 mins) 
and rugby 

(1hr) 

On Feet 
Conditioning  

(45 mins) 
and rugby 

(1hr) 

OFF  Upper body gym 
(60 mins) OFF OFF 
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Brzycki (1993). All strength-testing sessions were conducted by an experienced and 

qualified strength and conditioning coach and verbal encouragement was given to the 

athlete during all testing sessions. 

 

4.3.4 Speed  

Timing gates (Brower Timing System, Utah, USA) were set up in the club’s gymnasium at 

0 m and 10 m measured using fixed markings on the floor for consistency. Players in turn 

took up their desired starting stance behind the 0 m timing gate with instruction that they 

must not move or sway backwards before setting off. The player set off in his own time 

breaking the first set of gates starting the TC-Timer and sprinted at full pace through the 10 

m gates. This was repeated three times and the best score from three attempts was recorded. 

A further gate was set up at 20 m and this process was repeated for 20 m sprints.  

 

4.3.5 Conditioning 

1 x 60 s and 3 x 60 s shuttle tests were performed on all players. Gridlines were marked on 

a full size rugby pitch (100 m) at 5 m intervals from 0 m to 30 m using a trundle wheel 

(Nedo, Sheffield, UK). The athletes lined up at the 0 m mark and set off at the sound of the 

whistle. Running to and crossing the furthest gridline, they turned 180 degrees and 

continued running, repeating this at both ends until 60 seconds had ensued. At 60 s the 

total distance covered was recorded by coaching staff. This was repeated a further two 

times at 5 minute intervals (1:4 work:rest). The total distance covered from the first run (1 

x 60) and the cumulative score from all three efforts (3 x 60) were recorded.  
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4.3.6 24-h diet recall  

A 24-h food recall was used to assess typical energy intake and macronutrient composition 

of the athletes. Two x 24-h diet recalls were performed on 20 professional players, and the 

mean of the 2 days was reported. Players were interviewed in a private room and asked to 

recall their nutrition intake over a typical training day. Specific details were teased out by 

the nutritionist, such as brands of foods, and portion size was estimated (Cheyette, 2012). 

The macronutrient intake was then calculated by either using the manufactures website to 

obtain energy and macronutrient composition or using MyDailyPlate diet analysis software 

(www.livestrong.com.myplate). Given that there is no gold standard tool to assess energy 

intake, the choice of method is dependent upon the population being measured (Magkos 

and Yannakoulia, 2003). A 24-h diet recall was selected since the aim of the tool was to 

assess the energy intake of a group of elite players rather than assess the energy intake of 

an individual player.  

 

4.4 Statistics 

Magnitude-based inferential statistics were employed to find differences in movement 

characteristics, anthropometry, performance testing, and 24-hour dietary recall between 

forwards and backs (see section 3.9). 



 

4.5 Results 

 

4.5.1. Player Load and GPS assessment 

Table 4.3. Mean (SD) weekly GPS data reported in m·s-1 for the forwards (FWD) and Backs. Accelerations are defined by efforts performed >2.79m·s-

2. RHIE is defined as a cluster of three user defined high intensity efforts performed <21s apart (contacts, accelerations or sprints).  
 

• Indicates almost certainly or likely different from Backs.  
 
 
 

 

 Total    
Distance (m) 

Contacts 
0 – 2 
m·s-1 

2 - 4.4 
m·s-1 

4.4 - 5.6 
m·s-1 

5.6 - 7.5 
m·s-1 

7.5 + 
m·s-1 

RHIE Accelerations 
Mean 

weekly 
sRPE 

FWD 
9774*              
(1404) 

105*      
(53) 

3893 
(994) 

3738  
(397) 

1723       
(606) 

417*        
(84) 

4*          
(4) 

16 (6.8) 125* (34.1) 
3398* 
(335) 

Back 
11585              
(1810) 

74            
(19) 

4522 
(829) 

4470 
(984) 

1655      
(428) 

894         
(178) 

22        
(18) 

13 (5.9) 157 (53.8) 
2944 
(410) 



Session RPE and GPS data can be seen in Table 4.3. The mean weekly sRPE was 

calculated by combining all of the sRPE giving a cumulative value of 3398 (335) and 2944 

(410) AU for forwards and backs respectively. Backs almost certainly covered greater total 

distances (ES; ±90% CL: 1.28 ±0.59) and higher running speeds between 5.6-7.5 m·s-1 

(1.8; ±0.72). Furthermore, backs very likely covered greater distances at speeds of 7.5+ 

m·s-1 and likely performed more accelerations (0.88; ±0.59) than the forwards. Conversely, 

the forwards likely performed more contacts (0.7; ±0.71), and sRPE was almost certainly 

greater (1.4; ±0.66) than the backs. Sub analysis of the GPS data revealed that differences 

between groups at the lower running speeds, (i.e. 0-2, 2-4.4 and 4.4-5.6 m·s-1) and RHIE’s 

were unclear (0.06; ±0.36, 0.11; ±0.72, 0.17; ±0.32, and 0.02; ±0.61 respectively). 
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4.5.2. Changes in anthropometry, strength, speed and conditioning  

Table 4.4. Mean (SD) anthropometric measures, estimated 1 repetition max (1-RM) for the 
squat, romanian deadlift (RDL), bench press, and weighted chin, speed over 10m and 20m 
and conditioning results for 3 x 60 second shuttle and 1 x 60 second shuttle for FWD 
(forwards) and backs. SO7 = Sum of 7 skinfolds, BF% = Body fat %, FFM = Fat free mass. 
 
* Indicates almost certainly, very likely or likely different from Backs.  
# Indicates an almost certainly, very likely, likely, possibly or unlikely difference from Pre. 
  

 

Changes in anthropometry can be seen in Table 4.4. Forwards weight, SO7, BF% and FFM 

were almost certainly higher than the backs at week-1 (2.27; ±0.45, 1.36; ±0.51, 1.29; 

±0.46 and 1.98; ±0.46) and week-10 (2.29; ±0.44, 1.2; ±0.5, 1.19; ±0.46 and 1.97; ±0.46) 

 Forwards Backs 

 Pre Post Pre Post 

Weight (kg) 109.3 ± 6.9* 109.4 ± 6.4* 91.7 ± 6.6 91.5 ± 6.6 

SO7 (mm) 93.2 ± 25.9* 87.6 ± 25.8* 68.6 ± 13.1 63.5 ± 15.7 

BF% 13 ± 3* 12.2 ± 3.4* 9.3 ± 2 8.5 ± 2.4 

FFM (kg) 94.9 ± 4.5* 95.8 ± 4.5* 83.1 ± 5.4 83.8 ± 5.4 

 

Squat (kg) 201 ± 27* 215 ± 32* # 175 ± 12 196 ± 17 # 

RDL (kg) 170 ± 14* 190 ± 14* # 147 ± 19 161 ± 22 # 

Bench (kg) 135 ± 12* 141 ± 13* # 122 ± 10 128 ± 11 # 

Weighted Chin (kg) 143 ± 7* 148 ± 8* # 132 ± 11 137 ± 8 # 

 

10m (s) 1.8 ± 0.05* 1.73 ± 0.04* # 1.63 ± 0.06 1.63 ± 0.05 

20m (s) 3.13 ± 0.08* 3.0 ± 0.08* # 2.89 ± 0.12 2.86 ± 0.06 # 

 

3 x 60 s shuttle (m) 820.5 ± 29.7* 832.4 ± 20.9* # 842.1 ± 19.5 859.6 ± 16.7 # 

1 x 60 s shuttle (m) 284.7 ± 9.8* 295 ± 8.5* # 296.7 ± 8.9 305 ± 4.3 # 
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respectively. Forwards likely reduced in SO7 (-0.35; ±0.17) and BF% (-0.38; ±0.19), while 

changes in weight and FFM were very unlikely (-0.01; ±0.1) and unlikely (-0.16; ±0.08) 

respectively over the course of the pre-season. Backs very likely and almost certainly 

reduced in SO7 (-0.46; ±0.16) and BF% (-0.45; ±0.15) respectively, while changes in 

weight and FFM were almost certainly not (0.03; ±0.07) and very unlikely different (0.13; 

±0.05) respectively over the course of the pre-season. 

Changes in strength over the pre-season can be seen in Table 4.4. Both groups almost 

certainly and very likely improved across all lifts over the course of the pre-season; Squat 

(0.46; ±0.27 and 1.53; ±0.7), RDL (1.28; ±0.34 and 0.64; ±0.35), bench press (0.58; ±0.13 

and 0.53; ±0.12) and weighted chins (0.71; ±0.27 and 0.4; ±0.18) for forwards and backs 

respectively. The forwards were almost certainly and very likely stronger than the backs on 

all lifts; Squat (1.79; ±1.02 and 0.93; ±0.86), RDL (1.78; ±1.08 and 2.18; ±1.22), bench 

press (1.18; ±0.62 and 1.16; ±0.62) and weighted chins (1.58; ±0.84 and 1.46; ±0.61) at 

week-1 and week-10 respectively. 

Changes in speed and conditioning measures can be seen in Table 3.4. The backs were 

almost certainly quicker than the forwards over 10 m (3.42; ±0.7 and 2.2; ±0.65) and 20 m 

(2.73; ±0.92 and 1.85; ±0.65) sprint tests at week-1 and week-10 respectively. Forwards 

almost certainly improved over 10 m but improvements over 20 m were very unlikely over 

the course of the pre-season. Backs improvements over 10 m were unlikely but possibly 

improved over 20 m over the course of the pre-season. Backs almost certainly covered 

greater distances than the forwards during the 1 x 60 m (1.14; ±0.56 and 1.11; ±0.44) and 3 

x 60 m (1.06; ±0.73 and 1.23; ±0.52) tests at week-1 and week-10 respectively. Both 

groups almost certainly improved their 1 x 60 m distance (0.99; ±0.3 and 0.87; ±0.34) with 

the forwards likely and the backs very likely improving their 3 x 60 m distance (0.39; ±0.26 

and 0.83; ±0.4) over the course of the pre-season (forwards and backs respectively). 



 

4.5.3. Dietary analysis 

Table 4.5. Mean (SD) energy intake and macronutrient profile obtained from the 24-h dietary recall for the forwards (FWD) and backs including 
contribution from dietary supplements.  

* Indicates almost certainly, very likely or likely different from Backs.  
 

 

  Protein  Carbohydrate  Fat Energy 

 Total 
(g) g·kg Range Total (g) g·kg Range Total (g) g·kg Range MJ Range 

FWD 273.6 
(44.7) 

2.52 

(0.3) 
2.1 to 2.8 

356.2 
(63) 

3.3 *    
(0.7) 

2.5 to 4.8 
108.27 
(31.9) 1.0 (0.3) 0.4 to 1.5 

14.8 *  
(1.9) 

12.2 to 17.1 

of which 

supplements 

50.2 
(28.6) 

0.46 

(0.3) 
0.4 to 0.9 

26.6 
(25.5) 

0.24 * 
(0.2) 

0.1 to 0.5 
0.05 

(0.03) 
0.005 

(0.0) 
0.0 to 0.1 1.5 

(0.7) 
1.4 to 2.8 

Back 228.8 
(50.5) 

2.59 
(0.6) 

1.6 to 4.0 
367.7 
(42.4) 

4.14 (0.4) 3.6 to 5.2 
83.9 

(24.4) 
0.95   
(0.3) 

0.7 to 1.4 
13.3   
(1.9) 

11.3 to 16.7 

of which 

supplements 

49.4 
(13) 

0.56 
(0.2) 

0.5 to 1.0 
50.7 

(15.5) 0.57 (0.2) 0.3 to 0.7 
0.05 

(0.02) 
0.03   
(0.0) 

0.0 to 0.1 
1.8 

(0.4) 
0 to 2.5 



Data from the 2 x 24-hr diet recall (presented in g·kg-1 body mass) can be seen in Table 4.5. 

Mean daily energy intake was likely higher for the forwards (ES; ±90% CL: 0.75; ±0.69) 

with supplemented energy intake unclear between groups (0.58; ±0.99). Mean energy 

intake was 14.8 ± 1.9 and 13.3 ± 1.9 MJ for forwards and backs respectively of which 1.5 

± 0.7 and 1.8 ± 0.4 MJ (14 and 10 % of total calories) was from dietary supplements. 

Backs CHO consumption was almost certainly higher (0.17; ±0.65) and supplemented 

CHO very likely higher than the forwards (3.14; ±1.87). Mean CHO intake was 3.3 ± 0.7 

and 4.14 ± 0.4 g·kg-1 (46 and 40 % of total calories) for forwards and backs respectively of 

which 0.24 ± 0.2 and 0.57 ± 0.2 g·kg-1 was from dietary supplements. Difference in total 

and supplemented protein intakes were unclear between groups (0.04; ±0.59 and 0.35; 

±1.06 respectively). Mean protein intake was 2.52 ± 0.3 and 2.59 ± 0.6 g·kg-1 (29 and 31% 

of total calories) for forwards and backs respectively of which 0.46 ± 0.3 and 0.56 ± 0.2 

g·kg-1 was from dietary supplements. Finally, differences in total and supplemented fat 

intake were unclear between groups (0.17; ±0.65 and 0.36; ±0.95 respectively). Mean fat 

intake was 1.0 ± 0.3 and 0.95 ± 0.3 g·kg-1 (24 and 28 % of total calories) for forwards and 

backs respectively of which 0.05 ± 0.03 and 0.03 ± 0.02 g·kg-1 was from dietary 

supplements. A summary of the supplement use can be seen in Table 4.6. 
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Table 4.6. Supplements used by the players including serving size. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplement Serving 

Whey Protein Concentrate 30 g 

Maltodextrin As directed by dietary group 

Beta-alanine 3 g 

Creatine 5 g 

HMB 3 g 

L-Glutamine 5 g 

Omega 3 fish oils 1100mg (765 mg EPA & 240 mg DHA) 

Multi vitamin 1 tablet (100 % RDA) 

Probiotic (acidophilus) 1 tablet (2 billion microorganisms) 

CLA 3 g 

Electrolyte tablets 1 tablet in 500 ml water 
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4.6 Discussion 

The aim of the present study was threefold 1), to quantify the training loads and running 

distances covered during a typical training week 2), report the changes in anthropometry 

and physical performance and 3), evaluate the dietary habits of elite rugby players over a 

pre-season. It is reported for the first time that distances of ~10-12 km are covered during a 

typical week, the total weekly load was ~3400-3700 AU and the daily energy intake of 

elite RU players was 11.3– 17.1 MJ. Interestingly, the players in the present study all self-

selected what could be classed as a low CHO / high protein diet with all players failing to 

meet current recommendations for CHO intake (Burke et al., 2011). It is important to note 

that these guidelines do not reflect the outcome of an experimental study, and are based 

rather on the formulated opinions of one experienced practitioner. The guidelines do 

however clearly state that “These general recommendations should be fine-tuned with 

individual consideration of total energy needs, specific training needs, and feedback from 

training performance” allowing for personal interpretation in any given sporting context 

(Burke et al 2011). Given the improvements in physical performance and body 

composition, along with the data suggesting relatively low running distance and low sRPE 

covered in a pre-season week, it could be argued that for RU players, CHO intakes of 2.5-5 

g.kg-1 body mass are not ‘low’ and are in fact ‘appropriate’ for this group of athletes.  

GPS analysis of the training sessions revealed that the running distances performed were 

not high, with drills tailored towards repeated high intensity efforts to simulate game 

intensities. During the weeks studied, players only covered a total distance of 9.8 ± 1.4 km 

and 11.6 ± 1.8 km for the forwards and backs respectively, and were given three full days 

of rest. During a typical week, significant differences were found in total distance, 

conditioning distance, contacts and accelerations between the forwards and the backs. 

These differences are due to the game specific training drills performed by each group, 
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with the forwards performing significantly more contacts than the backs such as tackling, 

rucking and mauling and the backs performing significantly more accelerations and 

engaging in more ball-in-hand running play than the forwards. It should be noted however 

that given the relatively static isometric activities performed by forwards such as 

scrummaging and rucking, it is possible that the GPS analysis fails to capture some of their 

high intensity efforts which would add to their sRPE. Furthermore, differences in distances 

covered at a ‘sprint’ threshold are likely as a consequence of using absolute rather than 

relative speed thresholds, and data must be interpreted with caution.   

A great importance is placed on monitoring player load for injury prevention due to the 

relationship between training loads and training injury rates (Gabbett, 2004). Session RPE 

was therefore recorded following all training sessions to quantify training load. Weekly 

sRPE of  ~3398 and ~2944 were observed for forwards and backs respectively, which are 

somewhat surprisingly lower than those seen in professional soccer players during pre-

season where values of ~4343 AU have been reported (Jeong et al., 2011). This lower 

sRPE in rugby compared with soccer may be a reflection of the different training methods 

between the sports with rugby players performing more gym based sessions and fewer 

fields based running sessions. Moreover, it may also represent more rest days being 

utilised in rugby for recovery as a consequence of the high amount of physical collisions 

performed in training. For example, Jeong et al. (2011) report one rest day per week 

compared with the three rest days reported in this study. Given that there was a 

significantly greater weekly sRPE reported in forwards compared with backs despite lower 

total running distances covered by forwards than backs, these data suggest that GPS is not 

able to assess the relatively static but highly demanding efforts performed during forward 

specific training such as scrummaging and supports the use of sRPE alongside GPS to 

monitor training loads. 
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One of the main goals of the pre-season training programme in rugby is to optimise body 

composition. Although the mean changes in the sum of seven skinfold sites were relatively 

modest (decrease of 5.6 ± 6.0 and 5.12 ± 4.8 mm for forwards and backs respectively), 

peak losses of body fat were substantial (decrease of 19.3 and 18.8 mm for forwards and 

backs respectively). Based on prediction equations (which it is acknowledged have 

substantial limitations), this would account to ~3 % drop in body fat. Importantly, peak 

increases in lean body mass of 2.9 kg and 2.4 kg for forwards and backs respectively were 

reported. Similar observations were made in a RU pre-season which found an ~11 mm 

reduction in sum of eight skinfolds (Argus et al., 2010), and also in amateur rugby league 

players during the pre-season with an average decrease of ~6 mm in sum of seven 

skinfolds (Gabbett, 2005a). Although the mean increase in lean mass could be described as 

modest, it is important to note that in highly trained professional athletes, increases in lean 

mass become increasingly difficult given that the players will have been engaged in a 

resistance training programme for several years. Similarly, the somewhat modest mean 

losses of body fat may also represent the fact that not all players were attempting to lose 

body fat and therefore interpretation of mean data in elite sporting environments should be 

taken with caution. Alongside the improvements in body composition, improvements in 

physical performance were also reported. Strength significantly improved across all tests 

for both groups with an average improvement of 8% which is similar to previous findings 

of 11% strength improvements in a RU pre-season (Argus et al., 2010). Speed also 

significantly improved over both 10 m and 20 m for forwards, and markers of conditioning 

improved for both groups. It must be noted that the conditioning test utilised in this study 

was designed in-house to best fit the clubs facilities and requirements (previous data 

existed from this cohort using this test), rather than utilising a validated protocol. As such, 

no reliability data exisits nor validation performed, making comparisons between other 

teams or team sports difficult, and data must be interpreted with extreme caution. Despite 



 
 

85 

significant improvements illustrated in this study, the relationship between training volume 

and the magnitude of adaptation remains unknown, and such data may provide crucial 

information for the  programming of  appropriate training loads to elicit optimal 

physiological adaptation. Nevertheless, the data from this study provide a realistic 

benchmark for other professionals to aim for during a pre-season. 

Analysis of the 24-h recall revealed that the energy intakes on a typical training day were 

only 14.8 MJ (range 12.2 – 17.1) and 13.3 MJ (range 11.3 to 16.5) for forwards and backs 

respectively. These data are similar to that reported in professional RL (~14 MJ; Morehen 

et al., 2015) and surprisingly not too dissimilar to soccer players where values of 12.8 MJ 

were reported (Maughan, 1997) despite rugby players having significantly more lean mass 

than soccer players. This similar energy intake despite much larger lean mass in rugby 

players may be accounted for by the lower weekly sRPE reported in rugby players, 

although this suggestion requires further investigation.  It should also be stressed that the 

study by Maughan (1997) used a 7-day weighed food intake compared with a 24-h dietary 

recall in this study, which may compromise the comparison between the two studies. 

Moreover, it cannot be excluded that the relatively low energy intake observed in the 

present study could be related to the fact that energy intake was assessed in the form of a 

24-h recall and these particular days were not typical of the players general eating patterns. 

However, all players reported that the day described was ‘typical’ and the author therefore 

has no reason to believe that this is the reason for the low energy intakes. It is also possible 

that the players in the present study may have intentionally (Bingham, 1987b, Burke et al., 

1991, Deakin, 2000) or unintentionally (Bingham, 1987b) underreported the total energy 

intake. However, since approximately half of the daily nutrition consumed was observed 

by the author including a meal provided on arrival at the club, whey protein pre- and post-

training, and a lunch provided post-training, this is deemed unlikely. Rather, the present 
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data may reflect the fact that during a pre-season, despite the need to fuel training sessions, 

a major goal of many players is to maximise body composition and reduce body fat. It 

could be speculated that players’ diets were influenced heavily by advice given by the 

clubs nutritionist and foods provided by the club, however, anecdotally this practice is a 

common feature within modern elite sports clubs and reflects accurately a ‘typical day’ 

within an elite rugby players life. Moreover, nutrition support at this particular club 

advised carbohydrate periodisiation around training, and therefore low carbohydrate 

intakes were as a consequence of players’ own nutritional choices in and away from the 

club. Given the fact that all players improved their physical markers of performance, 

combined with no player appearing to lose lean muscle mass, it is hard to argue that the 

players were under consuming on a daily basis. To fully answer this question though, it 

would be necessary to measure energy expenditure alongside energy intake during a 

typical training week, which are key aims of Chapter 5 of this thesis.  

Carbohydrate intake in the present study fell below the recommended values for elite 

athletes and actually could be classified as values for athletes engaged in light exercise or 

skill based sports (Burke et al., 2011). Interestingly, the mean CHO intake reported of 3.3 

(0.7) and 4.1 (0.4) g.kg-1 for forwards and backs respectively were similar to that reported 

by Maughan (1997) in professional soccer players (3.4 g.kg-1), and more recently (Milsom 

et al., 2014) in a case study of a professional premier league soccer player (~4 g.kg-1). In 

recent years the guidelines for CHO intake have changed significantly dropping from 8-12 

g.kg-1 in the 2004 guidelines (Burke et al., 2004a) to 6-10 g.kg-1 in the 2011 guidelines 

(Burke et al., 2011) for athletes engaged in moderate to high intensity exercise lasting 1-3 

hours. The most recent guidelines do however clearly state that CHO intake must match 

the athletes training goals (Burke et al., 2011).  It is possible that given the mass of rugby 

players, the guidelines given for most athletes in g.kg body mass, even in the updated 
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recommendations, remain too high for rugby players. For example, in the present study, if 

one of the 110 kg athletes were to consume 8 g.kg-1 of CHO instead of the reported 3.7 

g.kg-1 this would involve an additional ~8 MJ per day which may have resulted in the 

players gaining unwanted body mass. Whilst there is unquestionable support that a high 

CHO diet leading up to team sport based games improves playing performance (Jardine et 

al., 1988, Hawley et al., 1997), the present data supports the notion that the CHO intake of 

the athletes for training purposes should reflect the specific training demands (Burke et al., 

2011). Given the current chapter describes only ‘typical’ energy intakes of rugby players, 

the day-to-day variation in energy balance is currently unknown. Furthermore, energy 

expenditure (EE) was not assessed in the current study and consequently this key variable 

is still unknown in professional rugby players. 

It could be agued that the players in the present study over-consumed protein with values 

of 2.5 and 2.6 g.kg-1 being reported for forwards and backs respectively, which is 

considerably higher than the guidelines of 1.8 g.kg-1 body mass for strength based athletes 

(Tipton and Wolfe, 2004) and much higher than the 1.4 g.kg-1 body mass reported in 

soccer players (Maughan, 1997). Consequently a reduced protein intake may have allowed 

for more CHO to be consumed.  However, given that 2.5 g.kg-1 has been recommended for 

athletes attempting to maintain muscle mass whilst decreasing body fat (Mettler et al., 

2010), it is possible that the protein intakes were in fact appropriate. Moreover, studies 

have clearly shown that protein consumed post-exercise is beneficial in promoting muscle 

protein synthesis (Rasmussen et al., 2000), with some research suggesting 0.3 g.kg-1 body 

mass as an optimum level post-exercise (Borsheim et al., 2002, Miller et al., 2003, Mori et 

al., 2010). In the present study, it was noted that approximately 0.3-0.6 g.kg-1 body mass of 

the total 2.6 g.kg-1 body mass was consumed as protein supplements and this was 

predominantly in the form of whey protein being taken before and after daily training 
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sessions. Given that there are no reported dangers of consuming these intakes of protein in 

a non-diseased state (Tipton, 2011), combined with the desire to maintain, if not increase 

lean mass by all of the rugby players in this study, it would appear that the reported protein 

intakes of the players were appropriate. Dietary fat intakes in the present study were 

approximately 1.0 and 0.95 g.kg-1 body mass for forwards and backs respectively, which is 

in line with the current recommendations (Bishop et al., 1999). The majority of the fat 

came from foods rather than supplements including regular consumption of oily fish, meat 

products and cooking oils. Given the important roles of these fats in health and 

performance, it would be unwise to suggest a reduction in dietary fat intake and again it is 

likely that the rugby players are consuming the correct levels of this macronutrient. 

The use of supplements in sports is one of the most controversial areas of sports nutrition 

from both a risk management and efficacy perspective. All players consumed whey protein 

on a daily basis and this tended to be consumed around training. Players consumed 

approximately 0.3-0.6 g.kg-1 of whey protein supplements per day that equated to 

approximately 2 x 30 g protein supplements. Some players also consumed supplementary 

CHO post-training with the backs consuming more than the forwards. This difference in 

supplementary CHO likely reflects the greater desire of the forwards to reduce body fat 

during the pre-season given that ‘mid-training’ sports drinks and post-training CHO 

supplementation was completely self-selected at the club. Additional supplements taken by 

the rugby players included beta-alanine, creatine, Beta-hydroxy beta-methylbutyrate 

(HMB), omega 3 fish oils, multi vitamins, probiotics, Conjugated linoleic acid (CLA), 

glutamine and electrolyte tablets (Table 4.6). Importantly all supplements were provided 

by batch-tested companies to reduce the risk of contamination. It must be stressed however 

that the supplements used in this study may reflect advice given by the club as opposed to 
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being a reflection of the general practices of all rugby teams. A comprehensive appraisal of 

supplement use within rugby is now clearly warranted. 

 

4.7 Summary 

The present study has for the first time attempted to quantify the training demands of elite 

rugby players during a pre-season, monitor changes in performance, as well as evaluate 

dietary intakes. Significant improvements were reported in the physical performance and 

anthropometry of rugby players observed over a 10-week pre-season, despite CHO 

consumption falling significantly short of suggested levels and total energy intake being 

less than may have been expected. These data may be accounted for by the fact that the 

overall training load, in terms of both sRPE and running distances covered, was not 

especially high. It could therefore be suggested that the ‘relatively low’ CHO intake 

observed in the present study was sufficient to fuel a rugby pre-season, although whether 

this CHO intake would be suitable for in-season is currently unknown. It may therefore be 

pertinent to quantify the training loads of the in-season whilst assessing energy intakes and 

expenditures of elite RU players over a full training week. Furthermore, day-to-day 

variations in energy balance should also be assessed which may be achieved using a 6-day 

food diary (to avoid interference with game day practices) and wearable micro-technology.  
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CHAPTER 5 
 

 

ENERGY INTAKE AND EXPENDITURE ASSESSED ‘IN 
SEASON’ IN AN ELITE RUGBY UNION SQUAD 

 

 

 

 

 

 

 

 

 

 

This study has been published in the European Journal of Sports Science in 2015 and 
features as a case study in the book “The Science of Rugby”. 

Bradley, W. J., Cavanagh, B., Douglas, W., Donovan, T. F., Twist, C., Morton, J. P., & 
Close, G. L. (2015b). Energy intake and expenditure assessed 'in-season' in an elite 
European rugby union squad. Eur J Sport Sci. 2015; 15(6):469-479.  
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5.1 Abstract 

Rugby Union is a complex, high-intensity intermittent collision sport with emphasis placed 

on players possessing high lean body-mass and low body-fat. After an 8-12 week pre-

season focused on physiological adaptations, emphasis shifts towards competitive 

performance. However, there are no objective data on the physiological demands or energy 

intake (EI) and expenditure (EE) for elite players during this period. Forty-four (mean ± 

SD: age 26 ± 3.4 years, body-mass 101 ± 6.6 kg, height 185 ± 5 cm) elite professional 

rugby union players completed a 36-week in-season. In-season training load was assessed 

using GPS and session RPE (sRPE), alongside six-day assessments of EE and EI measured 

using wearable SenseWear technology and a 6-day food diary respectively. Mean weekly 

distance covered was 7827 ± 954 m and 9572 ± 1233 m with a total mean weekly sRPE of 

1776 ± 355 and 1523 ± 434 AU for forwards and backs, respectively. Mean weekly EI was 

16.6 ± 1.5 and 14.2 ± 1.2 MJ, and EE was 15.9 ± 0.5 and 14 ± 0.5 MJ for forwards and 

backs respectively. Mean carbohydrate intake was 3.5 ± 0.8 and 3.4 ± 0.7 g.kg-1 body mass, 

protein intake was 2.7 ± 0.3 and 2.7 ± 0.5 g.kg-1 body mass, and fat intake was 1.4 ± 0.2 

and 1.4 ± 0.3 g.kg-1 body mass for forwards and backs respectively. All players who 

completed the food diary self-selected a ‘low’ carbohydrate ‘high’ protein diet during the 

early part of the week, with carbohydrate intake increasing in the days leading up to a 

match, resulting in the mean EI matching EE. Based on EE and training load data, the EI 

and composition seems appropriate, although further research is required to evaluate if this 

diet is optimal for match day performance.  
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5.2 Introduction 

 

In chapter 4 carbohydrate intakes of 3.3 ± 0.7 and 4.1 ± 0.4 g·kg-1 for forwards and backs 

respectively, were reported during a RU pre-season. These data are similar to those 

reported in professional soccer players (3.4 g·kg-1; Maughan, 1997), but lower than intakes 

generally suggested for team-sports engaged in high intensity exercise programmes where 

values of 6-10 g·kg-1 have been recommended (Burke et al., 2011). To date there are no 

data on typical macronutrient intakes of elite rugby players during in-season training. 

To implement a valid nutritional plan it is important to understand the day-to-day energy 

requirements of an athlete. Due to the physicality of rugby, the measurement of EE is 

somewhat difficult given that many of the tools available would not be suitable either 

through danger to the athlete or to the equipment. Currently the doubly labelled water 

(DLW) stable isotope method is considered the gold standard for measuring EE (Ekelund 

et al., 2002), however this technique does not allow day-to-day comparisons to be made. 

Multi-sensor, wearable body monitoring technology might therefore provide an effective 

means of assessing daily EE in free-living rugby players. 

Although in chapter 3 the training demands and nutritional intakes of an elite RU pre-

season were reported, to date there are no studies showing the training demands and energy 

intakes and expenditures during the competitive season. Due to the importance of 

competitive performance, these data would be of great significance to strength and 

conditioning research literature allowing informed decisions to be made with regards to 

players’ diets during this competitive period.   

Therefore the aim of this study was to i) characterize the weekly external and internal 

training demands of a RU in-season using GPS technology and session RPE (sRPE) ii), 

evaluate the typical energy intakes and macro- and micronutrient intakes, and iii) analyse 
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the energy expenditures of elite RU players during the in-season period. It was 

hypothesised that elite rugby players would consume less than the recommended 6-10g.kg 

CHO per day (Burke et al., 2011) whilst meeting or exceeding recommended protein 

intakes (Tipton, 2011).  
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5.3 Methodology 

5.3.1 Players 

Forty-four elite RU players currently playing in the European Rabo Direct Pro 12 league 

volunteered for this study. The sample population was collected on the first team squad, 

which included 12 current international players and 4 British & Irish Lions. Ethical 

approval was granted by the local ethics committee of Liverpool John Moores University. 

A summary of the participant characteristics can be seen in Table 5.1.  

Table 5.1. Mean (SD) Summary of the characteristics of the participants at the start of the 
study including the number that took part in each phase of the research. * Indicates almost 
certainly different from backs. FWD = forwards.  

 

 

5.3.2 Experimental design 

Players began in-season training at the rugby club after a 12-week pre-season period. The 

first week of in-season training started in early October and this was classed as Week 13. 

Players then began 3 x 12-week in-season training macrocycles as prescribed by the club.  

During the ‘in season’, running activity was monitored at every training session using GPS 

technology, and session RPE (sRPE) was used to quantify the overall training load (see 

chapter 3.3). GPS equipment was rotated equally around all players with all positions 

represented equally. Food diaries were completed as part of the club’s normal in-season 

 N Age (yrs) Height (m) Weight (kg) 

 FWD Back FWD Back FWD Back FWD Back 

GPS  24 20 
26 

(3.6) 
26 

(3.1) 
1.89* 
(0.06) 

1.83 
(0.05) 

110.1* 
(6.1) 

92.1   
(7) 

6-day food diary & 
energy expenditure 

7 7 
28 

(2.8) 
25.1 
(3.8) 

1.92* 
(0.07) 

1.84 
(0.06) 

110.1* 
(6.2) 

93.6  
(5.9) 
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training regime and were routinely performed by all of the players who were therefore 

familiar with this method. During weeks 32 (n = 5), 33 (n = 5) and 34 (n = 4) of the season 

14 players (7 forwards and 7 backs) wore SenseWear armbands and completed a detailed 

six-day food diary to assess energy expenditure and nutrient intake. A typical in-season 

training week is depicted in Table 5.2. 

 

Table 5.2. A typical In-season training week. Training days are shown in relation to game 
day rather than days of the week. Only the field based sessions were tracked using GPS. 
 

 

 

5.3.3 Energy Intake (6-day food diary) 

A six-day food diary was used to analyse player macronutrient and micronutrient intakes 

and reported as days away from a game (Game day -5, -4, -3, -2, -1 and game day +1) in 

megajoules (MJ). This time period is believed to provide reasonably accurate and precise 

estimations of habitual energy and macronutrient consumption (Braakhuis et al., 2003). 

Players were instructed to document a complete account of all foods and fluids ingested 

over a six-day period. Specific training on completing the food diary was given by the 

teams nutritionist who was a Sport and Exercise Nutrition Register (SENr) accredited 

practitioner with over 10 years experience working in professional sport. All players were 

instructed to give careful attention to detail such as timing of nutrient intake, estimation of 

 Game 
Day -5 

Game Day 
-4 

Game Day 
-3 

Game Day 
-2 

Game 
Day -1 

Game 
Day Game Day +1 

AM Mobility 
Gym 

extras & 
Meetings 

Mobility 
Gym 

extras & 
Meetings 

REST GAME RECOVERY 

Mid-AM Strength 
(1hr) 

Field (45 
mins) 

Strength 
(1hr) 

Rugby 
(1hr) REST GAME RECOVERY 

PM  Rugby 
(1hr)   REST GAME RECOVERY 
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volumes and quantities, and to provide specific brand names where possible. To enhance 

reliability, food diaries were reviewed and cross checked using a 24-h recall by the team's 

nutritionist after one day of entries to ensure accurate input as previously suggested 

(Thompson and Subar, 2008). The nutrient intakes were calculated using Nutritics 

professional diet analysis software (Nutritics Ltd, Ireland) to obtain energy and macro- and 

micronutrient composition. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 – Player taking pictures of prepared food to aid with food diary entries.  

 

5.3.4 Energy Expenditure 

SenseWear Pro2 wearable armband (SWA; BodyMedia, USA) was used to assess energy 

expenditure. Five armbands were rotated between the athletes over a three-week period 

during the same macrocycle. Athletes wore the armband 24-h a day for six days, except 

during water or heavy contact based activities. The SWA were removed on match day to 

avoid disruption during match preparations and also due to contacts sustained during 
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competition. The armband was worn on the back of the upper right arm and utilised a two-

axis accelerometer, heat flux sensor, galvanic skin response sensor, skin temperature 

sensor, and a near-body ambient temperature sensor to capture data leading to the 

calculation of energy expenditure using a proprietary algorithm. SenseWear computer 

software (BodyMedia 5.1, USA) was used to analyse player energy expenditure and 

reported as days away from competition (Game day -5, -4, -3, -2, -1 and game day +1) in 

MJ. 07:00 was chosen as the 24-h start point determined by average player wake-up time 

according to the clubs daily monitoring. 

 

 

 

 

 

 

 

 

Figure 5.2 – Player wearing one of five SenseWear armband during training.  

 

5.4 Statistics 

Magnitude-based inferential statistics were employed to find differences in movement 

characteristics and energy intake and energy expenditure between forwards and backs (see 

section 3.9).  



 
 

98 

5.5 Results  

 

5.5.1 Weekly external and internal training load 

Table 5.3. Mean (SD) weekly GPS data reported in m·s-1 for the Forwards (FWD) and 
Backs. Accelerations are defined by efforts performed >2.79m·s-2. RHIE is defined as a 
cluster of three user defined high intensity efforts performed <21s apart (contacts, 
accelerations or sprints). Accels = Accelerations. 

* Indicates different from backs.  
 

 

 

Session RPE and GPS data can be seen in Table 5.3. The mean weekly sRPE was 

calculated by combining all of the sRPE giving a cumulative value of 1776 (335) and 1523 

(410) AU for forwards and backs respectively. Backs almost certainly covered greater total 

distances (ES; ±90% CL: 1.32; ±0.67), higher running speeds between 5.6-7.5 m·s-1 (1.8; 

±0.72) and speeds of 7.5+ m·s-1 (4.57; ±2.13) than forwards. Further, backs very likely 

performed more accelerations (2.34; ±1.29) than the forwards. Conversely, the forwards 

almost certainly performed more contacts (2.38; ±1.31) and sRPE was very likely greater 

(1.78; ±0.76) than the backs. Sub analysis of the GPS data revealed that the backs likely 

covered more distance at the lower running speeds, (i.e. 0-2, 2-4.4 and 4.4-5.6 m·s-1; 0.36; 

±0.16, 1.1; ±0.52, and 0.79; ±0.51 respectively). Difference in RHIE’s between the 

forwards and backs was unclear (0.27; ±0.39). 

 Total    
Distance 

Contacts 0 – 2 
m·s-1 

2 - 4.4 
m·s-1 

4.4 - 5.6 
m·s-1 

5.6 - 7.5 
m·s-1 

7.5 + 
m·s-1 

RHIE Accels sRPE 

FWD 7827*              
(954) 

80*      
(25) 

3940* 
(487) 

3020* 
(438) 

665*       
(175) 

194*        
(141) 

4*          
(17) 

19.2 

(7.9) 
15.3*           
(9.6) 

1776* 

(355) 

Back 9572              
(1233) 

50            
(22) 

4462 
(679) 

3460 (603) 993      (196) 617         
(232) 

40        
(61) 

15.4 
(10.3) 

46              
(14.6) 

1523 
(434) 
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5.5.2 Energy intake and expenditure 

 

 

Figure 5.3. Energy intake (EI) and energy expenditure (EE) of 14 elite rugby union 
players over a 6-day period (Game day -5, -4, -3, -2, -1 and +1) taken from SenseWear 
armband data and 6-day food diary analysis. Figure A = Forwards, figure B = Backs.  

* Indicates difference between EI and EE (almost certainly, very likely and likely). 
# Indicates different from backs (very likely). 
 

Energy intake (EI) and expenditure (EE) over the six assessment days, presented in 

megajoules (MJ), are shown in Figure 5.3. Mean EI and EE was 16.6 (1.25) MJ and 15.9 

(0.53) MJ, and 14.2 (1.2) MJ and 14 (0.47) MJ for forwards and backs respectively, with 

both EI and EE very likely higher in the forwards than the backs (0.76; ±0.49 and 1.0; ±0.6 

respectively). EI was very likely lower than EE on GD-5 (15.83; ±11.68), GD-4 (2.25; 

Mean EI Mean EE
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En
er

gy
 (M

J)

0

10

15

20

25

 

GD-5 GD-4 GD-3 GD-2 GD-1 GD+1

En
er

gy
 (M

J)

0

10

15

20

25

Energy Expenditure
Energy Intake

Time

B

A

* 

#

#

* * 

* 
*

* 
* 

* * 

*

* *



 
 

100 

±0.86) and GD-3 (1.99; ±1.28), almost certainly higher than EE on GD-1 (3.23; ±0.88) and 

GD+1 (1.89; ±0.77), and differences were unclear on GD-2 (0.27; ±0.54) for the forwards. 

EI was very likely lower than EE on GD-5 (5.66; ±4.32) and GD-3 (5.76; ±4.96), almost 

certainly lower than EE on GD-4 (4.45; ±0.85), almost certainly higher than EE on GD-1 

(16.34; ±4.74), and differences were unclear on GD-2 (0.03; ±1.71) for the backs.  

EI likely increased from GD-5 on GD-4 (0.75; ±0.9) and GD+1 (0.87; ±0.9), and very 

likely increased on GD-2 (1.49; ±1.21) and GD-1 (12.56; ±1.27) with changes on GD-3 

unclear (0.44; ±1.11) for the forwards. This coincided with a very likely reduction in EE on 

GD-3 (3.43; ±1.91) and an almost certain reduction in EE on GD-1 (10.02; ±2.34) and 

GD+1 (17.56; ±5.79) with a very likely and almost certainly increased EE on GD-4 (10.63; 

±5.41) and GD-2 (3.37; ±0.96) respectively for forwards. EI likely increased from GD-5 on 

GD-4 (0.92; ±0.93) and GD+1 (1.01; ±0.87) and very likely increased on GD-2 (1.47; 

±1.15) and GD-1 (2.23; ±1.11) with changes on GD-3 unclear (0.19; ±0.93) for the backs. 

This coincided with a very likely reduction in EE on GD-3 (1.31; ±0.48) and GD+1 (454; 

±1.53), and an almost certain reduction in EE on GD-1  (2.29; ±0.46) with an almost 

certain increase in EE on both GD-4 (3.07; ±0.29) and GD-2 (1.62; ±0.66) for backs.  
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5.5.3 Macronutrient profile 

Figure 5.4. Macronutrient intakes (Carbohydrate, Protein and Fats) of 14 elite rugby union 
players over a 6-day period (Game day -5, -4, -3, -2, -1 and +1) taken from 6-day food 
diary analysis. Figure 5.4A = Forwards, figure 5.4B = Backs.  

* Indicates different from GD-5 (almost certainly, very likely and likely). 
 

Macronutrient intakes from six-day food diaries (presented in g·kg-1 body mass) can be 

seen in Figure 5.4. Difference in CHO between forwards and backs was unclear (0.16; 

±0.51), with values of 3.5 (0.8) g·kg-1 (38 % total calories) and 3.4 (0.7) g·kg-1 (37 % total 

calories), respectively. Similarly, differences in mean weekly protein intake between the 

forwards and backs was unclear (0.24; ±0.62) with values of  2.7 (0.5) g·kg-1 (30 % total 
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calories) and 2.7 (0.3) g·kg-1 (30 % of total calories), respectively. Mean fat intake was 

also unclear between positions (0.21; ±0.56), with values of 1.4 (0.2) and 1.4 (0.3) g·kg-1 

(32 and 33 % of total calories) for forwards and backs, respectively.   

Forwards likely and almost certainly consumed a higher CHO intake on GD-4 (0.72; ±0.75) 

and GD-1 (2.01; ±1.28) respectively when compared with GD-5 (the first day of the week). 

Differences in CHO intake from GD-5 were unclear on GD-3 (0.45; ±0.84), GD-2 (0.41; 

±1.42) and GD+1 (0.27; ±0.88) for the forwards. This coincided with a likely increase in 

protein intake on GD-4 (0.67; ±0.71) GD-2 (0.98; ±0.96) and GD+1 (0.73; ±0.75) 

respectively, and an almost certain increase in protein intake on GD-1 (1.72; ±0.71). 

Differences in protein intake from GD-5 were unclear on GD-3 (0.34; ±0.8). Differences 

in fat intake from GD-5 were unclear for GD-4 (0.32; ±0.76), GD-3 (0.43; ±0.65), GD-2 

(0.23; ±0.75), and GD+1 (0.29; ±0.56) but very likely increased on GD-1 (1.56; ±1.52).  

Backs almost certainly and very likely consumed a higher CHO intake on GD-2 (1.98; 

±0.93) and GD-1 (1.74; ±1.34) respectively when compared with GD-5. Differences in 

CHO intake from GD-5 were unclear on GD-4 (0.5; ±1.08), GD-3 (0.07; ±1.18) and GD+1 

(0.29; ±0.68) for the backs. This coincided with a very likely and an almost certain 

increase in protein intake on GD-2 (1.93; ±1.27) and GD-1 (3.26; ±0.83) respectively, with 

differences from GD-5 unclear on GD-4 (0.44; ±0.77), GD-3 (0.12; ±0.73) and GD+1 

(0.23; ±0.89) for the backs. Differences in fat intake from GD-5 were unclear for GD-4 

(0.37; ±0.55), GD-3 (0.29; ±0.97), GD-2 (0.31; ±0.32), and GD+1 (0.59; ±0.83) but almost 

certainly increased on GD-1 (2.58; ±1.14) for the backs. 
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5.5.4 Micronutrient profile 

Table 5.4. Mean (SD) 6-day micronutrient profile (minerals and vitamins) compared with 
RDA’s for each micronutrient obtained from 6-day food diaries. Reported as a weekly 
average for all 14 players who completed the 6-day food diary. Minerals: K = Potassium, 
Ca = Calcium, Mg = Magnesium, Fe = Iron, Zn = Zinc, Cu = Copper. Vitamins: A, D, E, 
K, B6, B12, C. RDA’s are taken from: Whiting and Barabash (2006).     Indicates greater 
than RDA,      indicates lower than RDA. 

 

Minerals Average (mg) RDA Vitamins Average (µg) RDA 

      

K 6258 ± 1691 4700 A 2287 ± 1488 900 

Ca 1733 ± 694 1000 D 8 ± 5 5 

Mg 681 ± 171 400 E (mg)  17 ± 8 15 

Fe 24 ± 9 8 K 97 ± 60 120 

Zn 23 ± 8 11 B6 (mg) 5 ± 2 1.3 

Cu 3 ± 1 0.9 B12 12 ± 6 2.4 

   C (mg)  168 ± 132 90 

 

Daily average micronutrient intakes for the squad taken from six-day food diaries can be 

seen in Table 5.4. Mean micronutrient intakes met and exceeded RDA’s for physical 

activity for all minerals and vitamins apart from vitamin K which fell 24µg under this 

RDA but met and exceeded the RDA for general health. 
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5.6 Discussion 
 
The aims of the present study were 1) to quantify the external and internal training loads 

during a typical in-season training week for elite RU players and 2), evaluate the EI and 

EE of elite rugby players during the competitive season. It is reported for the first time that 

distances of ~8-10 km are covered by elite RU forwards and backs during a typical in-

season week, which equates to a total weekly internal load of ~1500 - 1800 AU. Daily EE 

and EI of elite RU players during this same training period were 14-16 and 14-17 MJ, 

respectively. Considerable variation in the day-to-day EE was also observed, with peak EE 

occurring early in the week and tapering down in preparation for competition. Interestingly, 

although EI also varied on a day-to-day basis, the temporal pattern did not match EE with 

EI being the lowest when EE was the highest and EI increasing in preparation for game-

day. This inverse pattern may be essential to allow players to load with CHO in 

preparation for game day without excessive total energy intake during the week which over 

the course of the season may lead to unwanted gains in body fat.  

GPS analysis of the training sessions revealed that weekly total distances of 7.8 ± 1 km and 

9.6 ± 1.2 km were covered by forwards and backs, respectively. These distances were 

achieved over a five-day period as players were given rest days before and after game day. 

Backs covered more distance in all speed zones, along with a greater number of maximal 

accelerations but less collisions than forwards. These differences probably reflect the 

contrasting training regimes between RU forwards and backs. For example, forwards 

engage in more activities that involve tackling, rucking, mauling and line-outs, while the 

backs perform more acceleration and ball-in-hand running play. Interestingly, the 

frequency of RHIE was similar for positional groups despite clear differences in the 

movement characteristics of forwards and backs. This is probably explained by how the 

GPS software detects RHIE, which is defined as three consecutive efforts (sprint, contact 
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or acceleration) each separated by <21 s (Gabbett et al., 2013). So, while both positional 

groups perform a similar number of high intensity bouts, the movement actions that 

determine the RHIE are likely to be different between forwards and backs.   

A weekly sRPE of ~1778 and ~1522 AU was observed for forwards and backs. These 

values are lower than those seen in elite RU players during pre-season (~2900-3400 AU; 

Chapter 4) and reflects the periodization of a rugby training programme. Indeed, lower 

training loads during the competitive season are deliberately administered to allow optimal 

recovery and for players to peak around games, whereas higher training loads are used in 

the pre-season when physiological adaptation is key and competition not a priority. Whilst 

not reported in this thesis, variations in weekly sRPE or indeed variation in sRPE during 

different periods of the season are likely evident due to this training periodisation. This 

was observed in a case study of futsal players conducted by Rabelo et al, (2015) who found 

that the pre-season elicited higher sRPE values than the first competitive period (COMP1), 

inter competition period (INTER-COMP), and second competitive period (COMP2).  

Interestingly, the COMP1 period revealed lowest sRPE and training intensities which is 

probably explained by a greater number of games (38 in total) in this period. Furthermore, 

higher training intensities were observed later in the season due to lower game volumes 

resulting in higher sRPE. This information is currently unavailable for rugby and may help 

to provide a clearer insight of periodisation and training demands of the rugby season.  

Despite backs experiencing a higher external load during a training week, forwards did 

exhibit a higher internal load (sRPE) than backs.  While sRPE is an appropriate measure of 

training load in rugby players (Lovell et al., 2013), variances in perceptual responses will 

be influenced by several internal and external factors. Here, differences in perceived 

weekly load between positions is probably explained by higher numbers of collisions 

experienced in training by forwards. Indeed, collisions have been purported to contribute 
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significantly to the variance in sRPE between players during rugby training (Lovell et al., 

2013). These findings reaffirm the complexity of factors influencing perceptual measures 

of training load and the necessity to adopt both internal and external measures to monitor 

training in rugby.  

 

Mean energy expenditure was lower than those values reported in-season using DLW for 

RL forwards (21.5 MJ) and backs (20 MJ; Morehen et al, 2016) which may be due to 

differences in match-play and training demands between rugby codes. However, weekly 

sRPE were similar between studies meaning that the lower EE reported in this study may 

reflect i), a difficulty in wearable technology to quantify anaerobic contributions to training 

and ii), missing data for short time periods that the technology was removed during contact 

and water submersion. Measures of HR which have been used to predict EE in football 

(Bangsbo, 1994, Esposito et al., 2004), RL (Coutts et al., 2003) and RU (Cuniffe et al., 

2009) using methods outlined by Spurr et al, (1988), could have been utilised during 

contact periods while the SWA was removed. However, given that both technologies 

measure completely different metrics, alongside a lack of validation between the devices, 

combining this data may be wholly inappropriate. One further possibility involves the use 

of one of many regressional equations applied to the acceletometer data in order to 

estimate EE, however, prediction equations developed using moderate-intensity lifestyle 

activities tend to overestimate the energy cost of walking, sedentary, and light activities, 

whilst  underestimating  the  energy  cost  of most other activities (Crouter et al., 2006).  

 

Energy expenditure changed during the training week for both forwards and backs, with 

higher EE elicited during the first four days of the training week and significantly reducing 

around competition (Figure 5.1). The six-day food diary revealed changes in EI during the 
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training week for both forwards and backs, following an inverse trend to EE (Figure 5.1).  

Fluctuations in EI represent lower intakes during the first 4-days of the training week 

concurrent with higher EE. This is likely attributed to rugby players attempting to reduce 

or maintain body fat before significantly increasing EI by increasing carbohydrate intake 

leading up to competition in an attempt to increase muscle glycogen concentration.  It is 

possible, however, that players might have intentionally (Bingham, 1987a, Deakin, 2000) 

underreported their total energy intake, although since approximately half of the daily 

nutrition consumed was observed by the authors, this seems unlikely.  

Although present data indicate lower training loads and total distances compared to those 

of RU players in pre-season (Chapter 4), mean EI was slightly higher in-season for both 

forwards (15.8 cf. 14.8 MJ) and backs (14.1 cf. 13.3 MJ). This may be attributed to players 

increasing total EI in the days leading up to competition. It must be stressed, however, that 

the pre-season study used a 24-h dietary recall, which might compromise the comparison 

between the two studies. Interestingly, while EE and EI differ on a day-to-day basis, mean 

EE and EI were surprisingly similar for forwards (16.6 and 15.8 MJ) and backs (14.2 and 

14.1 MJ). This suggests that although athletes might fail to meet energy requirements on 

some training days, light training days or rest days before a game correspond with players 

increasing EI (mainly through CHO increases) to maximise muscle glycogen stores. The 

lower EI early in the week may be necessary to prevent a positive energy balance that over 

the course of a season could result in unwanted gain in body-fat.  

Interestingly, all the players again self-selected what could be classed as a low CHO / high 

protein diet (similar to that observed in Chapter 4) for the first four days of the training 

week, and increased CHO intake the day before game day. This practice contravenes 

earlier recommendations for CHO intakes of 8-12 g·kg-1 (Burke et al., 2004a), as well as 

more recent guidelines that state values of 6-10 g.kg-1 (Burke et al., 2011) for athletes 
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engaged in moderate to high intensity exercise lasting 1-3 hours. Therefore it could still be 

argued that players in the current study failed to meet the daily recommended CHO 

requirements. However, current guidelines also clearly state that CHO intakes should be 

designed to meet the fuel requirements of the training programme (Burke et al., 2011). It is 

therefore proposed that players are attempting to match CHO intakes with training 

demands such that CHO intakes of 4-6 g·kg-1 body mass are not ‘low’ and are in fact 

‘appropriate’ for this group of athletes providing CHO intake is increased in the day 

before and after a game. Given that CHO intake altered significantly over the week and 

was the main macronutrient contributor in the daily EI fluctuations, it is suggested that the 

players are indeed following the recent guidelines and matching their CHO intakes to the 

fuel requirements of the training programme. Players could be using some periods of lower 

CHO intake to enhance training adaptions (Morton et al., 2009, Hawley and Morton, 2014) 

and for the maintenance of low body fat (Morton et al., 2010), yet still increasing muscle 

glycogen concentrations in preparation for competition (Hawley et al., 1997). Interestingly, 

backs utilised a two-day load compared with a single day by the forwards. This might 

reflect 1), a lower CHO intake in the first three days to reduce body fat or 2), a purposeful 

attempt to increase glycogen more aggressively than the forwards due to the varying 

physiological challenges of the positions.  

The cycling of CHO intake reported in the present study might be a suitable way of 

maintaining weekly energy balance yet still allowing sufficient CHO intake to increase 

muscle glycogen and thus enhance match day performance. Playing performance is 

unquestionably improved with a high CHO diet leading up to team sport based games 

(Jardine et al., 1988, Hawley et al., 1997), and although a significant increase in CHO 

intake was reported in the days leading up to competition, the intakes reported in this study 

are still below recommended CHO intake for elite athletes. It is still possible that such 
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intakes are not optimal for match day performance and future studies should now attempt 

to measure pre- and post-game muscle glycogen demands in elite rugby. 

Protein intakes of 2.7 g·kg-1 reported in the present study were similar to values reported in 

an elite RU pre-season (2.5 and 2.6 g g·kg-1; Chapter 4). These intakes are much higher 

than the 1.4 g·kg-1 reported in soccer (Maughan, 1997) and 1.8 g·kg-1 described for 

strength based athletes (Tipton and Wolfe, 2004). However, to maintain muscle mass 

whilst decreasing body fat, protein intakes of 2.5 g·kg-1 have been recommended (Mettler 

et al., 2010) suggesting that the protein intakes in this study might in fact have been 

appropriate. Moreover, the athletes in the present study would have deliberately timed 

protein intakes around training in an attempt to maximise muscle protein synthesis, which 

might explain these higher protein intakes. The backs significantly increased protein intake 

from four days before the match. However, this higher protein intake early in the week 

could simply have been used as a CHO substitute given that CHO intake simultaneously 

reduced at this time. Dietary fat intakes in the present study were approximately 1.4 g·kg-1 

body mass, slightly higher than the current recommendations (Bishop et al., 1999) but 

similar to those seen in elite Australian athletes (Burke et al., 2003). Consumption of oily 

fish, meats, and the use of cooking oils accounts for most of the fat intake, and although 

intakes were high, given the importance of healthy fats for performance it would be unwise 

to suggest a reduction in dietary fat intake.  

Micronutrient intakes met and exceeded the RDAs for physical activity (Whiting and 

Barabash, 2006) for all minerals and vitamins apart from vitamin K, which fell slightly 

below the guidelines for physical activity (-24 µg, less than 1 small stem of broccoli, see 

Table 5.4). These values did, however, meet and exceed the RDA for general health. 

Although supplement use is common practice in sport with 40 to 100% of athletes using 

supplements (Baume et al., 2007), it seems inappropriate to supplement the athletes in this 
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study with a multi-vitamin or a mega dose single vitamin supplement given the lack of any 

micronutrient deficiencies (Whiting and Barabash, 2006). The exception to this could be 

vitamin D with recent data suggesting the current RDA for general health is too low 

(Holick and Chen, 2008) and deficiencies are commonplace in many athletes including 

rugby players (Close et al., 2013).  

 

5.7 Summary 

To conclude, for the first time this study has attempted to quantify the training demands 

and assess energy expenditure, intake and micronutrient intakes of elite rugby players 

during the in-season. It is reported that mean energy intake and expenditure followed an 

inverse trend, with expenditure exceeding intake during the first four-days of the training 

week and then reversed in the day leading up to competition with intake exceeding 

expenditure. This is likely due to a heavier training load and players desire to maintain 

body fat during the beginning of the training week, followed by a decrease in training load 

and increase in CHO intake leading up to competition in order to maximise glycogen 

concentration. Interestingly, mean energy intake exceeded expenditure for both forwards 

and backs despite CHO consumption falling short of recommended guidelines. This is 

likely attributable to relatively low training loads and running distances that attempt to 

provide sufficient stimulus to maintain player strength and fitness during the in-season, 

while reducing residual fatigue and promoting competition preparation. Alongside no 

micronutrient deficiencies, the current dietary practices of these elite rugby players are 

sufficient to fuel training during the in-season, providing energy intake and CHO are 

increased leading up to a match. Playing performance is however unquestionably improved 

with a high CHO diet leading up to team sport based games (Jardine et al., 1988, Hawley 

et al., 1997), and although a significant increase in CHO intake was reported in the days 
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leading up to competition, the intakes reported in this study are still below recommended 

CHO intake for elite athletes (Burke et al., 2011). It is therefore possible that such intakes 

are not optimal for match day performance. Future studies should now attempt to measure 

the metabolic demands and glycogen utilisation of elite rugby match-play after consuming 

low CHO (~3g.kg; habitual intake of rugby players reported in Chapters 4 and 5), or higher 

CHO (~6g.kg; intake reported for GD-1 in this chapter). 

Given the unique opportunity to collect muscle biopsies from professional rugby players, 

combined with similar demands outlined in Chapter 2.1 and Table 2.1, the remaining 2 

chapters will now focus on RL players.  
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CHAPTER 6 

 

MUSCLE GLYCOGEN UTILISATION DURING RUGBY 
MATCH PLAY: EFFECTS OF PRE-GAME 

CARBOHYDRATE 
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6.1 Abstract 

Although the physical demands of Rugby League (RL) match-play are well-known, the 

fuel sources supporting energy-production are poorly understood. Muscle glycogen 

utilisation and plasma metabolite responses to RL match-play were therefore assessed after 

a relatively high (HCHO) or relatively low CHO (LCHO) diet. Sixteen (mean ± SD age; 

18 ± 1 years, body-mass; 88 ± 12 kg, height 180 ± 8 cm) professional players completed a 

RL match after 36-h consuming a non-isocaloric HCHO (n=8; 6 g·kg·day-1) or LCHO 

(n=8; 3 g·kg·day-1) diet. Muscle biopsies and blood samples were obtained pre- and post-

match, alongside external and internal loads quantified using Global Positioning System 

technology and heart rate, respectively. Data were analysed using effects sizes ± 90% CI 

and magnitude-based inferences. Differences in pre-match muscle glycogen between 

HCHO and LCHO (449 ± 51 and 444 ± 81 mmol·kg-1d.w.) were unclear. HCHO (243 ± 

43 mmol·kg-1d.w.) and LCHO (298 ± 130 mmol·kg-1d.w.) were most and very likely 

reduced post-match, respectively. For both HCHO and LCHO, differences in pre-match 

NEFA and glycerol were unclear, with a almost certain increase in NEFA and glycerol 

post-match. NEFA was likely greater in LCHO compared with HCHO post-match (1.45 ± 

0.51 mmol·l-1 and 0.95 ± 0.39 respectively), whereas differences between the 2 groups for 

glycerol were unclear (123.1 ± 39.6 and 98.1 ± 33.6 mmol·l-1), LCHO and HCHO 

respectively. Professional RL players can utilise ~40 % of their muscle glycogen during a 

competitive match regardless of their CHO consumption in the preceding 36-h, although 

less variability in starting muscle glycogen concentration was observed with consumption 

of ~600g CHO.   
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6.2 Introduction  

 

In chapters 4 and 5 CHO intakes of 3.3 ± 0.7 and 4.1 ± 0.4 g·kg-1 were reported during a 

RU pre-season, and 3.5 ± 0.8 g·kg-1 and 3.4 ± 0.7 g·kg-1 were reported in-season for 

forwards and backs respectively. Although these dietary intakes appear to be appropriate 

for rugby training, key information is missing for us to make accurate dietary 

recommendations for rugby competition. Metabolic and match demands data have helped 

to devise physiological training programmes and nutritional strategies to enhance 

performance and/or delay fatigue in soccer (Maughan and Shirreffs, 2007). Such studies 

have also formed the basis of nutritional position stands (Burke et al., 2011), which have 

then been translated for use in rugby. However, there are distinct differences in the game 

characteristics between rugby and soccer, most notably the greater distances covered by 

soccer players (Bangsbo, 1994, Varley et al., 2014) and the multiple physical collisions 

observed in rugby that are not seen in soccer (Varley et al., 2014). Therefore, the suitability 

of using such studies to inform nutritional practices of rugby is questionable. Despite 

limited empirical evidence, traditional nutritional advice in rugby has been to load with 

CHO in the days leading up to a game (Burke et al., 2011), including doses between 6-10 

g·kg-1 body mass. Many professional rugby players might not strictly adhere to this advice 

(Chapters 4 and 5), possibly because their large body mass makes such large CHO 

volumes difficult to consume (potentially ~1.3 kg of CHO per day for some larger 

players). Accordingly, the effects of an acute CHO load on muscle glycogen concentration 

and performance in professional rugby players warrants investigation.  

Although the game demands of professional rugby have been well described (Gabbett et 

al., 2012, Twist et al., 2014, Evans et al., 2015b) the sources of energy fuelling these 

workloads are not well understood (Krustrup et al., 2006). As such, there is a need to better 

understand muscle glycogen utilisation during rugby match play thereby having practical 
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implications for optimal CHO loading strategies. Given that both codes of rugby poses 

similar physiological demands (Duthie et al., 2003, Gabbett et al., 2012, Twist et al., 2014) 

and nutritional behaviours (Morehen et al., 2016, Chapters 4 and 5 of this thesis), and with 

a unique opportunity arising consenting the extraction of muscle fibres from professional 

RL players around a competitive match, a decision was made to complete the final two 

studies in RL. The aim of the present study was to therefore quantify the physiological and 

metabolic demands of RL match-play in conditions of ‘high’ and ‘low’ CHO availability. 

To this end, professional male academy players were studied during a competitive RL 

match having followed 36-h of either a relatively high (6 g·kg-1; HCHO) or low (3 g·kg-1; 

LCHO) CHO diet. It was hypothesised that i), a competitive RL game would result in 

muscle glycogen depletion in players similar to that seen after competitive soccer games 

and ii), players consuming 6 g·kg-1 CHO would perform better in the second half 

compared with those players that followed the 3 g·kg-1 CHO diet.  
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6.3 Methodology 

6.3.1 Players 

Sixteen professional male rugby players aged 18 (1.2) years, weighing 88.4 (12.4) kg and 

height 1.8 (0.06) m, from a Super League rugby club academy volunteered to take part in 

this study. The sample population was collected on the academy squad which included 6 

current senior players. Players were medically screened for the suitability of the use of 

prescription anaesthetic Marcain by a trained practitioner. Measurements included; mean 

arterial pressure using an automated sphygmomanometer (GE Pro 300V2, Dinamap, 

Tampa, FL), height and body mass (SECA, Hamburg, Germany) and a pre-biopsy 

questionnaire. Ethical approval was granted by the local ethics committee of Liverpool 

John Moores University. 

 

 

Figure 6.1 – All players and research staff who took part in the first muscle biopsy study 
to be conducted in elite rugby at Widnes Viking training facilities. 
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6.3.2 Experimental design 

Participants played in a scheduled 80-minute 13-a-side RL game with a 10-minute half 

time period. Muscle biopsies and blood were collected and analysed (see sections 3.5 - 3.8) 

alongside assessments of urine osmolality and countermovement jumps pre- and post-

match for all participants. Distances covered, player load, and heart rate were recorded 

throughout the match (see Chapter 3.3). A typical five-day lead into the match and the 

match day timings are depicted in Figure 6.2. Individualised diets were bought (Figure 6.3) 

designed and provided to all participants (Tables 6.1a and 6.1b). Player body mass was 

recorded and grouped to the closest 10 kg (70, 80, 90, 100 or 110 kg) which was used to 

prescribe the CHO content of the individual’s diet. In a randomised design, players were 

initially divided into forwards and backs, ranked according to body mass, and then block 

randomised to one of two diet groups comprising either relatively high CHO (~6 g·kg-1 

CHO, ~1.8 g·kg-1 protein and 0.7 g·kg-1 fat) or low CHO (~3 g·kg-1 CHO, ~1.8 g·kg-1 

protein and 0.7 g·kg-1 fat). On game day, players consumed the same prescribed breakfast, 

at ~10:00AM, and then consumed a standardised pre-match meal ~4hr prior to kick off 

comprising 250g Tilda basmati rice and 125g chicken breast (~60g CHO, 30g PRO). 

Groups were fluid matched consuming ~3.5 L of fluid with only CHO intake differing 

between the two dietary groups. Foods were selected, purchased, and distributed by the 

clubs nutritionist and delivered to the players accompanied by a meal plan. All players 

were given strict instructions to follow the diet beginning the day before the match. Players 

were explicitly instructed not to consume any foods or liquids other than what was 

provided and to finish all meals provided. All players self-reported that they had strictly 

adhered to the diets prescribed to them.  
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Figure 6.2. Schematic representation of the lead in to the trial and the game day timings. 

 

 
 
Figure 6.3 – Food preparation for study 3. 
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Table 6.1a Example diet for 100kg player following ~3g·kg-1 CHO, ~1.8 g·kg-1 protein 
and ~0.7 g·kg-1 fat. GD = Game day.  

Time Description Nutrition 

	 	 	 	GD-1 GD 		 CHO (g) Pro (g) Fat (g) kCAL Fluid (ml) 

08:00 10:00 Coco pops (100g) 85 5 2.5 387 
 

	
 Semi skimmed milk 

(200ml) 10 6.5 3.2 48 200 

	
 Orange juice (200ml) 21 1 0 112 200 

	  Protein shake 0 20 0 118 250 

	
 Total 116 31.5 5.7 665 650 

10:30	  Water 0 0 0 0 500 

 
 Banana 23 1 0 105 

 

	
 Muller rice 40 6.4 4.4 218 

 
	  Protein shake 0 20 0 118 250 

	
 Total 63 27.4 4.4 441 750 

	
	

	 	 	 	 	 	
13:00	  Tilda flavoured brown 

rice (250g) 58.2 7 8.2 316 
 

	
 Chicken breast (125g) 0 29 8 130 

 

 
 Broccoli (40g) 0.5 1.5 0 44 

 

  Avocado (1/2 medium) 6 1.5 13.5 138  

  Water 0 0 0 0 500 

	
 Total 64.7 39 29.7 628 500 

	
	

	 	 	 	 	 	
15:00	  One banana 23 1 0 105 

 

	
 Protein shake 0 20 0 118 250 

	  Water 0 0 0 0 450 

 
 Total 23 21 0 223 700 

	
	

	 	 	 	 	 	
17:30	  Tilda flavoured brown 

rice (250g) 58.2 7 8.2 316 
 

	
 Chicken breast (125g) 0 29 8 130 

 

 
 Broccoli (40g) 0.5 1.5 0 44 

 
  Avocado (1/2 medium) 6 1.5 13.5 138  

  Water 0 0 0 0 500 

	
 Total 64.7 39 29.7 628 500 

	
	

	 	 	 	 	 	
21:00	  Protein shake 0 20 0 118 250 

	
 Total 10 20 3.2 318 250 

	  TOTAL 325.4 177.9 65.1 2643 3350 
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Table 6.1b Example diet for 100kg player following ~6 g·kg-1 CHO, ~1.8 g·kg-1 protein 
and ~0.7 g·kg-1 fat. GD = Game Day.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time Description Nutrition 
	 	 	 	

GD-1	 GD 
	

CHO (g) Pro (g) Fat (g) kCAL Fluid (ml) 

08:00 10:00 Coco pops (100g) 85 5 2.5 387 
 

	
 Semi skimmed milk 

(200ml) 10 6.5 3.2 48 200 

	
 Orange juice (200ml) 21 1 0 112 200 

	  Bread Roll x 1 30 5 3 180  

	  Strawberry Jam (15g) 9 0 0 30  

	
 Total 155 17.5 8.7 757 400 

10:30	  Water 0 0 0 0 250 

 
 Banana 23 1 0 105 

 

	
 Muller rice 40 6.4 4.4 218 

 
	  Protein shake 0 20 0 118 250 

	
 Total 63 27.4 4.4 441 500 

	
	

	 	 	 	 	 	
13:00	  Tilda flavoured brown 

rice (250g) 58.2 7 8.2 316 
 

	
 Chicken breast (125g) 0 29 8 130 

 

 
 Broccoli (40g) 0.5 1.5 0 44 

 
  Bread Roll x 1 30 5 3 180  

  Avocado (1/2 medium) 6 1.5 13.5 138  

  Energy drink 47 0 0 187 500 

	
 Total 141.7 44 32.7 995 500 

	
	

	 	 	 	 	 	
15:00	  Muller Rice (200g) 40 6.4 4.4 218 

 

	
 Protein shake 0 20 0 118 250 

	  Energy drink 47 0 0 187 500 

 
 Total 87 26.4 4.4 523 750 

	
	

	 	 	 	 	 	
17:30	  Tilda flavoured brown 

rice (250g) 58.2 7 8.2 316 
 

	
 Chicken breast (125g) 0 29 8 130 

 

 
 Broccoli (40g) 0.5 1.5 0 44 

 
  Bread Roll x 1 30 5 3 180  

  Energy drink 47 0 0 187 500 

	
 Total 135.7 42.5 19.2 857 500 

	
	 Protein shake	 0	 20	 0	 118	 250	

21:00	  Energy drink 47 0 0 187 500 

	
 Total 47 20 0 305 700 

	  TOTAL 629.4 177.8 69.4 3878 3350 
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6.3.3 Muscle Biopsy 
 

A muscle biopsy was taken pre- and post-match within a 30-min period (Figure 6.4), as 

described in section 3.5. Following the pre-match biopsy, the incision was closed with 

steri-strips (Nu-Care Products, UK), and wrapped with a tegaderm dressing (Nu-Care 

Products, UK). This was then strapped with rugby lifting tape to prevent coming off during 

the game. Although the increase in inflammatory markers after a muscle biopsy have been 

well documented (Van Thienen et al, 2014) given our key measure was glycogen, it was 

decided that post-match biopsies would be taken from a new incision close to the original 

site (~2 cm proximal) after the same procedures. 

Figure 6.4 – Widnes Vikings Players room set up for Muscle Biopsy and Blood letting. 
Four biopsy beds each prepared with materials necessary for tissue collection, three dewers 
with liquid nitrogen ready for muscle samples to be snap frozen, and a small selection of 
the practitioners who assisted with this study.  
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6.3.4 Countermovement Jump 

Countermovement jump (CMJ) height was estimated from an individual’s flight time using 

a contact timing mat (Just Jump, Probiotics Inc, Alabama) to assess lower body power. 

Players stood on the mat in socks or bare feet as still as possible and upright with body 

mass evenly distributed over both feet. Players were instructed to place hands on hips and 

keep them there throughout the test. The player squatted down quickly until the knees were 

flexed at ~90° at which point they immediately jumped vertically as high as possible 

before landing back on the mat. Take off and landing position was assumed to be the same, 

with any jumps deviating from this technique repeated (Figure 6.5). The maximum flight 

time (s) of the three trials was recorded and used to calculate jump height (cm) using the 

formula: 4.9 x (0.5 x flight time)2 (Aragon, 2000). The Just jump system (JJS) is reported 

to provide a reliable (CV = 3.7%) and valid measurement of jump height, when compared 

with jump height values derived from a three-camera motion capture system (r = 0.967, p 

< 0.01; Thomasson and Comfort, 2012) 

 

 

 

 

 

 

 

Figure 6.5 – CMJ being performed by Widnes Vikings player. Data collected pre- post- 
and 24-h-post match-play to assess lower body power.  
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6.3.5 Urine Osmolality 

Players were asked to provide a urine sample in a 30 ml container (Sterilin universal, 

Sterilin, UK) upon arriving at the club and as soon as possible after the match. Samples 

were analysed for osmolality measured in mOsm·kg using a handheld osmometer 

(Osmocheck, PerformBetter, UK) which has previously been validated (Sparks and Close, 

2013). 

 

6.4 Statistics 

Magnitude-based inferential statistics were employed to find differences in i) movement 

characteristics from the first and second halves of a competitive RL match between LCHO 

and HCHO groups, and ii), urine osmolality, CMJ height, muscle glycogen concentration 

and blood metabolites before and after a competitive RL match between LCHO and 

HCHO groups (see section 3.9). 
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6.5 Results 
 

6.5.1 Muscle glycogen 

Mean and individual muscle glycogen data are presented in Figure 6.6. Differences in 

muscle glycogen between HCHO and LCHO were unclear during the first (ES; ±90 % CL: 

0.05; ±1.31) and second halves (0.65; ±1.93). Muscle glycogen almost certainly reduced 

from pre- to post-match by 45 ± 9.5 % (4.96; ±1.43) and very likely reduced by 38.2 ± 

17.5 % (-2.08; ±1.21) for HCHO and LCHO respectively. 

 

 

 

 

 

 

 

 

 

Figure 6.6. Muscle glycogen values pre- and post-competitive rugby game presented in 
mmol·kg-1 dry weight-1 taken from 16 professional rugby league players. Mean data (bars) 
and individual data (lines). Muscle samples were taken using the micro-biopsy technique. 

* Indicates almost certainly and very likely different from pre-match.  
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6.5.2 Plasma glucose, glycerol and NEFA   

Blood glucose, glycerol and NEFA data are presented in Figures 6.7a, b and c respectively. 

Differences in plasma glucose between HCHO and LCHO were unclear during the first (-

1.86; ±0.96) and second halves (-0.06; ±0.77). Changes in plasma glucose from pre- to 

post-match were unclear for both HCHO and LCHO groups with a -1 ± 18.8 % reduction 

(-0.15; ±3.02) and 9.3 ± 18.2 % increase (1.11; ±2.07) respectively. 

Differences in plasma glycerol between HCHO and LCHO were unclear during the first 

(0.4; ±0.79) and second halves (0.66; ±0.91). Plasma glycerol almost certainly increased 

from pre- to post-match by 52 ± 24.4 % (2.94; ±1.38) and by 122 ± 68 % (1.7; ±0.64) for 

HCHO and LCHO respectively. 

Differences in NEFA between HCHO and LCHO were unclear during the first (0.27; 

±0.74) and likely higher for LCHO during the second half (0.95; ±0.93). NEFA 

concentration almost certainly increased from pre- to post-match by 172.6 ± 97.3 % (1.21; 

±0.42) and 226.7 ± 175.9 % (1.89; ±0.82) for HCHO and LCHO respectively.  
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Figure 6.7a, b, c. Plasma glucose, glycerol and non-esterified fatty acid (NEFA) 
concentrations pre- and post-competitive rugby game presented in mmol·L-1, umol·L-1 and 
mmol·L-1 respectively. Mean data (bars) and individual data (lines). * Indicates almost 
certainly different from pre-match. # Indicates likely different from 6g·kg. 
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6.5.3 GPS and heart rate 

 

Differences in overall total distance relative to playing time (0.22; ±0.63), low intensity 

activity (-0.13; ±0.80) and high intensity running (-0.31; ±0.58) were unclear between 

LCHO and HCHO. Total distance relative to playing time (m·min-1) from the first to the 

second half was unclear in LCHO (-0.23; ±0.68) but possibly decreased in HCHO (-0.30; 

±0.45). A change in low intensity activity from the first and second half was unclear in 

LCHO (0.04; ±0.60) and HCHO (-0.08; ±0.65). Conversely, high intensity running in the 

second half was very likely lower for LCHO (-1.42; ±0.69) and likely lower in HCHO (-

0.55; ±0.36). Differences in percentage of heart rate peak (%HRpeak) between HCHO and 

LCHO were unclear during the first (0.74; ±0.67) and second halves (0.01 ± 0.82). 

%HRpeak possibly reduced from first to second half (-0.23; ±0.15) and likely reduced (-

0.48; ±0.63) for HCHO and LCHO respectively. First and second half movement 

characteristics for LCHO and HCHO are shown in Table 6.2. 

 
 
Table 6.2 Mean (SD) game GPS data reported in m·min-1 for 6g·kg and 3g·kg dietary 
conditions. RHIE is defined as a cluster of three user defined high-intensity efforts 
performed <21 seconds apart (contacts, accelerations or sprints).  
 
* Indicates very likely, likely, or possibly decreased from 1st half.  

 

 

 

 m·min-1 
Low Intensity 

m·min-1 
High Intensity 

m·min-1 
Player 

load·min-1 
RHIE %HRpeak 

Half 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

6 g·kg 
93.7 

(12.4) 
85.3 

(13.1) 
78.9 
(8.8) 

74.9 
(9.2) 

14.8 
(5.4) 

10.3* 
(4.3) 

7.3 
(3.2) 

7.9 
(1.8) 

0.4 
(0.5) 

0.6 
(1.2) 

82.9 
(6.1) 

82.5* 
(7.5) 

3 g·kg 
89.4 
(9.8) 

86.9 
(9.7) 

76.7 
(10.3) 

77.2 
(9.5) 

12.7 
(1.9) 

9.7* 
(2.1) 

9 
(2.3) 

8.2 
(1.4) 

1.5 
(1.7) 

1.6 
(1.9) 

81.9 
(7.2) 

78.4* 
(10.5) 
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6.5.4 Countermovement jump 

Average height jumped by players in the HCHO group was 50.4 ± 5.7 cm pre-match, 49.4 

± 6.4 cm post-match, and 42.6 ± 5.12 cm 24-h post-match. Average height jumped by 

players in the LCHO group was 53.3 ± 8.9 cm pre-match, 53.3 ± 8 cm post-match, and 

46.6 ± 6.7 cm 24-h post-match. Differences in CMJ between HCHO and LCHO were 

unclear pre- (0.39; ±1.05) post- (0.5; ±0.86) and 24-h post-match (0.62; ±0.86). CMJ 

possibly reduced from pre- to post-match (1.01; ±0.54) and any change was unlikely (0.37; 

±0.57) for HCHO and LCHO respectively. CMJ almost certainly reduced 24-hours post-

match (-1; ±0.26) and (-0.75; ±0.16) for HCHO and LCHO respectively. 

 
 
 
6.5.5 Urine osmolality  

Average urine osmolality was 354.4 ± 226.3 cf. 593.8 ± 299 mOsmol·l-1 pre-match, and 

677.8 ± 170.2 cf. 685 ± 197.8 mOsmol·l-1 post-match for HCHO and LCHO respectively. 

HCHO were likely more hydrated than LCHO pre-match (0.74; ±0.67) but this was unclear 

post-match (0.01; ±0.82). Hydration very likely reduced from pre- to post-match by (1.01; 

±0.54) and possibly reduced (0.37; ±0.57) for HCHO and LCHO respectively.  
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6.6 Discussion 

The aim of the present study was to quantify the physiological and metabolic demands of 

RL match play in conditions of high and low CHO availability. It is reported for the first 

time that RL match-play can induce an approximate 40 % glycogen depletion and 

moreover, manipulation of energy in the form of CHO did not appear to affect resting 

glycogen availability, glycogen utilisation, or markers of match-play work load. Analysis 

of players’ internal and external loads revealed these data were consistent with competitive 

Super League match-play intensities (Waldron et al., 2011), with mean total distance 

covered relative to match time of ~85-94 m·min-1 and heart rates 78-83 %HRpeak. 

Interestingly, no differences were found in total, high and low intensity running distance, 

RHIEs, or %HRpeak between the HCHO and LCHO conditions during the first or second 

half. In the second half, there were likely and very likely reductions in high intensity 

running distance, for the HCHO and LCHO groups, respectively. The GPS data therefore 

suggest no major advantage of consuming more energy in form of CHO to enhance the 

high intensity running capabilities of professional RL players. This being said, a study by 

Sykes et al, (2011) assessed the running demands of 8 x 10-min segments of RL match-

play and reported that whilst there were little differences in overall relative running speeds 

covered between quarters, large reductions in high and very high intensity running 

locomotive rates were observed in the final quarter indicating fatigue. Therefore given that 

information relating to more precise periods of play are missing from the current thesis 

chapter, it is unclear to what extent temporal match fatigue was elicited due to the dietary 

intervention. Furthermore, tactical changes and the ability of players to control locomotive 

rate means future studies using simulated match-play should be employed to confirm these 

findings.  
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Despite major differences in the match day demands between soccer and rugby, similar 

pre- and post-match muscle glycogen concentrations were reported (Krustrup et al., 2006). 

The relatively high muscle glycogen concentrations observed in the present study were 

achieved after CHO intakes typically ingested by players during the training week 

(Chapter 4; ~3 g·kg-1; 240 – 330 g CHO) and leading up to competition (Chapter 5; ~6 

g·kg-1; 480 – 660 g CHO) which could be described as low or relatively high CHO diets, 

respectively. Alongside findings of energy balance despite ‘relatively low’ CHO intakes 

inrugby players (Chapter 5), given that previous research by Krustrup et al, (2006, 2011) 

showed only modest ~40% muscle glycogen utilisation during competitive soccer match-

play and severe muscle glycogen did not occur after RU match-play (Jardine et al., 1988), 

intakes of ~3 and ~6g·kg-1 were deemed appropriate for this study. Although no dietary 

analysis was performed before the study, we speculate that the training and nutrition of the 

players earlier in the week resulted in a reasonable muscle glycogen concentration before 

the 36-hours CHO load leading into the game. This is pertinent given that the magnitude of 

muscle glycogen resynthesis is heavily influenced by the starting muscle glycogen 

concentration (Zachwieja et al., 1991, Price et al., 2000, Jentjens and Jeukendrup, 2003a). 

Indeed, it is typical in rugby for training to taper towards match day whilst CHO intake 

gradually increases (Chapter 5) and therefore it is feasible that some of the players started 

the one-day load with adequate muscle glycogen concentrations. Moreover, 3-6 g·kg-1 

CHO in athletes with a high muscle mass, i.e. rugby players (Morehen et al., 2015) results 

in a total CHO intake of  ~300-600 g and might not be considered a low CHO intake for 

team-sport athletes. Given that the studies used to formulate CHO intake guidelines have 

recruited athletes with a much lower body mass (van Hall et al., 2000, van Loon et al., 

2000b), it is suggested that absolute rather than relative amounts might be more 

appropriate when prescribing CHO recommendations for rugby players. However, this 

suggestion requires further investigation. Interestingly, analysis of individual players 
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revealed that the group receiving ~600 g of CHO for 36-h pre-match demonstrated a more 

homogenous pre-match glycogen concentration. Moreover, no player in this group finished 

the match with glycogen concentrations <200 mmol·kg-1d.w. which has previously been 

reported as the threshold for impaired sarcoplasmic reticulum Ca2+ release rate and a 

potential mechanism for muscular fatigue (Ortenblad et al., 2011). In contrast, 2 players 

from the group receiving ~300g CHO presented with concentrations <150 mmol·kg-1d.w. 

post-match-play. Despite a potential decline in muscle force production impacting match-

play for these 2 players, no differences were found in distance covered, high speed 

running, or RHIE’s occurrences when compared with the 6 g·kg-1 group. This is thought to 

be in relation to the playing ability of these two players, both of whom train with the senior 

RL squad, and may therefore posess a greater ability to work under fatigue at this standard 

of match-play. It is therefore speculated that ~600 g of CHO may be recommended for 36-

h pre-match for competitive rugby players, although future studies would be required to 

assess the efficacy of this suggestion as well as assessing glycogen utilisation in single 

fibres (Krustrup et al., 2006).  

Analysis of urine osmolality revealed that those on the HCHO diet were significantly more 

hydrated prior to the game than those on the LCHO diet with osmolality scores of 354 and 

594 mOsmol·l-1 respectively. These pre-match values are likely due to sports drinks being 

utilised for the HCHO dietary intervention to aid in CHO consumption despite the two 

groups being fluid matched. This may suggest that the sports drinks were better at 

maintaining euhydration than plain water, or that the players did not consume as much 

liquid in the LCHO group, possibly due to taste reasons. It is possible however to conclude 

that adding CHO drinks into a players pre-match loading strategy not only makes 

achieving the required CHO intake more manageable but may also help to hydrate the 

player prior to the game. 
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Analysis of the CMJ data suggested that there was no significant difference between the 2 

groups in terms of recovery from the game. All players presented with significantly 

reduced CMJ the day after the game, which is likely due to muscle damage causing a 

reduction in maximal force-generating capacity (Clarkson et al., 1992, Clarkson and 

Sayers, 1999). This decrease in CMJ was not affected by manipulating energy in the form 

of CHO in the days leading into the game, confirming previous suggestions that pre-

exercise CHO manipulation does not affect recovery from damaging exercise (Close et al., 

2005).  

Increased lipid mobilization was evidenced by large increases in NEFA and glycerol 

concentrations after the match for both the HCHO and LCHO group. Although there was 

no statistical difference between the two CHO groups, analysis of individual responses 

suggested that the increase in both NEFA and Glycerol were greater in the LCHO group 

despite similar pre-match muscle glycogen concentrations. Considering the intermittent 

nature of a rugby match, elevated lipid oxidation, despite what would appear sufficient 

muscle glycogen concentrations even at the end of the match, might reflect periods of low 

intensity activity (walking or jogging) and those unique to rugby such as the rest period 

after a try is scored, penalty kicks, setting up a scrum, and when the ball was out of 

play.  Interestingly, pre- and post-match NEFA concentrations were similar to those 

observed in football (Krustrup et al., 2006) despite differences in match-play activity. 

Combined with the similar reductions in post-match muscle glycogen, these data suggest 

that RL and football might possess similar metabolic demands. The reduced lipid 

mobilisation in the HCHO group may also suggest CHO oxidation was enhanced in this 

group which could add further weight to suggestion that ~600 g is the preferred CHO dose 

leading into a game. 
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6.7 Summary 

This study has for the first time attempted to quantify the metabolic demands of 

professional RL match-play whilst manipulating energy in the form of CHO. It is reported 

that competitive RL match can result in ~40 % muscle glycogen depletion and that match-

day performance variables did not differ between the 6 g·kg-1 or 3 g·kg-1 CHO conditions. 

However, further analysis suggested that the higher CHO intake results in a more 

homogenous pre-match glycogen concentration between the players, and no player in this 

group presented with concentrations <200 mmol·kg-1d.w post-match-play. Therefore, 

despite no differences in movement characteristics between the low and the high CHO 

groups, it is postulated that an absolute amount of ~600 g CHO 36-h pre-match is 

recommended strategy for rugby league players. Future studies might wish to further titrate 

these CHO recommendations as well as assessing the effects of the timing of CHO intake 

on the magnitude of glycogen repletion after rugby match-play. To reliably assess the 

magnitude of muscle glycogen repletion, it would be necessary for participants to finish 

exercise with similar muscle glycogen concentrations in order for any dietary intervention 

to be meaningful. It may be necessary therefore to perform rugby exercise under controlled 

conditions, utilizing a simulated rugby match. 
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CHAPTER 7 
 

METABOLIC DEMANDS AND REPLENISHMENT OF 
MUSCLE GLYCOGEN AFTER SIMULATED RUGBY 

MATCH PLAY 
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7.1 Abstract 

 

Although the physical and metabolic demands of Rugby league (RL) match-play are well-

known, current nutritional guidelines for recovery may not be appropriate given the 

damaging nature of RL. The metabolic requirements of a rugby league match simulation 

protocol were examined alongside the timing of carbohydrate provision on glycogen 

resynthesis in damaged muscle. In a randomized pairs design, fifteen (mean ± SD: age 20.9 

± 2.9 yrs, body-mass 87.3 ± 14.1 kg, height 177.4 ± 6.0 cm) male university RL players 

consumed a 6g·kg·day-1 CHO diet for 7-days, completed a time to exhaustion test (TTE) 

and a glycogen depletion protocol on day-3, followed by a Rugby League simulated-match 

protocol (RLMSP) on day-5 and a TTE on day-7. Players were randomly prescribed either 

an immediate or delayed (2-h-post) re-feed post-simulation. Muscle biopsies and blood 

samples were obtained post-depletion, before and after simulated match-play, and 48-h 

after match-play with PlayerLoad and heart-rate collected throughout the simulation. Data 

were analysed using effects sizes ± 90% CI and magnitude-based inferences. PlayerLoad 

(8.0 ± 0.7 AU·min-1) and %HRpeak (83 ± 4.9%) during the simulation were similar to 

values reported for RL match-play. Muscle glycogen very likely increased from 

immediately after to 48-h post-simulation (272 ± 97 cf. 416 ± 162 mmol·kg-1d.w.; 0.88 ± 

0.66) after immediate re-feed, but changes were unclear (283 ± 68 cf. 361 ± 144 mmol·kg-

1d.w.; 0.7 ± 1.23) after delayed re-feed. CK almost certainly increased by 77.9 ± 25.4% 

(0.75 ± 0.19) post-simulation for all players. TTE performance revealed no difference 

between conditions. The RLMSP displayed player loads comparable to professional RL 

match-play, although difficulties in replicating physicality reduced glycogen utilisation. 

Further, it is possible to replete muscle glycogen in damaged muscle employing an 

immediate re-feed strategy.  
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7.2 Introduction 

In chapter 6 it was reported that a competitive RL match can result in ~40 % muscle 

glycogen depletion and that a higher CHO intake (~600 g) results in a more homogenous 

pre-match glycogen concentration when ingested 36-h prior to match-play. Although these 

dietary intakes appear to be appropriate for rugby competition, key information is missing 

for us to make accurate dietary recommendations for recovery after rugby competition. 

Furthermore, studies to the examine the metabolic requirements imposed on players are 

challenged by the large inter-match variations in movement characteristics observed in RL 

match play (Kempton et al., 2014). Match score, posession, and tactical decisions, can 

heavily influence match-play activities such as high speed running or contacts (Twist et al., 

2014), and therefore muscle glycogen utilisation. Moreover, dietary intakes in the days 

leading up to match-play have been shown to cause variability in pre-match concentrations 

(Chapter 6), further augmenting the lack of control and difficulty in assessing any 

meaningful effect from an intervention. Accordingly, a case for utilising a standardised 

approach such as a simulated RL match-play protocol replicating the physiological 

demands and movement patterns of real match-play, might be appropriate to permit greater 

control whilst conducting dietary intervention studies. Observations from a RL simulation 

(Sykes et al., 2013) reported similar total distance covered and %HRpeak to elite RL match-

play (Waldron et al., 2011), suggesting an accurate reflection of real match movement 

demands. However, the metabolic demands and glycogen utilisation of this RL simulation 

remain unknown and warrant investigation. 

Despite high volumes of eccentric muscular contraction present throughout real or 

simulated RL match-play through repeated bouts of acceleration, deceleration, rapid 

changes in direction, and impacts (McLellan et al., 2011a), it is currently unknown how the 

resulting muscle membrane damage (Proske and Morgan, 2001) affects muscle glycogen 
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repletion in the following days. Furthermore, inflammatory cells present within damaged 

muscle have an affinity for glucose oxidation, competing with glycogen depleted muscle 

cells for blood glucose (Costill et al., 1990), resulting in a reduction in glycogen synthesis.  

 

Therefore the aims of the present study were to 1) examine the metabolic demands of a 

simulated RL match and compare with previously published data from professional RL 

match play and 2), assess the efficacy of an immediate or delayed CHO re-feed on muscle 

glycogen resynthesis in damaged muscle after a simulated match. Accordingly, this study 

assessed university RL players who performed a Rugby League match simulation protocol 

(RLMSP; Sykes et al., 2013), after which consuming either an immediate or delayed re-

feed. It is hypothesised that 1), the simulated match would result in similar muscle 

glycogen utilisation to that previously reported in a professional RL match (Chapter 6), 2), 

the immediate re-feed would result in greater muscle glycogen resynthesis compared with 

the delayed re-feed and 3), with a correct re-feeding strategy it will be possible to replenish 

a damaged muscle after a simulated rugby match.  
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7.3 Methodology 
 
 
7.3.1 Players 

Fifteen university RL players (mean ± SD: age 20.9 ± 2.9 years, body-mass 87.3 ± 14.1 kg, 

height 177.4 ± 6.0 cm) playing in British Universities and College Sports (BUCS) 

Northern 1A league volunteered to take part in this study (Figure 7.1). Four of the players 

had previously played for Super League academies and all players were experienced 

players. Players were medically screened for the suitability of the use of prescription 

anaesthetic Marcain by a trained medical practitioner. Measurements included; mean 

arterial pressure using an automated sphygmomanometer (GE Pro 300V2, Dinamap, 

Tampa, FL), height and body mass (SECA, Hamburg, Germany) and a pre-biopsy 

questionnaire. Ethical approval was granted by the local ethics committee of Liverpool 

John Moores University. 

 

Figure 7.1 – Group 1 with Soulmate food delivery, comprised of 6g·kg·day-1 CHO, 2 
g·kg·day-1 protein and 1g·kg·day-1 fat according to player body weight. 
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7.3.2 Experimental design  

In a matched pairs design and using a random number generator (body mass used to match 

pairs), players were randomly allocated into one of two groups, those being immediate re-

feed or delayed re-feed. Testing took place over two separate weeks in an indoor training 

facility to ensure an identical playing surface and weather conditions. Over a 7-day period, 

players consumed a standardised diet and completed; a time to exhaustion test (TTE) 

followed by a glycogen depleting protocol, a Rugby League match simulation protocol 

(RLMSP) to deplete muscle glycogen (Sykes et al., 2013), and a final TTE (Figure 7.2). 

Muscle biopsies and blood were collected post-depletion, pre- and post-simulation, and 48-

h post-simulation and analysed (see sections 3.5 - 3.8). Muscle biopsies were taken in a 

randomised order from alternate legs at each time point, with the second incisions on each 

leg made close to the original site (~2 cm proximal). Due to technical issues, blood 

samples were not collected on 5 players therefore all performance, HR and muscle biopsy 

data are reported as n=15, whereas bloods data are presented on n=10.  

 

Figure 7.2. Schematic representation of screening process, testing protocols, muscle 
biopsy and venous blood sampling and dietary intervention, all expressed as days away 
from simulation (sim-4, -3, -2, RLMSP, -1, +1, +2).  

 
 

Screening	 Sim-4	 Sim-3	 Sim-2	 Sim-1	 RLMSP	 Sim+1	 Sim+2	
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measurements	

6g·kg-1	CHO,	
2g·kg-1	PRO	

and	1g·kg-1	FAT	
diet	

Peak	Power	
Output	Test	

Glycogen	
DepleMon	

Muscle	biopsy	
and	venous	

blood	sampling	

RLMSP	
completed	

Aggressive	or	
Acute	refeed	
(blinded	to	
parMcipants)	

Key	
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7.3.3 Dietary Intervention 

Individualised 7-day diets were designed and provided to all participants comprised of 

6g·kg·day-1 CHO, 2 g·kg·day-1 protein and 1g·kg·day-1 fat according to body weight, with 

habitual diet ingested prior to intervention (Table 7.1). Although some may not consider 

6g·kg·day-1 CHO to be a ‘high’ intake, this has previously been shown to adequately 

elevate muscle glycogen for rugby competition (Chapter 6). Moreover, these intakes are 

typically ingested by rugby players during the training week and leading up to competition 

(Chapter 5). All meals were designed and distributed to the players by a SENr accredited 

practitioner and prepared by catering food and drink supplier ‘Soulmate Food’ complete 

with meal plans. All players were given strict instructions to follow the diet explicitly, not 

to consume any foods or liquids (apart from water) other than what was provided, and to 

finish all meals provided. Players self-reported that they had strictly adhered to the diets 

prescribed to them. All supplements prescribed were informed sport. 
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Table 7.1. Sample diet designed by Soulmate food for one of the players (66kg). 
~6g·kg·day-1 CHO, 2 g·kg·day-1 protein and 1g·kg·day-1 fat.  

 

 

 

Meal CHO	(g) PRO	(g) Fat	(g)
Saturday Lunch Pork	Gyoza	with	Thai	Wild	Rice	Salad 120.9 31.8 15.8

P.M.	Snack Gingerbread	Fudge	with	Chocolate	Protein	Shake 24.2 25.9 18.5
Dinner White	Fish	&	Wild	Mushroom	Miso	Broth	with	Rice	Noodles 105.2 31.2 8.6

Daily	Intake 250.3 88.9 42.9

Sunday Breakfast Cinnamon	&	Dried	Fruit	Muesli 95.8 27.9 12.3
A.M.	Snack Honey	Chicken,	Pitta	&	Yuzu	Dip 39.4 31.5 19.3
Lunch Chicken,	Roast	Squash	&	Millet	Salad 103.7 34 12.2
P.M.	Snack Cinnamon,	Orange	&	Ginger	Flapjack	with	Vanilla	Protein	Milk 64.5 25.1 16.3
Dinner Hungarian	Pulled	Beef	Goulash	with	Bulgur	Wheat 95.8 37.2 12.1

Daily	Intake 399.2 155.7 72.2

Monday Breakfast Orange	and	Cranberry	Overnight	Oats 123 30.1 16.7
A.M.	Snack Rosemary	Beef	Bites	with	Artichoke	Dip 11.4 32.6 14.9
Lunch Thai	Chilli	and	Kale	Soup	with	Chipotle	Chicken	Wrap	with	Bagel 126.7 36 14.9
P.M.	Snack Banana	&	Blueberry	Protein	Muffin 38.1 25.6 14.8
Dinner Lamb	Stew	with	Baby	Roast	Potatoes 90 28.6 10.7

Daily	Intake 389.2 152.9 72

Tuesday Breakfast Cranberry	&	Coconut	Muesli 92.3 31.2 17.2
A.M.	Snack Blueberry	&	Oat	Protein	Bar 60 22.8 6.1
Lunch Roast	Salmon	&	Mango	Quinoa	Salad	with	Coconut	Dressing 96 39 20.7
P.M.	Snack Cinnamon,	Orange	&	Ginger	Flapjack	with	Milk 62 25.1 20.6
Dinner Prawn	&	Purple	Potato	Laksa	with	Extras 93.7 30.1 6.4

Daily	Intake 404 148.2 71

Wednesday Breakfast Super	Berry	Muesli 102.1 31.3 11.9
A.M.	Snack Za'atar	Chickpea	Dip	with	Oatcakes	&	Chicken	Bites 43.2 28.9 10.1
Lunch Deli	Couscous	Salad	with	Chicken 106.4 41.4 31.9
P.M.	Snack Mint	Chocolate	Bar	with	Protein	Shake 56.8 25.6 18.6
Dinner Gammon	&	Pineapple	with	Turmeric		Noodles 84.6 29.6 5.2

Daily	Intake 393.1 156.8 77.7

Thursday Breakfast Almond,	Goji	&	Chocolate	Muesli	with	Milk 110 31.1 9.9
A.M.	Snack Beetroot,	Apple	&	Ginger	Flapjack	with	Strawberries	&	Cream	Protein	Shake 39.8 34.9 13.7
Lunch Deli	Couscous	Salad	with	Chicken 106.4 45.4 31.9
P.M.	Snack Pine	Nut	&	Sunblush	Tomato	Hummus	with	Pitta	&	Chicken	Bites 50.7 17.8 13.6
Dinner Steak	&	Chips	with	Chimichurri	&	Rice 96.6 32.8 8.1

Daily	Intake 403.5 162 77.2

Friday Breakfast Berry	Coconut	Porridge 86.5 21 21.7
A.M.	Snack Red	Velvet	Protein	Cupcake	with	Smoothie 40.8 29.7 15.9
Lunch Spiced	Squash	Soup	with	Ras	el	Hanout	Chicken	Wrap	&	Bagel 105.6 43.5 7.4

Daily	Intake 232.9 94.2 45

Macronutrient	Values
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7.3.4 Post exercise re-feed  

 Players were randomly allocated to one of two dietary re-feed conditions; immediate (IM) 

or delayed (DE) ingestion of CHO post-RLMSP. IM group consumed a beverage 

containing 90 g CHO (My Protein Maltodextrin) and 30 g PRO (My Protein True Whey), 

followed by a further 90 g CHO (My Protein Maltodextrin) beverage 1-hour later. DE 

group consumed visually identical beverages containing 30 g PRO (My Protein True 

Whey), followed by a zero calorie hypotonic sports drink (ASDA zero sport) 1-hour later, 

and all participants continued with prescribed diets 2-h post-simulation. Post-exercise 

drinks were delivered as an absolute, rather than relative dose of CHO and protein given 

that there is currently no consensus as to the optimal amount of CHO and protein post 

rugby match-play. 

Table 7.2 Post-RLMSP re-feed intervention. Note – only difference in re-feed was the 2 x 
90g CHO (square box). 

 

 

 Immediate Delayed 

Days 1-7 

6 g.kg CHO-1 6 g.kg CHO-1 

2 g.kg PRO-1 2 g.kg PRO-1 

1 g.kg FAT-1 1 g.kg FAT-1 

Post-simulation          CHO + 30 g PRO 0 g CHO + 30 g PRO 

+1-h          CHO 0 g CHO 

+2-h Continued prescribed diet Continue prescribed diet 

90 g  

90 g  
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7.3.5 Time to exhaustion test 

 
Players performed a maximal incremental cycling test to volitional fatigue on a Lode 

ergometer (Daum Electronic Premium 8i, Furth, Germany) for determination of peak 

power output (PPO) and time to exhaustion (TTE). Tests were started every 5-min with 

players in different areas of the laboratory with partitioning screens to ensure that there 

was no competition bias. The maximal incremental protocol commenced at 150 W for 2-

min, with work rate increased by 30 W every minute thereafter until exhaustion (Hawley, 

Noakes, 1992).  TTE was recorded as a measure of performance, and the highest power 

output (W) attained used to inform exercise intensity during the glycogen depletion 

protocol. After the TTE test, players were given 15-min to rest before beginning an 

intermittent glycogen-depleting cycling protocol (Pedersen et al., 2008).  

 

7.3.6 Glycogen depleting protocol 

The purpose of the glycogen depletion was to reduce muscle glycogen, followed by 48-hr 

of controlled CHO intake to ensure that all players commenced the RLMSP with 

comparable muscle glycogen. Pre-exercise muscle glycogen concentrations are shown to 

be extremely variable between participants without this pre-trial depletion (Chapter 6). An 

adapted version of the protocol used by Pedersen et al, (2008) was used for the glycogen 

depleting exercise protocol (Figure 7.3). After a 5-min warm-up at a self-selected intensity, 

participants commenced cycling at 90 % of PPO for 2-min followed immediately by 1-min 

of an active recovery at a self-selected intensity. This work-recovery protocol was 

maintained until the participants were unable to complete 2-min at 90 % PPO, determined 

as an inability to maintain a cadence of 60 rpm for 15 s. When players could not maintain 

2-min at 90 %, the work bouts were reduced to 1.5 min, while maintaining the 1-min 



 
 

144 

recovery bouts at a self-selected intensity. When players were unable to maintain the 1.5-

min at 90 %, the work period was reduced to 1-min. Once the participants could not 

maintain 90 % of PPO for 1-min, the intensity was lowered to 80 %, 70 % and finally 60 % 

of PPO following the same work to rest pattern.  Exercise was terminated when players 

could not complete 1-min of cycling at 60 % of PPO at a cadence of 60 rpm. This protocol 

was chosen so as to maximally deplete muscle glycogen in both Type I and Type II muscle 

fibres and in an attempt to standardize muscle glycogen concentration between participants 

(Kuipers, Keizer, Brouns, Saris 1987). Verbal encouragement was given and water was 

consumed ad libitum throughout exercise. 

 

Figure 7.3 – Glycogen depleting protocol using an adapted version of the protocol used by 
Pedersen et al, (2008) on Lode ergometer (Daum Electronic Premium 8i, Furth, Germany). 
Blue partitioning screens used during time to exhaustion test (TTE) to avoid competition 
bias. LJMU Physiology labs. 
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7.3.7 Rugby League Match Simulation Protocol 

An adapted version of the protocol used by Sykes et al, (2013) was used for the RLMSP 

(Figure 7.4). The movements for the protocol are based on the mean locomotive speeds 

and activities of whole-match players established during competitive RL matches (Sykes et 

al., 2011). The protocol lasted for 92 min (2 x 46 min  separated by 10-min to simulate 

half-time), replicating the mean time that a player spends on a pitch including stoppages. 

The protocol comprises 40 identical cycles lasting 2-min 18 s. Each cycle comprised Part 

A (a 44.4 s cycle performed twice), designed to replicate typical ball in play movement 

patterns and Part B (a 49.3 s cycle performed once), designed to replicate typical ball out 

of play movements. The specific movements are as follows:  

 

Part A: 

• 10.5 m jog (2.9 m s-1) from yellow to red cones followed by 180° turn;  

• 10.5 m walk (1.1 m s-1) from red to yellow cones followed by 180° turn;  

• 20.5 m maximal effort sprint from yellow to blue cones;  

• 8 m deceleration to white cone followed by alternate: Contact with tackle bag, 4s 

wrestle bag to the left and right, stand bag back up OR simulated contact (down 

and up off the ground). These alternated movements comprise the only adaptation 

to the protocol. 

• 13 m jog (2.9 m s-1) from white to green cones;  

• 15.5 m walk (1.1 m s-1) from green to yellow cones.  
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Part B  

• 10.5 m walk (1.1 m s-1) from yellow to red cones followed by 180° turn;  

• 10.5 m walk (1.1 m s-1) from red to yellow cones followed by 180° turn;  

• 6.00 s passive rest at yellow cone; 

• 15.5 m jog (2.9 m s-1) from yellow to green cone followed by 180° turn; 

• 15.5 m walk (1.1 m s-1) from green to yellow cones; 

• 4.75 s passive rest at yellow cone. 
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Figure 7.4. Schematic representation of the exercise pattern of the rugby league match simulation protocol adapted from Sykes et al, (2013).
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Participants move between a series of cones positioned on a 28.5 m linear course (Figure 

7.5) at locomotive speeds determined from the analysis of activity patterns in senior elite 

rugby league matches (Sykes et al., 2011). The locomotive speeds are dictated by an audio 

CD, with changes being signaled by a ‘‘beep’’ and an instructive voice command, such as, 

‘‘Jog to white’’ (cone).  

To replicate collisions during match-play, participants were required to alternate between 

tackling a tackle bag and wrestling the bag from left to right, or lying prone on the floor 

with their waist level with the white cones and chest on the floor, to hold for 3 s and then 

regain their feet as rapidly as possible at the next beep (Figure 7.6). These movements 

were included in an attempt to replicate the physical exertion of contacts yet still control 

the reproducibility of the protocol. Although participants performed this movement more 

frequently than contacts in the competitive match, the percentage of total time spent 

performing this movement was similar to that observed in contact during a match (4.2 ± 

1.9%; Sykes et al., 2009).  

Players performed the protocol in 2 groups (n=8 and n=7; using lanes laid out side-by-side) 

and verbal encouragement was provided throughout each trial. Accumulated PlayerLoad™ 

(AU), heart rate, perceived exertion (RPE) and sRPE was collected as described in chapter 

3.3. 
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Figure 7.5. Schematic representation of the layout of the testing area used for the rugby 
league match simulation protocol (Sykes et al., 2013). 
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Figure 7.6 – Rugby League Match Simulation Protocol in motion, players performing a 
tackle during Part A of the simulation. Warrington Wolves indoor training facilities. 

 

 

7.4 Statistics 

Magnitude-based inferential statistics were employed to find differences in i) muscle 

glycogen concentrations and blood metabolites before and after rugby match-play and 48-

hours after rugby match-play and ii), TTE scores between the pre- and re-test between 

immediate and delayed dietary groups (see section 3.9). 
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7.5 Results 
 

7.5.1 Player load, sRPE and heart rate 

Differences in PlayerLoadTM during the RLMSP were unclear (2 ± 9%, ES; ±90% CI; 

0.02; ±0.01) between the immediate (7.3 ± 0.43 AU·min-1) and delayed re-feed (8.0 ± 0.33 

AU·min-1) groups. Similarly, differences in %HRpeak (84 ± 4 cf. 82 ± 6%; 2 ± 6 %, 0.03; 

±0.08) and sRPE (407 ± 105 cf. 458 ± 124; 7 ± 11 %, 0.54; ±0.85) were unclear between 

immediate and delayed re-feed groups, respectively.  

 

 

7.5.2 Muscle glycogen 

Muscle glycogen data are reported in Figure 7.7. All players sufficiently depleted muscle 

glycogen after the depletion protocol (<50 mmol·kg-1d.w.) and mean muscle glycogen 

concentrations were relatively high before commencing the simulation after following the 

standardized diet (337 cf. 376 mmol·kg-1d.w. in immediate and delayed re-feed groups, 

respectively). Muscle glycogen concentrations were decreased immediately after the 

simulation by 25 ± 14% (-1.38; ±0.90, very likely) and 24 ± 12% (-1.6; ±0.92, very likely) 

in the immediate and delayed re-feed groups, respectively. Muscle glycogen 

concentrations were increased 48-h after the simulation by 51 ± 47% (0.88; ±0.66, very 

likely) in the immediate re-feed but only 24 ± 49% (0.7; ±1.23, unclear) in the delayed re-

feed group.  

 
 
 
 
 
 
 
 
 
 



 
 

152 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7 - Muscle glycogen concentrations at four time points: Depletion, Pre- and Post-
simulation, and 48-h Post-simulation presented in mmol·kg-1 d.w. taken from 15 university 
rugby league players. * = difference in immediate group from previous time point. # = 
difference in delayed group from previous time point. 
 

 

7.5.3 Serum glycerol, NEFA and CK 

Changes in blood metabolites (plasma glycerol, NEFA and CK) are reported in Figure 7.8. 

Glycerol concentrations were increased after the simulation by 60 ± 60% (0.78; ±0.52, 

likely) and 103 ± 23% (4.13; ±0.76, almost certainly) in the immediate and delayed re-feed 

group, respectively. Glycerol concentrations were unclear between groups before (0.42; 

±1.26) and after the simulation (-0.32; ±1.47), although the delayed group presented higher 

concentrations than the immediate re-feed group 48-h after (1.36; ±0.87, very likely). 

NEFA concentrations were increased after the simulation by 1049 ± 581% (2.01; ±0.40, 

almost certainly) and 998 ± 1060% (2.4 ± 0.86, almost certainly) in the immediate and 

delayed re-feed group, respectively. Differences between groups in NEFA concentrations 

were unclear before (0.29; ±0.76), immediately (0.10; ±0.87), and 48-hr after the 

#

#

#
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simulation (0.58; ±0.92). CK concentrations were increased after the simulation by 128 ± 

43% (0.60; ±0.18, very likely) and 84 ± 41% (0.63; ±0.23, very likely) in the immediate and 

delayed re-feed group, respectively. CK concentrations remained higher but decreased at 

48-h after by 29 ± 38% (-0.42; ±0.61, likely) and 30 ± 20% (-0.55; ±0.43, likely) in the 

immediate and delayed re-feed groups, respectively. Differences between groups in CK 

concentrations were unclear before (-0.4; ±0.9), after (-0.38; ±0.88), and 48-h after the 

simulation (-0.24; ±0.6). 

 

 
Figure 7.8 - Plasma glycerol, non-esterified fatty acid (NEFA), and creatine kinase (CK) 
concentrations at four time points: Depletion, Pre- and Post-Simulation, and 48-h Post-
simulation presented in umol·L-1, mmol·L-1 and U·L-1 respectively. * = difference in 
immediate group from previous time point. # = difference in delayed group fro previous 
time point.  
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7.5.4 Time to exhaustion test 

TTE decreased from 671 ± 127 s to 586 ± 202 s (-14 ± 11%; -0.66; ±0.54, likely) in the 

immediate re-feed group and 611 ± 171 s to 564 ± 202 s (-10 ± 7% (-0.35; ±0.28, likely) in 

the delayed re-feed group. Differences in TTE between groups were unclear for the initial 

(-10 ± 19 %; -0.47; ±0.92) and follow up assessment (-11 ± 25 %; -0.34; ±0.85). 

 

 

7.6 Discussion 
 
 
The aim of the present study was to assess the metabolic demands and glycogen utilisation 

of a simulated RL match and assess glycogen resynthesis up to 48-h afterwards. This 

chapter provides novel data demonstrating that 1) simulated match-play utilises ~50% less 

muscle glycogen than previously reported for professional RL match-play. This is likely 

because of the difficulties in replicating physical collisions and exertions during the 

simulation; 2) a very likely increase in muscle glycogen repletion was observed when CHO 

was ingested immediately post-exercise compared with an unclear difference following the 

delayed re-feed; 3) the increase in muscle glycogen concentration occurred despite 

elevated plasma CK suggesting muscle damage has resulted from the simulated activity 

therefore implying that it is possible to acutely replete muscle glycogen in a damaged 

muscle following a simulated rugby performance.  

 

Muscle glycogen was depleted by ~21% during the simulation, which is less than 

previously reported in RL match-play (~40%; Chapter 6). A lower glycogen depletion 

occurred despite heart rate (~83 %HRpeak) and PlayerLoad (~7.7 AU·min-1) during the 

simulation being consistent with the loads reported in competitive matches (Waldron et al., 

2011, Gabbett, 2015). Furthermore, analysis of blood metabolites revealed comparable 
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rates of lipid mobilization to those reported in elite RL match-play (Chapter 6), suggesting 

that the RLMSP successfully reflected the intermittent nature of the sport. That PlayerLoad 

was similar to actual match-play, despite the lack of true physical collisions in the 

simulation, is probably explained by the higher movement speeds in the simulation 

protocol (Sykes et al., 2013). The lower glycogen depletion in the simulation is likely a 

reflection of an inability to replicate the physicality of collisions in matches, with tackles 

and wrestling movements performed on a passive 30 kg tackle bag rather than an opposing 

player. Contacts sustained during RL match-play result in players experiencing a large 

magnitude of physical exertions (McLellan et al., 2011a, Twist et al., 2012), which are 

further compounded during the subsequent wrestle with an opposing ~100kg player. It is 

speculated therefore that these frequent high intensity contacts would result in significant 

muscle glycogen utilisation that was not reflected in this simulation. The smaller 

magnitude of increase in CK activity (2 to 3-fold, ~500-800 U/L) when compared to RL 

(~4-fold, >1000 U/L; Twist et al., 2012) and RU (~4-fold, 700-1200 U/L; Jones et al, 

2014) match-play which are speculated to be in relation to numerous physical contacts, 

also suggest that the simulation was unable to replicate the collision. These findings 

reaffirm the difficulties in simulating physical contact (Norris et al., 2016) and, more 

importantly, highlight the large metabolic cost of the tackle in RL. Future study should 

now attempt to increase the physicality of the RLMSP to more accurately reflect the 

physical demands of rugby match-play.  

 

The immediate re-feed elicited an almost certain increase (~53%) in muscle glycogen 

concentration 48-h after the simulated match, whereas the difference was unclear (~27%) 

in players who consumed the delayed re-feed. This large discrepancy highlights the 

importance of the short-lived non-insulin dependent phase for rapidly resynthesizing 

muscle glycogen after exercise in the presence of CHO (Jentjens and Jeukendrup, 2003b, 
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Price et al., 1994). Furthermore, while not reported in the literature, anecdotal evidence 

demonstrates that players struggle to consume food in the immediate period post-match 

and often do not compensate for this in the following days. The accumulative effect of this 

might lead to improper recovery and players dropping body mass throughout the 

competitive season, accentuating the importance of an appropriate nutrition strategy for 

recovery. Differences in glycogen repletion might also be because the delayed re-feed 

group consumed 180 g less CHO than the immediate re-feed group. Given that all players 

continued with the same high CHO diet for a further 48-h this is however unlikely, and 

highlights the importance of immediately re-feeding post-exercise for optimal muscle 

glycogen resynthesis. Despite raised CK concentrations suggesting muscle damage did 

occur, meaningful muscle glycogen resynthesis was possible in the immediate dietary re-

feed group, suggesting that with appropriate feeding strategies it is possible to replenish a 

damaged muscle. It may be speculated however that given low glycogen utilisation rates 

were reported in this chapter when compared with elite RL match-play (Chapter 6), 

whether this re-feeding strategy would be appropriate to reload a more depleted muscle is 

currently unknown and warrants investigation.  

 

The TTE performance test was used to assess the physiological consequences of the two 

dietary strategies 48-h after simulated match-play, and to mimic the schedule of 

professional rugby players (Chapter 5). A lower TTE 48-h after match-play for both 

groups is likely attributed to a reduction in force generating capacity from exercise-

induced muscle damage (Clarkson et al., 1992) caused by the simulation protocol (Sykes et 

al., 2013). This decrease did not appear to be affected by manipulating CHO immediately 

after exercise. The lack of difference could be a result of the protocol used to assess 

performance, with a more prolonged rugby specific drill potentially resulting in differing 

results. Despite the lack of specificity to rugby, the use of the TTE performance measure 
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was necessary to avoid tissue damage that would be associated with load-bearing exercise. 

Moreover, it would be unlikely for players to perform prolonged rugby specific exercise 

48-h post game and therefore current data suggest that the differing feeding strategies have 

no significant effects on light exercise performed in the days after a game. 

 

 

7.7 Summary 

It has been demonstrated for the first time that simulated RL match-play elicits lower 

muscle glycogen utilisation (21 cf. 40 %) despite similar player load and metabolic 

demands to a professional RL match. This may be attributed to the difficulties of 

replicating extensive structural damage and physical exertion from collisions during a 

simulation. Substantial muscle glycogen resynthesis was possible in the immediate dietary 

re-feed group despite evidence of muscle damage via increase blood proteins. This 

indicates that with appropriate feeding strategies, it is possible to replenish a damaged 

muscle with moderate glycogen depletion.  

 

 

 

 

 

 

 

 
 

 
 
 

 



 
 

 
 
 

CHAPTER 8 
 

SYNTHESIS OF FINDINGS 

 

 

 

 

 

 

 

 

The present chapter provides an analysis of the successful achievement of the aims and objectives 
of this thesis. A synopsis of how the findings of the thesis link to one another and how they in turn 
have progressed the field is provided. 
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8. Synthesis of findings 

The present chapter provides an initial overview of the findings of this thesis in relation to 

the aims and objectives presented in chapter 1. A general discussion is next presented 

where specific attention is given to how the research presented in this thesis has furthered 

our understanding of the nutritional requirements of elite rugby players during training and 

competition. Thereafter, the limitations and practical applications of this thesis together 

with future research directions are discussed. 

 

8.1 Achievement of aims and objectives 

The aim of this thesis was to quantify the physiological demands and nutritional practices 

of professional rugby players during the pre-season and in-season period, and furthermore, 

to identify the most appropriate feeding strategies for optimal performance and recovery 

post competition. If the aims of the thesis were achieved, it was proposed that data from 

this thesis would assist rugby players and coaching staff to make more informed decisions 

regarding nutritional intakes to improve performance and recovery. The aims of this thesis 

have been realised through a series of interlinked studies evaluated in sequence. 
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Objective 1 - To characterise the training demands of a typical twelve-week rugby pre-

season using GPS technology as well as reporting the changes in anthropometry, 

markers of physical performance, and the typical macronutrient intakes including the 

use of supplements. 

Objective 1 was addressed in Chapter 4. At the time of publication, there was a lack of 

research into the training demands and nutritional intakes of elite rugby players during the 

pre-season, with no study combining all of the objectives stated. The findings of this 

research demonstrated that physical performance and players’ anthropometrical profiles 

significantly improved over a 10-week pre-season period despite CHO consumption falling 

well below recommended intake alongside lower total energy intakes than expected. The 

findings summarised here suggested that elite rugby players do not necessarily need to 

consume large quantities of CHO or total energy intake as recommended to optimize 

training adaptations, however, the appropriateness of these intakes for competition next 

needing evaluating.  

 

Objective 2 - To characterise the training demands of a thirty-six week rugby in-season 

using GPS technology whilst establishing the typical macronutrient and micronutrient 

intakes, and energy expenditure using SenseWear armband technology.  

 

Objective 2 was addressed in Chapter 5. At the time of publication, there were no studies 

showing the training demands and EIs and EEs of elite rugby players during the 

competitive season, with no previous study in rugby using micro-technology to report daily 

variations in EE. The findings of this research demonstrate that rugby players consume less 

energy than they expend during the first four-days of the training week, due to a low CHO 

intake which is suggested to be an apparent strategy to attempt to maintain or reduce body 
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fat. Players then increased CHO intake and total energy intake the day leading up to 

competition in an effort to load muscle glycogen, whilst simultaneously significantly 

reducing training load to avoid residual fatigue and promote competition preparation. 

Interestingly mean EI matched expenditure despite CHO consumption falling short of 

recommended guidelines (alongside no micronutrient deficiencies) suggesting that the 

current dietary practices of elite rugby players are sufficient to fuel training during the in-

season providing.  

 

 
Objective 3 - To establish the metabolic requirements of a competitive rugby match by 

assessing muscle glycogen and blood metabolites prior to and post-match using muscle 

biopsy and blood collecting techniques. 

 

Objective 3 was addressed in Chapter 6. Given that the metabolic demands of rugby 

competition were previously unknown and in order to devise appropriate nutrition 

strategies for optimal performance, it was important to ascertain these data. To this end, it 

was deemed appropriate to conduct the first ever muscle biopsy study around rugby 

competition with players following one of two dietary conditions (6 g·kg-1 or 3 g·kg-1 

CHO) to a), ascertain pre-match muscle glycogen concentrations and the magnitude of 

depletion post-competition and b), to determine the most appropriate nutritional strategy 

for match-day performance. Muscle glycogen was found to deplete by ~40 % and 

performance variables did not differ between dietary conditions. However, further analysis 

showed more homogenous pre-match muscle glycogen concentrations in the higher CHO 

group. These data demonstrate that adequate muscle glycogen concentrations can be 

reached when ~600g CHO is consumed in the preceding 36-hours prior to match-play. 
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Objective 4 - To examine the metabolic demands of a simulated RL match and compare 

with previously published data from professional RL match play.  

 

Objective 4 was addressed in Chapter 7. Although the RLMSP had previously illustrated 

similar internal loads experienced and distances covered at varied speeds when compared 

with real match-play, the metabolic demands had never been examined. It was observed 

that simulated RL match-play elicits lower muscle glycogen utilisation (21 cf. 40 %) 

despite similar player load to a professional RL match. Reduced glycogen utilisation 

resulted from difficulties encountered whilst simulating the metabolic costs experienced by 

players during collisions. The RLMSP might still be used as a specific conditioning tool to 

condition or evaluate a player’s readiness for match-play, but should be redesigned to try 

to improve replication of physical contacts.  

 

Objective 5 - To assess the efficacy of an immediate or delayed carbohydrate re-feed on 

muscle glycogen resynthesis in damaged muscle after a simulated rugby match. 

Objective 5 was addressed in Chapter 7. From the data obtained in Chapter 6, it was 

possible to devise a pre-competition nutrition strategy that was appropriate for rugby 

players. However, appropriate strategies to recover and refuel post rugby match-play were 

still unknown, with dietary practices following recommendations informed by data from 

other team or related endurance sports. For the first time, dietary intakes post rugby match-

play were manipulated to ascertain the most appropriate method of re-feeding to maximize 

muscle glycogen resynthesis. Immediately re-feeding with CHO post match-play showed a 

significantly greater magnitude of muscle glycogen replenishment after 48-h when 

compared with a 2-h delayed re-feed, although both groups significantly increased after 

48-h. The findings in this study are novel and demonstrate that rugby players can replenish 
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muscle glycogen to an appropriate degree even when delaying their post-game re-feed, 

however, for optimal replenishment, CHO should be consumed immediately post-match-

play. 

 

 

8.2 General discussion  

Prior to commencing this research, there was a paucity of research on the demands of 

rugby training, player nutritional intakes, or nutritional strategies to prepare for and 

recover from rugby competition. Of the limited studies undertaken, a number of interesting 

findings have been reported. In particular quantifying the movement and physiological 

demands of elite rugby match-play (Waldron et al., 2011). However, most of the limited 

studies undertaken have been descriptive, and no study has investigated fuelling strategies 

for rugby competition. Similarly, the most suitable refuelling strategies to opitmize 

recovery and muscle glycogen replenishment post rugby match-play were unknown.  

The four studies undertaken in this thesis provide novel data for the literature on rugby. 

Importantly, there are a number of novel findings that have been highlighted, particularly 

relating to the characterization of a rugby season (pre-season and in-season), the daily 

energy balance of rugby players, the metabolic demands of elite rugby competition, and 

the development of nutritional guidelines to fuel and recover from competition (Table 8.1). 

A schematic representation of the main findings of the thesis can be seen in Figure 8.1. 
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Physiological demands of rugby training 

Running volumes and training loads (sRPE) experienced by elite RU players were 

significantly greater during the pre-season (10.6 km, 3200 AU respectively; Table 4.3) 

than the in-season (8.6 km, 1660 AU respectively; Table 5.3), owing to emphasis placed 

on different training outcomes for both training periods and illustrating periodization of the 

season. Significantly greater training loads were experienced during the pre-season through 

increased gym based sessions (pre-season – 4 x 1-hr sessions, cf. in-season 2 x 1-hr 

sessions) alongside the addition of 3 x 45-min conditioning sessions per week (See Tables 

4.2 and 5.2 for an overview of training) in an attempt to stimulate physiological adaptation 

as previously reported in professional RU by Argus et al, (2009). It was then observed that 

training loads decreased significantly moving in to the in-season where emphasis shifted 

towards the preparation for and recovery from competition. Reductions in training load 

may result from increased rest days (generally one day preceding and one day following 

competition), meaning that training only comprised a maximum of 4 days per week during 

the in-season as opposed to 5 days per week in the pre-season. Interestingly however, 

players completed on average more high-speed sprints per week (>7.5 m·s-1; 12 cf. 20) 

alongside greater numbers of RHIE’s (14.7 cf. 17.5) during the in-season compared with 

pre-season. This suggests that alongside manipulating training load throughout the season, 

periodization of exercise activity may also occur to incorporate more match-play specific 

activities during training in preparation for competition during the in-season.  Furthermore, 

despite lower training loads reported in-season in this thesis, analysis of in-season match-

play, which would considerably contribute to overall all weekly running volume and player 

loads sustained (Austin et al., 2011, Cahill et al., 2013, Duthie et al., 2005, Jones et al., 

2015, Roberts et al., 2008), was not conducted, and data should therefore be interpreted 

with a degree of caution.  
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Energy balance of professional rugby players 

Improvements in player anthropometry and performance markers during the pre-season, 

despite CHO intakes falling well below textbook recommendations (Burke et al., 2011), 

demonstrate that it may not be necessary to ingest large quantities of CHO to attain desired 

training adaptations for rugby. In fact, the low CHO and high PRO intakes observed may 

be beneficial in the promotion of fat loss and other adaptions to training such as increased 

mitochondrial biogenesis (Hawley and Morton, 2014). Furthermore, measurements of 

energy balance during the in-season revealed that players habitually ingest less energy than 

expended during most of the training week, with CHO intake only increasing above EE the 

days before and after a match in order to load and replenish muscle glycogen respectively. 

This cycling of CHO intake might be a suitable way of maintaining weekly energy balance 

yet still allowing sufficient CHO intake as to increase muscle glycogen and thus enhance 

match day performance. Moreover, current guidelines clearly state that CHO intakes 

should be designed to meet the fuel requirements of the training programme (Burke et al., 

2011). It is therefore proposed that players are attempting to match carbohydrate intakes 

with training demands such that CHO intakes of 4-6 g·kg-1 body mass are not ‘low’ and are 

in fact ‘appropriate’ for rugby players, providing CHO intake is increased in the day 

before and after a game.  

 

Metabolic demands of rugby match play 

Progressing from previous match-play research (Twist et al., 2014, Waldron et al., 2011), 

the metabolic requirements of rugby match-play were assessed under two dietary 

conditions; relatively high (6 g·kg-1; HCHO) or low (3 g·kg-1; LCHO) CHO diet. Muscle 

biopsy analysis revealed a ~40 % utilisation rate of muscle glycogen with no mean 
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difference between groups, although pre-match concentrations were more homogenous 

across the HCHO group, and higher rates of FFA availability were observed in the LCHO 

group. This is an important finding given that current nutritional guidelines recommend 

~8-10g.kg CHO leading up to a match (Burke et al., 2011), and considering player loads 

and distances covered during this study were comparable to elite rugby match-play, may 

make players gain unwanted fat. This clearly raises the point that nutritional guidelines 

must be individualized to the sport, and that further research must be conducted to refine 

these findings.  Additionally, this research has shown that muscle biopsies can be taken 

from elite athletes around competition and in the field, enhancing the scope of future 

research.  

 

Muscle glycogen replenishment  

Following competitive match-play, nutrition comprises one of the most important 

components of player recovery. It was shown that despite both groups increasing muscle 

glycogen to above pre-match-play values, immediately re-feeding with CHO post-RLMSP 

elicited a far greater magnitude of muscle glycogen repletion when compared with 

delaying this re-feed by 2-h in damaged muscle. It could be argued that this discrepancy is 

a direct result of the immediate re-feed group consuming greater total CHO (180g in the 2-

h post-exercise period), however, given that all players continued with the same high CHO 

diet for a further 48-h (6 g·kg-1 CHO), this is unlikely. This research has revealed that there 

is a diminishing window of opportunity to re-feed with CHO and capitalize on the non-

insulin dependent phase of muscle glycogen synthesis post muscle-damaging exercise, 

which may have a profound impact on the devising of nutrition strategies for rugby 

competition. It was also found that the RLMSP used for this research elicited comparable 

player loads, total distance covered, and distance covered at varied speeds to elite rugby 
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match-play, however, the RLMSP was unable to accurately reflect the physical exertions 

experienced during the tackle in rugby which significantly reduced muscle glycogen 

utilisation when compared to elite match-play. The RLMSP may be used as a specific 

conditioning tool to condition or evaluate a player’s readiness for match-play, although 

future research should look to improve the tackle component of the RLMSP.  



Table 8.1 – Proposed CHO requirements of rugby players determined from the findings of this thesis for; Training (pre-season and in-season) and 
competition (Glycogen loading and glycogen replenishment)

 Suggested CHO intake Instruction Rationale  

Training 

Pre-season ~3-4 g·kg-1 

 

Consume relatively low CHO 
throughout the week. Increase CHO 
when necessary e.g. before and after 
exceptionally hard training sessions. 

Physiological adaptation and body 
composition improvements achieved. 

In-season ~4-6 g·kg-1 

Consume lower CHO intake during 
the beginning of the training week, 
increase CHO intake in the days 
leading in to competition. 

EI exceeded EE, players able to perform 
at elite playing intensities. 

Competition 

Glycogen load for match-
play ~600 g Begin ~36-h prior to KO, all meals to 

contain CHO. 

Mean starting muscle glycogen ~450 
mmol·kg-1d.w. Low variability 
between players in  ~6 g·kg-1 group. 

Post-match-play 

~90 g - Immediate 

~90 g - 1-h 

~6 g·kg-1 - 2-h onwards 

Immediately re-feed with CHO for 
optimal glycogen replenishment.  

Greater magnitude of muscle glycogen 
repletion with an immediate CHO re-
feeding strategy.  
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Figure 8.1: Schematic representation of the main findings of this thesis. After 
characterising a rugby pre-season (Chapter 4) and a rugby in-season (Chapter 5), it was 
necessary to understand the metabolic demands of rugby competition (Chapter 6) in order 
to formulate appropriate nutrition strategies to fuel rugby competition, followed and the 
most optimal nutrition strategy to refuel after rugby competition (Chapter 7).  
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8.3 Limitations of thesis 

Despite providing novel data for the literature, the present thesis is not without limitations, 

many of which are a direct consequence of collecting data from elite athletes outside of the 

controlled laboratory environment. These limitations will now be addressed in turn. 

 

Sample size 

It is important to highlight that the findings from studies 1 and 2 are from a single 

professional rugby team, study 3 a single professional rugby academy, and study 4 a single 

university rugby team, which may not accurately represent every rugby club. Future 

studies might therefore choose to collect data from a variety of teams.  

 

GPS 

At the time of data collection for Chapters 4 and 5, specified speed zones within GPS were 

absolute, and well reported in the literature (Roberts et al., 2008, Austin et al., 2011, 

Cummins et al., 2013, Jones et al., 2015). Emerging research suggests that the use of 

relative speed zones may provide a clearer picture of the positional running demands of 

rugby players (Dwyer and Gabbett, 2012, Gabbett et al., 2013, Reardon et al., 2015). 

Preliminary data on players running abilities would be required to formulate these relative 

thresholds however, which in some cases may not be a possibility. For example, Chapter 6 

of this thesis where only a short period of time was permitted around the clubs training 

regime for the extraction of valuable data during this unique opportunity. Furthermore, it is 
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still possible to use data collected for distance covered at a variety of speeds relatively 

alongside frequency of RHIE bouts, to inform rugby training. 

 

Muscle biopsy 

To assess individual muscle fibres for glycogen concentration, a greater yield of muscle 

would be required, possibly using either the Bergstrom needle or Conchotome technique 

(Dietrichson et al., 1987). Moreover, a large cross sectional area of a sample is obtainable 

utilising these methods, allowing for detailed histological analysis (Dietrichson et al., 

1987). Due to the physical nature of rugby however, these methods were deemed 

unsuitable and the less invasive micro-biopsy technique was utilised. It is important to note 

that the vastus lateralis is composed of both fast and slow twitch muscle fibres, permitting 

the extraction of single muscle fibres from either fibre type which was unknown during 

this research. Histochemical analysis of individual skeletal muscle fibres would provide 

more clarity regarding muscle glycogen concentration in these fibres. 

During study 3, post-match biopsies were collected over a 40-minute period rather than at 

precisely the same time due to logistical reasons (i.e. only having four qualified biopsy 

takers). Future studies might wish to take measures from fewer players but over a series of 

matches to facilitate a more rapid removal of tissue as well as consider a half-time muscle 

biopsy to provide a more detailed analysis of muscle glycogen utilisation during 

competitive rugby match-play.  

During study 4, ethical constraints did not permit the extraction of four muscle biopsies 

from the same leg hence the final study adopting a contra-lateral limb biopsy design where 

in a randomised order the dominant or non-dominant leg was biopsied twice (post-
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glycogen depletion and post-simulation) and the opposite leg was biopsied twice (pre-

simulation and 48-hours post-simulation). This approach was reliant upon the assumption 

that muscle fibre type composition was similar between both legs. Such an assumption 

could not be validated with histochemical analysis due to lack of tissue (Dietrichson et al., 

1987). Resultantly, the possibility that fibre type differences between legs influenced 

certain findings cannot be discounted.  

 

Energy Intake 

Given that there is no gold standard assessment of energy intake, any method employed is 

subject to error (Hackett, 2009). Future studies should look to validate a specific method 

for use with elite athletes and in the meantime data collected on energy intake must be 

treated with some degree of caution (Magkos and Yannakoulia, 2003).  

During Study 2, energy intake was not assessed on game day which lead to the use of a 6-

day food diary. Whilst game day information would have been valuable, given the elite 

standard of the participants it was deemed necessary to avoid adding to player’s game day 

stresses and potentially disrupting normal practices. The 6-day food diary has since been 

reported in the literature by Morehen at al, (2016), who assessed the energy balance of elite 

RL players during two in-season training weeks.  

 

Energy Expenditure 

The measurement of energy expenditure in contact sports is somewhat difficult given that 

many of the tools available such as the SenseWear armband technology used in Study 2 

would not be suitable during physical collisions, either through danger to the athlete or to 
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the equipment. Perhaps the best method would be to use DLW over the course of a training 

week as employed by Morehen et al, (2016) in professional RL, and future studies should 

certainly consider this despite the obvious financial implications.  

 

Rugby league match simulation protocol (RLMSP) 

To ensure that exercise time, player loads and distances covered were standardised 

throughout testing, an adapted version of a RLMSP was used in place of a competitive 

game. This meant that forwards who usually play for ~44 mins, (Waldron et al., 2011) 

exercised for ~92 mins, which may have had bearing on player load and muscle glycogen 

utilisation. Furthermore, replicating contacts with a tackle bag was necessary to control the 

number and intensity of the collisions, but means the blunt force trauma experienced by 

players was much lower compared to match-play (Norris et al., 2016). Future studies may 

wish to better replicate contact situations, possibly performing the RLMSP with pairs of 

participants who take it in turn to tackle one another. Furthermore, given the discrepancy 

in muscle glycogen utilization between the RLMSP and rugby match-play, it may be 

pertinent to assess these reloading strategies using muscle biopsies from a real game.  

 

Time to exhaustion test (TTE) 

Despite the lack of specificity to rugby, the use of the TTE performance measure was 

necessary to avoid tissue damage that would be associated with load-bearing exercise 

(Clarkson et al., 1992, Clarkson et al., 1999). Moreover, it would be unlikely for players to 

perform prolonged rugby specific exercise 48-h post game.  That the effect of 

manipulating CHO immediately after exercise on subsequent TTE performance was 
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unclear, suggests that a larger sample was required or a more sensitive measure of 

performance was needed to resolve the uncertainty.  

 

Switch from union to league 

Despite Chapters 4 and 5 of this thesis being conducted in RU, two important reasons 

justified the progression to RL in Chapters 6 and 7 and the amalgamation of both codes in 

to thesis; i) A unique opportunity arose consenting the extraction of muscle fibres from 

professional RL players around a competitive match, the first and only study of it’s kind to 

be proposed in elite rugby and 2), both codes of rugby have been shown to poses similar 

physiological demands (Duthie et al., 2003, Gabbett et al., 2012, Twist et al., 2014) and 

nutritional behaviours (Morehen et al., 2016, Chapters 4 and 5 of this thesis). However, it 

must be acknowledged as a limitation as there will be some metabolic differences between 

the two sports.  

 

Statistical analysis 

Chapters 4 & 5 of this thesis were published using traditional null hypothesis significance 

testing, whereas Chapters 6 & 7 were published using MBI after a collegaue (Statistician) 

provided advice and education on the appropriateness of their use in applied research. For 

consistency, Chapters 4 & 5 were reanalysed using MBI and the rationale for this change 

was as follows: 

1) P values and in turn, study conclusions, are sample-size dependent, irrespective of 

the size of the effect, whereas MBI provide a standardized means of analysis. 



 
 

175 

2) Significance testing doesn’t permit information on the magnitude of an effect, yet 

for the applied practitioner magnitude is of upmost importance. With a sample size 

great enough, even very small, trivial or non-practical effects can become 

significant. 

3) MBI allows the smallest meaningful effect to be standardised across different 

testing protocols (using either recommendations from research, or creating own 

best fit) improving interpretation.  

4) MBI is easily interpreted for researchers and applied practitioners alike, and 

supported by spreadsheets freely available on the internet. 

 

8.4 Practical Implications 

The findings of this thesis have important practical implications.  

• A rugby union pre-season can be fueled (and significant improvements in body 

composition and performance can be made), on CHO intakes that fall below what has 

been previously been suggested as adequate for a rugby type training programme. 

• Given the surprisingly low EI and CHO intakes of rugby players during the pre-season, 

it seems important to quantify training loads to inform dietary intakes. Furthermore, 

strength and conditioning professionals and coaching staff must attempt to match the 

nutritional requirements to their own specific training demands rather than simply 

adopting standard guidelines. 

• During a rugby union in-season, energy intake matched expenditure for both forwards 

and backs despite CHO consumption falling short of recommended guidelines, 

suggesting that these intakes may be appropriate for rugby players providing CHO is 

increased leading in to competition.  



 
 

176 

• Muscle biopsies are possible before and after a competitive rugby league match 

proving a framework for future research in this sport. 

• Approximately 40 % of muscle glycogen appears to be used during a competitive 

rugby league match, although the effects on individual fibres remain unresolved. 

• There were no noticeable differences in high intensity running capability between ~6 or 

~3 g.kg CHO dietary groups, suggesting that the lower CHO condition had no gross 

effects on performance. 

• Notwithstanding the limitations of interpreting movement characteristics of a single 

match, it is proposed that a diet comprising ~600 g CHO 36-h before a match could be 

recommended to ensure all players commence the match with appropriate muscle 

glycogen concentrations. 

• It would appear that CHO consumption in the week leading into a rugby match is a 

major contributor to pre-match muscle glycogen concentration, rather than the CHO 

content of the diet in the preceding 36-h and therefore this should be monitored by 

coaches and players. 

• Simulated rugby match-play elicits a similar internal load, but the metabolic demands 

are lower than during professional RL match-play.   

• Collision events in rugby are speculated to present a large metabolic cost to the player 

and are difficult to simulate in training and research settings  

• The RLMSP might be used as a specific conditioning tool to condition or evaluate a 

player’s readiness for match-play. 

• Despite high CHO consumption in the 48-h after RL match-play, immediately re-

feeding with CHO seems to be a major contributor to muscle glycogen resynthesis, 

highlighting the importance of the insulin-independent phase of muscle glycogen 

replenishment. 
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Recommendations for future research: 

Based upon the findings of this thesis, future research should look to further titrate these 

studies to improve understanding of the metabolic requirements of elite rugby training and 

competition, and also the optimal nutritional strategies to facilitate this. The following 

recommendations are made for future research: 

 

1. Repeat studies 1 and 2 in a larger cohort of athletes and teams to provide a more 

accurate reflection of the training and dietary practices of elite rugby players. The findings 

from studies 1 and 2 clearly demonstrate that the current nutritional practices of rugby 

players from one elite professional team do not meet the textbook guidelines for CHO 

intake. Anecdotal evidence suggests that these practices are commonplace across rugby 

teams. Logically, therefore, such a study should now be repeated in a large cohort to 

validate these findings. Weekly measures of sRPE and GPS should be collected to aid in 

the determination of fatigue and injury risk over the course of the season.  

 

2. Repeat study 3 using fewer players, but over a series of matches to facilitate a more 

rapid removal of tissue as well as consider a half-time muscle biopsy to provide more 

detail regarding muscle glycogen utilisation before, during, and after rugby match-play. 

Alongside, analyse CK and collect subjective markers of muscle soreness for up to 72-h 

post-match-play to assess muscle damage and analyse the relationship between CK and 

muscle glycogen utilisation – does a more depleted muscle reveal greater muscle damage? 
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3. Repeat study 3 to assess muscle glycogen utilisation in individual muscle fibre types. 

Given that muscle passes were analysed as a whole homogenate in this thesis, it is 

impossible to report the glycogen depletion of individual fibre types which may vary 

greatly as seen in soccer (Krustrup, et al., 2006). If collected, these data have the potential 

to significantly improve the literature and allow nutritional strategies to be refined further 

optimising muscle glycogen loading and refuelling strategies. Furthermore, segmenting 

and analysing match-play in 10-15 minute sections would allow greater detail in the 

assessment of temporal fatigue between dietary conditions. 

4. Repeat Study 4 to assess muscle glycogen replenishment in individual fibre types after 

an immediate or delayed re-feed. Furthermore, given the large metabolic cost of collision 

events in match-play, contacts must be better replicated in the RLMSP. It is speculated that 

the best way to maintain a standardised methodology and to improve the ecological 

validity of the tackle componenet, participants should pair up and tackle one another on 

alternate cycles complete with a 4 s wrestle as seen in RL match-play. Thereafter, 

assessment of EIMD using a subjective marker of muscle soreness alongside analysis of 

CK concentrations over the following 72-h is warranted. This study would more accurately 

reflect the metabolic demands of rugby competition in a controlled setting, validating the 

RLMSP for use in future research, and furthermore provide greater insight in to the 

subsequent replenishment of muscle glycogen after damaging rugby type exercise. 

In conclusion, and taking into consideration the limitations, this applied thesis has 

successfully clarified some confusion around the current dietary and training practices of 

rugby players, alongside the quantification of the metabolic demands of elite rugby match-

play, and postulating the most appropriate dietary intakes around competition. These data 

are already influencing practice in elite RU and RL teams.  
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