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ABSTRACT
We derive the low redshift galaxy stellar mass function (GSMF), inclusive of dust corrections,
for the equatorial Galaxy And Mass Assembly (GAMA) dataset covering 180 deg2. We construct
the mass function using a density-corrected maximum volume method, using masses corrected for
the impact of optically thick and thin dust. We explore the galactic bivariate brightness plane
(M?−µ), demonstrating that surface brightness effects do not systematically bias our mass function
measurement above 107.5 M�. The galaxy distribution in the M − µ-plane appears well bounded,
indicating that no substantial population of massive but diffuse or highly compact galaxies are
systematically missed due to the GAMA selection criteria. The GSMF is fit with a double Schechter
function, withM? = 1010.78±0.01±0.20M�, φ?1 = (2.93±0.40)×10−3h370Mpc−3, α1 = −0.62±0.03±
0.15, φ?2 = (0.63 ± 0.10) × 10−3h370Mpc−3, and α2 = −1.50 ± 0.01 ± 0.15. We find the equivalent
faint end slope as previously estimated using the GAMA-I sample, although we find a higher value
of M?. Using the full GAMA-II sample, we are able to fit the mass function to masses as low as
107.5 M�, and assess limits to 106.5 M�. Combining GAMA-II with data from G10-COSMOS we
are able to comment qualitatively on the shape of the GSMF down to masses as low as 106 M�.
Beyond the well known upturn seen in the GSMF at 109.5 the distribution appears to maintain a
single power-law slope from 109 to 106.5. We calculate the stellar mass density parameter given our
best-estimate GSMF, finding Ω? = 1.66+0.24

−0.23 ± 0.97h−1
70 × 10−3, inclusive of random and systematic

uncertainties.

Key words: galaxies: evolution; galaxies: fundamental parameters; galaxies: general;
galaxies: stellar content; galaxies: luminosity function, mass function
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1 INTRODUCTION

The Galaxy Stellar Mass Function (GSMF; Bell et al. 2003;
Baldry et al. 2008, 2012) is arguably one of the most fun-
damental measurements in extra-galactic astronomy. Its in-
tegral returns the density of baryonic mass currently bound
in stars (and hence the global efficiency of star-formation)
while the shape of the distribution describes the evolu-
tionary pathways which have shuffled matter from atomic
to stellar form — essentially mergers building the high
mass end of the GSMF (M? ≥ 1010.8) while in-situ star-
formation fueled by gas accretion has built the low mass end
(Robotham et al. 2014). Not surprisingly the GSMF is also
the key calibration for most galaxy formation models that
are carefully tuned to best reproduce the latest GSMF mea-
surement (Schaye et al. 2015; Crain et al. 2015; Lacey et al.
2016; Gonzalez-Perez et al. 2014; Genel et al. 2014). In par-
ticular the comparison between observations of the GSMF
and numerical simulations of the dark-matter halo mass
function have led directly to the notion of feedback — both
AGN feedback at high mass (see, e.g. Bower et al. 2006;
Croton et al. 2006) and supernova feedback at low mass
(Efstathiou 2000). These are now core elements of semi-
analytic prescriptions used to populate the halos formed in
purely dark-matter N-body simulations (Lacey et al. 2016;
Gonzalez-Perez et al. 2014).

Observationally the measurement of the GSMF has su-
perseded the earlier focus on the measurements of the galaxy
luminosity function. Initially these were undertaken in the
optical and later at near-IR wavelengths, where the near-IR
light was shown to more closely trace the low mass stellar
populations that dominate the stellar mass repository. Near-
IR is the best single-band proxy for stellar mass because
near-IR colours contain little information about mass-to-
light variations. This conspires to mean there is less scat-
ter in near-IR single-band mass-to-light estimates compared
to the same proxies measured in the optical. Once multi-
band optical and NIR data became ubiquitous, however, bet-
ter estimates could be obtained by making use of full SED
colour information. Ultimately a lot of information on opti-
cal mass-to-light is contained in the restframe g-r-i colours,
so surveys such as SDSS and GAMA could make estimates
of stellar mass content that are accurate within < 0.2 dex
(Taylor et al. 2011). Over the past two decades the ability to
estimate stellar mass has also become more established (see,
e.g. Bell et al. 2007; Kauffmann et al. 2003; Taylor et al.
2011). As a consequence effort has now shifted from mea-
suring galaxy luminosity functions to the GSMF. The most
notable measurements are those deriving from large redshift
surveys, in particular the 2dF Galaxy Redshift Survey (2dF-
GRS; Cole et al. 2001), the Sloan Digital Sky Survey (SDSS;
Bell et al. 2003; Baldry et al. 2008), the Millennium Galaxy
Catalogue (MGC; Driver et al. 2007), and the Galaxy And
Mass Assembly Survey (GAMA; Baldry et al. 2012). In gen-
eral there is a reasonable consensus with the latest measure-
ment from the GAMA team (Baldry et al. 2012), probing to
a stellar mass limit of 108M�.

However three key observational concerns remain: sus-
ceptibility to surface brightness selection effects, the impact
of dust attenuation, and the prospect of a sharp upturn
in the space density at very low stellar masses (i.e., be-
low the current observational mass limits). All three effects

could potentially lead to underestimating the GSMF and
the corresponding stellar mass density. This is particularly
significant when looking to reconcile the current stellar mass
density with the integral of the cosmic star-formation his-
tory (CSFH; see Wilkins et al. 2008a; Baldry & Glazebrook
2003), where a significant discrepancy was seen. In an at-
tempt to explain this discrepancy, some studies have in-
voked either a top-heavy IMF (which produces more lumi-
nosity per unit mass of stars; Baldry & Glazebrook 2003),
a time varying IMF (Wilkins et al. 2008b; Ferreras et al.
2015; Gunawardhana et al. 2011), distinct IMFs for bulge
(closed-box star-formation with a top-heavy IMF) and disc
formation (infall star-formation with a standard Chabrier-
like IMF) as proposed by Lacey et al. (2016), or an IMF
with a larger fraction of returned mass ( e.g. Maraston 2005;
see also Madau & Dickinson 2014). Additionally, the inte-
grated cosmic star-formation history will tend to capture
all star formation events without consideration of dynam-
ical interactions that deposit formed stars into the intra-
halo medium (IHM). This means that the integrated cosmic
star-formation history naturally includes stellar material not
currently bound to observed galaxies. The combination of
the CSFH and the GSMF measured across a broad redshift
range is therefore a powerful tool to constrain the IMF, feed-
back and extraneous material stripped from galaxies.

The first comprehensive measurements of the GSMF
were made by Cole et al. (2001). This was based on the
combination of spectroscopic measurements from the 2dF-
GRS combined with photometric near-IR measurements
from 2MASS. Concurrently, Kochanek et al. (2001) also
used 2MASS to estimate the value of Ω? from K-band lu-
minosity function, although did not calculate the GSMF ex-
plicitly. Andreon (2002) subsequently demonstrated that the
shallow 2MASS survey misses dim galaxies entirely and sig-
nificantly underestimated the fluxes of late-type systems.
Similarly the later and larger studies based on SDSS and
GAMA are both reliant on the completeness of the spec-
troscopic input catalogues derived from (relatively) shal-
low drift-scan SDSS imaging. Blanton et al. (2005) demon-
strated, via adding simulated galaxies to SDSS data, that
incompleteness in the imaging and spectroscopy can be-
come severe for systems with average surface brightnesses
of µ50,r ≈ 23.5mag/sq arcsec (see Figure 2 of Blanton et al.
2005, and Figure 11 of Baldry et al. 2012). However one indi-
cation that the surface brightness problem may not be overly
severe comes from deep field studies (see, e.g. Driver 1999),
novel analysis methods designed to search for low-surface
brightness galaxies in wide-field imaging (Williams et al.
2016), and dedicated low-surface brightness studies (see,
e.g. Davies et al. 2016; Geller et al. 2012), which generally
found that large populations of low surface brightness sys-
tems do not contribute significantly to the stellar mass den-
sity. Furthermore, attempts to correct galaxy luminosity
function estimates via a bivariate brightness analysis also
failed to find extensive populations of low surface bright-
ness giant galaxies (see, e.g. Cross et al. 2001; Driver et al.
2005).

Dust attenuation has perhaps a more subtle effect. Gen-
erally dust will both diminish and redden a galaxy’s emis-
sion, and these two effects arguably cancel — the reduction
in total light is compensated for by an increase in the esti-
mated mass-to-light ratio (see, e.g. the vector shown in Fig-
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ure 6 of Bell et al. 2003, and Figure 11 of Taylor et al. 2011).
Strictly this is only true in the optically thin case, as if no
light from a particular region is able to escape then the loss
of flux cannot be recovered. The MGC team (Driver et al.
2007) attempted to quantify the impact of dust attenua-
tion on galaxy mass estimates by measuring the shift in the
recovered M?-parameter of the optical B-band luminosity
function with systemic inclination. The implicit assumption
was that, if dust attenuation is significant, edge-on systems
should be more attenuated than their face-on counterparts.
A significant M?−cos(i) effect was seen (Driver et al. 2007)
which, following extensive modelling using radiative trans-
fer codes (Tuffs et al. 2004; Popescu et al. 2000), suggested
that the average face-on central opacity of galaxy discs was
τv = 3.8; i.e. the centres of galaxies are optically thick. The
resulting impact, based on corrections using the radiative
transfer models, was to increase the estimate of the present
day integrated stellar mass density from ∼ 5% (Baldry et al.
2008) to ∼ 8% (Driver et al. 2007). However significant con-
cerns remain as to the validity of adopting a constant cen-
tral face-on opacity for all galaxy types. Indeed, direct ob-
servations of galaxies have indicated that the intrinsic na-
ture of dust in galaxies is highly variable, depending on
multiple factors such as morphology and environment (see,
e.g. , White et al. 2000; Keel & White 2001; Holwerda 2005;
Holwerda et al. 2013a,b).

Measurements of the GSMF to date reliably extend
only to 108M� whereas we have proof-of-existence of galax-
ies with masses as low as 103M� in the Local Group
(McConnachie 2012). Hence there is also some uncertainty
as to whether an extrapolation of the GSMF from 108M� to
103M� is valid. Recently the study by Moffett et al. (2016),
where the stellar mass functions was divided by galaxy type,
showed two populations with very rapidly rising slopes at the
mass-limit boundary.

All three areas (surface brightness, dust attenuation,
and low mass systems) have the potential to bring into
question the robustness of our current estimates of the
GSMF and the integrated cosmic stellar mass density. In
this paper we provide an updated GSMF, defined using the
SDSS r-band, for the completed Galaxy And Mass Assembly
(GAMA; Driver et al. 2011; Liske et al. 2015) survey equa-
torial fields.

In Section 2, we introduce the GAMA–II sample which
is approximately double the size of the GAMA–I sam-
ple used in Baldry et al. (2012), extending 0.4mag deeper
(to r = 19.8mag) and over an expanded area of 180 sq
deg. We also utilise the full GAMA panchromatic imag-
ing dataset (Driver et al. 2016b), and photometry mea-
sured consistently in all bandpasses from far-UV to far-IR
(Wright et al. 2016). The far-IR data from Herschel ATLAS
(Eales et al. 2010) in particular allow for full SED mod-
elling using codes such as magphys (da Cunha et al. 2008;
da Cunha & Charlot 2011), which accounts for dust atten-
uation and re-emission when calculating stellar masses. In
Section 3 we compare the stellar masses derived from optical
data using stellar template modelling (Taylor et al. 2011) to
those derived via the full SED modelling from magphys. In
Section 4, we derive our base GSMF, incorporating density
modelling of the GAMA volumes. In Section 5 we revert to
a simpler empirical 1/Vmax method applied in the bivariate
brightness plane to specifically explore the possible impact

of surface brightness selection bias. Finally in Section 6 we
include similar photometric data from the G10-COSMOS
regions (Davies et al. 2015a; Andrews et. al. 2016), fit with
magphys (Driver et al. 2016b) using high precision photo-
metric redshifts from Laigle et al. (2016), to provide an in-
dication as to the possible form of the stellar mass func-
tion to very low stellar masses (106M�). We discuss our re-
sults in Section 7. Throughout this work we use a standard
concordance cosmology of ΩM = 0.3, ΩΛ = 0.7, Ho = 70
kms−1Mpc−1, and h70 = Ho/70 kms−1Mpc−1. We imple-
ment a standard Chabrier (2003) IMF, and all magnitudes
are presented in the AB system.

2 DATA AND SAMPLE DEFINITION

The Galaxy And Mass Assembly (GAMA; Baldry et al.
2010; Driver et al. 2011; Liske et al. 2015; Hopkins et al.
2013) survey is a large multi-wavelength dataset built upon
a spectroscopic campaign aimed at measuring redshifts
for galaxies with r < 19.8 mag at > 98% completeness
(Robotham et al. 2010). The survey’s complementary multi-
wavelength imaging is in 21 broadband photometric filters
(Driver et al. 2016b) spanning from the far-UV (FUV) to
the far-IR (FIR). Given this wealth of broadband imaging,
we are able to calculate matched photometry for the pur-
poses of estimating galaxy stellar masses. We use 21-band
photometry contained in the GAMA lambdar Data Release
(LDR), presented in Wright et al. (2016). The LDR photom-
etry is deblended matched aperture photometry accounting
for each image’s pixel resolution and point spread function.
Apertures used in lambdar are defined using a mixture of
source extractions on the SDSS r-band, source extractions
on the VISTA Z-band, and by-hand definitions using VISTA
Z-band images. Measurements are made for all images in the
GAMA Panchromatic Data Release (Driver et al. 2016b).

This photometric dataset is designed specifically for
use in calculating spectral energy distributions (SEDs), as
the photometry and uncertainties are consistently measured
across all passbands. Furthermore, as the photometry is
matched aperture, there exists an estimate in every band
for every object in the sample, with a corresponding uncer-
tainty (except, of course, where there is no imaging data
available due to coverage gaps). For the calculation of rel-
evant cosmological distance parameters and redshift limits,
fluxes have been appropriately k-corrected using KCorrect

(Blanton & Roweis 2007), and redshifts have been flow-
corrected using using the models of Tonry et al. (2000) as
described in Baldry et al. (2012).

We calculate stellar masses for the LDR photometry
using two independent methods. Firstly, we fit panchro-
matic SEDs to the full 21-band dataset using the en-
ergy balance program magphys (da Cunha et al. 2008;
da Cunha & Charlot 2011). A full description of the mag-
phys fits to the GAMA LDR is provided in Driver et. al.
(2016a). magphys utilises information from the UV to
the FIR to estimate the total stellar mass of each
galaxy from both visible and obscured stars, assum-
ing Bruzual & Charlot (2003) (BC03) models, a Chabrier
(2003) initial mass function (IMF), and the Charlot & Fall
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(2000) dust obscuration law. Secondly, we use the measure-
ment of Taylor et al. (2011) who estimated stellar masses
by fitting a comprehensive grid of SED templates to pho-
tometry from the SDSS u-band to the VIKING Ks-band,
applied to our updated LDR photometry. Their technique
uses stellar population synthesis models with exponentially
declining star-formation histories, without bursts, and the
same BC03 models and Chabrier (2003) IMF as magphys,
but uses a Calzetti et al. (2000) dust obscuration law. In
addition to this difference in implemented dust obscuration
law, the predominant differences between these two methods
are:

• the wider range of photometric filters (and energy bal-
ance) used in magphys;
• the incorporation of bursty star-formation histories in

magphys;
• a sparser grid of star formation histories in magphys.

For clarity, throughout this work we refer to stellar mass
estimates from magphys, which utilise the full far-UV to
far-IR bandpass, as ‘bolometric’ masses, and stellar masses
from our stellar population synthesis templates, which are
fit across the near-UV to near-IR passbands, as ‘optical’
masses.

Using these two methods, we check for systematic dif-
ferences in our estimated stellar masses. By comparing the
two sets of mass estimates, we can explore how our subse-
quent fits are systematically affected by our choice of stellar
mass estimation. In particular, an observed difference in the
mass estimates (and GSMF fits) can indicate the impact of
optically thick dust on our masses (as magphys includes
consideration of optically thick dust, whereas our optically
estimated masses do not).

Figure 1 shows a compendium of the four main compar-
ison planes that demonstrate systematic differences; namely
variations as a function of stellar mass (upper left), dust-
to-stellar mass ratio (upper right), galaxy inclination (lower
left), and magphys burst fraction over the last 2 Gyr (lower
right). We note that there are two populations that separate
out in the upper panels, most notably in the dust-to-stellar
mass ratio comparison. The most systematically different
stellar masses are localised at small stellar masses, high
dust-to-stellar mass ratios, and at higher magphys burst
fraction. Each of these properties is consistent with belong-
ing to the predominantly young and disc-dominated portion
of the sample, where bursts and variations in the dust ob-
scuration prescription are likely to have the most impact.
As a result, we postulate that the differences seen in the
mass estimates stem predominantly from the differences in
libraries, models, and burst prescriptions implemented in
our fitting procedures. However despite these visible dif-
ferences, we find that 94.8% of the sample are contained
within |∆ log10 M | ≤ 0.2 for the entire sample. This frac-
tion increases to 97.8% if we select only masses with mag-
phys goodness-of-fit 0.5 ≤ χ2

ν ≤ 1.5. For the low redshift
portion of the data (0.002 < z < 0.1), there are 86.0%
of masses within |∆ log10 M | ≤ 0.2, and 88.8% when se-
lecting 0.5 ≤ χ2

ν ≤ 1.5. In general, the optically derived
masses return slightly higher stellar masses (median offset
∆ log10 M = log10 MOPT−MBOL = 0.03) than the bolomet-
rically modelled masses, and (as there is no obvious trend in
inclination) there appears to be no indication of significant

quantities of optically thick dust. All of these systematic
shifts in masses are well within both the typical quoted mass
uncertainty (median mass uncertainty δ log10 M = 0.10),
and within the width of the central 68th percent range
( i.e. 1σ) of the distribution (σM = 0.14).

Finally, we implement a correction to account for
flux/mass missed by the matched aperture photometry de-
scribed in Wright et al. (2016). To correct for systematically
missed flux/mass, we utilise the GAMA Sersic profile fits to
our sample. We calculate the linear ratio between the mea-
sured Sersic flux and aperture flux for each source (this is
the same aperture correction described in Taylor et al. 2011,
and is often referred to as the ‘fluxscale’ factor in GAMA
data products and publications). This correction has the ef-
fect of preferentially boosting high-mass sources, as stellar
mass is loosely correlated with galaxy Sersic index n and (in
a fixed finite aperture) galaxies will increasingly miss flux
with increasing n. However, as this correction is based on
the empirically estimated Sersic fits (which are themselves
possibly subjected to random and systematic biases), we
provide the results for the uncorrected masses in Appendix
A. These fits provide lower limits for the various parameters
estimated in this work.

2.1 Additional systematic biases

By estimating our stellar masses using our ‘optical’ and
‘bolometric’ methods, we attempt to explore how the stel-
lar mass function is affected by some of the choices and
assumptions that have been made in this work (such as
the impact of dust and the allowed burstiness). However
these tests certainly do not encompass the full gambit of
assumptions implicit to stellar mass estimation using stel-
lar population synthesis (SPS) models. Such assumptions
are required because of our uncertainty of, for example, the
stellar initial mass function (Driver et al. 2012), the contri-
bution of thermally-pulsing asymptotic giant branch (TP-
AGB) stars (Maraston 2005; Bruzual 2007; Conroy et al.
2009), the choice of parametrization of star formation histo-
ries (Fontana et al. 2004; Pacifici et al. 2015), modelling of
bursts (Pozzetti et al. 2007), and more. Here we briefly dis-
cuss the effect of some of these assumptions, and derive an
estimate of the systematic uncertainty required to be added
to our estimates of stellar masses and their derived quanti-
ties.

Systematic effects originating from our uncertainty in
the stellar IMF are well documented in the literature, and
there is an ongoing debate as to whether the shape of the ini-
tial mass function is well described by something akin to the
Chabrier (2003) IMF, or whether it is better described by
a top-heavy (Baldry & Glazebrook 2003) or bottom-heavy
(Kroupa et al. 1993) function, or whether there is a single
valid description for the IMF over all times (Wilkins et al.
2008a). Generally, variation of the IMF manifests itself as a
shift in the stellar population mass-to-light ratio, and thus
as a scaling of the estimated mass of each galaxy, as the
IMFs typically differ in their treatment of only the most
and least massive stars (Bell et al. 2003; Driver 2013). This,
in turn, means that a change in the IMF will cause a mul-
tiplicative scaling of estimated quantities such as M? and
Ω?. Driver et al. (2012) provided a prescription for convert-
ing between some of the various popular IMFs in the lit-
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IMF M?/M?,Ch

Salpeter (1955) 1.53

Kroupa et al. (1993) 2.0
Kroupa (2001) 1.0

Chabrier (2003) 1.0

Baldry & Glazebrook (2003) 0.82
Hopkins & Beacom (2006) 1.18

Table 1. Multiplicative factors for converting between stellar

masses and mass densities that are estimated using different ini-

tial mass functions, relative to the Chabrier (2003) IMF used in
this work.

erature, which we reproduce here in Table 1. By providing
this table we wish to emphasise that the estimates of M?

and Ω? provided in this work are valid only for the Chabrier
(2003) IMF, and that these values are highly sensitive to the
choice of IMF. Nonetheless, in the case where the variation
in the IMF can be well described by a multiplicative scaling
of overall stellar mass, Table 1 should allow the conversion
of our estimated parameters between the Chabrier (2003)
and other popular IMFs. Note that as these corrections are
only valid in the case of a single non-evolving IMF, or when
analysing galaxies over a fixed epoch (Conroy et al. 2009).

In addition to the uncertainty about the shape of the
IMF, additional SPS uncertainties can lead to significant
systematic biases in stellar mass estimation. Conroy et al.
(2009) provide a detailed discussion of uncertainties in SPS
masses related to, in particular, TP-AGB stars, horizontal
branch stars, and blue straggler stars. Each of these popula-
tions are poorly constrained in SPS models, due to their rar-
ity and difficulty to constrain observationally. Conroy et al.
(2009) conclude that the typical uncertainty on their mass
estimates at z ∼ 0 range from ∼ 0.1 dex to ∼ 0.4 dex, at
95% confidence and for a range of galaxy colours and magni-
tudes, due to uncertainty in each of these parameters. Fur-
thermore, this uncertainty is not restricted to stellar masses
estimated using SPS models. Gallazzi & Bell (2009) show
that, using either spectral or photometric estimates of stel-
lar mass-to-light ratios, one can reach a limiting accuracy
of only ∼ 0.15 dex in the regime where a galaxy has un-
dergone recent bursts of star formation. Galaxies with more
passive histories can be more accurately constrained in their
study; the highest signal-to-noise sources which, are domi-
nated by an old stellar population, having constraints better
than 0.05 dex (albeit without consideration of the effects of
TP-AGB or HB stars, nor the impact of dust).

Given these systematic biases in estimating stellar mass,
it is therefore necessary to encode our systematic uncer-
tainty into our results, separate from the uncertainty due to
our fitting and sample. Therefore, throughout this work we
will consistently provide two uncertainties on each of our es-
timates ofM? and Ω?; i.e. Ω? = Val±σfit±σsys. Here σfit is
the uncertainty due to our sample and fitting procedure, and
incorporates both random uncertainty due to the fit optimi-
sation (discussed further in Section 3.4), and the uncertainty
due to cosmic variance (where relevant). For the parameter
σsys we choose a fairly conservative 0.2 dex (58%) uncer-
tainty, encompassing those expected by both Conroy et al.
(2009) and Gallazzi & Bell (2009). This value is large, eas-
ily dominating over uncertainties quoted on M? and Ω? in
previous works that did not incorporate a quantification of

this uncertainty. This is an indication that the uncertainty
on our measurement is likely to be dominated by these sys-
tematics, and that improvement in the estimation of Ω? in
particular will be limited by the reduction of uncertainty of
stellar mass modelling in the future.

Finally, we also quantify the systematic uncertainty on
the Schechter function slope parameters α1 and α2 (see Sec-
tion 3.1). While a constant systematic bias in stellar mass
will not cause a change in the Schechter function slope, a
mass-dependent systematic bias may have this effect. To
quantify the slope systematic uncertainty we measure the
change in mass function slope when applying a mass depen-
dent systematic bias of the form M?,sys = 0.95 ×M? + C1

and M?,sys = 1.05×M?+C2, where the constants C1 and C2

are chosen such that 〈M?,sys〉 = 〈M?〉. These functions bias
our stellar masses by ∆M? > 0.2 dex across the mass range
of our sample, and so simulate a mass dependent systematic
bias on the same scale as the (conservative) systematic mass
bias we adopted forM? and Ω?. Fits to these biased masses
do exhibit a change in the Schechter function slope param-
eters, and indicate a conservative systematic uncertainty on
α is σsys = 0.15. We adopt this value for the remainder of
this work.

3 THE DENSITY-CORRECTED
MAXIMUM-VOLUME GSMF

Our primary method to calculate the GSMF uses a density-
corrected maximum-volume (DCMV) weighting to deter-
mine the number density distribution of sources, cor-
rected for absolute-magnitude based observational biases
( i.e. Malmquist (1922) bias). The typical maximum-volume
corrected number density (Schmidt 1968) is calculated by
weighting each galaxy by the inverse of the comoving vol-
ume over which the galaxy would be visible, given the mag-
nitude limit of the sample, 1/Vmax,i. Saunders et al. (1990)
and Cole (2011) extend this method to correct for the pres-
ence of over- and under-densities in the radial density distri-
bution caused by large-scale structure. This is done by defin-
ing a fiducial density between two redshift limits za and zb,
and using the ratio of instantaneous density to fiducial den-
sity to weight sources, thus avoiding bias due to over- and
under-densities caused by large-scale structure. Weigel et al.
(2016) showed that this method is robust to observational
biases, and indeed returns fits equivalent to those returned
by more complex methods, such as the stepwise maximum
likelihood method described by Efstathiou et al. (1988).

The DCMV GSMF is defined by first calculating an
individual weight for each source in our sample. The DCMV
weight per object is

Wi =
(
V ′max

)−1
=

[
1

Vmax

〈δf 〉
δi

]
, (1)

where Vmax is the standard maximum-volume factor from
Schmidt (1968), δi is the instantaneous running density of
galaxies at the redshift of galaxy i, and 〈δf 〉 is the average
density of a chosen fiducial population. In this work, we de-
fine this fiducial average density 〈δf 〉 using the sample of
GAMA targets with M? > 1010M� and 0.07 < z < 0.19.
We choose this sample because it exhibits a fairly uniform
density, is not affected by incompleteness, and is affected
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Figure 1. Comparison of bolometric stellar masses returned by magphys to those measured using the optical-only method presented

in Taylor et al. (2011), as a function of magphys stellar mass (panel ‘a’), magphys dust mass (panel ‘b’), galaxy inclination (panel ‘c’),
and magphys burst fraction over the last 2 Gyr (panel ‘d’). While all of these figures show typical agreement within ±0.2 dex, there are

systematic trends visible in each distribution which we attribute to the difference in chosen dust attenuation and burst models between

the codes.

by cosmic variance at the < 10% level (using the cosmic
variance estimator of Driver & Robotham 2010; accessible
at cosmocalc.icrar.org). Nonetheless, cosmic-variance re-
mains a non-negligible source of uncertainty and therefore
is incorporated into all relevant parameter estimates. Panel
(a) of Figure 2 shows the relative cumulative density of each
of the 3 GAMA equatorial fields, and the region over which
our fiducial density is determined. Similarly, Panel (b) shows
the differential running density of each field. Finally, panel
(c) shows the fiducial sample in mass-redshift space, and
shows that the sample is complete in this redshift range.

The cumulative density distributions of each GAMA
equatorial field indicate that, integrating the number den-
sity out to z = 0.1, G12 is over-dense relative to our fiducial
density by a factor of 1.02, while G09 and G15 are under-
dense relative to our fiducial density by a factor of 1.36 and
1.22 respectively. This inter-field variation is in good agree-
ment with the expected cosmic variance between the GAMA
fields, which is ∼ 23% per field using the cosmic variance es-
timator of Driver & Robotham (2010).

3.1 Schechter function formalism

In this work we will fit mass functions to a range of sam-
ples. For this, we elect to use a 2-component Schechter
(1976) function. The Schechter function is a specialised form
of the logarithmic truncated generalised gamma distribution

(TGGD1; Murray et. al. prep):

Γt(x;α, β, s,m) =
log (10)β

(
10(x−s)

)α+1

exp
(
−10(β(x−s))

)
sΓ
(
α+1
β
, (10(m−s))

β
) ,

(2)
where Γ is the incomplete upper gamma distribution, α is
the power-law slope of the TGGD, β is the rate of expo-
nential cut-off of the TGGD, s is the scale factor that de-
termines the transition point between the power-law and
exponential regimes, and m is the lower-limit that defines
the truncation point of the TGGD. The TGGD reduces to
the standard Schechter function when β = 1, and (in this
form) the TGGD parameters α and s reduce to the normal
Schechter parameters α andM?, and we define m to be the
minimum mass used in our sample Mmin

? ;

S(M ;M?, α,Mmin
? ) ∼ Γt

(
M ;α, 1,M?,Mmin

?

)
. (3)

As we are using the logarithmic TGGD, masses M ,M?, and
Mmin
? are all assumed to be logarithmic also. We choose to

formulate the Schechter function in this way ( i.e. described
using the specialised form of the logarithmic TGGD, rather
than using a directly defined Schechter function) as the

1 R package TGGD is available on the Comprehensive R Archive

Network (CRAN)
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Figure 2. The running density of the GAMA data in each of
the 3 equatorial GAMA fields. Panel (a) shows the individual cu-

mulative densities of each field separately, relative to the fiducial

density. Panel (b) shows the relative differential density of each
field. In the first two panels, the dotted vertical lines mark the

redshift boundaries of our fiducial sample. Panel (c) shows the

distribution of stellar mass against redshift, with the sample used
for estimating the fiducial density highlighted in red, the density

defining population in orange, and our low-z mass-limited sample
highlighted in blue. The green line shows our mass-limit function

used in fitting the GSMF. From these distributions, we conclude

that the fiducial sample is not adversely impacted by substantial
stellar mass incompleteness or variations in density.

TGGD is a fully analytic PDF, where the normalisation pa-
rameter is able to be evaluated at arbitrary α and M? as:

φ? =
Γt
(
M?;α, 1,M?,Mmin

?

)
log (10) exp (−1)

. (4)

Thus this formulation does not require any (often CPU
intensive) numerical integration to estimate the function
normalisation. Using the TGGD to describe the single
Schechter function, we define the double Schechter as the
sum of two single Schechter functions, with a fractional con-

tribution of component 1, fmix, integrated down to Mmin
? :

Sd(M ;M?, α1, α2, fmix,M
min
? ) =

S
(
M ;M?, α1,M

min
?

)
× fmix+

S
(
M ;M?, α2,M

min
?

)
× (1− fmix) . (5)

The double Schechter function is useful for fitting distri-
butions that are expected to contain multiple components,
but which we elect to fit with a coupled M?. This has
become somewhat common practice in the literature (see,
e.g. , Peng et al. (2010); Baldry et al. (2012); Eckert et al.
(2016)), and we follow this procedure as it enables us to
more readily compare our results with these previous GSMF
estimates.Nonetheless, fits with a decoupledM? have merit,
and can encode interesting physics (see, e.g. , Kelvin et al.
2014; Moffett et al. 2016). We therefore opt to include the
decoupled GSMF fits in Appendix B, for examination by the
interested reader.

Our formulated distribution can then be fit to individ-
ual data in two ways: by specifying individual weights based
on some relevant criteria ( e.g. density corrected maximum
volume weights) and fitting over a fixed mass range, or by
defining an expected limiting stellar mass M lim

?,i per source
( e.g. where observational incompleteness becomes impor-
tant for that source, in the mass plane). In the latter case,
the log-likelihood of each source is then calculated with con-
sideration of the limiting stellar mass of that source given the
shape of the Schechter function at that iteration. In this way,
the latter procedure includes information of the mass func-
tion in the optimisation process in a more considered fash-
ion than the former (the optimisation method is discussed
in Section 3.3). We therefore fit our distributions using the
mass limit optimisation procedure, whereby we define limits
using an analytic expression similar to that of Moffett et al.
(2016), but modified to match this sample of masses (see
Section 3.2). Note, however, that as we no longer have a sin-
gle fixed mass limit, our mixture fraction fmix must now be
modified per object to reflect the effective mixture fraction
given each individual source’s mass limit, fmix,i:

Imix
1,i = fmix ×

M lim
?,i∫

Mmin
?

S
(
M ;M?, α1,M

min
?

)
dM, (6)

Imix
2,i = (1− fmix)×

M lim
?,i∫

Mmin
?

S
(
M ;M?, α2,M

min
?

)
dM, (7)

fmix,i =
Imix
1,i

Imix
1,i + Imix

2,i

. (8)

Using these individualised limits and mixture fractions, we
define the log-likelihood of our fit:

lnL =
∑
i

log
[
Sd
(
Mi;M?, α1, α2, fmix,i,M

lim
?,i

)]
× δi
〈δf 〉

,

(9)
and optimise simultaneously for M?, α1, α2, and fmix. The
primary benefit of implementing the mass limits in this way
is that it at no point requires binning of the data in any
form. After this optimisation, we can calculate the values
of φ?1 and φ?2 using the fit parameters and the defined fidu-
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cial population number density, recognising that the ratio
of φ? values is directly proportional to the integral of the
individual Schechter components:

Imix
1 = fmix ×

inf∫
Mmin

?

S
(
M ;M?, α1,M

min
?

)
dM, (10)

Imix
2,i = (1− fmix)×

inf∫
Mmin

?

S
(
M ;M?, α2,M

min
?

)
dM, (11)

φ?1
φ?2

=
Imix
1

Imix
2

. (12)

3.2 Defining Mass Limits

Our mass limit function is shown graphically as the green
line in panel ‘c’ of Figure 2 and is known to exhibit > 97%
completeness for all sources in GAMA out to z = 0.1, with-
out biases in mass and/or colour. The process for defining
these limits typically involves visually inspecting the distri-
bution of stellar masses as a function of redshift (and vice
versa) and determining the point at which the sample begins
to become incomplete. Once this has been done in a series
of bins of stellar mass and redshift, a polynomial is then fit
to the limits.

However, this process is liable to be biased by the eye
of the person estimating the limits ( i.e. no two people will
be likely to estimate the same limits), and as such we imple-
ment automated methods for determining mass limits. The
MassFuncFitR package contains a function that performs the
above in an automated manner, by estimating the turn-over
point of the number density distribution in bins of comov-
ing distance and stellar mass independently. In each bin of
comoving distance, the function takes the mass at the peak
density as the turn over point, and in bins of stellar mass the
function takes the largest comoving distance at median stel-
lar mass density as the turn-over point. Additionally, there
is the option to bootstrap this estimation procedure to re-
fine the limits. Indeed, testing of this automated procedure
indicates that it is less prone to the introduction of biases
than occurs when fitting for mass limits by hand/eye, and
produces a sample that is not biased with respect to colour
(see Appendix C).

3.3 Optimisation procedures

Once we have our per-object weights, we are able to both
visualise and fit the GSMF. For our fits, we utilise a Markov-
chain Monte-Carlo (MCMC). For our MCMC optimisation,
we calculate the best-fit Schechter function parameters by
sampling from the joint posterior-space of the M?, α1,
α2, and fmix parameters. To do this we first assign priors
to each parameter; we choose to use uniform priors over
the regions log10M? ∈ [8, 11.6], α1,2 ∈ [−2.5, 1.5], and
fmix ∈ [0, 1]. Given these priors, evaluated at some sam-
ple point, Vp(log10M?, α1, α2, fmix), we can then evaluate
the log-posterior as:

lnP = lnVp + lnL (13)

where lnL is the same as in Equation 9. We sample the
posterior space using an Independence Metropolis sampler,

and examine the posterior covariances directly to check for
stability. For our MCMC, we utilise the Laplace’s Demon
package in R, available on the Comprehensive R Archive
Network (CRAN). Once we have optimised these parame-
ters, we fit for the total mass function normalisation atM?,
and use the fmix parameter to determine the fractional con-
tributions from each component, thus determining the two
φ? parameters. We then utilise the full posterior distribu-
tion to estimate the uncertainty on each of our φ? values,
incorporating consideration for the covariances between pa-
rameters.

3.4 Verifying fit uncertainties

In order to verify that the uncertainties from our MCMC
are a true reflection of the data, we perform 100 Jackknife
resamplings of the data, and recalculate our GSMF parame-
ters on the reduced dataset. The final parameter uncertain-
ties are then compared to the absolute range in jackknifed
parameters. This resampling and re-fitting allows us to en-
sure that the MCMC uncertainties are not underestimated,
as can be the case when the likelihood used is not an ap-
propriate reflection of the dynamic range of the variables
being tested, or when the model is not a true generative
distribution for the data. The latter is particularly relevant
given that previous studies indicate that the GSMF is (at
simplest) a summation of many single component Schechter
functions, rather than just two (Moffett et al. 2016). There-
fore, should our two component approximation be overly-
simplistic we may artificially under-estimate the uncertain-
ties on each of the function parameters.

Furthermore, in our MCMC fits to the double Schechter
function we do not constrain the value of φ?1 or φ?2 directly.
Rather, we fit for the mixture and calculate the normali-
sations post-facto. As a result, we do not directly measure
an uncertainty on these parameters either. We therefore cal-
culate the uncertainties associated with each φ? parameter
by calculating the fit (and subsequently the individual com-
ponent) normalisations over a range of the possible fit pa-
rameters. To do this, we calculate the normalisation of the
fit components for 1000 randomly selected stationary sam-
ples2 of the MCMC chains, and use the standard deviation
of the fit normalisations to be representative of the normal-
isation uncertainty. This method incorporates all possible
covariances between parameters.

3.5 Results of GSMF fits

The GSMFs measured using this weighting method, for the
two stellar mass estimation methods, are shown in Figure
3. In the figure, we can see that our data are modelled well
by the two component Schechter function, and that our two
samples are in good agreement regarding their various fit pa-
rameters. The best-fit GSMF Schechter parameters for each
sample are given in Table 2, along with both random and
systematic uncertainties on each parameter, and a sample

2 Stationary samples are samples of the MCMC chains that are

deemed to originate, in the correct proportion, from the true pos-

terior distribution (the ‘stationary’ distribution).
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of literature GSMF fits, for reference. Note that the un-
certainties in Figure 3 show only the random component
from the optimisation and data/cosmic variance. We note
that our estimate of M? is in tension with some of the pre-
vious estimates, being larger than some ( i.e. Baldry et al.
2012; Peng et al. 2010) smaller than others ( i.e. Eckert et al.
2016), and in agreement with the most recent work from
SDSS (Weigel et al. 2016). However, comparison between
the quoted uncertainties of M? from each work with the
observed scatter in the estimates themselves suggests that
this tension is likely driven by unquoted systematic uncer-
tainties rather than random uncertainties. Indeed, all of the
quoted M? values agree within our nominal systematic un-
certainty of 0.2 dex.

However, one would naively expect the measurements
between our dataset and that of Baldry et al. (2012) to be in
reasonable agreement. This is not true with respect to M?

in particular. We argue that this difference is primarily the
result of the dedicated by-hand effort which has since been
undertaken to ensure photometry of the brightest systems in
GAMA are accurately determined (see Wright et al. 2016).
These systems were disproportionately shredded (compared
to fainter, smaller systems) in the original GAMA aperture
catalogues. As a result their fluxes were underestimated, and
so too their stellar masses.

4 THE VOLUME-CORRECTED BIVARIATE
BRIGHTNESS DISTRIBUTION

The DCMV weighting method for estimating the GSMF,
as stated in Section 3, incorporates observability corrections
based solely on absolute magnitude. However, we know that
there are additional selection effects within the GAMA sam-
ple, specifically around source surface-brightness and com-
pactness. For example, due to the source definition using
SDSS r-band imaging, sources that have apparent r-band
surface brightnesses (averaged within Re) lower that 23 mag
arcsec−2 will suffer incompleteness in our sample at the
30% level, and at the 75% level below 24.5 mag arcsec−2

(Blanton et al. 2005; Baldry et al. 2012; Cross et al. 2001).
In order to investigate these additional known (and un-
known) selection effects into our estimate of the GSMF, we
can derive empirical weights from the data itself and exam-
ine the impact this has on the GSMF.

By plotting the bivariate brightness distribution (BBD)
of stellar mass M? and absolute average surface bright-
ness within the effective radius 〈µe〉abs, we are able to vi-
sualise the majority of the selection boundaries present in
the GAMA data. Panel (a) of Figure 5 shows the observed
bivariate brightness distribution for our sample of bolomet-
ric stellar masses, with lines overlaid that mark the selection
boundaries of the sample (see Driver 1999). These bound-
aries are a mixture of observational unavoidable and inten-
tionally imposed, owing both to the limitations of the data
being analysed and the design of the GAMA survey. How-
ever, as these selection boundaries are typically defined using
apparent flux and apparent size (or variations thereof), the
boundaries shown in the absolute M −〈µe〉abs plane are not
sharp; rather they are blurred systematically as a function
of mass-to-light ratio and redshift. We show the boundaries
that would be measured at two characteristic mass-to-light

ratios: M/L = {1, 3}. These mark the ∼ 90th percentile lim-
iting M/L values for the GAMA low-z sample. From these
boundaries we can infer the point of impact of incomplete-
ness on our sample in M?-〈µe〉abs space, and therefore es-
timate where our analysis becomes biased. We do this by
examining which selection boundaries intersect with high-
density areas of the BBD. Note also that, while panel (a)
suggests that our incompleteness is most prominent at the
spectroscopic and surface-brightness boundaries, to make an
accurate inference we should compare each boundary to the
number-density version of the BBD ( i.e. panel ‘c’), rather
than the raw-count version, so that we can see if the post-
correction number density is being impinged upon.

In previous studies of the GSMF, estimating surface
brightness incompleteness has sometimes been achieved
through simulations. For example, Blanton et al. (2005) do
this by assuming a simple Gaussian analytic form for the sur-
face brightness distribution of galaxies, and injecting galax-
ies sampled from this distribution into their imaging, for
extraction and analysis. This allows an estimation of the
fraction of successfully extracted galaxies (as a function of
surface brightness), and thus an incompleteness estimate,
to be made. However, inspection of the measured surface
brightness distribution of galaxies shows this distribution to
be somewhat more complex than a simple Gaussian distribu-
tion would suggest and that, indeed, the uncertainty on the
true surface brightness distribution means that performing
such an analytic estimate is likely to be biased itself.

Therefore, to estimate our surface-brightness incom-
pleteness, we take a more pragmatic and empirical approach.
We start by deriving an average weight per bin for each cell
in the BBD. Within each bin we determine the weighted
median redshift, where the weights are those determined by
our density sampling. We then determine the volume visible
to each bin and then divide the summed density-corrected
weights by twice the median volume. By defining weights in
this way, we assume that all selection effects bias our sam-
ple to lower redshift (rather than, e.g. cause a net decrease
in number-counts across the entire redshift range) and ef-
fectively test the assumption that, in bins of both stellar
mass and surface brightness, the distribution of an unbiased
sample of galaxies will have a V/Vmax distribution that is
uniform over [0, 1]. If this assumption is correct, then cal-
culating the value of binned Vmax in this way should allow
us to account for all systematic effects in the data, known
or otherwise, without having to explicitly define them. In
this way our BBD is somewhat different from a convention-
ally estimated BBD, such as that presented in Driver et al.
(2005). We then use these weights to calculate the binned
number density BBD, and can subsequently collapse this
2D distribution along the surface brightness axis to recover
the binned stellar mass function. Naturally this is not as
statistically elegant as our first method (in data analysis,
not binning is always preferable to binning), however the
exercise is useful in determining if subtle, hidden selection
effects have a substantial impact on the GSMF (compared
to just performing the absolute magnitude based weighting
outlined in Section 3).

Panel (b) of Figure 5 shows the weights derived for each
bin, and panel (c) shows the final corrected BBD for the
sample. Firstly, we note that the distribution of weights is
not curved or diagonal, but rather exhibits a fairly linear
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Figure 3. The galaxy stellar mass function fits as estimated using our two mass samples. The mass function using bolometric magphys

stellar masses is shown in blue, and using our optical masses is shown in red. Figures are annotated with the fit parameters and

uncertainties, without inclusion of systematic uncertainties; i.e. these fits show only random uncertainties due to fitting and cosmic
variance (as determined using the estimator from Driver & Robotham (2010)). Our standard systematic uncertainty on M? of 0.2 dex

is not shown.

Dataset M? α1 φ?1 α2 φ?2
[log10(M�)] (×10−3) (×10−3)

Bolometric 10.78± 0.01± 0.20 −0.62± 0.03± 0.15 2.93± 0.40 −1.50± 0.01± 0.15 0.63± 0.10

Optical 10.76± 0.01± 0.20 −0.55± 0.04± 0.15 3.10± 0.42 −1.49± 0.02± 0.15 0.75± 0.12

Peng et al. (2010) 10.67± 0.01± 0.2 −0.52± 0.04± 0.15 4.03± 0.12 −1.56± 0.12± 0.15 0.66± 0.09

Baldry et al. (2012) 10.66± 0.05± 0.2 −0.35± 0.18± 0.15 3.96± 0.34 −1.47± 0.05± 0.15 0.79± 0.23

Weigel et al. (2016) 10.79± 0.01± 0.2 −0.79± 0.04± 0.15 3.35± 2.31 −1.69± 0.05± 0.15 0.17± 0.01

Eckert et al. (2016) 10.87+0.33
−0.27 ± 0.2 −0.52+0.87

−0.49 ± 0.15 9.00+6.36
−8.47 −1.38+0.13

−0.35 ± 0.15 3.25+3.00
−2.81

Table 2. Best fit parameters of the double Schechter function for our two data sets and fitting methods, when using density-corrected

maximum-volume weights. As a guide, we also show the double Schechter function fits from Peng et al. (2010), Baldry et al. (2012),

Weigel et al. (2016), and Eckert et al. (2016). Our best-fit Schechter function parameters are shown in bold. Note these fits show both
random uncertainties due to fitting and cosmic variance (as determined using the estimator from Driver & Robotham (2010)), and our
standard systematic uncertainties on M? and α due to uncertainty in SPS modelling.

increase in weight solely as a function of stellar mass. This
suggests that our sample is not strongly sensitive to surface-
brightness effects, even down to our spectroscopic complete-
ness selection limit. Indeed, examination of the distribution
of V/Vmax values in bins of stellar mass shows a strong evo-
lution, whereas in bins of surface brightness only a minor
change seen. Secondly, the number-density distribution in
panel (c) appears to be reasonably well bounded by the two
diagonal selection boundaries, as the number density is de-
clining well before these limits. This suggests that there is
not a substantial population of massive low surface bright-
ness galaxies, nor highly compact galaxies, that we have
missed because of selection effects. Naturally this does not
exclude that these galaxies can exist (indeed, rare examples

of extremely massive low surface brightness galaxies have
been known to exist for decades; see Bothun et al. 1987) but
rather suggests that they do not contribute greatly to the
number-density of galaxies (Cross et al. 2001; Driver 1999;
Davies et al. 2016). Finally, panel (d) of Figure 5 shows the
binned-GSMF measured from the BBD using our bolomet-
ric masses. This is shown jointly with our DCMV GSMF,
as a demonstration of the agreement between these analysis
methods in the M? > 108M� regime. There is a slight in-
dication of a possible excess in the BBD GSMF at masses
below 108M�, suggesting that incompleteness may likely be
affecting our sample below this point.

Panels (e)-(h) of Figure 5 show the same as (a)-(d),
but for our optical-based sample of stellar masses. For this
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Figure 4. The posterior samples from our MCMC optimisation

of the GSMF using bolometrically estimated stellar masses. Up-

per triangle: the individual stationary samples (grey points), and
the mean of these samples (red cross). Lower triangle: the con-

tours containing 50, 75, and 90 percent of the posterior sam-

ples (dashed, solid, and dotted lines respectively). Diagonal:
marginalised PDFs of the posterior samples and their mean (red

dashed line) and standard deviation (red dotted lines).

sample we can see the same trends as for the bolometric
mass sample, and similarly good agreement between the two
GSMFs for this sample.

4.1 Extension to Future Surveys

We have derived four estimates of the GSMF for the full
GAMA 0.002 < z < 0.1 sample, summarised in Table 2. We
find GSMFs that are in agreement with previous GAMA es-
timates, for fits to a limiting mass of 107.5M�. However,
there is a suggestion that we may be incomplete below
108M�, where we become restricted in our fitting power
by the surface-brightness limit of SDSS imaging (which was
used to select the GAMA sample).

Our estimates of the GSMF are predominantly limited
by the selection boundaries in spectroscopic completeness
and surface brightness. Figures 5 and 6 demonstrate these
selection boundaries, as well as other boundaries that affect
our analysis to a lesser degree (namely compactness, sparse-
ness, and rarity). Despite these limits, however, we are able
to construct a GSMF that is representative down to masses
as low as ∼ 106M�, by simply continuing our empirical re-
construction beyond 107.5M�, as we will show in Section 4.2.
There is evidence of a systematic incompleteness bias below
108M�, which confirms our concerns regarding incomplete-
ness, but nonetheless the mass function shows continuity
consistent with the extrapolation below this limit ( i.e. the
impact is subtle, not severe).

Because of the incompleteness effects in GAMA, it is de-

sirable to extend this work using future deep large-area sur-
veys if we wish to constrain the GSMF to yet lower masses
using a single sample. To demonstrate this, Figure 6 shows
the selection boundaries for two future surveys: the Wide
Area Vista Extragalactic Survey (WAVES; Driver et al.
2016b), and the galaxy evolution survey on the Mauna Kea
Spectroscopic Explorer (MSE; McConnachie et al. 2016).
WAVES and MSE will both utilise imaging that is substan-
tially deeper than the GAMA SDSS imaging, and will have
high-completeness spectroscopic campaigns that push many
magnitudes fainter than was possible for GAMA. As a result,
these surveys will both substantially expand the available
parameter space available to be studied for galaxy evolu-
tion, as can be seen by the expansion of the limits in Figure
6. As a demonstration, we include galaxies measured in the
local-sphere in this figure, to indicate where it is expected
that the majority of galaxies might lie in this plane (be-
yond the limits of GAMA). For these points, we have used
the local sphere catalogue from Karachentsev et al. (2004)
and the “maintained” local group sample from McConnachie
(2012). Finally, we include the selection-boundaries of a low-
surface brightness survey using the Dragonfly telephoto ar-
ray (Abraham & van Dokkum 2014), which clearly opens up
a very different part of the parameter space.

The samples of Karachentsev et al. (2004) and
McConnachie (2012) are particularly useful in inferring the
likely incompleteness of our sample. In particular, it is telling
that half of the McConnachie (2012) sample with mass
greater than 107.5M� lies below our nominal surface bright-
ness completeness limit. This provides further suggestion
that our sample is likely incomplete below this level. It is
clear that the next generation of wide-area spectroscopic
surveys, such as WAVES-wide, will be paramount in deter-
mining the shape of the low-mass tail of the stellar mass
function. Prior to the execution of these large surveys, how-
ever, we can perform a similar analysis by combining the
wide-area power of GAMA with a more directed, deeper
survey, such as the G10-COSMOS.

4.2 Exploiting GAMA + G10-COSMOS

While we will require surveys like WAVES and MSE in
order to constrain the GSMF in a robust fashion below
107.5M� using a single dataset, we note that by splicing our
GAMA equatorial sample with the G10-COSMOS sample of
Andrews et. al. (2016), we can generate an indication of how
the GSMF behaves to masses lower than 107.5M�. For the
G10-COSMOS dataset, we use lambdar photometric mea-
surements of approximately 170,000 galaxies compiled by
Andrews et. al. (2016), along with a combination of spectro-
scopic and photometric redshifts from Davies et al. (2015a),
taken predominantly from Laigle et al. (2016), and fit these
galaxies with magphys (as we did with the GAMA equa-
torial sample, see Driver et. al. 2016a). The coverage in the
G10 field of 1sqdeg is not nearly as high as in the equatorial
GAMA fields, but the sample extends ∼ 5 mag fainter in
the r-band.

Using this combined sample, we are able to construct an
indicative GSMF to much lower masses than can be probed
by GAMA alone. We construct a simple binned GSMF for
the G10 sample, without any attempt to match samples or
normalisation to those in GAMA. This combined dataset
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Figure 5. The galaxy bivariate brightness distribution space, averaged over MC iterations, as a function of raw counts (panels a+e),
density-corrected weight per bin (panels b+f), and number density (panels c+g). Panels d+h show the binned GSMF determined by
collapsing panels c+g onto their respective x-axis. Overplotted in these panels is the DCMV GSMF for the same sample, demonstrating

agreement between the mass functions returned using these methods. Note that the binned GSMFs in panels c+d do not include the
additional cosmic variance uncertainty in their error bars.

is shown in Figure 7. Data for the binned GAMA GSMF
shown in the figure is provided as a machine readable file
alongside this work.

We see general agreement between the extrapolated
best-fit GAMA GSMF and the G10-COSMOS sample down

to masses as low as 106M�, with the exception of a modest
bump in the faint end slope seen around 107M�. This bump
is likely to arise from Eddington bias induced by the large
stellar mass uncertainties, however the similar rise in the low
mass tail of the GAMA BBD is a tantalising suggestion of,



GAMA: GSMF to z = 0.1 13

1012 1011 1010 109 108 107 106 105 104 103

Stellar Mass (h70
2 Mo)

32
30

28
26

24
22

20
18

<μ
e,

ab
s>

 (m
ag

 a
se

c−2
)

MW
M31

Malin1

GAMA Window
WAVES Window
MSE Window
DragonFly Window

Karachentsev (2004)
 McConnachie (2012)

Figure 6. The bivariate-brightness distribution for the GAMA z < 0.1 sample. We overlay the selection boundaries for GAMA, as well

as the expected limits for three future surveys: the WAVES-Wide survey on 4-MOST, a similar-time survey on MSE, and the Dragonfly
LSB survey. Furthermore, we overplot data from the local sphere and local group as a demonstration of where as-yet-undetected galaxies

beyond the local sphere are expected to lie, as well as some individual galaxies of note: Milky Way (green dot), Andromeda (orange dot),

and Malin 1 (blue dot).

Table 3. Survey parameters of GAMA, G10-COSMOS, and 3 additional surveys

Survey Area Selected Spec. Limit Surf. Brightness Resolution Pixel Width Completeness
(deg2) From (mag) Lim. (mag/arcsec2) (′′) (′′) (% within limit)

GAMA 180 SDSS 19.8 24.5 1.2 0.339 > 98
G10-COSMOS 1 HST 24.5 24.5 1.2 0.339 ∼ 40

DragonFly 180 SDSS 19.8 30.5 5.5 2.3 > 98

WAVES-Wide 1500 VST KiDS 22 26.5 0.6 0.2 > 95
MSE 12000 LSST 24 28 0.6 0.2 > 95

perhaps, a slight rise in the faint end slope of the mass func-
tion. Nonetheless, this function rejoins our extrapolation at
106M�, nominally below where we expect incompleteness to
be problematic in the COSMOS field, and so we conclude
that (for now) there appears to be no sign of any major up-
or down-turn to this limit.

Naturally this comparison is a qualitative rather than
quantitative measure. Nonetheless the agreement between

the datasets in the range of overlap is good, and overall
provides a glimpse into the very low mass population and
that extrapolation to 106M� is not unreasonable.
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5 CONTRIBUTION TO Ω?

To conclude, we can utilise our fitted GSMF to derive the
value of the stellar mass density parameter Ω? and the frac-
tional contribution of stars to the universal baryon density
Ωb. Furthermore, we can be somewhat confident in extrap-
olating our fit down to much lower masses than GAMA
alone would allow, given the consistency we see in the
GAMA+G10-COSMOS GSMF. Figure 8 shows the distribu-
tions of stellar mass number density φ, and mass density ρ,
for our final GSMF. In the figure we also compare these dis-
tributions to those from the GALFORM semi-analytic mod-
els of Lacey et al. (2016); Gonzalez-Perez et al. (2014), and
to the hydrodynamic simulations from EAGLE Schaye et al.
(2015); Crain et al. (2015).

From the mass density distribution in Figure 8, we can
see that the stellar mass density is dominated byM? galax-
ies, as has long been known. Our distributions match excep-
tionally well with the simulations, although this is somewhat
by design given that the GALFORM semi-analytic models
are calibrated to the Bj- and K-band luminosity functions
at z = 0 (Lacey et al. 2016; Gonzalez-Perez et al. 2014). We

find a final Ω? = 1.66+0.24
−0.23 ± 0.97h−1

70 × 10−3, corresponding
to an overall percentage of baryons stored in bound stel-
lar material fb = 6.99+1.01

−0.97 ± 4.09 (assuming the Planck
Ωb = 23.76× 10−3h−2

70 ), inclusive of uncertainty due to cos-
mic variance and systematic uncertainties in SPS modelling.

With respect to random uncertainties only, our estimate
represents the most stringent constraint on the bound com-
ponent of both Ω? and fb to date. As expected, however, our
estimates of both Ω? and fb are overwhelmingly dominated
by the systematic uncertainties in our mass estimation.
Nonetheless, as these systematic uncertainties are inherently
present in all estimates of stellar masses, we can still perform
an informative comparison between our value of Ω? and a
sample from the literature (seen in Figure 9). This distribu-
tion shows that, since 2008 there has been a reasonable con-
sensus regarding the estimates of Ω?. This consensus is due,
at least in part, by a consistent use of Bruzual & Charlot
(2003) SPS models in each of the post-2008 estimates (with
the exception of that from Moustakas et al. 2013, who use
a similar but nonetheless different Conroy & Gunn 2010
model), and to an increase in sample sizes with the advent
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figure indicate the masses where we believe GAMA is systematically incomplete, and where both samples have low number statistics,

respectively.

of big-data astronomy. In any case, the fact that all of these
estimates are subject to the same systematic uncertainties
indicates that, as a community, we are unlikely to gain fur-
ther significant insight into the amount of mass stored in
bound stellar systems without: a significant reduction in the
systematic uncertainties of stellar mass estimates, a signifi-
cant reduction in the masses of systems that we can analyse
(see Section 4.1), or both.

6 CONCLUSIONS

We present the revised galaxy stellar mass function for the
GAMA z ≤ 0.1 sample, expanding on the GAMA-I analy-
sis presented in Baldry et al. (2012) to the full GAMA-II
dataset in this volume. We utilise two stellar mass sam-
ples, calculated with and without consideration for the im-
pact of optically thick dust, finding no discernible differ-
ence between these samples. As in Baldry et al. (2012),
we calculate the GSMF using density-corrected maximum-
volume (DCMV) weights, defining our fiducial density us-
ing galaxies with M? ≥ 1010M� in the redshift range
0.07 < z < 0.19. Within these limits the cosmic structure

is fairly uniform, the sample is not yet affected by incom-
pleteness, and the volume is influenced by cosmic variance
at the < 10% level (using the cosmic variance estimator
from Driver & Robotham 2010), allowing for a stable con-
straint on the fiducial average density. We fit the GSMF
using a Markov-Chain Monte-Carlo and mass limits defined
in a manner that is conservative with respect to incomplete-
ness in both brightness and colour. We choose to fit the
GAMA low-z GSMF with a double Schechter (1976) func-
tion, finding best fit parametersM? = 1010.78±0.01±0.20M�,
φ?1 = (2.93±0.40)×10−3h3

70Mpc−3, α1 = −0.62±0.03±0.15,
φ?2 = (0.63±0.10)×10−3h3

70Mpc−3, and α2 = −1.50±0.01±
0.15, where the second uncertainty components on M? and
each α encode the systematic uncertainty on stellar mass
estimation due to SPS modelling uncertainties. The uncer-
tainty due to cosmic variance is included in the stated uncer-
tainties on φ?1 and φ?2. While the value ofM? here is higher
than other works in the literature, we argue that this is a re-
sult of the dedicated by-hand effort that was undertaken to
ensure photometry of the brightest systems in GAMA was
accurately determined (Wright et al. 2016).

We explore the galaxy bivariate brightness distribution
of stellar mass and absolute surface brightness in order to
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Figure 9. Left: Contribution of the full GAMA sample to Ω?, compared to previous estimates from the literature. The two blue data
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of Ω? in the left panel. This provides an indication of the level of concordance in the literature with regards to the overall shape of the

GSMF, and also of the level of variation in the GSMF required to create a significant change in the value of Ω?.

explore the possible surface brightness incompleteness of our
dataset. Our BBD GSMFs both agree well with our nominal
best-fit GSMFs from above, however there is a slight excess
in both mass samples at the lowest stellar masses. Further-
more, the location of the known GAMA selection bound-
aries, and the distributions of known local sphere galaxies
from Karachentsev et al. (2004) and McConnachie (2012),
both suggest that our sample may be incomplete below 108

in stellar mass.

To further explore the low-mass end of the GSMF,
we compare our estimated stellar mass function to the
GSMF measured using the same analysis applied to the
G10-COSMOS dataset Davies et al. (2015b); Driver et. al.
(2016a); Andrews et. al. (2016). We find good agreement be-
tween the stellar mass functions, and an indication that the
faint end slope of the GSMF is relatively well behaved down
to masses as low as M > 106M�, showing an only marginal
feature at ∼ 107M�.

We compare our measured mass function to those
from the GALFORM semi-analytic models (Lacey et al.
2016; Gonzalez-Perez et al. 2014), and to the GSMF from
the EAGLE hydrodynamic simulation (Schaye et al. 2015;
Crain et al. 2015). We find an exceptional agreement be-
tween the GALFORM semi-analytic models and our GSMF,
however this is arguably somewhat by design as the
semi-analytic models are calibrated to the Bj- and K-
band luminosity functions at z = 0 (Lacey et al. 2016;
Gonzalez-Perez et al. 2014).

We compute the value of the stellar mass density param-
eter Ω? for our mass function fit, finding Ω? = 1.66+0.24

−0.23 ±
0.97h−1

70 × 10−3, corresponding to an overall percentage of
baryons stored in bound stellar material fb = 6.99+1.01

−0.97 ±
4.07 (assuming the Planck Ωb = 23.76 × 10−3h−2

70 ), inclu-

sive of uncertainty due to cosmic variance and systematic
uncertainties from SPS modelling. Finally, using the joint
dataset from GAMA and G10-COSMOS, we conclude that
there is no strong indication of a significant up- or down-
turn in the GSMF to stellar masses greater than 106M�. We
conclude that the integrated stellar mass density of bound
material down to M > 106M� is well constrained, and that
the fraction of universal baryonic matter stored in bound
stellar material within galaxies (assuming our various SPS
model parameters) is unlikely to exceed ∼ 8%. However,
systematic uncertainties from the SPS models dominate our
error-budget, and could possibly drive this value as high as
∼ 20%, assuming the most extreme SPS and IMF models.
Additionally, the question of the amount of unbound stellar
mass in halos remains open.
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APPENDIX A: FITS WITHOUT FLUXSCALE
CORRECTION

As discussed in Section 3 the fluxscale parameter, while nec-
essary, may be affected by unrecognised systematic biases.
Here we present the GSMF and Ω? estimates determined
when not incorporating the fluxscale parameter. This pro-
vides a quasi-lower limit on our fits and parameter estima-
tions, and demonstrates the impact of this corrective factor.

Figure A1 shows the final GSMF estimated when not
incorporating the fluxscale parameter. It is the no-fluxscale
equivalent of Figure 3. Similarly, Figure A2 shows the final
estimate of Ω? when not incorporating the fluxscale param-
eter.

In these figures, we can see that the most substantial
change is in the extent of the GSMF to the highest masses.
This is not surprising as the fluxscale factor is expected
to influence high Sersic index sources the most, and these
are overly contained at the highest mass end of the sample
( e.g. elliptical sources and bulge-dominated disks). The re-
sult is that our sample loses a substantial amount of mass
in the same region where the mass-density function peaks.
This drives the significant loss in the stellar mass density
parameter.

APPENDIX B: FITS WITH DECOUPLED M?

As discussed in Section 4, we opt to fit our main GSMFs with
a coupledM? 2-component Schecter function. This choice is
motivated mostly to enable simple comparison with previous
GSMF fits. However extensive work in exploring individual
populations of galaxies separated by morphology and dy-
namical properties (Moffett et al. 2016; Kelvin et al. 2014),
demonstrate that many decoupled Schechter functions are
required to capture the true diversity of galaxy mass func-
tions. With this in mind, we briefly explore the fits obtained
when using a decoupled 2-component Schechter function, in
Figure B1.

The fit parameters from our decoupled fit indicate that
data prefers a decoupled M? only slightly. The two free
M? parameters end up with values that are only slightly
inconsistent with each other, and otherwise the fit param-
eters are largely unchanged from our original coupled fits.
Nonetheless, the fact that the lower-mass component favours
a slightly lower M? than the higher mass component is
consistent with the results found previously in the liter-
ature, such as previously in the GAMA low-z sample by
Moffett et al. (2016).

APPENDIX C: DERIVING MASS LIMITS

For the automated derivation of mass limits, we fit a poly-
nomial to bootstrapped estimates of the turn-over point of
the comoving galaxy number density as a function of stellar
mass, and of the turn over of the stellar mass density as a
function of comoving distance. The result of this procedure

is shown in Figure C1, where we show the individually es-
timated turn-over points in each dimension. These points
have then been fit by a polynomial, yielding the mass limit
function shown. Importantly, Figure C2 demonstrates that
the mass limits successfully debias the sample with respect
to colour, as seen by the mass limit preferentially removing
blue galaxies (which are visible to higher redshifts than their
red counterparts).

We then determine the fidelity of these mass limits
by comparing the distribution of the mass-limited galaxy
probability function (with redshift) when using these mass
limits and the mass limits implemented in Moffett et al.
(2016). To do this, we assume a Baldry et al. (2012) double
Schechter function and compute the probability of observing
each galaxy given this GSMF and the assigned mass limit.
The distribution of probabilities using these two mass limit
functions are given in Figure C3. These figures show the
distribution of galaxy probabilities assuming a Baldry et al.
(2012) generative distribution and the relevant mass-limit
function. If both of these are a good reflection of the data,
the distribution of probabilities should have an expectation
of 0.5. In these figures we can see that the Moffett et al.
(2016) mass limits are systematically biased at low redshift,
indicated by an expectation systematically different from
0.5. Conversely, we see that the automatically defined mass
limits show no such systematic bias.
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Figure A1. The best-estimate GSMF for the GAMA low-z sample when not performing the fluxscale correction. The figure annotations

are the same as in Figure 3. Note that these fits include uncertainty due to cosmic variance using the estimator from Driver & Robotham

(2010).
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Figure A2. Left: Contribution of the full GAMA sample to Ω?, compared to previous estimates from the literature, when not incor-

porating the fluxscale correction. The figure is annotated as in Figure 9. Right: the GSMFs corresponding to the most recent estimates

of Ω? in the left panel. This provides an indication of the level of concordance in the literature with regards to the overall shape of the
GSMF, and also of the level of variation in the GSMF required to create a significant change in the value of Ω?.
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are the same as in Figure 3. Note that these fits include uncertainty due to cosmic variance using the estimator from Driver & Robotham

(2010).

Figure C1. Demonstration of the stellar mass limits returned by our automated mass limit estimation procedure. Here we can see the
distribution of bootstrapped turn-over estimates, derived in comoving distance bins (red) and mass bins (blue). These turn over estimates

are then fit with a polynomial (green). For comparison, the mass limit function of Moffett et al. (2016) is shown in orange. Note that
this is a generic diagnostic figure output by the function, and therefore is intentionally not created with meaningful axis labels.
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Figure C2. Demonstration that the stellar mass limits returned by our automated mass limit estimation procedure adequately debias

the colour distribution of galaxies within our sample. The left-hand figure shows the mass-redshift space of all galaxies within our sample,

coloured by g-i colour, along with the mass limit function. The distribution of colours (and the colour-bar) is shown in the right hand
panel. The solid line in the right hand figure is the colour distribution of the full sample, and the dashed line shows the distribution after

applying the mass-limit cut. Note in-particular that the mass-limit cut preferentially removes blue galaxies, which are visible to higher
redshifts (at a given stellar mass) than their red counterparts.
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Figure C3. Comparison between the galaxy probability distribution assuming: (top) constant mass limits, (middle) those derived using

our automated procedure, and (bottom) mass limits presented in Moffett et al. (2016). We see that the Moffett et al. (2016) mass limits

show a deviation away from the expectation probability (red points) of 0.5 at low masses, indicating that the mass limit there is not
accurate (assuming, of course, that the GSMF is reasonably represented by the Baldry et al. 2012 GSMF). Conversely, the automatically

defined mass limits returned from our procedure show no such bias.


