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While gas accretion onto some massive black holes (MBHs) at the centers of

galaxies actively powers luminous emission, the vast majority of MBHs are

considered dormant. Occasionally, a star passing too near a MBH is torn apart

by gravitational forces, leading to a bright tidal disruption flare (TDF). While
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the high-energy transient Sw 1644+57 initially displayed none of the theoreti-

cally anticipated (nor previously observed) TDF characteristics, we show that

the observations suggest a sudden accretion event onto a central MBH of mass

∼ 106−107 solar masses. There is evidence for a mildly relativistic outflow, jet

collimation, and a spectrum characterized by synchrotron and inverse Comp-

ton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-

scale blazar.

While variability is common to all active galactic nuclei (AGN)—fundamentally tied to the

unsteady accretion flow of gas towards the central MBH—the timescale for active MBHs to

dramatically change accretion rates (leading the source to, for example, turn “off”), is much

longer than a human lifetime. The most variable AGN are a subclass called blazars, with typ-

ical masses MBH ≈ 108 − 109M� (M� is the mass of the Sun), originally found to be radio

and optically bright but with luminosities dominated by X rays and gamma rays. Substantial

changes in the apparent luminosity over minutes- to hour-long timescales are thought to be

predominately caused by Doppler-beamed emitting regions within a jetted outflow moving rel-

ativistically [Γj ≈ 10; (1)] toward the observer (2). The high-energy emission is thought to be

caused by inverse Compton upscattering of the accretion disk photons, photons from within the

jet itself, and/or photons from structures external to the accretion disk (3, 4).

Inactive MBHs can suddenly “turn on” while being fed by temporary mass accretion estab-

lished following the tidal disruption of a passing star (5–9). If a star of mass M∗ and radius

R∗ passes within the disruption radius rd ≈ R∗(MBH/M∗)
1/3 ≈ 5M

−2/3
7 rs (with MBH =

107M7M� and rs = 2GMBH/c
2 the Schwarzschild radius of the BH, M∗ = M�, R∗ = R�),

then a mass of up to ∼ M∗/2 will accrete onto the MBH with a peak accretion rate on a

timescale of weeks (6). The accretion rate for typical scenarios with a M7 BH can be super-

Eddington (10) for months (9, 11). Candidate TDFs have been observed at X-ray, ultraviolet,
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and optical wavebands (12) with inferred rates ∼ 10−5 yr gal−1 (7), although the observed light

curves and spectra did not always match the simplest theoretical expectations.

Recently, it has been suggested (13) that a long-lasting radio event (timescale to peak of

∼1 year) could follow a TDF arising from a jetted relativistic outflow as it interacted with (and

was slowed down by) the external ambient medium, akin to the afterglow from external shocks

following gamma-ray bursts (14). The supposition was that the observer viewed the event off-

axis from the relativistic jet. Just what would be seen if instead the jet were pointed nearly

towards the observer—as in the geometry inferred for blazars—was not considered.

Sw 1644+57 was initially detected as a long-duration gamma-ray burst (GRB 110328A) by

the Swift satellite (15) at a time t0 = 2011 March 28 12:57:45 UT. However, given the longevity

and flaring of the X-ray afterglow, it was quickly realized that the high-energy emission was

unlike that associated with any previous GRB (16). Based on the data available in the first two

days following the event, it was suggested (17) that Sw 1644+57, at a redshift of z =0.3543,

could be analogous to a scaled-down version of a blazar impulsively fed by ∼ 1M� of stellar

mass.

There are several lines of evidence to suggest an accreting MBH origin. First, the astro-

metric coincidence of the X-ray, optical, infrared, and radio transient with the light-centroid of

the putative host galaxy is strongly indicative of a positional connection to an MBH (17–19).

Second, the observed X-ray variability timescales are consistent with those of an accreting

MBH (see below and SOM). Last, the observed correlation between the X-ray flux and spec-

tral hardness (SOM) is similar to that observed in blazars (20). Arguments against alternative

interpretations are considered in the SOM.

Accepting the accreting MBH hypothesis, we now examine constraints on the BH mass and

the accretion characteristics. The X-ray light curve implies a minimum host-frame variability

timescale of tvar,min ≈ 78 sec (SOM; Fig. S1). By requiring (21) that tvar,min exceeds the
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light-crossing time of rs, we derived an upper limit on the MBH mass MBH ∼< 8 × 106M�.

Irrespective of the timing argument, we can place approximate upper limits on the mass of

the central BH if we assume the whole mass of the galaxy [few×109M�; (16)] and its light

[few×109L�; (16)] arise from the host bulge (i.e., not in the disk) and apply the bulge mass–BH

mass and the bulge luminosity–BH mass correlations (22). All such analyses suggest MBH ∼<

107M�, securely under the limit (few×108M�) required for the tidal disruption of a solar-mass

star to occur outside the event horizon of the MBH.

If the emission is isotropic, the average X-ray luminosity of the outburst (SOM), LX ≈

1047 erg s−1, corresponds to the Eddington luminosity of a ∼ 109M� BH, incompatible with

the upper limit derived from variability. If the source is relativistically beamed (SOM), with

beaming factor fb = (1 − cos θj) ≤ 1, the beaming-corrected luminosity fbLX ∼ 1045 erg s−1

becomes consistent with the Eddington luminosity of a ∼ 107M� SMBH if θj = 1/Γj ≈ 0.1,

as inferred in blazars (we show below that this value of Γj is also consistent with the inferred

rate of Sw 1644+57-like events). We can also infer the presence of relativistic outflow (SOM)

by requiring that the true brightness temperature of the radio transient be less than the inverse

Compton catastrophe temperature 1012 K. Those constraints require a mean Γj ∼> 1.9 from t0

to the time of the VLBI observations reported in (16). Separately, we can use the observed

variability of the radio counterpart to place constraints on the source size, finding Γj ∼> 10.

If the source had been active in the distant past, we would expect to observe extended radio

emission (e.g., jets or other emission knots) in VLBI imaging. Because this was not seen (16)

and archival searches spanning two decades have yielded no evidence for prior AGN activ-

ity from radio to gamma-ray wavebands (SOM), the evidence thus suggests that a MBH =

106 − 107M� BH underwent a dramatic turn on to near-Eddington accretion rates, launching

an energetic, relativistic outflow in the process. This rapid increase in the accretion rate cannot

result from gas entering the sphere of influence (soi) of the MBH, because this would require
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a timescale ∼ Rsoi/σ ∼> 104 yr to appreciably alter the accretion rate near the horizon, where

Rsoi ∼ 1 pc is the radius of the sphere of influence and σ ∼ 100 km s−1 is a typical bulge veloc-

ity dispersion. We suggest instead that a TDF provides a natural explanation for Sw 1644+57.

The observed X-ray fluence SX suggests an energy release of EX = 1.6 × 1053fb erg for

the first ∼ 50 days. Assuming that the energy released in the XRT band is about 1/3 of the

bolometric energy (Fig. 1) and adopting fb = 5 × 10−3, the total energy release from the jet

amounts to 0.3% of the maximum available mass-energy to be accreted if M∗ = M�. Given a

typical accretion efficiency of εBH ≡ Eav/maccc
2 = 0.1, the jet need radiate only about 1/30th

of the available energy Eav; if mass is lost during the circularization phase or to subsequent disk

winds, then the required jet efficiency must be higher. The duration of the X-ray light curve and

the requisite accretion rate are also broadly compatible with the several-day fallback timescale

(SOM).

The broadband Spectral Energy Distribution (SED) of Sw 1644+57 (Fig. 1) displays two

peaks, at far infrared and at X-ray/gamma-ray wavebands. Thermal emission from the disk or

accretion-powered outflows (8, 9) does not naturally account for either component. Instead, the

overall spectral shape is reminiscent of blazars, for which the peaks at low and high energies are

typically modeled as synchrotron and Inverse Compton (IC) emission, respectively. The X-ray

emission shows both a bright/flaring and a dim/slower-varying (“quiescent”) state. Under the

TDF hypothesis, what could account for the observed spectrum and temporal behavior?

• Single Component Synchrotron with Dust Extinction: In low-luminosity BL Lac ob-

jects, the νFν synchrotron spectral peak may occur at energies as high as hard X-rays.

Thus, one possibility is that the entire emission from radio to X-rays is part of a sin-

gle non-thermal synchrotron spectrum originating from shocked relativistic electrons. In

this scenario, the suppressed optical emission and red IR colors of the transient could

result from dust extinction with AV > 10 mag. Thus, although a single extinguished
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synchrotron spectrum cannot be ruled out, the large required extinction may disfavor this

interpretation (Fig. S3). Furthermore, although a synchrotron origin is still likely for at

least the radio emission, there is evidence that the radio and X-ray emitting regions may

not be coincident (SOM).

• Two-Component Blazar Emission: The FIR and hard X-ray peaks may, instead, rep-

resent distinct spectral components, corresponding to synchrotron and IC emission, re-

spectively, as in blazars (SOM, Fig. S3). The νFν luminosity of the low-energy peak is

∼ 1 − 2 orders of magnitude weaker than the high energy peak (Fig. 1). This extreme

ratio, and the relatively low frequency of the synchrotron peak, are both compatible with

Eddington-accreting blazar emission (4).

• Forward Shock Emission from Jet-ISM Interaction: Although the above models gen-

erally assume that the low- and high-energy spectral components are directly related,

evidence suggests that they may originate from distinct radii, at least during the X-ray

flaring state. While the rapid variability of the X-ray emission strongly indicates an “in-

ternal” origin (23), the radio-IR emission varies more smoothly and could instead result

at larger radii from the interaction of the jet with the surrounding interstellar medium

(SOM). If no AGN activity occurred prior to the recent onset of emission, the jet must

burrow its way through the gas in the nuclear region (24). Because of its fast motion,

the newly-formed jet drives a shock into the external gas (forward shock), while simulta-

neously a reverse shock slows it down. Particles accelerated at these shocks may power

synchrotron afterglow emission beginning simultaneously when the jet forms, yet lasting

long after the internal emission has faded. This model, the geometry of which is depicted

in Fig. 2, appears to best accommodate the data, and predicts for the long-term evolution

of the radio and IR transient (SOM).
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No rising UV-optical transient nor slowly evolving thermal X-ray component has been seen

to date from Sw 1644+57, in contrast with the nominal expectations of TDFs. However, if Sw

1644+57 was obscured by dust, then UV-optical suppression of the transient would be expected.

And if we understand the thermal X-ray emission as being outshone by the jetted emission in

the first weeks, the thermal component may emerge on a timescale of months. For this to occur,

the jet emission must be quenched due, e.g., to a transition of the accretion flow to a soft/thermal

state once the accretion rate becomes sub-Eddington, in analogy to the behavior of stellar-mass

X-ray binaries. Even in this case, whether and when thermal emission will be observable hinges

on the degree of dust extinction and its brightness relative to the host bulge.

If the TDF hypothesis is correct, Sw 1644+57 will fade over the coming year and will

not repeat. If our interpretation about the relativistic flow and spectral origin is correct, then

we would expect the transient emission to be polarized at a (low) level similar to that seen in

gamma-ray burst afterglows [as opposed to blazars (25)]. Moreover we expect to see evidence

for superluminal motion of the radio source as seen in VLBI monitoring over the next few

months; the source itself may become resolved on timescales of a few months if it remains

bright enough to detect at radio wavebands.

Adopting a beaming fraction fb ∼< 10−2 consistent with that inferred from Sw 1644+57

(SOM), we conclude that for every on-axis event, there will be 1/fb ∼> 102 events pointed

away from our line of sight. Because Swift has detected only one such event in ∼ 6 years of

monitoring, the total inferred limit on the rate of TDFs accompanied by relativistic ejecta is

∼> 10 yr−1 out to a similar distance. Although the majority of such events will not produce

prompt high-energy emission, bright radio emission is predicted once the ejecta decelerates to

non-relativistic speeds on a timescale ∼ 1 year (13). The predicted peak flux is sufficiently high

(∼ 0.1−1 mJy at several GHz frequencies and redshifts similar to Sw 1644+57) that ∼ 10−100

may be detected per year by upcoming radio transient surveys.
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The emerging jet from the tidal disruption event appears to be powerful enough to accelerate

cosmic rays up to ∼ 1020 eV, i.e., the highest observed energies (26). The observed rate of jets

associated with the tidal disruption of a star, Ṙ ∼ 10−11Mpc−3yr−1, and the energy released

per event of 3 × EX ∼ 5 × 1053 erg, however, imply an energy injection rate of ĖTDF ∼

5× 1042 erg Mpc−3yr−1. Despite the large uncertainty, this rate is substantially smaller than the

injection rate Ėinj ∼ 1044 erg Mpc−3yr−1 required to explain the observed flux of cosmic rays

of energy > 1019 eV (27). This conclusion is, however, subject to uncertainties associated with

the radiative efficiency of the jet.

There is much evidence that AGN jets are accelerated by magnetohydrodynamic, rather than

hydrodynamic, forces (28). A key unsolved question is whether the large-scale magnetic field

necessary to power the jet is advected in with the flow (29), or whether it is generated locally in

the disk by instabilities or dynamo action. If the jet is launched from a radius Rin, the magnetic

field strength at its base (B) is related to the jet luminosity by Lj ∼ πR2
inc × (B2/4π). If we

assume Lj ∼ 1045 ergs s−1, similar to the Eddington limit for a ∼ 107M� MBH (as appears

necessary to explain the bright non-thermal emission), the required field strength is B ∼ 105

G for Rin ∼ 1.5rs. This field is much higher than the average field strengths of typical main

sequence stars (< 103 G). The stellar field is further diluted because of flux freezing by a factor

∼ (R∗/Rin)2 as matter falls into the BH, whereR? ∼ R� is the stellar radius prior to disruption.

Hence, the large-scale field responsible for launching the jet associated with Sw 1644+57 must

have been generated in situ. Placing similar constraints has not previously been possible in the

context of normal AGN or X-ray binary disks, because of the much larger ratio between the

outer and inner disk radii in these systems.
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Fig. 1: Multiwavelength spectral energy distribution of Sw 1644+57 at t0 + 2.9 day. Our

radio-through-UV measurements are represented by filled circles, with data from the pub-

lished circulars (16) represented by open circles (30). X-ray and soft gamma-ray points

from the Swift XRT and BAT (uncorrected for host-galaxy absorption) are shown as black

crosses, and the Fermi/LAT gamma-ray upper-limit (31) is shown at the far right. The

90% uncertainty region of a power-law fit to the XRT data (with NH absorption removed)

is represented by the blue bow-tie. (inset) The same data zoomed in on the optical-NIR

window. Overplotted are two different multi-component models for the SED (32) (Fig. 2).

The orange curve shows a model with synchrotron, synchrotron self-Compton, and exter-

nal Compton contributions. The purple curve shows a model in which the IR emission

originates from a compact source of synchrotron emission (∼ 4 × 1014 cm). Both models

require moderate extinction (AV ∼ 3− 5 mag). Additional synchrotron models are shown
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in Fig. S3. The model SEDs here and in Fig. S3 were generated using the computer code

from (33).
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Fig 2. Schematic representation of the geometry and emission regions for Sw 1644+57. A

star is disrupted at distance rd from a black hole of mass MBH with Schwarzschild radius

rs. Half of the mass of the star escapes on unbound orbits while the other half remains

bound. Shocked, circularized fallback mass sets up a temporary accretion disk with in-

ner radius 3rs (for a non-spinning BH). A two-sided jet is powered starting at the time

of accretion and plows through the interstellar region surrounding the BH at a Lorentz

factor Γj. At some later time, the jet has reached a distance Rj where the forward shock

radiates the observed radio and infrared light. Emission from the accretion disk is Comp-

ton upscattered giving rise to the observed X-rays. Different viewing angles (whether the

observer is inside θj ≈ 1/Γj or not) determines what sort of phenomena is observed. An

analogy with blazars and AGN for more massive BHs is given.
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