
Towards a Framework for the Extension and
Visualisation of Cyber Security Requirements in

Modelling Languages
Curtis L. Maines1, Bo Zhou2, Stephen Tang3 and Qi Shi4

Department of Computer Science
Liverpool John Moores University

Liverpool, L3 3AF, United Kingdom
Email: c.l.maines@2011.ljmu.ac.uk1, b.zhou@ljmu.ac.uk2, s.o.tang@ljmu.ac.uk3, q.shi@ljmu.ac.uk4

Abstract—Every so often papers are published presenting a
new extension for modelling cyber security requirements in
Business Process Model and Notation (BPMN). The frequent
production of new extensions by experts belies the need for a
richer and more usable representation of security requirements
in BPMN processes.

In this paper, we present our work considering an analysis
of existing extensions and identify the notational issues present
within each of them. We discuss how there is yet no single
extension which represents a comprehensive range of cyber
security concepts. Consequently, there is no adequate solution for
accurately specifying cyber security requirements within BPMN.

In order to address this, we propose a new framework
that can be used to extend, visualise and verify cyber security
requirements in not only BPMN, but any other existing modelling
language. The framework comprises of the three core roles
necessary for the successful development of a security extension.
With each of these being further subdivided into the respective
components each role must complete.

Keywords—security framework; modelling language; BPMN;
business process

I. INTRODUCTION

Business Process Model and Notation (BPMN) can be used
to graphically represent business processes and their compo-
nent relationships in a common standard between organisations
[2], [12].

BPMN fulfils the requirement of visually representing busi-
ness processes and is now the industry standard for their mod-
elling [3], [17]. Nevertheless, even though security directly
affects the functionality of business processes, BPMN has
no support for specifying cyber security requirements [15],
[16]. Current BPMN security extensions have made attempts,
but they are being constructed unsystematically, without any
empirical evidence to support their choice of concepts [8] or
notational design.

The objective of this paper is to propose a new framework
for visualising and verifying comprehensive cyber security
requirements within not only BPMN, but any modelling lan-
guage. Unlike current approaches, our framework is built upon
existing literature and empirical evidence. From our evaluation
of existing extensions we are able to identify the problem areas
and propose a new set of requirements for avoiding them.

Along with these and existing theories, we are able to propose
a framework that can be used for extending any modelling
language with security requirements.

In Section II, we analyse some existing BPMN security
extensions identifying the notational issues within each one.
From these reviews we are able to create a requirements
specification in Section III to act as a foundation for our
proposed framework. In Section IV, we explain our framework
detailing why each component is compulsory for a successful
solution. Section V finishes with concluding and future works.

II. BPMN SECURITY EXTENSIONS

For existing extensions, the Physics of Notations (PoN)
principles defined by Moody [11] are used for their eval-
uation. This is to ensure a scientific approach is kept in
their assessment. These principles are frequently used in the
evaluation of modelling languages including that of BPMN
[5], [14]. These principles are as follows: semiotic clarity,
perceptual discriminability, semantic transparency, complexity
management, cognitive integration, visual expressiveness, dual
coding, graphic economy, and cognitive fit [11]. Due to lack
of space, we are unable to include definitions in this paper.
For any uncertainties please refer to the respective paper.

We have already evaluated most existing extensions against
the PoN in previous papers [9], [10] and therefore will be brief
in their assessment for this one. Of the nine principles, we do
not consider cognitive integration in our assessment. We feel
this is a principle that can only be fairly evaluated against a
standalone language. It is difficult for an extension to meet
this requirement if the parent language does not.

Although low in number of concepts, Rodriguez et al. [15]
extension covers a broad range of the cyber security domain.
The symbols within their notation from left-to-right in Fig.
1 represent: non-repudiation, attack harm detection, integrity,
privacy and access control.

Overall, this extension managed to satisfy just one graphic
economy of the eight principles (disregarding cognitive in-
tegration). With the passed principle being solely down to
the fact that the notation is symbol deficit. The extension
feels negligent of modelling language design and as such

Fig. 1. Rodriguez et al. security notation

fails to act as a suitable solution for specifying cyber security
requirements in BPMN.

Saleem et al. [16], slightly newer, security extension takes
a different approach notation-wise, but still yields several
issues. In Fig. 2 from left-to-right, the symbols represent
confidentiality, integrity and availability respectfully; the core
concepts of cyber security [13].

Fig. 2. Saleem et al. security notation

Of the eight principles, this extension satisfies four (percep-
tual discriminability, semantic transparency, graphic economy
and cognitive fit) of them. Although failing in comprehensive-
ness and complexity management. If we focus on the design
of the symbols themselves, this notation is one of the closest
to meeting Moodys requirements [11].

Salnitri et al. SecBPMN2 [17] notation can be seen in Fig.
3. From left-to-right the concepts are as follows: integrity,
authenticity, accountability, non-repudiation, auditability, con-
fidentiality, privacy, binding of duties, separation of duties,
availability and non-delegation.

Fig. 3. SecBPMN2 security notation

This extension is also able to satisfy four of the eight
principles (perceptual discriminability, semantic transparency,
graphic economy and cognitive fit). Labda et al. security
notation [7] can be seen in Fig. 4. The symbols from left-
to-right represent: access control (allow), access control (pre-
vent), access control (limited), separation of tasks, binding
of tasks, user consent, necessity to know (high), necessity to
know (medium) and necessity to know (low).

Fig. 4. Labda et al. security notation

Overall, this extension managed to satisfy two (perceptual
discriminability and graphic economy) of the eight PoN prin-
ciples. Koh and Zhous notation [6] (see Fig. 5) is similar to
that of Salnitri et al. Both opting for a circular shape with some
form of icon inside. The underlying semantics for this notation
are security task, authentication, access control, authorisation,

harm protection, encrypted message, non-repudiation and se-
cure communication respectively left-to-right. The final three
symbols represent confidentiality, integrity and availability.
With the stars visualising the required level for each concept.

Fig. 5. Koh and Zhou security notation

Overall, Koh and Zhou are able to satisfy just two (dual
coding and graphic economy) of the eight PoN principles. The
perceptually discriminability between the symbols themselves
and that of BPMN is rather poor. Along with the perverse
icon design and the relationships used to link security and
BPMN elements. This notation is far from an adequate security
extension to BPMN.

From this review, of the five extensions evaluated we can see
that none are able to satisfy an adequate number of Moodys
principles. Moody discussed how there are trade-offs amongst
the principles and satisfying one may have a negative effect
on another. Nevertheless, certain principles such as complexity
management should always be achieved, especially in software
engineering [11]. There is need for an extension that is not
only comprehensive to the domain but can also satisfy the
most optimal number of principles.

III. REQUIREMENTS SPECIFICATION

The PoN can be used for the scientific evaluation of a
modelling language as well as design requirements for the
creation of one [11]. Nevertheless, having identified the issues
encountered with current extensions, we are able to define our
own set of requirements for avoiding them in the future.

A. Comprehensiveness

The reason for specifying this requirement is due to the
construct deficit current extensions suffer from. Although
some extensions appear comprehensive to the domain, this is
only relative to the deficit many of the others suffer from. In
fairness to several extensions, they do state their focus on a
particular area of security and as such their paucity may be
excused. Nevertheless, needing multiple extensions to specify
requirements for the same domain is very poor usability and
will likely lead to the extensions being dismissed altogether.
From the standpoint of an ideal solution the best approach is
to include a comprehensive range of constructs which gives
the modeller the ability to restrict the domain coverage as they
see fit.

B. Coherence

In 2003, Donner said in a short journal article far too much
security terminology is vaguely defined [4]. Although this

statement is almost 15 years old, from the review of existing
extensions, it is clear to see how relevant it still is today.
There is still much discrepancy surrounding various concept
meanings and uses.

As such, we believe there should also be a principle
which advises the explicit definition of a concept within a
language. This ensures that any future modellers or readers of
a diagram will always have a common archive of definitions
should they require reminding. Current approaches are placing
too much trust in the coherent definition of concepts from
external sources such as the web. This requirement will ensure
everyone is working in accordance with the same concept
understanding.

C. Structure

The inclusion of a new domain in any existing language,
will almost always cause an unparalleled increase in complex-
ity (especially cyber security). Therefore, to try and overcome
this issue, we propose the principle of structure. This links
closely to Moodys principle of hierarchy. In the PoN however,
Moody discusses using hierarchy as a form of complexity
management to collapse diagrams into more manageable high
level elements [11]. In this instance, we are targeting the
notation symbols themselves, and their own collapsing of
parent and child concepts.

D. Graphical Framework

From the review of existing extensions we are able to see
that only two are able to satisfy half of Moodys principles
(excluding cognitive integration). Although the PoN is not
entirely based on the graphical design of the notation. It is
fairly safe to generalise that the more principles satisfied the
better the design of the symbols.

Therefore, we propose that a developer should first define
a graphical framework for the symbols within their notation.
One which uses the principles as defined in the PoN as a
core foundation. This not only ensures the satisfaction of
the principles, but also allows any future users to add to
the notation as they see fit without effecting any pre-existing
design in place.

E. Complexity Management

Complexity management is potentially the single reason
current security extensions have the issues they do. When
viewing current extensions from a complexity management
perspective, it is likely the authors struggled to develop a visual
solution in which they could be more comprehensive to the
domain. Therefore they opted for construct deficit opposed
to poor complexity management. Of course, without directly
questioning each author we cant indefinitely confirm this was
the case. However, there is no disputing that all extensions
either suffer from complexity management or are on the
threshold of doing so. For this reason, we see this principle as
the most important of the PoN and therefore duplicate it into
our own requirement specification.

F. Modelling Tool Functionality

When developing a security extension, most authors will
typically expand on an already existing tool such as Microsoft
Visio. The majority of tools usually include functionality for
the creation or inclusion of custom notation to assist with this
process. If the authors simply wanted to extend a language
with same domain notation, utilising current software is the
logical choice. However, extending a language with a new
domain is more extensive than previous authors have given
credit. It is not simply a case of specifying a few concepts then
creating symbols for them. There are a lot of other variables
which must be considered (the objective of this section being
to highlight these). Moreover, the tool which is used for
creating and reading diagram instances requires just as much
attention.

Although there may be an existing tool or framework which
allows for the complexity managed specification of different
domain elements across an existing language. This principle is
defined to highlight the possibility that this may not be the case
and a new tool featuring new functionality may be needed to
satisfy the aforementioned requirements along with the PoN.

IV. PROPOSED FRAMEWORK

This leads onto the core novelty of our work, to overcome
the aforementioned issues and satisfy the specified require-
ments. A framework for the extension and visualisation of
cyber security requirements in modelling languages, see Fig.
6.

As previously stated, little attention has been given to
notation design or tool functionality. The majority of authors
focus all their efforts on semantics. Although we agree that
semantics play a vital role in the creation of any modelling
language (or extension), it is not the only role. The following
section discusses our proposed framework, detailing the im-
portance of each component to ensuring a complete solution
is achieved

A. Key Roles

Our framework consists of three core roles; language archi-
tect, application developer and end user. All of which, are nec-
essary for the successful design, implementation and utilisation
of a security extension. The roles are structured vertically in
the framework and represent the strict chronological order of
development from bottom-to-top. (Similar to that of a brick
wall). For the most part, this rule is also true when reading
the framework from left-to-right. Regardless of this however,
each component is numbered to reiterate the order that should
be followed when creating an extension.

B. Language Architect

The language architect represents the first and most im-
portant role in the development process. As implied, their
role is very similar to that of a software architect. They are
responsible for the scope of each domain to include within
the solution, along with the symbol design and visualisation
approach. The importance of this role compared to the others,

MODELLING LANGUAGE FRAMEWORKS

MODELLING LANGUAGE FOUNDATIONS

TECHNOLOGY FRAMEWORK

File Serialization Front EndRendering

Security Language - Diagram Generator

Graphical User Interface

Menu System

Security Policy – Serialization

Security Language – Serialization

Core Language – Serialization

Core Language –
Middleware Deserializer

Core Language –
Middleware Serializer

Core Language – Diagram Generator

Tool Functionality

Security Language
Middleware

Schema

Core Language Framework Security Policy FrameworkSecurity Language Framework

Visual GrammarVisual Vocabulary Visual GrammarVisual Vocabulary
Verification

Rules
Specification
Restrictions

Scope of Core Language Security Policy DetailsCyber Security Ontology
BPMN (task, start...), UML (actor, class...)

ARTEFACTS

Core Language – Middleware File Security Policy – Middleware FileSecurity Language – Middleware File

(Scan Interval, IKEv2, etc…)(Access Control, Privacy, etc…)

Language
Architect

Application
Developer

End User

Security Language

Middleware
Deserializer

Security Language

Middleware
Serializer

Security Policy
Middleware

Schema

Security Policy
Middleware
Deserializer

Security Policy
Middleware

Serializer

Security Language
Management

Core Language
Management

Viewport Controls
Security Policy
Management

Core Language –
Symbol Generator/

Resources

Core Language –
Relationship Generator/

Resources

Security –
Symbol Generator/

Resources

Security –
Relationship Generator/

Resources

ii

1 2 3

3

a b a b a b

4 5

6 7

8

9

a

b

c

a

b

a

b

i ii

i ii iii

i ii iii

i

iii

a b c d

10 11 12

Feedback
Technique

c

Fig. 6. Framework for the Extension and Visualisation of Cyber Security Requirements in Existing Modelling Languages

comes from the number of principles that can be satisfied
at this stage of the framework.

1) Modelling Language Foundations: As the framework is
based around the extension of an already existing language
(BPMN in this case). We must take into consideration the
restrictions of the parent language right from the beginning.

Scope of Core Language - At this stage of the framework,
this is primarily to do with the scope of the core language.
Naturally, incorporating the entire language is the most robust
decision. However, when considering larger languages such as
BPMN, which contain 171 constructs [5]. Feasibility decisions
have to be made. Of course, this component of the framework
represents the acknowledgement of the core language scope,
rather than the strict requirement of reducing it. Depending on
the intended use of the security extension will decide on the
scope of the core language to include.

This component also requires the language architect to
specify what elements of the core language will support
security requirements. For example, in the case of BPMN,
one may choose to only allow security specification on task
elements and nothing else. Either way, a decision must be
made to later inform the restrictions the application developer
will implement into the tool.

Cyber Security Ontology - As stated by Moody [11], to
satisfy the principle of semiotic clarity there must be a one-to
one mapping between modellable constructs and ontological
concepts. Given that we are creating a language in this
instance and want to ensure adequate domain coverage. We
will need an ontology of cyber security requirements to assess
against the final notation to determine whether or not this
principle was satisfied. Aforementioned, we have developed
such an ontology in a previous publication [9], consisting of 79
security requirements and split into six areas (access control,
privacy, integrity, accountability, attack/harm detection and
prevent and availability). Adhering to this ontology will ensure
the extension is comprehensive to the cyber security domain.

Security Policy Details - Although the framework is still
usable without the inclusion of policy validation. Given the
imposed regulations from governments and in-house standards,
the ability to check a diagrams compliance with various
policies at such an early stage in the Software Development
Lifecycle (SDL) has to be utilised [1]. Specifying security
at design can have several benefits. However, these can be
negated if the specification later fails compliance checks due
to inefficiencies. Therefore, at this stage of the framework
we include a component to define the scope of the security

policies.
2) Modelling Language Frameworks: As previously stated,

utilising the functionality of existing software does not always
provide the best results. They are very restricted in what they
can do, and typically only work for same domain extension.
Hence why we specified a requirement to consider the func-
tionality of the extension end tool. Taking this into account,
we must acknowledge the strong likelihood of current software
being unable to effectively extend existing languages with
security requirements.

Core Language Framework - Therefore it is essential that
the language architect defines the rules of the core language
to later ensure the application developer implements them
correctly into a new tool. Moody states that all visual no-
tations are made up of three core components [11]. Visual
vocabulary, which can also be described as a set of graphical
symbols. Visual grammar, which defines the compositional and
relationship rules of the languages, and finally visual semantics
or symbol definitions. As visual semantics are covered in
the previous section, this component focuses on just visual
vocabulary and grammar. That being, at this stage of the
framework the language architect must specify in explicit
detail what symbol represents each concept within the core
language and what form of visualisation is required to ensure
the composition and relationship rules are adhered to.

Security Language Framework - Contrastingly, the security
language will require much more attention at this stage as
no language yet exists. It is not simply a case of extracting
information from an existing source. The end goal of the
framework has little reliance on what methods of symbolic
design and visual representation are chosen here as all ap-
proaches will output solutions with identical functionality.
However, the effectiveness of these solutions and their ability
to satisfy the PoN, our own requirements and be an appealing,
usable extension are very heavily dependent on the decisions
made here. Visual vocabulary and grammar represent two of
the key areas almost every extension has thus far failed to
successfully implement. They are also where a large majority
of our requirements specification can be achieved.

Security Policy Framework - The policy language frame-
work isn’t as visual as the core and security frameworks,
dealing largely with back-end checking opposed to visual
feedback. Therefore the requirements are slightly different.
For this component, the language architect must decide on
specification restrictions or validation rules as well as the
method of verification against a diagram. These will then be
able to define what feedback technique can be used to inform
the end user of any discrepancies between the diagram and
policy.

C. Application Developer

The previous section was based around the visual and
conceptual construction of the languages. This portion of
our framework focuses on the technical requirements (or
technology framework) for creating the application.

1) File Serialization: One of the key technologies required
for the development of a security extension (or software in
general) is some form of middleware file for saving and
loading data, and consequently, the functionality to serialize
and deserialize these files from within the tool.

Core Language Serialization - As discussed earlier, whether
a tool is created as an add-on or a standalone application the
core language will require a rendering engine. Therefore, it
will also require some form of data file to hold the diagram
information. Given that the core language has already been
created, there will already be existing schemas for these files
which can be sourced from other software. The tool simply
requires the functionality to serialize and deserialize these.

Security Language Serialization - Once again, the security
language is not as straightforward as the core language as no
solution yet exists. Therefore we not only require serialize and
deserialization here but also the creation of a schema for the
data file.

Security Policy Serialization - The security policy data file
is similar to that of the security language, also requiring a
schema.

2) Rendering: This component feeds directly from the
visual vocabulary of the modelling language frameworks.
The middleware files contain the necessary data to draw the
languages but without some form of rendering tool this data
is useless.

Core Language Diagram Generator - If the tool is a
standalone application (or loads a middleware file from an
external engine), it will require the ability to generate the
symbols and relationships for the core language.

Security Language Diagram Generator - Likewise, the
security language will also require the same functionality.
Although this is something an end user takes for granted. If
we are to generate a new tool, a rendering engine represents
a significant component for doing so.

3) Tool Functionality: The tool functionality component
represents the key stage of the development process. This is ef-
fectively where the engine for the application is implemented.

Viewport Controls - Before implementing any of this func-
tionality however, our framework first advises to create the
necessary tools for controlling the viewport. Depending on
the size of the diagram, both as a developer debugging the
application, or as an end user. Without the ability to traverse
a diagram, it is difficult to confirm elements have been placed
correctly.

Core Language Management - Similar to the renderer,
the management components feed directly from the visual
grammar elements of the previous section. Representing the
core libraries that are required for drawing a diagram as per
the language architects restrictions. The application developer
must ensure there is functionality to either render and/or select
core language elements. Without this, there will be no way of
relating parent language elements with security requirements.

Security Language Management - Depending on the designs
specified by the language architect will decide on the workload
required for this component. Security language management

represents the implementation of the security language and
thereby the core functionality of the extension itself. The
rendering component as mentioned, is a vital constituent to
this. However, this element deals directly with the implemen-
tation of the necessary functionality for specifying security, as
well as the placement of these requirements onto a diagram.
The key objective here being to ensure that an end user is
strictly limited to the visual grammar approach specified by
the language architect in the previous section.

Security Policy Management - The implementation of policy
verification and the feedback it generates, although different
to the previous two components, still feeds from the security
policy framework of the previous section. At this stage, the
application developer is required to implement the necessary
functionality for carrying out the tasks specified by the lan-
guage architect.

4) Front End: Finally, the last component of the technology
framework is the front end of the application, otherwise
referred to as the Graphical User Interface (GUI). The main
requirement of these components, is to ensure that a usable
interface is created which allows the end user to access and
utilise the functionality from the previous section.

D. End User
Aforementioned, the end user represents the third and final

role for the design, implementation and utilisation of a security
extension. As expected, the end user has little responsibility
in terms of the design and implementation of the extension.
However, they do represent the end goal, and although they
are not compulsory for the production of the end product.
When creating diagrams and using the extension, they will be
producing the saved data, middleware files discussed earlier.
Those of which, are compulsory for the application to even
load a diagram. Therefore, their role is quite significant.

V. CONCLUSIONS AND FUTURE WORKS

Current research surrounding the visualisation of cyber
security requirements within BPMN has so far been very
limited in terms of design rationale. Authors have typically
focused heavily on their choice of semantics and put very
little thought into the notation design. (Ironic considering not
one extension even manages a comprehensive set of concepts.)
Totally disregarding the complexity issues associated with
adding a new extension into BPMN.

Throughout this paper we highlighted the key requirements
an extension need meet to be considered both comprehensive
to the domain and usable as a modelling language.

From these requirements we were able to create a frame-
work not only for BPMN, but for any other modelling lan-
guage requiring an extension for visualising security require-
ments. Although this framework is only theoretical at this
stage it is based on the analysis and contribution of existing
literature. Therefore, we are confident in its ability to satisfy
the aforementioned requirements.

Nevertheless, our immediate future work involves the true
testing of our framework by creating our own security ex-
tension which uses BPMN as a case study. This will then

provide us with the necessary evidence to prove (or disprove)
our frameworks ability to create a comprehensive, complexity
managed security specification and verification extension for
modelling languages.

REFERENCES

[1] W. Arsac, L. Compagna, G. Pellegrino, and S. E. Ponta. Security
Validation of Business Processes via Model Checking. Lecture Notes in
Computer Science, 6542(213471):29–42, 2011.

[2] P. Bocciarelli and A. D’Ambrogio. A BPMN Extension for Modeling
Non Functional Properties of Business Processes. In TMS-DEVS
’11 Proceedings of the 2011 Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium, pages 160–168, Boston,
4th - 7th April 2011.

[3] M. Chinosi and A. Trombetta. BPMN: An introduction to the standard.
Computer Standards & Interfaces, 34(1):124–134, January 2012.

[4] M. M. Donner. Toward a security ontology. IEEE Security & Privacy,
1(3):6–7, 2003.

[5] N. Genon, P. Heymans, and D. Amyot. Analysing the Cognitive
Effectiveness of the BPMN 2 . 0 Visual Notation. Software Language
Engineering, Springer LNCS, pages 377–396, 2010.

[6] S. S. Koh and B. Zhou. BPMN security extensions for healthcare pro-
cess. In 13th IEEE International Conference on Dependable, Autonomic
and Secure Computing, Liverpool, 26th - 28th October 2015.

[7] W. Labda and P. Sampaio. Modeling of Privacy-Aware Business
Processes in BPMN to Protect Personal Data. In 29th ACM Symposium
on Applied Computing, pages 1399–1405, Gyeongju, 24th - 28th March
2014.

[8] M. Leitner, M. Miller, and S. Rinderle-Ma. An Analysis and Evaluation
of Security Aspects in the Business Process Model and Notation. In
2013 International Conference on Availability, Reliability and Security,
pages 262–267, Regensburg, 2nd - 6th September 2013.

[9] C. L. Maines, D. Llewellyn-Jones, S. Tang, and B. Zhou. A cyber
security ontology for BPMN-security extensions. In 13th IEEE Inter-
national Conference on Dependable, Autonomic and Secure Computing,
pages 1756–1763, Liverpool, 26th - 28th October 2015.

[10] C. L. Maines, B. Zhou, S. Tang, and Q. Shi. Adding a Third Dimension
to BPMN as a means of Representing Cyber Security Requirements.
In 2016 International Conference on Developments of E-Systems Engi-
neering (DeSE), Liverpool, 31st - 2nd September 2016.

[11] D. Moody. The “Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering. IEEE
Transactions on Software Engineering, 35(6):756–779, Nov.-Dec. 2009.

[12] OMG. Business Process Model and Notation [Online], 2015, (accessed:
15-02-2016). Available: http://www.bpmn.org/.

[13] C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentive Hall
PTR, 4 edition, 2006.

[14] G. Popescu and A. Wegmann. Using the Physics of Notations Theory
to Evaluate the Visual Notation of the Systemic Enterprise Architecture
Methodology. In 16th IEEE Conference on Business Informatics, pages
166–173, Geneva, 14th - 17th July 2014.

[15] A. Rodrı́guez, E. Fernández-Medina, and M. Piattini. A BPMN exten-
sion for the modeling of security requirements in business processes.
IEICE Transactions on Information and Systems, 90(4):745–752, April
2007.

[16] M. Q. Saleem, J. B. Jaafar, and M. F. Hassan. A Domain-Specific
Language for Modelling Security Objectives in a Business Process
Models of SOA Applications. International Journal on Advances
in Information Sciences and Service Sciences, AICIT, 4(1):353–362,
January 2012.

[17] M. Salnitri, F. Dalpiaz, and P. Giorgini. Modeling and Verifying
Security Policies in Business Processes. In Enterprise, Business-Process
and Information and Information Systems Modeling, Springer LCBIP,
volume 17, pages 200–214, 2014.

